sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-14 02:38:35
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A384374 | Expansion of e.g.f. exp(x)*(exp(x) - 1)*(exp(x) - x - 1)^2. | [
"0",
"0",
"0",
"0",
"0",
"30",
"390",
"3080",
"19236",
"104874",
"524250",
"2471172",
"11176968",
"49065302",
"210698670",
"890007456",
"3712887756",
"15342622434",
"62938446690",
"256735466012",
"1042705518960",
"4220535078990",
"17038468898550",
"68644258099320",
"276111986410740"
]
| [
"nonn",
"easy"
]
| 7 | 0 | 6 | [
"A000478",
"A384374"
]
| null | Enrique Navarrete, May 27 2025 | 2025-05-28T01:09:25 | oeisdata/seq/A384/A384374.seq | c2df85534e271333fe5514c789e5cd7a |
A384375 | Consecutive internal states of the linear congruential pseudo-random number generator 950706376*s mod (2^31-1) when started at s=1. | [
"1",
"950706376",
"129027171",
"1728259899",
"365181143",
"1966843080",
"1045174992",
"636176783",
"1602900997",
"640853092",
"429916489",
"1671481929",
"1285607481",
"1066192246",
"48796904",
"1176434418",
"776417870",
"861463458",
"1543924916",
"557508687",
"1650650964",
"741730640",
"1050856373"
]
| [
"nonn",
"easy"
]
| 23 | 1 | 2 | [
"A096550",
"A384375",
"A384397",
"A384398",
"A384399",
"A384400",
"A384401",
"A384402"
]
| null | Sean A. Irvine, May 28 2025 | 2025-05-29T06:14:06 | oeisdata/seq/A384/A384375.seq | 158374276d84ebab01ab0905d603b3a0 |
A384376 | Irregular triangle read by rows: T(n,k) is the number of connected induced k-vertex subgraphs of the 1-skeleton of the n-th Johnson solid, up to symmetries of that solid; 1 <= n <= 92, 1 <= k <= A242733(n). | [
"2",
"2",
"3",
"2",
"1",
"2",
"2",
"3",
"3",
"2",
"1",
"2",
"4",
"6",
"10",
"14",
"15",
"8",
"2",
"1",
"2",
"4",
"6",
"13",
"21",
"37",
"47",
"51",
"28",
"12",
"2",
"1",
"2",
"4",
"6",
"13",
"25",
"49",
"86",
"136",
"177",
"174",
"118",
"47",
"14",
"2",
"1",
"3",
"5",
"9",
"18",
"39",
"79",
"168",
"335",
"646",
"1147",
"1843",
"2548",
"2908",
"2420",
"1300",
"473",
"121",
"24",
"3",
"1",
"3",
"4",
"6",
"7",
"6",
"3",
"1"
]
| [
"nonn",
"tabf",
"fini"
]
| 9 | 1 | 1 | [
"A242733",
"A384376",
"A384377",
"A384378",
"A384380"
]
| null | Pontus von Brömssen and Peter Kagey, May 28 2025 | 2025-05-30T10:06:21 | oeisdata/seq/A384/A384376.seq | 8de8d60b0520bc4b9fe31070c64b5329 |
A384377 | Number of connected induced subgraphs of the 1-skeleton of the n-th Johnson solid, up to symmetries of that solid. | [
"10",
"13",
"62",
"224",
"854",
"14090",
"30",
"72",
"157",
"81",
"196",
"10",
"20",
"31",
"79",
"183",
"86",
"2196",
"32069",
"489168",
"9965938",
"3049",
"49396",
"843450",
"17456717",
"36",
"261",
"2117",
"2019",
"18717",
"18302",
"727214",
"740170",
"7545797",
"9124",
"9139",
"314965",
"11097938",
"11101335"
]
| [
"nonn",
"fini",
"more"
]
| 6 | 1 | 1 | [
"A384376",
"A384377",
"A384379",
"A384381"
]
| null | Pontus von Brömssen and Peter Kagey, May 28 2025 | 2025-06-01T16:38:30 | oeisdata/seq/A384/A384377.seq | 25bcf0f4519cec17afd0705abd1e530a |
A384378 | Irregular triangle read by rows: T(n,k) is the number of connected subsets of k edges (or polysticks) of the n-th Johnson solid, up to symmetries of that solid; 1 <= n <= 92, 1 <= k <= A242732(n). | [
"2",
"4",
"7",
"12",
"10",
"6",
"2",
"1",
"2",
"4",
"9",
"17",
"28",
"25",
"16",
"7",
"2",
"1",
"4",
"7",
"20",
"47",
"123",
"274",
"531",
"779",
"758",
"504",
"241",
"87",
"22",
"4",
"1",
"4",
"7",
"20",
"51",
"144",
"382",
"990",
"2332",
"4873",
"8546",
"11776",
"11733",
"8529",
"4673",
"1957",
"639",
"156",
"31",
"4",
"1"
]
| [
"nonn",
"tabf",
"fini"
]
| 8 | 1 | 1 | [
"A242732",
"A384376",
"A384378",
"A384379",
"A384380"
]
| null | Pontus von Brömssen and Peter Kagey, May 28 2025 | 2025-06-01T16:38:26 | oeisdata/seq/A384/A384378.seq | f8d0e9ef5eb1b5308cecccf1730ec996 |
A384379 | Number of connected subsets of edges (or edge-induced subgraphs, or polysticks) of the n-th Johnson solid, up to symmetries of that solid. | [
"44",
"111",
"3402",
"56848",
"1000431"
]
| [
"nonn",
"fini",
"more"
]
| 6 | 1 | 1 | [
"A343210",
"A384377",
"A384378",
"A384379",
"A384381"
]
| null | Pontus von Brömssen and Peter Kagey, May 28 2025 | 2025-06-01T16:38:22 | oeisdata/seq/A384/A384379.seq | 0c7804c7b11ba6f84b062f411310ef0a |
A384380 | Irregular triangle read by rows: T(n,k) is the number of connected subsets of k faces (or polyforms) of the n-th Johnson solid, up to symmetries of that solid; 1 <= n <= 92, 1 <= k <= A242731(n). | [
"2",
"2",
"3",
"2",
"1",
"2",
"2",
"3",
"3",
"2",
"1",
"4",
"4",
"9",
"14",
"14",
"9",
"4",
"1",
"4",
"4",
"12",
"20",
"32",
"30",
"23",
"11",
"4",
"1",
"4",
"4",
"13",
"29",
"54",
"75",
"75",
"55",
"31",
"12",
"4",
"1",
"5",
"5",
"17",
"43",
"118",
"285",
"595",
"992",
"1320",
"1348",
"1045",
"603",
"262",
"86",
"22",
"5",
"1",
"3",
"4",
"6",
"7",
"6",
"3",
"1",
"3",
"4",
"7",
"12",
"17",
"16",
"9",
"3",
"1"
]
| [
"nonn",
"tabf",
"fini"
]
| 7 | 1 | 1 | [
"A242731",
"A384376",
"A384378",
"A384380",
"A384381"
]
| null | Pontus von Brömssen and Peter Kagey, May 28 2025 | 2025-06-01T16:38:33 | oeisdata/seq/A384/A384380.seq | 48e1ca48a0337d19d151a055f7d596ff |
A384381 | Number of connected subsets of faces (or polyforms) of the n-th Johnson solid, up to symmetries of that solid. | [
"10",
"13",
"59",
"141",
"357",
"6752",
"30",
"72",
"157",
"442",
"1950",
"10",
"40",
"45",
"180",
"701",
"1035",
"1646",
"14793",
"153721",
"3920545",
"42372",
"1495651",
"59265752"
]
| [
"nonn",
"fini",
"more"
]
| 5 | 1 | 1 | [
"A384377",
"A384379",
"A384380",
"A384381"
]
| null | Pontus von Brömssen and Peter Kagey, May 28 2025 | 2025-06-01T16:38:18 | oeisdata/seq/A384/A384381.seq | 46fd6e8efbd2cde269c894f08c087c03 |
A384382 | Number of polynomials with a shortest addition-multiplication chain of length n, starting with 1 and x. | [
"2",
"4",
"14",
"62",
"350",
"2517",
"22918",
"259325"
]
| [
"nonn",
"more"
]
| 8 | 0 | 1 | [
"A382928",
"A383002",
"A383331",
"A384382",
"A384383",
"A384482"
]
| null | Pontus von Brömssen, Jun 01 2025 | 2025-06-09T10:38:43 | oeisdata/seq/A384/A384382.seq | fd68140a8bc55341a557f6a8e873b987 |
A384383 | Number of polynomials with a shortest addition-multiplication-composition chain of length n, starting with 1 and x. | [
"2",
"4",
"14",
"73",
"586",
"7250"
]
| [
"nonn",
"more"
]
| 7 | 0 | 1 | [
"A382928",
"A383331",
"A384382",
"A384383",
"A384386",
"A384482"
]
| null | Pontus von Brömssen, Jun 01 2025 | 2025-06-09T10:38:35 | oeisdata/seq/A384/A384383.seq | 41f3ec2dedaa9a68e9ba280c17190189 |
A384384 | Length of shortest addition-multiplication-composition chain for n, starting with 1 and x. | [
"0",
"1",
"2",
"2",
"3",
"3",
"4",
"3",
"3",
"4",
"4",
"4",
"5",
"5",
"4",
"3",
"4",
"4",
"5",
"4",
"5",
"5",
"6",
"4",
"4",
"5",
"4",
"5",
"5",
"5",
"5",
"4",
"5",
"5",
"5",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"5",
"5",
"6",
"5",
"5",
"5",
"6",
"6",
"6",
"5",
"6",
"5",
"6",
"6",
"6",
"5",
"6",
"6",
"6",
"4",
"5",
"5",
"6",
"5",
"6",
"6",
"6",
"5",
"6",
"6",
"5",
"6",
"6",
"6",
"6",
"5",
"4",
"5",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"5",
"5",
"6",
"6",
"6",
"7"
]
| [
"nonn"
]
| 7 | 1 | 3 | [
"A230697",
"A384383",
"A384384",
"A384385",
"A384386",
"A384483"
]
| null | Pontus von Brömssen, Jun 01 2025 | 2025-06-09T10:38:27 | oeisdata/seq/A384/A384384.seq | c001881f60f6628c96cc3999b284b1ba |
A384385 | Smallest number with shortest addition-multiplication-composition chain of length n, starting with 1 and x, i.e., smallest k such that A384384(k) = n. | [
"1",
"2",
"3",
"5",
"7",
"13",
"23",
"95"
]
| [
"nonn",
"more"
]
| 7 | 0 | 2 | [
"A383001",
"A384383",
"A384384",
"A384385",
"A384386",
"A384484"
]
| null | Pontus von Brömssen, Jun 01 2025 | 2025-06-09T10:38:32 | oeisdata/seq/A384/A384385.seq | c7fa87642e1c517a331b2c1336db0f15 |
A384386 | Number of integers with a shortest addition-multiplication-composition chain of length n, starting with 1 and x, i.e., number of integers k with A384384(k) = n. | [
"1",
"1",
"2",
"5",
"16",
"82",
"907"
]
| [
"nonn",
"more"
]
| 6 | 0 | 3 | [
"A383002",
"A384383",
"A384384",
"A384385",
"A384386",
"A384485"
]
| null | Pontus von Brömssen, Jun 01 2025 | 2025-06-09T10:38:20 | oeisdata/seq/A384/A384386.seq | 4296381315590622a95caae72ec7ad3d |
A384387 | Consecutive states of the linear congruential pseudo-random number generator (13493037709*s+7261067085) mod 2^35 when started at s=1. | [
"1",
"20754104794",
"34326110303",
"33058783648",
"5709053037",
"32799031638",
"11541606315",
"32442345084",
"2725994905",
"16337875602",
"5290419639",
"32195142424",
"16205355909",
"13352325518",
"14174310019",
"8003654516",
"31661086257",
"1566661194",
"21726656015",
"17779217296",
"34005826973"
]
| [
"nonn",
"easy"
]
| 71 | 1 | 2 | [
"A384217",
"A384387"
]
