sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A384374
Expansion of e.g.f. exp(x)*(exp(x) - 1)*(exp(x) - x - 1)^2.
[ "0", "0", "0", "0", "0", "30", "390", "3080", "19236", "104874", "524250", "2471172", "11176968", "49065302", "210698670", "890007456", "3712887756", "15342622434", "62938446690", "256735466012", "1042705518960", "4220535078990", "17038468898550", "68644258099320", "276111986410740" ]
[ "nonn", "easy" ]
7
0
6
[ "A000478", "A384374" ]
null
Enrique Navarrete, May 27 2025
2025-05-28T01:09:25
oeisdata/seq/A384/A384374.seq
c2df85534e271333fe5514c789e5cd7a
A384375
Consecutive internal states of the linear congruential pseudo-random number generator 950706376*s mod (2^31-1) when started at s=1.
[ "1", "950706376", "129027171", "1728259899", "365181143", "1966843080", "1045174992", "636176783", "1602900997", "640853092", "429916489", "1671481929", "1285607481", "1066192246", "48796904", "1176434418", "776417870", "861463458", "1543924916", "557508687", "1650650964", "741730640", "1050856373" ]
[ "nonn", "easy" ]
23
1
2
[ "A096550", "A384375", "A384397", "A384398", "A384399", "A384400", "A384401", "A384402" ]
null
Sean A. Irvine, May 28 2025
2025-05-29T06:14:06
oeisdata/seq/A384/A384375.seq
158374276d84ebab01ab0905d603b3a0
A384376
Irregular triangle read by rows: T(n,k) is the number of connected induced k-vertex subgraphs of the 1-skeleton of the n-th Johnson solid, up to symmetries of that solid; 1 <= n <= 92, 1 <= k <= A242733(n).
[ "2", "2", "3", "2", "1", "2", "2", "3", "3", "2", "1", "2", "4", "6", "10", "14", "15", "8", "2", "1", "2", "4", "6", "13", "21", "37", "47", "51", "28", "12", "2", "1", "2", "4", "6", "13", "25", "49", "86", "136", "177", "174", "118", "47", "14", "2", "1", "3", "5", "9", "18", "39", "79", "168", "335", "646", "1147", "1843", "2548", "2908", "2420", "1300", "473", "121", "24", "3", "1", "3", "4", "6", "7", "6", "3", "1" ]
[ "nonn", "tabf", "fini" ]
9
1
1
[ "A242733", "A384376", "A384377", "A384378", "A384380" ]
null
Pontus von Brömssen and Peter Kagey, May 28 2025
2025-05-30T10:06:21
oeisdata/seq/A384/A384376.seq
8de8d60b0520bc4b9fe31070c64b5329
A384377
Number of connected induced subgraphs of the 1-skeleton of the n-th Johnson solid, up to symmetries of that solid.
[ "10", "13", "62", "224", "854", "14090", "30", "72", "157", "81", "196", "10", "20", "31", "79", "183", "86", "2196", "32069", "489168", "9965938", "3049", "49396", "843450", "17456717", "36", "261", "2117", "2019", "18717", "18302", "727214", "740170", "7545797", "9124", "9139", "314965", "11097938", "11101335" ]
[ "nonn", "fini", "more" ]
6
1
1
[ "A384376", "A384377", "A384379", "A384381" ]
null
Pontus von Brömssen and Peter Kagey, May 28 2025
2025-06-01T16:38:30
oeisdata/seq/A384/A384377.seq
25bcf0f4519cec17afd0705abd1e530a
A384378
Irregular triangle read by rows: T(n,k) is the number of connected subsets of k edges (or polysticks) of the n-th Johnson solid, up to symmetries of that solid; 1 <= n <= 92, 1 <= k <= A242732(n).
[ "2", "4", "7", "12", "10", "6", "2", "1", "2", "4", "9", "17", "28", "25", "16", "7", "2", "1", "4", "7", "20", "47", "123", "274", "531", "779", "758", "504", "241", "87", "22", "4", "1", "4", "7", "20", "51", "144", "382", "990", "2332", "4873", "8546", "11776", "11733", "8529", "4673", "1957", "639", "156", "31", "4", "1" ]
[ "nonn", "tabf", "fini" ]
8
1
1
[ "A242732", "A384376", "A384378", "A384379", "A384380" ]
null
Pontus von Brömssen and Peter Kagey, May 28 2025
2025-06-01T16:38:26
oeisdata/seq/A384/A384378.seq
f8d0e9ef5eb1b5308cecccf1730ec996
A384379
Number of connected subsets of edges (or edge-induced subgraphs, or polysticks) of the n-th Johnson solid, up to symmetries of that solid.
[ "44", "111", "3402", "56848", "1000431" ]
[ "nonn", "fini", "more" ]
6
1
1
[ "A343210", "A384377", "A384378", "A384379", "A384381" ]
null
Pontus von Brömssen and Peter Kagey, May 28 2025
2025-06-01T16:38:22
oeisdata/seq/A384/A384379.seq
0c7804c7b11ba6f84b062f411310ef0a
A384380
Irregular triangle read by rows: T(n,k) is the number of connected subsets of k faces (or polyforms) of the n-th Johnson solid, up to symmetries of that solid; 1 <= n <= 92, 1 <= k <= A242731(n).
[ "2", "2", "3", "2", "1", "2", "2", "3", "3", "2", "1", "4", "4", "9", "14", "14", "9", "4", "1", "4", "4", "12", "20", "32", "30", "23", "11", "4", "1", "4", "4", "13", "29", "54", "75", "75", "55", "31", "12", "4", "1", "5", "5", "17", "43", "118", "285", "595", "992", "1320", "1348", "1045", "603", "262", "86", "22", "5", "1", "3", "4", "6", "7", "6", "3", "1", "3", "4", "7", "12", "17", "16", "9", "3", "1" ]
[ "nonn", "tabf", "fini" ]
7
1
1
[ "A242731", "A384376", "A384378", "A384380", "A384381" ]
null
Pontus von Brömssen and Peter Kagey, May 28 2025
2025-06-01T16:38:33
oeisdata/seq/A384/A384380.seq
48e1ca48a0337d19d151a055f7d596ff
A384381
Number of connected subsets of faces (or polyforms) of the n-th Johnson solid, up to symmetries of that solid.
[ "10", "13", "59", "141", "357", "6752", "30", "72", "157", "442", "1950", "10", "40", "45", "180", "701", "1035", "1646", "14793", "153721", "3920545", "42372", "1495651", "59265752" ]
[ "nonn", "fini", "more" ]
5
1
1
[ "A384377", "A384379", "A384380", "A384381" ]
null
Pontus von Brömssen and Peter Kagey, May 28 2025
2025-06-01T16:38:18
oeisdata/seq/A384/A384381.seq
46fd6e8efbd2cde269c894f08c087c03
A384382
Number of polynomials with a shortest addition-multiplication chain of length n, starting with 1 and x.
[ "2", "4", "14", "62", "350", "2517", "22918", "259325" ]
[ "nonn", "more" ]
8
0
1
[ "A382928", "A383002", "A383331", "A384382", "A384383", "A384482" ]
null
Pontus von Brömssen, Jun 01 2025
2025-06-09T10:38:43
oeisdata/seq/A384/A384382.seq
fd68140a8bc55341a557f6a8e873b987
A384383
Number of polynomials with a shortest addition-multiplication-composition chain of length n, starting with 1 and x.
[ "2", "4", "14", "73", "586", "7250" ]
[ "nonn", "more" ]
7
0
1
[ "A382928", "A383331", "A384382", "A384383", "A384386", "A384482" ]
null
Pontus von Brömssen, Jun 01 2025
2025-06-09T10:38:35
oeisdata/seq/A384/A384383.seq
41f3ec2dedaa9a68e9ba280c17190189
A384384
Length of shortest addition-multiplication-composition chain for n, starting with 1 and x.
[ "0", "1", "2", "2", "3", "3", "4", "3", "3", "4", "4", "4", "5", "5", "4", "3", "4", "4", "5", "4", "5", "5", "6", "4", "4", "5", "4", "5", "5", "5", "5", "4", "5", "5", "5", "4", "5", "5", "5", "5", "5", "5", "6", "6", "5", "5", "6", "5", "5", "5", "6", "6", "6", "5", "6", "5", "6", "6", "6", "5", "6", "6", "6", "4", "5", "5", "6", "5", "6", "6", "6", "5", "6", "6", "5", "6", "6", "6", "6", "5", "4", "5", "5", "5", "6", "6", "6", "6", "6", "5", "5", "6", "6", "6", "7" ]
[ "nonn" ]
7
1
3
[ "A230697", "A384383", "A384384", "A384385", "A384386", "A384483" ]
null
Pontus von Brömssen, Jun 01 2025
2025-06-09T10:38:27
oeisdata/seq/A384/A384384.seq
c001881f60f6628c96cc3999b284b1ba
A384385
Smallest number with shortest addition-multiplication-composition chain of length n, starting with 1 and x, i.e., smallest k such that A384384(k) = n.
[ "1", "2", "3", "5", "7", "13", "23", "95" ]
[ "nonn", "more" ]
7
0
2
[ "A383001", "A384383", "A384384", "A384385", "A384386", "A384484" ]
null
Pontus von Brömssen, Jun 01 2025
2025-06-09T10:38:32
oeisdata/seq/A384/A384385.seq
c7fa87642e1c517a331b2c1336db0f15
A384386
Number of integers with a shortest addition-multiplication-composition chain of length n, starting with 1 and x, i.e., number of integers k with A384384(k) = n.
[ "1", "1", "2", "5", "16", "82", "907" ]
[ "nonn", "more" ]
6
0
3
[ "A383002", "A384383", "A384384", "A384385", "A384386", "A384485" ]
null
Pontus von Brömssen, Jun 01 2025
2025-06-09T10:38:20
oeisdata/seq/A384/A384386.seq
4296381315590622a95caae72ec7ad3d
A384387
Consecutive states of the linear congruential pseudo-random number generator (13493037709*s+7261067085) mod 2^35 when started at s=1.
