sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A384890
Number of maximal anti-runs (increasing by more than 1) in the binary indices of n.
[ "0", "1", "1", "2", "1", "1", "2", "3", "1", "1", "1", "2", "2", "2", "3", "4", "1", "1", "1", "2", "1", "1", "2", "3", "2", "2", "2", "3", "3", "3", "4", "5", "1", "1", "1", "2", "1", "1", "2", "3", "1", "1", "1", "2", "2", "2", "3", "4", "2", "2", "2", "3", "2", "2", "3", "4", "3", "3", "3", "4", "4", "4", "5", "6", "1", "1", "1", "2", "1", "1", "2", "3", "1", "1", "1", "2", "2", "2", "3", "4", "1", "1", "1", "2", "1", "1", "2" ]
[ "nonn" ]
9
0
4
[ "A000120", "A044813", "A048793", "A052499", "A069010", "A164707", "A243815", "A245562", "A245563", "A300820", "A328592", "A356606", "A356607", "A384175", "A384176", "A384177", "A384877", "A384878", "A384879", "A384890", "A384893", "A384906" ]
null
Gus Wiseman, Jun 17 2025
2025-06-18T07:35:38
oeisdata/seq/A384/A384890.seq
2c13da5a50fae5ec5ff162808337ec0f
A384891
Number of permutations of {1..n} with all distinct lengths of maximal runs (increasing by 1).
[ "1", "1", "1", "3", "3", "5", "23", "25", "43", "63", "345", "365", "665", "949", "1513", "8175", "9003", "15929", "23399", "36949", "51043", "293715", "314697", "570353", "826817", "1318201", "1810393", "2766099", "14180139", "15600413", "27707879", "40501321", "63981955", "88599903", "134362569", "181491125", "923029217" ]
[ "nonn" ]
13
0
4
[ "A000009", "A000041", "A000255", "A010027", "A034839", "A044813", "A072574", "A098859", "A116674", "A123513", "A242882", "A268193", "A287170", "A325324", "A325325", "A328592", "A329739", "A336866", "A351202", "A356606", "A356607", "A384175", "A384176", "A384177", "A384178", "A384880", "A384884", "A384885", "A384886", "A384891", "A384892", "A384893", "A384905", "A384907" ]
null
Gus Wiseman, Jun 19 2025
2025-06-22T15:13:33
oeisdata/seq/A384/A384891.seq
c9a9e9e2fd26f868b7519e8efac7b688
A384892
Number of permutations of {1..n} with all equal lengths of maximal runs (increasing by 1).
[ "1", "1", "2", "4", "13", "54", "314", "2120", "16700", "148333", "1468512", "16019532", "190899736", "2467007774", "34361896102", "513137616840", "8178130784179", "138547156531410", "2486151753462260", "47106033220679060", "939765362754015750", "19690321886243848784", "432292066866187743954" ]
[ "nonn" ]
13
0
3
[ "A000255", "A010027", "A034839", "A044813", "A047993", "A098859", "A116674", "A123513", "A242882", "A243815", "A268193", "A325325", "A329739", "A336866", "A351202", "A384175", "A384176", "A384177", "A384178", "A384880", "A384884", "A384885", "A384886", "A384889", "A384891", "A384892", "A384893", "A384904", "A384905", "A384907" ]
null
Gus Wiseman, Jun 19 2025
2025-06-22T16:29:04
oeisdata/seq/A384/A384892.seq
b8ad53fd4f1c86289055ebfe8d6868b1
A384893
Triangle read by rows where T(n,k) is the number of subsets of {1..n} with k maximal anti-runs (increasing by more than 1).
[ "1", "1", "1", "1", "2", "1", "1", "4", "2", "1", "1", "7", "5", "2", "1", "1", "12", "10", "6", "2", "1", "1", "20", "20", "13", "7", "2", "1", "1", "33", "38", "29", "16", "8", "2", "1", "1", "54", "71", "60", "39", "19", "9", "2", "1", "1", "88", "130", "122", "86", "50", "22", "10", "2", "1", "1", "143", "235", "241", "187", "116", "62", "25", "11", "2", "1", "1", "232", "420", "468", "392", "267", "150", "75", "28", "12", "2", "1" ]
[ "nonn", "tabl" ]
8
0
5
[ "A000071", "A000079", "A001629", "A010027", "A034839", "A053538", "A116674", "A268193", "A384175", "A384176", "A384177", "A384877", "A384878", "A384879", "A384889", "A384890", "A384893", "A384905" ]
null
Gus Wiseman, Jun 21 2025
2025-06-22T14:37:51
oeisdata/seq/A384/A384893.seq
5c41f815fb2eb846f28b924ee8ab5ba3
A384894
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^2.
[ "1", "1", "2", "1", "-4", "-14", "-30", "12", "330", "1139", "2226", "-2288", "-39646", "-163742", "-410900", "-89273", "5352720", "31177720", "114624554", "234094417", "-312845870", "-5584935715", "-32878240028", "-127407695297", "-315375599410", "24759230680", "6177102106748", "44838273448641", "220383314338200" ]
[ "sign" ]
12
0
3
[ "A000108", "A213091", "A213094", "A213095", "A384894", "A384895", "A384899" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:23:17
oeisdata/seq/A384/A384894.seq
5cd9f84420a352d0cf65506506ea8336
A384895
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x)^2)^2.
[ "1", "1", "2", "3", "4", "-3", "-50", "-237", "-872", "-2375", "-3522", "11383", "140170", "830999", "3797676", "13901117", "36231696", "12991001", "-656219096", "-5809148691", "-35189341480", "-173155983991", "-699938697650", "-2079618264082", "-1460269315332", "39890883936437", "413233629798312", "2857552649413347" ]
[ "sign" ]
9
0
3
[ "A000108", "A213094", "A213095", "A384894", "A384895", "A384900" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:23:24
oeisdata/seq/A384/A384895.seq
0b3d2718918798a1199da58c3e8e0de5
A384896
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^3.
[ "1", "1", "3", "0", "-23", "-51", "27", "920", "5469", "4836", "-84822", "-515991", "-1733406", "2541688", "64653336", "324962160", "800371560", "-3164656113", "-49575569463", "-260541998755", "-734864189592", "1794936737274", "39518722602456", "260877913774320", "1122691536976305", "1485180173013631" ]
[ "sign" ]
9
0
3
[ "A001764", "A213096", "A384896", "A384897", "A384898", "A384901" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:23:20
oeisdata/seq/A384/A384896.seq
cef94cdcaa9e63657c450d1c9d964fcc
A384897
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x)^2)^3.
[ "1", "1", "3", "3", "-8", "-81", "-462", "-1140", "1662", "42210", "341922", "1588428", "3968106", "-17035461", "-330216303", "-2645037192", "-15366663001", "-56099904270", "42126523152", "2923843607931", "33032055390075", "253102960693959", "1474460670302136", "5496172108115193", "-8530990617203547" ]
[ "sign" ]
9
0
3
[ "A001764", "A213096", "A384896", "A384897", "A384898", "A384902" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:23:28
oeisdata/seq/A384/A384897.seq
6007c48e167fb67819ddfa2d71825be6
A384898
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x)^3)^3.
[ "1", "1", "3", "6", "10", "-39", "-546", "-3563", "-18918", "-68472", "-47978", "2060310", "25856241", "210422728", "1367033271", "6837535155", "18339297562", "-114989342976", "-2525856651999", "-27658429475813", "-235591084478085", "-1658029364805855", "-9188248947018893", "-28582654956147315", "177119046663378954" ]
[ "sign" ]
11
0
3
[ "A001764", "A213096", "A384896", "A384897", "A384898", "A384903" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:23:31
oeisdata/seq/A384/A384898.seq
0015dc7875992bd5a39345c1363bf88a
A384899
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384894.
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "5", "1", "0", "1", "4", "9", "6", "-4", "0", "1", "5", "14", "16", "-2", "-14", "0", "1", "6", "20", "32", "12", "-32", "-30", "0", "1", "7", "27", "55", "45", "-39", "-103", "12", "0", "1", "8", "35", "86", "105", "-12", "-211", "-100", "330", "0", "1", "9", "44", "126", "201", "81", "-318", "-411", "552", "1139", "0", "1", "10", "54", "176", "343", "282", "-350", "-956", "342", "3038", "2226", "0" ]
[ "sign", "tabl" ]
14
0
8
[ "A000007", "A384894", "A384899" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:23:04
oeisdata/seq/A384/A384899.seq
f1616ad8ef7f0bc5495b9d3aac2e9194
A384900
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384895.
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "5", "3", "0", "1", "4", "9", "10", "4", "0", "1", "5", "14", "22", "18", "-3", "0", "1", "6", "20", "40", "48", "14", "-50", "0", "1", "7", "27", "65", "101", "72", "-81", "-237", "0", "1", "8", "35", "98", "185", "200", "-37", "-562", "-872", "0", "1", "9", "44", "140", "309", "436", "174", "-873", "-2420", "-2375", "0" ]
[ "sign", "tabl" ]
13
0
8
[ "A000007", "A384895", "A384900" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:22:57
oeisdata/seq/A384/A384900.seq
6b46cb1df4ba05122c2bfefbba7333ad
A384901
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384896.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "7", "0", "0", "1", "4", "12", "6", "-23", "0", "1", "5", "18", "19", "-37", "-51", "0", "1", "6", "25", "40", "-33", "-148", "27", "0", "1", "7", "33", "70", "-1", "-264", "-186", "920", "0", "1", "8", "42", "110", "70", "-360", "-681", "1588", "5469", "0", "1", "9", "52", "161", "192", "-384", "-1446", "1437", "13469", "4836", "0" ]
[ "sign", "tabl" ]
12
0
8
[ "A000007", "A384896", "A384901" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:23:07
oeisdata/seq/A384/A384901.seq
349005911cb8c229fbdca5a2dfaf1eae
A384902
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384897.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "7", "3", "0", "1", "4", "12", "12", "-8", "0", "1", "5", "18", "28", "-1", "-81", "0", "1", "6", "25", "52", "30", "-160", "-462", "0", "1", "7", "33", "85", "95", "-201", "-1125", "-1140", "0", "1", "8", "42", "128", "205", "-156", "-1932", "-3738", "1662", "0", "1", "9", "52", "182", "372", "36", "-2760", "-8073", "-2150", "42210", "0" ]
[ "sign", "tabl" ]
13
0
8
[ "A000007", "A384897", "A384902" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:23:00
oeisdata/seq/A384/A384902.seq
de84f95d5fdfd0f0743a12f7e4cc0978
A384903
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384898.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "7", "6", "0", "1", "4", "12", "18", "10", "0", "1", "5", "18", "37", "41", "-39", "0", "1", "6", "25", "64", "102", "-22", "-546", "0", "1", "7", "33", "100", "203", "96", "-1074", "-3563", "0", "1", "8", "42", "146", "355", "372", "-1419", "-8332", "-18918", "0", "1", "9", "52", "203", "570", "876", "-1338", "-13974", "-48606", "-68472", "0" ]
[ "sign", "tabl" ]
16
0
8
[ "A000007", "A384865", "A384898", "A384901", "A384902", "A384903" ]
null
Seiichi Manyama, Jun 12 2025
2025-06-12T10:22:54
oeisdata/seq/A384/A384903.seq
d3ef36678235df56de2be3e926f93964
A384904
Number of integer partitions of n with all equal lengths of maximal runs of consecutive parts decreasing by 1 but not by 0.
