sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A384474
Decimal expansion of the middle interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.
[ "1", "8", "9", "1", "3", "4", "5", "5", "9", "4", "4", "4", "8", "5", "1", "0", "4", "1", "8", "6", "8", "7", "1", "7", "3", "4", "7", "8", "9", "5", "2", "7", "3", "9", "1", "9", "9", "0", "2", "4", "7", "7", "9", "2", "2", "5", "3", "0", "7", "7", "4", "6", "9", "6", "6", "9", "2", "7", "7", "4", "8", "7", "7", "0", "3", "7", "2", "8", "8", "7", "5", "9", "6", "9", "4", "5", "8", "5", "4", "4", "4", "3", "1", "4", "7", "8", "6", "3", "2", "3", "2", "3", "2", "2", "6", "8", "1", "0", "3", "1" ]
[ "nonn", "cons" ]
14
1
2
[ "A002194", "A019824", "A177870", "A228719", "A384473", "A384474", "A384475", "A384476", "A384477", "A384478" ]
null
Stefano Spezia, May 30 2025
2025-05-31T11:05:24
oeisdata/seq/A384/A384474.seq
f538d5423b4ee2dbc179f0e8d5e20fa5
A384475
Decimal expansion of the smallest interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon.
[ "1", "0", "7", "0", "3", "7", "8", "2", "5", "9", "2", "1", "5", "9", "4", "1", "4", "9", "4", "5", "5", "1", "7", "5", "9", "8", "6", "0", "6", "4", "5", "3", "6", "1", "6", "9", "7", "7", "9", "3", "9", "4", "1", "8", "3", "9", "4", "0", "1", "5", "2", "6", "8", "2", "4", "8", "8", "3", "8", "3", "9", "7", "4", "6", "7", "2", "5", "2", "5", "8", "0", "7", "7", "5", "1", "9", "7", "9", "6", "6", "7", "3", "4", "8", "8", "9", "3", "8", "6", "7", "6", "2", "6", "2", "6", "6", "9", "3", "5", "3" ]
[ "nonn", "cons" ]
17
3
3
[ "A228719", "A384474", "A384475", "A384476", "A384477", "A384478" ]
null
Stefano Spezia, May 30 2025
2025-05-31T11:05:27
oeisdata/seq/A384/A384475.seq
7cbfe798c88b1960feb835ec4cb1013a
A384476
Decimal expansion of the smallest interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.
[ "1", "8", "6", "8", "1", "6", "2", "4", "8", "6", "5", "0", "8", "3", "5", "1", "7", "7", "7", "5", "8", "0", "3", "4", "7", "3", "3", "3", "8", "5", "9", "1", "6", "7", "7", "0", "3", "5", "1", "5", "4", "5", "2", "1", "9", "5", "2", "8", "0", "5", "8", "5", "2", "1", "2", "8", "3", "9", "1", "5", "5", "9", "1", "8", "4", "5", "7", "8", "4", "8", "9", "4", "1", "0", "6", "2", "3", "7", "6", "5", "1", "0", "7", "1", "7", "1", "0", "8", "1", "0", "2", "6", "3", "3", "4", "2", "0", "7", "4", "7" ]
[ "nonn", "cons" ]
17
1
2
[ "A228719", "A384473", "A384474", "A384475", "A384476", "A384477", "A384478" ]
null
Stefano Spezia, May 30 2025
2025-05-31T11:05:31
oeisdata/seq/A384/A384476.seq
a6a8011d2f06de3a073fb8e9750a8755
A384477
Decimal expansion of the largest interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon.
[ "1", "0", "9", "1", "9", "2", "1", "0", "7", "8", "3", "1", "6", "8", "8", "7", "6", "7", "0", "7", "3", "5", "5", "4", "1", "5", "7", "3", "1", "6", "5", "9", "8", "8", "0", "0", "6", "4", "8", "9", "4", "4", "7", "7", "0", "1", "1", "2", "8", "4", "7", "5", "8", "7", "0", "7", "5", "4", "7", "1", "4", "8", "2", "0", "1", "3", "5", "4", "1", "4", "5", "8", "6", "6", "4", "4", "4", "4", "5", "6", "6", "4", "7", "1", "7", "8", "7", "3", "2", "7", "1", "2", "3", "2", "6", "3", "4", "6", "5", "6" ]
[ "nonn", "cons" ]
17
3
3
[ "A228719", "A384473", "A384474", "A384475", "A384476", "A384477", "A384478" ]
null
Stefano Spezia, May 30 2025
2025-05-31T11:05:34
oeisdata/seq/A384/A384477.seq
bd2cb8049ed44cdef6d728c5ef0a0224
A384478
Decimal expansion of the largest interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.
[ "1", "9", "0", "5", "7", "6", "1", "7", "9", "8", "8", "5", "5", "6", "5", "5", "3", "2", "2", "8", "5", "2", "8", "8", "8", "5", "2", "4", "2", "1", "4", "6", "9", "4", "8", "4", "7", "5", "1", "1", "0", "4", "5", "3", "5", "6", "9", "4", "8", "6", "5", "3", "1", "0", "3", "3", "9", "1", "0", "2", "4", "3", "9", "9", "2", "6", "1", "9", "7", "6", "1", "4", "2", "8", "4", "2", "1", "6", "5", "0", "8", "8", "1", "5", "4", "1", "6", "1", "8", "0", "6", "1", "1", "4", "1", "4", "7", "6", "4", "6" ]
[ "nonn", "cons" ]
13
1
2
[ "A228719", "A384473", "A384474", "A384475", "A384476", "A384477", "A384478" ]
null
Stefano Spezia, May 30 2025
2025-05-31T11:05:38
oeisdata/seq/A384/A384478.seq
8934c2b085a7a0b0b57c2c3295ee52db
A384479
a(n) is the number of ways to partition n X n X n cube into five cuboids of different dimensions.
[ "0", "0", "2", "31", "209", "560", "1561", "2852", "5894", "9093" ]
[ "nonn", "more" ]
30
1
3
[ "A381847", "A384208", "A384311", "A384479", "A384511" ]
null
Janaka Rodrigo, May 30 2025
2025-06-22T00:16:09
oeisdata/seq/A384/A384479.seq
dbad36a1c6ca8421a71b633ebabae903
A384480
Square array read by antidiagonals: T(n,k) is the length of a shortest addition-composition chain for n*x+k, starting with 1 and x; n, k >= 0.
[ "0", "0", "0", "1", "1", "1", "2", "2", "2", "2", "2", "3", "2", "3", "2", "3", "3", "3", "3", "3", "3", "3", "4", "3", "3", "3", "4", "3", "4", "4", "4", "4", "3", "4", "4", "4", "3", "5", "4", "4", "3", "4", "4", "5", "3", "4", "4", "4", "4", "4", "4", "4", "5", "4", "3", "4", "5", "4", "5", "3", "4", "4", "5", "4", "4", "4", "5", "5", "5", "5", "4", "4", "4", "5", "4", "5", "5", "4", "4", "5", "5", "5", "4", "4", "4", "5", "4", "4", "5", "5", "4" ]
[ "nonn", "tabl" ]
7
0
7
[ "A383330", "A384480", "A384481", "A384482", "A384483" ]
null
Pontus von Brömssen, Jun 02 2025
2025-06-09T10:38:23
oeisdata/seq/A384/A384480.seq
4c1d82b270161991e696bdee39ef7f0d
A384481
Smallest value of f(1) for a function f(x) = b*x+c with nonnegative integer coefficients and a shortest addition-composition chain of length n, starting with 1 and x.
[ "1", "2", "3", "4", "6", "8", "13", "24", "46", "98" ]
[ "nonn", "more" ]
7
0
2
[ "A383332", "A384480", "A384481", "A384482", "A384484" ]
null
Pontus von Brömssen, Jun 02 2025
2025-06-09T10:38:11
oeisdata/seq/A384/A384481.seq
7e075d8570560480e9284e98769f80f8
A384482
Number of functions f(x) = b*x+c with nonnegative integer coefficients and a shortest addition-composition chain of length n, starting with 1 and x.
[ "2", "3", "7", "20", "75", "412", "3200", "34167", "507344" ]
[ "nonn", "more" ]
6
0
1
[ "A383331", "A384382", "A384383", "A384480", "A384481", "A384482", "A384485" ]
null
Pontus von Brömssen, Jun 02 2025
2025-06-09T10:38:16
oeisdata/seq/A384/A384482.seq
094ffad68cdb5170a499b8e97fa6f9d6
A384483
Length of shortest addition-composition chain for n, starting with 1 and x.
[ "0", "1", "2", "2", "3", "3", "4", "3", "4", "4", "5", "4", "5", "5", "5", "4", "5", "5", "6", "5", "5", "5", "6", "5", "5", "5", "5", "6", "6", "6", "5", "5", "6", "6", "6", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "5", "6", "6", "6", "6", "6", "7", "6", "6", "6", "6", "6", "6", "7", "6", "7", "6", "5", "6", "6", "6", "6", "6", "7" ]
[ "nonn" ]
6
1
3
[ "A003313", "A230697", "A384384", "A384480", "A384483", "A384484", "A384485" ]
null
Pontus von Brömssen, Jun 02 2025
2025-06-09T10:38:04
oeisdata/seq/A384/A384483.seq
8c4f518769ba6573c9dee9e3a094c222
A384484
Smallest number with shortest addition-composition chain of length n, starting with 1 and x, i.e., smallest k such that A384483(k) = n.
[ "1", "2", "3", "5", "7", "11", "19", "70", "167", "1239", "7123" ]
[ "nonn", "more" ]
7
0
2
[ "A003064", "A383001", "A384385", "A384480", "A384481", "A384483", "A384484", "A384485" ]
null
Pontus von Brömssen, Jun 02 2025
2025-06-09T10:38:08
oeisdata/seq/A384/A384484.seq
04f9782538043a088f877e6b2a083e1b
A384485
Number of integers with a shortest addition-composition chain of length n, starting with 1 and x, i.e., number of integers k with A384483(k) = n.
