sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-14 02:38:35
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A384474 | Decimal expansion of the middle interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon. | [
"1",
"8",
"9",
"1",
"3",
"4",
"5",
"5",
"9",
"4",
"4",
"4",
"8",
"5",
"1",
"0",
"4",
"1",
"8",
"6",
"8",
"7",
"1",
"7",
"3",
"4",
"7",
"8",
"9",
"5",
"2",
"7",
"3",
"9",
"1",
"9",
"9",
"0",
"2",
"4",
"7",
"7",
"9",
"2",
"2",
"5",
"3",
"0",
"7",
"7",
"4",
"6",
"9",
"6",
"6",
"9",
"2",
"7",
"7",
"4",
"8",
"7",
"7",
"0",
"3",
"7",
"2",
"8",
"8",
"7",
"5",
"9",
"6",
"9",
"4",
"5",
"8",
"5",
"4",
"4",
"4",
"3",
"1",
"4",
"7",
"8",
"6",
"3",
"2",
"3",
"2",
"3",
"2",
"2",
"6",
"8",
"1",
"0",
"3",
"1"
]
| [
"nonn",
"cons"
]
| 14 | 1 | 2 | [
"A002194",
"A019824",
"A177870",
"A228719",
"A384473",
"A384474",
"A384475",
"A384476",
"A384477",
"A384478"
]
| null | Stefano Spezia, May 30 2025 | 2025-05-31T11:05:24 | oeisdata/seq/A384/A384474.seq | f538d5423b4ee2dbc179f0e8d5e20fa5 |
A384475 | Decimal expansion of the smallest interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon. | [
"1",
"0",
"7",
"0",
"3",
"7",
"8",
"2",
"5",
"9",
"2",
"1",
"5",
"9",
"4",
"1",
"4",
"9",
"4",
"5",
"5",
"1",
"7",
"5",
"9",
"8",
"6",
"0",
"6",
"4",
"5",
"3",
"6",
"1",
"6",
"9",
"7",
"7",
"9",
"3",
"9",
"4",
"1",
"8",
"3",
"9",
"4",
"0",
"1",
"5",
"2",
"6",
"8",
"2",
"4",
"8",
"8",
"3",
"8",
"3",
"9",
"7",
"4",
"6",
"7",
"2",
"5",
"2",
"5",
"8",
"0",
"7",
"7",
"5",
"1",
"9",
"7",
"9",
"6",
"6",
"7",
"3",
"4",
"8",
"8",
"9",
"3",
"8",
"6",
"7",
"6",
"2",
"6",
"2",
"6",
"6",
"9",
"3",
"5",
"3"
]
| [
"nonn",
"cons"
]
| 17 | 3 | 3 | [
"A228719",
"A384474",
"A384475",
"A384476",
"A384477",
"A384478"
]
| null | Stefano Spezia, May 30 2025 | 2025-05-31T11:05:27 | oeisdata/seq/A384/A384475.seq | 7cbfe798c88b1960feb835ec4cb1013a |
A384476 | Decimal expansion of the smallest interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon. | [
"1",
"8",
"6",
"8",
"1",
"6",
"2",
"4",
"8",
"6",
"5",
"0",
"8",
"3",
"5",
"1",
"7",
"7",
"7",
"5",
"8",
"0",
"3",
"4",
"7",
"3",
"3",
"3",
"8",
"5",
"9",
"1",
"6",
"7",
"7",
"0",
"3",
"5",
"1",
"5",
"4",
"5",
"2",
"1",
"9",
"5",
"2",
"8",
"0",
"5",
"8",
"5",
"2",
"1",
"2",
"8",
"3",
"9",
"1",
"5",
"5",
"9",
"1",
"8",
"4",
"5",
"7",
"8",
"4",
"8",
"9",
"4",
"1",
"0",
"6",
"2",
"3",
"7",
"6",
"5",
"1",
"0",
"7",
"1",
"7",
"1",
"0",
"8",
"1",
"0",
"2",
"6",
"3",
"3",
"4",
"2",
"0",
"7",
"4",
"7"
]
| [
"nonn",
"cons"
]
| 17 | 1 | 2 | [
"A228719",
"A384473",
"A384474",
"A384475",
"A384476",
"A384477",
"A384478"
]
| null | Stefano Spezia, May 30 2025 | 2025-05-31T11:05:31 | oeisdata/seq/A384/A384476.seq | a6a8011d2f06de3a073fb8e9750a8755 |
A384477 | Decimal expansion of the largest interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon. | [
"1",
"0",
"9",
"1",
"9",
"2",
"1",
"0",
"7",
"8",
"3",
"1",
"6",
"8",
"8",
"7",
"6",
"7",
"0",
"7",
"3",
"5",
"5",
"4",
"1",
"5",
"7",
"3",
"1",
"6",
"5",
"9",
"8",
"8",
"0",
"0",
"6",
"4",
"8",
"9",
"4",
"4",
"7",
"7",
"0",
"1",
"1",
"2",
"8",
"4",
"7",
"5",
"8",
"7",
"0",
"7",
"5",
"4",
"7",
"1",
"4",
"8",
"2",
"0",
"1",
"3",
"5",
"4",
"1",
"4",
"5",
"8",
"6",
"6",
"4",
"4",
"4",
"4",
"5",
"6",
"6",
"4",
"7",
"1",
"7",
"8",
"7",
"3",
"2",
"7",
"1",
"2",
"3",
"2",
"6",
"3",
"4",
"6",
"5",
"6"
]
| [
"nonn",
"cons"
]
| 17 | 3 | 3 | [
"A228719",
"A384473",
"A384474",
"A384475",
"A384476",
"A384477",
"A384478"
]
| null | Stefano Spezia, May 30 2025 | 2025-05-31T11:05:34 | oeisdata/seq/A384/A384477.seq | bd2cb8049ed44cdef6d728c5ef0a0224 |
A384478 | Decimal expansion of the largest interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon. | [
"1",
"9",
"0",
"5",
"7",
"6",
"1",
"7",
"9",
"8",
"8",
"5",
"5",
"6",
"5",
"5",
"3",
"2",
"2",
"8",
"5",
"2",
"8",
"8",
"8",
"5",
"2",
"4",
"2",
"1",
"4",
"6",
"9",
"4",
"8",
"4",
"7",
"5",
"1",
"1",
"0",
"4",
"5",
"3",
"5",
"6",
"9",
"4",
"8",
"6",
"5",
"3",
"1",
"0",
"3",
"3",
"9",
"1",
"0",
"2",
"4",
"3",
"9",
"9",
"2",
"6",
"1",
"9",
"7",
"6",
"1",
"4",
"2",
"8",
"4",
"2",
"1",
"6",
"5",
"0",
"8",
"8",
"1",
"5",
"4",
"1",
"6",
"1",
"8",
"0",
"6",
"1",
"1",
"4",
"1",
"4",
"7",
"6",
"4",
"6"
]
| [
"nonn",
"cons"
]
| 13 | 1 | 2 | [
"A228719",
"A384473",
"A384474",
"A384475",
"A384476",
"A384477",
"A384478"
]
| null | Stefano Spezia, May 30 2025 | 2025-05-31T11:05:38 | oeisdata/seq/A384/A384478.seq | 8934c2b085a7a0b0b57c2c3295ee52db |
A384479 | a(n) is the number of ways to partition n X n X n cube into five cuboids of different dimensions. | [
"0",
"0",
"2",
"31",
"209",
"560",
"1561",
"2852",
"5894",
"9093"
]
| [
"nonn",
"more"
]
| 30 | 1 | 3 | [
"A381847",
"A384208",
"A384311",
"A384479",
"A384511"
]
| null | Janaka Rodrigo, May 30 2025 | 2025-06-22T00:16:09 | oeisdata/seq/A384/A384479.seq | dbad36a1c6ca8421a71b633ebabae903 |
A384480 | Square array read by antidiagonals: T(n,k) is the length of a shortest addition-composition chain for n*x+k, starting with 1 and x; n, k >= 0. | [
"0",
"0",
"0",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"3",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"3",
"3",
"3",
"4",
"3",
"4",
"4",
"4",
"4",
"3",
"4",
"4",
"4",
"3",
"5",
"4",
"4",
"3",
"4",
"4",
"5",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"4",
"3",
"4",
"5",
"4",
"5",
"3",
"4",
"4",
"5",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"4",
"4",
"4",
"5",
"4",
"5",
"5",
"4",
"4",
"5",
"5",
"5",
"4",
"4",
"4",
"5",
"4",
"4",
"5",
"5",
"4"
]
| [
"nonn",
"tabl"
]
| 7 | 0 | 7 | [
"A383330",
"A384480",
"A384481",
"A384482",
"A384483"
]
| null | Pontus von Brömssen, Jun 02 2025 | 2025-06-09T10:38:23 | oeisdata/seq/A384/A384480.seq | 4c1d82b270161991e696bdee39ef7f0d |
A384481 | Smallest value of f(1) for a function f(x) = b*x+c with nonnegative integer coefficients and a shortest addition-composition chain of length n, starting with 1 and x. | [
"1",
"2",
"3",
"4",
"6",
"8",
"13",
"24",
"46",
"98"
]
| [
"nonn",
"more"
]
| 7 | 0 | 2 | [
"A383332",
"A384480",
"A384481",
"A384482",
"A384484"
]
| null | Pontus von Brömssen, Jun 02 2025 | 2025-06-09T10:38:11 | oeisdata/seq/A384/A384481.seq | 7e075d8570560480e9284e98769f80f8 |
A384482 | Number of functions f(x) = b*x+c with nonnegative integer coefficients and a shortest addition-composition chain of length n, starting with 1 and x. | [
"2",
"3",
"7",
"20",
"75",
"412",
"3200",
"34167",
"507344"
]
| [
"nonn",
"more"
]
| 6 | 0 | 1 | [
"A383331",
"A384382",
"A384383",
"A384480",
"A384481",
"A384482",
"A384485"
]
| null | Pontus von Brömssen, Jun 02 2025 | 2025-06-09T10:38:16 | oeisdata/seq/A384/A384482.seq | 094ffad68cdb5170a499b8e97fa6f9d6 |
A384483 | Length of shortest addition-composition chain for n, starting with 1 and x. | [
"0",
"1",
"2",
"2",
"3",
"3",
"4",
"3",
"4",
"4",
"5",
"4",
"5",
"5",
"5",
"4",
"5",
"5",
"6",
"5",
"5",
"5",
"6",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"5",
"5",
"6",
"6",
"6",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"5",
"6",
"6",
"6",
"6",
"6",
"7",
"6",
"6",
"6",
"6",
"6",
"6",
"7",
"6",
"7",
"6",
"5",
"6",
"6",
"6",
"6",
"6",
"7"
]
| [
"nonn"
]
| 6 | 1 | 3 | [
"A003313",
"A230697",
"A384384",
"A384480",
"A384483",
"A384484",
"A384485"
]
| null | Pontus von Brömssen, Jun 02 2025 | 2025-06-09T10:38:04 | oeisdata/seq/A384/A384483.seq | 8c4f518769ba6573c9dee9e3a094c222 |
A384484 | Smallest number with shortest addition-composition chain of length n, starting with 1 and x, i.e., smallest k such that A384483(k) = n. | [
"1",
"2",
"3",
"5",
"7",
"11",
"19",
"70",
"167",
"1239",
"7123"
]
| [
"nonn",
"more"
]
| 7 | 0 | 2 | [
"A003064",
"A383001",
"A384385",
"A384480",
"A384481",
"A384483",
"A384484",
"A384485"
]
| null | Pontus von Brömssen, Jun 02 2025 | 2025-06-09T10:38:08 | oeisdata/seq/A384/A384484.seq | 04f9782538043a088f877e6b2a083e1b |
A384485 | Number of integers with a shortest addition-composition chain of length n, starting with 1 and x, i.e., number of integers k with A384483(k) = n. | [
"1",
"1",
"2",
"3",
"5",
"20",
"104",
"700",
"6779",
"95596"
]
| [
"nonn",
"more"
]
| 6 | 0 | 3 | [
"A003065",
"A383002",
"A384386",
"A384480",
"A384482",
"A384483",
"A384484",
"A384485"
]
| null | Pontus von Brömssen, Jun 02 2025 | 2025-06-09T10:37:57 | oeisdata/seq/A384/A384485.seq | 85199bbfe78f4a47c1fd34e0617393bd |
