sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A384679
Number of edge-connected components on the faces of a tetrakis square tiling where the degree-8 vertices have been truncated, up to translation, rotation and reflection of the tiling.
[ "1", "2", "3", "10", "30", "123", "500", "2240", "10153", "47341", "223015", "1063340", "5108118", "24710991", "120202087", "587570923", "2884199700", "14210246496", "70242677688" ]
[ "nonn", "more" ]
16
0
2
[ "A197465", "A384679" ]
null
Peter Kagey, Jun 06 2025
2025-06-14T17:16:45
oeisdata/seq/A384/A384679.seq
f1fcc305d27bef1e682384969a7b4a23
A384680
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)*A(x*A(x)^3) ).
[ "1", "1", "3", "15", "100", "805", "7442", "76750", "866818", "10586499", "138549918", "1929878820", "28459172110", "442421488758", "7225177328165", "123586748434192", "2208493015533530", "41138303109509415", "797178212982793708", "16041390159326400966", "334654194086236031816", "7227174934846895031544" ]
[ "nonn" ]
11
0
3
[ "A143501", "A215505", "A384145", "A384680", "A384681" ]
null
Seiichi Manyama, Jun 06 2025
2025-06-07T08:21:35
oeisdata/seq/A384/A384680.seq
c91f6dbfa42ee95da9170f2a23c07651
A384681
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384680.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "7", "15", "0", "1", "4", "12", "36", "100", "0", "1", "5", "18", "64", "239", "805", "0", "1", "6", "25", "100", "426", "1900", "7442", "0", "1", "7", "33", "145", "671", "3357", "17319", "76750", "0", "1", "8", "42", "200", "985", "5260", "30228", "176214", "866818", "0", "1", "9", "52", "266", "1380", "7706", "46880", "303687", "1965938", "10586499", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A384581", "A384652", "A384680", "A384681" ]
null
Seiichi Manyama, Jun 06 2025
2025-06-07T08:21:18
oeisdata/seq/A384/A384681.seq
3576a0f69a5a8ea89f0ef2f8ded1f11d
A384682
Decimal expansion of (5/6)*phi = 5*(1 + sqrt(5))/12, where phi is the golden ratio.
[ "1", "3", "4", "8", "3", "6", "1", "6", "5", "7", "2", "9", "1", "5", "7", "9", "0", "4", "0", "1", "7", "0", "4", "8", "9", "0", "2", "8", "6", "3", "8", "0", "3", "1", "7", "6", "4", "7", "6", "6", "9", "2", "4", "3", "1", "6", "5", "0", "4", "8", "0", "2", "3", "8", "5", "1", "1", "2", "8", "7", "3", "8", "5", "2", "2", "5", "4", "3", "8", "3", "7", "1", "9", "0", "1", "5", "7", "5", "2", "0", "4", "1", "4", "2", "2", "6", "7" ]
[ "nonn", "cons", "easy" ]
18
1
2
[ "A001622", "A021016", "A134944", "A134946", "A384238", "A384682" ]
null
Kritsada Moomuang, Jun 06 2025
2025-06-09T00:58:03
oeisdata/seq/A384/A384682.seq
b571e9784d0c2d0a5797d4d282a73b59
A384683
Decimal expansion of Sum_{i >= 1} 1/(3*i-1) - 1/(3*i).
[ "2", "4", "7", "0", "0", "6", "2", "5", "0", "2", "9", "5", "0", "1", "8", "5", "3", "7", "2", "6", "5", "2", "7", "6", "2", "4", "2", "1", "8", "7", "5", "7", "0", "2", "3", "0", "2", "7", "6", "4", "0", "0", "9", "0", "4", "2", "2", "9", "2", "5", "1", "2", "9", "6", "6", "0", "5", "6", "9", "9", "6", "7", "7", "5", "8", "7", "3", "9", "3", "2", "8", "3", "0", "8", "8", "2", "4", "5", "5", "0", "2", "8", "2", "2", "7", "8", "7", "0", "4", "6", "0", "3", "8", "1", "8", "9", "3", "4", "9", "5", "8", "4", "6", "1", "4", "6", "1", "2", "1", "1", "9", "4", "6", "7", "8", "4" ]
[ "nonn", "cons" ]
28
0
1
[ "A002162", "A007494", "A152743", "A156057", "A294514", "A381671", "A384683" ]
null
Jason Bard, Jun 06 2025
2025-06-13T00:12:44
oeisdata/seq/A384/A384683.seq
495efce0109e9e55a9bc92a9f92491d2
A384684
Nonprimes k such that sopf(k)^k == sopf(k) (mod k) where sopf = A008472.
[ "1", "28", "30", "45", "65", "66", "90", "105", "133", "190", "231", "286", "301", "325", "369", "385", "426", "496", "532", "561", "645", "793", "946", "1016", "1105", "1288", "1353", "1729", "1905", "2041", "2107", "2121", "2275", "2278", "2413", "2465", "2501", "2701", "2737", "2821", "3577", "3781", "3861", "4015", "4123", "4161", "4699" ]
[ "nonn", "changed" ]
24
1
2
[ "A000396", "A005835", "A008472", "A107290", "A239546", "A302333", "A384684" ]
null
Juri-Stepan Gerasimov, Jun 06 2025
2025-07-07T14:26:06
oeisdata/seq/A384/A384684.seq
c66003b7de1b44bac6243d4c7aba54e9
A384685
Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, all internal nodes have weight 1, and leaf nodes have weights in {1,...,k}.
[ "1", "0", "1", "0", "2", "3", "0", "5", "8", "9", "0", "14", "25", "28", "29", "0", "42", "83", "95", "98", "99", "0", "132", "289", "337", "349", "352", "353", "0", "429", "1041", "1236", "1285", "1297", "1300", "1301", "0", "1430", "3847", "4652", "4854", "4903", "4915", "4918", "4919", "0", "4862", "14504", "17865", "18709", "18912", "18961", "18973", "18976", "18977" ]
[ "nonn", "easy", "tabl" ]
8
0
5
[ "A000108", "A078481", "A078482", "A088218", "A143330", "A380761", "A384613", "A384685" ]
null
John Tyler Rascoe, Jun 06 2025
2025-06-07T08:22:57
oeisdata/seq/A384/A384685.seq
73c5de13136682cb990bf6c7d7cf7342
A384686
a(n) = 2^(n-4)*(5*binomial(n,5) + 6*binomial(n,4)).
[ "0", "0", "0", "0", "6", "70", "480", "2520", "11200", "44352", "161280", "549120", "1774080", "5491200", "16400384", "47523840", "134184960", "370442240", "1002700800", "2667184128", "6985482240", "18042716160", "46022000640", "116064256000", "289696382976", "716282265600", "1755735654400", "4269382041600", "10305404928000" ]
[ "nonn", "easy" ]
14
0
5
[ "A384506", "A384686" ]
null
Enrique Navarrete, Jun 07 2025
2025-06-13T07:49:41
oeisdata/seq/A384/A384686.seq
1d5f73a70697dc6efaed033d94667d67
A384687
Number of elements in the Dedekind-MacNeille completion of the Bruhat order on D_n.
[ "4", "42", "1292", "114976", "29735760" ]
[ "nonn", "more" ]
6
2
1
[ "A002866", "A005130", "A378072", "A384687" ]
null
Dmitry I. Ignatov, Jun 07 2025
2025-06-14T18:43:52
oeisdata/seq/A384/A384687.seq
990c3094219c5ca68d7af2eed4f562e0
A384688
Runs of t in the range 0 <= t <= k and the same parity as k, for successive k >= 0.
[ "0", "1", "0", "2", "1", "3", "0", "2", "4", "1", "3", "5", "0", "2", "4", "6", "1", "3", "5", "7", "0", "2", "4", "6", "8", "1", "3", "5", "7", "9", "0", "2", "4", "6", "8", "10", "1", "3", "5", "7", "9", "11", "0", "2", "4", "6", "8", "10", "12", "1", "3", "5", "7", "9", "11", "13", "0", "2", "4", "6", "8", "10", "12", "14", "1", "3", "5", "7", "9", "11", "13", "15", "0", "2", "4", "6", "8", "10", "12", "14", "16" ]
[ "nonn", "easy", "changed" ]
14
0
4
[ "A000196", "A000267", "A000290", "A002378", "A002620", "A053186", "A055086", "A055087", "A079813", "A216607", "A384688" ]
null
Kevin Ryde, Jun 07 2025
2025-07-09T19:28:17
oeisdata/seq/A384/A384688.seq
f18dcb44c7f1bea2445463bca497e054
A384689
E.g.f. A(x) satisfies A(x) = exp( x*A(x)^2 * A(x*A(x)) ).
[ "1", "1", "7", "106", "2593", "89796", "4085029", "232694806", "16053415249", "1308960150472", "123811136509861", "13387049625793746", "1635128238889494793", "223420020463904387020", "33872693045213102767093", "5658826351169923606739206", "1035543935182601250745181089", "206506472947550295487980305424" ]
[ "nonn" ]
11
0
3
[ "A140049", "A384689", "A384690" ]
null
Seiichi Manyama, Jun 07 2025
2025-06-07T08:21:44
oeisdata/seq/A384/A384689.seq
f30190acf2d2185b16e0493f242372e5
A384690
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384689.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "106", "0", "1", "4", "27", "254", "2593", "0", "1", "5", "40", "450", "6328", "89796", "0", "1", "6", "55", "700", "11457", "220362", "4085029", "0", "1", "7", "72", "1010", "18256", "402468", "10016860", "232694806", "0", "1", "8", "91", "1386", "27025", "648564", "18326853", "568220102", "16053415249", "0" ]
[ "nonn", "tabl" ]
12
0
8
[ "A000007", "A379168", "A380178", "A384689", "A384690" ]
null
Seiichi Manyama, Jun 07 2025
2025-06-07T08:21:24
oeisdata/seq/A384/A384690.seq
4110efd99fc4aea9cc7e3a66310c316a
A384691
E.g.f. A(x) satisfies A(x) = exp( x*A(x) * A(x*A(x))^2 ).