[ "1", "1", "2", "3", "5", "20", "104", "700", "6779", "95596" ]
[ "nonn", "more" ]
6
0
3
[ "A003065", "A383002", "A384386", "A384480", "A384482", "A384483", "A384484", "A384485" ]
null
Pontus von Brömssen, Jun 02 2025
2025-06-09T10:37:57
oeisdata/seq/A384/A384485.seq
85199bbfe78f4a47c1fd34e0617393bd
A384486
Table read by rows: number of connected components of polyhedra in the quarter cubic honeycomb consisting of k tetrahedra and n-k truncated tetrahedra, up to translation, rotation, and reflection of the honeycomb, 0<=k<=n.
[ "1", "1", "1", "1", "1", "0", "1", "3", "1", "0", "3", "8", "8", "1", "0", "7", "31", "43", "14", "1", "0", "24", "126", "261", "152", "18", "0", "0", "88", "598", "1543", "1467", "369", "14", "0", "0", "385", "2986", "9276", "12161", "5661", "602", "8", "0", "0", "1713", "15467", "55426", "92723", "65892", "15251", "694", "3", "0", "0", "8112", "81217", "330821", "666705", "646974", "254615", "29830", "551", "1", "0", "0" ]
[ "nonn", "tabl" ]
15
0
8
[ "A038169", "A365970", "A384274", "A384486" ]
null
Peter Kagey, May 30 2025
2025-06-12T14:07:42
oeisdata/seq/A384/A384486.seq
493f89a6ed6db9c0d8ce7ce1d5d1127a
A384487
Numbers k such that there exist two integers 0<i<j<k such that i/sigma(i) + j/sigma(j) + k/sigma(k) = 1.
[ "396", "504", "600", "756", "840", "924", "1056", "1080", "1140", "1170", "1260", "1320", "1428", "1440", "1488", "1512", "1540", "1560", "1596", "1638", "1650", "1656", "1680", "1704", "1710", "1740", "1800", "1820", "1840", "1848", "1872", "1932", "1980", "2016", "2040", "2100", "2160", "2184", "2232", "2244", "2256", "2280", "2340", "2352", "2380", "2400", "2430", "2436", "2448", "2460", "2484" ]
[ "nonn", "changed" ]
57
1
1
[ "A000203", "A125490", "A125491", "A125492", "A253534", "A253535", "A383964", "A384487" ]
null
S. I. Dimitrov, Jun 01 2025
2025-07-03T09:29:48
oeisdata/seq/A384/A384487.seq
90ee54032d3b98b75b64946b6dd84c5f
A384488
Numbers k having a divisor d such that d - k/d is prime.
[ "3", "4", "6", "8", "10", "12", "14", "15", "18", "20", "24", "26", "28", "30", "32", "35", "36", "38", "40", "42", "44", "48", "50", "54", "60", "62", "63", "66", "68", "70", "72", "74", "78", "80", "84", "86", "88", "90", "92", "96", "98", "99", "102", "104", "108", "110", "114", "120", "122", "126", "128", "130", "132", "138", "140", "143", "144", "146", "150", "152", "154", "158", "162", "164", "168", "170", "174", "176", "180" ]
[ "nonn", "changed" ]
29
1
1
[ "A000466", "A005408", "A005563", "A052147", "A355643", "A384488" ]
null
Juri-Stepan Gerasimov, May 30 2025
2025-06-30T15:43:13
oeisdata/seq/A384/A384488.seq
02f7ab45d5f3331f072a8403334441ed
A384489
Consecutive states of the linear congruential pseudo-random number generator 392314069 * s mod 2^32 when started at s=1.
[ "1", "392314069", "3884484921", "1268090989", "4095610545", "2939532613", "4120247913", "1352616285", "3662927457", "371333813", "3840713881", "2970275661", "487491345", "3493879077", "1452026825", "2933230141", "3932967105", "2951638165", "920470521", "3864652333", "1810654065", "1799305477" ]
[ "nonn", "easy" ]
11
1
2
[ "A096550", "A096561", "A384489", "A384534" ]
null
Sean A. Irvine, May 30 2025
2025-06-04T11:30:39
oeisdata/seq/A384/A384489.seq
c15ca2216fc7813f11fc7ab45201d925
A384490
Numbers m such that both roots of x^2 - x - 1 modulo m are primitive roots modulo m.
[ "41", "61", "109", "149", "241", "269", "389", "409", "449", "569", "601", "641", "701", "821", "929", "1129", "1181", "1201", "1301", "1321", "1429", "1481", "1489", "1609", "1801", "1889", "1901", "1949", "2129", "2141", "2309", "2341", "2381", "2549", "2609", "2741", "2909", "3061", "3109", "3181", "3209", "3221", "3229", "3361", "3449", "3541" ]
[ "nonn" ]
22
1
1
[ "A001175", "A015134", "A384490" ]
null
Jay Anderson, May 31 2025
2025-06-05T23:17:05
oeisdata/seq/A384/A384490.seq
832f752e86dffff9a3284fff89f900a0
A384491
a(n) = n!^2 * Sum_{k=0..n} Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) / binomial(n,k)^2.
[ "1", "2", "57", "6536", "1966816", "1226860992", "1373652478656", "2507498281198080", "6966291361870181376", "27969794062091821670400", "155875927262331497576140800", "1167389777699203314381963264000", "11441270265465265986005655905894400", "143525982910350708912088976768630784000" ]
[ "nonn" ]
11
0
2
[ "A187655", "A187657", "A384470", "A384471", "A384472", "A384491", "A384492" ]
null
Vaclav Kotesovec, May 31 2025
2025-05-31T09:34:35
oeisdata/seq/A384/A384491.seq
cdd04e594f0d54764f8df01b235bba66
A384492
a(n) = n!^3 * Sum_{k=0..n} Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) / binomial(n,k)^3.
[ "1", "2", "113", "38992", "47071264", "147015606528", "988250901343488", "12631667044878213120", "280790763724247161061376", "10147405862241529912885248000", "565550513462476798468573003776000", "46592777163703224212146175606784000000", "5479872142880875751798643810680954683392000" ]
[ "nonn" ]
10
0
2
[ "A187655", "A187657", "A384470", "A384471", "A384472", "A384491", "A384492" ]
null
Vaclav Kotesovec, May 31 2025
2025-05-31T09:34:32
oeisdata/seq/A384/A384492.seq
8db8ab469e10213cb9f05f235fcb2b7e
A384493
Composite integers k such that sigma(k) | (k + 1)*tau(k) where tau is number of divisors of k.
[ "20", "35", "104", "207", "399", "464", "650", "1519", "1952", "2015", "2774", "2915", "2975", "4454", "11339", "22847", "32318", "63503", "97019", "122499", "130304", "352835", "522752", "924482", "1949375", "7366463", "8382464", "9486399", "15857855", "30222023", "39992975", "49280399", "63483104", "65094623", "69291935", "95309054" ]
[ "nonn" ]
19
1
1
[ "A384354", "A384493" ]
null
David A. Corneth and Ivan N. Ianakiev, May 31 2025
2025-06-04T21:30:23
oeisdata/seq/A384/A384493.seq
41db0a02b330b406d7a7b3e376b5dd4b
A384494
Triangle read by rows: T(n, k) = (-1)^k*(k+1)*(n+1-k)!, n >= 0, k = 0..n.
[ "1", "2", "-2", "6", "-4", "3", "24", "-12", "6", "-4", "120", "-48", "18", "-8", "5", "720", "-240", "72", "-24", "10", "-6", "5040", "-1440", "360", "-96", "30", "-12", "7", "40320", "-10080", "2160", "-480", "120", "-36", "14", "-8", "362880", "-80640", "15120", "-2880", "600", "-144", "42", "-16", "9", "3628800", "-725760", "120960", "-20160", "3600", "-720", "168", "-48", "18", "-10" ]
[ "sign", "tabl", "easy" ]
11
0
2
[ "A000142", "A052560", "A052578", "A052648", "A052849", "A062098", "A086852", "A104698", "A159038", "A298881", "A384494" ]
null
Wolfdieter Lang, May 31 2025
2025-06-22T00:16:04
oeisdata/seq/A384/A384494.seq
c0219722129110c99f6ec09e51863f24
A384495
a(n) = Sum_{k=0..n} binomial(n,k)^2 * abs(Stirling1(2*k,k)) * abs(Stirling1(2*n-2*k,n-k)).
[ "1", "2", "26", "648", "25094", "1372100", "99827020", "9233563136", "1045169591270", "140259346792380", "21754963505429340", "3823376222328582480", "749784319125445476092", "162122841942093462239368", "38288723630416561023861048", "9801732906198391239249940800", "2702731846233390353066363949830" ]
[ "nonn" ]
8
0
2
[ "A187656", "A187658", "A384471", "A384495", "A384496" ]
null
Vaclav Kotesovec, May 31 2025
2025-05-31T10:27:10
oeisdata/seq/A384/A384495.seq
16b1fb31b227113fb34a83881ed3d7de
A384496
a(n) = Sum_{k=0..n} binomial(n,k)^3 * abs(Stirling1(2*k,k)) * abs(Stirling1(2*n-2*k,n-k)).
[ "1", "2", "30", "1044", "68474", "7180900", "1050625720", "196205015216", "44361477901818", "11751610490415828", "3567182462164189140", "1220655384720089761080", "464932034143270233958352", "195108754505934104188716064", "89452431045403310104416682304", "44489455448017524780072427344000" ]
[ "nonn" ]
9
0
2
[ "A187656", "A187658", "A384472", "A384495", "A384496" ]
null
Vaclav Kotesovec, May 31 2025
2025-05-31T10:27:14
oeisdata/seq/A384/A384496.seq
12004e560493402a40b4b648db9ac913
A384497
a(n) is the number of binary strings of length n which contain exactly one run of 1s of even length.