A384486 | Table read by rows: number of connected components of polyhedra in the quarter cubic honeycomb consisting of k tetrahedra and n-k truncated tetrahedra, up to translation, rotation, and reflection of the honeycomb, 0<=k<=n. | [
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"3",
"1",
"0",
"3",
"8",
"8",
"1",
"0",
"7",
"31",
"43",
"14",
"1",
"0",
"24",
"126",
"261",
"152",
"18",
"0",
"0",
"88",
"598",
"1543",
"1467",
"369",
"14",
"0",
"0",
"385",
"2986",
"9276",
"12161",
"5661",
"602",
"8",
"0",
"0",
"1713",
"15467",
"55426",
"92723",
"65892",
"15251",
"694",
"3",
"0",
"0",
"8112",
"81217",
"330821",
"666705",
"646974",
"254615",
"29830",
"551",
"1",
"0",
"0"
]
| [
"nonn",
"tabl"
]
| 15 | 0 | 8 | [
"A038169",
"A365970",
"A384274",
"A384486"
]
| null | Peter Kagey, May 30 2025 | 2025-06-12T14:07:42 | oeisdata/seq/A384/A384486.seq | 493f89a6ed6db9c0d8ce7ce1d5d1127a |
A384487 | Numbers k such that there exist two integers 0<i<j<k such that i/sigma(i) + j/sigma(j) + k/sigma(k) = 1. | [
"396",
"504",
"600",
"756",
"840",
"924",
"1056",
"1080",
"1140",
"1170",
"1260",
"1320",
"1428",
"1440",
"1488",
"1512",
"1540",
"1560",
"1596",
"1638",
"1650",
"1656",
"1680",
"1704",
"1710",
"1740",
"1800",
"1820",
"1840",
"1848",
"1872",
"1932",
"1980",
"2016",
"2040",
"2100",
"2160",
"2184",
"2232",
"2244",
"2256",
"2280",
"2340",
"2352",
"2380",
"2400",
"2430",
"2436",
"2448",
"2460",
"2484"
]
| [
"nonn",
"changed"
]
| 57 | 1 | 1 | [
"A000203",
"A125490",
"A125491",
"A125492",
"A253534",
"A253535",
"A383964",
"A384487"
]
| null | S. I. Dimitrov, Jun 01 2025 | 2025-07-03T09:29:48 | oeisdata/seq/A384/A384487.seq | 90ee54032d3b98b75b64946b6dd84c5f |
A384488 | Numbers k having a divisor d such that d - k/d is prime. | [
"3",
"4",
"6",
"8",
"10",
"12",
"14",
"15",
"18",
"20",
"24",
"26",
"28",
"30",
"32",
"35",
"36",
"38",
"40",
"42",
"44",
"48",
"50",
"54",
"60",
"62",
"63",
"66",
"68",
"70",
"72",
"74",
"78",
"80",
"84",
"86",
"88",
"90",
"92",
"96",
"98",
"99",
"102",
"104",
"108",
"110",
"114",
"120",
"122",
"126",
"128",
"130",
"132",
"138",
"140",
"143",
"144",
"146",
"150",
"152",
"154",
"158",
"162",
"164",
"168",
"170",
"174",
"176",
"180"
]
| [
"nonn",
"changed"
]
| 29 | 1 | 1 | [
"A000466",
"A005408",
"A005563",
"A052147",
"A355643",
"A384488"
]
| null | Juri-Stepan Gerasimov, May 30 2025 | 2025-06-30T15:43:13 | oeisdata/seq/A384/A384488.seq | 02f7ab45d5f3331f072a8403334441ed |
A384489 | Consecutive states of the linear congruential pseudo-random number generator 392314069 * s mod 2^32 when started at s=1. | [
"1",
"392314069",
"3884484921",
"1268090989",
"4095610545",
"2939532613",
"4120247913",
"1352616285",
"3662927457",
"371333813",
"3840713881",
"2970275661",
"487491345",
"3493879077",
"1452026825",
"2933230141",
"3932967105",
"2951638165",
"920470521",
"3864652333",
"1810654065",
"1799305477"
]
| [
"nonn",
"easy"
]
| 11 | 1 | 2 | [
"A096550",
"A096561",
"A384489",
"A384534"
]
| null | Sean A. Irvine, May 30 2025 | 2025-06-04T11:30:39 | oeisdata/seq/A384/A384489.seq | c15ca2216fc7813f11fc7ab45201d925 |
A384490 | Numbers m such that both roots of x^2 - x - 1 modulo m are primitive roots modulo m. | [
"41",
"61",
"109",
"149",
"241",
"269",
"389",
"409",
"449",
"569",
"601",
"641",
"701",
"821",
"929",
"1129",
"1181",
"1201",
"1301",
"1321",
"1429",
"1481",
"1489",
"1609",
"1801",
"1889",
"1901",
"1949",
"2129",
"2141",
"2309",
"2341",
"2381",
"2549",
"2609",
"2741",
"2909",
"3061",
"3109",
"3181",
"3209",
"3221",
"3229",
"3361",
"3449",
"3541"
]
| [
"nonn"
]
| 22 | 1 | 1 | [
"A001175",
"A015134",
"A384490"
]
| null | Jay Anderson, May 31 2025 | 2025-06-05T23:17:05 | oeisdata/seq/A384/A384490.seq | 832f752e86dffff9a3284fff89f900a0 |
A384491 | a(n) = n!^2 * Sum_{k=0..n} Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) / binomial(n,k)^2. | [
"1",
"2",
"57",
"6536",
"1966816",
"1226860992",
"1373652478656",
"2507498281198080",
"6966291361870181376",
"27969794062091821670400",
"155875927262331497576140800",
"1167389777699203314381963264000",
"11441270265465265986005655905894400",
"143525982910350708912088976768630784000"
]
| [
"nonn"
]
| 11 | 0 | 2 | [
"A187655",
"A187657",
"A384470",
"A384471",
"A384472",
"A384491",
"A384492"
]
| null | Vaclav Kotesovec, May 31 2025 | 2025-05-31T09:34:35 | oeisdata/seq/A384/A384491.seq | cdd04e594f0d54764f8df01b235bba66 |
A384492 | a(n) = n!^3 * Sum_{k=0..n} Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) / binomial(n,k)^3. | [
"1",
"2",
"113",
"38992",
"47071264",
"147015606528",
"988250901343488",
"12631667044878213120",
"280790763724247161061376",
"10147405862241529912885248000",
"565550513462476798468573003776000",
"46592777163703224212146175606784000000",
"5479872142880875751798643810680954683392000"
]
| [
"nonn"
]
| 10 | 0 | 2 | [
"A187655",
"A187657",
"A384470",
"A384471",
"A384472",
"A384491",
"A384492"
]
| null | Vaclav Kotesovec, May 31 2025 | 2025-05-31T09:34:32 | oeisdata/seq/A384/A384492.seq | 8db8ab469e10213cb9f05f235fcb2b7e |
A384493 | Composite integers k such that sigma(k) | (k + 1)*tau(k) where tau is number of divisors of k. | [
"20",
"35",
"104",
"207",
"399",
"464",
"650",
"1519",
"1952",
"2015",
"2774",
"2915",
"2975",
"4454",
"11339",
"22847",
"32318",
"63503",
"97019",
"122499",
"130304",
"352835",
"522752",
"924482",
"1949375",
"7366463",
"8382464",
"9486399",
"15857855",
"30222023",
"39992975",
"49280399",
"63483104",
"65094623",
"69291935",
"95309054"
]
| [
"nonn"
]
| 19 | 1 | 1 | [
"A384354",
"A384493"
]
| null | David A. Corneth and Ivan N. Ianakiev, May 31 2025 | 2025-06-04T21:30:23 | oeisdata/seq/A384/A384493.seq | 41db0a02b330b406d7a7b3e376b5dd4b |
A384494 | Triangle read by rows: T(n, k) = (-1)^k*(k+1)*(n+1-k)!, n >= 0, k = 0..n. | [
"1",
"2",
"-2",
"6",
"-4",
"3",
"24",
"-12",
"6",
"-4",
"120",
"-48",
"18",
"-8",
"5",
"720",
"-240",
"72",
"-24",
"10",
"-6",
"5040",
"-1440",
"360",
"-96",
"30",
"-12",
"7",
"40320",
"-10080",
"2160",
"-480",
"120",
"-36",
"14",
"-8",
"362880",
"-80640",
"15120",
"-2880",
"600",
"-144",
"42",
"-16",
"9",
"3628800",
"-725760",
"120960",
"-20160",
"3600",
"-720",
"168",
"-48",
"18",
"-10"
]
| [
"sign",
"tabl",
"easy"
]
| 11 | 0 | 2 | [
"A000142",
"A052560",
"A052578",
"A052648",
"A052849",
"A062098",
"A086852",
"A104698",
"A159038",
"A298881",
"A384494"
]
| null | Wolfdieter Lang, May 31 2025 | 2025-06-22T00:16:04 | oeisdata/seq/A384/A384494.seq | c0219722129110c99f6ec09e51863f24 |
A384495 | a(n) = Sum_{k=0..n} binomial(n,k)^2 * abs(Stirling1(2*k,k)) * abs(Stirling1(2*n-2*k,n-k)). | [
"1",
"2",
"26",
"648",
"25094",
"1372100",
"99827020",
"9233563136",
"1045169591270",
"140259346792380",
"21754963505429340",
"3823376222328582480",
"749784319125445476092",
"162122841942093462239368",
"38288723630416561023861048",
"9801732906198391239249940800",
"2702731846233390353066363949830"
]
| [
"nonn"
]
| 8 | 0 | 2 | [
"A187656",
"A187658",
"A384471",
"A384495",
"A384496"
]
| null | Vaclav Kotesovec, May 31 2025 | 2025-05-31T10:27:10 | oeisdata/seq/A384/A384495.seq | 16b1fb31b227113fb34a83881ed3d7de |
A384496 | a(n) = Sum_{k=0..n} binomial(n,k)^3 * abs(Stirling1(2*k,k)) * abs(Stirling1(2*n-2*k,n-k)). | [
"1",
"2",
"30",
"1044",
"68474",
"7180900",
"1050625720",
"196205015216",
"44361477901818",
"11751610490415828",
"3567182462164189140",
"1220655384720089761080",
"464932034143270233958352",
"195108754505934104188716064",
"89452431045403310104416682304",
"44489455448017524780072427344000"
]
| [
"nonn"
]
| 9 | 0 | 2 | [
"A187656",
"A187658",
"A384472",
"A384495",
"A384496"
]
| null | Vaclav Kotesovec, May 31 2025 | 2025-05-31T10:27:14 | oeisdata/seq/A384/A384496.seq | 12004e560493402a40b4b648db9ac913 |
A384497 | a(n) is the number of binary strings of length n which contain exactly one run of 1s of even length. | [
"0",
"0",
"1",
"2",
"6",
"12",
"28",
"56",
"119",
"236",
"479",
"940",
"1859",
"3612",
"7028",
"13538",
"26051",
"49820",
"95098",
"180774",
"342944",
"648648",
"1224517",
"2306338",
"4336449",
"8138516",
"15250965",
"28535528",
"53320792",
"99504804",
"185474501",
"345332950",
"642310142",
"1193510160",
"2215702468",
"4109801864"
]
| [
"nonn",
"easy"
]
| 11 | 0 | 4 | [
"A029907",
"A384497"
]
| null | Félix Balado, May 31 2025 | 2025-06-08T00:07:45 | oeisdata/seq/A384/A384497.seq | fd5e185a57d80d7c612bea67df0a6103 |
A384498 | Squarefree numbers whose distinct prime factors can be partitioned into two sets with equal sums. | [
"1",
"30",
"70",
"286",
"646",
"1798",
"2145",
"2310",
"2730",
"3135",
"3526",
"3570",
"4641",
"4845",