[ "1", "1", "7", "112", "2989", "115136", "5899159", "381657928", "30082660633", "2814548348224", "306467497027531", "38242238970083336", "5401465336487870533", "854848596955885610560", "150317821473136130378335", "29159232358630752927016456", "6201999009581132843649181489", "1438725999127826885623788697472" ]
[ "nonn" ]
10
0
3
[ "A384691", "A384692" ]
null
Seiichi Manyama, Jun 07 2025
2025-06-07T08:21:50
oeisdata/seq/A384/A384691.seq
5c30968665ef4a97cb72bce28434eb53
A384692
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384691.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "112", "0", "1", "4", "27", "266", "2989", "0", "1", "5", "40", "468", "7168", "115136", "0", "1", "6", "55", "724", "12789", "275842", "5899159", "0", "1", "7", "72", "1040", "20128", "493248", "14058520", "381657928", "0", "1", "8", "91", "1422", "29485", "780164", "25060203", "903187826", "30082660633", "0" ]
[ "nonn", "tabl" ]
9
0
8
[ "A000007", "A384691", "A384692" ]
null
Seiichi Manyama, Jun 07 2025
2025-06-07T08:21:30
oeisdata/seq/A384/A384692.seq
1c22d55af26fbb4d93951cf521b64da1
A384695
Self-convolution square-root of A169961, where A169961(n) = binomial(12*n,n).
[ "1", "6", "120", "2850", "72990", "1950816", "53594508", "1500996420", "42639593040", "1224606404670", "35477155257720", "1035058071490152", "30375294227227530", "895810786837337880", "26530164526824124560", "788575111385154710700", "23513904388397505712014", "703104985574123730695460", "21076207836773295148694400" ]
[ "nonn" ]
6
0
2
[ "A169961", "A208977", "A383965", "A384695" ]
null
Vaclav Kotesovec, Jun 07 2025
2025-06-07T08:13:10
oeisdata/seq/A384/A384695.seq
e17a0db5edf226c7e075419cc5c01631
A384696
Consecutive states of the linear congruential pseudo-random number generator Cray RANF when started at 1.
[ "1", "44485709377909", "232253848878969", "94800993741645", "243522309605169", "20783065360997", "154093299791145", "161954398135485", "183663036741473", "207319719370837", "142356556532697", "278312552510253", "242082341486737", "37630394630981", "176334633251721", "233894773868189" ]
[ "nonn", "easy" ]
19
1
2
[ "A096550", "A096561", "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552", "A384696", "A384746", "A384775", "A384776", "A384778", "A384779", "A384780" ]
null
Sean A. Irvine, Jun 07 2025
2025-06-12T21:54:59
oeisdata/seq/A384/A384696.seq
7d38004147cacaf3f989fae275f76b93
A384697
Primes of the form floor(2^k / 5).
[ "3", "409", "6553", "1677721", "6871947673", "472236648286964521369", "7922816251426433759354395033", "2451992865385422173373355243440494693789982595493763481" ]
[ "nonn" ]
18
1
1
[ "A383966", "A384697" ]
null
Vincenzo Librandi, Jun 07 2025
2025-06-17T19:18:04
oeisdata/seq/A384/A384697.seq
523bbb7e95a5e9fe25b5e801a15ad8e3
A384698
The first prime number reached by iterating the map, x -> 2*x + 1 if x is even; x - lpf(x) otherwise where lpf(x) is the least prime factor of x, on n >= 2; or -1 if a prime is never reached.
[ "2", "3", "13", "5", "13", "7", "17", "13", "37", "11", "41", "13", "29", "41", "61", "17", "37", "19", "41", "37", "613", "23", "613", "41", "53", "613", "109", "29", "61", "31", "829", "61", "1861", "61", "73", "37", "277", "73", "157", "41", "613", "43", "89", "613", "181", "47", "97", "613", "101", "97", "401", "53", "109", "101", "113", "109", "229", "59", "829", "61", "241" ]
[ "nonn" ]
23
2
1
[ "A020639", "A383777", "A384698" ]
null
Ya-Ping Lu, Jun 09 2025
2025-06-15T19:52:28
oeisdata/seq/A384/A384698.seq
8e4f2d1bc0b961ad2b2ae3fe9916d4dd
A384699
Triples of distinct primes whose sum is a perfect square ordered by increasing sum and then lexicographically.
[ "2", "3", "11", "3", "5", "17", "5", "7", "13", "2", "3", "31", "2", "5", "29", "2", "11", "23", "3", "5", "41", "3", "17", "29", "5", "7", "37", "5", "13", "31", "7", "11", "31", "7", "13", "29", "7", "19", "23", "13", "17", "19", "2", "3", "59", "2", "19", "43", "3", "5", "73", "3", "7", "71", "3", "11", "67", "3", "17", "61", "3", "19", "59", "3", "31", "47", "3", "37", "41", "5", "17", "59", "5", "23", "53", "5", "29", "47", "7", "13", "61", "7", "31", "43", "11", "17", "53" ]
[ "nonn", "tabf" ]
20
1
1
[ "A000040", "A000290", "A183168", "A384699" ]
null
Vincenzo Librandi, Jun 09 2025
2025-06-18T17:29:15
oeisdata/seq/A384/A384699.seq
b3e928f9640cc20a06147037c197fe3b
A384700
On a 2 X n grid of vertices, draw a circle through every unordered triple of non-collinear vertices: a(n) is the number of distinct circles created.
[ "0", "1", "9", "24", "52", "93", "153", "232", "336", "465", "625", "816", "1044", "1309", "1617", "1968", "2368", "2817", "3321", "3880", "4500", "5181", "5929" ]
[ "nonn", "more" ]
16
1
3
[ "A365669", "A372981", "A373110", "A374338", "A384700", "A384701", "A384702", "A384703" ]
null
Scott R. Shannon and N. J. A. Sloane, Jun 07 2025
2025-06-15T14:36:30
oeisdata/seq/A384/A384700.seq
0f6a3e688c8951c68de133686d8d39e6
A384701
On a 2 X n grid of vertices, draw a circle through every unordered triple of non-collinear vertices: a(n) is the number of distinct points where circles intersect.
[ "2", "4", "18", "172", "978", "3672", "11034", "27241", "60804", "122741", "232138", "412263", "697058" ]
[ "nonn", "more" ]
19
1
1
[ "A359569", "A373106", "A374338", "A374825", "A384700", "A384701", "A384702", "A384703" ]
null
Scott R. Shannon and N. J. A. Sloane, Jun 07 2025
2025-06-15T14:37:11
oeisdata/seq/A384/A384701.seq
f08a4fd36296f9b4b3011f30a0ee32ce
A384702
On a 2 X n grid of vertices, draw a circle through every unordered triple of non-collinear vertices: a(n) is the number of distinct (finite) regions created.
[ "0", "1", "37", "245", "1205", "4213", "12261", "29742", "65507", "130824", "245325", "432262", "727259" ]
[ "nonn", "more" ]
17
1
3
[ "A359570", "A372978", "A374337", "A374826", "A384700", "A384701", "A384702", "A384703" ]
null
Scott R. Shannon and N. J. A. Sloane, Jun 07 2025
2025-06-15T14:36:43
oeisdata/seq/A384/A384702.seq
6df36b6164f08d94976000f0641bc0ae
A384703
On a 2 X n grid of vertices, draw a circle through every unordered triple of non-collinear vertices: a(n) is the number of distinct edges in the planar graph formed from the intersections of the circles.
[ "0", "4", "54", "416", "2182", "7884", "23294", "56982", "126310", "253564", "477462", "844524", "1424316" ]
[ "nonn", "more" ]
9
1
2
[ "A359571", "A373108", "A374339", "A374827", "A384700", "A384701", "A384702", "A384703" ]
null
Scott R. Shannon and N. J. A. Sloane, Jun 07 2025
2025-06-15T14:36:12
oeisdata/seq/A384/A384703.seq
b623a29b94c8c3debf4c81533f32b8de
A384704
Triangle T(i, j), 1 <= j <= i, read by rows. T(i, j) is the smallest number k that has i odd divisors and whose symmetric representation of sigma, SRS(k), has j parts; when no such k exists then T(i, j) = -1.
[ "1", "6", "3", "18", "-1", "9", "30", "78", "15", "21", "162", "-1", "-1", "-1", "81", "90", "666", "45", "75", "63", "147", "1458", "-1", "-1", "-1", "-1", "-1", "729", "210", "1830", "135", "105", "165", "189", "357", "903", "450", "-1", "225", "-1", "1225", "-1", "441", "-1", "3025", "810", "53622", "405", "-1", "1377", "1875", "567", "1539", "4779", "6875", "118098", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "59049" ]
[ "sign", "tabl" ]
24
1
2
[ "A003056", "A038547", "A174973", "A235791", "A237048", "A237591", "A237593", "A239929", "A249223", "A279102", "A279387", "A280107", "A318843", "A320066", "A320511", "A377654", "A384704" ]
null
Hartmut F. W. Hoft, Jun 07 2025
2025-06-18T21:56:42
oeisdata/seq/A384/A384704.seq
b126455a684b69bea266f2bc0a0f5cf3
A384705
Number of binary shuffle squares of length 2n with prefix 0, that can be obtained from a unique binary word of length n.