[ "0", "0", "1", "2", "6", "12", "28", "56", "119", "236", "479", "940", "1859", "3612", "7028", "13538", "26051", "49820", "95098", "180774", "342944", "648648", "1224517", "2306338", "4336449", "8138516", "15250965", "28535528", "53320792", "99504804", "185474501", "345332950", "642310142", "1193510160", "2215702468", "4109801864" ]
[ "nonn", "easy" ]
11
0
4
[ "A029907", "A384497" ]
null
Félix Balado, May 31 2025
2025-06-08T00:07:45
oeisdata/seq/A384/A384497.seq
fd5e185a57d80d7c612bea67df0a6103
A384498
Squarefree numbers whose distinct prime factors can be partitioned into two sets with equal sums.
[ "1", "30", "70", "286", "646", "1798", "2145", "2310", "2730", "3135", "3526", "3570", "4641", "4845", "5005", "5610", "6006", "6279", "6630", "7198", "7410", "7854", "8778", "8855", "8970", "9177", "10366", "10374", "10626", "10695", "11305", "11571", "11730", "13110", "13485", "13566", "13585", "15470", "16095", "16302", "16422", "16530" ]
[ "nonn" ]
24
1
2
[ "A005117", "A071141", "A071142", "A071312", "A221054", "A384498" ]
null
Alois P. Heinz, May 31 2025
2025-06-02T09:50:23
oeisdata/seq/A384/A384498.seq
a006fd1f829be26694a6df00b6d4067a
A384499
Number of paths from the top to bottom of a 3-dimensional triangular bipyramidal graph of height 2n, with no repeated vertices, and no upward moves.
[ "1", "15", "11475", "1093007025", "52244816853213675", "6472823166678668309527843125", "11561557982049161046080105648122197757331625", "1687343403738428640604090554388660433120115565168405371811095975" ]
[ "nonn", "walk" ]
42
0
2
[ "A002454", "A384499" ]
null
Sameer Gauria, May 31 2025
2025-06-18T16:41:12
oeisdata/seq/A384/A384499.seq
6f93b9d5c9bc756edcedcf229622072c
A384500
Numbers k such that the parity of k and omega(k) are not equal.
[ "1", "2", "4", "8", "15", "16", "21", "30", "32", "33", "35", "39", "42", "45", "51", "55", "57", "60", "63", "64", "65", "66", "69", "70", "75", "77", "78", "84", "85", "87", "90", "91", "93", "95", "99", "102", "110", "111", "114", "115", "117", "119", "120", "123", "126", "128", "129", "130", "132", "133", "135", "138", "140", "141", "143", "145", "147", "150", "153", "154", "155" ]
[ "nonn", "easy" ]
17
1
2
[ "A000035", "A001221", "A098904", "A098905", "A384500" ]
null
Guido Avagliano, May 31 2025
2025-06-04T22:53:12
oeisdata/seq/A384/A384500.seq
0727baf1bc6615deb374102ccee98f47
A384501
a(n) = Sum_{k=0..n} abs(Stirling1(n,k)) * Stirling2(n,n-k).
[ "1", "0", "1", "9", "119", "2025", "42510", "1062761", "30854159", "1020615912", "37900765365", "1561459425955", "70682817696436", "3487456195458027", "186281997929231659", "10709829446929099865", "659427284782849503663", "43293574636994934145044", "3019108475859713906967738", "222868205832269470083471366" ]
[ "nonn" ]
4
0
4
[ "A047793", "A187655", "A187656", "A384501" ]
null
Vaclav Kotesovec, May 31 2025
2025-05-31T10:46:25
oeisdata/seq/A384/A384501.seq
1b1c28c8b57517a2e5302259190bc88f
A384502
Maximum number of distinct prime factors in an n-digit number, n > 3, where its set of distinct prime factors can be partitioned into two equal-sum subsets, each containing at least two elements.
[ "5", "5", "7", "7", "7", "9", "9", "9", "11", "11", "11", "13", "13", "13", "15", "15", "15", "16", "17", "17", "17", "19", "19", "19", "19", "21", "21", "21", "21", "23", "23", "23", "23", "25", "25", "25", "25", "27", "27", "27", "27", "29", "29", "29", "29", "31", "31", "31", "31", "33", "33", "33", "33", "34", "35", "35" ]
[ "nonn", "base", "more" ]
39
4
1
[ "A001221", "A067175", "A221054", "A383858", "A384502" ]
null
Jean-Marc Rebert, May 31 2025
2025-06-24T15:58:05
oeisdata/seq/A384/A384502.seq
50275ad1ed2080db82ec4b089e48a061
A384503
Lexicographically earliest infinite sequence of distinct positive integers having the property that for any pair a(n-2) = i, a(n-1) = j of consecutive terms > 1, a(n) is the smallest novel k such that gcd(i,k) > 1 if gcd(i,j) = 1 or gcd(j,k) = 1 if gcd(i,j) > 1.
[ "1", "2", "3", "4", "6", "5", "8", "10", "7", "12", "14", "9", "16", "15", "18", "11", "20", "22", "13", "24", "26", "17", "28", "34", "19", "30", "38", "21", "32", "27", "36", "23", "33", "46", "39", "40", "42", "25", "35", "29", "45", "58", "48", "31", "44", "62", "37", "50", "74", "41", "52", "82", "43", "54", "86", "47", "56", "94", "49", "60", "63", "53", "51", "106", "57", "64", "66", "59" ]
[ "nonn" ]
12
1
2
[ "A000027", "A064413", "A127202", "A280985", "A384503" ]
null
David James Sycamore, May 31 2025
2025-06-05T23:26:05
oeisdata/seq/A384/A384503.seq
d1357ce3ce27b8da9556ef3b2912bc1b
A384504
a(n) = Stirling1(n^2, n).
[ "1", "1", "11", "118124", "5056995703824", "2677503356427960382362624", "43103055200236892507668550744976954163200", "44206966751754314698168885550132827351582613259130314424320000" ]
[ "nonn" ]
12
0
3
[ "A008275", "A048994", "A218141", "A384504" ]
null
Vaclav Kotesovec, May 31 2025
2025-06-01T03:46:52
oeisdata/seq/A384/A384504.seq
b33082c31621dd2b37021d19d792fa7f
A384505
a(n) is the number of multisets of n positive decimal digits where the sum of the digits equals the product of the prime digits.
[ "5", "1", "1", "3", "13", "20", "31", "51", "74", "106", "144", "188", "248", "331", "433", "535", "668", "812", "993", "1206", "1435", "1704", "1991", "2319", "2688", "3084", "3529", "3993", "4514", "5072", "5675", "6353", "7097", "7915", "8790", "9724", "10733", "11803", "12947", "14164", "15450", "16809", "18240", "19757", "21374", "23073", "24876", "26759" ]
[ "nonn", "base" ]
7
1
1
[ "A002110", "A006753", "A007947", "A007954", "A066306", "A067077", "A384443", "A384444", "A384445", "A384505" ]
null
Felix Huber, Jun 11 2025
2025-06-22T18:07:40
oeisdata/seq/A384/A384505.seq
121f8c51c242c4bf81164d0a6203b617
A384506
a(n) = 2^(n-7)*(n^4 - 6*n^3 + 59*n^2 - 54*n)/3.
[ "0", "0", "1", "6", "25", "90", "300", "952", "2912", "8640", "24960", "70400", "194304", "525824", "1397760", "3655680", "9420800", "23953408", "60162048", "149422080", "367329280", "894566400", "2159804416", "5173149696", "12299796480", "29045555200", "68157440000", "158997676032", "368880648192", "851443712000", "1955887841280" ]
[ "nonn", "easy" ]
19
0
4
[ "A383778", "A384243", "A384506" ]
null
Enrique Navarrete, May 31 2025
2025-06-04T11:07:27
oeisdata/seq/A384/A384506.seq
f8e60e2146f0de1754e6ff5db83d2200
A384507
Initial term of first run of exactly n consecutive numbers with exactly 5 distinct prime factors.
[ "2310", "254540", "1042404", "21871365", "129963314", "830692265", "4617927894", "18297409143", "41268813542", "287980277114", "1182325618032", "6455097761454", "14207465691240", "54049709480208", "90987640183352", "1164838922284960", "546525829796442" ]
[ "nonn", "fini", "new" ]
25
1
1
[ "A001221", "A046387", "A080569", "A087977", "A087978", "A185032", "A185042", "A384507" ]
null
Toshitaka Suzuki, Jun 23 2025
2025-07-04T19:22:30
oeisdata/seq/A384/A384507.seq
4579fc08afbcf523be70a1b498c0c334
A384508
Nonnegative integers k such that the digits of k include the digits of the digital sum of k as a (not necessarily contiguous) subsequence.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "20", "30", "40", "50", "60", "70", "80", "90", "100", "109", "119", "129", "139", "149", "159", "169", "179", "189", "190", "191", "192", "193", "194", "195", "196", "197", "198", "199", "200", "300", "400", "500", "600", "700", "800", "900", "910", "911", "912", "913", "914", "915", "916", "917", "918", "919", "1000" ]
[ "nonn", "base", "easy", "new" ]
23
1
3
[ "A005349", "A007953", "A046829", "A052018", "A384508" ]
null
Felix Huber, Jun 26 2025
2025-06-30T17:52:34
oeisdata/seq/A384/A384508.seq
a49ed8c3a623fc8afbfa68f8e375c920
A384509
a(n) = number of iterations of z -> z^2 + c(n) with c(n) = ((5/n+1) + (5/n-1)*i)/(n*sqrt(2)) + 1/4 + (1/2)*i to reach |z| > 2, starting with z = 0.
[ "1", "2", "2", "3", "4", "5", "6", "7", "9", "10", "11", "12", "13", "14", "15", "16", "17", "19", "19", "21", "22", "23", "24", "25", "26", "27", "28", "29", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "42", "43", "44", "45", "46", "47", "48", "49", "51", "51", "53", "54", "55", "56", "57", "58", "59", "60", "62", "63", "64", "65", "66", "67", "68", "69", "71", "71", "73", "74", "75", "76", "77", "78", "79", "80" ]
[ "nonn" ]
17
1
2
[ "A093954", "A097486", "A383750", "A384509", "A384513" ]
null
Luke Bennet, May 31 2025
2025-06-05T23:38:08
oeisdata/seq/A384/A384509.seq
6f45368c16b557a4109e81c11c7c85b7
A384511
a(n) is the number of ways to partition n X n X n cube into five distinct cuboids with three full-length axial spanning parts sharing only two cube corners each.