| null | Sean A. Irvine, May 29 2025 | 2025-05-30T03:44:44 | oeisdata/seq/A384/A384387.seq | af7badcb0755d1f9bf9ff09062076cae |
A384388 | Consecutive internal states of the linear congruential pseudo-random number generator (5^11*s+293183133) mod 2^30 when started at s=1. | [
"1",
"342011258",
"674237679",
"120642288",
"386908109",
"35940502",
"86383643",
"595352556",
"44556633",
"381355634",
"755657479",
"1018258856",
"1413285",
"36537102",
"330073523",
"312726564",
"994425265",
"820746858",
"231323679",
"317080416",
"206637181",
"363448454",
"469306955",
"780537692",
"46655753"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 2 | [
"A381318",
"A384388"
]
| null | Sean A. Irvine, May 27 2025 | 2025-05-28T09:18:19 | oeisdata/seq/A384/A384388.seq | c0180c5302f03069ee9c9fa13dfeb664 |
A384389 | Number of proper ways to choose disjoint strict integer partitions of each prime index of n. | [
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"3",
"0",
"0",
"0",
"4",
"0",
"5",
"0",
"1",
"1",
"7",
"0",
"2",
"1",
"0",
"0",
"9",
"0",
"11",
"0",
"1",
"2",
"1",
"0",
"14",
"2",
"1",
"0",
"17",
"0",
"21",
"0",
"0",
"4",
"26",
"0",
"2",
"0",
"2",
"0",
"31",
"0",
"2",
"0",
"3",
"4",
"37",
"0",
"45",
"6",
"0",
"0",
"3",
"0",
"53",
"0",
"4",
"0",
"63",
"0",
"75",
"7",
"0",
"0",
"2",
"0",
"88",
"0",
"0",
"9"
]
| [
"nonn"
]
| 13 | 1 | 11 | [
"A000009",
"A000041",
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A112798",
"A179009",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A351293",
"A351294",
"A351295",
"A357982",
"A381454",
"A382525",
"A382912",
"A382913",
"A383533",
"A383706",
"A383708",
"A383710",
"A383711",
"A384005",
"A384321",
"A384322",
"A384347",
"A384349",
"A384389",
"A384390",
"A384393",
"A384394",
"A384396"
]
| null | Gus Wiseman, Jun 01 2025 | 2025-06-03T08:43:51 | oeisdata/seq/A384/A384389.seq | 46a6c14c0472206193f823769f205ffe |
A384390 | Heinz numbers of integer partitions with a unique proper way to choose disjoint strict partitions of each part. | [
"5",
"7",
"21",
"22",
"26",
"33",
"35",
"39",
"102",
"114",
"130",
"154",
"165",
"170",
"190",
"195",
"231",
"238",
"255",
"285"
]
| [
"nonn"
]
| 9 | 1 | 1 | [
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A098859",
"A112798",
"A122111",
"A130091",
"A179009",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A317142",
"A351201",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382912",
"A382913",
"A383533",
"A383707",
"A383708",
"A383710",
"A383711",
"A384005",
"A384317",
"A384319",
"A384320",
"A384321",
"A384322",
"A384323",
"A384347",
"A384349",
"A384389",
"A384390",
"A384393"
]
| null | Gus Wiseman, Jun 02 2025 | 2025-06-03T08:43:47 | oeisdata/seq/A384/A384390.seq | f6c39881659599b8bc27bf3c895e76ec |
A384391 | Number of subsets of {1..n} containing n and some element that is a sum of distinct non-elements. | [
"0",
"0",
"1",
"3",
"9",
"20",
"48",
"102",
"219",
"454",
"945",
"1920",
"3925",
"7921",
"16008"
]
| [
"nonn",
"more"
]
| 4 | 0 | 4 | [
"A048767",
"A048768",
"A179009",
"A179822",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A317141",
"A317142",
"A326080",
"A326083",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A383706",
"A383707",
"A383708",
"A383710",
"A384317",
"A384318",
"A384319",
"A384320",
"A384321",
"A384350",
"A384391"
]
| null | Gus Wiseman, Jun 06 2025 | 2025-06-06T08:33:32 | oeisdata/seq/A384/A384391.seq | a76a319ad91b2a1c4547d049696b80e8 |
A384392 | Number of integer partitions of n whose distinct parts are maximally refined. | [
"1",
"1",
"2",
"2",
"4",
"6",
"7",
"10",
"14",
"20",
"24",
"33",
"41",
"55",
"70",
"88",
"110",
"140",
"171",
"214",
"265",
"324",
"397",
"485",
"588",
"711",
"861",
"1032",
"1241",
"1486",
"1773"
]
| [
"nonn",
"more"
]
| 12 | 0 | 3 | [
"A048767",
"A048768",
"A179009",
"A179822",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A317142",
"A326080",
"A326083",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A383706",
"A383707",
"A383708",
"A383710",
"A384317",
"A384318",
"A384319",
"A384320",
"A384321",
"A384350",
"A384391",
"A384392"
]
| null | Gus Wiseman, Jun 07 2025 | 2025-06-10T16:26:24 | oeisdata/seq/A384/A384392.seq | 311c6359a4283e84854d2a0a9d88471d |
A384393 | Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part. | [
"11",
"13",
"17",
"19",
"23",
"25",
"29",
"31",
"34",
"37",
"38",
"41",
"43",
"46",
"47",
"49",
"51",
"53",
"55",
"57",
"58",
"59",
"61",
"62",
"65",
"67",
"69",
"71",
"73",
"74",
"77",
"79",
"82",
"83",
"85",
"86",
"87",
"89",
"91",
"93",
"94",
"95",
"97",
"101",
"103",
"106",
"107",
"109",
"111",
"113",
"115",
"118",
"119",
"121",
"122",
"123",
"127",
"129",
"131",
"133",
"134"
]
| [
"nonn"
]
| 8 | 1 | 1 | [
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A112798",
"A179009",
"A217605",
"A239455",
"A279375",
"A279790",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382525",
"A382912",
"A382913",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A384317",
"A384318",
"A384319",
"A384320",
"A384321",
"A384322",
"A384323",
"A384348",
"A384349",
"A384389",
"A384390",
"A384393",
"A384395"
]
| null | Gus Wiseman, Jun 02 2025 | 2025-06-03T08:43:43 | oeisdata/seq/A384/A384393.seq | d0d8545009a93292bbd2edc25f747fe4 |
A384394 | Number of proper ways to choose disjoint strict integer partitions, one of each conjugate prime index of n. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0"
]
| [
"nonn"
]
| 7 | 1 | 27 | [
"A000009",
"A000041",
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A112798",
"A122111",
"A217605",
"A239455",
"A279790",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382525",
"A382912",
"A382913",
"A383533",
"A383706",
"A383708",
"A383710",
"A383711",
"A384005",
"A384321",
"A384322",
"A384347",
"A384349",
"A384389",
"A384390",
"A384393",
"A384394",
"A384396"
]
| null | Gus Wiseman, Jun 03 2025 | 2025-06-04T10:25:13 | oeisdata/seq/A384/A384394.seq | 1c8bc383c56e3f8991364ca774c5364a |
A384395 | Number of integer partitions of n with more than one proper way to choose disjoint strict partitions of each part. | [
"0",
"0",
"0",
"0",
"0",
"1",
"2",
"1",
"4",
"5",
"8",
"8",
"12",
"17",
"22",
"29",
"31",
"40",
"50",
"65",
"77",
"101",
"112",
"135",
"162",
"201"
]
| [
"nonn",
"more"
]
| 5 | 0 | 7 | [
"A000009",
"A000041",
"A048767",
"A048768",
"A098859",
"A179009",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A317142",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382525",
"A382912",
"A382913",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384005",
"A384317",
"A384318",
"A384319",
"A384321",
"A384322",
"A384323",
"A384347",
"A384348",
"A384349",
"A384390",
"A384393",
"A384395"
]
| null | Gus Wiseman, May 30 2025 | 2025-05-30T23:12:13 | oeisdata/seq/A384/A384395.seq | 09cb1fe72cb9ed3193b8816c760a4d29 |
A384396 | Position of first appearance of n in A384389 (proper choices of disjoint strict partitions of each prime index). | [
"1",
"5",
"11",
"13",
"17",
"19",
"62",
"23",
"111",
"29",
"123",
"31",
"129",
"217",
"37",
"141",
"106",
"41",
"159",
"391",
"118",
"43"
]
| [
"nonn",
"more"
]
| 5 | 0 | 2 | [
"A000009",
"A000041",
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A112798",
"A179009",
"A217605",
"A239455",
"A279790",
"A351293",
"A351294",
"A351295",
"A357982",
"A381454",
"A382525",
"A382912",
"A382913",
"A383706",
"A383708",
"A383710",
"A384321",
"A384322",
"A384347",
"A384349",
"A384389",
"A384390",
"A384393",
"A384396"
]
| null | Gus Wiseman, Jun 03 2025 | 2025-06-05T09:54:25 | oeisdata/seq/A384/A384396.seq | ce75efae86066738c872ed437b8bf3ea |
A384397 | Consecutive states of the linear congruential pseudo-random number generator 45742*s mod (2^31-909) when started at s=1. | [
"1",
"45742",
"2092330564",
"521429475",
"1283746116",
"346822856",
"916086159",
"1929881610",
"71652547",
"472145160",
"1777485336",
"2037740772",
"997589268",
"2015058584",
"703108709",
"897067814",
"1723253915",
"1726644935",
"72441828",
"68230099",
"688768691",
"2085682592",
"1372443189",
"933442051"
]
| [
"nonn",
"easy"
]
| 13 | 1 | 2 | [
"A096550",
"A096561",
"A384397",
"A384398",
"A384399",
"A384400",
"A384401",
"A384402"
]
| null | Sean A. Irvine, May 27 2025 | 2025-05-29T06:13:24 | oeisdata/seq/A384/A384397.seq | ce73722ae5f842ad6138cc7c1c08c9e9 |
A384398 | Consecutive states of the linear congruential pseudo-random number generator 42024*s mod (2^31-847) when started at s=1. | [
"1",
"42024",
"1766016576",
"222470065",
"1089378807",
"16633650",
"1080597275",
"348574654",
"521074075",
"1882288804",
"923207262",
"437695422",
"522223563",
"796268093",
"293335050",
"560863460",
"1102302065",
"1937961990",
"1924405437",
"1306764430",
"38219148",
"1951823205",
"312782725",
"1786493280"
]
| [
"nonn",
"easy"
]
| 15 | 1 | 2 | [
"A096550",
"A096561",
"A384397",
"A384398",
"A384399",
"A384400",
"A384401",
"A384402"
]