"5005",
"5610",
"6006",
"6279",
"6630",
"7198",
"7410",
"7854",
"8778",
"8855",
"8970",
"9177",
"10366",
"10374",
"10626",
"10695",
"11305",
"11571",
"11730",
"13110",
"13485",
"13566",
"13585",
"15470",
"16095",
"16302",
"16422",
"16530"
]
| [
"nonn"
]
| 24 | 1 | 2 | [
"A005117",
"A071141",
"A071142",
"A071312",
"A221054",
"A384498"
]
| null | Alois P. Heinz, May 31 2025 | 2025-06-02T09:50:23 | oeisdata/seq/A384/A384498.seq | a006fd1f829be26694a6df00b6d4067a |
A384499 | Number of paths from the top to bottom of a 3-dimensional triangular bipyramidal graph of height 2n, with no repeated vertices, and no upward moves. | [
"1",
"15",
"11475",
"1093007025",
"52244816853213675",
"6472823166678668309527843125",
"11561557982049161046080105648122197757331625",
"1687343403738428640604090554388660433120115565168405371811095975"
]
| [
"nonn",
"walk"
]
| 42 | 0 | 2 | [
"A002454",
"A384499"
]
| null | Sameer Gauria, May 31 2025 | 2025-06-18T16:41:12 | oeisdata/seq/A384/A384499.seq | 6f93b9d5c9bc756edcedcf229622072c |
A384500 | Numbers k such that the parity of k and omega(k) are not equal. | [
"1",
"2",
"4",
"8",
"15",
"16",
"21",
"30",
"32",
"33",
"35",
"39",
"42",
"45",
"51",
"55",
"57",
"60",
"63",
"64",
"65",
"66",
"69",
"70",
"75",
"77",
"78",
"84",
"85",
"87",
"90",
"91",
"93",
"95",
"99",
"102",
"110",
"111",
"114",
"115",
"117",
"119",
"120",
"123",
"126",
"128",
"129",
"130",
"132",
"133",
"135",
"138",
"140",
"141",
"143",
"145",
"147",
"150",
"153",
"154",
"155"
]
| [
"nonn",
"easy"
]
| 17 | 1 | 2 | [
"A000035",
"A001221",
"A098904",
"A098905",
"A384500"
]
| null | Guido Avagliano, May 31 2025 | 2025-06-04T22:53:12 | oeisdata/seq/A384/A384500.seq | 0727baf1bc6615deb374102ccee98f47 |
A384501 | a(n) = Sum_{k=0..n} abs(Stirling1(n,k)) * Stirling2(n,n-k). | [
"1",
"0",
"1",
"9",
"119",
"2025",
"42510",
"1062761",
"30854159",
"1020615912",
"37900765365",
"1561459425955",
"70682817696436",
"3487456195458027",
"186281997929231659",
"10709829446929099865",
"659427284782849503663",
"43293574636994934145044",
"3019108475859713906967738",
"222868205832269470083471366"
]
| [
"nonn"
]
| 4 | 0 | 4 | [
"A047793",
"A187655",
"A187656",
"A384501"
]
| null | Vaclav Kotesovec, May 31 2025 | 2025-05-31T10:46:25 | oeisdata/seq/A384/A384501.seq | 1b1c28c8b57517a2e5302259190bc88f |
A384502 | Maximum number of distinct prime factors in an n-digit number, n > 3, where its set of distinct prime factors can be partitioned into two equal-sum subsets, each containing at least two elements. | [
"5",
"5",
"7",
"7",
"7",
"9",
"9",
"9",
"11",
"11",
"11",
"13",
"13",
"13",
"15",
"15",
"15",
"16",
"17",
"17",
"17",
"19",
"19",
"19",
"19",
"21",
"21",
"21",
"21",
"23",
"23",
"23",
"23",
"25",
"25",
"25",
"25",
"27",
"27",
"27",
"27",
"29",
"29",
"29",
"29",
"31",
"31",
"31",
"31",
"33",
"33",
"33",
"33",
"34",
"35",
"35"
]
| [
"nonn",
"base",
"more"
]
| 39 | 4 | 1 | [
"A001221",
"A067175",
"A221054",
"A383858",
"A384502"
]
| null | Jean-Marc Rebert, May 31 2025 | 2025-06-24T15:58:05 | oeisdata/seq/A384/A384502.seq | 50275ad1ed2080db82ec4b089e48a061 |
A384503 | Lexicographically earliest infinite sequence of distinct positive integers having the property that for any pair a(n-2) = i, a(n-1) = j of consecutive terms > 1, a(n) is the smallest novel k such that gcd(i,k) > 1 if gcd(i,j) = 1 or gcd(j,k) = 1 if gcd(i,j) > 1. | [
"1",
"2",
"3",
"4",
"6",
"5",
"8",
"10",
"7",
"12",
"14",
"9",
"16",
"15",
"18",
"11",
"20",
"22",
"13",
"24",
"26",
"17",
"28",
"34",
"19",
"30",
"38",
"21",
"32",
"27",
"36",
"23",
"33",
"46",
"39",
"40",
"42",
"25",
"35",
"29",
"45",
"58",
"48",
"31",
"44",
"62",
"37",
"50",
"74",
"41",
"52",
"82",
"43",
"54",
"86",
"47",
"56",
"94",
"49",
"60",
"63",
"53",
"51",
"106",
"57",
"64",
"66",
"59"
]
| [
"nonn"
]
| 12 | 1 | 2 | [
"A000027",
"A064413",
"A127202",
"A280985",
"A384503"
]
| null | David James Sycamore, May 31 2025 | 2025-06-05T23:26:05 | oeisdata/seq/A384/A384503.seq | d1357ce3ce27b8da9556ef3b2912bc1b |
A384504 | a(n) = Stirling1(n^2, n). | [
"1",
"1",
"11",
"118124",
"5056995703824",
"2677503356427960382362624",
"43103055200236892507668550744976954163200",
"44206966751754314698168885550132827351582613259130314424320000"
]
| [
"nonn"
]
| 12 | 0 | 3 | [
"A008275",
"A048994",
"A218141",
"A384504"
]
| null | Vaclav Kotesovec, May 31 2025 | 2025-06-01T03:46:52 | oeisdata/seq/A384/A384504.seq | b33082c31621dd2b37021d19d792fa7f |
A384505 | a(n) is the number of multisets of n positive decimal digits where the sum of the digits equals the product of the prime digits. | [
"5",
"1",
"1",
"3",
"13",
"20",
"31",
"51",
"74",
"106",
"144",
"188",
"248",
"331",
"433",
"535",
"668",
"812",
"993",
"1206",
"1435",
"1704",
"1991",
"2319",
"2688",
"3084",
"3529",
"3993",
"4514",
"5072",
"5675",
"6353",
"7097",
"7915",
"8790",
"9724",
"10733",
"11803",
"12947",
"14164",
"15450",
"16809",
"18240",
"19757",
"21374",
"23073",
"24876",
"26759"
]
| [
"nonn",
"base"
]
| 7 | 1 | 1 | [
"A002110",
"A006753",
"A007947",
"A007954",
"A066306",
"A067077",
"A384443",
"A384444",
"A384445",
"A384505"
]
| null | Felix Huber, Jun 11 2025 | 2025-06-22T18:07:40 | oeisdata/seq/A384/A384505.seq | 121f8c51c242c4bf81164d0a6203b617 |
A384506 | a(n) = 2^(n-7)*(n^4 - 6*n^3 + 59*n^2 - 54*n)/3. | [
"0",
"0",
"1",
"6",
"25",
"90",
"300",
"952",
"2912",
"8640",
"24960",
"70400",
"194304",
"525824",
"1397760",
"3655680",
"9420800",
"23953408",
"60162048",
"149422080",
"367329280",
"894566400",
"2159804416",
"5173149696",
"12299796480",
"29045555200",
"68157440000",
"158997676032",
"368880648192",
"851443712000",
"1955887841280"
]
| [
"nonn",
"easy"
]
| 19 | 0 | 4 | [
"A383778",
"A384243",
"A384506"
]
| null | Enrique Navarrete, May 31 2025 | 2025-06-04T11:07:27 | oeisdata/seq/A384/A384506.seq | f8e60e2146f0de1754e6ff5db83d2200 |
A384507 | Initial term of first run of exactly n consecutive numbers with exactly 5 distinct prime factors. | [
"2310",
"254540",
"1042404",
"21871365",
"129963314",
"830692265",
"4617927894",
"18297409143",
"41268813542",
"287980277114",
"1182325618032",
"6455097761454",
"14207465691240",
"54049709480208",
"90987640183352",
"1164838922284960",
"546525829796442"
]
| [
"nonn",
"fini",
"new"
]
| 25 | 1 | 1 | [
"A001221",
"A046387",
"A080569",
"A087977",
"A087978",
"A185032",
"A185042",
"A384507"
]
| null | Toshitaka Suzuki, Jun 23 2025 | 2025-07-04T19:22:30 | oeisdata/seq/A384/A384507.seq | 4579fc08afbcf523be70a1b498c0c334 |
A384508 | Nonnegative integers k such that the digits of k include the digits of the digital sum of k as a (not necessarily contiguous) subsequence. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"20",
"30",
"40",
"50",
"60",
"70",
"80",
"90",
"100",
"109",
"119",
"129",
"139",
"149",
"159",
"169",
"179",
"189",
"190",
"191",
"192",
"193",
"194",
"195",
"196",
"197",
"198",
"199",
"200",
"300",
"400",
"500",
"600",
"700",
"800",
"900",
"910",
"911",
"912",
"913",
"914",
"915",
"916",
"917",
"918",
"919",
"1000"
]
| [
"nonn",
"base",
"easy",
"new"
]
| 23 | 1 | 3 | [
"A005349",
"A007953",
"A046829",
"A052018",
"A384508"
]
| null | Felix Huber, Jun 26 2025 | 2025-06-30T17:52:34 | oeisdata/seq/A384/A384508.seq | a49ed8c3a623fc8afbfa68f8e375c920 |
A384509 | a(n) = number of iterations of z -> z^2 + c(n) with c(n) = ((5/n+1) + (5/n-1)*i)/(n*sqrt(2)) + 1/4 + (1/2)*i to reach |z| > 2, starting with z = 0. | [
"1",
"2",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"19",
"19",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"51",
"51",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"62",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"71",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"80"
]
| [
"nonn"
]
| 17 | 1 | 2 | [
"A093954",
"A097486",
"A383750",
"A384509",
"A384513"
]
| null | Luke Bennet, May 31 2025 | 2025-06-05T23:38:08 | oeisdata/seq/A384/A384509.seq | 6f45368c16b557a4109e81c11c7c85b7 |
A384511 | a(n) is the number of ways to partition n X n X n cube into five distinct cuboids with three full-length axial spanning parts sharing only two cube corners each. | [
"0",
"0",
"1",
"3",
"10",
"18",
"35",
"53",
"84",
"116",
"165",
"215",
"286",
"358",
"455",
"553",
"680",
"808",
"969",
"1131",
"1330",
"1530",
"1771",
"2013",
"2300",
"2588",
"2925",
"3263",
"3654",
"4046",
"4495",
"4945",
"5456",
"5968",
"6545",
"7123",
"7770",
"8418",
"9139",
"9861",
"10660",
"11460",
"12341",
"13223",
"14190"
]
| [
"nonn"
]
| 19 | 1 | 4 | [