[ "1", "1", "2", "3", "4", "5", "9", "9", "14", "17", "23", "25", "40", "41", "59", "68", "92", "99", "140", "151", "204", "229", "296", "328", "433", "476", "606", "685", "858", "955", "1203", "1336", "1654", "1858", "2266", "2537", "3102", "3453", "4169", "4680", "5611", "6262", "7495", "8358", "9927", "11105", "13096", "14613", "17227", "19179", "22459" ]
[ "nonn" ]
9
0
3
[ "A000009", "A000041", "A008284", "A047966", "A047993", "A089259", "A098859", "A106529", "A239455", "A242882", "A243815", "A325325", "A336866", "A351294", "A381432", "A382857", "A383013", "A383708", "A384175", "A384178", "A384880", "A384882", "A384884", "A384886", "A384887", "A384904" ]
null
Gus Wiseman, Jun 20 2025
2025-06-20T08:10:37
oeisdata/seq/A384/A384904.seq
c986396dd2842b1aea3d146561acb567
A384905
Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k maximal anti-runs (decreasing by more than 1).
[ "1", "0", "1", "0", "1", "0", "0", "1", "1", "0", "0", "2", "0", "0", "0", "0", "2", "1", "0", "0", "0", "0", "3", "0", "1", "0", "0", "0", "0", "3", "2", "0", "0", "0", "0", "0", "0", "4", "2", "0", "0", "0", "0", "0", "0", "0", "5", "2", "1", "0", "0", "0", "0", "0", "0", "0", "6", "3", "0", "1", "0", "0", "0", "0", "0", "0", "0", "7", "4", "1", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "nonn", "tabl" ]
7
0
12
[ "A000009", "A003114", "A010027", "A034839", "A053538", "A116674", "A119900", "A210034", "A268193", "A384175", "A384176", "A384177", "A384877", "A384878", "A384886", "A384889", "A384890", "A384905" ]
null
Gus Wiseman, Jun 21 2025
2025-06-22T14:37:46
oeisdata/seq/A384/A384905.seq
d524d7b3ca21135bfd459ee8d02abe12
A384906
Number of maximal anti-runs of consecutive parts not increasing by 1 in the prime indices of n (with multiplicity).
[ "0", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "1", "2", "1", "2", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "changed" ]
11
1
6
[ "A034839", "A055396", "A056239", "A061395", "A069010", "A112798", "A116674", "A130091", "A245562", "A268193", "A300820", "A351202", "A356228", "A356607", "A382525", "A384177", "A384321", "A384877", "A384878", "A384890", "A384893", "A384906", "A385213" ]
null
Gus Wiseman, Jun 22 2025
2025-07-12T08:37:02
oeisdata/seq/A384/A384906.seq
2946c4e1216c1623eed746daa9cea504
A384907
Number of permutations of {1..n} with all distinct lengths of maximal anti-runs (not increasing by 1).
[ "1", "1", "1", "5", "17", "97", "587", "4291", "33109", "319967", "3106433", "35554459", "419889707", "5632467097", "77342295637", "1201240551077", "18804238105133", "328322081898745", "5832312989183807", "113154541564902427", "2229027473451951265", "47899977701182298255", "1037672943682453127645" ]
[ "nonn" ]
13
0
4
[ "A000255", "A010027", "A034839", "A044813", "A072574", "A098859", "A116674", "A123513", "A242882", "A268193", "A325325", "A328592", "A329739", "A336866", "A351202", "A356606", "A384177", "A384178", "A384880", "A384884", "A384885", "A384886", "A384891", "A384892", "A384893", "A384905", "A384907" ]
null
Gus Wiseman, Jun 21 2025
2025-06-23T00:42:37
oeisdata/seq/A384/A384907.seq
0753abe57e70cd1efa59d2490f8a3c3e
A384908
Start with a list L of positive integers. At each step n, let the center be the smallest number that has not been used as a center before with index m > 1. For all i < m, swap L(i) with L(i+m). a(n) = L(1).
[ "3", "4", "2", "5", "7", "1", "3", "9", "11", "4", "12", "6", "16", "15", "17", "5", "12", "19", "21", "8", "20", "23", "25", "10", "24", "27", "23", "21", "11", "31", "33", "34", "32", "35", "37", "31", "16", "33", "15", "41", "43", "17", "44", "18", "12", "47", "49", "50", "48", "51", "53", "47", "49", "55", "57", "50", "22", "59", "61", "26", "60", "29", "64", "66", "61", "67", "69", "70", "68", "65", "72", "28", "64", "75", "54", "27", "78", "80", "56" ]
[ "nonn" ]
17
1
1
null
null
Ali Sada, Jun 12 2025
2025-06-18T19:17:36
oeisdata/seq/A384/A384908.seq
2a27b9d08c6758f1029b4ca5c2e81d6b
A384909
Decimal expansion of the volume of an elongated pentagonal orthobicupola with unit edge.
[ "1", "2", "3", "4", "2", "2", "9", "9", "4", "7", "9", "6", "0", "4", "5", "1", "9", "7", "6", "8", "3", "0", "4", "6", "2", "4", "6", "6", "5", "0", "6", "7", "3", "0", "9", "5", "4", "0", "6", "0", "4", "2", "4", "6", "5", "0", "4", "9", "9", "3", "1", "8", "2", "0", "3", "3", "2", "9", "2", "4", "2", "0", "2", "8", "6", "4", "8", "4", "5", "1", "9", "4", "5", "5", "4", "2", "1", "4", "6", "7", "1", "6", "2", "0", "2", "2", "3", "7", "0", "1" ]
[ "nonn", "cons", "easy" ]
9
2
2
[ "A002163", "A010476", "A384283", "A384624", "A384625", "A384871", "A384909" ]
null
Paolo Xausa, Jun 12 2025
2025-06-12T10:17:13
oeisdata/seq/A384/A384909.seq
6e6a5bf25ff181238f92541bb7375dac
A384910
Decimal expansion of the volume of an elongated pentagonal orthocupolarotunda with unit edge.
[ "1", "6", "9", "3", "6", "0", "1", "7", "1", "2", "9", "3", "9", "6", "0", "2", "8", "7", "0", "7", "2", "7", "8", "1", "7", "1", "5", "8", "3", "2", "8", "2", "4", "3", "3", "3", "8", "3", "8", "5", "1", "3", "7", "6", "9", "4", "1", "3", "6", "8", "4", "9", "2", "9", "9", "3", "1", "6", "2", "2", "5", "9", "8", "8", "7", "2", "0", "9", "0", "7", "6", "8", "1", "6", "3", "1", "6", "4", "8", "7", "5", "0", "3", "2", "4", "9", "8", "4", "7", "6" ]
[ "nonn", "cons", "easy" ]
8
2
2
[ "A002163", "A010476", "A384283", "A384285", "A384624", "A384871", "A384909", "A384910", "A384911" ]
null
Paolo Xausa, Jun 13 2025
2025-06-17T11:54:51
oeisdata/seq/A384/A384910.seq
4917d27b6c094a76605ed6a9840e6eb0
A384911
Decimal expansion of the surface area of an elongated pentagonal orthocupolarotunda with unit edge.
[ "3", "3", "5", "3", "8", "5", "3", "2", "3", "3", "2", "5", "0", "6", "0", "5", "8", "3", "1", "0", "0", "4", "1", "0", "0", "7", "6", "2", "2", "3", "6", "7", "2", "8", "8", "5", "7", "1", "8", "8", "7", "1", "3", "8", "8", "9", "1", "8", "6", "0", "3", "1", "5", "6", "5", "9", "6", "5", "8", "9", "3", "9", "1", "2", "2", "1", "1", "1", "8", "3", "1", "7", "5", "8", "8", "7", "0", "7", "6", "3", "7", "5", "8", "3", "8", "1", "3", "8", "6", "8" ]
[ "nonn", "cons", "easy" ]
11
2
1
[ "A002163", "A384284", "A384286", "A384625", "A384872", "A384910", "A384911" ]
null
Paolo Xausa, Jun 13 2025
2025-06-21T11:43:28
oeisdata/seq/A384/A384911.seq
b930a1b9811d58d2eefa7c98fbb133d0
A384912
The number of unordered factorizations of n into exponentially squarefree prime powers (A384419).
[ "1", "1", "1", "2", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "4", "1", "2", "1", "2", "1", "1", "1", "3", "2", "1", "3", "2", "1", "1", "1", "6", "1", "1", "1", "4", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "4", "2", "2", "1", "2", "1", "3", "1", "3", "1", "1", "1", "2", "1", "1", "2", "9", "1", "1", "1", "2", "1", "1", "1", "6", "1", "1", "2", "2", "1", "1", "1", "4", "4", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
8
1
4
[ "A000688", "A005117", "A046951", "A050361", "A050377", "A073576", "A188581", "A188585", "A209061", "A322885", "A370256", "A384419", "A384912", "A384913", "A384914", "A384915", "A384916" ]
null
Amiram Eldar, Jun 12 2025
2025-06-12T10:24:38
oeisdata/seq/A384/A384912.seq
638be6417334f975e607350d20480336
A384913
The number of unordered factorizations of n into exponentially Fibonacci powers of primes (A115975).