[ "0", "0", "1", "3", "10", "18", "35", "53", "84", "116", "165", "215", "286", "358", "455", "553", "680", "808", "969", "1131", "1330", "1530", "1771", "2013", "2300", "2588", "2925", "3263", "3654", "4046", "4495", "4945", "5456", "5968", "6545", "7123", "7770", "8418", "9139", "9861", "10660", "11460", "12341", "13223", "14190" ]
[ "nonn" ]
19
1
4
[ "A384479", "A384511" ]
null
Janaka Rodrigo, May 31 2025
2025-06-18T19:20:25
oeisdata/seq/A384/A384511.seq
56d737132351ec922e95a4b518aa1128
A384512
Record terms in A384698.
[ "2", "3", "13", "17", "37", "41", "61", "613", "829", "1861", "2269", "7333", "35149", "1008229", "909889549", "1423665384101", "10341624100573", "440171836495742615578609", "471206109194322691633610979351605854911441181", "4466501842784976704198682186832272945270823914876207595593007001786562643495541" ]
[ "nonn" ]
10
1
1
[ "A020639", "A383777", "A384512", "A384698" ]
null
Ya-Ping Lu, May 31 2025
2025-06-15T20:03:51
oeisdata/seq/A384/A384512.seq
45375b1614b67ea866ff26dba96de83f
A384513
a(n) = number of iterations of z -> z^2 + c(n) with c(n) = 16/(n^2) + (1/n)*i + 3/8 + (sqrt(3)/8)*i to reach |z| > 2, starting with z = 0.
[ "1", "1", "1", "2", "2", "3", "3", "4", "4", "4", "5", "6", "7", "7", "8", "8", "9", "9", "10", "10", "10", "11", "12", "12", "13", "13", "14", "14", "15", "15", "16", "16", "17", "18", "18", "19", "19", "20", "20", "21", "21", "22", "22", "23", "23", "24", "24", "25", "25", "26", "27", "27", "28", "28", "28", "29", "30", "30", "31", "31", "32", "32", "33", "33", "34", "34", "35", "35", "36", "36", "37", "38", "38", "39", "39", "40" ]
[ "nonn" ]
10
1
4
[ "A019673", "A097486", "A383750", "A384509", "A384513" ]
null
Luke Bennet, May 31 2025
2025-06-05T22:34:10
oeisdata/seq/A384/A384513.seq
fb866fa5bdd2d027f455a5fae4bef24d
A384514
Expansion of e.g.f. 6/(7 - exp(6*x)).
[ "1", "1", "8", "78", "960", "14736", "272448", "5881968", "145105920", "4026744576", "124159039488", "4211132779008", "155814875873280", "6245695887446016", "269610827961212928", "12469729905669224448", "615184657168540631040", "32246522356406129197056", "1789714914567248392224768" ]
[ "nonn" ]
29
0
3
[ "A094419", "A326323", "A384514", "A384521", "A384522", "A384523", "A384524" ]
null
Seiichi Manyama, Jun 01 2025
2025-06-01T09:57:47
oeisdata/seq/A384/A384514.seq
604a14c82e212f6c478b155c1c960d76
A384515
Unitary s-Zumkeller numbers.
[ "60", "140", "420", "660", "1224", "1820", "2660", "2820", "4620", "5460", "7140", "7980", "8580", "9660", "11220", "12180", "12540", "13020", "13260", "13580", "13860", "14140", "14420", "14820", "15180", "15540", "16380", "17220", "17940", "18060", "18200", "19140", "19380", "19740", "20020", "20460", "22260", "22620", "23460", "24180", "24420" ]
[ "nonn" ]
25
1
1
[ "A034448", "A077610", "A083207", "A290466", "A384515" ]
null
Ivan N. Ianakiev, Jun 01 2025
2025-06-07T18:42:09
oeisdata/seq/A384/A384515.seq
6705e34ab7883c1b6bb52425abcb54f0
A384516
Consecutive states of the linear congruential pseudo-random number generator 410092949*s mod 2^32 when started at s=1.
[ "1", "410092949", "591276217", "536793261", "1444304305", "547738885", "2808452329", "3344283805", "3273327713", "2664493429", "2310230553", "3826173325", "3564649489", "1018219237", "862195785", "3991693181", "2995334337", "122179925", "2916974457", "3784183405", "2873755249", "2538566853", "1541296041" ]
[ "nonn", "easy" ]
23
1
2
[ "A096550", "A096561", "A384516" ]
null
Sean A. Irvine, Jun 01 2025
2025-06-23T19:38:54
oeisdata/seq/A384/A384516.seq
4d3c3f02a1f19ff0f02bf0fedbab7ff9
A384517
Nonsquarefree numbers that are squarefree numbers raised to an even power.
[ "4", "9", "16", "25", "36", "49", "64", "81", "100", "121", "169", "196", "225", "256", "289", "361", "441", "484", "529", "625", "676", "729", "841", "900", "961", "1024", "1089", "1156", "1225", "1296", "1369", "1444", "1521", "1681", "1764", "1849", "2116", "2209", "2401", "2601", "2809", "3025", "3249", "3364", "3481", "3721", "3844", "4096", "4225", "4356" ]
[ "nonn" ]
15
1
1
[ "A000290", "A005117", "A062770", "A072774", "A072777", "A231273", "A231327", "A340674", "A384517", "A384518" ]
null
Amiram Eldar, Jun 01 2025
2025-06-01T16:38:06
oeisdata/seq/A384/A384517.seq
eeeb1e6ce427c80cc720f48a4fc8f58b
A384518
Nonsquarefree numbers that are squarefree numbers raised to an odd power.
[ "8", "27", "32", "125", "128", "216", "243", "343", "512", "1000", "1331", "2048", "2187", "2197", "2744", "3125", "3375", "4913", "6859", "7776", "8192", "9261", "10648", "12167", "16807", "17576", "19683", "24389", "27000", "29791", "32768", "35937", "39304", "42875", "50653", "54872", "59319", "68921", "74088", "78125", "79507", "97336", "100000" ]
[ "nonn" ]
15
1
1
[ "A005117", "A072777", "A097054", "A268335", "A384517", "A384518" ]
null
Amiram Eldar, Jun 01 2025
2025-06-01T16:37:57
oeisdata/seq/A384/A384518.seq
f634a476f0dcfe76b3759ede233eaef1
A384519
Numbers whose powerful part (A057521) is greater than 1 and is equal to a squarefree number raised to an even power (A384517).
[ "4", "9", "12", "16", "18", "20", "25", "28", "36", "44", "45", "48", "49", "50", "52", "60", "63", "64", "68", "75", "76", "80", "81", "84", "90", "92", "98", "99", "100", "112", "116", "117", "121", "124", "126", "132", "140", "147", "148", "150", "153", "156", "162", "164", "169", "171", "172", "175", "176", "180", "188", "192", "196", "198", "204", "207", "208", "212", "220" ]
[ "nonn" ]
10
1
1
[ "A005117", "A013661", "A013929", "A057521", "A067259", "A240112", "A335275", "A368714", "A375142", "A384517", "A384519", "A384520" ]
null
Amiram Eldar, Jun 01 2025
2025-06-01T09:58:41
oeisdata/seq/A384/A384519.seq
74af496f12cb503cef86e6bdb0579f7e
A384520
Numbers whose powerful part (A057521) is greater than 1 and is equal to a squarefree number raised to an odd power (A384518).
[ "8", "24", "27", "32", "40", "54", "56", "88", "96", "104", "120", "125", "128", "135", "136", "152", "160", "168", "184", "189", "216", "224", "232", "243", "248", "250", "264", "270", "280", "296", "297", "312", "328", "343", "344", "351", "352", "375", "376", "378", "384", "408", "416", "424", "440", "456", "459", "472", "480", "486", "488", "512", "513", "520", "536" ]
[ "nonn" ]
13
1
1
[ "A005117", "A013661", "A057521", "A268335", "A295661", "A301517", "A374459", "A375142", "A376142", "A381312", "A384518", "A384519", "A384520" ]
null
Amiram Eldar, Jun 01 2025
2025-06-01T09:58:32
oeisdata/seq/A384/A384520.seq
0ead0cb516e194265c5fb60e5f30d5e7
A384521
Expansion of e.g.f. 5/(7 - 2*exp(5*x)).
[ "1", "2", "18", "218", "3474", "69290", "1659330", "46359770", "1480241970", "53171142410", "2122154748450", "93168872862650", "4462242691496850", "231524863130863850", "12936797161953970050", "774495903492069700250", "49458416187322116299250", "3355754824852804221058250", "241081466990843266748993250" ]
[ "nonn" ]
12
0
2
[ "A094419", "A384514", "A384521", "A384522", "A384523", "A384524" ]
null
Seiichi Manyama, Jun 01 2025
2025-06-01T09:57:23
oeisdata/seq/A384/A384521.seq
bd9fd19481416d54b7bb18ec00b98747
A384522
Expansion of e.g.f. 4/(7 - 3*exp(4*x)).
[ "1", "3", "30", "426", "8040", "189768", "5375280", "177632976", "6708685440", "285038686848", "13456362881280", "698786099602176", "39586707755811840", "2429498408440009728", "160571526535426529280", "11370607719608891467776", "858870213271187908362240", "68928740686010010238353408" ]
[ "nonn" ]
13
0
2
[ "A094419", "A384514", "A384521", "A384522", "A384523", "A384524" ]
null
Seiichi Manyama, Jun 01 2025
2025-06-21T13:59:27
oeisdata/seq/A384/A384522.seq
576107faa5a0d40d014cf8722f859b9a
A384523
Expansion of e.g.f. 3/(7 - 4*exp(3*x)).