[ "1", "3", "11", "38", "135", "475", "1681", "5875", "20641", "71956", "250448", "869332", "3015496", "10440429" ]
[ "nonn", "hard" ]
29
1
2
[ "A191755", "A384705" ]
null
Bartlomiej Pawlik, Jun 07 2025
2025-06-24T23:49:31
oeisdata/seq/A384/A384705.seq
c4b0a5c4808a1befc47ed7b5e2e3da07
A384706
Integers y such that there exists an integer 0 < x < y such that y/sigma(x) + x/sigma(y) = 1.
[ "14", "20", "42", "54", "62", "88", "99", "108", "114", "124", "126", "132", "189", "195", "204", "210", "220", "238", "252", "254", "272", "284", "328", "340", "385", "414", "420", "432", "455", "464", "468", "495", "508", "528", "560", "572", "608", "621", "630", "663", "693", "748", "828", "837", "870", "888", "1008", "1089", "1136", "1192", "1197", "1210", "1288", "1416", "1422", "1440" ]
[ "nonn", "changed" ]
23
1
1
[ "A000043", "A000203", "A000396", "A002025", "A002046", "A253534", "A253535", "A384706" ]
null
S. I. Dimitrov, Jun 07 2025
2025-07-10T14:01:51
oeisdata/seq/A384/A384706.seq
9bd4a421afdd9249d46b2d44252d71ed
A384707
Consecutive states of the linear congruential pseudo-random number generator 71971110957370*s mod (2^47-115) when started at s=1.
[ "1", "71971110957370", "97751155475215", "63928805697070", "118479530220817", "88722126962001", "99358377603253", "117985650682333", "127902272911221", "81288594853390", "117258482513099", "129195671766469", "4907951471492", "76094880219228", "40827677163278", "73675282162193" ]
[ "nonn", "easy" ]
19
1
2
[ "A096550", "A096561", "A384707" ]
null
Sean A. Irvine, Jun 07 2025
2025-06-12T10:22:46
oeisdata/seq/A384/A384707.seq
b170c144d1af2ff20b71e2af23bf2f99
A384708
a(n) is the smallest integer k such that k is the sum of exactly n distinct permutations of k, all having the same number of digits as k.
[ "1", "954", "4617", "5112", "8136", "67104", "76011", "90216", "910107" ]
[ "nonn", "base", "fini", "full" ]
20
1
2
[ "A055098", "A384433", "A384708" ]
null
Gonzalo Martínez, Jun 07 2025
2025-06-19T17:02:03
oeisdata/seq/A384/A384708.seq
2825c5cfc45e61994a1345621a647d6b
A384709
a(n) = [n > 1 and A076479(n) = -Möbius(A067029(n))], where [.] is the Iverson bracket.
[ "0", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "1", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "1", "1", "1", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "0", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "1" ]
[ "nonn" ]
13
1
null
[ "A008683", "A067029", "A076479", "A384709", "A385055" ]
null
Peter Luschny and Friedjof Tellkamp, Jun 16 2025
2025-06-25T12:03:36
oeisdata/seq/A384/A384709.seq
69774b048a4933aecd4796e8e9eb8c05
A384710
a(n) = Sum_{k=0..n} [gcd(k, n) = 1], where [.] are the Iverson brackets.
[ "0", "2", "1", "2", "2", "4", "2", "6", "4", "6", "4", "10", "4", "12", "6", "8", "8", "16", "6", "18", "8", "12", "10", "22", "8", "20", "12", "18", "12", "28", "8", "30", "16", "20", "16", "24", "12", "36", "18", "24", "16", "40", "12", "42", "20", "24", "22", "46", "16", "42", "20", "32", "24", "52", "18", "40", "24", "36", "28", "58", "16", "60", "30", "36", "32", "48", "20", "66", "32", "44", "24" ]
[ "nonn" ]
15
0
2
[ "A000010", "A109004", "A217831", "A372728", "A384710" ]
null
Peter Luschny, Jun 07 2025
2025-06-09T14:43:27
oeisdata/seq/A384/A384710.seq
7e3212c942323ad892faac135d09f14b
A384711
Expansion of (1+x) / (1-2*x-6*x^2).
[ "1", "3", "12", "42", "156", "564", "2064", "7512", "27408", "99888", "364224", "1327776", "4840896", "17648448", "64342272", "234575232", "855204096", "3117859584", "11366943744", "41441044992", "151083752448", "550813774848", "2008130064384", "7321142777856", "26691065942016", "97308988551168" ]
[ "nonn", "easy", "walk" ]
8
0
2
[ "A133592", "A384711", "A384712" ]
null
Sean A. Irvine, Jun 07 2025
2025-06-08T05:00:23
oeisdata/seq/A384/A384711.seq
bc1f3149df286cd60144439f465148c6
A384712
Expansion of (1+2*x) / (1-2*x-6*x^2).
[ "1", "4", "14", "52", "188", "688", "2504", "9136", "33296", "121408", "442592", "1613632", "5882816", "21447424", "78191744", "285068032", "1039286528", "3788981248", "13813681664", "50361250816", "183604591616", "669376688128", "2440380925952", "8897021980672", "32436329517056", "118254790918144" ]
[ "nonn", "easy", "walk" ]
7
0
2
[ "A133592", "A384711", "A384712" ]
null
Sean A. Irvine, Jun 07 2025
2025-06-08T05:00:08
oeisdata/seq/A384/A384712.seq
e18ec74cd0634786e17a246f1d93fffe
A384713
The number of steps that n requires to reach 1 under the map: x-> x^2 - 1 if x is an odd prime, x/2 if x is even, x - lpf(x) otherwise where lpf(x) is the least prime factor of x. a(n) = -1 if 1 is never reached.
[ "0", "1", "4", "2", "8", "5", "9", "3", "6", "9", "11", "6", "12", "10", "7", "4", "12", "7", "14", "10", "8", "12", "14", "7", "11", "13", "8", "11", "15", "8", "14", "5", "9", "13", "9", "8", "16", "15", "9", "11", "16", "9", "17", "13", "10", "15", "17", "8", "10", "12", "9", "14", "18", "9", "13", "12", "10", "16", "17", "9", "19", "15", "10", "6", "10", "10", "20", "14", "11", "10", "18", "9", "20" ]
[ "nonn", "new" ]
15
1
3
[ "A339991", "A384713" ]
null
Ya-Ping Lu, Jun 23 2025
2025-07-04T01:11:21
oeisdata/seq/A384/A384713.seq
bf934f1142fa9b28034b78be5c8d0505
A384714
Nonpowers of 2 whose trailing digits form a power of 2.
[ "11", "12", "14", "18", "21", "22", "24", "28", "31", "34", "38", "41", "42", "44", "48", "51", "52", "54", "58", "61", "62", "68", "71", "72", "74", "78", "81", "82", "84", "88", "91", "92", "94", "98", "101", "102", "104", "108", "111", "112", "114", "116", "118", "121", "122", "124", "131", "132", "134", "138", "141", "142", "144", "148", "151", "152", "154", "158", "161", "162" ]
[ "nonn", "base", "easy" ]
34
1
1
[ "A000079", "A002275", "A007524", "A017281", "A057716", "A209229", "A384714", "A385289" ]
null
Stefano Spezia, Jun 23 2025
2025-06-25T17:27:21
oeisdata/seq/A384/A384714.seq
2666e80c5f32569313b008ef744a1844
A384715
a(n) = Sum_{k=0..n} (binomial(n, k) mod 4).
[ "1", "2", "4", "8", "4", "8", "12", "16", "4", "8", "12", "24", "12", "24", "24", "32", "4", "8", "12", "24", "12", "24", "32", "48", "12", "24", "32", "48", "24", "48", "48", "64", "4", "8", "12", "24", "12", "24", "32", "48", "12", "24", "32", "64", "32", "64", "64", "96", "12", "24", "32", "48", "32", "64", "64", "96", "24", "48", "64", "96", "48", "96", "96", "128", "4", "8", "12", "24" ]
[ "nonn", "easy", "changed" ]
58
0
2
[ "A001316", "A014081", "A033264", "A034931", "A051638", "A085357", "A384715" ]
null
David Radcliffe, Jun 23 2025
2025-07-12T20:52:20
oeisdata/seq/A384/A384715.seq
1f1d12332f79664a51a7de7d6decb605
A384716
The totient of the product of unitary divisors of n.
[ "1", "1", "2", "2", "4", "12", "6", "4", "6", "40", "10", "48", "12", "84", "120", "8", "16", "108", "18", "160", "252", "220", "22", "192", "20", "312", "18", "336", "28", "216000", "30", "16", "660", "544", "840", "432", "36", "684", "936", "640", "40", "889056", "42", "880", "1080", "1012", "46", "768", "42", "1000", "1632", "1248", "52", "972", "2200", "1344", "2052" ]
[ "nonn" ]
24
1
3
[ "A000010", "A000225", "A006093", "A061537", "A384716", "A384763" ]
null
Darío Clavijo, Jun 11 2025
2025-06-16T16:09:41
oeisdata/seq/A384/A384716.seq
4f7d607668c8ee2b51580a6e2a1ffe86
A384718
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A052750.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "12", "49", "0", "1", "4", "21", "128", "729", "0", "1", "5", "32", "243", "2000", "14641", "0", "1", "6", "45", "400", "3993", "41472", "371293", "0", "1", "7", "60", "605", "6912", "85683", "1075648", "11390625", "0", "1", "8", "77", "864", "10985", "153664", "2278125", "33554432", "410338673", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A052750", "A058127", "A097629", "A232006", "A384692", "A384718" ]
null
Seiichi Manyama, Jun 08 2025
2025-06-08T10:49:53
oeisdata/seq/A384/A384718.seq
b17b596d3c3b665d95b15a80916a44b4
A384719
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x))^2 ).