[ "1", "1", "1", "2", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "4", "1", "2", "1", "2", "1", "1", "1", "3", "2", "1", "3", "2", "1", "1", "1", "6", "1", "1", "1", "4", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "4", "2", "2", "1", "2", "1", "3", "1", "3", "1", "1", "1", "2", "1", "1", "2", "8", "1", "1", "1", "2", "1", "1", "1", "6", "1", "1", "2", "2", "1", "1", "1", "4", "4", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
7
1
4
[ "A000045", "A000688", "A003107", "A046951", "A050361", "A050377", "A115063", "A115975", "A188581", "A188585", "A322885", "A370256", "A384912", "A384913", "A384914", "A384915", "A384916" ]
null
Amiram Eldar, Jun 12 2025
2025-06-12T10:24:42
oeisdata/seq/A384/A384913.seq
fda5313647a8d7bbf1a4c8fd9d1f2502
A384914
The number of unordered factorizations of n into numbers of the form p^(k^2) where p is prime and k >= 0 (A323520).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
7
1
16
[ "A000290", "A000688", "A001156", "A043289", "A046951", "A050361", "A050377", "A053164", "A063775", "A188581", "A188585", "A197680", "A203640", "A295658", "A322885", "A323520", "A365333", "A370256", "A384912", "A384913", "A384914", "A384915", "A384916" ]
null
Amiram Eldar, Jun 12 2025
2025-06-12T10:24:45
oeisdata/seq/A384/A384914.seq
99ca972e2e5fd4de904dcf2a196afeaf
A384915
The number of unordered factorizations of n into powers of primes of the form p^e where p is prime and 0 <= e <= p (A074583).
[ "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "2", "1", "1", "1", "2", "2", "1", "3", "2", "1", "1", "1", "3", "1", "1", "1", "4", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "3", "2", "2", "1", "2", "1", "3", "1", "2", "1", "1", "1", "2", "1", "1", "2", "4", "1", "1", "1", "2", "1", "1", "1", "4", "1", "1", "2", "2", "1", "1", "1", "3", "4", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
7
1
4
[ "A000688", "A026820", "A046951", "A048103", "A050361", "A050377", "A074583", "A188581", "A188585", "A322885", "A370256", "A384912", "A384913", "A384914", "A384915", "A384916" ]
null
Amiram Eldar, Jun 12 2025
2025-06-12T10:24:48
oeisdata/seq/A384/A384915.seq
72c592ea9ff5248bf705a7be4db79e47
A384916
The number of unordered factorizations of n into powers of primes of the form p^e where p is prime and 0 <= e < p.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
7
1
9
[ "A000688", "A026820", "A046951", "A048103", "A050361", "A050377", "A188581", "A188585", "A298735", "A322885", "A370256", "A384912", "A384913", "A384914", "A384915", "A384916" ]
null
Amiram Eldar, Jun 12 2025
2025-06-12T10:24:52
oeisdata/seq/A384/A384916.seq
7198b915fa4bf10e9e0717f6e08e4ba6
A384917
Decimal expansion of 1/3645.
[ "0", "0", "0", "2", "7", "4", "3", "4", "8", "4", "2", "2", "4", "9", "6", "5", "7", "0", "6", "4", "4", "7", "1", "8", "7", "9", "2", "8", "6", "6", "9", "4", "1", "0", "1", "5", "0", "8", "9", "1", "6", "3", "2", "3", "7", "3", "1", "1", "3", "8", "5", "4", "5", "9", "5", "3", "3", "6", "0", "7", "6", "8", "1", "7", "5", "5", "8", "2", "9", "9", "0", "3", "9", "7", "8", "0", "5", "2", "1", "2", "6", "2", "0", "0", "2" ]
[ "nonn", "cons" ]
16
0
4
[ "A002378", "A021733", "A384917" ]
null
Davide Rotondo, Jun 12 2025
2025-06-18T17:47:34
oeisdata/seq/A384/A384917.seq
482cde621e305bd63079a9c0666c9497
A384918
If k is in the sequence, so is k*2^m + 3, for all m > 0, a(1) = 2, ordered.
[ "2", "7", "11", "17", "19", "25", "31", "35", "37", "41", "47", "53", "59", "65", "67", "71", "73", "77", "79", "85", "91", "97", "103", "109", "115", "121", "127", "131", "133", "137", "139", "143", "145", "149", "151", "155", "157", "161", "167", "173", "179", "185", "191", "197", "203", "209", "215", "221", "227", "233", "239", "245", "251", "257", "259", "263" ]
[ "nonn" ]
10
1
1
[ "A007310", "A384918" ]
null
Jules Beauchamp, Jun 12 2025
2025-06-18T00:47:03
oeisdata/seq/A384/A384918.seq
6e6386e6b3fa3f55edf5f4cb1341e820
A384919
Tooth numbering sytem (permanent), FDI and ISO 3950.
[ "18", "17", "16", "15", "14", "13", "12", "11", "21", "22", "23", "24", "25", "26", "27", "28", "48", "47", "46", "45", "44", "43", "42", "41", "31", "32", "33", "34", "35", "36", "37", "38" ]
[ "nonn", "tabf", "fini", "full" ]
15
1
1
[ "A119247", "A384919", "A384920" ]
null
Wolfdieter Lang, Jun 12 2025
2025-06-14T00:38:36
oeisdata/seq/A384/A384919.seq
47cacaab58c4f0e523e3d4034aa95aff
A384920
Tooth numbering sytem (deciduous), FDI and ISO 3950.
[ "55", "54", "53", "52", "51", "61", "62", "63", "64", "65", "85", "84", "83", "82", "81", "71", "72", "73", "74", "75" ]
[ "nonn", "tabf", "fini", "full" ]
20
1
1
[ "A119247", "A384919", "A384920" ]
null
Wolfdieter Lang, Jun 12 2025
2025-06-16T05:50:58
oeisdata/seq/A384/A384920.seq
0640fec095c716b8a377905859a8d859
A384921
Number of permutations [p_1, p_2, ..., p_n], for n >= 1, with |p_{i+1} - p_i| >= 2, for i = 1..n-1, and |p_n - p_1| = 0 or 1.
[ "1", "0", "0", "2", "4", "30", "184", "1322", "10668", "96566", "969280", "10690146", "128527348", "1673257262", "23451539784", "352079626010", "5637207651004", "95886993887142", "1726775043225808", "32821564079286866", "656647922936247300", "13793480376190668446" ]
[ "nonn", "easy" ]
8
1
4
[ "A002464", "A002493", "A384921" ]
null
Wolfdieter Lang, Jun 17 2025
2025-06-23T21:52:40
oeisdata/seq/A384/A384921.seq
ebfcd75caa7951e67ccd83140f2e8941
A384922
a(n) is the first digit to the left of the decimal point in (3/2)^n.
[ "1", "1", "2", "3", "5", "7", "1", "7", "5", "8", "7", "6", "9", "4", "1", "7", "6", "5", "7", "6", "5", "7", "1", "2", "4", "1", "6", "5", "2", "4", "1", "6", "9", "9", "9", "9", "4", "6", "9", "4", "2", "8", "7", "6", "4", "7", "5", "8", "3", "0", "0", "0", "5", "3", "4", "7", "0", "1", "1", "7", "6", "5", "3", "9", "9", "9", "8", "8", "2", "3", "0", "5", "8", "2", "3", "4", "7", "0", "0", "6", "4", "6", "5", "3", "4", "7", "0", "0", "6", "9", "9", "4", "6", "9", "8", "8", "7", "5", "3" ]
[ "nonn", "base" ]
6
0
3
[ "A002379", "A384922" ]
null
Robert Israel, Jun 12 2025
2025-06-13T01:08:00
oeisdata/seq/A384/A384922.seq
cec88234d445b94ba003953027a7427d
A384923
a(n) is the smallest number of leading significant digits of the square root of the n-th nonsquare that includes all decimal digits.
[ "19", "23", "37", "39", "45", "36", "27", "17", "25", "15", "36", "19", "20", "36", "25", "37", "28", "13", "27", "52", "39", "17", "38", "27", "26", "17", "23", "24", "37", "19", "25", "26", "26", "41", "58", "57", "25", "12", "25", "22", "24", "19", "33", "48", "23", "41", "49", "23", "32", "32", "23", "30", "19", "17", "31", "27", "24", "47", "24", "26", "18", "22", "19", "48", "31", "22" ]
[ "nonn", "base", "new" ]
17
1
1
[ "A000037", "A000196", "A003285", "A061845", "A113507", "A384923", "A384924" ]
null
Felix Huber, Jun 26 2025
2025-07-02T03:26:32
oeisdata/seq/A384/A384923.seq
982807ad7fe28417f612cc2cde893c43
A384924
a(n) is the position of the first occurrence of the digit 0 among the leading significant decimal digits of the square root of the n-th nonsquare.
[ "14", "5", "5", "17", "11", "16", "10", "10", "6", "3", "36", "12", "6", "7", "13", "37", "16", "4", "26", "52", "2", "12", "6", "9", "11", "13", "16", "14", "4", "5", "2", "8", "18", "10", "3", "4", "12", "10", "3", "20", "9", "6", "2", "48", "6", "4", "49", "11", "32", "13", "9", "15", "19", "4", "5", "21", "2", "5", "24", "17", "3", "6", "19", "16", "5", "3", "4", "11", "17", "7", "19", "9", "2", "4", "16" ]
[ "nonn", "base", "new" ]
17
1
1
[ "A000037", "A000196", "A003285", "A113507", "A384923", "A384924" ]
null
Felix Huber, Jun 26 2025
2025-07-07T15:43:30
oeisdata/seq/A384/A384924.seq
9a767707ff75462f7e0ce1869ca9906f
A384925
Numbers k such that (32^k - 3^k)/29 is prime.