"A384479",
"A384511"
]
| null | Janaka Rodrigo, May 31 2025 | 2025-06-18T19:20:25 | oeisdata/seq/A384/A384511.seq | 56d737132351ec922e95a4b518aa1128 |
A384512 | Record terms in A384698. | [
"2",
"3",
"13",
"17",
"37",
"41",
"61",
"613",
"829",
"1861",
"2269",
"7333",
"35149",
"1008229",
"909889549",
"1423665384101",
"10341624100573",
"440171836495742615578609",
"471206109194322691633610979351605854911441181",
"4466501842784976704198682186832272945270823914876207595593007001786562643495541"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A020639",
"A383777",
"A384512",
"A384698"
]
| null | Ya-Ping Lu, May 31 2025 | 2025-06-15T20:03:51 | oeisdata/seq/A384/A384512.seq | 45375b1614b67ea866ff26dba96de83f |
A384513 | a(n) = number of iterations of z -> z^2 + c(n) with c(n) = 16/(n^2) + (1/n)*i + 3/8 + (sqrt(3)/8)*i to reach |z| > 2, starting with z = 0. | [
"1",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"4",
"4",
"5",
"6",
"7",
"7",
"8",
"8",
"9",
"9",
"10",
"10",
"10",
"11",
"12",
"12",
"13",
"13",
"14",
"14",
"15",
"15",
"16",
"16",
"17",
"18",
"18",
"19",
"19",
"20",
"20",
"21",
"21",
"22",
"22",
"23",
"23",
"24",
"24",
"25",
"25",
"26",
"27",
"27",
"28",
"28",
"28",
"29",
"30",
"30",
"31",
"31",
"32",
"32",
"33",
"33",
"34",
"34",
"35",
"35",
"36",
"36",
"37",
"38",
"38",
"39",
"39",
"40"
]
| [
"nonn"
]
| 10 | 1 | 4 | [
"A019673",
"A097486",
"A383750",
"A384509",
"A384513"
]
| null | Luke Bennet, May 31 2025 | 2025-06-05T22:34:10 | oeisdata/seq/A384/A384513.seq | fb866fa5bdd2d027f455a5fae4bef24d |
A384514 | Expansion of e.g.f. 6/(7 - exp(6*x)). | [
"1",
"1",
"8",
"78",
"960",
"14736",
"272448",
"5881968",
"145105920",
"4026744576",
"124159039488",
"4211132779008",
"155814875873280",
"6245695887446016",
"269610827961212928",
"12469729905669224448",
"615184657168540631040",
"32246522356406129197056",
"1789714914567248392224768"
]
| [
"nonn"
]
| 29 | 0 | 3 | [
"A094419",
"A326323",
"A384514",
"A384521",
"A384522",
"A384523",
"A384524"
]
| null | Seiichi Manyama, Jun 01 2025 | 2025-06-01T09:57:47 | oeisdata/seq/A384/A384514.seq | 604a14c82e212f6c478b155c1c960d76 |
A384515 | Unitary s-Zumkeller numbers. | [
"60",
"140",
"420",
"660",
"1224",
"1820",
"2660",
"2820",
"4620",
"5460",
"7140",
"7980",
"8580",
"9660",
"11220",
"12180",
"12540",
"13020",
"13260",
"13580",
"13860",
"14140",
"14420",
"14820",
"15180",
"15540",
"16380",
"17220",
"17940",
"18060",
"18200",
"19140",
"19380",
"19740",
"20020",
"20460",
"22260",
"22620",
"23460",
"24180",
"24420"
]
| [
"nonn"
]
| 25 | 1 | 1 | [
"A034448",
"A077610",
"A083207",
"A290466",
"A384515"
]
| null | Ivan N. Ianakiev, Jun 01 2025 | 2025-06-07T18:42:09 | oeisdata/seq/A384/A384515.seq | 6705e34ab7883c1b6bb52425abcb54f0 |
A384516 | Consecutive states of the linear congruential pseudo-random number generator 410092949*s mod 2^32 when started at s=1. | [
"1",
"410092949",
"591276217",
"536793261",
"1444304305",
"547738885",
"2808452329",
"3344283805",
"3273327713",
"2664493429",
"2310230553",
"3826173325",
"3564649489",
"1018219237",
"862195785",
"3991693181",
"2995334337",
"122179925",
"2916974457",
"3784183405",
"2873755249",
"2538566853",
"1541296041"
]
| [
"nonn",
"easy"
]
| 23 | 1 | 2 | [
"A096550",
"A096561",
"A384516"
]
| null | Sean A. Irvine, Jun 01 2025 | 2025-06-23T19:38:54 | oeisdata/seq/A384/A384516.seq | 4d3c3f02a1f19ff0f02bf0fedbab7ff9 |
A384517 | Nonsquarefree numbers that are squarefree numbers raised to an even power. | [
"4",
"9",
"16",
"25",
"36",
"49",
"64",
"81",
"100",
"121",
"169",
"196",
"225",
"256",
"289",
"361",
"441",
"484",
"529",
"625",
"676",
"729",
"841",
"900",
"961",
"1024",
"1089",
"1156",
"1225",
"1296",
"1369",
"1444",
"1521",
"1681",
"1764",
"1849",
"2116",
"2209",
"2401",
"2601",
"2809",
"3025",
"3249",
"3364",
"3481",
"3721",
"3844",
"4096",
"4225",
"4356"
]
| [
"nonn"
]
| 15 | 1 | 1 | [
"A000290",
"A005117",
"A062770",
"A072774",
"A072777",
"A231273",
"A231327",
"A340674",
"A384517",
"A384518"
]
| null | Amiram Eldar, Jun 01 2025 | 2025-06-01T16:38:06 | oeisdata/seq/A384/A384517.seq | eeeb1e6ce427c80cc720f48a4fc8f58b |
A384518 | Nonsquarefree numbers that are squarefree numbers raised to an odd power. | [
"8",
"27",
"32",
"125",
"128",
"216",
"243",
"343",
"512",
"1000",
"1331",
"2048",
"2187",
"2197",
"2744",
"3125",
"3375",
"4913",
"6859",
"7776",
"8192",
"9261",
"10648",
"12167",
"16807",
"17576",
"19683",
"24389",
"27000",
"29791",
"32768",
"35937",
"39304",
"42875",
"50653",
"54872",
"59319",
"68921",
"74088",
"78125",
"79507",
"97336",
"100000"
]
| [
"nonn"
]
| 15 | 1 | 1 | [
"A005117",
"A072777",
"A097054",
"A268335",
"A384517",
"A384518"
]
| null | Amiram Eldar, Jun 01 2025 | 2025-06-01T16:37:57 | oeisdata/seq/A384/A384518.seq | f634a476f0dcfe76b3759ede233eaef1 |
A384519 | Numbers whose powerful part (A057521) is greater than 1 and is equal to a squarefree number raised to an even power (A384517). | [
"4",
"9",
"12",
"16",
"18",
"20",
"25",
"28",
"36",
"44",
"45",
"48",
"49",
"50",
"52",
"60",
"63",
"64",
"68",
"75",
"76",
"80",
"81",
"84",
"90",
"92",
"98",
"99",
"100",
"112",
"116",
"117",
"121",
"124",
"126",
"132",
"140",
"147",
"148",
"150",
"153",
"156",
"162",
"164",
"169",
"171",
"172",
"175",
"176",
"180",
"188",
"192",
"196",
"198",
"204",
"207",
"208",
"212",
"220"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A005117",
"A013661",
"A013929",
"A057521",
"A067259",
"A240112",
"A335275",
"A368714",
"A375142",
"A384517",
"A384519",
"A384520"
]
| null | Amiram Eldar, Jun 01 2025 | 2025-06-01T09:58:41 | oeisdata/seq/A384/A384519.seq | 74af496f12cb503cef86e6bdb0579f7e |
A384520 | Numbers whose powerful part (A057521) is greater than 1 and is equal to a squarefree number raised to an odd power (A384518). | [
"8",
"24",
"27",
"32",
"40",
"54",
"56",
"88",
"96",
"104",
"120",
"125",
"128",
"135",
"136",
"152",
"160",
"168",
"184",
"189",
"216",
"224",
"232",
"243",
"248",
"250",
"264",
"270",
"280",
"296",
"297",
"312",
"328",
"343",
"344",
"351",
"352",
"375",
"376",
"378",
"384",
"408",
"416",
"424",
"440",
"456",
"459",
"472",
"480",
"486",
"488",
"512",
"513",
"520",
"536"
]
| [
"nonn"
]
| 13 | 1 | 1 | [
"A005117",
"A013661",
"A057521",
"A268335",
"A295661",
"A301517",
"A374459",
"A375142",
"A376142",
"A381312",
"A384518",
"A384519",
"A384520"
]
| null | Amiram Eldar, Jun 01 2025 | 2025-06-01T09:58:32 | oeisdata/seq/A384/A384520.seq | 0ead0cb516e194265c5fb60e5f30d5e7 |
A384521 | Expansion of e.g.f. 5/(7 - 2*exp(5*x)). | [
"1",
"2",
"18",
"218",
"3474",
"69290",
"1659330",
"46359770",
"1480241970",
"53171142410",
"2122154748450",
"93168872862650",
"4462242691496850",
"231524863130863850",
"12936797161953970050",
"774495903492069700250",
"49458416187322116299250",
"3355754824852804221058250",
"241081466990843266748993250"
]
| [
"nonn"
]
| 12 | 0 | 2 | [
"A094419",
"A384514",
"A384521",
"A384522",
"A384523",
"A384524"
]
| null | Seiichi Manyama, Jun 01 2025 | 2025-06-01T09:57:23 | oeisdata/seq/A384/A384521.seq | bd9fd19481416d54b7bb18ec00b98747 |
A384522 | Expansion of e.g.f. 4/(7 - 3*exp(4*x)). | [
"1",
"3",
"30",
"426",
"8040",
"189768",
"5375280",
"177632976",
"6708685440",
"285038686848",
"13456362881280",
"698786099602176",
"39586707755811840",
"2429498408440009728",
"160571526535426529280",
"11370607719608891467776",
"858870213271187908362240",
"68928740686010010238353408"
]
| [
"nonn"
]
| 13 | 0 | 2 | [
"A094419",
"A384514",
"A384521",
"A384522",
"A384523",
"A384524"
]
| null | Seiichi Manyama, Jun 01 2025 | 2025-06-21T13:59:27 | oeisdata/seq/A384/A384522.seq | 576107faa5a0d40d014cf8722f859b9a |
A384523 | Expansion of e.g.f. 3/(7 - 4*exp(3*x)). | [
"1",
"4",
"44",
"708",
"15180",
"406884",
"13087404",
"491114628",
"21062220300",
"1016197112484",
"54476506976364",
"3212426755972548",
"206654933095516620",
"14401921040252826084",
"1080885666078491553324",
"86916516692600836638468",
"7455102038197447378720140",
"679412933203279242481083684"
]
| [
"nonn"
]
| 12 | 0 | 2 | [
"A094419",
"A384514",
"A384521",
"A384522",
"A384523",
"A384524"
]
| null | Seiichi Manyama, Jun 01 2025 | 2025-06-01T10:02:06 | oeisdata/seq/A384/A384523.seq | b0bc68fe6ba834817263ceacf6bea8b5 |
A384524 | Expansion of e.g.f. 2/(7 - 5*exp(2*x)). | [
"1",
"5",
"60",
"1070",
"25440",
"756080",
"26964960",
"1121963120",
"53351831040",
"2854122433280",
"169649803023360",
"11092432778385920",
"791204615734640640",
"61138238969353748480",