[ "1", "1", "5", "61", "1281", "39641", "1655713", "88312869", "5792082817", "454510418545", "41802078248001", "4434246169988669", "535583662477158529", "72887981688629021097", "11079094119653898282337", "1867050981690536859738901", "346619463962928284995333377", "70501622878003227432547203809" ]
[ "nonn" ]
8
0
3
[ "A162659", "A384691", "A384719", "A384720", "A384721" ]
null
Seiichi Manyama, Jun 08 2025
2025-06-08T10:50:04
oeisdata/seq/A384/A384719.seq
8cd14e98130cd367ac4bc8858184f978
A384720
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x))^3 ).
[ "1", "1", "7", "118", "3385", "141556", "7918489", "561302470", "48589734337", "5001284972872", "599865865782481", "82534986682048066", "12863925185682542833", "2248009460254706256460", "436716594440553989797369", "93635975845903995553159126", "22021353830468757164023479169", "5650417076648052544704264390160" ]
[ "nonn" ]
8
0
3
[ "A162659", "A384719", "A384720", "A384722" ]
null
Seiichi Manyama, Jun 08 2025
2025-06-08T10:50:08
oeisdata/seq/A384/A384720.seq
f6f694de72908d36ab2f4a65d68984f8
A384721
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384719.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "12", "61", "0", "1", "4", "21", "152", "1281", "0", "1", "5", "32", "279", "3200", "39641", "0", "1", "6", "45", "448", "5937", "98192", "1655713", "0", "1", "7", "60", "665", "9696", "181563", "4053688", "88312869", "0", "1", "8", "77", "936", "14705", "296864", "7430265", "213600200", "5792082817", "0" ]
[ "nonn", "tabl" ]
13
0
8
[ "A000007", "A380178", "A384692", "A384718", "A384719", "A384721", "A384722" ]
null
Seiichi Manyama, Jun 08 2025
2025-06-08T10:50:00
oeisdata/seq/A384/A384721.seq
4cbefcb19ca8038cb5efbe0935cea0b6
A384722
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384720.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "118", "0", "1", "4", "27", "278", "3385", "0", "1", "5", "40", "486", "8008", "141556", "0", "1", "6", "55", "748", "14121", "333482", "7918489", "0", "1", "7", "72", "1070", "22000", "587268", "18524980", "561302470", "0", "1", "8", "91", "1458", "31945", "916084", "32452353", "1303041350", "48589734337", "0" ]
[ "nonn", "tabl" ]
12
0
8
[ "A000007", "A380178", "A384720", "A384721", "A384722" ]
null
Seiichi Manyama, Jun 08 2025
2025-06-08T10:49:56
oeisdata/seq/A384/A384722.seq
801706b55f03cbb7593037d13ecee989
A384723
Heinz numbers of conjugates of maximally refined strict integer partitions.
[ "1", "2", "4", "6", "12", "18", "24", "30", "60", "90", "120", "150", "180", "210", "240", "420", "540", "630", "840", "1050", "1260", "1470", "1680", "1890", "2100", "2310", "2520", "3360", "4620", "6300", "6930", "7560", "9240" ]
[ "nonn", "more" ]
8
1
2
[ "A003963", "A048767", "A055396", "A056239", "A061395", "A112798", "A122111", "A130091", "A179009", "A239455", "A299200", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A382525", "A383706", "A383707", "A384005", "A384010", "A384317", "A384318", "A384320", "A384347", "A384349", "A384390", "A384394", "A384723" ]
null
Gus Wiseman, Jun 09 2025
2025-06-10T16:25:58
oeisdata/seq/A384/A384723.seq
8b3e6d3d5035ae975d6b2cb3e4e7d85c
A384726
a(n) is the least number that is both the product of n distinct primes and the concatenation of n distinct primes.
[ "2", "35", "273", "11235", "237615", "11237835", "1123317195", "111371237835", "11132343837615", "1113172923477615", "111317233377372295", "11131723677292413195", "1113172377671953734135", "111317192375336174123715" ]
[ "nonn", "base", "more" ]
13
1
1
[ "A083427", "A374665", "A384726" ]
null
Robert Israel, Jun 08 2025
2025-06-16T16:20:59
oeisdata/seq/A384/A384726.seq
f1147ed221449856e15ad9d7dd5c2c0c
A384727
Number of groups of order n (up to isomorphism) with exactly n subgroups.
[ "1", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1" ]
[ "nonn" ]
17
1
40
[ "A368538", "A384727", "A384800" ]
null
Richard Stanley, Jun 08 2025
2025-06-10T02:20:25
oeisdata/seq/A384/A384727.seq
9ff8a8e1029786134c12991c731aed91
A384728
The number of different shuffle square roots of the prefix of length 2n of the infinte word 00110011001100...
[ "1", "1", "1", "2", "3", "4", "6", "9", "13", "19", "28", "42", "62", "91", "135", "204", "304", "450", "674", "1016", "1519", "2267", "3408", "5138", "7718", "11574", "17431", "26325", "39653", "59637", "89962", "136038", "205288", "309398", "467365", "707419", "1069043", "1613776", "2440562", "3697006", "5593116", "8454010", "12797766", "19398770", "29374186", "44446508" ]
[ "nonn" ]
28
1
4
[ "A191755", "A384728" ]
null
Bartlomiej Pawlik, Jun 08 2025
2025-06-26T00:36:44
oeisdata/seq/A384/A384728.seq
27f9cf0e7e03dfc9c984f88f2ee43291
A384729
A B_2-sequence with reciprocal sum > 2.1615.
[ "1", "2", "4", "8", "13", "21", "31", "45", "66", "81", "97", "123", "148", "182", "204", "252", "291", "324", "352", "415", "486", "540", "651", "706", "792", "838", "928", "1046", "1134", "1228", "1358", "1407", "1512", "1624", "1869", "1938", "2087", "2170", "2367", "2480", "2608", "2765", "3033", "3080", "3232", "3567", "3605", "3797", "3950", "4267", "4505", "4677", "5064", "5290", "5480", "5655", "6059", "6507", "6892", "6967" ]
[ "nonn" ]
12
1
2
[ "A005282", "A046185", "A384729" ]
null
Logan J. Kleinwaks, Jun 08 2025
2025-06-16T01:06:30
oeisdata/seq/A384/A384729.seq
48b4fa93e84126aab1c68260fa38c570
A384730
Expansion of (1+x-2*x^2) / (1-x-6*x^2+2*x^3).
[ "1", "2", "6", "16", "48", "132", "388", "1084", "3148", "8876", "25596", "72556", "208380", "592524", "1697692", "4836076", "13837180", "39458252", "112809180", "321884332", "919822908", "2625510540", "7500679324", "21414096748", "61167151612", "174650373452", "498825089628", "1424393027116", "4068042817980" ]
[ "nonn", "easy", "walk" ]
7
0
2
[ "A384730", "A384731", "A384732" ]
null
Sean A. Irvine, Jun 05 2025
2025-06-08T17:32:30
oeisdata/seq/A384/A384730.seq
ac94d42d0787b47d5fa74f9c9d2afbfe
A384731
Expansion of (1+2*x-x^2) / (1-x-6*x^2+2*x^3).
[ "1", "3", "8", "24", "66", "194", "542", "1574", "4438", "12798", "36278", "104190", "296262", "848846", "2418038", "6918590", "19729126", "56404590", "160942166", "459911454", "1312755270", "3750339662", "10707048374", "30583575806", "87325186726", "249412544814", "712196513558", "2034021408990", "5808375400710" ]
[ "nonn", "easy", "walk" ]
6
0
2
[ "A384730", "A384731", "A384732" ]
null
Sean A. Irvine, Jun 05 2025
2025-06-08T17:32:22
oeisdata/seq/A384/A384731.seq
0e35bd5aed25027d8bd56fe933f35b69
A384732
Expansion of (1+2*x) / (1-x-6*x^2+2*x^3).
[ "1", "3", "9", "25", "73", "205", "593", "1677", "4825", "13701", "39297", "111853", "320233", "912757", "2610449", "7446525", "21283705", "60741957", "173551137", "495435469", "1415258377", "4040768917", "11541448241", "32955544989", "94122696601", "268773070053", "767598159681", "2191991186797", "6260034004777" ]
[ "nonn", "easy", "walk" ]
6
0
2
[ "A384730", "A384731", "A384732" ]
null
Sean A. Irvine, Jun 05 2025
2025-06-08T17:32:16
oeisdata/seq/A384/A384732.seq
60cc2dc01d82cefd882a2c47be3bc4bc
A384733
a(n) = 5*binomial(n,6) + 2*binomial(n,4).