[ "3", "19", "37", "233", "283", "311", "1307", "1913" ]
[ "nonn", "hard", "more" ]
5
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A384925" ]
null
Robert Price, Jun 12 2025
2025-06-13T08:20:01
oeisdata/seq/A384/A384925.seq
2c2638d47ac8f4197321a01d5cadb323
A384932
Decimal expansion of tan(1) + sec(1).
[ "3", "4", "0", "8", "2", "2", "3", "4", "4", "2", "3", "3", "5", "8", "2", "7", "8", "4", "8", "4", "1", "8", "7", "2", "8", "0", "4", "8", "8", "5", "7", "0", "1", "0", "3", "6", "6", "5", "5", "7", "6", "4", "7", "4", "2", "7", "4", "7", "5", "5", "2", "9", "3", "3", "7", "2", "1", "9", "1", "0", "4", "8", "8", "3", "5", "5", "7", "6", "7", "6", "8", "0", "8", "4", "1", "3", "3", "2", "3", "9", "9", "5", "4", "7", "6", "9", "4" ]
[ "nonn", "cons", "easy" ]
14
1
1
[ "A049471", "A073448", "A133265", "A248617", "A384932" ]
null
Kritsada Moomuang, Jun 12 2025
2025-06-14T00:35:06
oeisdata/seq/A384/A384932.seq
f9a95e1eb32d05a782162aaafb14872d
A384933
Consecutive states of the linear congruential pseudo-random number generator (1589013525*s + 1) mod 2^32 when started at s=1.
[ "1", "1589013526", "2788435407", "2237951484", "147543469", "4023452466", "2064276251", "628809016", "3191326105", "3400909198", "226805927", "423946676", "1664555973", "2001363754", "382458483", "1721986928", "3087754289", "537519110", "491142271", "2895284844", "187886301", "2237693986", "992271051" ]
[ "nonn", "easy" ]
9
1
2
[ "A096551", "A096561", "A384933" ]
null
Sean A. Irvine, Jun 12 2025
2025-06-13T08:20:25
oeisdata/seq/A384/A384933.seq
b963f68c53dcd75ef6b29d4382f17775
A384934
Consecutive states of the linear congruential pseudo-random number generator 254*s mod (2^16+1) when started at s=1.
[ "1", "254", "64516", "2814", "59386", "10534", "54156", "58391", "19952", "21459", "11015", "45256", "26049", "62746", "11993", "31520", "10566", "62284", "25719", "44463", "21238", "20418", "8749", "59525", "45840", "43311", "56315", "16944", "43871", "1944", "35017", "46823", "30845", "35727", "30552", "26842", "2020", "54321" ]
[ "nonn", "easy" ]
11
1
2
[ "A357907", "A384934" ]
null
Sean A. Irvine, Jun 12 2025
2025-06-16T22:30:58
oeisdata/seq/A384/A384934.seq
7ac8ca8fe9b2588fe86ea18b1e562269
A384935
Consecutive states of the linear congruential pseudo-random number generator 513*s mod (2^31-1) when started at s=1.
[ "1", "513", "263169", "135005697", "538445857", "1344817825", "549293538", "467227237", "1316887764", "1253557774", "977527609", "1107973666", "1454807850", "1139601541", "500038549", "969221644", "1141980915", "1720657411", "81472926", "993421745", "671730846", "1000540478", "28673581", "1824645171" ]
[ "nonn", "easy" ]
11
1
2
[ "A096550", "A384935" ]
null
Sean A. Irvine, Jun 12 2025
2025-06-13T08:20:20
oeisdata/seq/A384/A384935.seq
daae3d50d12b08dd02bab3de701489e7
A384936
a(n) = Sum_{k=1..n} floor( log(A002110(n)) / log(prime(k)) ).
[ "0", "1", "3", "9", "16", "28", "42", "57", "76", "97", "121", "148", "177", "208", "242", "279", "316", "359", "401", "446", "493", "545", "596", "651", "708", "767", "829", "893", "958", "1026", "1096", "1170", "1246", "1319", "1400", "1484", "1567", "1657", "1742", "1834", "1923", "2021", "2119", "2218", "2316", "2419", "2526", "2635", "2745", "2857", "2972" ]
[ "nonn", "easy" ]
9
0
3
[ "A002110", "A287010", "A361373", "A377485", "A384442", "A384936" ]
null
Michael De Vlieger, Jun 12 2025
2025-06-18T23:46:58
oeisdata/seq/A384/A384936.seq
5009bb00beb69c13f3c224056feb5680
A384937
Number for rooted ordered trees with edge weights summing to n, where edge weights are all greater than zero, and the sequences of edge weights in all downward paths are weakly increasing.
[ "1", "1", "3", "9", "30", "103", "372", "1379", "5248", "20356", "80252", "320581", "1295018", "5280967", "21711163", "89890559", "374478935", "1568585095", "6602283315", "27910296899", "118448905668", "504466997897", "2155412350793", "9236401247438", "39686616306747", "170946789568804", "738024717474360" ]
[ "nonn" ]
7
0
3
[ "A000108", "A000169", "A000957", "A001764", "A036765", "A384747", "A384748", "A384937" ]
null
John Tyler Rascoe, Jun 12 2025
2025-06-14T00:18:31
oeisdata/seq/A384/A384937.seq
c2da88c0ddbe1d3b197fbd7b5c5f7744
A384938
Number for rooted ordered trees with edge weights summing to n, where edge weights are all greater than zero, and the sequences of edge weights in all downward paths are strictly increasing.
[ "1", "1", "2", "5", "11", "26", "61", "142", "334", "785", "1845", "4339", "10211", "24030", "56560", "133143", "313433", "737906", "1737275", "4090206", "9630067", "22673482", "53383917", "125691264", "295938451", "696785116", "1640579144", "3862745470", "9094847357", "21413863699", "50419073794", "118712060012", "279508439419" ]
[ "nonn" ]
7
0
3
[ "A000108", "A000169", "A000957", "A001764", "A036765", "A384747", "A384748", "A384938" ]
null
John Tyler Rascoe, Jun 13 2025
2025-06-14T00:18:19
oeisdata/seq/A384/A384938.seq
7a938001a17f94eb45e765df4aecdccd
A384940
Odd semiprimes interleaved with even semiprimes.
[ "9", "4", "15", "6", "21", "10", "25", "14", "33", "22", "35", "26", "39", "34", "49", "38", "51", "46", "55", "58", "57", "62", "65", "74", "69", "82", "77", "86", "85", "94", "87", "106", "91", "118", "93", "122", "95", "134", "111", "142", "115", "146", "119", "158", "121", "166", "123", "178", "129", "194", "133", "202", "141", "206", "143", "214", "145", "218", "155", "226", "159", "254", "161", "262", "169", "274", "177" ]
[ "nonn", "look" ]
13
1
1
[ "A001358", "A046315", "A100484", "A384940" ]
null
Zak Seidov and Robert Israel, Jun 13 2025
2025-06-18T00:53:55
oeisdata/seq/A384/A384940.seq
68ab270796e367b43c82b1dd632ce9bb
A384941
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^4.
[ "1", "1", "4", "-2", "-64", "-95", "780", "5230", "19228", "-90488", "-1454232", "-4080620", "19557280", "270109125", "1702743364", "-35378580", "-74674412048", "-515950535521", "-1719717134140", "9100931191804", "173629815007712", "988336433707663", "2065106985108344", "-25897495149473592" ]
[ "sign" ]
9
0
3
[ "A000012", "A002293", "A213101", "A213102", "A213103", "A384894", "A384896", "A384941", "A384942", "A384943", "A384944" ]
null
Seiichi Manyama, Jun 13 2025
2025-06-13T08:21:13
oeisdata/seq/A384/A384941.seq
6d31f93eeab0b51e7c09e1372cd38e7f
A384942
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^5.
[ "1", "1", "5", "-5", "-135", "-110", "3661", "16440", "-1375", "-827075", "-8388505", "2298072", "496514205", "2782147265", "322830120", "-164675585390", "-1846591014842", "-3084367863270", "84920580735040", "845318162940805", "4163798547024100", "-18708392155753220", "-503209620889452990", "-3212928238924865090" ]
[ "sign" ]
9
0
3
[ "A000012", "A002294", "A213104", "A384894", "A384896", "A384941", "A384942", "A384943", "A384945" ]
null
Seiichi Manyama, Jun 13 2025
2025-06-13T08:21:09
oeisdata/seq/A384/A384942.seq
783ea5ae3d8f413b869150a974d0b8f4
A384943
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^6.
[ "1", "1", "6", "-9", "-244", "-39", "11262", "36971", "-268890", "-3724293", "-24899558", "159971919", "3851093928", "9663394063", "-197371002600", "-2108992348026", "-9447769941412", "111942512192787", "2253965670439788", "7917705821761592", "-100488750700889250", "-1520857626228210483" ]
[ "sign" ]
8
0
3
[ "A000012", "A002295", "A213105", "A384894", "A384896", "A384941", "A384942", "A384943", "A384946" ]
null
Seiichi Manyama, Jun 13 2025
2025-06-13T08:21:01
oeisdata/seq/A384/A384943.seq
a40f11cc297b6277aee6701c24a6c665
A384944
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384941.
[ "1", "1", "0", "1", "1", "0", "1", "2", "4", "0", "1", "3", "9", "-2", "0", "1", "4", "15", "4", "-64", "0", "1", "5", "22", "19", "-116", "-95", "0", "1", "6", "30", "44", "-144", "-334", "780", "0", "1", "7", "39", "80", "-135", "-675", "862", "5230", "0", "1", "8", "49", "128", "-75", "-1060", "70", "11516", "19228", "0", "1", "9", "60", "189", "51", "-1414", "-1684", "16953", "59632", "-90488", "0" ]
[ "sign", "tabl" ]
9
0
8
[ "A000007", "A384899", "A384901", "A384941", "A384944" ]
null
Seiichi Manyama, Jun 13 2025
2025-06-13T08:21:05
oeisdata/seq/A384/A384944.seq
78d054a0c07ff887df1fd55920a037ef
A384945
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384942.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "11", "-5", "0", "1", "4", "18", "0", "-135", "0", "1", "5", "26", "16", "-255", "-110", "0", "1", "6", "35", "44", "-345", "-540", "3661", "0", "1", "7", "45", "85", "-389", "-1230", "5777", "16440", "0", "1", "8", "56", "140", "-370", "-2100", "5918", "40452", "-1375", "0", "1", "9", "68", "210", "-270", "-3049", "3784", "67356", "86065", "-827075", "0" ]
[ "sign", "tabl" ]
9
0
8
[ "A000007", "A384899", "A384901", "A384942", "A384945" ]
null
Seiichi Manyama, Jun 13 2025
2025-06-13T08:20:57
oeisdata/seq/A384/A384945.seq
02ff67da13d3114e4f3ac512da171fd4
A384946
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384943.