"5087702653663698677760",
"453621615686933964830720",
"43141424825262182799114240",
"4359374368561019960377671680"
]
| [
"nonn"
]
| 17 | 0 | 2 | [
"A094419",
"A384514",
"A384521",
"A384522",
"A384523",
"A384524"
]
| null | Seiichi Manyama, Jun 01 2025 | 2025-06-04T07:10:34 | oeisdata/seq/A384/A384524.seq | 86e805e75710b6f545270d33017e40a0 |
A384525 | Expansion of e.g.f. 5/(6 - exp(5*x)). | [
"1",
"1",
"7",
"61",
"679",
"9445",
"158095",
"3088765",
"68958295",
"1731875605",
"48328686175",
"1483501074925",
"49677478279975",
"1802159471217925",
"70406303657894575",
"2947087948180076125",
"131584088098220272375",
"6242270620707298139125",
"313548981075158413477375"
]
| [
"nonn"
]
| 12 | 0 | 3 | [
"A326323",
"A384525"
]
| null | Seiichi Manyama, Jun 01 2025 | 2025-06-01T09:57:40 | oeisdata/seq/A384/A384525.seq | 18e1909f157885e3ae88298ea757d6e8 |
A384526 | Primes p such that p + 6, p + 14 and p + 20 are also primes. | [
"17",
"23",
"47",
"53",
"83",
"257",
"263",
"353",
"443",
"557",
"587",
"593",
"977",
"1103",
"1217",
"1277",
"1283",
"1433",
"1607",
"1973",
"1997",
"2267",
"2657",
"2693",
"2837",
"3527",
"3617",
"4007",
"4637",
"4643",
"4937",
"5393",
"5807",
"6197",
"6257",
"6323",
"6353",
"6977",
"8693",
"10253",
"10847",
"10973",
"11483",
"11807",
"12143",
"12497",
"12953",
"13613",
"14537"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A000040",
"A001223",
"A140565",
"A382810",
"A384526"
]
| null | Alexander Yutkin, Jun 01 2025 | 2025-06-05T23:45:22 | oeisdata/seq/A384/A384526.seq | b9b57a40c5a9e8cee2bd363315ebd911 |
A384527 | Primes p such that p + 6, p + 12, p + 14, p + 20 and p + 26 are also primes. | [
"17",
"47",
"257",
"587",
"1277",
"4637",
"14537",
"19457",
"71327",
"101267",
"113147",
"115757",
"150197",
"179807",
"191447",
"193367",
"267887",
"302567",
"344237",
"408197",
"416387",
"442817",
"482387",
"536267",
"566537",
"652727",
"886967",
"1043747",
"1268777",
"1300127",
"1373147",
"1464257",
"1589657",
"1616597",
"1988237"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A000040",
"A001223",
"A023241",
"A140565",
"A384527"
]
| null | Alexander Yutkin, Jun 01 2025 | 2025-06-05T22:00:18 | oeisdata/seq/A384/A384527.seq | 5f98e1f4c08625d4ec7655353c40effc |
A384528 | Primes p such that p + 6, p + 12, p + 16, p + 22 and p + 28 are also primes. | [
"31",
"151",
"2671",
"20101",
"128461",
"198811",
"297601",
"307261",
"350431",
"354301",
"531331",
"560221",
"585721",
"649771",
"813991",
"1049821",
"1141081",
"1553401",
"1616611",
"1763401",
"2032621",
"2126611",
"2349301",
"2628811",
"2874721",
"2967331",
"3014371",
"3414211",
"3441931",
"3491071",
"3677341",
"3699181",
"4192261",
"4941241",
"4951621"
]
| [
"nonn"
]
| 9 | 1 | 1 | [
"A000040",
"A001223",
"A023241",
"A382810",
"A384528"
]
| null | Alexander Yutkin, Jun 01 2025 | 2025-06-05T22:00:03 | oeisdata/seq/A384/A384528.seq | cc4737ba3d3e60d40bd87e83cac6ca02 |
A384529 | Number of inequivalent sets S (cubic acute n-set), with cardinality A089676(n) >= 3, of points in {0,1}^n in real n-dimensional Euclidean space such that every angle determined by three distinct points in S is acute. | [
"0",
"0",
"2",
"5",
"18",
"3",
"64"
]
| [
"nonn",
"hard",
"more"
]
| 8 | 1 | 3 | [
"A089676",
"A289972",
"A384529"
]
| null | Dmitry I. Ignatov, Jun 01 2025 | 2025-06-12T22:00:23 | oeisdata/seq/A384/A384529.seq | ea2b2eb3e332c46abc1f46bf71ef2114 |
A384530 | Intersection of A055932 and A014574. | [
"4",
"6",
"12",
"18",
"30",
"60",
"72",
"108",
"150",
"180",
"192",
"240",
"270",
"420",
"432",
"600",
"810",
"1050",
"1152",
"1620",
"2310",
"2592",
"3000",
"3360",
"4050",
"4800",
"5880",
"6300",
"7350",
"7560",
"8820",
"9000",
"9240",
"9720",
"10500",
"11550",
"15360",
"21600",
"23040",
"25410",
"26250",
"26880",
"28350",
"29400",
"30870",
"33600"
]
| [
"nonn"
]
| 49 | 1 | 1 | [
"A014574",
"A027856",
"A055932",
"A384530"
]
| null | Ken Clements, Jun 01 2025 | 2025-06-14T20:05:44 | oeisdata/seq/A384/A384530.seq | f1bd5e18e883ffa44e06dd5ceebe33b9 |
A384531 | Multiplicative sequence a(n) with a(p^e) = ((2*e+1) * p - 2*e) * p^(e-1) for prime p and e >= 0. | [
"1",
"4",
"7",
"12",
"13",
"28",
"19",
"32",
"33",
"52",
"31",
"84",
"37",
"76",
"91",
"80",
"49",
"132",
"55",
"156",
"133",
"124",
"67",
"224",
"105",
"148",
"135",
"228",
"85",
"364",
"91",
"192",
"217",
"196",
"247",
"396",
"109",
"220",
"259",
"416",
"121",
"532",
"127",
"372",
"429",
"268",
"139",
"560",
"217",
"420",
"343",
"444",
"157",
"540",
"403",
"608",
"385",
"340",
"175",
"1092"
]
| [
"nonn",
"easy",
"mult"
]
| 24 | 1 | 2 | [
"A018804",
"A065473",
"A173557",
"A384531"
]
| null | Werner Schulte, Jun 01 2025 | 2025-06-10T01:15:22 | oeisdata/seq/A384/A384531.seq | 3130c1c20fed05a22e0f491bb9cf63ed |
A384532 | Consecutive states of the linear congruential pseudo-random number generator 663608941*s mod 2^32 when started at s=1. | [
"1",
"663608941",
"4216535657",
"1508633781",
"3546922769",
"2333349949",
"1227634681",
"1132643077",
"1351376673",
"1919950605",
"164855433",
"658288213",
"1272246321",
"3018965725",
"1134861849",
"1895169701",
"3480322625",
"1729483693",
"3273926313",
"2046821365",
"1986078033",
"2320900477"
]
| [
"nonn",
"easy"
]
| 11 | 1 | 2 | [
"A096550",
"A096561",
"A384532"
]
| null | Sean A. Irvine, Jun 01 2025 | 2025-06-04T11:30:29 | oeisdata/seq/A384/A384532.seq | 576bab69962a835f0b4f135b81bd460c |
A384533 | Inventory sequence starting a(1) = 1 and thereafter recording the number of terms which are the product of 0,1,2,... primes (taken with multiplicity). The count resets following a term = 0. | [
"1",
"1",
"0",
"2",
"1",
"0",
"3",
"2",
"0",
"3",
"4",
"1",
"0",
"4",
"4",
"3",
"0",
"4",
"5",
"4",
"0",
"4",
"6",
"7",
"0",
"4",
"7",
"8",
"1",
"0",
"5",
"9",
"9",
"1",
"0",
"6",
"9",
"12",
"2",
"0",
"6",
"10",
"14",
"2",
"0",
"6",
"11",
"16",
"2",
"1",
"0",
"7",
"14",
"17",
"2",
"1",
"0",
"8",
"16",
"17",
"3",
"2",
"0",
"8",
"19",
"17",
"4",
"2",
"0",
"8",
"22",
"19",
"5",
"2",
"0",
"8",
"25",
"20",
"7",
"2",
"0",
"8"
]
| [
"nonn",
"easy"
]
| 13 | 1 | 4 | [
"A342585",
"A384533"
]
| null | David James Sycamore, Jun 01 2025 | 2025-06-22T00:51:20 | oeisdata/seq/A384/A384533.seq | 2ba3307c725c6b23f3c94a481f9fe3e0 |
A384534 | Consecutive states of the linear congruential pseudo-random number generator 1099087573 * s mod 2^32 when started at s=1. | [
"1",
"1099087573",
"2291457337",
"4026424941",
"420705969",
"2250972997",
"153107049",
"3581708125",
"1733142113",
"3008982197",
"3237988505",
"577074509",
"160677649",
"4150171429",
"732641225",
"3320748093",
"2424041665",
"1993379477",
"3791861753",
"363487277",
"3187501937",
"1778008837",
"948009257"
]
| [
"nonn",
"easy"
]
| 9 | 1 | 2 | [
"A384489",
"A384534"
]
| null | Sean A. Irvine, Jun 01 2025 | 2025-06-04T11:30:26 | oeisdata/seq/A384/A384534.seq | 5a849a743b80f5cc61119d951e7cf4c3 |
A384535 | Consecutive states of the linear congruential pseudo-random number generator 1566083941*s mod 2^32 when started at s=1. | [
"1",
"1566083941",
"2203506137",
"1324822941",
"1986974193",
"2643373845",
"1922267721",
"3584877005",
"1128752353",
"3108566981",
"1963571129",
"3492736765",
"2923407569",
"1151276405",
"1419902505",
"2617346349",
"3800993217",
"2693642277",
"144555417",
"3452297309",
"2296120241",
"111579093"
]
| [
"nonn",
"easy"
]
| 15 | 1 | 2 | [
"A096550",
"A096561",
"A384535"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-19T22:48:58 | oeisdata/seq/A384/A384535.seq | 637e0a9e9b7fd359a4927f02382045c1 |
A384536 | a(n) = 4^n - 2^(n-6)*15*binomial(n,6). | [
"1",
"4",
"16",
"64",
"256",
"1024",
"4081",
"16174",
"63856",
"252064",
"998176",
"3972544",
"15890176",
"63814144",
"256903936",
"1035303424",
"4171964416",
"16799678464",
"67578904576",
"271543926784",
"1089985970176",
"4371374669824",
"17518838480896",
"70170274299904",
"280945723703296"
]
| [
"nonn",
"easy"
]
| 10 | 0 | 2 | [
"A384506",
"A384536"
]
| null | Enrique Navarrete, Jun 02 2025 | 2025-06-09T10:40:06 | oeisdata/seq/A384/A384536.seq | 418f7de8aae8e219600203f6ba319663 |
A384537 | Composite numbers that are equal to the concatenation of the primes and exponents in their prime factorizations in some bases. | [
"16",
"27",
"64",
"256",
"729",
"1024",
"3125",
"4096",
"4617",
"16384",
"19683",
"29767",
"65536",
"255987",
"262144",
"395847",
"531441",
"631463",
"823543",
"1048576",
"1332331",
"4194304",
"9765625",
"14348907",
"16777216",
"25640947",
"67108864"
]
| [
"nonn",
"hard",
"more"
]
| 20 | 1 | 1 | [