[ "1", "20754104794", "34326110303", "33058783648", "5709053037", "32799031638", "11541606315", "32442345084", "2725994905", "16337875602", "5290419639", "32195142424", "16205355909", "13352325518", "14174310019", "8003654516", "31661086257", "1566661194", "21726656015", "17779217296", "34005826973" ]
[ "nonn", "easy" ]
71
1
2
[ "A384217", "A384387" ]
null
Sean A. Irvine, May 29 2025
2025-05-30T03:44:44
oeisdata/seq/A384/A384387.seq
af7badcb0755d1f9bf9ff09062076cae
A384388
Consecutive internal states of the linear congruential pseudo-random number generator (5^11*s+293183133) mod 2^30 when started at s=1.
[ "1", "342011258", "674237679", "120642288", "386908109", "35940502", "86383643", "595352556", "44556633", "381355634", "755657479", "1018258856", "1413285", "36537102", "330073523", "312726564", "994425265", "820746858", "231323679", "317080416", "206637181", "363448454", "469306955", "780537692", "46655753" ]
[ "nonn", "easy" ]
10
1
2
[ "A381318", "A384388" ]
null
Sean A. Irvine, May 27 2025
2025-05-28T09:18:19
oeisdata/seq/A384/A384388.seq
c0180c5302f03069ee9c9fa13dfeb664
A384389
Number of proper ways to choose disjoint strict integer partitions of each prime index of n.
[ "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "2", "0", "3", "0", "0", "0", "4", "0", "5", "0", "1", "1", "7", "0", "2", "1", "0", "0", "9", "0", "11", "0", "1", "2", "1", "0", "14", "2", "1", "0", "17", "0", "21", "0", "0", "4", "26", "0", "2", "0", "2", "0", "31", "0", "2", "0", "3", "4", "37", "0", "45", "6", "0", "0", "3", "0", "53", "0", "4", "0", "63", "0", "75", "7", "0", "0", "2", "0", "88", "0", "0", "9" ]
[ "nonn" ]
13
1
11
[ "A000009", "A000041", "A048767", "A048768", "A055396", "A056239", "A061395", "A112798", "A179009", "A217605", "A239455", "A279375", "A279790", "A299200", "A351293", "A351294", "A351295", "A357982", "A381454", "A382525", "A382912", "A382913", "A383533", "A383706", "A383708", "A383710", "A383711", "A384005", "A384321", "A384322", "A384347", "A384349", "A384389", "A384390", "A384393", "A384394", "A384396" ]
null
Gus Wiseman, Jun 01 2025
2025-06-03T08:43:51
oeisdata/seq/A384/A384389.seq
46a6c14c0472206193f823769f205ffe
A384390
Heinz numbers of integer partitions with a unique proper way to choose disjoint strict partitions of each part.
[ "5", "7", "21", "22", "26", "33", "35", "39", "102", "114", "130", "154", "165", "170", "190", "195", "231", "238", "255", "285" ]
[ "nonn" ]
9
1
1
[ "A048767", "A048768", "A055396", "A056239", "A061395", "A098859", "A112798", "A122111", "A130091", "A179009", "A217605", "A239455", "A279375", "A279790", "A299200", "A317142", "A351201", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382912", "A382913", "A383533", "A383707", "A383708", "A383710", "A383711", "A384005", "A384317", "A384319", "A384320", "A384321", "A384322", "A384323", "A384347", "A384349", "A384389", "A384390", "A384393" ]
null
Gus Wiseman, Jun 02 2025
2025-06-03T08:43:47
oeisdata/seq/A384/A384390.seq
f6c39881659599b8bc27bf3c895e76ec
A384391
Number of subsets of {1..n} containing n and some element that is a sum of distinct non-elements.
[ "0", "0", "1", "3", "9", "20", "48", "102", "219", "454", "945", "1920", "3925", "7921", "16008" ]
[ "nonn", "more" ]
4
0
4
[ "A048767", "A048768", "A179009", "A179822", "A217605", "A239455", "A279375", "A279790", "A299200", "A317141", "A317142", "A326080", "A326083", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A383706", "A383707", "A383708", "A383710", "A384317", "A384318", "A384319", "A384320", "A384321", "A384350", "A384391" ]
null
Gus Wiseman, Jun 06 2025
2025-06-06T08:33:32
oeisdata/seq/A384/A384391.seq
a76a319ad91b2a1c4547d049696b80e8
A384392
Number of integer partitions of n whose distinct parts are maximally refined.
[ "1", "1", "2", "2", "4", "6", "7", "10", "14", "20", "24", "33", "41", "55", "70", "88", "110", "140", "171", "214", "265", "324", "397", "485", "588", "711", "861", "1032", "1241", "1486", "1773" ]
[ "nonn", "more" ]
12
0
3
[ "A048767", "A048768", "A179009", "A179822", "A217605", "A239455", "A279375", "A279790", "A299200", "A317142", "A326080", "A326083", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A383706", "A383707", "A383708", "A383710", "A384317", "A384318", "A384319", "A384320", "A384321", "A384350", "A384391", "A384392" ]
null
Gus Wiseman, Jun 07 2025
2025-06-10T16:26:24
oeisdata/seq/A384/A384392.seq
311c6359a4283e84854d2a0a9d88471d
A384393
Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part.
[ "11", "13", "17", "19", "23", "25", "29", "31", "34", "37", "38", "41", "43", "46", "47", "49", "51", "53", "55", "57", "58", "59", "61", "62", "65", "67", "69", "71", "73", "74", "77", "79", "82", "83", "85", "86", "87", "89", "91", "93", "94", "95", "97", "101", "103", "106", "107", "109", "111", "113", "115", "118", "119", "121", "122", "123", "127", "129", "131", "133", "134" ]
[ "nonn" ]
8
1
1
[ "A048767", "A048768", "A055396", "A056239", "A061395", "A112798", "A179009", "A217605", "A239455", "A279375", "A279790", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382525", "A382912", "A382913", "A383533", "A383706", "A383707", "A383708", "A383710", "A384317", "A384318", "A384319", "A384320", "A384321", "A384322", "A384323", "A384348", "A384349", "A384389", "A384390", "A384393", "A384395" ]
null
Gus Wiseman, Jun 02 2025
2025-06-03T08:43:43
oeisdata/seq/A384/A384393.seq
d0d8545009a93292bbd2edc25f747fe4
A384394
Number of proper ways to choose disjoint strict integer partitions, one of each conjugate prime index of n.
[ "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0" ]
[ "nonn" ]
7
1
27
[ "A000009", "A000041", "A048767", "A048768", "A055396", "A056239", "A061395", "A112798", "A122111", "A217605", "A239455", "A279790", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382525", "A382912", "A382913", "A383533", "A383706", "A383708", "A383710", "A383711", "A384005", "A384321", "A384322", "A384347", "A384349", "A384389", "A384390", "A384393", "A384394", "A384396" ]
null
Gus Wiseman, Jun 03 2025
2025-06-04T10:25:13
oeisdata/seq/A384/A384394.seq
1c8bc383c56e3f8991364ca774c5364a
A384395
Number of integer partitions of n with more than one proper way to choose disjoint strict partitions of each part.
[ "0", "0", "0", "0", "0", "1", "2", "1", "4", "5", "8", "8", "12", "17", "22", "29", "31", "40", "50", "65", "77", "101", "112", "135", "162", "201" ]
[ "nonn", "more" ]
5
0
7
[ "A000009", "A000041", "A048767", "A048768", "A098859", "A179009", "A217605", "A239455", "A279375", "A279790", "A299200", "A317142", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382525", "A382912", "A382913", "A383533", "A383706", "A383707", "A383708", "A383710", "A383711", "A384005", "A384317", "A384318", "A384319", "A384321", "A384322", "A384323", "A384347", "A384348", "A384349", "A384390", "A384393", "A384395" ]
null
Gus Wiseman, May 30 2025
2025-05-30T23:12:13
oeisdata/seq/A384/A384395.seq
09cb1fe72cb9ed3193b8816c760a4d29
A384396
Position of first appearance of n in A384389 (proper choices of disjoint strict partitions of each prime index).
[ "1", "5", "11", "13", "17", "19", "62", "23", "111", "29", "123", "31", "129", "217", "37", "141", "106", "41", "159", "391", "118", "43" ]
[ "nonn", "more" ]
5
0
2
[ "A000009", "A000041", "A048767", "A048768", "A055396", "A056239", "A061395", "A112798", "A179009", "A217605", "A239455", "A279790", "A351293", "A351294", "A351295", "A357982", "A381454", "A382525", "A382912", "A382913", "A383706", "A383708", "A383710", "A384321", "A384322", "A384347", "A384349", "A384389", "A384390", "A384393", "A384396" ]
null
Gus Wiseman, Jun 03 2025
2025-06-05T09:54:25
oeisdata/seq/A384/A384396.seq
ce75efae86066738c872ed437b8bf3ea
A384397
Consecutive states of the linear congruential pseudo-random number generator 45742*s mod (2^31-909) when started at s=1.
[ "1", "45742", "2092330564", "521429475", "1283746116", "346822856", "916086159", "1929881610", "71652547", "472145160", "1777485336", "2037740772", "997589268", "2015058584", "703108709", "897067814", "1723253915", "1726644935", "72441828", "68230099", "688768691", "2085682592", "1372443189", "933442051" ]
[ "nonn", "easy" ]
13
1
2
[ "A096550", "A096561", "A384397", "A384398", "A384399", "A384400", "A384401", "A384402" ]
null
Sean A. Irvine, May 27 2025
2025-05-29T06:13:24
oeisdata/seq/A384/A384397.seq
ce73722ae5f842ad6138cc7c1c08c9e9
A384398
Consecutive states of the linear congruential pseudo-random number generator 42024*s mod (2^31-847) when started at s=1.