[ "1", "1", "0", "1", "1", "0", "1", "2", "6", "0", "1", "3", "13", "-9", "0", "1", "4", "21", "-6", "-244", "0", "1", "5", "30", "10", "-470", "-39", "0", "1", "6", "40", "40", "-660", "-674", "11262", "0", "1", "7", "51", "85", "-795", "-1824", "19599", "36971", "0", "1", "8", "63", "146", "-855", "-3384", "24171", "100390", "-268890", "0", "1", "9", "76", "224", "-819", "-5224", "24318", "180627", "-268456", "-3724293", "0" ]
[ "sign", "tabl" ]
9
0
8
[ "A000007", "A384899", "A384901", "A384943", "A384946" ]
null
Seiichi Manyama, Jun 13 2025
2025-06-13T08:20:35
oeisdata/seq/A384/A384946.seq
406f568ba959d75222e41968c9285546
A384947
Positive integers m for which A183136(m) != f(m), where f(m) = floor( (m*(m+1)/2)/phi - m/2 + 1/(2*phi) ) and phi = (1+sqrt(5))/2 is the golden ratio.
[ "15", "18", "36", "39", "41", "47", "49", "52", "91", "94", "96", "102", "103", "104", "107", "109", "123", "125", "128", "130", "136", "138", "141", "235", "238", "240", "246", "247", "248", "251", "252", "253", "267", "268", "269", "272", "273", "274", "277", "280", "281", "282", "285", "287", "303", "306", "322", "324", "327", "328" ]
[ "nonn" ]
34
1
1
[ "A001622", "A060143", "A183136", "A384947" ]
null
Hoang Xuan Thanh, Jun 13 2025
2025-06-20T10:45:08
oeisdata/seq/A384/A384947.seq
3110056362cbe421d1b9c7fc9e00d315
A384948
Primes p == 3 (mod 4) such that 5 is a primitive root of integers modulo p, but 2+-i are not primitive roots of Gaussian integers modulo p.
[ "83", "307", "347", "503", "587", "863", "947", "1103", "1223", "1523", "1567", "1667", "1787", "1907", "2063", "2087", "2267", "2663", "2683", "2687", "2903", "2963", "3167", "3343", "3347", "3623", "3803", "3863", "4283", "4463", "4523", "4643", "4967", "5147", "5303", "5387", "5507", "5563", "5807", "5843", "6047", "6203", "6607", "6863", "6983", "7187", "7247", "7523", "7583" ]
[ "nonn", "easy" ]
28
1
1
[ "A019335", "A122870", "A384948", "A385168" ]
null
Jianing Song, Jun 20 2025
2025-06-22T17:36:30
oeisdata/seq/A384/A384948.seq
cb1a31bfddec499e8e91e7a5adb62527
A384951
G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x)).
[ "1", "1", "2", "3", "5", "6", "2", "-20", "-102", "-312", "-795", "-1483", "-1102", "7035", "51059", "219453", "779078", "2307104", "5508377", "7633065", "-19349069", "-226127800", "-1296826960", "-5855601434", "-22970901723", "-78578482054", "-224208769108", "-429111559993", "429212740026", "10534398465308" ]
[ "sign" ]
22
0
3
[ "A384951", "A384976" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:37:37
oeisdata/seq/A384/A384951.seq
ec748efd01e2399438c9c3dae703d0d8
A384952
Decimal expansion of the volume of an elongated pentagonal orthobirotunda with unit edge.
[ "2", "1", "5", "2", "9", "7", "3", "4", "7", "7", "9", "1", "8", "7", "5", "3", "7", "6", "4", "6", "2", "5", "1", "7", "1", "8", "5", "0", "1", "4", "9", "7", "5", "5", "7", "2", "2", "7", "0", "9", "8", "5", "0", "7", "3", "7", "7", "7", "4", "3", "8", "0", "3", "9", "5", "3", "0", "3", "2", "0", "9", "9", "4", "8", "7", "9", "3", "3", "6", "3", "4", "1", "7", "7", "2", "1", "1", "5", "0", "7", "8", "4", "4", "4", "7", "7", "3", "2", "5", "1" ]
[ "nonn", "cons", "easy" ]
7
2
1
[ "A002163", "A010476", "A179451", "A344149", "A384283", "A384285", "A384624", "A384871", "A384909", "A384910", "A384952" ]
null
Paolo Xausa, Jun 20 2025
2025-06-20T14:22:41
oeisdata/seq/A384/A384952.seq
37bd155d29bc34933adca9cde535b2af
A384953
First of three consecutive primes whose concatenations, both forward and backward, are primes.
[ "313", "359", "383", "449", "619", "787", "827", "907", "1697", "2503", "2521", "2857", "3673", "3853", "4139", "4363", "4993", "5281", "5527", "5563", "5641", "5851", "6037", "6043", "6719", "7019", "7477", "9281", "10177", "10459", "13799", "14009", "15013", "15511", "17167", "17209", "19183", "19423", "20483", "20743", "21397", "21407", "25111" ]
[ "nonn", "base" ]
13
1
1
[ "A030469", "A104328", "A384953" ]
null
Robert Israel, Jun 13 2025
2025-06-14T18:41:34
oeisdata/seq/A384/A384953.seq
4a2b64137e7768e70f0d7b3e6f647f3c
A384954
Primes such that moving the last digit to the front produces a triangular number.
[ "3", "19", "2251", "3169", "6553", "7309", "7507", "13789", "20107", "21313", "38611", "39619", "43651", "44533", "48781", "52453", "54001", "54667", "65809", "70201", "75781", "76753", "78157", "79039", "87211", "173359", "188281", "196003", "247501", "366103", "370261", "390763", "435907", "482401", "498781", "540613", "542719" ]
[ "nonn", "base" ]
14
1
1
[ "A000040", "A000217", "A133197", "A384954" ]
null
David Radcliffe, Jun 13 2025
2025-06-14T20:25:20
oeisdata/seq/A384/A384954.seq
3a5fbbb7e4ec5c05efeb7b52daa76e9f
A384955
a(n) is the multinomial coefficient of the digits of n.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "1", "3", "6", "10", "15", "21", "28", "36", "45", "55", "1", "4", "10", "20", "35", "56", "84", "120", "165", "220", "1", "5", "15", "35", "70", "126", "210", "330", "495", "715", "1", "6", "21", "56", "126", "252", "462", "792", "1287", "2002", "1", "7", "28", "84", "210", "462", "924", "1716", "3003", "5005" ]
[ "nonn", "base", "easy", "look" ]
23
0
12
[ "A037124", "A066459", "A093659", "A269221", "A384955" ]
null
Stefano Spezia, Jun 13 2025
2025-06-15T20:54:11
oeisdata/seq/A384/A384955.seq
188d91b54acfdb38fceb2d3a81128820
A384956
Binary XOR of number of 1-bits in the binary representation of n and number of 0-bits in the binary representation of n, a(0) = 1.
[ "1", "1", "0", "2", "3", "3", "3", "3", "2", "0", "0", "2", "0", "2", "2", "4", "5", "1", "1", "1", "1", "1", "1", "5", "1", "1", "1", "5", "1", "5", "5", "5", "4", "6", "6", "0", "6", "0", "0", "6", "6", "0", "0", "6", "0", "6", "6", "4", "6", "0", "0", "6", "0", "6", "6", "4", "0", "6", "6", "4", "6", "4", "4", "6", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7" ]
[ "base", "easy", "look", "nonn" ]
37
0
4
[ "A000120", "A003987", "A023416", "A070939", "A328568", "A384956" ]
null
Frederik P.J. Vandecasteele, Jun 13 2025
2025-06-17T11:50:52
oeisdata/seq/A384/A384956.seq
6ed7be7ba4bcc4dc4f9b6374c86533ec
A384957
Expansion of g.f.: exp(Sum_{n>=1} A295433(n)*x^n/n).
[ "1", "990", "2206149", "6450139410", "21553605027306", "77957908218716988", "297118041166459732781", "1175248212459867447863562", "4779368947089383238327733950", "19858241947988743766121587718308", "83936671517628352407663509802203682", "359778601391313651280693986124971038388", "1560159110515342136997114532804454280500084" ]
[ "nonn" ]
8
0
2
[ "A166990", "A229451", "A243953", "A255881", "A295432", "A383796", "A384957" ]
null
Karol A. Penson, Jun 13 2025
2025-06-14T00:18:55
oeisdata/seq/A384/A384957.seq
dc73972eec8df7fbcb1f5f9037a81660
A384958
a(n) is the first prime p such that the concatenations of n consecutive primes, starting with p, in both forward and backward directions, are prime.
[ "2", "199", "313", "139", "67", "113", "163", "1583", "23789", "941", "131", "5351", "26801", "2693", "4073", "15859", "4919", "23209", "176053", "86783", "29717", "20849", "151289", "50111", "51971", "23689", "11807", "180337", "563", "25153", "517381", "36313", "256121", "753091", "208441", "28573", "4049", "108943", "451361", "114343", "28447", "21001", "4001", "3137", "6833", "885919" ]
[ "nonn", "base" ]
8
1
1
[ "A384953", "A384958" ]
null
Robert Israel, Jun 13 2025
2025-06-14T00:20:25
oeisdata/seq/A384/A384958.seq
f4396aa65feb68246721ff3143ed1abc
A384959
Number of chains in the Bruhat order of type A_n.