| null | Sean A. Irvine, May 27 2025 | 2025-05-29T06:16:00 | oeisdata/seq/A384/A384398.seq | 66f3acec717aa734538e8b09f8ac9c60 |
A384399 | Consecutive states of the linear congruential pseudo-random number generator 41546*s mod (2^31-837) when started at s=1. | [
"1",
"41546",
"1726070116",
"415531613",
"62076069",
"2032989474",
"2081730174",
"1986561601",
"1628882794",
"2086219292",
"1660453472",
"1609609959",
"240622074",
"352201199",
"1750622311",
"406689858",
"2089566331",
"1130153051",
"774477142",
"692384319",
"266663829",
"2099100496",
"2099734917"
]
| [
"nonn",
"easy"
]
| 13 | 1 | 2 | [
"A096550",
"A096561",
"A384397",
"A384398",
"A384399",
"A384400",
"A384401",
"A384402"
]
| null | Sean A. Irvine, May 27 2025 | 2025-05-30T03:45:16 | oeisdata/seq/A384/A384399.seq | df3954fdea52f6945af58fec7b5cdf66 |
A384400 | Consecutive states of the linear congruential pseudo-random number generator 40692*s mod (2^31-249) when started at s=1. | [
"1",
"40692",
"1655838864",
"2103410263",
"1872071452",
"652912057",
"1780294415",
"535353314",
"525453832",
"1422611300",
"1336516156",
"498340277",
"1924298326",
"2007787254",
"2020508212",
"2118231989",
"1554910725",
"1123836963",
"514716691",
"445999725",
"238604751",
"532080813",
"504813878"
]
| [
"nonn",
"easy"
]
| 16 | 1 | 2 | [
"A096550",
"A096561",
"A384397",
"A384398",
"A384399",
"A384400",
"A384401",
"A384402"
]
| null | Sean A. Irvine, May 27 2025 | 2025-06-19T22:52:48 | oeisdata/seq/A384/A384400.seq | e9cebb161e280a81fbf5829c9518ef91 |
A384401 | Consecutive states of the linear congruential pseudo-random number generator 40014*s mod (2^31-85) when started at s=1. | [
"1",
"40014",
"1601120196",
"1346387765",
"439883729",
"732249858",
"2127568003",
"1962667596",
"707287434",
"1860990862",
"1695805043",
"1904850491",
"53445315",
"1814689225",
"112933431",
"612891482",
"2124954851",
"479214492",
"407948861",
"643161691",
"28884682",
"445508654",
"322224693",
"7553450"
]
| [
"nonn",
"easy"
]
| 13 | 1 | 2 | [
"A096550",
"A096561",
"A384397",
"A384398",
"A384399",
"A384400",
"A384401",
"A384402"
]
| null | Sean A. Irvine, May 27 2025 | 2025-05-30T11:26:24 | oeisdata/seq/A384/A384401.seq | c78e3b5609d5809594c36f92c201ba05 |
A384402 | Consecutive states of the linear congruential pseudo-random number generator 39373*s mod (2^31-1) when started at s=1. | [
"1",
"39373",
"1550233129",
"1548773083",
"2044440394",
"1622092461",
"482805173",
"2110316932",
"1218777559",
"1406738292",
"1756031139",
"1978020682",
"2113853931",
"894602131",
"142925769",
"1009147697",
"429837187",
"1808425391",
"1165119911",
"1868072236",
"293238278",
"798633422",
"1138165032"
]
| [
"nonn",
"easy"
]
| 13 | 1 | 2 | [
"A096550",
"A096561",
"A384397",
"A384398",
"A384399",
"A384400",
"A384401",
"A384402"
]
| null | Sean A. Irvine, May 27 2025 | 2025-05-30T11:26:28 | oeisdata/seq/A384/A384402.seq | a63461a3c44e5e26736b8a9806c53b1a |
A384403 | a(n) is the smallest number with n digits, all of which are prime, and n prime factors, counted with multiplicity, or -1 if there is no such number. | [
"2",
"22",
"222",
"2223",
"22232",
"222222",
"2222325",
"22222272",
"222225552",
"2222223255",
"22222335232",
"222222327525",
"2222222372352",
"22222222575552",
"222222223327232",
"2222222225252352",
"22222222223327232",
"222222222272535552",
"2222222222225252352",
"22222222222327775232",
"222222222222737375232",
"2222222222227572375552"
]
| [
"nonn",
"base"
]
| 8 | 1 | 1 | null | null | Robert Israel, May 27 2025 | 2025-06-02T12:59:18 | oeisdata/seq/A384/A384403.seq | e3bce3eea2812dc822c8a156a597ffba |
A384404 | Consecutive states of the linear congruential pseudo-random number generator for Turbo Pascal when started at 1. | [
"1",
"134775814",
"3698175007",
"870078620",
"1172187917",
"2884733762",
"1368768587",
"694906232",
"1598751577",
"1828254910",
"352239543",
"2039224980",
"303092965",
"3611442298",
"256513635",
"1259699184",
"3939707825",
"1580146294",
"3327160399",
"1408429452",
"2996491197",
"3625686706",
"3083712891"
]
| [
"nonn",
"easy"
]
| 30 | 1 | 2 | [
"A152960",
"A383940",
"A384126",
"A384150",
"A384194",
"A384236",
"A384339",
"A384404",
"A384429",
"A384432"
]
| null | Sean A. Irvine, May 30 2025 | 2025-06-20T17:43:23 | oeisdata/seq/A384/A384404.seq | 2ac41054219d3ee45da354b52b1697bf |
A384405 | Consecutive internal states of the linear congruential pseudo-random number generator 69621 * s mod (2^31-1) when started at s=1. | [
"1",
"69621",
"552116347",
"1082396834",
"201323037",
"1832878655",
"1219051368",
"874078441",
"971035822",
"1699755902",
"1619285207",
"1953863635",
"1883480414",
"143449980",
"1332099030",
"837788288",
"2002546328",
"344571154",
"1995975644",
"300997201",
"580703395",
"623924873",
"1121855264"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 2 | [
"A096550",
"A384404",
"A384405"
]
| null | Sean A. Irvine, May 27 2025 | 2025-06-04T10:53:45 | oeisdata/seq/A384/A384405.seq | abe40c8e0706334568170f7b49e4c76c |
A384406 | Consecutive internal states of the IMSL pseudo-random number generator RNUN when started with ISEED=1 and RNOPT=3. | [
"1",
"397204094",
"2083249653",
"858616159",
"557054349",
"1979126465",
"2081507258",
"1166038895",
"1141799280",
"106931857",
"142950581",
"1759473232",
"1125003378",
"1832650327",
"144277780",
"2055193084",
"638219178",
"585429359",
"1481612600",
"2097586569",
"486421192",
"1477976737",
"886403653"
]
| [
"nonn",
"easy"
]
| 14 | 1 | 2 | [
"A096550",
"A384406"
]
| null | Sean A. Irvine, May 27 2025 | 2025-05-30T11:26:54 | oeisdata/seq/A384/A384406.seq | 7947eb02515d78d2f3413a2acbe10950 |
A384407 | Expansion of Product_{k>=1} 1/(1 - k^2 * x)^((1/3) * (1/2)^(k+1)). | [
"1",
"1",
"13",
"533",
"46091",
"6868835",
"1568192799",
"508404298647",
"222017327728032",
"125619393196237384",
"89384894988513559768",
"78116626967146591776664",
"82253687701869747574913672",
"102704417752375981385023218632",
"150045690407598038822943364871144",
"253563964213823585133287012876023080"
]
| [
"nonn"
]
| 13 | 0 | 3 | [
"A000670",
"A227044",
"A384407",
"A384409"
]
| null | Seiichi Manyama, May 28 2025 | 2025-05-29T07:46:08 | oeisdata/seq/A384/A384407.seq | f261db7a41fa89653ed7317592eeb836 |
A384408 | Expansion of Product_{k>=1} 1/(1 - k^3 * x)^((1/2)^(k+1)). | [
"1",
"13",
"2426",
"2393226",
"7056543721",
"46153703519501",
"564874416706639304",
"11596724623199364432312",
"369937054535706501459633546",
"17326810763609633232550088712162",
"1140582994940898154002780391375267884",
"101920298764725526200442366857326292990348"
]
| [
"nonn"
]
| 11 | 0 | 2 | [
"A084784",
"A249941",
"A384408",
"A384410"
]
| null | Seiichi Manyama, May 28 2025 | 2025-05-29T07:57:35 | oeisdata/seq/A384/A384408.seq | f99d54df2609faea2f073cde58a185f4 |
A384409 | Expansion of Product_{k>=1} 1/(1 - k^4 * x)^((1/3) * (1/2)^(k+1)). | [
"1",
"25",
"91285",
"3123562205",
"443053422073715",
"178523879060427556091",
"164353348187741234196744375",
"299888034255064866129187000267695",
"981055599661644496521237670996742113560",
"5340738663490095110375815302474169583702354680"
]
| [
"nonn"
]
| 11 | 0 | 2 | [
"A000670",
"A384407",
"A384409"
]
| null | Seiichi Manyama, May 28 2025 | 2025-05-28T09:19:02 | oeisdata/seq/A384/A384409.seq | bd6615ca9527d04a5a9a6453ad0d6def |
A384410 | Expansion of Product_{k>=1} 1/(1 - k^5 * x)^((1/2)^(k+1)). | [
"1",
"541",
"51270122",
"76788748015146",
"669464791102102157065",
"21339839181227035325658510557",
"1900606380926543510490023912037413624",
"396633271551441702901523258702004560154006264",
"171270169295129060094464591065561066259566766138488074"
]
| [
"nonn"
]
| 11 | 0 | 2 | [
"A000670",
"A084784",
"A384408",
"A384410"
]
| null | Seiichi Manyama, May 28 2025 | 2025-05-28T09:18:59 | oeisdata/seq/A384/A384410.seq | b3512afabd03d2932edf6ef8fa9f9226 |
A384411 | Pairs (k, m) such that k = sigma(m) - m and m = sigma(2*k) - 2*k. | [
"26",
"46",
"296",
"586"
]
| [
"nonn",
"hard",
"more"
]
| 35 | 1 | 1 | [
"A000203",
"A001065",
"A063990",
"A259180",
"A346878",
"A383483",
"A384411"
]
| null | S. I. Dimitrov, Jun 01 2025 | 2025-06-20T08:14:22 | oeisdata/seq/A384/A384411.seq | ca3b7013c9e7ff1362e93c3acfb8e282 |
A384412 | Expansion of Product_{k>=1} 1/(1 - k^2 * x)^((1/30) * (2/3)^k). | [
"1",
"1",
"37",
"4477",
"1139503",
"498101431",
"332955009307",
"315774077663395",
"403232260150593946",
"667010006578379121074",
"1387375789650073950228650",
"3544016332332206162590402778",
"10907098996548018595779254922854",
"39804369748279182675138824291484662",
"169958609977149735126105997027662792638"
]
| [
"nonn"
]
| 13 | 0 | 3 | [
"A004123",
"A050351",
"A247082",
"A384412",
"A384414"
]
| null | Seiichi Manyama, May 28 2025 | 2025-05-28T09:19:06 | oeisdata/seq/A384/A384412.seq | b16b545e31e3238fa2ded3c26abd37aa |