[ "1", "42024", "1766016576", "222470065", "1089378807", "16633650", "1080597275", "348574654", "521074075", "1882288804", "923207262", "437695422", "522223563", "796268093", "293335050", "560863460", "1102302065", "1937961990", "1924405437", "1306764430", "38219148", "1951823205", "312782725", "1786493280" ]
[ "nonn", "easy" ]
15
1
2
[ "A096550", "A096561", "A384397", "A384398", "A384399", "A384400", "A384401", "A384402" ]
null
Sean A. Irvine, May 27 2025
2025-05-29T06:16:00
oeisdata/seq/A384/A384398.seq
66f3acec717aa734538e8b09f8ac9c60
A384399
Consecutive states of the linear congruential pseudo-random number generator 41546*s mod (2^31-837) when started at s=1.
[ "1", "41546", "1726070116", "415531613", "62076069", "2032989474", "2081730174", "1986561601", "1628882794", "2086219292", "1660453472", "1609609959", "240622074", "352201199", "1750622311", "406689858", "2089566331", "1130153051", "774477142", "692384319", "266663829", "2099100496", "2099734917" ]
[ "nonn", "easy" ]
13
1
2
[ "A096550", "A096561", "A384397", "A384398", "A384399", "A384400", "A384401", "A384402" ]
null
Sean A. Irvine, May 27 2025
2025-05-30T03:45:16
oeisdata/seq/A384/A384399.seq
df3954fdea52f6945af58fec7b5cdf66
A384400
Consecutive states of the linear congruential pseudo-random number generator 40692*s mod (2^31-249) when started at s=1.
[ "1", "40692", "1655838864", "2103410263", "1872071452", "652912057", "1780294415", "535353314", "525453832", "1422611300", "1336516156", "498340277", "1924298326", "2007787254", "2020508212", "2118231989", "1554910725", "1123836963", "514716691", "445999725", "238604751", "532080813", "504813878" ]
[ "nonn", "easy" ]
16
1
2
[ "A096550", "A096561", "A384397", "A384398", "A384399", "A384400", "A384401", "A384402" ]
null
Sean A. Irvine, May 27 2025
2025-06-19T22:52:48
oeisdata/seq/A384/A384400.seq
e9cebb161e280a81fbf5829c9518ef91
A384401
Consecutive states of the linear congruential pseudo-random number generator 40014*s mod (2^31-85) when started at s=1.
[ "1", "40014", "1601120196", "1346387765", "439883729", "732249858", "2127568003", "1962667596", "707287434", "1860990862", "1695805043", "1904850491", "53445315", "1814689225", "112933431", "612891482", "2124954851", "479214492", "407948861", "643161691", "28884682", "445508654", "322224693", "7553450" ]
[ "nonn", "easy" ]
13
1
2
[ "A096550", "A096561", "A384397", "A384398", "A384399", "A384400", "A384401", "A384402" ]
null
Sean A. Irvine, May 27 2025
2025-05-30T11:26:24
oeisdata/seq/A384/A384401.seq
c78e3b5609d5809594c36f92c201ba05
A384402
Consecutive states of the linear congruential pseudo-random number generator 39373*s mod (2^31-1) when started at s=1.
[ "1", "39373", "1550233129", "1548773083", "2044440394", "1622092461", "482805173", "2110316932", "1218777559", "1406738292", "1756031139", "1978020682", "2113853931", "894602131", "142925769", "1009147697", "429837187", "1808425391", "1165119911", "1868072236", "293238278", "798633422", "1138165032" ]
[ "nonn", "easy" ]
13
1
2
[ "A096550", "A096561", "A384397", "A384398", "A384399", "A384400", "A384401", "A384402" ]
null
Sean A. Irvine, May 27 2025
2025-05-30T11:26:28
oeisdata/seq/A384/A384402.seq
a63461a3c44e5e26736b8a9806c53b1a
A384403
a(n) is the smallest number with n digits, all of which are prime, and n prime factors, counted with multiplicity, or -1 if there is no such number.
[ "2", "22", "222", "2223", "22232", "222222", "2222325", "22222272", "222225552", "2222223255", "22222335232", "222222327525", "2222222372352", "22222222575552", "222222223327232", "2222222225252352", "22222222223327232", "222222222272535552", "2222222222225252352", "22222222222327775232", "222222222222737375232", "2222222222227572375552" ]
[ "nonn", "base" ]
8
1
1
null
null
Robert Israel, May 27 2025
2025-06-02T12:59:18
oeisdata/seq/A384/A384403.seq
e3bce3eea2812dc822c8a156a597ffba
A384404
Consecutive states of the linear congruential pseudo-random number generator for Turbo Pascal when started at 1.
[ "1", "134775814", "3698175007", "870078620", "1172187917", "2884733762", "1368768587", "694906232", "1598751577", "1828254910", "352239543", "2039224980", "303092965", "3611442298", "256513635", "1259699184", "3939707825", "1580146294", "3327160399", "1408429452", "2996491197", "3625686706", "3083712891" ]
[ "nonn", "easy" ]
30
1
2
[ "A152960", "A383940", "A384126", "A384150", "A384194", "A384236", "A384339", "A384404", "A384429", "A384432" ]
null
Sean A. Irvine, May 30 2025
2025-06-20T17:43:23
oeisdata/seq/A384/A384404.seq
2ac41054219d3ee45da354b52b1697bf
A384405
Consecutive internal states of the linear congruential pseudo-random number generator 69621 * s mod (2^31-1) when started at s=1.
[ "1", "69621", "552116347", "1082396834", "201323037", "1832878655", "1219051368", "874078441", "971035822", "1699755902", "1619285207", "1953863635", "1883480414", "143449980", "1332099030", "837788288", "2002546328", "344571154", "1995975644", "300997201", "580703395", "623924873", "1121855264" ]
[ "nonn", "easy" ]
10
1
2
[ "A096550", "A384404", "A384405" ]
null
Sean A. Irvine, May 27 2025
2025-06-04T10:53:45
oeisdata/seq/A384/A384405.seq
abe40c8e0706334568170f7b49e4c76c
A384406
Consecutive internal states of the IMSL pseudo-random number generator RNUN when started with ISEED=1 and RNOPT=3.
[ "1", "397204094", "2083249653", "858616159", "557054349", "1979126465", "2081507258", "1166038895", "1141799280", "106931857", "142950581", "1759473232", "1125003378", "1832650327", "144277780", "2055193084", "638219178", "585429359", "1481612600", "2097586569", "486421192", "1477976737", "886403653" ]
[ "nonn", "easy" ]
14
1
2
[ "A096550", "A384406" ]
null
Sean A. Irvine, May 27 2025
2025-05-30T11:26:54
oeisdata/seq/A384/A384406.seq
7947eb02515d78d2f3413a2acbe10950
A384407
Expansion of Product_{k>=1} 1/(1 - k^2 * x)^((1/3) * (1/2)^(k+1)).
[ "1", "1", "13", "533", "46091", "6868835", "1568192799", "508404298647", "222017327728032", "125619393196237384", "89384894988513559768", "78116626967146591776664", "82253687701869747574913672", "102704417752375981385023218632", "150045690407598038822943364871144", "253563964213823585133287012876023080" ]
[ "nonn" ]
13
0
3
[ "A000670", "A227044", "A384407", "A384409" ]
null
Seiichi Manyama, May 28 2025
2025-05-29T07:46:08
oeisdata/seq/A384/A384407.seq
f261db7a41fa89653ed7317592eeb836
A384408
Expansion of Product_{k>=1} 1/(1 - k^3 * x)^((1/2)^(k+1)).
[ "1", "13", "2426", "2393226", "7056543721", "46153703519501", "564874416706639304", "11596724623199364432312", "369937054535706501459633546", "17326810763609633232550088712162", "1140582994940898154002780391375267884", "101920298764725526200442366857326292990348" ]
[ "nonn" ]
11
0
2
[ "A084784", "A249941", "A384408", "A384410" ]
null
Seiichi Manyama, May 28 2025
2025-05-29T07:57:35
oeisdata/seq/A384/A384408.seq
f99d54df2609faea2f073cde58a185f4
A384409
Expansion of Product_{k>=1} 1/(1 - k^4 * x)^((1/3) * (1/2)^(k+1)).
[ "1", "25", "91285", "3123562205", "443053422073715", "178523879060427556091", "164353348187741234196744375", "299888034255064866129187000267695", "981055599661644496521237670996742113560", "5340738663490095110375815302474169583702354680" ]
[ "nonn" ]
11
0
2
[ "A000670", "A384407", "A384409" ]
null
Seiichi Manyama, May 28 2025
2025-05-28T09:19:02
oeisdata/seq/A384/A384409.seq
bd6615ca9527d04a5a9a6453ad0d6def
A384410
Expansion of Product_{k>=1} 1/(1 - k^5 * x)^((1/2)^(k+1)).
[ "1", "541", "51270122", "76788748015146", "669464791102102157065", "21339839181227035325658510557", "1900606380926543510490023912037413624", "396633271551441702901523258702004560154006264", "171270169295129060094464591065561066259566766138488074" ]
[ "nonn" ]
11
0
2
[ "A000670", "A084784", "A384408", "A384410" ]
null
Seiichi Manyama, May 28 2025
2025-05-28T09:18:59
oeisdata/seq/A384/A384410.seq
b3512afabd03d2932edf6ef8fa9f9226
A384411
Pairs (k, m) such that k = sigma(m) - m and m = sigma(2*k) - 2*k.
[ "26", "46", "296", "586" ]
[ "nonn", "hard", "more" ]
35
1
1
[ "A000203", "A001065", "A063990", "A259180", "A346878", "A383483", "A384411" ]
null
S. I. Dimitrov, Jun 01 2025
2025-06-20T08:14:22
oeisdata/seq/A384/A384411.seq
ca3b7013c9e7ff1362e93c3acfb8e282
A384412
Expansion of Product_{k>=1} 1/(1 - k^2 * x)^((1/30) * (2/3)^k).
[ "1", "1", "37", "4477", "1139503", "498101431", "332955009307", "315774077663395", "403232260150593946", "667010006578379121074", "1387375789650073950228650", "3544016332332206162590402778", "10907098996548018595779254922854", "39804369748279182675138824291484662", "169958609977149735126105997027662792638" ]
[ "nonn" ]
13
0
3
[ "A004123", "A050351", "A247082", "A384412", "A384414" ]
null
Seiichi Manyama, May 28 2025
2025-05-28T09:19:06
oeisdata/seq/A384/A384412.seq
b16b545e31e3238fa2ded3c26abd37aa
A384413
Expansion of Product_{k>=1} 1/(1 - k^3 * x)^((1/6) * (2/3)^k).