[ "1", "4", "44", "708", "15180", "406884", "13087404", "491114628", "21062220300", "1016197112484", "54476506976364", "3212426755972548", "206654933095516620", "14401921040252826084", "1080885666078491553324", "86916516692600836638468", "7455102038197447378720140", "679412933203279242481083684" ]
[ "nonn" ]
12
0
2
[ "A094419", "A384514", "A384521", "A384522", "A384523", "A384524" ]
null
Seiichi Manyama, Jun 01 2025
2025-06-01T10:02:06
oeisdata/seq/A384/A384523.seq
b0bc68fe6ba834817263ceacf6bea8b5
A384524
Expansion of e.g.f. 2/(7 - 5*exp(2*x)).
[ "1", "5", "60", "1070", "25440", "756080", "26964960", "1121963120", "53351831040", "2854122433280", "169649803023360", "11092432778385920", "791204615734640640", "61138238969353748480", "5087702653663698677760", "453621615686933964830720", "43141424825262182799114240", "4359374368561019960377671680" ]
[ "nonn" ]
17
0
2
[ "A094419", "A384514", "A384521", "A384522", "A384523", "A384524" ]
null
Seiichi Manyama, Jun 01 2025
2025-06-04T07:10:34
oeisdata/seq/A384/A384524.seq
86e805e75710b6f545270d33017e40a0
A384525
Expansion of e.g.f. 5/(6 - exp(5*x)).
[ "1", "1", "7", "61", "679", "9445", "158095", "3088765", "68958295", "1731875605", "48328686175", "1483501074925", "49677478279975", "1802159471217925", "70406303657894575", "2947087948180076125", "131584088098220272375", "6242270620707298139125", "313548981075158413477375" ]
[ "nonn" ]
12
0
3
[ "A326323", "A384525" ]
null
Seiichi Manyama, Jun 01 2025
2025-06-01T09:57:40
oeisdata/seq/A384/A384525.seq
18e1909f157885e3ae88298ea757d6e8
A384526
Primes p such that p + 6, p + 14 and p + 20 are also primes.
[ "17", "23", "47", "53", "83", "257", "263", "353", "443", "557", "587", "593", "977", "1103", "1217", "1277", "1283", "1433", "1607", "1973", "1997", "2267", "2657", "2693", "2837", "3527", "3617", "4007", "4637", "4643", "4937", "5393", "5807", "6197", "6257", "6323", "6353", "6977", "8693", "10253", "10847", "10973", "11483", "11807", "12143", "12497", "12953", "13613", "14537" ]
[ "nonn" ]
10
1
1
[ "A000040", "A001223", "A140565", "A382810", "A384526" ]
null
Alexander Yutkin, Jun 01 2025
2025-06-05T23:45:22
oeisdata/seq/A384/A384526.seq
b9b57a40c5a9e8cee2bd363315ebd911
A384527
Primes p such that p + 6, p + 12, p + 14, p + 20 and p + 26 are also primes.
[ "17", "47", "257", "587", "1277", "4637", "14537", "19457", "71327", "101267", "113147", "115757", "150197", "179807", "191447", "193367", "267887", "302567", "344237", "408197", "416387", "442817", "482387", "536267", "566537", "652727", "886967", "1043747", "1268777", "1300127", "1373147", "1464257", "1589657", "1616597", "1988237" ]
[ "nonn" ]
11
1
1
[ "A000040", "A001223", "A023241", "A140565", "A384527" ]
null
Alexander Yutkin, Jun 01 2025
2025-06-05T22:00:18
oeisdata/seq/A384/A384527.seq
5f98e1f4c08625d4ec7655353c40effc
A384528
Primes p such that p + 6, p + 12, p + 16, p + 22 and p + 28 are also primes.
[ "31", "151", "2671", "20101", "128461", "198811", "297601", "307261", "350431", "354301", "531331", "560221", "585721", "649771", "813991", "1049821", "1141081", "1553401", "1616611", "1763401", "2032621", "2126611", "2349301", "2628811", "2874721", "2967331", "3014371", "3414211", "3441931", "3491071", "3677341", "3699181", "4192261", "4941241", "4951621" ]
[ "nonn" ]
9
1
1
[ "A000040", "A001223", "A023241", "A382810", "A384528" ]
null
Alexander Yutkin, Jun 01 2025
2025-06-05T22:00:03
oeisdata/seq/A384/A384528.seq
cc4737ba3d3e60d40bd87e83cac6ca02
A384529
Number of inequivalent sets S (cubic acute n-set), with cardinality A089676(n) >= 3, of points in {0,1}^n in real n-dimensional Euclidean space such that every angle determined by three distinct points in S is acute.
[ "0", "0", "2", "5", "18", "3", "64" ]
[ "nonn", "hard", "more" ]
8
1
3
[ "A089676", "A289972", "A384529" ]
null
Dmitry I. Ignatov, Jun 01 2025
2025-06-12T22:00:23
oeisdata/seq/A384/A384529.seq
ea2b2eb3e332c46abc1f46bf71ef2114
A384530
Intersection of A055932 and A014574.
[ "4", "6", "12", "18", "30", "60", "72", "108", "150", "180", "192", "240", "270", "420", "432", "600", "810", "1050", "1152", "1620", "2310", "2592", "3000", "3360", "4050", "4800", "5880", "6300", "7350", "7560", "8820", "9000", "9240", "9720", "10500", "11550", "15360", "21600", "23040", "25410", "26250", "26880", "28350", "29400", "30870", "33600" ]
[ "nonn" ]
49
1
1
[ "A014574", "A027856", "A055932", "A384530" ]
null
Ken Clements, Jun 01 2025
2025-06-14T20:05:44
oeisdata/seq/A384/A384530.seq
f1bd5e18e883ffa44e06dd5ceebe33b9
A384531
Multiplicative sequence a(n) with a(p^e) = ((2*e+1) * p - 2*e) * p^(e-1) for prime p and e >= 0.
[ "1", "4", "7", "12", "13", "28", "19", "32", "33", "52", "31", "84", "37", "76", "91", "80", "49", "132", "55", "156", "133", "124", "67", "224", "105", "148", "135", "228", "85", "364", "91", "192", "217", "196", "247", "396", "109", "220", "259", "416", "121", "532", "127", "372", "429", "268", "139", "560", "217", "420", "343", "444", "157", "540", "403", "608", "385", "340", "175", "1092" ]
[ "nonn", "easy", "mult" ]
24
1
2
[ "A018804", "A065473", "A173557", "A384531" ]
null
Werner Schulte, Jun 01 2025
2025-06-10T01:15:22
oeisdata/seq/A384/A384531.seq
3130c1c20fed05a22e0f491bb9cf63ed
A384532
Consecutive states of the linear congruential pseudo-random number generator 663608941*s mod 2^32 when started at s=1.
[ "1", "663608941", "4216535657", "1508633781", "3546922769", "2333349949", "1227634681", "1132643077", "1351376673", "1919950605", "164855433", "658288213", "1272246321", "3018965725", "1134861849", "1895169701", "3480322625", "1729483693", "3273926313", "2046821365", "1986078033", "2320900477" ]
[ "nonn", "easy" ]
11
1
2
[ "A096550", "A096561", "A384532" ]
null
Sean A. Irvine, Jun 01 2025
2025-06-04T11:30:29
oeisdata/seq/A384/A384532.seq
576bab69962a835f0b4f135b81bd460c
A384533
Inventory sequence starting a(1) = 1 and thereafter recording the number of terms which are the product of 0,1,2,... primes (taken with multiplicity). The count resets following a term = 0.
[ "1", "1", "0", "2", "1", "0", "3", "2", "0", "3", "4", "1", "0", "4", "4", "3", "0", "4", "5", "4", "0", "4", "6", "7", "0", "4", "7", "8", "1", "0", "5", "9", "9", "1", "0", "6", "9", "12", "2", "0", "6", "10", "14", "2", "0", "6", "11", "16", "2", "1", "0", "7", "14", "17", "2", "1", "0", "8", "16", "17", "3", "2", "0", "8", "19", "17", "4", "2", "0", "8", "22", "19", "5", "2", "0", "8", "25", "20", "7", "2", "0", "8" ]
[ "nonn", "easy" ]
13
1
4
[ "A342585", "A384533" ]
null
David James Sycamore, Jun 01 2025
2025-06-22T00:51:20
oeisdata/seq/A384/A384533.seq
2ba3307c725c6b23f3c94a481f9fe3e0
A384534
Consecutive states of the linear congruential pseudo-random number generator 1099087573 * s mod 2^32 when started at s=1.
[ "1", "1099087573", "2291457337", "4026424941", "420705969", "2250972997", "153107049", "3581708125", "1733142113", "3008982197", "3237988505", "577074509", "160677649", "4150171429", "732641225", "3320748093", "2424041665", "1993379477", "3791861753", "363487277", "3187501937", "1778008837", "948009257" ]
[ "nonn", "easy" ]
9
1
2
[ "A384489", "A384534" ]
null
Sean A. Irvine, Jun 01 2025
2025-06-04T11:30:26
oeisdata/seq/A384/A384534.seq
5a849a743b80f5cc61119d951e7cf4c3
A384535
Consecutive states of the linear congruential pseudo-random number generator 1566083941*s mod 2^32 when started at s=1.
[ "1", "1566083941", "2203506137", "1324822941", "1986974193", "2643373845", "1922267721", "3584877005", "1128752353", "3108566981", "1963571129", "3492736765", "2923407569", "1151276405", "1419902505", "2617346349", "3800993217", "2693642277", "144555417", "3452297309", "2296120241", "111579093" ]
[ "nonn", "easy" ]
15
1
2
[ "A096550", "A096561", "A384535" ]
null
Sean A. Irvine, Jun 02 2025
2025-06-19T22:48:58
oeisdata/seq/A384/A384535.seq
637e0a9e9b7fd359a4927f02382045c1
A384536
a(n) = 4^n - 2^(n-6)*15*binomial(n,6).