[ "4", "36", "4524", "15166380", "2010484649524", "14206021962108887860" ]
[ "nonn", "more" ]
12
1
1
[ "A000142", "A005130", "A061710", "A384061", "A384959" ]
null
Dmitry I. Ignatov, Jun 13 2025
2025-06-23T21:42:47
oeisdata/seq/A384/A384959.seq
6105a4997596c13694f79cd07ad2f384
A384960
a(n) = smallest sphenic number k such that A010846(k) = n.
[ "1001", "105", "231", "30", "42", "70", "110", "66", "78", "170", "102", "114", "138", "370", "174", "826", "222", "246", "258", "318", "354", "402", "438", "498", "534", "582", "654", "762", "786", "894", "978", "1038", "1158", "1338", "1506", "1542", "1758", "1986", "2082", "2202", "2334", "2598", "2922", "3126", "3462", "3918", "4098", "4398", "4614", "5262" ]
[ "nonn", "new" ]
12
15
1
[ "A007304", "A007947", "A010846", "A024718", "A162306", "A384000", "A384960" ]
null
Michael De Vlieger, Jul 06 2025
2025-07-11T16:19:49
oeisdata/seq/A384/A384960.seq
2cc75d1ce8093a09cbd7b3eb5af376bf
A384961
Consecutive states of the linear congruential pseudo-random number generator (257*s + 41) mod 2^16 when started at s=1.
[ "1", "298", "11091", "32380", "64165", "40910", "28151", "25888", "34121", "52850", "16539", "56260", "40941", "36118", "41791", "57960", "19089", "56250", "38371", "30988", "34101", "47710", "6279", "40880", "20441", "10498", "11051", "22100", "43645", "10150", "52687", "40184", "38177", "46666", "115", "29596", "4037", "54510" ]
[ "nonn", "easy" ]
14
1
2
[ "A357907", "A384934", "A384935", "A384961" ]
null
Sean A. Irvine, Jun 13 2025
2025-06-18T12:20:52
oeisdata/seq/A384/A384961.seq
6d288f0b27045e6a9021aa1c867b512a
A384962
Decimal expansion of coth(2*Pi).
[ "1", "0", "0", "0", "0", "0", "6", "9", "7", "4", "7", "0", "9", "0", "3", "5", "6", "1", "6", "2", "3", "3", "1", "2", "1", "6", "3", "5", "6", "0", "3", "6", "6", "8", "3", "6", "4", "6", "7", "9", "6", "7", "5", "8", "0", "6", "9", "0", "0", "2", "4", "7", "6", "3", "8", "8", "8", "3", "7", "2", "1", "2", "2", "2", "2", "2", "2", "7", "7", "2", "9", "8", "7", "6", "5", "6", "7", "0", "1", "2", "1", "8", "6", "8", "6", "6", "7", "1", "0", "5", "6", "7", "3", "6", "5", "1", "4", "3", "2", "2" ]
[ "nonn", "cons", "easy" ]
12
1
7
[ "A019692", "A073747", "A175316", "A384962" ]
null
Jason Bard, Jun 13 2025
2025-06-13T22:46:43
oeisdata/seq/A384/A384962.seq
488e77e578b6bfa1741329eeb388d4ed
A384963
Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces, n >= 1, k=1..max(1,2*n-4).
[ "1", "1", "1", "1", "2", "2", "1", "1", "3", "7", "7", "5", "2", "1", "6", "22", "42", "49", "35", "18", "5", "2", "12", "76", "237", "442", "510", "412", "218", "84", "18", "5", "27", "271", "1293", "3539", "6205", "7482", "6318", "3833", "1623", "485", "88", "14", "65", "1001", "6757", "25842", "63254", "106985", "129782", "115988", "76582", "37421", "13111", "3228", "489", "50" ]
[ "nonn", "tabf" ]
10
1
5
[ "A006082", "A006395", "A212438", "A277741", "A342060", "A372892", "A384850", "A384963", "A384964", "A384967" ]
null
Andrew Howroyd, Jun 13 2025
2025-06-15T14:39:09
oeisdata/seq/A384/A384963.seq
0cf887c71cabbbd2c34a00ff6119f3ce
A384964
Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 1, k=1..max(1,2*n-4).
[ "1", "1", "1", "1", "2", "2", "1", "1", "3", "8", "8", "6", "2", "1", "6", "29", "60", "73", "52", "25", "6", "2", "14", "113", "388", "768", "903", "728", "379", "136", "26", "6", "34", "444", "2303", "6584", "11782", "14321", "12113", "7298", "3048", "872", "147", "17", "95", "1763", "12650", "49806", "123547", "210314", "255884", "228807", "150929", "73428", "25536", "6142", "892", "73" ]
[ "nonn", "tabf" ]
8
1
5
[ "A002995", "A006394", "A239893", "A342059", "A379430", "A384963", "A384964", "A384965", "A384966" ]
null
Andrew Howroyd, Jun 13 2025
2025-06-15T14:38:58
oeisdata/seq/A384/A384964.seq
553f277e3af910f0e6e560be4d37c54b
A384965
Number of sensed simple planar maps with n vertices.
[ "1", "1", "2", "6", "28", "253", "3461", "58963", "1139866", "23952568", "534729502", "12511055327", "303919972592", "7613826460120" ]
[ "nonn", "more" ]
7
1
3
[ "A006394", "A372892", "A384964", "A384965" ]
null
Andrew Howroyd, Jun 13 2025
2025-06-15T14:38:40
oeisdata/seq/A384/A384965.seq
6e88d52c6f0d7e15baa0e6967d81aeca
A384966
Number of sensed simple planar maps with n vertices and 2 faces.
[ "0", "0", "1", "2", "8", "29", "113", "444", "1763", "6951", "27395", "107672", "422330", "1654180", "6472518", "25308760", "98923442", "386589398", "1510737079", "5904291401", "23079308104", "90236258057", "352908128341", "1380632536468", "5403055984114", "21152009997924", "82835786189975", "324518950873991", "1271797441923614", "4985982054721119" ]
[ "nonn" ]
10
1
4
[ "A001429", "A006078", "A007595", "A380237", "A384964", "A384966", "A384967" ]
null
Andrew Howroyd, Jun 14 2025
2025-06-15T14:38:27
oeisdata/seq/A384/A384966.seq
b397805c1bc58effae2b082022cda862
A384967
Number of unsensed simple planar maps with n vertices and 2 faces.
[ "0", "0", "1", "2", "7", "22", "76", "271", "1001", "3765", "14381", "55450", "214880", "835663", "3255652", "12698352", "49559793", "193513944", "755852101", "2953214386", "11541989533", "45123241746", "176465152051", "690340349398", "2701579878022", "10576116931462", "41418132927403", "162259989848094", "635899817853002", "2492993368347594" ]
[ "nonn" ]
8
1
4
[ "A001429", "A006081", "A379430", "A380239", "A384963", "A384966", "A384967" ]
null
Andrew Howroyd, Jun 15 2025
2025-06-15T14:37:25
oeisdata/seq/A384/A384967.seq
6d138715e84b280c160603c41265c031
A384968
Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete bipartite graph using exactly k interchangeable colors, 2 <= k <= 2*n.
[ "1", "1", "2", "1", "1", "6", "11", "6", "1", "1", "14", "61", "86", "50", "12", "1", "1", "30", "275", "770", "927", "530", "150", "20", "1", "1", "62", "1141", "5710", "12160", "12632", "6987", "2130", "355", "30", "1", "1", "126", "4571", "38626", "134981", "228382", "209428", "110768", "34902", "6580", "721", "42", "1", "1", "254", "18061", "248766", "1367310", "3553564", "4989621", "4093126", "2061782", "655788", "132958", "16996", "1316", "56", "1" ]
[ "nonn", "tabf" ]
6
1
3
[ "A000012", "A000918", "A001247", "A008277", "A212084", "A274310", "A384968", "A384980", "A384981" ]
null
Andrew Howroyd, Jun 18 2025
2025-06-18T23:17:21
oeisdata/seq/A384/A384968.seq
989b8038c587031dea21c0a852531f02
A384971
Consecutive internal states of the linear congruential pseudo-random number generator (106*s + 1283) mod 6075 when started at 1.
[ "1", "1389", "2717", "3760", "4968", "5441", "904", "5982", "3575", "3583", "4431", "3194", "5722", "315", "4298", "1246", "5784", "812", "2305", "2613", "4886", "2824", "2952", "4370", "2803", "726", "5339", "2242", "2010", "1718", "1141", "729", "5657", "5575", "2958", "5006", "3394", "2622", "5840", "673", "5796", "2084", "3487", "330", "5888" ]
[ "nonn", "easy" ]
14
1
2
[ "A384113", "A384114", "A384126", "A384152", "A384158", "A384196", "A384971" ]
null
Sean A. Irvine, Jun 13 2025
2025-06-20T08:27:43
oeisdata/seq/A384/A384971.seq
dcd441e59ef10ceaba143929a721d8e3
A384972
Numbers k such that (25^k - 3^k)/22 is prime.
[ "3", "5", "43", "709", "1151", "3323", "3643", "4637", "21661" ]
[ "nonn", "hard", "more" ]
5
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A384972" ]
null
Robert Price, Jun 13 2025
2025-06-15T06:24:32
oeisdata/seq/A384/A384972.seq
3487dd41d71e5861c61f723555c3b661
A384973
Consecutive states of the linear congruential pseudo-random number generator (101*s+1) mod 2^13 when started at s=1.
[ "1", "102", "2111", "220", "5837", "7906", "3883", "7160", "2265", "7582", "3927", "3412", "549", "6298", "5315", "4336", "3761", "3030", "2927", "716", "6781", "4946", "8027", "7912", "4489", "2830", "7303", "324", "8149", "3850", "3827", "1504", "4449", "6982", "671", "2236", "4653", "3010", "907", "1496", "3641", "7294", "7607", "6452", "4485" ]
[ "nonn", "look", "easy" ]
11
1
2
[ "A384126", "A384152", "A384158", "A384194", "A384973" ]
null
Sean A. Irvine, Jun 13 2025
2025-06-18T11:22:35
oeisdata/seq/A384/A384973.seq
63f9a73d1fc5960a5545f9511b27c8a3
A384974
G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x)^3)^2.