"A080670",
"A195264",
"A230625",
"A327399",
"A384537",
"A384540"
]
| null | Jianing Song, Jun 02 2025 | 2025-06-09T21:01:34 | oeisdata/seq/A384/A384537.seq | 4b9450cc19d452eaaeb2d24823d3930d |
A384538 | Positive integers k >= 10 for which for every pair of nonempty substrings that concatenate to give k one substring divides the other. | [
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"24",
"26",
"28",
"30",
"31",
"33",
"36",
"39",
"40",
"41",
"42",
"44",
"48",
"50",
"51",
"55",
"60",
"61",
"62",
"63",
"66",
"70",
"71",
"77",
"80",
"81",
"82",
"84",
"88",
"90",
"91",
"93",
"99",
"100",
"101",
"102",
"105",
"110",
"111",
"120",
"121",
"122",
"123",
"124",
"126",
"130",
"131",
"140",
"141"
]
| [
"nonn",
"base"
]
| 25 | 1 | 1 | [
"A102766",
"A228103",
"A384538",
"A384539"
]
| null | Felix Huber, Jun 09 2025 | 2025-06-25T19:44:50 | oeisdata/seq/A384/A384538.seq | ebc08d6e6a78c005869e49c7e44d933e |
A384539 | Zeroless positive integers k for which for every pair of nonempty substrings that concatenate to give k one substring divides the other. | [
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"21",
"22",
"24",
"26",
"28",
"31",
"33",
"36",
"39",
"41",
"42",
"44",
"48",
"51",
"55",
"61",
"62",
"63",
"66",
"71",
"77",
"81",
"82",
"84",
"88",
"91",
"93",
"99",
"111",
"121",
"122",
"123",
"124",
"126",
"131",
"141",
"142",
"147",
"151",
"153",
"155",
"161",
"162",
"164",
"168",
"171",
"181",
"182",
"183",
"186",
"189"
]
| [
"nonn",
"base"
]
| 27 | 1 | 1 | [
"A052382",
"A102766",
"A228103",
"A384538",
"A384539"
]
| null | Felix Huber, Jun 09 2025 | 2025-06-25T22:33:57 | oeisdata/seq/A384/A384539.seq | f31235a1ee743ab0fd2727bd763b2dd1 |
A384540 | Numbers in A384537 that are not prime powers: composite numbers, not being prime powers, that are equal to the concatenation of the primes and exponents in their prime factorizations in some bases. | [
"4617",
"29767",
"255987",
"395847",
"631463",
"1332331",
"25640947"
]
| [
"nonn",
"hard",
"more"
]
| 6 | 1 | 1 | [
"A080670",
"A195264",
"A230625",
"A384537",
"A384540"
]
| null | Jianing Song, Jun 02 2025 | 2025-06-09T10:39:29 | oeisdata/seq/A384/A384540.seq | 7aa95a9886f3e3d3abd7f7a20cf9a3b0 |
A384541 | Decimal expansion of (1/32)*(2 - gamma)*Pi, where gamma is the Euler-Mascheroni constant. | [
"1",
"3",
"9",
"6",
"8",
"1",
"5",
"2",
"5",
"4",
"6",
"2",
"1",
"2",
"4",
"4",
"6",
"8",
"0",
"4",
"1",
"0",
"0",
"4",
"7",
"5",
"7",
"3",
"5",
"2",
"7",
"4",
"8",
"9",
"2",
"9",
"6",
"6",
"5",
"2",
"0",
"8",
"5",
"8",
"1",
"7",
"9",
"3",
"0",
"5",
"0",
"3",
"3",
"8",
"5",
"4",
"1",
"0",
"5",
"4",
"4",
"0",
"9",
"5",
"7",
"5",
"5",
"6",
"6",
"3",
"6",
"1",
"9",
"6",
"6",
"9",
"4",
"9",
"2",
"4",
"8",
"7",
"0",
"6",
"5",
"8",
"5",
"1",
"2",
"9",
"5",
"8",
"7",
"8",
"9",
"6",
"3",
"6",
"5",
"4",
"6",
"3",
"2",
"8",
"7"
]
| [
"nonn",
"cons"
]
| 30 | 0 | 2 | [
"A000796",
"A001620",
"A014963",
"A191898",
"A384541"
]
| null | Mats Granvik, Jun 02 2025 | 2025-06-06T00:18:17 | oeisdata/seq/A384/A384541.seq | 2560b13c5d5b1e703f4f0535c6e19789 |
A384542 | Expansion of g.f. sinh(7*arctanh(14*sqrt(x)))/(98*sqrt(x)). | [
"1",
"1666",
"1090054",
"485318932",
"176760328262",
"56963958713340",
"16909346921973660",
"4732136004374122344",
"1266899066122354262598",
"327667319343098397330668",
"82435716917761454374571444",
"20275150472587631020453400984",
"4893425028040341625551135687452",
"1162305136998381407493307772297560"
]
| [
"nonn"
]
| 14 | 0 | 2 | [
"A285043",
"A285044",
"A285045",
"A285046",
"A383928",
"A384335",
"A384417",
"A384542"
]
| null | Karol A. Penson, Jun 02 2025 | 2025-06-03T01:11:31 | oeisdata/seq/A384/A384542.seq | 18f3baa1e2cefbd8fd020c3344ff1f70 |
A384543 | Number of distinct values from the bitwise operation i XOR j for all integers i and j in the range [1, n]. | [
"1",
"2",
"4",
"7",
"8",
"8",
"8",
"15",
"16",
"16",
"16",
"16",
"16",
"16",
"16",
"31",
"32",
"32",
"32",
"32",
"32",
"32",
"32",
"32",
"32",
"32",
"32",
"32",
"32",
"32",
"32",
"63",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"64",
"127",
"128",
"128"
]
| [
"nonn",
"base"
]
| 23 | 1 | 2 | [
"A000079",
"A000225",
"A070939",
"A151821",
"A384543"
]
| null | Darío Clavijo, Jun 02 2025 | 2025-06-10T19:55:54 | oeisdata/seq/A384/A384543.seq | 57c153a6b97da29de0c834ca1fbf1ae4 |
A384544 | Numbers k such that A383327(k) = 1. | [
"1",
"3",
"5",
"9",
"15",
"23",
"35",
"63",
"65",
"69",
"113",
"125",
"141",
"149",
"173",
"209",
"231",
"275",
"279",
"299",
"321",
"353",
"365",
"383",
"419",
"465",
"509",
"519",
"555",
"575",
"603",
"653",
"695",
"749",
"765",
"875",
"945",
"951",
"959",
"983"
]
| [
"nonn",
"more"
]
| 11 | 1 | 2 | [
"A049802",
"A383327",
"A384544"
]
| null | Miles Englezou, Jun 02 2025 | 2025-06-09T17:44:23 | oeisdata/seq/A384/A384544.seq | 017715f0e87f8018a3cf448862dd1de2 |
A384545 | Smallest prime(n)-smooth multiplier, m, such that both m*(prime(n)#)-1 and m*(prime(n)#)+1 are prime. | [
"2",
"1",
"1",
"2",
"1",
"6",
"8",
"11",
"4",
"16",
"22",
"4",
"74",
"24",
"37",
"28",
"14",
"11",
"242",
"11",
"91",
"20",
"83",
"91",
"35",
"80",
"48",
"47",
"1199",
"2",
"12",
"203",
"30",
"38",
"356",
"54",
"266",
"108",
"305",
"255",
"173",
"1185",
"738",
"13",
"382",
"730",
"455",
"2156",
"173",
"1633",
"2021",
"1162",
"164",
"298",
"69",
"121",
"702",
"1670",
"36",
"570",
"170",
"204",
"285",
"908",
"247"
]
| [
"nonn"
]
| 17 | 1 | 1 | [
"A002110",
"A014574",
"A088257",
"A384530",
"A384545"
]
| null | Ken Clements, Jun 02 2025 | 2025-06-12T08:31:59 | oeisdata/seq/A384/A384545.seq | f8095e26daed6c44012828d654477157 |
A384546 | Consecutive states of the linear congruential pseudo-random number generator 1732073221*s mod 2^32 when started at s=1. | [
"1",
"1732073221",
"2616616473",
"729251197",
"2797858417",
"533270325",
"3854126857",
"3936328237",
"2856078817",
"3879861349",
"3089187065",
"2416960477",
"1835568721",
"733302421",
"616573929",
"1009912461",
"1831411649",
"1402287557",
"1780547545",
"2404171325",
"3232723505",
"1340662261",
"515353801"
]
| [
"nonn",
"easy"
]
| 12 | 1 | 2 | [
"A384489",
"A384534",
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-04T11:30:19 | oeisdata/seq/A384/A384546.seq | 57d428fc4939ab10d40d43566f1dd6f8 |
A384547 | Consecutive states of the linear congruential pseudo-random number generator 1749966429*s mod 2^32 when started at s=1. | [
"1",
"1749966429",
"863268297",
"2363076613",
"3275540433",
"136402157",
"1501618201",
"1169725205",
"2884540577",
"4207317117",
"3511051113",
"3507530533",
"1059832433",
"716775693",
"3646539705",
"4015094837",
"1012634945",
"1877022365",
"4142456073",
"880777797",
"4127613201",
"857964845",
"1091203929"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 2 | [
"A384489",
"A384534",
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-09T10:37:49 | oeisdata/seq/A384/A384547.seq | 14fdf9e814cc35ac629d3ccd7cf7bd8b |
A384548 | Consecutive states of the linear congruential pseudo-random number generator 2304580733*s mod 2^32 when started at s=1. | [
"1",
"2304580733",
"2147325193",
"811843941",
"3633150545",
"4276262285",
"104296921",
"2522567413",
"2813021601",
"4154426269",
"810643369",
"2170487173",
"1239370225",
"1403680429",
"823123577",
"1141497109",
"3667935041",
"180813501",
"3064991305",
"3071014309",
"967179665",
"74820557",
"716721945"
]
| [
"nonn",
"easy"
]
| 9 | 1 | 2 | [
"A384489",
"A384534",
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-10T01:17:49 | oeisdata/seq/A384/A384548.seq | aec1ae3da9e7acfde707b2086f0bea4b |
A384549 | Consecutive states of the linear congruential pseudo-random number generator 2396548189*s mod 2^32 when started at s=1. | [
"1",
"2396548189",
"919509449",
"1367779845",
"2816335825",
"1549695725",
"2552669209",
"3864799509",
"3766995105",
"1875889789",
"3641884521",
"2200425765",
"3499887217",
"443512589",
"1236253625",
"3928047157",
"4144624961",
"4008543389",
"4206061833",
"1628763205",
"2078398737",
"3707176749"
]
| [
"nonn",
"easy"
]
| 16 | 1 | 2 | [
"A384489",
"A384534",
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-06T12:16:54 | oeisdata/seq/A384/A384549.seq | 89345c149d691885379f004149c0f5d8 |
A384550 | Consecutive states of the linear congruential pseudo-random number generator 2824527309*s mod 2^32 when started at s=1. | [
"1",
"2824527309",
"3293550121",
"2596709333",
"3445756561",
"3498707741",
"441773881",
"3935421861",
"1918678561",
"1293047149",
"465535305",
"3869281397",
"1895004849",