[ "1", "37", "33987", "169103895", "2499834885228", "81779253109721484", "5002571587280667349252", "513188808423273125116834036", "81795428604490137664191461936826", "19140816569244304756404266108586220066", "6295058477497449841660364475294196843864030", "2810342651288539045376339873565157506716615522598" ]
[ "nonn" ]
10
0
2
[ "A004123", "A090351", "A384413" ]
null
Seiichi Manyama, May 28 2025
2025-05-28T09:19:13
oeisdata/seq/A384/A384413.seq
ae7fd9ec8e93ecbca09e06ca4125c53f
A384414
Expansion of Product_{k>=1} 1/(1 - k^4 * x)^((1/30) * (2/3)^k).
[ "1", "73", "2271421", "664978095445", "805854449283423655", "2773445081734579264589407", "21807207369084946567603587345091", "339838389273170021807379637478064625867", "9495034758014772381226851471008240873743234210", "441461703234194795490537796224906335240071042475017490" ]
[ "nonn" ]
14
0
2
[ "A004123", "A384412", "A384414" ]
null
Seiichi Manyama, May 28 2025
2025-05-28T09:19:10
oeisdata/seq/A384/A384414.seq
c67b9147cd2b2bf6c111964b0a6d9aed
A384415
a(n) = 4^n - 3^n - n*3^(n-1) - binomial(n,2)*3^(n-2).
[ "0", "0", "0", "1", "13", "106", "694", "3991", "21067", "104680", "497452", "2285053", "10222777", "44788342", "192970834", "820244467", "3448381783", "14367483412", "59421385000", "244271688313", "999169721125", "4070288777410", "16525230017710", "66906367267471", "270271938430243" ]
[ "nonn", "easy" ]
9
0
5
[ "A086443", "A345954", "A384415" ]
null
Enrique Navarrete, May 28 2025
2025-06-03T01:00:54
oeisdata/seq/A384/A384415.seq
b21d3fe79562493b29e70d16c3479d73
A384416
Consecutive internal states of the linear congruential pseudo-random number generator of the HP 48 series calculators when started at 1.
[ "1", "2851130928467", "261097470970089", "335429755623563", "468090732667921", "287888716607107", "194022960814969", "298923961822523", "84062462462241", "191517259514547", "165777802909449", "436661297384683", "996040654470961", "669370619746787", "188023750085529", "201468430854043", "677208350742081" ]
[ "nonn", "easy" ]
10
1
2
[ "A096550", "A096561", "A381318", "A382535", "A383809", "A384081", "A384221", "A384361", "A384416" ]
null
Paolo Xausa, May 28 2025
2025-05-28T04:44:19
oeisdata/seq/A384/A384416.seq
f0e151e48c3e70c4b724f144797e3da2
A384417
Expansion of g.f. cosh(9*arctanh(8*sqrt(x))).
[ "1", "2592", "1230336", "294469632", "49690312704", "6822215811072", "818458027622400", "89312567167549440", "9086229152658358272", "875874088323041460224", "80899222450192930308096", "7217466034064795168145408", "625687045828728598806134784", "52946875811413468120885493760", "4389120887020725640048536453120" ]
[ "nonn" ]
9
0
2
[ "A285043", "A285044", "A285045", "A285046", "A383928", "A384335", "A384417" ]
null
Karol A. Penson, May 28 2025
2025-05-30T23:57:32
oeisdata/seq/A384/A384417.seq
8df72faf1c7e1df17c38b6a3a50b4490
A384418
Powerful exponentially squarefree numbers.
[ "1", "4", "8", "9", "25", "27", "32", "36", "49", "64", "72", "100", "108", "121", "125", "128", "169", "196", "200", "216", "225", "243", "288", "289", "343", "361", "392", "441", "484", "500", "529", "576", "675", "676", "729", "800", "841", "864", "900", "961", "968", "972", "1000", "1024", "1089", "1125", "1152", "1156", "1225", "1323", "1331", "1352", "1369" ]
[ "nonn", "easy" ]
8
1
2
[ "A001694", "A005117", "A209061", "A246547", "A383211", "A384418" ]
null
Amiram Eldar, May 28 2025
2025-05-28T10:52:11
oeisdata/seq/A384/A384418.seq
2f611a4ac4d8737862b1aa55e1619c37
A384419
Exponentially squarefree prime powers.
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "13", "17", "19", "23", "25", "27", "29", "31", "32", "37", "41", "43", "47", "49", "53", "59", "61", "64", "67", "71", "73", "79", "83", "89", "97", "101", "103", "107", "109", "113", "121", "125", "127", "128", "131", "137", "139", "149", "151", "157", "163", "167", "169", "173", "179", "181", "191", "193", "197", "199", "211", "223" ]
[ "nonn", "easy" ]
8
1
2
[ "A000040", "A000961", "A005117", "A209061", "A283262", "A383211", "A384419" ]
null
Amiram Eldar, May 28 2025
2025-05-28T10:52:08
oeisdata/seq/A384/A384419.seq
0f2b6f9e897a835ed60407a7ef55c602
A384420
The number of exponentially squarefree prime powers (not including 1) that divide n.
[ "0", "1", "1", "2", "1", "2", "1", "3", "2", "2", "1", "3", "1", "2", "2", "3", "1", "3", "1", "3", "2", "2", "1", "4", "2", "2", "3", "3", "1", "3", "1", "5", "2", "2", "2", "4", "1", "2", "2", "4", "1", "3", "1", "3", "3", "2", "1", "4", "2", "3", "2", "3", "1", "4", "2", "4", "2", "2", "1", "4", "1", "2", "3", "6", "2", "3", "1", "3", "2", "3", "1", "5", "1", "2", "3", "3", "2", "3", "1", "4", "3", "2", "1", "4", "2", "2", "2" ]
[ "nonn", "easy" ]
7
1
4
[ "A070321", "A077761", "A378085", "A384419", "A384420", "A384421" ]
null
Amiram Eldar, May 28 2025
2025-05-28T10:52:04
oeisdata/seq/A384/A384420.seq
b6246c4ad63fd1f5f81b4829ca2f9732
A384421
The number of exponentially squarefree prime powers (not including 1) that unitarily divide n.
[ "0", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "2", "0", "1", "2", "1", "2", "2", "2", "1", "2", "1", "2", "1", "2", "1", "3", "1", "1", "2", "2", "2", "2", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "1", "1", "1", "2", "2", "2", "1", "2", "2", "2", "2", "2", "1", "3", "1", "2", "2", "1", "2", "3", "1", "2", "2", "3", "1", "2", "1", "2", "2", "2", "2", "3", "1", "1", "0", "2", "1", "3", "2", "2", "2" ]
[ "nonn", "easy" ]
8
1
6
[ "A008966", "A125029", "A383959", "A384419", "A384420", "A384421" ]
null
Amiram Eldar, May 28 2025
2025-05-28T10:51:59
oeisdata/seq/A384/A384421.seq
43db90146c129af626108d5839ece06f
A384422
The number of prime powers (not including 1) p^e that divide n such that e is coprime to the p-adic valuation of n.
[ "0", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "2", "2", "1", "2", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "1", "3", "1", "4", "2", "2", "2", "2", "1", "2", "2", "3", "1", "3", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "1", "3", "2", "3", "2", "2", "1", "3", "1", "2", "2", "2", "2", "3", "1", "2", "2", "3", "1", "3", "1", "2", "2", "2", "2", "3", "1", "3", "2", "2", "1", "3", "2", "2", "2" ]
[ "nonn", "easy" ]
7
1
6
[ "A000010", "A072911", "A077761", "A085548", "A384422" ]
null
Amiram Eldar, May 28 2025
2025-05-28T10:51:55
oeisdata/seq/A384/A384422.seq
dd570d6a254578555da5ca5a3beb88c7
A384423
The number of prime powers (not including 1) p^e that divide n such that e is unitarily coprime to the p-adic valuation of n.
[ "0", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "2", "3", "1", "2", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "1", "3", "1", "4", "2", "2", "2", "2", "1", "2", "2", "3", "1", "3", "1", "2", "2", "2", "1", "4", "1", "2", "2", "2", "1", "3", "2", "3", "2", "2", "1", "3", "1", "2", "2", "2", "2", "3", "1", "2", "2", "3", "1", "3", "1", "2", "2", "2", "2", "3", "1", "4", "3", "2", "1", "3", "2", "2", "2" ]
[ "nonn", "easy" ]
8
1
6
[ "A047994", "A077761", "A085548", "A321167", "A384423" ]
null
Amiram Eldar, May 28 2025
2025-05-28T10:51:51
oeisdata/seq/A384/A384423.seq
3616c3057137671e3add23884f3b557b
A384424
The maximal possible number of 'good' steps in a Hamiltonian cycle on the n X n king's graph, as is specified in the comments.
[ "0", "0", "5", "8", "16", "24", "36", "44" ]
[ "nonn", "more" ]
22
1
3
[ "A308129", "A384424" ]
null
Yifan Xie, May 28 2025
2025-06-13T16:44:59
oeisdata/seq/A384/A384424.seq
7ff7e9668ff46347788bc6d23bebe6f6
A384425
Decimal expansion of Sum_{k>=1} (-1)^(k+1)/(6k-5)^7 + (-1)^(k-1)/(6k-1)^7.