A384413 | Expansion of Product_{k>=1} 1/(1 - k^3 * x)^((1/6) * (2/3)^k). | [
"1",
"37",
"33987",
"169103895",
"2499834885228",
"81779253109721484",
"5002571587280667349252",
"513188808423273125116834036",
"81795428604490137664191461936826",
"19140816569244304756404266108586220066",
"6295058477497449841660364475294196843864030",
"2810342651288539045376339873565157506716615522598"
]
| [
"nonn"
]
| 10 | 0 | 2 | [
"A004123",
"A090351",
"A384413"
]
| null | Seiichi Manyama, May 28 2025 | 2025-05-28T09:19:13 | oeisdata/seq/A384/A384413.seq | ae7fd9ec8e93ecbca09e06ca4125c53f |
A384414 | Expansion of Product_{k>=1} 1/(1 - k^4 * x)^((1/30) * (2/3)^k). | [
"1",
"73",
"2271421",
"664978095445",
"805854449283423655",
"2773445081734579264589407",
"21807207369084946567603587345091",
"339838389273170021807379637478064625867",
"9495034758014772381226851471008240873743234210",
"441461703234194795490537796224906335240071042475017490"
]
| [
"nonn"
]
| 14 | 0 | 2 | [
"A004123",
"A384412",
"A384414"
]
| null | Seiichi Manyama, May 28 2025 | 2025-05-28T09:19:10 | oeisdata/seq/A384/A384414.seq | c67b9147cd2b2bf6c111964b0a6d9aed |
A384415 | a(n) = 4^n - 3^n - n*3^(n-1) - binomial(n,2)*3^(n-2). | [
"0",
"0",
"0",
"1",
"13",
"106",
"694",
"3991",
"21067",
"104680",
"497452",
"2285053",
"10222777",
"44788342",
"192970834",
"820244467",
"3448381783",
"14367483412",
"59421385000",
"244271688313",
"999169721125",
"4070288777410",
"16525230017710",
"66906367267471",
"270271938430243"
]
| [
"nonn",
"easy"
]
| 9 | 0 | 5 | [
"A086443",
"A345954",
"A384415"
]
| null | Enrique Navarrete, May 28 2025 | 2025-06-03T01:00:54 | oeisdata/seq/A384/A384415.seq | b21d3fe79562493b29e70d16c3479d73 |
A384416 | Consecutive internal states of the linear congruential pseudo-random number generator of the HP 48 series calculators when started at 1. | [
"1",
"2851130928467",
"261097470970089",
"335429755623563",
"468090732667921",
"287888716607107",
"194022960814969",
"298923961822523",
"84062462462241",
"191517259514547",
"165777802909449",
"436661297384683",
"996040654470961",
"669370619746787",
"188023750085529",
"201468430854043",
"677208350742081"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 2 | [
"A096550",
"A096561",
"A381318",
"A382535",
"A383809",
"A384081",
"A384221",
"A384361",
"A384416"
]
| null | Paolo Xausa, May 28 2025 | 2025-05-28T04:44:19 | oeisdata/seq/A384/A384416.seq | f0e151e48c3e70c4b724f144797e3da2 |
A384417 | Expansion of g.f. cosh(9*arctanh(8*sqrt(x))). | [
"1",
"2592",
"1230336",
"294469632",
"49690312704",
"6822215811072",
"818458027622400",
"89312567167549440",
"9086229152658358272",
"875874088323041460224",
"80899222450192930308096",
"7217466034064795168145408",
"625687045828728598806134784",
"52946875811413468120885493760",
"4389120887020725640048536453120"
]
| [
"nonn"
]
| 9 | 0 | 2 | [
"A285043",
"A285044",
"A285045",
"A285046",
"A383928",
"A384335",
"A384417"
]
| null | Karol A. Penson, May 28 2025 | 2025-05-30T23:57:32 | oeisdata/seq/A384/A384417.seq | 8df72faf1c7e1df17c38b6a3a50b4490 |
A384418 | Powerful exponentially squarefree numbers. | [
"1",
"4",
"8",
"9",
"25",
"27",
"32",
"36",
"49",
"64",
"72",
"100",
"108",
"121",
"125",
"128",
"169",
"196",
"200",
"216",
"225",
"243",
"288",
"289",
"343",
"361",
"392",
"441",
"484",
"500",
"529",
"576",
"675",
"676",
"729",
"800",
"841",
"864",
"900",
"961",
"968",
"972",
"1000",
"1024",
"1089",
"1125",
"1152",
"1156",
"1225",
"1323",
"1331",
"1352",
"1369"
]
| [
"nonn",
"easy"
]
| 8 | 1 | 2 | [
"A001694",
"A005117",
"A209061",
"A246547",
"A383211",
"A384418"
]
| null | Amiram Eldar, May 28 2025 | 2025-05-28T10:52:11 | oeisdata/seq/A384/A384418.seq | 2f611a4ac4d8737862b1aa55e1619c37 |
A384419 | Exponentially squarefree prime powers. | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"13",
"17",
"19",
"23",
"25",
"27",
"29",
"31",
"32",
"37",
"41",
"43",
"47",
"49",
"53",
"59",
"61",
"64",
"67",
"71",
"73",
"79",
"83",
"89",
"97",
"101",
"103",
"107",
"109",
"113",
"121",
"125",
"127",
"128",
"131",
"137",
"139",
"149",
"151",
"157",
"163",
"167",
"169",
"173",
"179",
"181",
"191",
"193",
"197",
"199",
"211",
"223"
]
| [
"nonn",
"easy"
]
| 8 | 1 | 2 | [
"A000040",
"A000961",
"A005117",
"A209061",
"A283262",
"A383211",
"A384419"
]
| null | Amiram Eldar, May 28 2025 | 2025-05-28T10:52:08 | oeisdata/seq/A384/A384419.seq | 0f2b6f9e897a835ed60407a7ef55c602 |
A384420 | The number of exponentially squarefree prime powers (not including 1) that divide n. | [
"0",
"1",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"3",
"2",
"2",
"1",
"4",
"2",
"2",
"3",
"3",
"1",
"3",
"1",
"5",
"2",
"2",
"2",
"4",
"1",
"2",
"2",
"4",
"1",
"3",
"1",
"3",
"3",
"2",
"1",
"4",
"2",
"3",
"2",
"3",
"1",
"4",
"2",
"4",
"2",
"2",
"1",
"4",
"1",
"2",
"3",
"6",
"2",
"3",
"1",
"3",
"2",
"3",
"1",
"5",
"1",
"2",
"3",
"3",
"2",
"3",
"1",
"4",
"3",
"2",
"1",
"4",
"2",
"2",
"2"
]
| [
"nonn",
"easy"
]
| 7 | 1 | 4 | [
"A070321",
"A077761",
"A378085",
"A384419",
"A384420",
"A384421"
]
| null | Amiram Eldar, May 28 2025 | 2025-05-28T10:52:04 | oeisdata/seq/A384/A384420.seq | b6246c4ad63fd1f5f81b4829ca2f9732 |
A384421 | The number of exponentially squarefree prime powers (not including 1) that unitarily divide n. | [
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"0",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"3",
"1",
"1",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"1",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"1",
"2",
"3",
"1",
"2",
"2",
"3",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"3",
"1",
"1",
"0",
"2",
"1",
"3",
"2",
"2",
"2"
]
| [
"nonn",
"easy"
]
| 8 | 1 | 6 | [
"A008966",
"A125029",
"A383959",
"A384419",
"A384420",
"A384421"
]
| null | Amiram Eldar, May 28 2025 | 2025-05-28T10:51:59 | oeisdata/seq/A384/A384421.seq | 43db90146c129af626108d5839ece06f |
A384422 | The number of prime powers (not including 1) p^e that divide n such that e is coprime to the p-adic valuation of n. | [
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"4",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"3",
"2",
"3",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"3",
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"3",
"1",
"3",
"2",
"2",
"1",
"3",
"2",
"2",
"2"
]
| [
"nonn",
"easy"
]
| 7 | 1 | 6 | [
"A000010",
"A072911",
"A077761",
"A085548",
"A384422"
]
| null | Amiram Eldar, May 28 2025 | 2025-05-28T10:51:55 | oeisdata/seq/A384/A384422.seq | dd570d6a254578555da5ca5a3beb88c7 |
A384423 | The number of prime powers (not including 1) p^e that divide n such that e is unitarily coprime to the p-adic valuation of n. | [
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"4",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"3",
"2",
"3",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"3",
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"3",
"1",
"4",
"3",
"2",
"1",
"3",
"2",
"2",
"2"
]
| [
"nonn",
"easy"
]
| 8 | 1 | 6 | [
"A047994",
"A077761",
"A085548",
"A321167",
"A384423"
]
| null | Amiram Eldar, May 28 2025 | 2025-05-28T10:51:51 | oeisdata/seq/A384/A384423.seq | 3616c3057137671e3add23884f3b557b |
A384424 | The maximal possible number of 'good' steps in a Hamiltonian cycle on the n X n king's graph, as is specified in the comments. | [
"0",
"0",
"5",
"8",
"16",
"24",
"36",
"44"
]
| [
"nonn",
"more"
]
| 22 | 1 | 3 | [
"A308129",
"A384424"
]
| null | Yifan Xie, May 28 2025 | 2025-06-13T16:44:59 | oeisdata/seq/A384/A384424.seq | 7ff7e9668ff46347788bc6d23bebe6f6 |
A384425 | Decimal expansion of Sum_{k>=1} (-1)^(k+1)/(6k-5)^7 + (-1)^(k-1)/(6k-1)^7. | [
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"5",
"5",
"1",
"5",
"6",
"1",
"2",
"7",
"1",
"7",
"5",
"2",
"1",
"6",
"1",
"8",
"6",
"8",
"4",
"2",
"7",
"6",
"0",
"8",
"2",
"0",
"3",
"5",
"0",
"0",
"1",
"4",
"1",
"1",
"9",
"2",
"6",
"8",
"3",
"3",
"5",
"9",
"1",
"8",
"9",
"3",
"1",
"5",
"7",
"0",
"5",
"8",
"9",
"6",
"8",
"8",
"6",
"6",
"2",
"3",
"1",
"7",
"3",
"1",
"3",
"8",
"4",
"1",
"9",
"5",
"9",
"4",
"5",
"9",
"4",
"1",
"5",
"3",
"9",
"9",
"4",
"6",
"1",
"0",
"2",
"2",
"2",
"8",
"5",
"6",
"0",
"4",
"6"
]
| [
"nonn",
"cons"
]
| 12 | 1 | 8 | [
"A013665",
"A092735",
"A143298",
"A384425"
]
| null | Jason Bard, Jun 14 2025 | 2025-06-16T00:46:46 | oeisdata/seq/A384/A384425.seq | f8f00400962ff39031be9e7a7e22f3ff |
A384426 | G.f.: Sum_{k>=1} x^k * Product_{j=k..2*k} (1 + x^j). | [
"0",
"1",
"2",
"2",
"3",
"2",
"3",
"3",
"4",
"4",
"4",
"5",
"6",
"5",
"6",
"7",
"8",
"8",
"9",
"9",
"10",
"12",
"12",
"13",
"14",
"14",
"16",
"18",
"19",
"20",
"21",
"22",
"24",
"26",
"28",
"30",
"32",
"33",
"34",
"38",
"40",
"43",
"46",
"48",
"51",
"54",
"56",
"60",
"64",
"67",
"72",
"77",
"80",
"84",
"88",
"92",
"98",
"105",
"110",
"116",
"122",
"128",
"134",
"142",
"148",
"155",
"164",
"172"
]
| [
"nonn"