"3994946749",
"562125913",
"1620691013",
"3444240449",
"893681933",
"2983563369",
"1922648341",
"2453186257",
"3436839517",
"458239353"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 2 | [
"A384489",
"A384534",
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-10T01:17:44 | oeisdata/seq/A384/A384550.seq | 0af8b728870cc3fdbb22c6a6da729aff |
A384551 | Consecutive states of the linear congruential pseudo-random number generator 3203713013*s mod 2^32 when started at s=1. | [
"1",
"3203713013",
"1932972153",
"1624740557",
"1389418801",
"4217959141",
"2827253801",
"893574717",
"199498593",
"3372915413",
"1317388505",
"4223549101",
"4071519889",
"2136354757",
"2590104201",
"3373966365",
"498440897",
"1477255605",
"4031313209",
"3032874637",
"784349169",
"1495654565"
]
| [
"nonn",
"easy"
]
| 9 | 1 | 2 | [
"A384489",
"A384534",
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-10T01:17:40 | oeisdata/seq/A384/A384551.seq | 153b40f75227c5d7132edf2a93ffb990 |
A384552 | Consecutive states of the linear congruential pseudo-random number generator 3934873077*s mod 2^32 when started at s=1. | [
"1",
"3934873077",
"752172153",
"4289699021",
"1201860913",
"3042060517",
"642808873",
"1475608637",
"1396788065",
"1898146005",
"188505305",
"2609346733",
"30916241",
"1732351429",
"3930590857",
"2785211933",
"1131674305",
"3946192821",
"3744186681",
"1503422605",
"1298444273",
"1019180709",
"4250445033"
]
| [
"nonn",
"easy"
]
| 11 | 1 | 2 | [
"A384489",
"A384534",
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-05T09:50:52 | oeisdata/seq/A384/A384552.seq | 65aa1ad2aa53a05e2ef910616958cc09 |
A384553 | Primes p for which there exists more than one triple of primes q, r, s such that p^3 = q^3 + r^3 + s^3. | [
"28477",
"33199",
"49069",
"234181",
"300239",
"403549",
"463501",
"958933",
"982337",
"1044227",
"1352873",
"1385861",
"1713121",
"1834321",
"1994911",
"2364673",
"2531687",
"2839927",
"3048691",
"3364553",
"3546031",
"3640543",
"3897739",
"3941711",
"4000907",
"4264219",
"4273459",
"4594399",
"4599709",
"4620037",
"4924979"
]
| [
"nonn"
]
| 13 | 1 | 1 | [
"A008917",
"A114923",
"A384553"
]
| null | Zhining Yang, Jun 03 2025 | 2025-06-16T18:29:14 | oeisdata/seq/A384/A384553.seq | 741cbf9b9fea375cd87466eb9fdf151c |
A384554 | The sum of the infinitary divisors of n that are cubefree. | [
"1",
"3",
"4",
"5",
"6",
"12",
"8",
"7",
"10",
"18",
"12",
"20",
"14",
"24",
"24",
"1",
"18",
"30",
"20",
"30",
"32",
"36",
"24",
"28",
"26",
"42",
"13",
"40",
"30",
"72",
"32",
"3",
"48",
"54",
"48",
"50",
"38",
"60",
"56",
"42",
"42",
"96",
"44",
"60",
"60",
"72",
"48",
"4",
"50",
"78",
"72",
"70",
"54",
"39",
"72",
"56",
"80",
"90",
"60",
"120",
"62",
"96",
"80",
"5",
"84",
"144",
"68",
"90"
]
| [
"nonn",
"easy",
"mult"
]
| 13 | 1 | 2 | [
"A000203",
"A004709",
"A005117",
"A013666",
"A049417",
"A073185",
"A077609",
"A367991",
"A368883",
"A384554",
"A384555"
]
| null | Amiram Eldar, Jun 03 2025 | 2025-06-03T15:16:42 | oeisdata/seq/A384/A384554.seq | 76da7088c3e7609c68cb724801ff5fec |
A384555 | The largest infinitary divisor of n that is cubefree. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"4",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"1",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"12",
"25",
"26",
"9",
"28",
"29",
"30",
"31",
"2",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"20",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"3",
"49",
"50",
"51",
"52",
"53",
"18",
"55",
"28",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"4",
"65",
"66",
"67",
"68",
"69"
]
| [
"nonn",
"easy",
"mult"
]
| 7 | 1 | 2 | [
"A004709",
"A007948",
"A013666",
"A077609",
"A368883",
"A384554",
"A384555"
]
| null | Amiram Eldar, Jun 03 2025 | 2025-06-03T11:57:35 | oeisdata/seq/A384/A384555.seq | a125c07b8523465ae06634da9afbad13 |
A384556 | The sum of the exponential divisors of n that are cubefree. | [
"1",
"2",
"3",
"6",
"5",
"6",
"7",
"2",
"12",
"10",
"11",
"18",
"13",
"14",
"15",
"6",
"17",
"24",
"19",
"30",
"21",
"22",
"23",
"6",
"30",
"26",
"3",
"42",
"29",
"30",
"31",
"2",
"33",
"34",
"35",
"72",
"37",
"38",
"39",
"10",
"41",
"42",
"43",
"66",
"60",
"46",
"47",
"18",
"56",
"60",
"51",
"78",
"53",
"6",
"55",
"14",
"57",
"58",
"59",
"90",
"61",
"62",
"84",
"6",
"65",
"66",
"67",
"102",
"69"
]
| [
"nonn",
"easy",
"mult"
]
| 12 | 1 | 2 | [
"A004709",
"A013662",
"A051377",
"A056624",
"A066990",
"A073185",
"A322791",
"A384554",
"A384556"
]
| null | Amiram Eldar, Jun 03 2025 | 2025-06-03T15:17:01 | oeisdata/seq/A384/A384556.seq | 835a4d212410604a2e820b05c76cfd3e |
A384557 | The number of exponential unitary (or e-unitary) divisors of n that are exponentially odd numbers (A268335). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1"
]
| [
"nonn",
"easy",
"mult"
]
| 10 | 1 | 8 | [
"A068068",
"A138302",
"A268335",
"A278908",
"A322483",
"A331737",
"A359411",
"A367516",
"A368168",
"A368979",
"A382291",
"A384557",
"A384559"
]
| null | Amiram Eldar, Jun 03 2025 | 2025-06-03T11:57:16 | oeisdata/seq/A384/A384557.seq | 9e916cb145a8a2d61eea427cbdd54c38 |
A384558 | The sum of the exponential divisors of n that are exponentially odd numbers (A268335). | [
"1",
"2",
"3",
"2",
"5",
"6",
"7",
"10",
"3",
"10",
"11",
"6",
"13",
"14",
"15",
"2",
"17",
"6",
"19",
"10",
"21",
"22",
"23",
"30",
"5",
"26",
"30",
"14",
"29",
"30",
"31",
"34",
"33",
"34",
"35",
"6",
"37",
"38",
"39",
"50",
"41",
"42",
"43",
"22",
"15",
"46",
"47",
"6",
"7",
"10",
"51",
"26",
"53",
"60",
"55",
"70",
"57",
"58",
"59",
"30",
"61",
"62",
"21",
"10",
"65",
"66",
"67",
"34",
"69"
]
| [
"nonn",
"easy",
"mult"
]
| 10 | 1 | 2 | [
"A002110",
"A005117",
"A051377",
"A072587",
"A082020",
"A115964",
"A268335",
"A331737",
"A368979",
"A374459",
"A384558",
"A384559"
]
| null | Amiram Eldar, Jun 03 2025 | 2025-06-04T06:57:48 | oeisdata/seq/A384/A384558.seq | 5a718c26cd4f29c20963bd93e01911ab |
A384559 | The sum of the exponential unitary (or e-unitary) divisors of n that are exponentially odd numbers (A268335). | [
"1",
"2",
"3",
"2",
"5",
"6",
"7",
"10",
"3",
"10",
"11",
"6",
"13",
"14",
"15",
"2",
"17",
"6",
"19",
"10",
"21",
"22",
"23",
"30",
"5",
"26",
"30",
"14",
"29",
"30",
"31",
"34",
"33",
"34",
"35",
"6",
"37",
"38",
"39",
"50",
"41",
"42",
"43",
"22",
"15",
"46",
"47",
"6",
"7",
"10",
"51",
"26",
"53",
"60",
"55",
"70",
"57",
"58",
"59",
"30",
"61",
"62",
"21",
"10",
"65",
"66",
"67",
"34",
"69"
]
| [
"nonn",
"easy",
"mult"
]
| 9 | 1 | 2 | [
"A005117",
"A051377",
"A072587",
"A268335",
"A331737",
"A368979",
"A374459",
"A384557",
"A384558",
"A384559"
]
| null | Amiram Eldar, Jun 03 2025 | 2025-06-03T11:57:08 | oeisdata/seq/A384/A384559.seq | 730af2fd3351709fbfa1bb7f53d6cf53 |
A384560 | Number of uniform step magic squares of order 2*n+1. | [
"8",
"1472",
"25272",
"3528",
"713000",
"2265408",
"11776"
]
| [
"nonn",
"more"
]
| 9 | 1 | 1 | [
"A126709",
"A217568",
"A384560"
]
| null | Michel Marcus, Jun 03 2025 | 2025-06-03T15:14:38 | oeisdata/seq/A384/A384560.seq | b6b19e1c86b6b220250f6736f68f9609 |
A384561 | One fourth of the number of permutations of [n] with |p(i+1) - p(i)| >= 2, for i = 1..(n-1) and n appears at position i = 1 or i = n. | [
"1",
"6",
"39",
"284",
"2337",
"21474",
"218179",
"2430216",
"29459301",
"386182478",
"5444570631",
"82157021556",
"1321282006249",
"22562446559034",
"407722012334667",
"7773697259015264",
"155956589714240109",
"3284208113313605286",
"72434065593967762831",
"1669777527837108720588",
"40157785493048522566641"
]
| [
"nonn",
"easy"
]
| 28 | 5 | 2 | [
"A001266",
"A002464",
"A242522",
"A382644",
"A384561"
]
| null | Wolfdieter Lang, Jun 04 2025 | 2025-06-11T00:32:32 | oeisdata/seq/A384/A384561.seq | 43bce4d1438aba16f6847fd3776d6857 |
A384562 | Number of integer partitions of n with origin-to-boundary graph-distance equal to 4. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"5",
"12",
"24",
"42",
"66",
"98",
"135",
"181",
"233",
"298",
"367",
"452",
"543",
"651",
"765",
"899",
"1039",
"1202",
"1371",
"1564",
"1765",
"1993",
"2227",
"2491",
"2763",
"3066",
"3377",
"3722",
"4075",
"4465",
"4863",
"5299",
"5745",
"6232",
"6727",
"7266",
"7815",
"8409",
"9013",
"9665",
"10327",
"11040",
"11763",
"12538",
"13325",
"14167",
"15019",
"15929",
"16851",
"17832",
"18825",
"19880",
"20947",
"22079",
"23223",
"24433",
"25657",
"26950"
]
| [
"nonn",
"easy"
]
| 8 | 0 | 12 | [
"A130130",
"A325168",
"A325188",
"A382682",
"A384562"
]