[ "1", "1", "3", "8", "25", "57", "22", "-1003", "-9967", "-67627", "-394013", "-1958808", "-7869346", "-17261270", "104411359", "1931214493", "19188604691", "153913872501", "1080677292567", "6709916699425", "35489004465351", "135918792966633", "-9832967202556", "-7535958768199373", "-106301159541342282" ]
[ "sign" ]
7
0
3
[ "A384974", "A384977" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:37:23
oeisdata/seq/A384/A384974.seq
f9dbb76282850af45cfc8475e8f168cd
A384975
G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x)^5)^3.
[ "1", "1", "4", "16", "77", "303", "718", "-4934", "-108553", "-1275290", "-12473324", "-107472840", "-826679323", "-5418440094", "-24911021972", "28733788740", "2764189150143", "48003187278203", "629585195050804", "7164019744705726", "73396269512625553", "677866973062726837", "5460528984809591552" ]
[ "sign" ]
7
0
3
[ "A384975", "A384978" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:36:34
oeisdata/seq/A384/A384975.seq
14e2146254e3080c80143f52a9f40bfd
A384976
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384951.
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "5", "3", "0", "1", "4", "9", "10", "5", "0", "1", "5", "14", "22", "20", "6", "0", "1", "6", "20", "40", "51", "34", "2", "0", "1", "7", "27", "65", "105", "105", "45", "-20", "0", "1", "8", "35", "98", "190", "248", "188", "18", "-102", "0", "1", "9", "44", "140", "315", "501", "526", "255", "-175", "-312", "0", "1", "10", "54", "192", "490", "912", "1200", "956", "63", "-836", "-795", "0" ]
[ "sign", "tabl" ]
9
0
8
[ "A000007", "A384951", "A384976" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:37:45
oeisdata/seq/A384/A384976.seq
da11726874a2e0dd132c2c8a73acb5d2
A384977
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384974.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "7", "8", "0", "1", "4", "12", "22", "25", "0", "1", "5", "18", "43", "75", "57", "0", "1", "6", "25", "72", "159", "212", "22", "0", "1", "7", "33", "110", "287", "516", "372", "-1003", "0", "1", "8", "42", "158", "470", "1032", "1296", "-1220", "-9967", "0", "1", "9", "52", "217", "720", "1836", "3126", "378", "-20271", "-67627", "0" ]
[ "sign", "tabl" ]
9
0
8
[ "A000007", "A384974", "A384977" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:37:30
oeisdata/seq/A384/A384977.seq
cac552006bb0a917ff30d284f20ca757
A384978
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384975.
[ "1", "1", "0", "1", "1", "0", "1", "2", "4", "0", "1", "3", "9", "16", "0", "1", "4", "15", "40", "77", "0", "1", "5", "22", "73", "202", "303", "0", "1", "6", "30", "116", "387", "888", "718", "0", "1", "7", "39", "170", "645", "1851", "2914", "-4934", "0", "1", "8", "49", "236", "990", "3304", "7267", "-3544", "-108553", "0", "1", "9", "60", "315", "1437", "5376", "14616", "8463", "-205605", "-1275290", "0" ]
[ "sign", "tabl" ]
10
0
8
[ "A000007", "A384975", "A384978" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:36:42
oeisdata/seq/A384/A384978.seq
840844c571e18de77e834b7c2dd3087f
A384979
a(n) is the smallest (n+2)-digit prime consisting of a string of n identical digits d sandwiched between two digits different from d, or -1 if no such prime exists.
[ "11", "101", "1009", "10007", "100003", "1000003", "13333339", "100000007", "1000000007", "13333333339", "100000000003", "1333333333337", "13333333333339", "122222222222227", "1555555555555553", "16666666666666661", "100000000000000003", "1000000000000000003", "15555555555555555557" ]
[ "nonn", "base", "changed" ]
39
0
1
[ "A068685", "A300102", "A384979" ]
null
Gonzalo Martínez, Jun 14 2025
2025-07-01T01:07:12
oeisdata/seq/A384/A384979.seq
869e849a5e417d4e8c7edb31cd4d36f5
A384980
Number of proper vertex colorings of the n-complete bipartite graph using exactly 4 interchangeable colors.
[ "0", "1", "11", "61", "275", "1141", "4571", "18061", "71075", "279781", "1103531", "4363261", "17292275", "68670421", "273152891", "1087959661", "4337751875", "17308485061", "69105848651", "276038071261", "1102994217875", "4408498475701", "17623550326811", "70462853802061", "281757339138275", "1126747061234341", "4506141224763371" ]
[ "nonn", "easy" ]
30
1
3
[ "A384968", "A384980", "A384981" ]
null
Julian Allagan, Jun 14 2025
2025-06-25T00:43:22
oeisdata/seq/A384/A384980.seq
fc29b4e6d03616956a8b66d17f70c09d
A384981
Number of proper vertex colorings of the n-complete bipartite graph using exactly 5 interchangeable colors.
[ "0", "0", "6", "86", "770", "5710", "38626", "248766", "1558290", "9603470", "58604546", "355460446", "2147773810", "12945690030", "77907271266", "468366848126", "2813865797330", "16897768573390", "101444650414786", "608899287739806", "3654318951308850", "21929599650541550", "131592320786851106", "789612753560503486" ]
[ "nonn", "easy" ]
27
1
3
[ "A008277", "A384968", "A384980", "A384981" ]
null
Julian Allagan, Jun 14 2025
2025-06-25T00:43:59
oeisdata/seq/A384/A384981.seq
ad89ce18bd2c046b018dbb4fccd7f99c
A384982
E.g.f. A(x) satisfies A(x) = exp(x*A(x)/A(-x*A(x)^2)).
[ "1", "1", "5", "37", "441", "6201", "106813", "1906941", "30468273", "55523377", "-38740562379", "-3411724382571", "-243384297752087", "-16302037879790103", "-1079717486340230163", "-70522687923224561939", "-4464491645915641423263", "-256925648451575448717471", "-10553829528150112216547483" ]
[ "sign" ]
7
0
3
[ "A384982", "A384985" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:36:20
oeisdata/seq/A384/A384982.seq
8e4c77c748341f3b808a025332327780
A384983
E.g.f. A(x) satisfies A(x) = exp(x*A(x)/A(-x*A(x)^4)^2).
[ "1", "1", "7", "76", "1333", "26816", "596899", "9687616", "-295060055", "-58508094464", "-6236843712929", "-591511769242624", "-54886056134084963", "-5038712914671656960", "-452211859222540203653", "-37655001036842279665664", "-2423249878967831840406191", "15689693768161840558505984", "52587298505917986133331289655" ]
[ "sign" ]
7
0
3
[ "A384983", "A384986" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:35:59
oeisdata/seq/A384/A384983.seq
75ed8a1c84021ac40f65c800599fe719
A384984
E.g.f. A(x) satisfies A(x) = exp(x*A(x)/A(-x*A(x)^6)^3).
[ "1", "1", "9", "133", "3185", "88521", "2709625", "59590189", "-2800437663", "-743713824239", "-109790487971479", "-14561409462651435", "-1895796404420991023", "-246003292448561592359", "-31576403033658804388647", "-3869259020245783760710019", "-407064058939470167525999935", "-20441215103072839391579678175" ]
[ "sign" ]
6
0
3
[ "A384984", "A384987" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:37:05
oeisdata/seq/A384/A384984.seq
9f5c4a3baac2e2e19dee63538b449a39
A384985
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384982.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "12", "37", "0", "1", "4", "21", "104", "441", "0", "1", "5", "32", "207", "1328", "6201", "0", "1", "6", "45", "352", "2841", "20512", "106813", "0", "1", "7", "60", "545", "5184", "47403", "381568", "1906941", "0", "1", "8", "77", "792", "8585", "92544", "941805", "7753664", "30468273", "0", "1", "9", "96", "1099", "13296", "162925", "1949824", "20868375", "160665856", "55523377", "0" ]
[ "sign", "tabl" ]
11
0
8
[ "A000007", "A384982", "A384985" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:36:27
oeisdata/seq/A384/A384985.seq
1870e2f54b024d0a45950f79110e24d2
A384986
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384983.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "76", "0", "1", "4", "27", "194", "1333", "0", "1", "5", "40", "360", "3568", "26816", "0", "1", "6", "55", "580", "6957", "77602", "596899", "0", "1", "7", "72", "860", "11776", "161328", "1911040", "9687616", "0", "1", "8", "91", "1206", "18325", "288644", "4284783", "42707282", "-295060055", "0" ]
[ "sign", "tabl" ]
9
0
8
[ "A000007", "A384983", "A384986" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:36:13
oeisdata/seq/A384/A384986.seq
2bb84a436bdd576859fda4a0c238a6d6
A384987
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384984.
[ "1", "1", "0", "1", "1", "0", "1", "2", "9", "0", "1", "3", "20", "133", "0", "1", "4", "33", "320", "3185", "0", "1", "5", "48", "567", "7920", "88521", "0", "1", "6", "65", "880", "14529", "232832", "2709625", "0", "1", "7", "84", "1265", "23360", "448203", "7695232", "59590189", "0", "1", "8", "105", "1728", "34785", "752064", "15740001", "220228416", "-2800437663", "0" ]
[ "sign", "tabl" ]
9
0
8
[ "A000007", "A384984", "A384987" ]
null
Seiichi Manyama, Jun 14 2025
2025-06-14T10:36:06
oeisdata/seq/A384/A384987.seq
ff53ebc2387e2927b6bbade68da48113
A384989
Order of the permutation of [n] formed by a Josephus elimination variation: take 3, skip 1.
[ "1", "1", "1", "1", "2", "3", "4", "4", "6", "10", "6", "8", "12", "11", "9", "10", "42", "15", "16", "52", "60", "120", "18", "30", "140", "99", "95", "28", "90", "660", "30", "28", "30", "30", "546", "336", "48", "420", "24", "765", "1680", "60", "308", "400", "66", "462", "418", "4830", "252", "1430", "468", "49", "42", "180", "1020", "52", "2310", "264", "1680", "340", "380" ]
[ "nonn" ]
11
1
5
[ "A051732", "A384753", "A384989" ]
null
Chuck Seggelin, Jun 14 2025
2025-06-19T18:34:33
oeisdata/seq/A384/A384989.seq
9690903acec7f2a097b750c83eb03acc
A384990
Order of the permutation of [n] formed by a Josephus elimination variation: take k, skip 1, with k starting at 1 and increasing by 1 after each skip.