]
| 14 | 0 | 3 | [
"A207642",
"A237824",
"A384426"
]
| null | Vaclav Kotesovec, Jun 14 2025 | 2025-06-16T06:11:04 | oeisdata/seq/A384/A384426.seq | b2ad1385f77b796e5b10bbb3828a9db6 |
A384427 | Evil numbers that are not a multiple of any other evil number. | [
"3",
"5",
"17",
"23",
"29",
"43",
"53",
"71",
"77",
"83",
"89",
"101",
"113",
"139",
"149",
"163",
"169",
"197",
"209",
"257",
"263",
"269",
"277",
"281",
"287",
"293",
"311",
"317",
"329",
"337",
"343",
"347",
"349",
"353",
"359",
"373",
"383",
"389",
"401",
"407",
"413",
"427",
"449",
"461",
"467",
"469",
"479",
"503",
"509",
"523",
"533",
"547",
"553",
"571",
"593",
"599"
]
| [
"nonn",
"base"
]
| 33 | 1 | 1 | [
"A001969",
"A027699",
"A129771",
"A217790",
"A384427"
]
| null | Francisco J. Muñoz, May 28 2025 | 2025-06-20T10:46:56 | oeisdata/seq/A384/A384427.seq | e652b6d8ab8363aba053b8dd170270d6 |
A384428 | a(n) is the minimal area of a polyomino without holes having a product of edge lengths equal to n, or 0 if no solution is possible. | [
"1",
"0",
"4",
"2",
"7",
"0",
"10",
"5",
"3",
"0",
"16",
"4",
"19",
"0",
"6",
"4",
"25",
"0",
"28",
"6",
"9",
"0",
"34",
"5",
"5",
"0",
"6",
"9",
"43",
"0",
"46",
"6",
"15",
"0",
"8",
"5",
"55",
"0",
"18",
"6",
"61",
"0",
"64",
"15",
"8",
"0",
"70",
"6",
"7",
"0"
]
| [
"nonn",
"more",
"changed"
]
| 36 | 1 | 3 | [
"A000104",
"A027709",
"A384428"
]
| null | Gordon Hamilton, May 28 2025 | 2025-06-30T17:10:59 | oeisdata/seq/A384/A384428.seq | c87f112b661f52c34fd4e2a159c3d252 |
A384429 | Consecutive states of the linear congruential pseudo-random number generator for Prime Sheffield Pascal when started at 1. | [
"1",
"16807",
"282475249",
"1622647863",
"947787489",
"1578110407",
"1878557649",
"613813847",
"2005365185",
"1564292583",
"1570623665",
"602936439",
"1724879009",
"1159739911",
"1187094929",
"1381381783",
"437908353",
"499227175",
"292517489",
"751367351",
"1027218017",
"832165447",
"1791151953"
]
| [
"nonn",
"easy"
]
| 13 | 1 | 2 | [
"A096550",
"A384429"
]
| null | Sean A. Irvine, May 28 2025 | 2025-06-12T22:03:13 | oeisdata/seq/A384/A384429.seq | fa48133a6d6de6afac3c725584968db9 |
A384430 | a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^5, where 0 < x < y < z < w has exactly n integer solutions. | [
"8",
"9",
"10",
"13",
"74",
"23",
"40",
"88",
"31",
"22",
"17",
"56"
]
| [
"nonn",
"more"
]
| 26 | 1 | 1 | [
"A383877",
"A384182",
"A384430"
]
| null | Zhining Yang, Jun 14 2025 | 2025-06-20T23:10:25 | oeisdata/seq/A384/A384430.seq | 06b5396e7cf0908e1cd9ee358ba84363 |
A384431 | Consecutive states of the linear congruential pseudo-random number generator (430*s + 2531) mod 11979 when started at s=1. | [
"1",
"2961",
"5987",
"1456",
"5703",
"11105",
"10039",
"6861",
"5927",
"11593",
"4257",
"254",
"3940",
"7692",
"3887",
"8860",
"3009",
"2669",
"217",
"9",
"6401",
"11770",
"8493",
"926",
"5404",
"2325",
"8024",
"2899",
"3285",
"1559",
"2077",
"9195",
"3311",
"760",
"5898",
"11102",
"8749",
"3195",
"10775",
"11887",
"10887",
"152",
"7996",
"2838"
]
| [
"nonn",
"look",
"easy"
]
| 28 | 1 | 2 | [
"A384431",
"A384971",
"A385002",
"A385003"
]
| null | Sean A. Irvine, Jun 14 2025 | 2025-06-17T10:42:23 | oeisdata/seq/A384/A384431.seq | 9dbb3f7af509eda3c9185e7ff122d40a |
A384432 | Consecutive internal states of the linear congruential pseudo-random number generator for Borland C and C++ when started at 1. | [
"1",
"22695478",
"8561967",
"719750332",
"71484141",
"763924754",
"466453691",
"1153135800",
"420428313",
"1503962414",
"2039887495",
"590113780",
"954118533",
"234047114",
"1499440787",
"1211909744",
"89175345",
"354709798",
"1751187679",
"1472143404",
"1641484573",
"1777295618",
"2060562795",
"471225640"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 2 | [
"A096556",
"A384331",
"A384432"
]
| null | Sean A. Irvine, May 28 2025 | 2025-05-30T11:26:35 | oeisdata/seq/A384/A384432.seq | 741dbf1faf18a4282a55b022fd9fb1e5 |
A384433 | Integers k that are equal to the sum of at least two distinct of their anagrams, which must have the same number of digits as k. | [
"954",
"2961",
"4617",
"4851",
"4932",
"5013",
"5022",
"5031",
"5103",
"5112",
"5184",
"5238",
"5823",
"5913",
"6012",
"6021",
"6102",
"6129",
"6147",
"6171",
"6180",
"6192",
"6210",
"6219",
"6291",
"6312",
"6321",
"6417",
"6519",
"6915",
"6921",
"7125",
"7128",
"7149",
"7152",
"7182",
"7194",
"7218",
"7251",
"7281",
"7341",
"7416",
"7431"
]
| [
"nonn",
"base"
]
| 21 | 1 | 1 | [
"A055098",
"A160851",
"A319274",
"A384433"
]
| null | Gonzalo Martínez, May 28 2025 | 2025-06-07T17:09:31 | oeisdata/seq/A384/A384433.seq | f01764baf65b4f199ab646802414ea41 |
A384434 | Consecutive states of the linear congruential pseudo-random number generator for CUPL when started at 1. | [
"1",
"452807053",
"433305513",
"1157650709",
"1180241297",
"1178063325",
"1895799737",
"1342539237",
"998902817",
"2132481837",
"889231561",
"1166702517",
"2034731953",
"992635261",
"553238233",
"124714629",
"1244077121",
"81139917",
"194452969",
"856156757",
"355421649",
"1238070557",
"1495123449"
]
| [
"nonn",
"easy"
]
| 14 | 1 | 2 | [
"A096555",
"A384434"
]
| null | Sean A. Irvine, May 28 2025 | 2025-05-30T11:26:39 | oeisdata/seq/A384/A384434.seq | f36a55cabddeae9b56905fc7024b1322 |
A384435 | Expansion of e.g.f. 2/(5 - 3*exp(2*x)). | [
"1",
"3",
"24",
"282",
"4416",
"86448",
"2030784",
"55656912",
"1743277056",
"61427981568",
"2405046994944",
"103579443604992",
"4866448609591296",
"247692476576575488",
"13576823521525653504",
"797345878311609526272",
"49948684871884896731136",
"3324530341927517641310208",
"234293439367907438337982464"
]
| [
"nonn"
]
| 20 | 0 | 2 | [
"A032033",
"A094417",
"A201366",
"A326324",
"A328182",
"A382753",
"A384435",
"A384522"
]
| null | Seiichi Manyama, Jun 03 2025 | 2025-06-03T08:43:03 | oeisdata/seq/A384/A384435.seq | 86242f7a55f78901515f46e4f2a9414d |
A384436 | a(n) is the number of distinct ways to represent n in any integer base >= 2 using only square digits. | [
"1",
"1",
"1",
"2",
"4",
"3",
"3",
"3",
"3",
"6",
"5",
"4",
"5",
"5",
"4",
"4",
"6",
"5",
"4",
"5",
"7",
"7",
"5",
"5",
"7",
"8",
"6",
"6",
"8",
"7",
"7",
"7",
"7",
"7",
"7",
"6",
"11",
"9",
"6",
"7",
"10",
"7",
"7",
"7",
"8",
"8",
"8",
"6",
"8",
"11",
"7",
"7",
"9",
"10",
"7",
"7",
"10",
"10",
"7",
"7",
"11",
"10",
"7",
"7",
"13",
"11",
"7",
"7",
"11",
"10",
"7",
"7",
"10",
"11",
"8",
"8",
"11",
"11",
"9",
"8",
"11",
"15"
]
| [
"nonn",
"base"
]
| 9 | 0 | 4 | [
"A046030",
"A055240",
"A061845",
"A077268",
"A126071",
"A135551",
"A384211",
"A384212",
"A384436"
]
| null | Felix Huber, May 29 2025 | 2025-06-03T17:13:05 | oeisdata/seq/A384/A384436.seq | 005b66c336a5eb8a9ccd618c0ea234fd |
A384437 | Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th q-Catalan number for q=k. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"5",
"5",
"1",
"1",
"1",
"10",
"93",
"14",
"1",
"1",
"1",
"17",
"847",
"6477",
"42",
"1",
"1",
"1",
"26",
"4433",
"627382",
"1733677",
"132",
"1",
"1",
"1",
"37",
"16401",
"18245201",
"4138659802",
"1816333805",
"429",
"1",
"1",
"1",
"50",
"48205",
"256754526",
"1197172898385",
"244829520301060",
"7526310334829",
"1430",
"1"
]
| [
"nonn",
"tabl"
]
| 33 | 0 | 9 | [
"A000012",
"A000108",
"A015030",
"A015033",
"A015034",
"A015035",
"A015037",
"A015038",
"A015039",
"A015040",
"A015041",
"A015042",
"A015055",
"A129175",
"A384282",
"A384437"
]
| null | Seiichi Manyama, May 29 2025 | 2025-05-29T14:40:30 | oeisdata/seq/A384/A384437.seq | dcae1e6c768d842598b3ee44a0c5e7ad |
A384438 | Composite numbers k such that ((2^k+1)/3)^k == 1 (mod k^2). | [
"341",
"1105",
"1387",
"1729",
"1771",
"2047",
"2465",
"2485",
"2701",
"2821",
"3277",
"3445",
"4033",
"4369",
"4681",
"5185",
"5461",
"6601",
"7957",
"8321",
"8911",
"9361",
"10261",
"10585",
"11305",
"11713",
"11891",
"13741",
"13747",
"13981",
"14491",
"15709",
"15841",
"16105",
"16705",
"18145",
"18721",
"19951",
"23377",
"28441",
"29341"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A001567",
"A066488",
"A384148",
"A384438"
]
| null | Thomas Ordowski, May 29 2025 | 2025-06-02T17:44:38 | oeisdata/seq/A384/A384438.seq | b605380b8a6f0b8f37833d115b8b41b4 |
A384439 | a(n) is the smallest prime p such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = p^3, where 0 < x < y < z < w has exactly n positive integer solutions. | [
"23",
"13",
"59",
"79",
"97",
"139",
"163",
"223",
"151",
"283",
"251",
"257",
"263",
"277",
"227",
"463",
"271",
"373",
"587",
"457",
"641",
"461",
"499",
"389",
"503",
"683",
"761",
"673",
"509",
"523",
"709",
"631",
"757",
"619",
"571",
"691",
"929",
"727"
]
| [
"nonn",
"more"
]
| 17 | 1 | 1 | [
"A377372",
"A383877",
"A384439"
]
| null | Zhining Yang, May 29 2025 | 2025-06-03T15:17:21 | oeisdata/seq/A384/A384439.seq | 024176ae478fbf0f247cc8d7681d55c7 |