[ "1", "4", "16", "64", "256", "1024", "4081", "16174", "63856", "252064", "998176", "3972544", "15890176", "63814144", "256903936", "1035303424", "4171964416", "16799678464", "67578904576", "271543926784", "1089985970176", "4371374669824", "17518838480896", "70170274299904", "280945723703296" ]
[ "nonn", "easy" ]
10
0
2
[ "A384506", "A384536" ]
null
Enrique Navarrete, Jun 02 2025
2025-06-09T10:40:06
oeisdata/seq/A384/A384536.seq
418f7de8aae8e219600203f6ba319663
A384537
Composite numbers that are equal to the concatenation of the primes and exponents in their prime factorizations in some bases.
[ "16", "27", "64", "256", "729", "1024", "3125", "4096", "4617", "16384", "19683", "29767", "65536", "255987", "262144", "395847", "531441", "631463", "823543", "1048576", "1332331", "4194304", "9765625", "14348907", "16777216", "25640947", "67108864" ]
[ "nonn", "hard", "more" ]
20
1
1
[ "A080670", "A195264", "A230625", "A327399", "A384537", "A384540" ]
null
Jianing Song, Jun 02 2025
2025-06-09T21:01:34
oeisdata/seq/A384/A384537.seq
4b9450cc19d452eaaeb2d24823d3930d
A384538
Positive integers k >= 10 for which for every pair of nonempty substrings that concatenate to give k one substring divides the other.
[ "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "24", "26", "28", "30", "31", "33", "36", "39", "40", "41", "42", "44", "48", "50", "51", "55", "60", "61", "62", "63", "66", "70", "71", "77", "80", "81", "82", "84", "88", "90", "91", "93", "99", "100", "101", "102", "105", "110", "111", "120", "121", "122", "123", "124", "126", "130", "131", "140", "141" ]
[ "nonn", "base" ]
25
1
1
[ "A102766", "A228103", "A384538", "A384539" ]
null
Felix Huber, Jun 09 2025
2025-06-25T19:44:50
oeisdata/seq/A384/A384538.seq
ebc08d6e6a78c005869e49c7e44d933e
A384539
Zeroless positive integers k for which for every pair of nonempty substrings that concatenate to give k one substring divides the other.
[ "11", "12", "13", "14", "15", "16", "17", "18", "19", "21", "22", "24", "26", "28", "31", "33", "36", "39", "41", "42", "44", "48", "51", "55", "61", "62", "63", "66", "71", "77", "81", "82", "84", "88", "91", "93", "99", "111", "121", "122", "123", "124", "126", "131", "141", "142", "147", "151", "153", "155", "161", "162", "164", "168", "171", "181", "182", "183", "186", "189" ]
[ "nonn", "base" ]
27
1
1
[ "A052382", "A102766", "A228103", "A384538", "A384539" ]
null
Felix Huber, Jun 09 2025
2025-06-25T22:33:57
oeisdata/seq/A384/A384539.seq
f31235a1ee743ab0fd2727bd763b2dd1
A384540
Numbers in A384537 that are not prime powers: composite numbers, not being prime powers, that are equal to the concatenation of the primes and exponents in their prime factorizations in some bases.
[ "4617", "29767", "255987", "395847", "631463", "1332331", "25640947" ]
[ "nonn", "hard", "more" ]
6
1
1
[ "A080670", "A195264", "A230625", "A384537", "A384540" ]
null
Jianing Song, Jun 02 2025
2025-06-09T10:39:29
oeisdata/seq/A384/A384540.seq
7aa95a9886f3e3d3abd7f7a20cf9a3b0
A384541
Decimal expansion of (1/32)*(2 - gamma)*Pi, where gamma is the Euler-Mascheroni constant.
[ "1", "3", "9", "6", "8", "1", "5", "2", "5", "4", "6", "2", "1", "2", "4", "4", "6", "8", "0", "4", "1", "0", "0", "4", "7", "5", "7", "3", "5", "2", "7", "4", "8", "9", "2", "9", "6", "6", "5", "2", "0", "8", "5", "8", "1", "7", "9", "3", "0", "5", "0", "3", "3", "8", "5", "4", "1", "0", "5", "4", "4", "0", "9", "5", "7", "5", "5", "6", "6", "3", "6", "1", "9", "6", "6", "9", "4", "9", "2", "4", "8", "7", "0", "6", "5", "8", "5", "1", "2", "9", "5", "8", "7", "8", "9", "6", "3", "6", "5", "4", "6", "3", "2", "8", "7" ]
[ "nonn", "cons" ]
30
0
2
[ "A000796", "A001620", "A014963", "A191898", "A384541" ]
null
Mats Granvik, Jun 02 2025
2025-06-06T00:18:17
oeisdata/seq/A384/A384541.seq
2560b13c5d5b1e703f4f0535c6e19789
A384542
Expansion of g.f. sinh(7*arctanh(14*sqrt(x)))/(98*sqrt(x)).
[ "1", "1666", "1090054", "485318932", "176760328262", "56963958713340", "16909346921973660", "4732136004374122344", "1266899066122354262598", "327667319343098397330668", "82435716917761454374571444", "20275150472587631020453400984", "4893425028040341625551135687452", "1162305136998381407493307772297560" ]
[ "nonn" ]
14
0
2
[ "A285043", "A285044", "A285045", "A285046", "A383928", "A384335", "A384417", "A384542" ]
null
Karol A. Penson, Jun 02 2025
2025-06-03T01:11:31
oeisdata/seq/A384/A384542.seq
18f3baa1e2cefbd8fd020c3344ff1f70
A384543
Number of distinct values from the bitwise operation i XOR j for all integers i and j in the range [1, n].
[ "1", "2", "4", "7", "8", "8", "8", "15", "16", "16", "16", "16", "16", "16", "16", "31", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32", "63", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "64", "127", "128", "128" ]
[ "nonn", "base" ]
23
1
2
[ "A000079", "A000225", "A070939", "A151821", "A384543" ]
null
Darío Clavijo, Jun 02 2025
2025-06-10T19:55:54
oeisdata/seq/A384/A384543.seq
57c153a6b97da29de0c834ca1fbf1ae4
A384544
Numbers k such that A383327(k) = 1.
[ "1", "3", "5", "9", "15", "23", "35", "63", "65", "69", "113", "125", "141", "149", "173", "209", "231", "275", "279", "299", "321", "353", "365", "383", "419", "465", "509", "519", "555", "575", "603", "653", "695", "749", "765", "875", "945", "951", "959", "983" ]
[ "nonn", "more" ]
11
1
2
[ "A049802", "A383327", "A384544" ]
null
Miles Englezou, Jun 02 2025
2025-06-09T17:44:23
oeisdata/seq/A384/A384544.seq
017715f0e87f8018a3cf448862dd1de2
A384545
Smallest prime(n)-smooth multiplier, m, such that both m*(prime(n)#)-1 and m*(prime(n)#)+1 are prime.
[ "2", "1", "1", "2", "1", "6", "8", "11", "4", "16", "22", "4", "74", "24", "37", "28", "14", "11", "242", "11", "91", "20", "83", "91", "35", "80", "48", "47", "1199", "2", "12", "203", "30", "38", "356", "54", "266", "108", "305", "255", "173", "1185", "738", "13", "382", "730", "455", "2156", "173", "1633", "2021", "1162", "164", "298", "69", "121", "702", "1670", "36", "570", "170", "204", "285", "908", "247" ]
[ "nonn" ]
17
1
1
[ "A002110", "A014574", "A088257", "A384530", "A384545" ]
null
Ken Clements, Jun 02 2025
2025-06-12T08:31:59
oeisdata/seq/A384/A384545.seq
f8095e26daed6c44012828d654477157
A384546
Consecutive states of the linear congruential pseudo-random number generator 1732073221*s mod 2^32 when started at s=1.
[ "1", "1732073221", "2616616473", "729251197", "2797858417", "533270325", "3854126857", "3936328237", "2856078817", "3879861349", "3089187065", "2416960477", "1835568721", "733302421", "616573929", "1009912461", "1831411649", "1402287557", "1780547545", "2404171325", "3232723505", "1340662261", "515353801" ]
[ "nonn", "easy" ]
12
1
2
[ "A384489", "A384534", "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552" ]
null
Sean A. Irvine, Jun 02 2025
2025-06-04T11:30:19
oeisdata/seq/A384/A384546.seq
57d428fc4939ab10d40d43566f1dd6f8
A384547
Consecutive states of the linear congruential pseudo-random number generator 1749966429*s mod 2^32 when started at s=1.
[ "1", "1749966429", "863268297", "2363076613", "3275540433", "136402157", "1501618201", "1169725205", "2884540577", "4207317117", "3511051113", "3507530533", "1059832433", "716775693", "3646539705", "4015094837", "1012634945", "1877022365", "4142456073", "880777797", "4127613201", "857964845", "1091203929" ]
[ "nonn", "easy" ]
10
1
2
[ "A384489", "A384534", "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552" ]
null
Sean A. Irvine, Jun 02 2025
2025-06-09T10:37:49
oeisdata/seq/A384/A384547.seq
14fdf9e814cc35ac629d3ccd7cf7bd8b
A384548
Consecutive states of the linear congruential pseudo-random number generator 2304580733*s mod 2^32 when started at s=1.
[ "1", "2304580733", "2147325193", "811843941", "3633150545", "4276262285", "104296921", "2522567413", "2813021601", "4154426269", "810643369", "2170487173", "1239370225", "1403680429", "823123577", "1141497109", "3667935041", "180813501", "3064991305", "3071014309", "967179665", "74820557", "716721945" ]
[ "nonn", "easy" ]
9
1
2
[ "A384489", "A384534", "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552" ]
null
Sean A. Irvine, Jun 02 2025
2025-06-10T01:17:49
oeisdata/seq/A384/A384548.seq
aec1ae3da9e7acfde707b2086f0bea4b
A384549
Consecutive states of the linear congruential pseudo-random number generator 2396548189*s mod 2^32 when started at s=1.
[ "1", "2396548189", "919509449", "1367779845", "2816335825", "1549695725", "2552669209", "3864799509", "3766995105", "1875889789", "3641884521", "2200425765", "3499887217", "443512589", "1236253625", "3928047157", "4144624961", "4008543389", "4206061833", "1628763205", "2078398737", "3707176749" ]
[ "nonn", "easy" ]
16
1
2
[ "A384489", "A384534", "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552" ]
null
Sean A. Irvine, Jun 02 2025
2025-06-06T12:16:54
oeisdata/seq/A384/A384549.seq
89345c149d691885379f004149c0f5d8
A384550
Consecutive states of the linear congruential pseudo-random number generator 2824527309*s mod 2^32 when started at s=1.