[ "1", "1", "2", "2", "4", "5", "6", "7", "15", "9", "12", "11", "12", "13", "14", "60", "16", "70", "24", "88", "20", "60", "22", "23", "24", "25", "26", "27", "420", "29", "221", "31", "3465", "33", "285", "35", "840", "37", "38", "1040", "40", "41", "2618", "43", "44", "2520", "46", "546", "48", "594", "840", "644", "52", "696", "54", "2520", "56", "57", "58", "59", "60", "61", "62" ]
[ "nonn" ]
9
1
3
[ "A051732", "A384753", "A384989", "A384990" ]
null
Chuck Seggelin, Jun 14 2025
2025-06-19T18:37:40
oeisdata/seq/A384/A384990.seq
7c7c3f0b154094bb2c13533af2923665
A384991
Order of the permutation of [n] formed by a Josephus elimination variation: take p, skip 1, with p starting at 2 and advancing to the next prime after each skip.
[ "1", "1", "2", "3", "3", "5", "4", "7", "8", "15", "10", "11", "12", "13", "45", "15", "105", "17", "77", "19", "24", "21", "117", "23", "504", "255", "26", "165", "28", "440", "60", "31", "442", "33", "1386", "805", "154", "37", "105", "39", "1020", "216", "208", "43", "40", "45", "2860", "1953", "90", "49", "45", "51", "1092", "120", "184", "55", "56", "150", "58", "6045" ]
[ "nonn" ]
14
1
3
[ "A000040", "A051732", "A384753", "A384989", "A384990", "A384991" ]
null
Chuck Seggelin, Jun 14 2025
2025-06-19T18:41:58
oeisdata/seq/A384/A384991.seq
ca0ba9242d3b8a0facddcda9cb43e71c
A385002
Consecutive states of the linear congruential pseudo-random number generator (211*s + 1663) mod 7875 when started at s=1.
[ "1", "1874", "3327", "2785", "6548", "5166", "4939", "4292", "1650", "3313", "7706", "5379", "2632", "5765", "5328", "7621", "3194", "6222", "7255", "4718", "4911", "6259", "7187", "6120", "1483", "7451", "6699", "5527", "2360", "3498", "7366", "4514", "1242", "3850", "2888", "4656", "7579", "2207", "2715", "7528", "7196", "144", "547", "6830" ]
[ "nonn", "look", "easy" ]
20
1
2
[ "A384113", "A384971", "A385002", "A385003" ]
null
Sean A. Irvine, Jun 14 2025
2025-06-20T08:36:03
oeisdata/seq/A385/A385002.seq
9cc8a98a1a26b340c7fb4a4879680cf3
A385003
Consecutive states of the linear congruential pseudo-random number generator (421*s + 1663) mod 7875 when started at s=1.
[ "1", "2084", "4902", "2155", "3293", "2016", "7774", "6392", "7320", "4258", "6656", "339", "2632", "7235", "7848", "6046", "3404", "1497", "1900", "6188", "186", "1219", "2987", "7065", "7153", "4826", "1659", "7102", "6980", "2868", "4216", "4724", "5967", "1645", "1208", "6231", "2539", "7457", "6810", "2173", "2996", "2979", "3697", "6725" ]
[ "nonn", "easy", "look", "changed" ]
17
1
2
[ "A384113", "A384971", "A385002", "A385003" ]
null
Sean A. Irvine, Jun 14 2025
2025-07-06T18:25:48
oeisdata/seq/A385/A385003.seq
18e388ba01fc69269208e84296844e37
A385005
The sum of the cubefull divisors of n.
[ "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "1", "1", "1", "1", "1", "25", "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "28", "1", "1", "1", "1", "57", "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "1", "1", "1", "1", "1", "25", "1", "1", "1", "1", "1", "28", "1", "9", "1", "1", "1", "1", "1", "1", "1", "121", "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "1", "1", "1", "1", "1", "25", "109", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
8
1
8
[ "A000593", "A033634", "A035316", "A036966", "A038712", "A048250", "A072079", "A073185", "A113061", "A162296", "A183097", "A186099", "A190867", "A353900", "A360540", "A385005", "A385006" ]
null
Amiram Eldar, Jun 15 2025
2025-06-15T12:54:09
oeisdata/seq/A385/A385005.seq
2fda1083b1383a46b9f2a9f414a21b80
A385006
The sum of the biquadratefree divisors of n.
[ "1", "3", "4", "7", "6", "12", "8", "15", "13", "18", "12", "28", "14", "24", "24", "15", "18", "39", "20", "42", "32", "36", "24", "60", "31", "42", "40", "56", "30", "72", "32", "15", "48", "54", "48", "91", "38", "60", "56", "90", "42", "96", "44", "84", "78", "72", "48", "60", "57", "93", "72", "98", "54", "120", "72", "120", "80", "90", "60", "168", "62", "96", "104", "15", "84", "144" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A000593", "A033634", "A035316", "A038712", "A046100", "A048250", "A058035", "A072079", "A073185", "A113061", "A162296", "A183097", "A186099", "A252505", "A353900", "A365682", "A366992", "A385005", "A385006" ]
null
Amiram Eldar, Jun 15 2025
2025-06-15T12:54:33
oeisdata/seq/A385/A385006.seq
5b0a67469f69414dc58c4a029af5aaf7
A385007
The largest unitary divisor of n that is a biquadratefree number (A046100).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "1", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "1", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "3", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "1", "65", "66", "67", "68", "69" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A000265", "A006519", "A013661", "A036967", "A046100", "A053165", "A055231", "A057521", "A058035", "A065330", "A065331", "A077610", "A350388", "A350389", "A360539", "A360540", "A366126", "A367168", "A383764", "A385007" ]
null
Amiram Eldar, Jun 15 2025
2025-06-15T12:53:31
oeisdata/seq/A385/A385007.seq
2d6db9d5db2fb6bea56a0d0d312b8493
A385008
Integers k such that there exists an integer 0<m<k such that sigma(m)^2 + sigma(k)^2 = 2*(m+k)^2.
[ "4", "284", "1210", "2924", "4892", "5564", "6368", "9962", "10425", "10856", "13130", "14595", "18416", "28130", "29631", "35584", "53296", "53912", "64617", "66992", "67268", "71145", "76084", "86812", "87633", "88730", "100695", "102364", "104805", "122390", "123152", "124155", "139815", "147610", "153176", "165596", "168730", "176336", "180848" ]
[ "nonn", "changed" ]
31
1
1
[ "A000203", "A002046", "A063990", "A383484", "A385008" ]
null
S. I. Dimitrov, Jun 15 2025
2025-07-02T00:58:16
oeisdata/seq/A385/A385008.seq
6628663b13402f346c04c29990897b88
A385009
G.f.: Product_{k>=1} (1 + x^(2*k^2)) / (1 - x^k).
[ "1", "1", "3", "4", "7", "10", "16", "22", "34", "46", "67", "90", "126", "167", "228", "299", "399", "518", "681", "874", "1134", "1443", "1848", "2334", "2959", "3708", "4661", "5801", "7233", "8947", "11077", "13621", "16759", "20498", "25072", "30516", "37128", "44978", "54461", "65690", "79181", "95123", "114181", "136646", "163389", "194837", "232119" ]
[ "nonn" ]
6
0
3
[ "A000041", "A033461", "A385009", "A385010" ]
null
Vaclav Kotesovec, Jun 15 2025
2025-06-15T09:34:07
oeisdata/seq/A385/A385009.seq
1ab07c83d6b9b2044cb9ce7383450d6a
A385010
G.f.: Product_{k>=1} (1 + x^(3*k^2)) / (1 - x^k).
[ "1", "1", "2", "4", "6", "9", "14", "20", "29", "41", "57", "78", "108", "144", "193", "257", "338", "441", "575", "741", "953", "1218", "1549", "1960", "2474", "3103", "3882", "4839", "6009", "7435", "9179", "11287", "13847", "16938", "20664", "25143", "30528", "36964", "44667", "53855", "64795", "77792", "93230", "111497", "133113", "158630", "188712" ]
[ "nonn" ]
5
0
3
[ "A000041", "A033461", "A385009", "A385010" ]
null
Vaclav Kotesovec, Jun 15 2025
2025-06-15T09:33:59
oeisdata/seq/A385/A385010.seq
bdbce69bb9d3dcb614409cbd6c057c1e
A385011
G.f.: 1/Product_{k>=1} (1 - x^(2*k^2)) * (1 - x^k).
[ "1", "1", "3", "4", "8", "11", "19", "26", "42", "57", "86", "116", "168", "224", "314", "415", "568", "743", "998", "1293", "1709", "2196", "2862", "3649", "4702", "5950", "7590", "9540", "12061", "15064", "18895", "23460", "29220", "36081", "44651", "54854", "67490", "82513", "100979", "122904", "149671", "181400", "219904", "265463", "320453", "385397" ]
[ "nonn" ]
5
0
3
[ "A000041", "A001156", "A369579", "A385011", "A385012" ]
null
Vaclav Kotesovec, Jun 15 2025
2025-06-15T09:33:53
oeisdata/seq/A385/A385011.seq
77d4d6b6f1274b6d5629a5ffc03506c2
A385012
G.f.: 1/Product_{k>=1} (1 - x^(3*k^2)) * (1 - x^k).
[ "1", "1", "2", "4", "6", "9", "15", "21", "31", "45", "63", "87", "123", "165", "224", "302", "401", "528", "698", "906", "1177", "1520", "1950", "2488", "3173", "4010", "5061", "6363", "7965", "9932", "12366", "15317", "18937", "23342", "28686", "35153", "43002", "52425", "63797", "77454", "93819", "113386", "136807", "164663", "197863", "237302", "284080" ]
[ "nonn" ]
5
0
3
[ "A000041", "A001156", "A385011", "A385012" ]
null
Vaclav Kotesovec, Jun 15 2025
2025-06-15T09:33:48
oeisdata/seq/A385/A385012.seq
79ad12b42ccfba39059f3c68552ad10c