[ "1", "0", "0", "0", "0", "1", "1", "5", "5", "1", "5", "6", "1", "2", "7", "1", "7", "5", "2", "1", "6", "1", "8", "6", "8", "4", "2", "7", "6", "0", "8", "2", "0", "3", "5", "0", "0", "1", "4", "1", "1", "9", "2", "6", "8", "3", "3", "5", "9", "1", "8", "9", "3", "1", "5", "7", "0", "5", "8", "9", "6", "8", "8", "6", "6", "2", "3", "1", "7", "3", "1", "3", "8", "4", "1", "9", "5", "9", "4", "5", "9", "4", "1", "5", "3", "9", "9", "4", "6", "1", "0", "2", "2", "2", "8", "5", "6", "0", "4", "6" ]
[ "nonn", "cons" ]
12
1
8
[ "A013665", "A092735", "A143298", "A384425" ]
null
Jason Bard, Jun 14 2025
2025-06-16T00:46:46
oeisdata/seq/A384/A384425.seq
f8f00400962ff39031be9e7a7e22f3ff
A384426
G.f.: Sum_{k>=1} x^k * Product_{j=k..2*k} (1 + x^j).
[ "0", "1", "2", "2", "3", "2", "3", "3", "4", "4", "4", "5", "6", "5", "6", "7", "8", "8", "9", "9", "10", "12", "12", "13", "14", "14", "16", "18", "19", "20", "21", "22", "24", "26", "28", "30", "32", "33", "34", "38", "40", "43", "46", "48", "51", "54", "56", "60", "64", "67", "72", "77", "80", "84", "88", "92", "98", "105", "110", "116", "122", "128", "134", "142", "148", "155", "164", "172" ]
[ "nonn" ]
14
0
3
[ "A207642", "A237824", "A384426" ]
null
Vaclav Kotesovec, Jun 14 2025
2025-06-16T06:11:04
oeisdata/seq/A384/A384426.seq
b2ad1385f77b796e5b10bbb3828a9db6
A384427
Evil numbers that are not a multiple of any other evil number.
[ "3", "5", "17", "23", "29", "43", "53", "71", "77", "83", "89", "101", "113", "139", "149", "163", "169", "197", "209", "257", "263", "269", "277", "281", "287", "293", "311", "317", "329", "337", "343", "347", "349", "353", "359", "373", "383", "389", "401", "407", "413", "427", "449", "461", "467", "469", "479", "503", "509", "523", "533", "547", "553", "571", "593", "599" ]
[ "nonn", "base" ]
33
1
1
[ "A001969", "A027699", "A129771", "A217790", "A384427" ]
null
Francisco J. Muñoz, May 28 2025
2025-06-20T10:46:56
oeisdata/seq/A384/A384427.seq
e652b6d8ab8363aba053b8dd170270d6
A384428
a(n) is the minimal area of a polyomino without holes having a product of edge lengths equal to n, or 0 if no solution is possible.
[ "1", "0", "4", "2", "7", "0", "10", "5", "3", "0", "16", "4", "19", "0", "6", "4", "25", "0", "28", "6", "9", "0", "34", "5", "5", "0", "6", "9", "43", "0", "46", "6", "15", "0", "8", "5", "55", "0", "18", "6", "61", "0", "64", "15", "8", "0", "70", "6", "7", "0" ]
[ "nonn", "more", "changed" ]
36
1
3
[ "A000104", "A027709", "A384428" ]
null
Gordon Hamilton, May 28 2025
2025-06-30T17:10:59
oeisdata/seq/A384/A384428.seq
c87f112b661f52c34fd4e2a159c3d252
A384429
Consecutive states of the linear congruential pseudo-random number generator for Prime Sheffield Pascal when started at 1.
[ "1", "16807", "282475249", "1622647863", "947787489", "1578110407", "1878557649", "613813847", "2005365185", "1564292583", "1570623665", "602936439", "1724879009", "1159739911", "1187094929", "1381381783", "437908353", "499227175", "292517489", "751367351", "1027218017", "832165447", "1791151953" ]
[ "nonn", "easy" ]
13
1
2
[ "A096550", "A384429" ]
null
Sean A. Irvine, May 28 2025
2025-06-12T22:03:13
oeisdata/seq/A384/A384429.seq
fa48133a6d6de6afac3c725584968db9
A384430
a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^5, where 0 < x < y < z < w has exactly n integer solutions.
[ "8", "9", "10", "13", "74", "23", "40", "88", "31", "22", "17", "56" ]
[ "nonn", "more" ]
26
1
1
[ "A383877", "A384182", "A384430" ]
null
Zhining Yang, Jun 14 2025
2025-06-20T23:10:25
oeisdata/seq/A384/A384430.seq
06b5396e7cf0908e1cd9ee358ba84363
A384431
Consecutive states of the linear congruential pseudo-random number generator (430*s + 2531) mod 11979 when started at s=1.
[ "1", "2961", "5987", "1456", "5703", "11105", "10039", "6861", "5927", "11593", "4257", "254", "3940", "7692", "3887", "8860", "3009", "2669", "217", "9", "6401", "11770", "8493", "926", "5404", "2325", "8024", "2899", "3285", "1559", "2077", "9195", "3311", "760", "5898", "11102", "8749", "3195", "10775", "11887", "10887", "152", "7996", "2838" ]
[ "nonn", "look", "easy" ]
28
1
2
[ "A384431", "A384971", "A385002", "A385003" ]
null
Sean A. Irvine, Jun 14 2025
2025-06-17T10:42:23
oeisdata/seq/A384/A384431.seq
9dbb3f7af509eda3c9185e7ff122d40a
A384432
Consecutive internal states of the linear congruential pseudo-random number generator for Borland C and C++ when started at 1.
[ "1", "22695478", "8561967", "719750332", "71484141", "763924754", "466453691", "1153135800", "420428313", "1503962414", "2039887495", "590113780", "954118533", "234047114", "1499440787", "1211909744", "89175345", "354709798", "1751187679", "1472143404", "1641484573", "1777295618", "2060562795", "471225640" ]
[ "nonn", "easy" ]
10
1
2
[ "A096556", "A384331", "A384432" ]
null
Sean A. Irvine, May 28 2025
2025-05-30T11:26:35
oeisdata/seq/A384/A384432.seq
741dbf1faf18a4282a55b022fd9fb1e5
A384433
Integers k that are equal to the sum of at least two distinct of their anagrams, which must have the same number of digits as k.
[ "954", "2961", "4617", "4851", "4932", "5013", "5022", "5031", "5103", "5112", "5184", "5238", "5823", "5913", "6012", "6021", "6102", "6129", "6147", "6171", "6180", "6192", "6210", "6219", "6291", "6312", "6321", "6417", "6519", "6915", "6921", "7125", "7128", "7149", "7152", "7182", "7194", "7218", "7251", "7281", "7341", "7416", "7431" ]
[ "nonn", "base" ]
21
1
1
[ "A055098", "A160851", "A319274", "A384433" ]
null
Gonzalo Martínez, May 28 2025
2025-06-07T17:09:31
oeisdata/seq/A384/A384433.seq
f01764baf65b4f199ab646802414ea41
A384434
Consecutive states of the linear congruential pseudo-random number generator for CUPL when started at 1.
[ "1", "452807053", "433305513", "1157650709", "1180241297", "1178063325", "1895799737", "1342539237", "998902817", "2132481837", "889231561", "1166702517", "2034731953", "992635261", "553238233", "124714629", "1244077121", "81139917", "194452969", "856156757", "355421649", "1238070557", "1495123449" ]
[ "nonn", "easy" ]
14
1
2
[ "A096555", "A384434" ]
null
Sean A. Irvine, May 28 2025
2025-05-30T11:26:39
oeisdata/seq/A384/A384434.seq
f36a55cabddeae9b56905fc7024b1322
A384435
Expansion of e.g.f. 2/(5 - 3*exp(2*x)).
[ "1", "3", "24", "282", "4416", "86448", "2030784", "55656912", "1743277056", "61427981568", "2405046994944", "103579443604992", "4866448609591296", "247692476576575488", "13576823521525653504", "797345878311609526272", "49948684871884896731136", "3324530341927517641310208", "234293439367907438337982464" ]
[ "nonn" ]
20
0
2
[ "A032033", "A094417", "A201366", "A326324", "A328182", "A382753", "A384435", "A384522" ]
null
Seiichi Manyama, Jun 03 2025
2025-06-03T08:43:03
oeisdata/seq/A384/A384435.seq
86242f7a55f78901515f46e4f2a9414d
A384436
a(n) is the number of distinct ways to represent n in any integer base >= 2 using only square digits.
[ "1", "1", "1", "2", "4", "3", "3", "3", "3", "6", "5", "4", "5", "5", "4", "4", "6", "5", "4", "5", "7", "7", "5", "5", "7", "8", "6", "6", "8", "7", "7", "7", "7", "7", "7", "6", "11", "9", "6", "7", "10", "7", "7", "7", "8", "8", "8", "6", "8", "11", "7", "7", "9", "10", "7", "7", "10", "10", "7", "7", "11", "10", "7", "7", "13", "11", "7", "7", "11", "10", "7", "7", "10", "11", "8", "8", "11", "11", "9", "8", "11", "15" ]
[ "nonn", "base" ]
9
0
4
[ "A046030", "A055240", "A061845", "A077268", "A126071", "A135551", "A384211", "A384212", "A384436" ]
null
Felix Huber, May 29 2025
2025-06-03T17:13:05
oeisdata/seq/A384/A384436.seq
005b66c336a5eb8a9ccd618c0ea234fd
A384437
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th q-Catalan number for q=k.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "5", "5", "1", "1", "1", "10", "93", "14", "1", "1", "1", "17", "847", "6477", "42", "1", "1", "1", "26", "4433", "627382", "1733677", "132", "1", "1", "1", "37", "16401", "18245201", "4138659802", "1816333805", "429", "1", "1", "1", "50", "48205", "256754526", "1197172898385", "244829520301060", "7526310334829", "1430", "1" ]
[ "nonn", "tabl" ]
33
0
9
[ "A000012", "A000108", "A015030", "A015033", "A015034", "A015035", "A015037", "A015038", "A015039", "A015040", "A015041", "A015042", "A015055", "A129175", "A384282", "A384437" ]
null
Seiichi Manyama, May 29 2025
2025-05-29T14:40:30
oeisdata/seq/A384/A384437.seq
dcae1e6c768d842598b3ee44a0c5e7ad
A384438
Composite numbers k such that ((2^k+1)/3)^k == 1 (mod k^2).