A384440 | Array of triples (x,y,z) of minimal (positive) solutions of the cubic Pell equation x^3 + n*y^3 + n^2*z^3 - 3*n*x*y*z = 1, read by rows. | [
"1",
"0",
"0",
"1",
"1",
"1",
"4",
"3",
"2",
"5",
"3",
"2",
"41",
"24",
"14",
"109",
"60",
"33",
"4",
"2",
"1",
"1",
"0",
"0",
"4",
"2",
"1",
"181",
"84",
"39",
"89",
"40",
"18",
"9073",
"3963",
"1731",
"94",
"40",
"17",
"29",
"12",
"5",
"5401",
"2190",
"888",
"16001",
"6350",
"2520",
"324",
"126",
"49",
"55",
"21",
"8",
"64",
"24",
"9",
"361",
"133",
"49"
]
| [
"nonn",
"tabf"
]
| 26 | 1 | 7 | null | null | Xianwen Wang, May 29 2025 | 2025-06-05T08:39:24 | oeisdata/seq/A384/A384440.seq | 00806355884248d4c69f90b9ac3721ac |
A384441 | Binary XOR of n and the prime factors of n. | [
"1",
"0",
"0",
"6",
"0",
"7",
"0",
"10",
"10",
"13",
"0",
"13",
"0",
"11",
"9",
"18",
"0",
"19",
"0",
"19",
"17",
"31",
"0",
"25",
"28",
"21",
"24",
"25",
"0",
"26",
"0",
"34",
"41",
"49",
"33",
"37",
"0",
"55",
"41",
"47",
"0",
"44",
"0",
"37",
"43",
"59",
"0",
"49",
"54",
"53",
"33",
"59",
"0",
"55",
"57",
"61",
"41",
"37",
"0",
"56",
"0",
"35",
"59",
"66",
"73",
"72",
"0",
"87",
"81",
"70",
"0",
"73",
"0",
"109"
]
| [
"nonn",
"base",
"look",
"easy"
]
| 70 | 1 | 4 | [
"A000040",
"A052548",
"A178910",
"A293212",
"A384441"
]
| null | Karl-Heinz Hofmann, May 30 2025 | 2025-06-09T18:35:15 | oeisdata/seq/A384/A384441.seq | 93c615f7965e89eb4a0df88eb9ca7f92 |
A384442 | Smallest k such that A361373(k) = n. | [
"1",
"2",
"4",
"6",
"10",
"12",
"18",
"40",
"36",
"30",
"60",
"102",
"84",
"132",
"150",
"264",
"210",
"540",
"330",
"420",
"660",
"630",
"840",
"1050",
"2100",
"2340",
"2520",
"3150",
"2310",
"2730",
"4290",
"4620",
"6930",
"9240",
"15960",
"16170",
"17850",
"18480",
"20790",
"34650",
"62370",
"68250",
"30030",
"62790",
"60060",
"78540",
"90090",
"117810"
]
| [
"nonn"
]
| 22 | 0 | 2 | [
"A361373",
"A377845",
"A384442"
]
| null | Michael De Vlieger, Jun 12 2025 | 2025-06-14T00:33:41 | oeisdata/seq/A384/A384442.seq | 9f29b55a6c0ca9d27fdcec918e1c7ba1 |
A384443 | a(n) is the product of the prime digits of n; or 1 if n contains no prime digits. | [
"1",
"2",
"3",
"1",
"5",
"1",
"7",
"1",
"1",
"1",
"1",
"2",
"3",
"1",
"5",
"1",
"7",
"1",
"1",
"2",
"2",
"4",
"6",
"2",
"10",
"2",
"14",
"2",
"2",
"3",
"3",
"6",
"9",
"3",
"15",
"3",
"21",
"3",
"3",
"1",
"1",
"2",
"3",
"1",
"5",
"1",
"7",
"1",
"1",
"5",
"5",
"10",
"15",
"5",
"25",
"5",
"35",
"5",
"5",
"1",
"1",
"2",
"3",
"1",
"5",
"1",
"7",
"1",
"1",
"7",
"7",
"14",
"21",
"7",
"35",
"7",
"49",
"7",
"7",
"1",
"1",
"2",
"3",
"1"
]
| [
"nonn",
"base",
"easy"
]
| 12 | 1 | 2 | [
"A002110",
"A007947",
"A007954",
"A384443",
"A384444",
"A384445",
"A384505"
]
| null | Felix Huber, Jun 03 2025 | 2025-06-20T18:52:10 | oeisdata/seq/A384/A384443.seq | 4a353b2aaa0232f589bf56b38381e632 |
A384444 | Positive integers k for which the sum of their digits equals the product of their prime digits. | [
"1",
"2",
"3",
"5",
"7",
"10",
"20",
"22",
"30",
"50",
"70",
"100",
"123",
"132",
"200",
"202",
"213",
"220",
"231",
"300",
"312",
"321",
"500",
"700",
"1000",
"1023",
"1032",
"1203",
"1230",
"1247",
"1274",
"1302",
"1320",
"1356",
"1365",
"1427",
"1472",
"1536",
"1563",
"1635",
"1653",
"1724",
"1742",
"2000",
"2002",
"2013",
"2020",
"2031",
"2103",
"2130",
"2147"
]
| [
"nonn",
"base",
"easy"
]
| 11 | 1 | 2 | [
"A002110",
"A006753",
"A007947",
"A007954",
"A066306",
"A067077",
"A384443",
"A384444",
"A384445",
"A384505"
]
| null | Felix Huber, Jun 03 2025 | 2025-06-20T15:41:26 | oeisdata/seq/A384/A384444.seq | 61042b180d0b0cb5ff1fbf1e51c7eac8 |
A384445 | a(n) is the number of multisets of n decimal digits where the sum of the digits equals the product of the prime digits. | [
"5",
"6",
"7",
"10",
"23",
"43",
"74",
"125",
"199",
"305",
"449",
"637",
"885",
"1216",
"1649",
"2184",
"2852",
"3664",
"4657",
"5863",
"7298",
"9002",
"10993",
"13312",
"16000",
"19084",
"22613",
"26606",
"31120",
"36192",
"41867",
"48220",
"55317",
"63232",
"72022",
"81746",
"92479",
"104282",
"117229",
"131393",
"146843",
"163652",
"181892"
]
| [
"nonn",
"base"
]
| 5 | 1 | 1 | [
"A002110",
"A006753",
"A007947",
"A007954",
"A066306",
"A067077",
"A384443",
"A384444",
"A384445",
"A384505"
]
| null | Felix Huber, Jun 03 2025 | 2025-06-10T19:43:03 | oeisdata/seq/A384/A384445.seq | aebe328187263e7bfaae452f8936f59b |
A384446 | Triangle read by rows: T(n, k) = |gcd(n, k) - k|. | [
"0",
"1",
"0",
"2",
"0",
"0",
"3",
"0",
"1",
"0",
"4",
"0",
"0",
"2",
"0",
"5",
"0",
"1",
"2",
"3",
"0",
"6",
"0",
"0",
"0",
"2",
"4",
"0",
"7",
"0",
"1",
"2",
"3",
"4",
"5",
"0",
"8",
"0",
"0",
"2",
"0",
"4",
"4",
"6",
"0",
"9",
"0",
"1",
"0",
"3",
"4",
"3",
"6",
"7",
"0",
"10",
"0",
"0",
"2",
"2",
"0",
"4",
"6",
"6",
"8",
"0",
"11",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"0",
"12",
"0",
"0",
"0",
"0",
"4",
"0",
"6",
"4",
"6",
"8",
"10",
"0"
]
| [
"nonn",
"tabl"
]
| 11 | 0 | 4 | [
"A002262",
"A109004",
"A372727",
"A384446"
]
| null | Peter Luschny, May 29 2025 | 2025-05-30T03:37:45 | oeisdata/seq/A384/A384446.seq | 6c07549d8b500b573715812996af6c40 |
A384447 | Array read by ascending antidiagonals: A(n, k) = gcd(n, k) if n > 0 otherwise 0. | [
"0",
"1",
"0",
"2",
"1",
"0",
"3",
"1",
"1",
"0",
"4",
"1",
"2",
"1",
"0",
"5",
"1",
"1",
"1",
"1",
"0",
"6",
"1",
"2",
"3",
"2",
"1",
"0",
"7",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"8",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"0",
"9",
"1",
"1",
"3",
"1",
"1",
"3",
"1",
"1",
"0",
"10",
"1",
"2",
"1",
"2",
"5",
"2",
"1",
"2",
"1",
"0",
"11",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"12",
"1",
"2",
"3",
"4",
"1",
"6",
"1",
"4",
"3",
"2",
"1",
"0"
]
| [
"nonn",
"tabl"
]
| 17 | 0 | 4 | [
"A027750",
"A109004",
"A384447"
]
| null | Peter Luschny, Jun 02 2025 | 2025-06-03T01:13:46 | oeisdata/seq/A384/A384447.seq | 4b394443b600e5e702f1efc4ebb55d4a |
A384448 | Consecutive states of the linear congruential pseudo-random number generator for the INMOS Transputer when started at 1. | [
"1",
"1664525",
"389569705",
"2940799637",
"158984081",
"2862450781",
"3211393721",
"1851289957",
"3934847009",
"2184914861",
"246739401",
"1948736821",
"2941245873",
"4195587069",
"4088025561",
"980655621",
"2001863745",
"657792333",
"65284841",
"1282409429",
"3808694225",
"2968195997",
"2417331449"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 2 | [
"A096550",
"A096561",
"A384448"
]
| null | Sean A. Irvine, May 29 2025 | 2025-05-30T11:26:42 | oeisdata/seq/A384/A384448.seq | a0696bb749a0a7195e7d639e5f2b6f3f |
A384449 | Primes using only the digits {0,4,7}. | [
"7",
"47",
"4007",
"4447",
"7477",
"44777",
"47407",
"47777",
"74047",
"74077",
"74707",
"74747",
"77047",
"77447",
"77477",
"77747",
"407047",
"407707",
"407747",
"440047",
"444007",
"444047",
"470077",
"470447",
"474077",
"474707",
"477047",
"477077",
"704447",
"704477",
"704747",
"704777",
"707407",
"707747",
"740477",
"744077",
"744407",
"744707",
"747407",
"770047"
]
| [
"nonn",
"base"
]
| 17 | 1 | 1 | [
"A000040",
"A020465",
"A030432",
"A199327",
"A260378",
"A260827",
"A261181",
"A261267",
"A384449"
]
| null | Jason Bard, May 29 2025 | 2025-06-08T04:58:30 | oeisdata/seq/A384/A384449.seq | e7af3888b3b788b0476f2a4e376fdc2f |
A384450 | a(1) = 0; thereafter, a(n) is the number of arithmetic progressions of length 3 or greater at indices in an arithmetic progression ending at a(n-1). | [
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"2",
"0",
"4",
"0",
"5",
"0",
"8",
"0",
"9",
"0",
"12",
"1",
"0",
"1",
"0",
"0",
"5",
"0",
"5",
"0",
"5",
"1",
"0",
"3",
"0",
"3",
"0",
"4",
"0",
"2",
"2",
"2",
"2",
"3",
"0",
"3",
"0",
"2",
"1",
"0",
"7",
"0",
"5",
"0",
"5",
"0",
"7",
"0",
"10",
"1",
"1",
"2",
"1",
"1",
"0",
"9",
"0",
"6",
"3",
"0",
"6",
"1",
"0",
"6",
"3",
"3",
"1",
"2",
"2",
"3",
"0",
"7",
"0",
"6",
"3",
"1",
"0",
"4",
"4"
]
| [
"nonn"
]
| 21 | 1 | 8 | [
"A308638",
"A362881",
"A384450"
]
| null | Neal Gersh Tolunsky, May 27 2025 | 2025-06-13T17:25:57 | oeisdata/seq/A384/A384450.seq | 4ae12b1cb5908d8107622b18d9785b27 |
A384451 | Consecutive states of the linear congruential pseudo-random number generator randq1 from Numerical Recipes when started at 1. | [
"1",
"1015568748",
"1586005467",
"2165703038",
"3027450565",
"217083232",
"1587069247",
"3327581586",
"2388811721",
"70837908",
"2745540835",
"1075679462",
"1814098701",
"2536995080",
"3594602695",
"1009643386",
"4212701329",
"3697481916",
"1403919595",
"2931756366",
"2282599509",
"927463856",
"448971087"
]
| [
"nonn",
"easy"
]
| 22 | 1 | 2 | [
"A096550",
"A096561",
"A384448",
"A384451"
]
| null | Sean A. Irvine, May 30 2025 | 2025-06-04T11:07:45 | oeisdata/seq/A384/A384451.seq | 59cc5ac9aa6fa5c8088defbda8544969 |
A384452 | a(n) is the sum of squares of the unitary divisors of n!. | [
"1",
"5",
"50",
"650",