| null | N Guru Sharan, Jun 03 2025 | 2025-06-14T19:23:46 | oeisdata/seq/A384/A384562.seq | f0d7b979d5e75c7111200e1ecb101beb |
A384563 | Decimal expansion of Beta(1/4,1/4). | [
"7",
"4",
"1",
"6",
"2",
"9",
"8",
"7",
"0",
"9",
"2",
"0",
"5",
"4",
"8",
"7",
"6",
"7",
"3",
"7",
"3",
"5",
"4",
"0",
"1",
"3",
"8",
"8",
"7",
"8",
"1",
"0",
"4",
"0",
"1",
"8",
"4",
"8",
"7",
"0",
"3",
"9",
"5",
"2",
"9",
"4",
"0",
"8",
"7",
"0",
"6",
"7",
"6",
"2",
"2",
"3",
"4",
"3",
"7",
"1",
"2",
"1",
"8",
"0",
"2",
"2",
"4",
"0",
"8",
"7",
"1",
"0",
"7",
"3",
"5",
"2",
"4",
"7",
"9",
"9",
"1",
"3",
"4",
"2",
"9",
"0",
"8",
"7",
"4",
"4",
"6",
"6",
"0",
"1",
"4",
"8",
"7",
"5",
"8",
"9"
]
| [
"nonn",
"cons"
]
| 8 | 1 | 1 | [
"A000796",
"A002161",
"A068466",
"A175576",
"A197374",
"A377731",
"A384563"
]
| null | Stefano Spezia, Jun 03 2025 | 2025-06-04T00:33:03 | oeisdata/seq/A384/A384563.seq | b44ff144b4cd4f2753afc08c2d303e28 |
A384564 | a(n) = the least natural number not already in the sequence whose prime signature is conjugate to that of n. | [
"1",
"2",
"3",
"6",
"5",
"4",
"7",
"30",
"10",
"9",
"11",
"12",
"13",
"25",
"49",
"210",
"17",
"18",
"19",
"20",
"121",
"169",
"23",
"60",
"14",
"289",
"42",
"28",
"29",
"8",
"31",
"2310",
"361",
"529",
"841",
"36",
"37",
"961",
"1369",
"84",
"41",
"27",
"43",
"44",
"45",
"1681",
"47",
"420",
"15",
"50",
"1849",
"52",
"53",
"90",
"2209",
"126",
"2809",
"3481",
"59",
"24",
"61",
"3721",
"63",
"30030",
"4489",
"125",
"67",
"68",
"5041",
"343",
"71",
"180"
]
| [
"nonn"
]
| 8 | 1 | 2 | [
"A000040",
"A000079",
"A001248",
"A002110",
"A006881",
"A384084",
"A384564"
]
| null | Hal M. Switkay, Jun 03 2025 | 2025-06-09T23:59:50 | oeisdata/seq/A384/A384564.seq | 6ba21d0762d77d131e9d11addf40701e |
A384565 | Consecutive states of the linear congruential pseudo-random number generator 5*s mod 2^35 when started at s=1. | [
"1",
"5",
"25",
"125",
"625",
"3125",
"15625",
"78125",
"390625",
"1953125",
"9765625",
"48828125",
"244140625",
"1220703125",
"6103515625",
"30517578125",
"15148937153",
"7025209029",
"766306777",
"3831533885",
"19157669425",
"27068870389",
"32265136841",
"23886730733",
"16354438561",
"13052716069"
]
| [
"nonn",
"easy"
]
| 45 | 1 | 2 | [
"A000351",
"A384160",
"A384316",
"A384565"
]
| null | Sean A. Irvine, Jun 04 2025 | 2025-06-19T13:30:29 | oeisdata/seq/A384/A384565.seq | bf5fc25ddcc6d008a3845016a4f7ce05 |
A384566 | Area of the unique primitive Pythagorean triple whose inradius is A002378(n) and such that its long leg and its hypotenuse are consecutive natural numbers. | [
"0",
"30",
"546",
"3900",
"17220",
"56730",
"153510",
"360696",
"762120",
"1482390",
"2698410",
"4652340",
"7665996",
"12156690",
"18654510",
"27821040",
"40469520",
"57586446",
"80354610",
"110177580",
"148705620",
"197863050",
"259877046",
"337307880",
"433080600",
"550518150",
"693375930",
"865877796",
"1072753500",
"1319277570",
"1611309630"
]
| [
"nonn",
"easy"
]
| 7 | 0 | 2 | [
"A002378",
"A008514",
"A237516",
"A384288",
"A384566"
]
| null | Miguel-Ángel Pérez García-Ortega, Jun 03 2025 | 2025-06-14T18:03:16 | oeisdata/seq/A384/A384566.seq | 1424671d572f738306080af201744758 |
A384567 | Consecutive states of the linear congruential pseudo-random number generator for the Atari ST when started at 1. | [
"1",
"3141592622",
"1588972055",
"1279602700",
"1481914909",
"3913565466",
"2610266515",
"1903286488",
"936717817",
"3104230086",
"4091513039",
"469042788",
"2999973781",
"54420274",
"4053162955",
"3383133360",
"3380310769",
"456637022",
"465319559",
"936566716",
"2283027469",
"2613197898",
"63902979"
]
| [
"nonn",
"easy"
]
| 12 | 1 | 2 | [
"A096550",
"A096561",
"A384567"
]
| null | Sean A. Irvine, Jun 03 2025 | 2025-06-22T18:19:51 | oeisdata/seq/A384/A384567.seq | b0683ec8737b9317966a39156ce9a7d2 |
A384568 | Consecutive states of the linear congruential pseudo-random number generator for the Hewlett Packard HP-11C when started at 1. | [
"1",
"2592332694",
"9081101567",
"5395073420",
"8055983053",
"5086213266",
"6273274859",
"9159086632",
"8802055385",
"7839955918",
"6661611031",
"9575371524",
"9742396197",
"1322731850",
"9762193283",
"8428043296",
"9881472689",
"954880262",
"481952815",
"5008545148",
"9092360061",
"879428354"
]
| [
"nonn",
"easy"
]
| 14 | 1 | 2 | [
"A384081",
"A384221",
"A384361",
"A384416",
"A384568"
]
| null | Sean A. Irvine, Jun 03 2025 | 2025-06-05T11:10:55 | oeisdata/seq/A384/A384568.seq | 71ba69657925c70da699867a184d7914 |
A384569 | Consecutive states of the linear congruential pseudo-random number generator (3141592221*s+1) mod 10^10 when started at s=1. | [
"1",
"3141592222",
"6189305063",
"9316714924",
"513006205",
"2952731306",
"1632770627",
"460492568",
"9457113529",
"5820257910",
"4269718111",
"3380414532",
"7486555573",
"220997634",
"7833805115",
"114010416",
"6018573937",
"1992544078",
"5444417239",
"5920697820",
"4203658221",
"6836298842"
]
| [
"nonn",
"easy"
]
| 17 | 1 | 2 | [
"A384569",
"A384570",
"A384571",
"A384572",
"A384573"
]
| null | Sean A. Irvine, Jun 03 2025 | 2025-06-10T01:17:36 | oeisdata/seq/A384/A384569.seq | c75b442c45cbab8beb68b6d5ed32cc75 |
A384570 | Consecutive states of the linear congruential pseudo-random number generator (3141592621*s+1) mod 10^10 when started at s=1. | [
"1",
"3141592622",
"9463242263",
"4176141324",
"7731570205",
"4771457306",
"3946139027",
"8663319768",
"6512231929",
"4386995910",
"9213180111",
"2661560932",
"4313082773",
"3419018034",
"6680327115",
"350218416",
"1443908337",
"6919581278",
"3374549639",
"5080613820",
"7062622221",
"4404231242"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 2 | [
"A384567",
"A384569",
"A384570",
"A384571",
"A384572",
"A384573"
]
| null | Sean A. Irvine, Jun 03 2025 | 2025-06-10T01:17:33 | oeisdata/seq/A384/A384570.seq | e2894bbad4d9d8afb490ea220dc4b5d3 |
A384571 | Consecutive states of the linear congruential pseudo-random number generator (4160984121*s+1) mod 10^10 when started at s=1. | [
"1",
"4160984122",
"9375126763",
"3205130324",
"3899585205",
"6491529806",
"3764210527",
"948041768",
"2692765929",
"2138813410",
"6791862611",
"6384599932",
"5989679773",
"5327884534",
"4495484615",
"9214798416",
"7191952337",
"3245840778",
"6552286139",
"627398820",
"7554137221",
"4436067742"
]
| [
"nonn",
"easy"
]
| 12 | 1 | 2 | [
"A384569",
"A384570",
"A384571",
"A384572",
"A384573"
]
| null | Sean A. Irvine, Jun 03 2025 | 2025-06-10T01:17:29 | oeisdata/seq/A384/A384571.seq | 7141d4722710deda51f15e86b78e8fdc |
A384572 | Consecutive states of the linear congruential pseudo-random number generator (4219755981*s+1) mod 10^10 when started at s=1. | [
"1",
"4219755982",
"3405028343",
"5848769484",
"1599283805",
"1465187706",
"5681169587",
"3818549848",
"9844640889",
"2154907110",
"5921924911",
"2225142692",
"3145440853",
"2328491794",
"4440919915",
"2463261616",
"6883725297",
"3576751358",
"5470372199",
"5026372220",
"8077247821",
"2683967402"
]
| [
"nonn",
"easy"
]
| 9 | 1 | 2 | [
"A384569",
"A384570",
"A384571",
"A384572",
"A384573"
]
| null | Sean A. Irvine, Jun 03 2025 | 2025-06-09T15:44:40 | oeisdata/seq/A384/A384572.seq | b33590f9065a1745e4cdddfc1cdafbbc |
A384573 | Consecutive states of the linear congruential pseudo-random number generator (314159269*s+1) mod (2^31-1) when started at s=1. | [
"1",
"314159270",
"299123215",
"950770264",
"1117344423",
"1477591749",
"2028719692",
"208456624",
"1646893945",
"1250010741",
"930351879",
"59486032",
"585353216",
"594185598",
"909127421",
"1411292185",
"1600856677",
"715462774",
"2092759286",
"419110614",
"391876017",
"1505740177",
"894972229",
"6421373"
]
| [
"nonn",
"easy"
]
| 9 | 1 | 2 | [
"A384569",
"A384570",
"A384571",
"A384572",
"A384573"
]
| null | Sean A. Irvine, Jun 03 2025 | 2025-06-05T04:50:40 | oeisdata/seq/A384/A384573.seq | 62baac31a85187790bc743893a398c15 |
A384574 | G.f. A(x) satisfies A(x) = 1 + x * A(x*A(x)^4). | [
"1",
"1",
"1",
"5",
"23",
"155",
"1236",
"11286",
"116333",
"1329433",
"16630343",
"225606826",
"3294976854",
"51496560764",
"856858516809",
"15112857079891",
"281479726839851",
"5517842789917283",
"113510479973132860",
"2444032094604379100",
"54948814775692303024",
"1287258966133883349701"
]
| [
"nonn"
]
| 10 | 0 | 4 | [
"A087949",
"A143500",
"A143501",
"A384574",
"A384575",
"A384578",
"A384582"
]
| null | Seiichi Manyama, Jun 04 2025 | 2025-06-04T09:53:02 | oeisdata/seq/A384/A384574.seq | 51eae22f83b990d18e79d02a14adfb41 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.