[ "0", "0", "0", "0", "2", "10", "35", "105", "280", "672", "1470", "2970", "5610", "10010", "17017", "27755", "43680", "66640", "98940", "143412", "203490", "283290", "387695", "522445", "694232", "910800", "1181050", "1515150", "1924650", "2422602", "3023685", "3744335", "4602880", "5619680", "6817272", "8220520", "9856770", "11756010" ]
[ "nonn" ]
13
0
5
[ "A384686", "A384733" ]
null
Enrique Navarrete, Jun 08 2025
2025-06-11T11:33:36
oeisdata/seq/A384/A384733.seq
d4e3995e43e5237bad5c27f70e316898
A384734
Consecutive states of the linear congruential pseudo-random number generator (513*s+29741096258473) mod 2^47 when started at s=1.
[ "1", "29741096258986", "87274734742867", "47158722354940", "15317667226277", "6405035440206", "78562044911607", "81148466289056", "607749367113", "60041544876786", "9543668232859", "140568295633988", "83682718566381", "34041772436886", "41721800320319", "40926430572264", "55114214886033" ]
[ "nonn", "easy" ]
12
1
2
[ "A096550", "A096561", "A384734" ]
null
Sean A. Irvine, Jun 08 2025
2025-06-11T11:33:48
oeisdata/seq/A384/A384734.seq
97001514b57d3b917adbd412795cc05c
A384735
Numbers that are prime or end in a prime number (of any length).
[ "2", "3", "5", "7", "11", "12", "13", "15", "17", "19", "22", "23", "25", "27", "29", "31", "32", "33", "35", "37", "41", "42", "43", "45", "47", "52", "53", "55", "57", "59", "61", "62", "63", "65", "67", "71", "72", "73", "75", "77", "79", "82", "83", "85", "87", "89", "92", "93", "95", "97", "101", "102", "103", "105", "107", "109", "111", "112", "113", "115", "117" ]
[ "nonn", "base" ]
49
1
1
[ "A000040", "A017293", "A017305", "A017329", "A017353", "A033664", "A055642", "A384735" ]
null
Mohd Anwar Jamal Faiz, Jun 08 2025
2025-06-20T20:23:02
oeisdata/seq/A384/A384735.seq
a147aa4b300b7559be95b9fde24b901e
A384736
Numbers k such that (28^k - 3^k)/25 is prime.
[ "2", "3", "7", "43", "197", "13397", "28837", "29153" ]
[ "nonn", "hard", "more" ]
4
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A384736" ]
null
Robert Price, Jun 08 2025
2025-06-09T00:59:35
oeisdata/seq/A384/A384736.seq
86f594e79a538859fcffcae8fa66d487
A384737
a(n) is the number of distinct five-cuboid combinations filling an n X n X n cube only with at least one cut spanning through the full cube.
[ "0", "0", "1", "27", "195", "527", "1487", "2711", "5648", "8694" ]
[ "nonn", "more" ]
12
1
4
[ "A381847", "A384208", "A384311", "A384479", "A384737" ]
null
Janaka Rodrigo, Jun 08 2025
2025-06-22T00:51:34
oeisdata/seq/A384/A384737.seq
02c7d159558d619aaa63daaa1ffbeb32
A384738
Decimal expansion of 3*log(2)/4 - Pi/8.
[ "1", "2", "7", "1", "6", "1", "3", "0", "3", "7", "2", "1", "2", "3", "4", "8", "2", "7", "2", "5", "5", "0", "9", "3", "6", "6", "8", "1", "8", "3", "6", "9", "4", "5", "6", "5", "5", "3", "1", "9", "7", "8", "9", "2", "5", "8", "4", "8", "3", "0", "3", "2", "1", "2", "9", "6", "8", "6", "4", "1", "9", "3", "3", "0", "8", "1", "5", "6", "8", "1", "6", "5", "6", "9", "1", "4", "9", "4", "9", "1", "1", "8", "7", "5", "8", "9", "3" ]
[ "nonn", "cons" ]
18
0
2
[ "A002162", "A100046", "A384683", "A384738" ]
null
Jason Bard, Jun 08 2025
2025-06-15T22:16:37
oeisdata/seq/A384/A384738.seq
1d067b9d8170320fd2c640e2be6d0462
A384739
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x)^2) ).
[ "1", "1", "3", "28", "461", "11776", "421207", "19832128", "1179482201", "85990657024", "7513043962571", "772836266189824", "92270347493126629", "12636256749099114496", "1965364897138717976735", "344225592620170387849216", "67392512492360201909759153", "14653181755453024592646111232", "3518079370651785227796264294163" ]
[ "nonn" ]
10
0
3
[ "A000272", "A162659", "A384719", "A384739", "A384740", "A384741", "A384749" ]
null
Seiichi Manyama, Jun 08 2025
2025-06-09T10:34:13
oeisdata/seq/A384/A384739.seq
ad9d8c72db6db86decea5a1d3e748c13
A384740
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x)^3) ).
[ "1", "1", "3", "34", "665", "20556", "901417", "52455250", "3885229665", "355223077336", "39166024398641", "5113078496932374", "778733373110049601", "136679150176555902436", "27360426865918664532393", "6191378995818235673842546", "1571577905668087973855557313", "444441393534829346316950781744" ]
[ "nonn" ]
9
0
3
[ "A000272", "A162659", "A384720", "A384739", "A384740", "A384742" ]
null
Seiichi Manyama, Jun 08 2025
2025-06-09T10:34:09
oeisdata/seq/A384/A384740.seq
1b886fd1aa5efd063144b3861180dc2b
A384741
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384739.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "8", "28", "0", "1", "4", "15", "74", "461", "0", "1", "5", "24", "144", "1200", "11776", "0", "1", "6", "35", "244", "2325", "29842", "421207", "0", "1", "7", "48", "380", "3968", "56688", "1040896", "19832128", "0", "1", "8", "63", "558", "6285", "95524", "1933227", "47948490", "1179482201", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A380178", "A384739", "A384741", "A384742" ]
null
Seiichi Manyama, Jun 08 2025
2025-06-09T10:34:06
oeisdata/seq/A384/A384741.seq
b09858d7a7e8295058310c67d7c09984
A384742
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384740.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "8", "34", "0", "1", "4", "15", "86", "665", "0", "1", "5", "24", "162", "1656", "20556", "0", "1", "6", "35", "268", "3081", "49802", "901417", "0", "1", "7", "48", "410", "5072", "90588", "2132476", "52455250", "0", "1", "8", "63", "594", "7785", "146484", "3792177", "121703094", "3885229665", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A380178", "A384740", "A384741", "A384742" ]
null
Seiichi Manyama, Jun 08 2025
2025-06-09T10:34:02
oeisdata/seq/A384/A384742.seq
db8a6aef5b9919bcf7c59449498870a5
A384743
a(n) is the number of distinct five-cuboid combinations filling n X n X n cube without allowing a cut spanning through the full cube in any of filling positions.
[ "0", "0", "0", "1", "6", "20", "50", "110", "197", "343" ]
[ "nonn", "more" ]
15
1
5
[ "A381847", "A384208", "A384311", "A384479", "A384743" ]
null
Janaka Rodrigo, Jun 08 2025
2025-06-22T00:51:37
oeisdata/seq/A384/A384743.seq
9fa2938d56eb89d3de91b5523dde96f3
A384744
Numbers in which all substrings in base 16 are primes.
[ "2", "3", "5", "7", "11", "13", "37", "43", "53", "59", "61", "83", "179", "181", "211", "691", "947", "3389" ]
[ "base", "easy", "fini", "full", "nonn" ]
23
1
1
[ "A085823", "A384744" ]
null
Yuri Urvantsev, Jun 08 2025
2025-06-15T19:23:20
oeisdata/seq/A384/A384744.seq
370ec679bc9d7f7d4e4b4ec69430c9f3
A384745
Consecutive states of the linear congruential pseudo-random number generator (5^17*s+1) mod 2^48 when started at s=1.
[ "1", "762939453126", "108446592504415", "237117407802652", "117233362822797", "181464088068226", "50336702857227", "255306056401528", "30528867956313", "110940877951102", "23915768730871", "190863546762260", "232890898414437", "164321838504634", "236717685210403", "41303196833264" ]
[ "nonn", "easy" ]
12
1
2
[ "A382305", "A384745" ]
null
Sean A. Irvine, Jun 08 2025
2025-06-12T10:22:43
oeisdata/seq/A384/A384745.seq
6be46df5510cf8565d783f46cedf4427
A384746
Consecutive states of the linear congruential pseudo-random number generator MCNP from Los Alamos when started at 1.
[ "1", "19073486328125", "29763723208841", "187205367447973", "131230026111313", "264374031214925", "74735272014937", "31978779697717", "72377397341089", "127824407320157", "39323977335081", "168134765887429", "73951303845617", "27971537168493", "266449281326841", "41546074810965" ]
[ "nonn", "easy" ]
15
1
2
[ "A096550", "A096561", "A384746" ]
null
Sean A. Irvine, Jun 09 2025
2025-06-11T10:11:58
oeisdata/seq/A384/A384746.seq
4ff38e618d100747274c462539a4b297
A384747
Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,..,k}, and no nodes have the same weight as their parent node.
[ "1", "0", "1", "0", "1", "2", "0", "1", "5", "6", "0", "1", "11", "15", "16", "0", "1", "26", "39", "43", "44", "0", "1", "63", "110", "123", "127", "128", "0", "1", "153", "308", "358", "371", "375", "376", "0", "1", "376", "869", "1046", "1096", "1109", "1113", "1114", "0", "1", "931", "2499", "3098", "3278", "3328", "3341", "3345", "3346", "0", "1", "2317", "7238", "9283", "9904", "10084", "10134", "10147", "10151", "10152" ]
[ "nonn", "tabl" ]
16
0
6
[ "A000108", "A002212", "A051286", "A143330", "A382096", "A384613", "A384685", "A384747", "A384748" ]
null
John Tyler Rascoe, Jun 09 2025
2025-06-12T00:50:46
oeisdata/seq/A384/A384747.seq
cb8238eafdb1c1e21dde45769a8b29aa
A384748
Number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are greater than 0, and no nodes have the same weight as their parent node.