"16900",
"547924",
"27396200",
"1746641000",
"139773881000",
"13460683752200",
"1642203417768400",
"236441876606410000",
"40195119023089700000",
"7723888546922636420000",
"1735183690969722609168800",
"444206919394766468845892000",
"128820006624482275965308680000",
"41737604550102658693597600532800"
]
| [
"nonn"
]
| 29 | 1 | 2 | [
"A000142",
"A034676",
"A064028",
"A077610",
"A384452"
]
| null | Darío Clavijo, Jun 02 2025 | 2025-06-09T00:38:05 | oeisdata/seq/A384/A384452.seq | 49427b0c81635ed38f3ce4c0d189188d |
A384453 | a(n) is the n-th q-factorial number for q=-n. | [
"1",
"1",
"-1",
"-14",
"1989",
"4551456",
"-212333070125",
"-246183190158589200",
"8363069275661695069900425",
"9589835030046843645163231485460480",
"-420238291486760860506028808179511473194550689",
"-785971734280677729025139143429963192709390305509012000000"
]
| [
"sign"
]
| 10 | 0 | 4 | [
"A347611",
"A384453",
"A384454"
]
| null | Seiichi Manyama, May 30 2025 | 2025-05-30T10:12:01 | oeisdata/seq/A384/A384453.seq | 8160efc0ca8f53d950c69792572b4298 |
A384454 | Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th q-factorial number for q=-k. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"-1",
"0",
"1",
"1",
"1",
"-2",
"-3",
"0",
"1",
"1",
"1",
"-3",
"-14",
"15",
"0",
"1",
"1",
"1",
"-4",
"-39",
"280",
"165",
"0",
"1",
"1",
"1",
"-5",
"-84",
"1989",
"17080",
"-3465",
"0",
"1",
"1",
"1",
"-6",
"-155",
"8736",
"407745",
"-3108560",
"-148995",
"0",
"1",
"1",
"1",
"-7",
"-258",
"28675",
"4551456",
"-333943155",
"-1700382320",
"12664575",
"0",
"1"
]
| [
"sign",
"tabl"
]
| 20 | 0 | 18 | [
"A015013",
"A015015",
"A015017",
"A015018",
"A015019",
"A015020",
"A015022",
"A015023",
"A015025",
"A015026",
"A015027",
"A015028",
"A069777",
"A384453",
"A384454"
]
| null | Seiichi Manyama, May 30 2025 | 2025-05-31T09:34:15 | oeisdata/seq/A384/A384454.seq | 0ecdb035995be9c2088b4f1b446be0d7 |
A384455 | Decimal expansion of Sum_{k>=2} (-1)^k*P(k)/(k+1) - M/2 (negated), where P(s) is the prime zeta function and M is Mertens's constant. | [
"0",
"1",
"2",
"5",
"3",
"4",
"6",
"3",
"4",
"1",
"9",
"1",
"4",
"9",
"6",
"7",
"0",
"1",
"1",
"0",
"3",
"9",
"7",
"0",
"6",
"0",
"7",
"2",
"5",
"7",
"1",
"7",
"7",
"1",
"6",
"7",
"4",
"6",
"3",
"2",
"9",
"2",
"5",
"7",
"2",
"2",
"3",
"3",
"3",
"1",
"0",
"5",
"1",
"7",
"2",
"2",
"6",
"5",
"1",
"5",
"2",
"1",
"5",
"7",
"3",
"1",
"6",
"3",
"0",
"0",
"7",
"1",
"0",
"5",
"9",
"1",
"8",
"9",
"1",
"8",
"1",
"6",
"1",
"8",
"2",
"9",
"1",
"6",
"4",
"1",
"7",
"2",
"3",
"3",
"8",
"6",
"1",
"7",
"0",
"9",
"2",
"9",
"9",
"0",
"9",
"0"
]
| [
"nonn",
"cons"
]
| 8 | 0 | 3 | [
"A000720",
"A001620",
"A077761",
"A110544",
"A229495",
"A384455"
]
| null | Amiram Eldar, May 30 2025 | 2025-05-30T10:35:14 | oeisdata/seq/A384/A384455.seq | 6f5cad8594d858c1ac393702053af675 |
A384456 | Positive integers k such that (2^k - 1)^k + 2 is prime. | [
"1",
"2",
"4",
"8",
"16",
"40"
]
| [
"nonn",
"more"
]
| 17 | 1 | 2 | [
"A019434",
"A384456"
]
| null | Thomas Ordowski, May 30 2025 | 2025-06-03T04:54:43 | oeisdata/seq/A384/A384456.seq | 64a9a65e2715d945b9bc79e4b4c276a0 |
A384457 | Decimal expansion of Sum_{k>=1} H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. | [
"3",
"5",
"9",
"3",
"4",
"2",
"7",
"9",
"4",
"1",
"7",
"7",
"4",
"9",
"4",
"2",
"9",
"6",
"0",
"2",
"5",
"5",
"1",
"8",
"2",
"4",
"0",
"7",
"0",
"3",
"3",
"3",
"9",
"2",
"1",
"9",
"5",
"9",
"1",
"6",
"9",
"5",
"4",
"8",
"0",
"3",
"5",
"1",
"9",
"3",
"3",
"8",
"9",
"3",
"7",
"6",
"9",
"7",
"3",
"8",
"6",
"1",
"1",
"9",
"1",
"8",
"8",
"8",
"2",
"8",
"1",
"2",
"6",
"9",
"6",
"1",
"9",
"2",
"6",
"3",
"4",
"0",
"3",
"7",
"3",
"9",
"5",
"7",
"8",
"6",
"7",
"6",
"8",
"6",
"4",
"7",
"4",
"5",
"8",
"7",
"3",
"5",
"5",
"3",
"7"
]
| [
"nonn",
"cons",
"easy"
]
| 6 | 1 | 1 | [
"A000796",
"A001008",
"A002117",
"A002162",
"A002805",
"A152648",
"A152649",
"A152651",
"A218505",
"A233090",
"A238168",
"A238181",
"A238182",
"A241753",
"A244667",
"A253191",
"A256988",
"A345203",
"A352769",
"A384457"
]
| null | Amiram Eldar, May 30 2025 | 2025-05-30T10:35:06 | oeisdata/seq/A384/A384457.seq | 0bb43925d18247ca999886ced8f7803e |
A384458 | Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^3/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. | [
"2",
"7",
"4",
"1",
"2",
"5",
"7",
"4",
"6",
"5",
"4",
"9",
"2",
"5",
"2",
"9",
"7",
"0",
"6",
"7",
"8",
"8",
"3",
"3",
"0",
"3",
"6",
"7",
"8",
"7",
"5",
"0",
"4",
"7",
"0",
"7",
"6",
"2",
"6",
"5",
"4",
"4",
"8",
"9",
"2",
"9",
"5",
"5",
"7",
"5",
"2",
"9",
"6",
"5",
"4",
"7",
"1",
"8",
"1",
"4",
"6",
"2",
"7",
"5",
"5",
"3",
"2",
"1",
"6",
"0",
"6",
"7",
"5",
"8",
"7",
"1",
"4",
"1",
"9",
"7",
"0",
"1",
"0",
"3",
"5",
"8",
"3",
"7",
"2",
"2",
"3",
"8",
"6",
"9",
"4",
"8",
"6",
"6",
"3",
"0",
"7",
"0",
"4",
"6",
"6"
]
| [
"nonn",
"cons",
"easy"
]
| 5 | 0 | 1 | [
"A000796",
"A001008",
"A002117",
"A002162",
"A002805",
"A013662",
"A152648",
"A152649",
"A152651",
"A218505",
"A233090",
"A238168",
"A238181",
"A238182",
"A241753",
"A244667",
"A253191",
"A256988",
"A345203",
"A384458"
]
| null | Amiram Eldar, May 30 2025 | 2025-05-30T10:35:17 | oeisdata/seq/A384/A384458.seq | a7c1853f3333d87f9a90b3c318900912 |
A384459 | Decimal expansion of Sum_{k>=1} (-1)^k*(3*k+1)*H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. | [
"1",
"6",
"4",
"4",
"0",
"1",
"9",
"5",
"3",
"8",
"9",
"3",
"1",
"6",
"5",
"4",
"2",
"9",
"6",
"5",
"2",
"6",
"3",
"6",
"2",
"1",
"6",
"5",
"0",
"3",
"0",
"2",
"3",
"1",
"1",
"4",
"0",
"6",
"4",
"4",
"1",
"3",
"0",
"5",
"1",
"5",
"1",
"9",
"0",
"4",
"1",
"8",
"1",
"5",
"9",
"8",
"1",
"6",
"6",
"2",
"1",
"1",
"5",
"9",
"4",
"3",
"8",
"9",
"1",
"7",
"3",
"1",
"0",
"0",
"7",
"1",
"4",
"2",
"1",
"2",
"7",
"6",
"4",
"9",
"2",
"3",
"1",
"6",
"3",
"5",
"1",
"5",
"5",
"1",
"5",
"7",
"6",
"5",
"5",
"9",
"4",
"4",
"8",
"6",
"0"
]
| [
"nonn",
"cons",
"easy"
]
| 5 | 0 | 2 | [
"A001008",
"A002805",
"A016578",
"A152648",
"A152649",
"A152651",
"A218505",
"A233090",
"A238168",
"A238181",
"A238182",
"A241753",
"A244667",
"A253191",
"A256988",
"A345203",
"A384459"
]
| null | Amiram Eldar, May 30 2025 | 2025-05-30T10:35:03 | oeisdata/seq/A384/A384459.seq | d9ff83d47331df97517c651d130c6480 |
A384460 | Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^2/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. | [
"4",
"4",
"2",
"4",
"6",
"0",
"1",
"8",
"9",
"3",
"7",
"7",
"9",
"1",
"2",
"4",
"9",
"5",
"2",
"1",
"8",
"7",
"9",
"8",
"2",
"1",
"9",
"1",
"7",
"4",
"6",
"5",
"6",
"3",
"3",
"5",
"1",
"8",
"4",
"1",
"3",
"3",
"6",
"2",
"7",
"0",
"2",
"2",
"5",
"8",
"3",
"5",
"8",
"5",
"8",
"6",
"4",
"2",
"6",
"3",
"2",
"9",
"3",
"4",
"7",
"1",
"2",
"3",
"6",
"3",
"9",
"2",
"6",
"3",
"0",
"8",
"6",
"1",
"0",
"9",
"8",
"3",
"6",
"6",
"5",
"3",
"1",
"3",
"5",
"5",
"1",
"6",
"5",
"3",
"1",
"0",
"1",
"9",
"7",
"0",
"9",
"4",
"8",
"8",
"3"
]
| [
"nonn",
"cons",
"easy"
]
| 5 | 0 | 1 | [
"A000796",
"A001008",
"A002117",
"A002162",
"A002805",
"A152648",
"A152649",
"A152651",
"A218505",
"A233090",
"A238168",
"A238181",
"A238182",
"A241753",
"A244667",
"A253191",
"A256988",
"A345203",
"A384460"
]
| null | Amiram Eldar, May 30 2025 | 2025-05-30T10:35:00 | oeisdata/seq/A384/A384460.seq | b109f9350f07c54d137ab10a6eb35cef |
A384461 | Decimal expansion of Sum_{k>=1} H(k)^4/k^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. | [
"4",
"5",
"8",
"3",
"3",
"9",
"4",
"1",
"4",
"6",
"5",
"4",
"1",
"6",
"5",
"5",
"7",
"1",
"9",
"2",
"5",
"9",
"5",
"7",
"6",
"5",
"7",
"8",
"9",
"1",
"4",
"2",
"2",
"6",
"3",
"3",
"4",
"8",
"8",
"7",
"9",
"5",
"1",
"1",
"3",
"3",
"1",
"5",
"4",
"8",
"4",
"8",
"4",
"2",
"3",
"2",
"5",
"4",
"9",
"2",
"2",
"2",
"5",
"7",
"1",
"5",
"3",
"9",
"1",
"3",
"5",
"1",
"9",
"5",
"9",
"3",
"6",
"4",
"2",
"8",
"2",
"2",
"3",
"7",
"0",
"0",
"0",
"6",
"7",
"8",
"1",
"2",
"2",
"9",
"8",
"2",
"9",
"9",
"6",
"0",
"6",
"5",
"2",
"7",
"4"
]
| [
"nonn",
"cons",
"easy"
]
| 5 | 2 | 1 | [
"A001008",
"A002117",
"A002805",
"A013664",
"A152648",
"A152649",
"A152651",
"A218505",
"A233090",
"A238168",
"A238181",
"A238182",
"A241753",
"A244667",
"A253191",
"A256988",
"A345203",
"A384461"
]
| null | Amiram Eldar, May 30 2025 | 2025-05-30T10:35:10 | oeisdata/seq/A384/A384461.seq | 97314b8d687d91654fa3911cfb9b2982 |
A384462 | Decimal expansion of Sum_{k>=1} H(k)^3/k^3, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. | [
"2",
"3",
"0",
"0",
"9",
"5",
"4",
"5",
"5",
"1",
"7",
"0",
"0",
"5",
"2",
"5",
"0",
"3",
"9",
"8",
"0",
"6",
"4",
"2",
"2",
"7",
"6",
"9",
"8",
"9",
"2",
"2",
"5",
"6",
"0",
"0",
"0",
"4",
"6",
"9",
"9",
"7",
"5",
"6",
"4",
"6",
"4",
"0",
"6",
"2",
"3",
"9",
"6",
"4",
"2",
"8",
"8",
"0",
"4",
"1",
"4",
"9",
"5",
"4",
"7",
"7",
"8",
"7",
"2",
"1",
"1",
"7",
"2",
"7",
"8",
"9",
"2",
"4",
"5",
"0",
"2",
"6",
"5",
"2",
"8",
"1",
"4",
"1",