[ "1", "2824527309", "3293550121", "2596709333", "3445756561", "3498707741", "441773881", "3935421861", "1918678561", "1293047149", "465535305", "3869281397", "1895004849", "3994946749", "562125913", "1620691013", "3444240449", "893681933", "2983563369", "1922648341", "2453186257", "3436839517", "458239353" ]
[ "nonn", "easy" ]
10
1
2
[ "A384489", "A384534", "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552" ]
null
Sean A. Irvine, Jun 02 2025
2025-06-10T01:17:44
oeisdata/seq/A384/A384550.seq
0af8b728870cc3fdbb22c6a6da729aff
A384551
Consecutive states of the linear congruential pseudo-random number generator 3203713013*s mod 2^32 when started at s=1.
[ "1", "3203713013", "1932972153", "1624740557", "1389418801", "4217959141", "2827253801", "893574717", "199498593", "3372915413", "1317388505", "4223549101", "4071519889", "2136354757", "2590104201", "3373966365", "498440897", "1477255605", "4031313209", "3032874637", "784349169", "1495654565" ]
[ "nonn", "easy" ]
9
1
2
[ "A384489", "A384534", "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552" ]
null
Sean A. Irvine, Jun 02 2025
2025-06-10T01:17:40
oeisdata/seq/A384/A384551.seq
153b40f75227c5d7132edf2a93ffb990
A384552
Consecutive states of the linear congruential pseudo-random number generator 3934873077*s mod 2^32 when started at s=1.
[ "1", "3934873077", "752172153", "4289699021", "1201860913", "3042060517", "642808873", "1475608637", "1396788065", "1898146005", "188505305", "2609346733", "30916241", "1732351429", "3930590857", "2785211933", "1131674305", "3946192821", "3744186681", "1503422605", "1298444273", "1019180709", "4250445033" ]
[ "nonn", "easy" ]
11
1
2
[ "A384489", "A384534", "A384546", "A384547", "A384548", "A384549", "A384550", "A384551", "A384552" ]
null
Sean A. Irvine, Jun 02 2025
2025-06-05T09:50:52
oeisdata/seq/A384/A384552.seq
65aa1ad2aa53a05e2ef910616958cc09
A384553
Primes p for which there exists more than one triple of primes q, r, s such that p^3 = q^3 + r^3 + s^3.
[ "28477", "33199", "49069", "234181", "300239", "403549", "463501", "958933", "982337", "1044227", "1352873", "1385861", "1713121", "1834321", "1994911", "2364673", "2531687", "2839927", "3048691", "3364553", "3546031", "3640543", "3897739", "3941711", "4000907", "4264219", "4273459", "4594399", "4599709", "4620037", "4924979" ]
[ "nonn" ]
13
1
1
[ "A008917", "A114923", "A384553" ]
null
Zhining Yang, Jun 03 2025
2025-06-16T18:29:14
oeisdata/seq/A384/A384553.seq
741cbf9b9fea375cd87466eb9fdf151c
A384554
The sum of the infinitary divisors of n that are cubefree.
[ "1", "3", "4", "5", "6", "12", "8", "7", "10", "18", "12", "20", "14", "24", "24", "1", "18", "30", "20", "30", "32", "36", "24", "28", "26", "42", "13", "40", "30", "72", "32", "3", "48", "54", "48", "50", "38", "60", "56", "42", "42", "96", "44", "60", "60", "72", "48", "4", "50", "78", "72", "70", "54", "39", "72", "56", "80", "90", "60", "120", "62", "96", "80", "5", "84", "144", "68", "90" ]
[ "nonn", "easy", "mult" ]
13
1
2
[ "A000203", "A004709", "A005117", "A013666", "A049417", "A073185", "A077609", "A367991", "A368883", "A384554", "A384555" ]
null
Amiram Eldar, Jun 03 2025
2025-06-03T15:16:42
oeisdata/seq/A384/A384554.seq
76da7088c3e7609c68cb724801ff5fec
A384555
The largest infinitary divisor of n that is cubefree.
[ "1", "2", "3", "4", "5", "6", "7", "4", "9", "10", "11", "12", "13", "14", "15", "1", "17", "18", "19", "20", "21", "22", "23", "12", "25", "26", "9", "28", "29", "30", "31", "2", "33", "34", "35", "36", "37", "38", "39", "20", "41", "42", "43", "44", "45", "46", "47", "3", "49", "50", "51", "52", "53", "18", "55", "28", "57", "58", "59", "60", "61", "62", "63", "4", "65", "66", "67", "68", "69" ]
[ "nonn", "easy", "mult" ]
7
1
2
[ "A004709", "A007948", "A013666", "A077609", "A368883", "A384554", "A384555" ]
null
Amiram Eldar, Jun 03 2025
2025-06-03T11:57:35
oeisdata/seq/A384/A384555.seq
a125c07b8523465ae06634da9afbad13
A384556
The sum of the exponential divisors of n that are cubefree.
[ "1", "2", "3", "6", "5", "6", "7", "2", "12", "10", "11", "18", "13", "14", "15", "6", "17", "24", "19", "30", "21", "22", "23", "6", "30", "26", "3", "42", "29", "30", "31", "2", "33", "34", "35", "72", "37", "38", "39", "10", "41", "42", "43", "66", "60", "46", "47", "18", "56", "60", "51", "78", "53", "6", "55", "14", "57", "58", "59", "90", "61", "62", "84", "6", "65", "66", "67", "102", "69" ]
[ "nonn", "easy", "mult" ]
12
1
2
[ "A004709", "A013662", "A051377", "A056624", "A066990", "A073185", "A322791", "A384554", "A384556" ]
null
Amiram Eldar, Jun 03 2025
2025-06-03T15:17:01
oeisdata/seq/A384/A384556.seq
835a4d212410604a2e820b05c76cfd3e
A384557
The number of exponential unitary (or e-unitary) divisors of n that are exponentially odd numbers (A268335).
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
10
1
8
[ "A068068", "A138302", "A268335", "A278908", "A322483", "A331737", "A359411", "A367516", "A368168", "A368979", "A382291", "A384557", "A384559" ]
null
Amiram Eldar, Jun 03 2025
2025-06-03T11:57:16
oeisdata/seq/A384/A384557.seq
9e916cb145a8a2d61eea427cbdd54c38
A384558
The sum of the exponential divisors of n that are exponentially odd numbers (A268335).
[ "1", "2", "3", "2", "5", "6", "7", "10", "3", "10", "11", "6", "13", "14", "15", "2", "17", "6", "19", "10", "21", "22", "23", "30", "5", "26", "30", "14", "29", "30", "31", "34", "33", "34", "35", "6", "37", "38", "39", "50", "41", "42", "43", "22", "15", "46", "47", "6", "7", "10", "51", "26", "53", "60", "55", "70", "57", "58", "59", "30", "61", "62", "21", "10", "65", "66", "67", "34", "69" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A002110", "A005117", "A051377", "A072587", "A082020", "A115964", "A268335", "A331737", "A368979", "A374459", "A384558", "A384559" ]
null
Amiram Eldar, Jun 03 2025
2025-06-04T06:57:48
oeisdata/seq/A384/A384558.seq
5a718c26cd4f29c20963bd93e01911ab
A384559
The sum of the exponential unitary (or e-unitary) divisors of n that are exponentially odd numbers (A268335).
[ "1", "2", "3", "2", "5", "6", "7", "10", "3", "10", "11", "6", "13", "14", "15", "2", "17", "6", "19", "10", "21", "22", "23", "30", "5", "26", "30", "14", "29", "30", "31", "34", "33", "34", "35", "6", "37", "38", "39", "50", "41", "42", "43", "22", "15", "46", "47", "6", "7", "10", "51", "26", "53", "60", "55", "70", "57", "58", "59", "30", "61", "62", "21", "10", "65", "66", "67", "34", "69" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A005117", "A051377", "A072587", "A268335", "A331737", "A368979", "A374459", "A384557", "A384558", "A384559" ]
null
Amiram Eldar, Jun 03 2025
2025-06-03T11:57:08
oeisdata/seq/A384/A384559.seq
730af2fd3351709fbfa1bb7f53d6cf53
A384560
Number of uniform step magic squares of order 2*n+1.
[ "8", "1472", "25272", "3528", "713000", "2265408", "11776" ]
[ "nonn", "more" ]
9
1
1
[ "A126709", "A217568", "A384560" ]
null
Michel Marcus, Jun 03 2025
2025-06-03T15:14:38
oeisdata/seq/A384/A384560.seq
b6b19e1c86b6b220250f6736f68f9609
A384561
One fourth of the number of permutations of [n] with |p(i+1) - p(i)| >= 2, for i = 1..(n-1) and n appears at position i = 1 or i = n.
[ "1", "6", "39", "284", "2337", "21474", "218179", "2430216", "29459301", "386182478", "5444570631", "82157021556", "1321282006249", "22562446559034", "407722012334667", "7773697259015264", "155956589714240109", "3284208113313605286", "72434065593967762831", "1669777527837108720588", "40157785493048522566641" ]
[ "nonn", "easy" ]
28
5
2
[ "A001266", "A002464", "A242522", "A382644", "A384561" ]
null
Wolfdieter Lang, Jun 04 2025
2025-06-11T00:32:32
oeisdata/seq/A384/A384561.seq
43bce4d1438aba16f6847fd3776d6857
A384562
Number of integer partitions of n with origin-to-boundary graph-distance equal to 4.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "5", "12", "24", "42", "66", "98", "135", "181", "233", "298", "367", "452", "543", "651", "765", "899", "1039", "1202", "1371", "1564", "1765", "1993", "2227", "2491", "2763", "3066", "3377", "3722", "4075", "4465", "4863", "5299", "5745", "6232", "6727", "7266", "7815", "8409", "9013", "9665", "10327", "11040", "11763", "12538", "13325", "14167", "15019", "15929", "16851", "17832", "18825", "19880", "20947", "22079", "23223", "24433", "25657", "26950" ]
[ "nonn", "easy" ]
8
0
12
[ "A130130", "A325168", "A325188", "A382682", "A384562" ]
null
N Guru Sharan, Jun 03 2025
2025-06-14T19:23:46
oeisdata/seq/A384/A384562.seq
f0d7b979d5e75c7111200e1ecb101beb
A384563
Decimal expansion of Beta(1/4,1/4).