[ "1", "1", "2", "6", "16", "44", "128", "376", "1114", "3346", "10152", "31028", "95474", "295532", "919446", "2873388", "9015812", "28390466", "89689586", "284173096", "902780060", "2875016084", "9176388532", "29349499212", "94050228650", "301918397716", "970815092346" ]
[ "nonn", "more" ]
15
0
3
[ "A000108", "A002212", "A143330", "A384613", "A384685", "A384747", "A384748" ]
null
John Tyler Rascoe, Jun 09 2025
2025-06-12T00:49:50
oeisdata/seq/A384/A384748.seq
ba2b0769261d6ff39bdc57b0a9af4cf0
A384749
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x)^2)^2 ).
[ "1", "1", "5", "73", "1881", "73281", "3919453", "271474953", "23404227185", "2440865803969", "301418221716981", "43342981732882569", "7161103011598307401", "1344575638159799606913", "284279495938201825060301", "67153086545904981925170121", "17604147845521944687437836257", "5091302668361626521610878847617" ]
[ "nonn" ]
8
0
3
[ "A384739", "A384749", "A384751" ]
null
Seiichi Manyama, Jun 09 2025
2025-06-09T10:33:58
oeisdata/seq/A384/A384749.seq
4f4ffe6e6b36634442a2bd6e960be1c7
A384750
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x)^3)^3 ).
[ "1", "1", "7", "154", "5977", "351196", "28315369", "2954632402", "383525186209", "60193522329112", "11181354061281841", "2417710637018004406", "600471190717495018849", "169437981624693089625604", "53825488351532394141057001", "19100433341924628525123843826", "7520675779186271371397475067969" ]
[ "nonn" ]
7
0
3
[ "A384750", "A384752" ]
null
Seiichi Manyama, Jun 09 2025
2025-06-09T10:33:55
oeisdata/seq/A384/A384750.seq
e9734a3aa64e57501219843b34262ecd
A384751
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384749.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "12", "73", "0", "1", "4", "21", "176", "1881", "0", "1", "5", "32", "315", "4496", "73281", "0", "1", "6", "45", "496", "8025", "172672", "3919453", "0", "1", "7", "60", "725", "12672", "304803", "9107008", "271474953", "0", "1", "8", "77", "1008", "18665", "477504", "15874605", "622823168", "23404227185", "0" ]
[ "nonn", "tabl" ]
10
0
8
[ "A000007", "A384749", "A384751" ]
null
Seiichi Manyama, Jun 09 2025
2025-06-09T10:33:51
oeisdata/seq/A384/A384751.seq
9c775ce9772a7b72dc7f757d2615e1bb
A384752
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384750.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "154", "0", "1", "4", "27", "350", "5977", "0", "1", "5", "40", "594", "13480", "351196", "0", "1", "6", "55", "892", "22761", "783722", "28315369", "0", "1", "7", "72", "1250", "34096", "1311228", "62574580", "2954632402", "0", "1", "8", "91", "1674", "47785", "1949044", "103734513", "6473363654", "383525186209", "0" ]
[ "nonn", "tabl" ]
9
0
8
[ "A000007", "A384750", "A384752" ]
null
Seiichi Manyama, Jun 09 2025
2025-06-09T10:33:48
oeisdata/seq/A384/A384752.seq
1c4f964ccb72df206008471e09e5708a
A384753
Order of the permutation of {1,...,n} formed by a Josephus elimination variation: take 2, skip 1.
[ "1", "1", "1", "2", "3", "3", "5", "6", "4", "7", "9", "10", "5", "9", "13", "70", "12", "15", "84", "70", "52", "42", "21", "30", "15", "16", "38", "84", "168", "24", "90", "360", "120", "27", "24", "72", "30", "108", "286", "276", "105", "4680", "198", "36", "630", "234", "120", "2856", "54", "1056", "532", "660", "51", "310", "406", "54", "420", "120", "55", "264", "150" ]
[ "nonn" ]
29
1
4
[ "A051732", "A384753" ]
null
Chuck Seggelin, Jun 09 2025
2025-06-14T04:20:53
oeisdata/seq/A384/A384753.seq
f4ca216a3ad5b51bb5960b886b82a0fb
A384754
The number of face-connected components of polyhedra in the omnitruncated cubic honeycomb up to translation, rotation, and reflection.
[ "1", "2", "4", "22", "179", "2227", "34278", "591787", "10765367", "201844314", "3860318208" ]
[ "nonn", "more" ]
15
0
2
[ "A038119", "A038181", "A343909", "A384254", "A384274", "A384754", "A384755" ]
null
Peter Kagey, Jun 09 2025
2025-06-14T15:07:37
oeisdata/seq/A384/A384754.seq
3413e5d4a681f136101768b5eefaa438
A384755
Triangle read by rows: T(n,k) is the number of face-connected components of polyhedra with k prisms and n-k truncated cuboctahedra in the omnitruncated cubic honeycomb up to rotation and reflection, 0 <= k <= n.
[ "1", "1", "1", "1", "2", "1", "3", "7", "10", "2", "12", "41", "76", "46", "4", "61", "335", "809", "777", "232", "13", "407", "3065", "9512", "12863", "7186", "1206", "39", "3226", "30401", "114516", "204143", "172377", "60421", "6548", "155", "28335", "311782", "1381363", "3054599", "3507278", "1975767", "469525", "36081", "637", "262091", "3260971", "16569719", "43731912" ]
[ "nonn", "tabl" ]
17
0
5
[ "A038171", "A365970", "A384486", "A384754", "A384755", "A384756", "A384782" ]
null
Peter Kagey, Jun 09 2025
2025-06-14T17:16:25
oeisdata/seq/A384/A384755.seq
e5695ffec04d176cc00854c206084f91
A384756
Triangle read by rows: T(n,k) is the number of face-connected components of polyhedra with k prisms and n-k truncated cuboctahedra in the omnitruncated cubic honeycomb up to translation and rotation, 0 <= k <= n.
[ "1", "1", "1", "1", "2", "1", "3", "8", "11", "2", "14", "60", "118", "63", "5", "88", "575", "1457", "1372", "368", "16", "686", "5741", "18261", "24831", "13581", "2124", "59", "5966", "59088", "225424", "403494", "339880", "117447", "12201", "250", "54722", "616110", "2745525", "6084433", "6987036", "3927441", "926001", "69445", "1136" ]
[ "nonn", "tabl" ]
16
0
5
[ "A384755", "A384756" ]
null
Peter Kagey, Jun 09 2025
2025-06-14T17:16:33
oeisdata/seq/A384/A384756.seq
d7b27972877a9561580d2db9b0bdbbba
A384757
E.g.f. A(x) satisfies A(x) = exp( -x * A(-x*A(x)) ).
[ "1", "-1", "-1", "14", "9", "-1516", "4345", "507870", "-4984063", "-367545880", "7749976401", "471799390490", "-18036953224367", "-948817553760324", "60774529797257081", "2736041193224490494", "-284790488755979731455", "-10493764378757426300848", "1792499910367109444364961", "49177040508763120698604578" ]
[ "sign" ]
13
0
4
[ "A162659", "A384757", "A384758", "A384760" ]
null
Seiichi Manyama, Jun 09 2025
2025-06-09T10:33:43
oeisdata/seq/A384/A384757.seq
f28e9741e32531e60e3b0003ad485ed3
A384758
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384757.
[ "1", "1", "0", "1", "-1", "0", "1", "-2", "-1", "0", "1", "-3", "0", "14", "0", "1", "-4", "3", "34", "9", "0", "1", "-5", "8", "54", "-88", "-1516", "0", "1", "-6", "15", "68", "-327", "-3402", "4345", "0", "1", "-7", "24", "70", "-720", "-4908", "30532", "507870", "0", "1", "-8", "35", "54", "-1255", "-5044", "84321", "1027402", "-4984063", "0" ]
[ "sign", "tabl" ]
11
0
8
[ "A000007", "A384757", "A384758", "A384761" ]
null
Seiichi Manyama, Jun 09 2025
2025-06-09T10:33:38
oeisdata/seq/A384/A384758.seq
63f4f5aa9ea5ed6f99359892e55abf62
A384759
Number of legal arrangements in pawn-only chess on an n X n board where no pieces have been taken and no piece attacks another piece.
[ "0", "3", "2031", "728174", "247646098", "91880342535", "38818192375310", "18907485764545412", "10626953883068264472", "6866760686250915376779", "5073038373153476636807709", "4259014676256866422905669602", "4038463837000965678262091166880", "4299625631242136963071149921577615", "5111407212497576694797045579672852791" ]
[ "nonn" ]
17
4
2
[ "A035290", "A294240", "A384759" ]
null
Edwin Hermann, Jun 09 2025
2025-06-26T01:25:33
oeisdata/seq/A384/A384759.seq
704e5b35b497b25b6774b266aa5b56f3
A384760
E.g.f. A(x) satisfies A(x) = exp( -x*A(x) * A(-x*A(x)) ).