"0",
"0",
"0",
"4",
"7",
"1",
"4",
"4",
"1",
"9",
"7",
"7",
"0",
"5",
"7",
"4",
"1"
]
| [
"nonn",
"cons",
"easy"
]
| 5 | 1 | 1 | [
"A001008",
"A002117",
"A002805",
"A013664",
"A152648",
"A152649",
"A152651",
"A218505",
"A233090",
"A238168",
"A238181",
"A238182",
"A241753",
"A244667",
"A253191",
"A256988",
"A345203",
"A384462"
]
| null | Amiram Eldar, May 30 2025 | 2025-05-30T10:34:56 | oeisdata/seq/A384/A384462.seq | 8cf9dc22edaf72a80c44ca81d306afa1 |
A384463 | Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384277. | [
"7",
"1",
"1",
"0",
"9",
"3",
"0",
"0",
"9",
"9",
"2",
"9",
"1",
"7",
"3",
"0",
"1",
"5",
"4",
"4",
"9",
"5",
"9",
"0",
"1",
"9",
"1",
"1",
"4",
"2",
"5",
"9",
"4",
"4",
"3",
"1",
"3",
"0",
"9",
"3",
"9",
"3",
"7",
"9",
"6",
"2",
"8",
"9",
"5",
"5",
"3",
"4",
"4",
"5",
"1",
"3",
"1",
"7",
"1",
"7",
"2",
"4",
"4",
"3",
"6",
"1",
"9",
"0",
"2",
"1",
"5",
"5",
"1",
"2",
"2",
"1",
"3",
"2",
"2",
"3",
"5",
"8",
"2",
"0",
"3",
"7",
"2"
]
| [
"nonn",
"cons"
]
| 12 | 0 | 1 | [
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281",
"A384463",
"A384464",
"A384465",
"A384466",
"A384467"
]
| null | A.H.M. Smeets, May 30 2025 | 2025-06-26T07:40:02 | oeisdata/seq/A384/A384463.seq | 51eba241e8d589a4d19b430020e20fda |
A384464 | Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384278. | [
"2",
"7",
"8",
"5",
"1",
"7",
"7",
"3",
"3",
"5",
"6",
"9",
"2",
"4",
"0",
"8",
"4",
"8",
"8",
"0",
"1",
"4",
"4",
"4",
"8",
"8",
"8",
"4",
"5",
"6",
"7",
"2",
"6",
"4",
"8",
"1",
"0",
"3",
"4",
"8",
"9",
"0",
"0",
"3",
"0",
"9",
"8",
"6",
"3",
"8",
"8",
"6",
"7",
"1",
"8",
"5",
"6",
"7",
"3",
"4",
"9",
"4",
"8",
"4",
"3",
"4",
"4",
"9",
"4",
"0",
"9",
"6",
"5",
"7",
"9",
"3",
"6",
"5",
"7",
"5",
"3",
"0",
"3",
"5",
"7",
"4",
"2"
]
| [
"nonn",
"cons"
]
| 12 | 0 | 1 | [
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281",
"A384463",
"A384464",
"A384465",
"A384466",
"A384467"
]
| null | A.H.M. Smeets, May 30 2025 | 2025-06-26T07:39:36 | oeisdata/seq/A384/A384464.seq | 800a11be329177b822ecabb570cad712 |
A384465 | Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384279. | [
"1",
"0",
"3",
"8",
"9",
"2",
"5",
"6",
"5",
"0",
"1",
"5",
"8",
"6",
"1",
"3",
"5",
"7",
"4",
"8",
"9",
"6",
"4",
"9",
"2",
"0",
"4",
"0",
"0",
"6",
"7",
"9",
"0",
"8",
"7",
"6",
"5",
"5",
"7",
"1",
"6",
"1",
"7",
"2",
"7",
"2",
"4",
"0",
"5",
"7",
"8",
"8",
"3",
"0",
"1",
"1",
"5",
"4",
"7",
"8",
"0",
"7",
"2",
"0",
"3",
"6",
"0",
"3",
"7",
"4",
"8",
"2",
"9",
"8",
"5",
"0",
"2",
"0",
"1",
"1",
"1",
"4",
"3",
"8",
"8",
"5",
"5"
]
| [
"nonn",
"cons"
]
| 12 | -1 | 3 | [
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281",
"A384463",
"A384464",
"A384465",
"A384466",
"A384467"
]
| null | A.H.M. Smeets, May 30 2025 | 2025-06-26T07:39:27 | oeisdata/seq/A384/A384465.seq | e8bf79b05e6813cba24952b7708dd85d |
A384466 | Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384280. | [
"6",
"0",
"3",
"1",
"5",
"4",
"1",
"0",
"4",
"3",
"4",
"1",
"6",
"3",
"3",
"6",
"0",
"1",
"6",
"3",
"5",
"9",
"6",
"6",
"0",
"2",
"3",
"8",
"1",
"8",
"0",
"7",
"8",
"2",
"1",
"1",
"3",
"0",
"1",
"8",
"3",
"7",
"1",
"8",
"6",
"7",
"6",
"5",
"9",
"4",
"8",
"9",
"3",
"1",
"9",
"8",
"4",
"6",
"7",
"3",
"1",
"6",
"1",
"4",
"4",
"1",
"8",
"0",
"8",
"9",
"8",
"6",
"1",
"2",
"5",
"8",
"5",
"8",
"6",
"7",
"3",
"5",
"7",
"7",
"9",
"4",
"9"
]
| [
"nonn",
"cons"
]
| 16 | 0 | 1 | [
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281",
"A384463",
"A384464",
"A384465",
"A384466",
"A384467"
]
| null | A.H.M. Smeets, May 30 2025 | 2025-06-26T07:38:26 | oeisdata/seq/A384/A384466.seq | 35292f053c510a4de38125cd4173da1a |
A384467 | Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384281. | [
"3",
"5",
"7",
"4",
"1",
"8",
"6",
"9",
"2",
"4",
"3",
"7",
"7",
"9",
"9",
"6",
"8",
"6",
"6",
"4",
"1",
"4",
"9",
"2",
"0",
"1",
"7",
"4",
"5",
"8",
"0",
"9",
"1",
"2",
"8",
"1",
"7",
"6",
"3",
"5",
"7",
"8",
"3",
"6",
"4",
"9",
"1",
"9",
"3",
"4",
"0",
"9",
"2",
"1",
"7",
"4",
"8",
"2",
"2",
"5",
"0",
"4",
"6",
"6",
"7",
"5",
"7",
"6",
"4",
"1",
"5",
"9",
"2",
"0",
"7",
"0",
"2",
"7",
"1",
"1",
"5",
"1",
"4",
"3",
"6",
"2",
"8"
]
| [
"nonn",
"cons"
]
| 14 | 0 | 1 | [
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281",
"A384463",
"A384464",
"A384465",
"A384466",
"A384467"
]
| null | A.H.M. Smeets, May 30 2025 | 2025-06-26T07:37:37 | oeisdata/seq/A384/A384467.seq | c5f8d314c4700c60a16de5f3710e3b9c |
A384468 | a(0) = 1; for n >= 1, a(n) = a(n-1)/2 if a(n-1) is even, otherwise a(n) = 2*a(n-1) + n. | [
"1",
"3",
"8",
"4",
"2",
"1",
"8",
"4",
"2",
"1",
"12",
"6",
"3",
"19",
"52",
"26",
"13",
"43",
"104",
"52",
"26",
"13",
"48",
"24",
"12",
"6",
"3",
"33",
"94",
"47",
"124",
"62",
"31",
"95",
"224",
"112",
"56",
"28",
"14",
"7",
"54",
"27",
"96",
"48",
"24",
"12",
"6",
"3",
"54",
"27",
"104",
"52",
"26",
"13",
"80",
"40",
"20",
"10",
"5",
"69",
"198",
"99",
"260",
"130",
"65",
"195",
"456",
"228",
"114",
"57",
"184"
]
| [
"nonn",
"easy"
]
| 30 | 0 | 2 | [
"A000079",
"A006370",
"A384468"
]
| null | Simon R Blow, May 30 2025 | 2025-06-19T00:25:45 | oeisdata/seq/A384/A384468.seq | c976ed4b4448d4f7adb0ad77a0a3d805 |
A384469 | a(n) is the number of triples 1 <= A, B, C <= n such that the discriminant D = B^2 - 4*A*C of the polynomial A*x^2 + B*x + C is 0. | [
"0",
"1",
"1",
"4",
"4",
"5",
"5",
"8",
"10",
"11",
"11",
"16",
"16",
"17",
"17",
"22",
"22",
"25",
"25",
"28",
"28",
"29",
"29",
"36",
"40",
"41",
"43",
"46",
"46",
"49",
"49",
"54",
"54",
"55",
"55",
"64",
"64",
"65",
"65",
"70",
"70",
"71",
"71",
"74",
"76",
"77",
"77",
"86",
"92",
"97",
"97",
"100",
"100",
"103",
"103",
"108",
"108",
"109",
"109",
"118",
"118",
"119",
"121",
"130"
]
| [
"nonn"
]
| 34 | 1 | 4 | [
"A384469",
"A384666"
]
| null | Ctibor O. Zizka, May 30 2025 | 2025-06-13T14:25:25 | oeisdata/seq/A384/A384469.seq | 9e8cadd3f53507246709affd0f7b009b |
A384470 | a(n) = n! * Sum_{k=0..n} Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) / binomial(n,k). | [
"1",
"2",
"29",
"1108",
"82924",
"10302768",
"1917699552",
"499332175200",
"173242955039616",
"77238974345915520",
"43027312823342164800",
"29285800226400628915200",
"23913110797474508388449280",
"23071378298963178620672409600",
"25964692904608781751347296204800",
"33711625062334209438536728660070400"
]
| [
"nonn"
]
| 8 | 0 | 2 | [
"A187655",
"A187657",
"A226775",
"A384470",
"A384471",
"A384472"
]
| null | Vaclav Kotesovec, May 30 2025 | 2025-05-30T10:06:25 | oeisdata/seq/A384/A384470.seq | e398f76dc4cce7375f2abd992e1eae86 |
A384471 | a(n) = Sum_{k=0..n} binomial(n,k)^2 * Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k). | [
"1",
"2",
"18",
"306",
"8046",
"296100",
"14307254",
"865996306",
"63308257198",
"5432272670376",
"535074966419260",
"59461066810476232",
"7354069129792197762",
"1001371912804041913056",
"148806933109572134044158",
"23958722845801073318076450",
"4154065510530807075869275150",
"771608888261061026185781127184"
]
| [
"nonn"
]
| 7 | 0 | 2 | [
"A187655",
"A187657",
"A226775",
"A384470",
"A384471",
"A384472"
]
| null | Vaclav Kotesovec, May 30 2025 | 2025-05-30T10:06:29 | oeisdata/seq/A384/A384471.seq | 9cb6564cfe96785cb44dbf5a22c98aa1 |
A384472 | a(n) = Sum_{k=0..n} binomial(n,k)^3 * Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k). | [
"1",
"2",
"22",
"558",
"25506",
"1770300",
"166190354",
"19647687682",
"2798281247682",
"466166725448544",
"88942246964278060",
"19127775950813311232",
"4578817457796314714502",
"1207681779462031251096888",
"348018457509475159702959174",
"108798555057988053563408904750",
"36676526343321856806298038370210"
]
| [
"nonn"
]
| 9 | 0 | 2 | [
"A187655",
"A187657",
"A226775",
"A384470",
"A384471",
"A384472"
]
| null | Vaclav Kotesovec, May 30 2025 | 2025-05-30T10:53:41 | oeisdata/seq/A384/A384472.seq | e2beb3919e508986ce8661df9387b46f |
A384473 | Decimal expansion of the middle interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon. | [
"1",
"0",
"8",
"3",
"6",
"6",
"1",
"2",
"0",
"1",
"6",
"2",
"5",
"6",
"1",
"4",
"6",
"7",
"0",
"0",
"8",
"0",
"4",
"6",
"9",
"3",
"5",
"2",
"7",
"7",
"1",
"6",
"4",
"4",
"2",
"9",
"8",
"9",
"6",
"1",
"3",
"3",
"4",
"3",
"1",
"0",
"0",
"3",
"4",
"2",
"3",
"5",
"2",
"3",
"9",
"7",
"3",
"8",
"8",
"0",
"2",
"8",
"4",
"3",
"2",
"0",
"7",
"0",
"3",
"4",
"6",
"2",
"9",
"1",
"5",
"7",
"9",
"8",
"0",
"4",
"9",
"4",
"1",
"5",
"2",
"1",
"2",
"4",
"6",
"8",
"8",
"1",
"2",
"1",
"0",
"1",
"3",
"3",
"1",
"8"
]
| [
"nonn",
"cons"
]
| 18 | 3 | 3 | [
"A002194",
"A019824",
"A072097",
"A177870",
"A228719",
"A384473",
"A384474",
"A384475",
"A384476",
"A384477",
"A384478"
]
| null | Stefano Spezia, May 30 2025 | 2025-05-31T11:05:20 | oeisdata/seq/A384/A384473.seq | c2ee68efc06fdd67dbddd8eda9931c7e |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.