[ "341", "1105", "1387", "1729", "1771", "2047", "2465", "2485", "2701", "2821", "3277", "3445", "4033", "4369", "4681", "5185", "5461", "6601", "7957", "8321", "8911", "9361", "10261", "10585", "11305", "11713", "11891", "13741", "13747", "13981", "14491", "15709", "15841", "16105", "16705", "18145", "18721", "19951", "23377", "28441", "29341" ]
[ "nonn" ]
11
1
1
[ "A001567", "A066488", "A384148", "A384438" ]
null
Thomas Ordowski, May 29 2025
2025-06-02T17:44:38
oeisdata/seq/A384/A384438.seq
b605380b8a6f0b8f37833d115b8b41b4
A384439
a(n) is the smallest prime p such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = p^3, where 0 < x < y < z < w has exactly n positive integer solutions.
[ "23", "13", "59", "79", "97", "139", "163", "223", "151", "283", "251", "257", "263", "277", "227", "463", "271", "373", "587", "457", "641", "461", "499", "389", "503", "683", "761", "673", "509", "523", "709", "631", "757", "619", "571", "691", "929", "727" ]
[ "nonn", "more" ]
17
1
1
[ "A377372", "A383877", "A384439" ]
null
Zhining Yang, May 29 2025
2025-06-03T15:17:21
oeisdata/seq/A384/A384439.seq
024176ae478fbf0f247cc8d7681d55c7
A384440
Array of triples (x,y,z) of minimal (positive) solutions of the cubic Pell equation x^3 + n*y^3 + n^2*z^3 - 3*n*x*y*z = 1, read by rows.
[ "1", "0", "0", "1", "1", "1", "4", "3", "2", "5", "3", "2", "41", "24", "14", "109", "60", "33", "4", "2", "1", "1", "0", "0", "4", "2", "1", "181", "84", "39", "89", "40", "18", "9073", "3963", "1731", "94", "40", "17", "29", "12", "5", "5401", "2190", "888", "16001", "6350", "2520", "324", "126", "49", "55", "21", "8", "64", "24", "9", "361", "133", "49" ]
[ "nonn", "tabf" ]
26
1
7
null
null
Xianwen Wang, May 29 2025
2025-06-05T08:39:24
oeisdata/seq/A384/A384440.seq
00806355884248d4c69f90b9ac3721ac
A384441
Binary XOR of n and the prime factors of n.
[ "1", "0", "0", "6", "0", "7", "0", "10", "10", "13", "0", "13", "0", "11", "9", "18", "0", "19", "0", "19", "17", "31", "0", "25", "28", "21", "24", "25", "0", "26", "0", "34", "41", "49", "33", "37", "0", "55", "41", "47", "0", "44", "0", "37", "43", "59", "0", "49", "54", "53", "33", "59", "0", "55", "57", "61", "41", "37", "0", "56", "0", "35", "59", "66", "73", "72", "0", "87", "81", "70", "0", "73", "0", "109" ]
[ "nonn", "base", "look", "easy" ]
70
1
4
[ "A000040", "A052548", "A178910", "A293212", "A384441" ]
null
Karl-Heinz Hofmann, May 30 2025
2025-06-09T18:35:15
oeisdata/seq/A384/A384441.seq
93c615f7965e89eb4a0df88eb9ca7f92
A384442
Smallest k such that A361373(k) = n.
[ "1", "2", "4", "6", "10", "12", "18", "40", "36", "30", "60", "102", "84", "132", "150", "264", "210", "540", "330", "420", "660", "630", "840", "1050", "2100", "2340", "2520", "3150", "2310", "2730", "4290", "4620", "6930", "9240", "15960", "16170", "17850", "18480", "20790", "34650", "62370", "68250", "30030", "62790", "60060", "78540", "90090", "117810" ]
[ "nonn" ]
22
0
2
[ "A361373", "A377845", "A384442" ]
null
Michael De Vlieger, Jun 12 2025
2025-06-14T00:33:41
oeisdata/seq/A384/A384442.seq
9f29b55a6c0ca9d27fdcec918e1c7ba1
A384443
a(n) is the product of the prime digits of n; or 1 if n contains no prime digits.
[ "1", "2", "3", "1", "5", "1", "7", "1", "1", "1", "1", "2", "3", "1", "5", "1", "7", "1", "1", "2", "2", "4", "6", "2", "10", "2", "14", "2", "2", "3", "3", "6", "9", "3", "15", "3", "21", "3", "3", "1", "1", "2", "3", "1", "5", "1", "7", "1", "1", "5", "5", "10", "15", "5", "25", "5", "35", "5", "5", "1", "1", "2", "3", "1", "5", "1", "7", "1", "1", "7", "7", "14", "21", "7", "35", "7", "49", "7", "7", "1", "1", "2", "3", "1" ]
[ "nonn", "base", "easy" ]
12
1
2
[ "A002110", "A007947", "A007954", "A384443", "A384444", "A384445", "A384505" ]
null
Felix Huber, Jun 03 2025
2025-06-20T18:52:10
oeisdata/seq/A384/A384443.seq
4a353b2aaa0232f589bf56b38381e632
A384444
Positive integers k for which the sum of their digits equals the product of their prime digits.
[ "1", "2", "3", "5", "7", "10", "20", "22", "30", "50", "70", "100", "123", "132", "200", "202", "213", "220", "231", "300", "312", "321", "500", "700", "1000", "1023", "1032", "1203", "1230", "1247", "1274", "1302", "1320", "1356", "1365", "1427", "1472", "1536", "1563", "1635", "1653", "1724", "1742", "2000", "2002", "2013", "2020", "2031", "2103", "2130", "2147" ]
[ "nonn", "base", "easy" ]
11
1
2
[ "A002110", "A006753", "A007947", "A007954", "A066306", "A067077", "A384443", "A384444", "A384445", "A384505" ]
null
Felix Huber, Jun 03 2025
2025-06-20T15:41:26
oeisdata/seq/A384/A384444.seq
61042b180d0b0cb5ff1fbf1e51c7eac8
A384445
a(n) is the number of multisets of n decimal digits where the sum of the digits equals the product of the prime digits.
[ "5", "6", "7", "10", "23", "43", "74", "125", "199", "305", "449", "637", "885", "1216", "1649", "2184", "2852", "3664", "4657", "5863", "7298", "9002", "10993", "13312", "16000", "19084", "22613", "26606", "31120", "36192", "41867", "48220", "55317", "63232", "72022", "81746", "92479", "104282", "117229", "131393", "146843", "163652", "181892" ]
[ "nonn", "base" ]
5
1
1
[ "A002110", "A006753", "A007947", "A007954", "A066306", "A067077", "A384443", "A384444", "A384445", "A384505" ]
null
Felix Huber, Jun 03 2025
2025-06-10T19:43:03
oeisdata/seq/A384/A384445.seq
aebe328187263e7bfaae452f8936f59b
A384446
Triangle read by rows: T(n, k) = |gcd(n, k) - k|.
[ "0", "1", "0", "2", "0", "0", "3", "0", "1", "0", "4", "0", "0", "2", "0", "5", "0", "1", "2", "3", "0", "6", "0", "0", "0", "2", "4", "0", "7", "0", "1", "2", "3", "4", "5", "0", "8", "0", "0", "2", "0", "4", "4", "6", "0", "9", "0", "1", "0", "3", "4", "3", "6", "7", "0", "10", "0", "0", "2", "2", "0", "4", "6", "6", "8", "0", "11", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "0", "12", "0", "0", "0", "0", "4", "0", "6", "4", "6", "8", "10", "0" ]
[ "nonn", "tabl" ]
11
0
4
[ "A002262", "A109004", "A372727", "A384446" ]
null
Peter Luschny, May 29 2025
2025-05-30T03:37:45
oeisdata/seq/A384/A384446.seq
6c07549d8b500b573715812996af6c40
A384447
Array read by ascending antidiagonals: A(n, k) = gcd(n, k) if n > 0 otherwise 0.
[ "0", "1", "0", "2", "1", "0", "3", "1", "1", "0", "4", "1", "2", "1", "0", "5", "1", "1", "1", "1", "0", "6", "1", "2", "3", "2", "1", "0", "7", "1", "1", "1", "1", "1", "1", "0", "8", "1", "2", "1", "4", "1", "2", "1", "0", "9", "1", "1", "3", "1", "1", "3", "1", "1", "0", "10", "1", "2", "1", "2", "5", "2", "1", "2", "1", "0", "11", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "12", "1", "2", "3", "4", "1", "6", "1", "4", "3", "2", "1", "0" ]
[ "nonn", "tabl" ]
17
0
4
[ "A027750", "A109004", "A384447" ]
null
Peter Luschny, Jun 02 2025
2025-06-03T01:13:46
oeisdata/seq/A384/A384447.seq
4b394443b600e5e702f1efc4ebb55d4a
A384448
Consecutive states of the linear congruential pseudo-random number generator for the INMOS Transputer when started at 1.
[ "1", "1664525", "389569705", "2940799637", "158984081", "2862450781", "3211393721", "1851289957", "3934847009", "2184914861", "246739401", "1948736821", "2941245873", "4195587069", "4088025561", "980655621", "2001863745", "657792333", "65284841", "1282409429", "3808694225", "2968195997", "2417331449" ]
[ "nonn", "easy" ]
10
1
2
[ "A096550", "A096561", "A384448" ]
null
Sean A. Irvine, May 29 2025
2025-05-30T11:26:42
oeisdata/seq/A384/A384448.seq
a0696bb749a0a7195e7d639e5f2b6f3f
A384449
Primes using only the digits {0,4,7}.