[ "1", "-1", "1", "5", "-35", "-281", "5671", "42671", "-2179127", "-9146017", "1529743051", "-2876300681", "-1703719191635", "19006164045023", "2748187169359087", "-67807538576332801", "-6002760779933693039", "267196356696377129023", "16763997717087046669459", "-1258157898725874129675001" ]
[ "sign" ]
9
0
4
[ "A384760", "A384761" ]
null
Seiichi Manyama, Jun 09 2025
2025-06-09T10:33:35
oeisdata/seq/A384/A384760.seq
564b7021b14eac0bb3d59001a785435a
A384761
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384760.
[ "1", "1", "0", "1", "-1", "0", "1", "-2", "1", "0", "1", "-3", "4", "5", "0", "1", "-4", "9", "4", "-35", "0", "1", "-5", "16", "-9", "-104", "-281", "0", "1", "-6", "25", "-40", "-171", "-112", "5671", "0", "1", "-7", "36", "-95", "-176", "717", "14164", "42671", "0", "1", "-8", "49", "-180", "-35", "2176", "20619", "-18104", "-2179127", "0" ]
[ "sign", "tabl" ]
11
0
8
[ "A000007", "A379168", "A384760", "A384761" ]
null
Seiichi Manyama, Jun 09 2025
2025-06-09T10:33:31
oeisdata/seq/A384/A384761.seq
904ac651a00e8d598ca1268fdb2030a3
A384762
Number of minimal total dominating sets in the n-Hanoi graph.
[ "3", "14", "10773", "2349005042448", "24908520273548884722124787384195553925" ]
[ "nonn" ]
9
1
1
[ "A303898", "A382695", "A384762" ]
null
Eric W. Weisstein, Jun 09 2025
2025-06-10T01:13:17
oeisdata/seq/A384/A384762.seq
f1a3acda20fbf3e5703a24af7bf5f742
A384763
Product of the Euler totients of the unitary divisors of n.
[ "1", "1", "2", "2", "4", "4", "6", "4", "6", "16", "10", "16", "12", "36", "64", "8", "16", "36", "18", "64", "144", "100", "22", "64", "20", "144", "18", "144", "28", "4096", "30", "16", "400", "256", "576", "144", "36", "324", "576", "256", "40", "20736", "42", "400", "576", "484", "46", "256", "42", "400", "1024", "576", "52", "324", "1600", "576", "1296", "784", "58", "65536" ]
[ "nonn" ]
16
1
3
[ "A000010", "A034444", "A055653", "A061537", "A077610", "A384763" ]
null
Darío Clavijo, Jun 09 2025
2025-06-15T22:59:33
oeisdata/seq/A384/A384763.seq
ca714cdc6e8905fbbcd8d6a112e5719a
A384764
Number of uniquely solveable n X m nonograms (hanjie), read by antidiagonals.
[ "1", "1", "1", "1", "2", "1", "1", "4", "4", "1", "1", "8", "14", "8", "1", "1", "16", "52", "52", "16", "1", "1", "32", "210", "384", "210", "32", "1", "1", "64", "816", "3152", "3152", "816", "64", "1", "1", "128", "3206", "24230", "52362", "24230", "3206", "128", "1", "1", "256", "12536", "189898", "814632", "814632", "189898", "12536", "256", "1", "1", "512", "48962", "1473674", "12819322", "25309575", "12819322", "1473674", "48962", "512", "1" ]
[ "nonn", "tabl", "hard" ]
23
0
5
[ "A000012", "A000079", "A242876", "A384764" ]
null
Bertram Felgenhauer, Jun 09 2025
2025-06-10T09:31:21
oeisdata/seq/A384/A384764.seq
3c9eec87bdf84b8edc73fb6c0371155c
A384766
Maximum number of non-blank symbols that an n-instruction Turing machine (allowing any number of states and symbols) can leave on an initially blank tape before eventually halting.
[ "0", "1", "2", "4", "5", "9" ]
[ "hard", "more", "nonn" ]
4
0
3
[ "A028444", "A384629", "A384766" ]
null
Brian Galebach, Jun 09 2025
2025-06-15T22:31:33
oeisdata/seq/A384/A384766.seq
ed57be50420c1dbc2e56868b6292bd8e
A384767
Numbers k such that (29^k - 3^k)/26 is prime.
[ "3", "7", "17", "1069", "28081", "66509", "91493" ]
[ "nonn", "hard", "more" ]
5
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A384767" ]
null
Robert Price, Jun 09 2025
2025-06-10T04:19:35
oeisdata/seq/A384/A384767.seq
779b395977a9428ea3b64b60cc00bc43
A384768
Inverse binomial transform of A384674.
[ "2", "3", "3", "3", "3", "5", "11", "13", "7", "5", "7", "5", "3", "17", "29", "11", "11", "17", "13", "7", "29", "3", "3", "23", "3", "17", "37", "5", "223", "5", "37", "59", "19", "23", "433", "13", "89", "7", "7", "43", "3", "61", "5", "3", "191", "61", "149", "43", "89", "71", "13", "43", "41", "79", "31", "61", "23", "73", "53", "11", "157", "197", "83", "163", "3", "47", "7", "109", "5" ]
[ "nonn" ]
13
0
1
[ "A000040", "A111107", "A384674", "A384676", "A384768" ]
null
Alexander R. Povolotsky, Jun 09 2025
2025-06-10T12:38:45
oeisdata/seq/A384/A384768.seq
676b92b7d1c0865b7ca3dd01599c48f8
A384769
Primes p such that p + 6, p + 12, p + 20, p + 26 and p + 32 are also primes.
[ "11", "41", "47", "251", "347", "587", "1097", "1427", "2687", "5387", "11801", "17021", "19457", "23741", "24071", "32057", "42677", "47501", "55787", "55817", "71327", "115751", "127637", "165437", "179801", "191441", "226637", "282671", "344231", "344237", "348431", "349907", "391367", "408197", "411557", "416387", "422057", "501197", "526931", "571841", "572801" ]
[ "nonn" ]
6
1
1
[ "A000040", "A001223", "A384526", "A384527", "A384528", "A384769" ]
null
Alexander Yutkin, Jun 09 2025
2025-06-16T00:12:51
oeisdata/seq/A384/A384769.seq
1a6c10b009e4b60350b34f21e5e18e51
A384771
Primes p such that p + 8, p + 12, p + 20, p + 24 and p + 32 are also primes.
[ "58889", "114749", "185519", "476579", "568979", "904769", "1726919", "4143389", "4413029", "6432599", "7571009", "9848249", "10444859", "12271439", "12338849", "13599689", "14669639", "15136259", "16390799", "17016809", "18453209", "20649809", "22190579", "22581809", "23475359", "24249419", "26979419", "29202059", "30126269", "30869669", "33263039" ]
[ "nonn" ]
7
1
1
[ "A000040", "A001223", "A022008", "A384298", "A384299", "A384771" ]
null
Alexander Yutkin, Jun 09 2025
2025-06-16T00:11:04
oeisdata/seq/A384/A384771.seq
117ce68a2401f3e200f367585b89dfce
A384773
a(1) = 1, a(2) = 1. For n > 2 if a(n-1) = k is a novel term, a(n) = a(n-1-k). Otherwise if a(n-1) is a repeat term a(n) = number of m; 1 <= m <= n-2 such that a(m) = a(n-1).
[ "1", "1", "1", "2", "1", "3", "1", "4", "2", "1", "5", "3", "1", "6", "4", "1", "7", "1", "8", "5", "1", "9", "1", "10", "6", "1", "11", "1", "12", "7", "1", "13", "8", "1", "14", "1", "15", "9", "1", "16", "10", "1", "17", "1", "18", "11", "1", "19", "12", "1", "20", "1", "21", "13", "1", "22", "1", "23", "14", "1", "24", "15", "1", "25", "1", "26", "16", "1", "27", "1", "28", "17", "1", "29", "18", "1", "30" ]
[ "nonn", "easy" ]
32
1
4
[ "A000027", "A026278", "A335999", "A364749", "A384773" ]
null
David James Sycamore, Jun 09 2025
2025-06-17T21:52:00
oeisdata/seq/A384/A384773.seq
9502c00267c80b352c1bcb96b5bdaeb0
A384775
Consecutive states of the linear congruential pseudo-random number generator 33952834046453*s mod 2^48 when started at 1.
[ "1", "33952834046453", "181226512753785", "17547632994509", "138001340383537", "86153482263781", "229799995061289", "280681352600637", "119513974041441", "216025667693781", "238363414258905", "47318339740845", "113868956675729", "85138704755141", "217581192963721", "88846792569373" ]
[ "nonn", "easy" ]
18
1
2
[ "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552", "A384696", "A384746", "A384775", "A384776", "A384778", "A384779", "A384780" ]
null
Sean A. Irvine, Jun 09 2025
2025-06-11T10:11:54
oeisdata/seq/A384/A384775.seq
f71ffd64b38d8d9b1e813a534cb82ce8
A384776
Consecutive states of the linear congruential pseudo-random number generator 43272750451645*s mod 2^48 when started at 1.