[ "7", "4", "1", "6", "2", "9", "8", "7", "0", "9", "2", "0", "5", "4", "8", "7", "6", "7", "3", "7", "3", "5", "4", "0", "1", "3", "8", "8", "7", "8", "1", "0", "4", "0", "1", "8", "4", "8", "7", "0", "3", "9", "5", "2", "9", "4", "0", "8", "7", "0", "6", "7", "6", "2", "2", "3", "4", "3", "7", "1", "2", "1", "8", "0", "2", "2", "4", "0", "8", "7", "1", "0", "7", "3", "5", "2", "4", "7", "9", "9", "1", "3", "4", "2", "9", "0", "8", "7", "4", "4", "6", "6", "0", "1", "4", "8", "7", "5", "8", "9" ]
[ "nonn", "cons" ]
8
1
1
[ "A000796", "A002161", "A068466", "A175576", "A197374", "A377731", "A384563" ]
null
Stefano Spezia, Jun 03 2025
2025-06-04T00:33:03
oeisdata/seq/A384/A384563.seq
b44ff144b4cd4f2753afc08c2d303e28
A384564
a(n) = the least natural number not already in the sequence whose prime signature is conjugate to that of n.
[ "1", "2", "3", "6", "5", "4", "7", "30", "10", "9", "11", "12", "13", "25", "49", "210", "17", "18", "19", "20", "121", "169", "23", "60", "14", "289", "42", "28", "29", "8", "31", "2310", "361", "529", "841", "36", "37", "961", "1369", "84", "41", "27", "43", "44", "45", "1681", "47", "420", "15", "50", "1849", "52", "53", "90", "2209", "126", "2809", "3481", "59", "24", "61", "3721", "63", "30030", "4489", "125", "67", "68", "5041", "343", "71", "180" ]
[ "nonn" ]
8
1
2
[ "A000040", "A000079", "A001248", "A002110", "A006881", "A384084", "A384564" ]
null
Hal M. Switkay, Jun 03 2025
2025-06-09T23:59:50
oeisdata/seq/A384/A384564.seq
6ba21d0762d77d131e9d11addf40701e
A384565
Consecutive states of the linear congruential pseudo-random number generator 5*s mod 2^35 when started at s=1.
[ "1", "5", "25", "125", "625", "3125", "15625", "78125", "390625", "1953125", "9765625", "48828125", "244140625", "1220703125", "6103515625", "30517578125", "15148937153", "7025209029", "766306777", "3831533885", "19157669425", "27068870389", "32265136841", "23886730733", "16354438561", "13052716069" ]
[ "nonn", "easy" ]
45
1
2
[ "A000351", "A384160", "A384316", "A384565" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-19T13:30:29
oeisdata/seq/A384/A384565.seq
bf5fc25ddcc6d008a3845016a4f7ce05
A384566
Area of the unique primitive Pythagorean triple whose inradius is A002378(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "0", "30", "546", "3900", "17220", "56730", "153510", "360696", "762120", "1482390", "2698410", "4652340", "7665996", "12156690", "18654510", "27821040", "40469520", "57586446", "80354610", "110177580", "148705620", "197863050", "259877046", "337307880", "433080600", "550518150", "693375930", "865877796", "1072753500", "1319277570", "1611309630" ]
[ "nonn", "easy" ]
7
0
2
[ "A002378", "A008514", "A237516", "A384288", "A384566" ]
null
Miguel-Ángel Pérez García-Ortega, Jun 03 2025
2025-06-14T18:03:16
oeisdata/seq/A384/A384566.seq
1424671d572f738306080af201744758
A384567
Consecutive states of the linear congruential pseudo-random number generator for the Atari ST when started at 1.
[ "1", "3141592622", "1588972055", "1279602700", "1481914909", "3913565466", "2610266515", "1903286488", "936717817", "3104230086", "4091513039", "469042788", "2999973781", "54420274", "4053162955", "3383133360", "3380310769", "456637022", "465319559", "936566716", "2283027469", "2613197898", "63902979" ]
[ "nonn", "easy" ]
12
1
2
[ "A096550", "A096561", "A384567" ]
null
Sean A. Irvine, Jun 03 2025
2025-06-22T18:19:51
oeisdata/seq/A384/A384567.seq
b0683ec8737b9317966a39156ce9a7d2
A384568
Consecutive states of the linear congruential pseudo-random number generator for the Hewlett Packard HP-11C when started at 1.
[ "1", "2592332694", "9081101567", "5395073420", "8055983053", "5086213266", "6273274859", "9159086632", "8802055385", "7839955918", "6661611031", "9575371524", "9742396197", "1322731850", "9762193283", "8428043296", "9881472689", "954880262", "481952815", "5008545148", "9092360061", "879428354" ]
[ "nonn", "easy" ]
14
1
2
[ "A384081", "A384221", "A384361", "A384416", "A384568" ]
null
Sean A. Irvine, Jun 03 2025
2025-06-05T11:10:55
oeisdata/seq/A384/A384568.seq
71ba69657925c70da699867a184d7914
A384569
Consecutive states of the linear congruential pseudo-random number generator (3141592221*s+1) mod 10^10 when started at s=1.
[ "1", "3141592222", "6189305063", "9316714924", "513006205", "2952731306", "1632770627", "460492568", "9457113529", "5820257910", "4269718111", "3380414532", "7486555573", "220997634", "7833805115", "114010416", "6018573937", "1992544078", "5444417239", "5920697820", "4203658221", "6836298842" ]
[ "nonn", "easy" ]
17
1
2
[ "A384569", "A384570", "A384571", "A384572", "A384573" ]
null
Sean A. Irvine, Jun 03 2025
2025-06-10T01:17:36
oeisdata/seq/A384/A384569.seq
c75b442c45cbab8beb68b6d5ed32cc75
A384570
Consecutive states of the linear congruential pseudo-random number generator (3141592621*s+1) mod 10^10 when started at s=1.
[ "1", "3141592622", "9463242263", "4176141324", "7731570205", "4771457306", "3946139027", "8663319768", "6512231929", "4386995910", "9213180111", "2661560932", "4313082773", "3419018034", "6680327115", "350218416", "1443908337", "6919581278", "3374549639", "5080613820", "7062622221", "4404231242" ]
[ "nonn", "easy" ]
10
1
2
[ "A384567", "A384569", "A384570", "A384571", "A384572", "A384573" ]
null
Sean A. Irvine, Jun 03 2025
2025-06-10T01:17:33
oeisdata/seq/A384/A384570.seq
e2894bbad4d9d8afb490ea220dc4b5d3
A384571
Consecutive states of the linear congruential pseudo-random number generator (4160984121*s+1) mod 10^10 when started at s=1.
[ "1", "4160984122", "9375126763", "3205130324", "3899585205", "6491529806", "3764210527", "948041768", "2692765929", "2138813410", "6791862611", "6384599932", "5989679773", "5327884534", "4495484615", "9214798416", "7191952337", "3245840778", "6552286139", "627398820", "7554137221", "4436067742" ]
[ "nonn", "easy" ]
12
1
2
[ "A384569", "A384570", "A384571", "A384572", "A384573" ]
null
Sean A. Irvine, Jun 03 2025
2025-06-10T01:17:29
oeisdata/seq/A384/A384571.seq
7141d4722710deda51f15e86b78e8fdc
A384572
Consecutive states of the linear congruential pseudo-random number generator (4219755981*s+1) mod 10^10 when started at s=1.
[ "1", "4219755982", "3405028343", "5848769484", "1599283805", "1465187706", "5681169587", "3818549848", "9844640889", "2154907110", "5921924911", "2225142692", "3145440853", "2328491794", "4440919915", "2463261616", "6883725297", "3576751358", "5470372199", "5026372220", "8077247821", "2683967402" ]
[ "nonn", "easy" ]
9
1
2
[ "A384569", "A384570", "A384571", "A384572", "A384573" ]
null
Sean A. Irvine, Jun 03 2025
2025-06-09T15:44:40
oeisdata/seq/A384/A384572.seq
b33590f9065a1745e4cdddfc1cdafbbc
A384573
Consecutive states of the linear congruential pseudo-random number generator (314159269*s+1) mod (2^31-1) when started at s=1.
[ "1", "314159270", "299123215", "950770264", "1117344423", "1477591749", "2028719692", "208456624", "1646893945", "1250010741", "930351879", "59486032", "585353216", "594185598", "909127421", "1411292185", "1600856677", "715462774", "2092759286", "419110614", "391876017", "1505740177", "894972229", "6421373" ]
[ "nonn", "easy" ]
9
1
2
[ "A384569", "A384570", "A384571", "A384572", "A384573" ]
null
Sean A. Irvine, Jun 03 2025
2025-06-05T04:50:40
oeisdata/seq/A384/A384573.seq
62baac31a85187790bc743893a398c15
A384574
G.f. A(x) satisfies A(x) = 1 + x * A(x*A(x)^4).
[ "1", "1", "1", "5", "23", "155", "1236", "11286", "116333", "1329433", "16630343", "225606826", "3294976854", "51496560764", "856858516809", "15112857079891", "281479726839851", "5517842789917283", "113510479973132860", "2444032094604379100", "54948814775692303024", "1287258966133883349701" ]
[ "nonn" ]
10
0
4
[ "A087949", "A143500", "A143501", "A384574", "A384575", "A384578", "A384582" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:53:02
oeisdata/seq/A384/A384574.seq
51eae22f83b990d18e79d02a14adfb41