[ "7", "47", "4007", "4447", "7477", "44777", "47407", "47777", "74047", "74077", "74707", "74747", "77047", "77447", "77477", "77747", "407047", "407707", "407747", "440047", "444007", "444047", "470077", "470447", "474077", "474707", "477047", "477077", "704447", "704477", "704747", "704777", "707407", "707747", "740477", "744077", "744407", "744707", "747407", "770047" ]
[ "nonn", "base" ]
17
1
1
[ "A000040", "A020465", "A030432", "A199327", "A260378", "A260827", "A261181", "A261267", "A384449" ]
null
Jason Bard, May 29 2025
2025-06-08T04:58:30
oeisdata/seq/A384/A384449.seq
e7af3888b3b788b0476f2a4e376fdc2f
A384450
a(1) = 0; thereafter, a(n) is the number of arithmetic progressions of length 3 or greater at indices in an arithmetic progression ending at a(n-1).
[ "0", "0", "0", "1", "0", "1", "0", "2", "0", "4", "0", "5", "0", "8", "0", "9", "0", "12", "1", "0", "1", "0", "0", "5", "0", "5", "0", "5", "1", "0", "3", "0", "3", "0", "4", "0", "2", "2", "2", "2", "3", "0", "3", "0", "2", "1", "0", "7", "0", "5", "0", "5", "0", "7", "0", "10", "1", "1", "2", "1", "1", "0", "9", "0", "6", "3", "0", "6", "1", "0", "6", "3", "3", "1", "2", "2", "3", "0", "7", "0", "6", "3", "1", "0", "4", "4" ]
[ "nonn" ]
21
1
8
[ "A308638", "A362881", "A384450" ]
null
Neal Gersh Tolunsky, May 27 2025
2025-06-13T17:25:57
oeisdata/seq/A384/A384450.seq
4ae12b1cb5908d8107622b18d9785b27
A384451
Consecutive states of the linear congruential pseudo-random number generator randq1 from Numerical Recipes when started at 1.
[ "1", "1015568748", "1586005467", "2165703038", "3027450565", "217083232", "1587069247", "3327581586", "2388811721", "70837908", "2745540835", "1075679462", "1814098701", "2536995080", "3594602695", "1009643386", "4212701329", "3697481916", "1403919595", "2931756366", "2282599509", "927463856", "448971087" ]
[ "nonn", "easy" ]
22
1
2
[ "A096550", "A096561", "A384448", "A384451" ]
null
Sean A. Irvine, May 30 2025
2025-06-04T11:07:45
oeisdata/seq/A384/A384451.seq
59cc5ac9aa6fa5c8088defbda8544969
A384452
a(n) is the sum of squares of the unitary divisors of n!.
[ "1", "5", "50", "650", "16900", "547924", "27396200", "1746641000", "139773881000", "13460683752200", "1642203417768400", "236441876606410000", "40195119023089700000", "7723888546922636420000", "1735183690969722609168800", "444206919394766468845892000", "128820006624482275965308680000", "41737604550102658693597600532800" ]
[ "nonn" ]
29
1
2
[ "A000142", "A034676", "A064028", "A077610", "A384452" ]
null
Darío Clavijo, Jun 02 2025
2025-06-09T00:38:05
oeisdata/seq/A384/A384452.seq
49427b0c81635ed38f3ce4c0d189188d
A384453
a(n) is the n-th q-factorial number for q=-n.
[ "1", "1", "-1", "-14", "1989", "4551456", "-212333070125", "-246183190158589200", "8363069275661695069900425", "9589835030046843645163231485460480", "-420238291486760860506028808179511473194550689", "-785971734280677729025139143429963192709390305509012000000" ]
[ "sign" ]
10
0
4
[ "A347611", "A384453", "A384454" ]
null
Seiichi Manyama, May 30 2025
2025-05-30T10:12:01
oeisdata/seq/A384/A384453.seq
8160efc0ca8f53d950c69792572b4298
A384454
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th q-factorial number for q=-k.
[ "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "-1", "0", "1", "1", "1", "-2", "-3", "0", "1", "1", "1", "-3", "-14", "15", "0", "1", "1", "1", "-4", "-39", "280", "165", "0", "1", "1", "1", "-5", "-84", "1989", "17080", "-3465", "0", "1", "1", "1", "-6", "-155", "8736", "407745", "-3108560", "-148995", "0", "1", "1", "1", "-7", "-258", "28675", "4551456", "-333943155", "-1700382320", "12664575", "0", "1" ]
[ "sign", "tabl" ]
20
0
18
[ "A015013", "A015015", "A015017", "A015018", "A015019", "A015020", "A015022", "A015023", "A015025", "A015026", "A015027", "A015028", "A069777", "A384453", "A384454" ]
null
Seiichi Manyama, May 30 2025
2025-05-31T09:34:15
oeisdata/seq/A384/A384454.seq
0ecdb035995be9c2088b4f1b446be0d7
A384455
Decimal expansion of Sum_{k>=2} (-1)^k*P(k)/(k+1) - M/2 (negated), where P(s) is the prime zeta function and M is Mertens's constant.
[ "0", "1", "2", "5", "3", "4", "6", "3", "4", "1", "9", "1", "4", "9", "6", "7", "0", "1", "1", "0", "3", "9", "7", "0", "6", "0", "7", "2", "5", "7", "1", "7", "7", "1", "6", "7", "4", "6", "3", "2", "9", "2", "5", "7", "2", "2", "3", "3", "3", "1", "0", "5", "1", "7", "2", "2", "6", "5", "1", "5", "2", "1", "5", "7", "3", "1", "6", "3", "0", "0", "7", "1", "0", "5", "9", "1", "8", "9", "1", "8", "1", "6", "1", "8", "2", "9", "1", "6", "4", "1", "7", "2", "3", "3", "8", "6", "1", "7", "0", "9", "2", "9", "9", "0", "9", "0" ]
[ "nonn", "cons" ]
8
0
3
[ "A000720", "A001620", "A077761", "A110544", "A229495", "A384455" ]
null
Amiram Eldar, May 30 2025
2025-05-30T10:35:14
oeisdata/seq/A384/A384455.seq
6f5cad8594d858c1ac393702053af675
A384456
Positive integers k such that (2^k - 1)^k + 2 is prime.
[ "1", "2", "4", "8", "16", "40" ]
[ "nonn", "more" ]
17
1
2
[ "A019434", "A384456" ]
null
Thomas Ordowski, May 30 2025
2025-06-03T04:54:43
oeisdata/seq/A384/A384456.seq
64a9a65e2715d945b9bc79e4b4c276a0
A384457
Decimal expansion of Sum_{k>=1} H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
[ "3", "5", "9", "3", "4", "2", "7", "9", "4", "1", "7", "7", "4", "9", "4", "2", "9", "6", "0", "2", "5", "5", "1", "8", "2", "4", "0", "7", "0", "3", "3", "3", "9", "2", "1", "9", "5", "9", "1", "6", "9", "5", "4", "8", "0", "3", "5", "1", "9", "3", "3", "8", "9", "3", "7", "6", "9", "7", "3", "8", "6", "1", "1", "9", "1", "8", "8", "8", "2", "8", "1", "2", "6", "9", "6", "1", "9", "2", "6", "3", "4", "0", "3", "7", "3", "9", "5", "7", "8", "6", "7", "6", "8", "6", "4", "7", "4", "5", "8", "7", "3", "5", "5", "3", "7" ]
[ "nonn", "cons", "easy" ]
6
1
1
[ "A000796", "A001008", "A002117", "A002162", "A002805", "A152648", "A152649", "A152651", "A218505", "A233090", "A238168", "A238181", "A238182", "A241753", "A244667", "A253191", "A256988", "A345203", "A352769", "A384457" ]
null
Amiram Eldar, May 30 2025
2025-05-30T10:35:06
oeisdata/seq/A384/A384457.seq
0bb43925d18247ca999886ced8f7803e
A384458
Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^3/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
[ "2", "7", "4", "1", "2", "5", "7", "4", "6", "5", "4", "9", "2", "5", "2", "9", "7", "0", "6", "7", "8", "8", "3", "3", "0", "3", "6", "7", "8", "7", "5", "0", "4", "7", "0", "7", "6", "2", "6", "5", "4", "4", "8", "9", "2", "9", "5", "5", "7", "5", "2", "9", "6", "5", "4", "7", "1", "8", "1", "4", "6", "2", "7", "5", "5", "3", "2", "1", "6", "0", "6", "7", "5", "8", "7", "1", "4", "1", "9", "7", "0", "1", "0", "3", "5", "8", "3", "7", "2", "2", "3", "8", "6", "9", "4", "8", "6", "6", "3", "0", "7", "0", "4", "6", "6" ]
[ "nonn", "cons", "easy" ]
5
0
1
[ "A000796", "A001008", "A002117", "A002162", "A002805", "A013662", "A152648", "A152649", "A152651", "A218505", "A233090", "A238168", "A238181", "A238182", "A241753", "A244667", "A253191", "A256988", "A345203", "A384458" ]
null
Amiram Eldar, May 30 2025
2025-05-30T10:35:17
oeisdata/seq/A384/A384458.seq
a7c1853f3333d87f9a90b3c318900912
A384459
Decimal expansion of Sum_{k>=1} (-1)^k*(3*k+1)*H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
[ "1", "6", "4", "4", "0", "1", "9", "5", "3", "8", "9", "3", "1", "6", "5", "4", "2", "9", "6", "5", "2", "6", "3", "6", "2", "1", "6", "5", "0", "3", "0", "2", "3", "1", "1", "4", "0", "6", "4", "4", "1", "3", "0", "5", "1", "5", "1", "9", "0", "4", "1", "8", "1", "5", "9", "8", "1", "6", "6", "2", "1", "1", "5", "9", "4", "3", "8", "9", "1", "7", "3", "1", "0", "0", "7", "1", "4", "2", "1", "2", "7", "6", "4", "9", "2", "3", "1", "6", "3", "5", "1", "5", "5", "1", "5", "7", "6", "5", "5", "9", "4", "4", "8", "6", "0" ]
[ "nonn", "cons", "easy" ]
5
0
2