[ "1", "43272750451645", "61318499813769", "79085427649829", "68025911569233", "83056068785613", "355731277657", "91085083377589", "166436801793953", "88719099065565", "111268338599465", "46775231680325", "152215507893489", "127293649213677", "121144755885561", "62037290331093" ]
[ "nonn", "easy" ]
14
1
2
[ "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552", "A384696", "A384746", "A384775", "A384776", "A384778", "A384779", "A384780" ]
null
Sean A. Irvine, Jun 09 2025
2025-06-11T10:11:47
oeisdata/seq/A384/A384776.seq
4d68dfca8c96e4bee538b0b5e0f93bf0
A384777
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A382450.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "7", "19", "0", "1", "4", "12", "44", "221", "0", "1", "5", "18", "76", "489", "4597", "0", "1", "6", "25", "116", "813", "9750", "174007", "0", "1", "7", "33", "165", "1203", "15543", "358895", "12328367", "0", "1", "8", "42", "224", "1670", "22072", "555696", "25040728", "1674839513", "0", "1", "9", "52", "294", "2226", "29446", "765572", "38156448", "3375603329", "443624694633", "0" ]
[ "nonn", "tabl" ]
27
0
8
[ "A000007", "A379598", "A382450", "A384777" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T13:57:14
oeisdata/seq/A384/A384777.seq
805094488b163b37066c9b7376686c0b
A384778
Consecutive states of the linear congruential pseudo-random number generator 55151000561141*s mod 2^48 when started at 1.
[ "1", "55151000561141", "29815832362105", "55100342394061", "179741519900977", "7132195055845", "74704892394537", "220210368430141", "73887840684897", "135379684698325", "280350175386841", "124994015967405", "227696133324433", "118996703729093", "242320442691209", "24065948923421" ]
[ "nonn", "easy" ]
14
1
2
[ "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552", "A384696", "A384746", "A384775", "A384776", "A384778", "A384779", "A384780" ]
null
Sean A. Irvine, Jun 09 2025
2025-06-11T10:11:51
oeisdata/seq/A384/A384778.seq
770a6cd69946d8705ccd13578fce29c6
A384779
Consecutive states of the linear congruential pseudo-random number generator 68909602460261*s mod 2^48 when started at 1.
[ "1", "68909602460261", "267986871311321", "40223525715613", "170906480868849", "105934630117909", "220872133340233", "58531276790477", "54428804463841", "144397689558725", "44956117505465", "810057454589", "86145210100945", "204213264588917", "259238501435433", "238216607930925" ]
[ "nonn", "easy" ]
15
1
2
[ "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552", "A384696", "A384746", "A384775", "A384776", "A384778", "A384779", "A384780" ]
null
Sean A. Irvine, Jun 09 2025
2025-06-11T10:11:44
oeisdata/seq/A384/A384779.seq
ffc3a9bb4fd7992abb118ad888181b07
A384780
Consecutive states of the linear congruential pseudo-random number generator 127107890972165*s mod 2^48 when started at 1.
[ "1", "127107890972165", "97936613129241", "273514721657469", "208157768792689", "190871074753077", "130077535940873", "140242115373869", "12589906159073", "144775771571045", "83191635750649", "67018942496989", "27094905090641", "40503495991701", "211801672787433", "25600309900173" ]
[ "nonn", "easy" ]
14
1
2
[ "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552", "A384696", "A384746", "A384775", "A384776", "A384778", "A384779", "A384780" ]
null
Sean A. Irvine, Jun 09 2025
2025-06-11T10:11:37
oeisdata/seq/A384/A384780.seq
f93a7ea59209582fd4849ab4caa28dae
A384781
Number of values of s, 0 < s <= n - 1, such that (-s)^s == s (mod n).
[ "0", "1", "0", "0", "1", "2", "1", "0", "1", "4", "0", "1", "1", "3", "3", "0", "0", "4", "0", "1", "2", "3", "1", "1", "3", "6", "1", "3", "1", "6", "1", "0", "3", "2", "2", "3", "3", "3", "2", "1", "1", "6", "0", "3", "5", "3", "1", "1", "3", "8", "2", "2", "2", "4", "3", "2", "1", "5", "0", "3", "3", "3", "7", "0", "5", "6", "0", "1", "3", "8", "1", "3", "3", "8", "5", "3", "4", "6", "1", "1", "4", "3", "0", "5", "2", "4", "6", "2", "4", "10", "5", "2", "3", "3", "2", "1", "4", "8", "5", "5" ]
[ "nonn" ]
18
1
6
[ "A065295", "A151821", "A373901", "A382752", "A384781", "A384854" ]
null
Juri-Stepan Gerasimov, Jun 09 2025
2025-06-17T19:29:31
oeisdata/seq/A384/A384781.seq
d32527e408693487c3986bac10b3f80a
A384782
Triangle read by rows: T(n,k) is the number of face-connected polyhedral components consisting of k cuboctahedra and n-k octahedra in the rectified cubic honeycomb up to translation, rotation, and reflection of the honeycomb, 0<=k<=n.
[ "1", "1", "1", "0", "1", "1", "0", "3", "4", "2", "0", "3", "18", "12", "7", "0", "6", "60", "126", "75", "23", "0", "3", "165", "751", "1025", "473", "112", "0", "3", "346", "3784", "9414", "8936", "3539", "607", "0", "1", "565", "14112", "66503", "108739", "80531", "27027", "3811", "0", "1", "723", "42420", "362939", "994542", "1204093", "725795", "212122", "25413", "0", "0", "723", "101237", "1586479", "7065791", "13389295", "12792264", "6512671", "1678783", "178083" ]
[ "nonn", "tabl" ]
24
0
8
[ "A365970", "A384254", "A384486", "A384755", "A384782" ]
null
Peter Kagey and Bert Dobbelaere, Jun 09 2025
2025-06-15T14:36:56
oeisdata/seq/A384/A384782.seq
a741a217e5b295177de014871394fd57
A384783
The number of unordered factorizations of the n-th powerful number into 1 and prime powers p^e where p is prime and e >= 2 (A025475).
[ "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "4", "1", "2", "1", "1", "1", "1", "4", "2", "1", "1", "1", "1", "1", "2", "7", "2", "1", "2", "1", "1", "1", "2", "2", "1", "1", "1", "8", "1", "4", "2", "2", "1", "1", "4", "2", "2", "1", "2", "1", "1", "1", "2", "1", "12", "1", "1", "4", "1", "1", "4", "1", "1", "1", "1", "1", "1", "1", "2", "4", "1", "4", "1", "1", "1", "2", "2", "2", "2", "14", "1", "4", "1", "1", "7", "1", "2" ]
[ "nonn", "easy" ]
9
1
5
[ "A001694", "A025475", "A188585", "A384783", "A384784", "A384785" ]
null
Amiram Eldar, Jun 10 2025
2025-06-10T11:34:23
oeisdata/seq/A384/A384783.seq
8c313aacd734d9664ac09eb66f3eec2b
A384784
Numbers with a record number of unordered factorizations into 1 and prime powers p^e where p is prime and e >= 2 (A025475).
[ "1", "16", "64", "256", "512", "1024", "2048", "4096", "8192", "16384", "32768", "65536", "131072", "262144", "524288", "1048576", "2097152", "4194304", "8388608", "16777216", "33554432", "67108864", "134217728", "268435456", "536870912", "1073741824", "2147483648", "4294967296", "8589934592", "17179869184", "34359738368" ]
[ "nonn" ]
9
1
2
[ "A001694", "A025475", "A025487", "A046055", "A181800", "A188585", "A384783", "A384784", "A384786" ]
null
Amiram Eldar, Jun 10 2025
2025-06-10T08:41:35
oeisdata/seq/A384/A384784.seq
4ec19a1c82f98dd284b3143f89d21001
A384785
The number of unordered factorizations of the n-th cubefull number into 1 and prime powers p^e where p is prime and e >= 3 (A246549).
[ "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "3", "1", "1", "4", "1", "1", "2", "1", "1", "5", "1", "1", "2", "1", "1", "6", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "9", "1", "1", "2", "1", "2", "3", "1", "3", "1", "2", "10", "1", "1", "1", "2", "1", "1", "2", "1", "4", "1", "2", "2", "2", "13", "1", "1", "2", "1", "1", "4", "1", "3", "1", "2", "2", "1", "1", "1", "5", "1", "1", "1", "1", "2", "3", "17", "2" ]
[ "nonn", "easy" ]
10
1
6
[ "A008483", "A036966", "A246549", "A384783", "A384785", "A384786" ]
null
Amiram Eldar, Jun 10 2025
2025-06-10T11:34:38
oeisdata/seq/A384/A384785.seq
13959d8d39bc61ad3ab073801700de4e
A384786
Numbers with a record number of unordered factorizations into 1 and prime powers p^e where p is prime and e >= 3 (A246549).
[ "1", "64", "256", "512", "1024", "2048", "4096", "8192", "16384", "32768", "65536", "131072", "262144", "524288", "1048576", "2097152", "4194304", "8388608", "16777216", "33554432", "67108864", "134217728", "268435456", "536870912", "1073741824", "2147483648", "4294967296", "8589934592", "17179869184", "34359738368", "68719476736" ]
[ "nonn" ]
10
1
2
[ "A001694", "A008483", "A025487", "A046055", "A181800", "A246549", "A384784", "A384785", "A384786" ]
null
Amiram Eldar, Jun 10 2025
2025-06-10T11:36:37
oeisdata/seq/A384/A384786.seq
7cc3d1a107158b80391ce1dfe66df6ac
A384787
E.g.f. A(x) satisfies A(x) = exp( x*A(x) * A(2*x*A(x)) ).
[ "1", "1", "7", "148", "7381", "801536", "186678019", "93865986880", "102755888482153", "245872091164966912", "1285664593514044479391", "14650473009515606022910976", "362327823926201727094352145661", "19359048028300511200690402408529920", "2224311455921555052696103713299884826395" ]
[ "nonn" ]
12
0
3
[ "A140049", "A384787", "A384788" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T12:52:21
oeisdata/seq/A384/A384787.seq
05355a2e7e81f12be2ef10ca845fa34d