[ "A001008", "A002805", "A016578", "A152648", "A152649", "A152651", "A218505", "A233090", "A238168", "A238181", "A238182", "A241753", "A244667", "A253191", "A256988", "A345203", "A384459" ]
null
Amiram Eldar, May 30 2025
2025-05-30T10:35:03
oeisdata/seq/A384/A384459.seq
d9ff83d47331df97517c651d130c6480
A384460
Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^2/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
[ "4", "4", "2", "4", "6", "0", "1", "8", "9", "3", "7", "7", "9", "1", "2", "4", "9", "5", "2", "1", "8", "7", "9", "8", "2", "1", "9", "1", "7", "4", "6", "5", "6", "3", "3", "5", "1", "8", "4", "1", "3", "3", "6", "2", "7", "0", "2", "2", "5", "8", "3", "5", "8", "5", "8", "6", "4", "2", "6", "3", "2", "9", "3", "4", "7", "1", "2", "3", "6", "3", "9", "2", "6", "3", "0", "8", "6", "1", "0", "9", "8", "3", "6", "6", "5", "3", "1", "3", "5", "5", "1", "6", "5", "3", "1", "0", "1", "9", "7", "0", "9", "4", "8", "8", "3" ]
[ "nonn", "cons", "easy" ]
5
0
1
[ "A000796", "A001008", "A002117", "A002162", "A002805", "A152648", "A152649", "A152651", "A218505", "A233090", "A238168", "A238181", "A238182", "A241753", "A244667", "A253191", "A256988", "A345203", "A384460" ]
null
Amiram Eldar, May 30 2025
2025-05-30T10:35:00
oeisdata/seq/A384/A384460.seq
b109f9350f07c54d137ab10a6eb35cef
A384461
Decimal expansion of Sum_{k>=1} H(k)^4/k^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
[ "4", "5", "8", "3", "3", "9", "4", "1", "4", "6", "5", "4", "1", "6", "5", "5", "7", "1", "9", "2", "5", "9", "5", "7", "6", "5", "7", "8", "9", "1", "4", "2", "2", "6", "3", "3", "4", "8", "8", "7", "9", "5", "1", "1", "3", "3", "1", "5", "4", "8", "4", "8", "4", "2", "3", "2", "5", "4", "9", "2", "2", "2", "5", "7", "1", "5", "3", "9", "1", "3", "5", "1", "9", "5", "9", "3", "6", "4", "2", "8", "2", "2", "3", "7", "0", "0", "0", "6", "7", "8", "1", "2", "2", "9", "8", "2", "9", "9", "6", "0", "6", "5", "2", "7", "4" ]
[ "nonn", "cons", "easy" ]
5
2
1
[ "A001008", "A002117", "A002805", "A013664", "A152648", "A152649", "A152651", "A218505", "A233090", "A238168", "A238181", "A238182", "A241753", "A244667", "A253191", "A256988", "A345203", "A384461" ]
null
Amiram Eldar, May 30 2025
2025-05-30T10:35:10
oeisdata/seq/A384/A384461.seq
97314b8d687d91654fa3911cfb9b2982
A384462
Decimal expansion of Sum_{k>=1} H(k)^3/k^3, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
[ "2", "3", "0", "0", "9", "5", "4", "5", "5", "1", "7", "0", "0", "5", "2", "5", "0", "3", "9", "8", "0", "6", "4", "2", "2", "7", "6", "9", "8", "9", "2", "2", "5", "6", "0", "0", "0", "4", "6", "9", "9", "7", "5", "6", "4", "6", "4", "0", "6", "2", "3", "9", "6", "4", "2", "8", "8", "0", "4", "1", "4", "9", "5", "4", "7", "7", "8", "7", "2", "1", "1", "7", "2", "7", "8", "9", "2", "4", "5", "0", "2", "6", "5", "2", "8", "1", "4", "1", "0", "0", "0", "4", "7", "1", "4", "4", "1", "9", "7", "7", "0", "5", "7", "4", "1" ]
[ "nonn", "cons", "easy" ]
5
1
1
[ "A001008", "A002117", "A002805", "A013664", "A152648", "A152649", "A152651", "A218505", "A233090", "A238168", "A238181", "A238182", "A241753", "A244667", "A253191", "A256988", "A345203", "A384462" ]
null
Amiram Eldar, May 30 2025
2025-05-30T10:34:56
oeisdata/seq/A384/A384462.seq
8cf9dc22edaf72a80c44ca81d306afa1
A384463
Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384277.
[ "7", "1", "1", "0", "9", "3", "0", "0", "9", "9", "2", "9", "1", "7", "3", "0", "1", "5", "4", "4", "9", "5", "9", "0", "1", "9", "1", "1", "4", "2", "5", "9", "4", "4", "3", "1", "3", "0", "9", "3", "9", "3", "7", "9", "6", "2", "8", "9", "5", "5", "3", "4", "4", "5", "1", "3", "1", "7", "1", "7", "2", "4", "4", "3", "6", "1", "9", "0", "2", "1", "5", "5", "1", "2", "2", "1", "3", "2", "2", "3", "5", "8", "2", "0", "3", "7", "2" ]
[ "nonn", "cons" ]
12
0
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467" ]
null
A.H.M. Smeets, May 30 2025
2025-06-26T07:40:02
oeisdata/seq/A384/A384463.seq
51eba241e8d589a4d19b430020e20fda
A384464
Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384278.
[ "2", "7", "8", "5", "1", "7", "7", "3", "3", "5", "6", "9", "2", "4", "0", "8", "4", "8", "8", "0", "1", "4", "4", "4", "8", "8", "8", "4", "5", "6", "7", "2", "6", "4", "8", "1", "0", "3", "4", "8", "9", "0", "0", "3", "0", "9", "8", "6", "3", "8", "8", "6", "7", "1", "8", "5", "6", "7", "3", "4", "9", "4", "8", "4", "3", "4", "4", "9", "4", "0", "9", "6", "5", "7", "9", "3", "6", "5", "7", "5", "3", "0", "3", "5", "7", "4", "2" ]
[ "nonn", "cons" ]
12
0
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467" ]
null
A.H.M. Smeets, May 30 2025
2025-06-26T07:39:36
oeisdata/seq/A384/A384464.seq
800a11be329177b822ecabb570cad712
A384465
Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384279.
[ "1", "0", "3", "8", "9", "2", "5", "6", "5", "0", "1", "5", "8", "6", "1", "3", "5", "7", "4", "8", "9", "6", "4", "9", "2", "0", "4", "0", "0", "6", "7", "9", "0", "8", "7", "6", "5", "5", "7", "1", "6", "1", "7", "2", "7", "2", "4", "0", "5", "7", "8", "8", "3", "0", "1", "1", "5", "4", "7", "8", "0", "7", "2", "0", "3", "6", "0", "3", "7", "4", "8", "2", "9", "8", "5", "0", "2", "0", "1", "1", "1", "4", "3", "8", "8", "5", "5" ]
[ "nonn", "cons" ]
12
-1
3
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467" ]
null
A.H.M. Smeets, May 30 2025
2025-06-26T07:39:27
oeisdata/seq/A384/A384465.seq
e8bf79b05e6813cba24952b7708dd85d
A384466
Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384280.
[ "6", "0", "3", "1", "5", "4", "1", "0", "4", "3", "4", "1", "6", "3", "3", "6", "0", "1", "6", "3", "5", "9", "6", "6", "0", "2", "3", "8", "1", "8", "0", "7", "8", "2", "1", "1", "3", "0", "1", "8", "3", "7", "1", "8", "6", "7", "6", "5", "9", "4", "8", "9", "3", "1", "9", "8", "4", "6", "7", "3", "1", "6", "1", "4", "4", "1", "8", "0", "8", "9", "8", "6", "1", "2", "5", "8", "5", "8", "6", "7", "3", "5", "7", "7", "9", "4", "9" ]
[ "nonn", "cons" ]
16
0
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467" ]
null
A.H.M. Smeets, May 30 2025
2025-06-26T07:38:26
oeisdata/seq/A384/A384466.seq
35292f053c510a4de38125cd4173da1a
A384467
Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384281.
[ "3", "5", "7", "4", "1", "8", "6", "9", "2", "4", "3", "7", "7", "9", "9", "6", "8", "6", "6", "4", "1", "4", "9", "2", "0", "1", "7", "4", "5", "8", "0", "9", "1", "2", "8", "1", "7", "6", "3", "5", "7", "8", "3", "6", "4", "9", "1", "9", "3", "4", "0", "9", "2", "1", "7", "4", "8", "2", "2", "5", "0", "4", "6", "6", "7", "5", "7", "6", "4", "1", "5", "9", "2", "0", "7", "0", "2", "7", "1", "1", "5", "1", "4", "3", "6", "2", "8" ]
[ "nonn", "cons" ]
14
0
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467" ]
null
A.H.M. Smeets, May 30 2025
2025-06-26T07:37:37
oeisdata/seq/A384/A384467.seq
c5f8d314c4700c60a16de5f3710e3b9c
A384468
a(0) = 1; for n >= 1, a(n) = a(n-1)/2 if a(n-1) is even, otherwise a(n) = 2*a(n-1) + n.
[ "1", "3", "8", "4", "2", "1", "8", "4", "2", "1", "12", "6", "3", "19", "52", "26", "13", "43", "104", "52", "26", "13", "48", "24", "12", "6", "3", "33", "94", "47", "124", "62", "31", "95", "224", "112", "56", "28", "14", "7", "54", "27", "96", "48", "24", "12", "6", "3", "54", "27", "104", "52", "26", "13", "80", "40", "20", "10", "5", "69", "198", "99", "260", "130", "65", "195", "456", "228", "114", "57", "184" ]
[ "nonn", "easy" ]
30
0
2
[ "A000079", "A006370", "A384468" ]
null
Simon R Blow, May 30 2025
2025-06-19T00:25:45
oeisdata/seq/A384/A384468.seq
c976ed4b4448d4f7adb0ad77a0a3d805
A384469
a(n) is the number of triples 1 <= A, B, C <= n such that the discriminant D = B^2 - 4*A*C of the polynomial A*x^2 + B*x + C is 0.
[ "0", "1", "1", "4", "4", "5", "5", "8", "10", "11", "11", "16", "16", "17", "17", "22", "22", "25", "25", "28", "28", "29", "29", "36", "40", "41", "43", "46", "46", "49", "49", "54", "54", "55", "55", "64", "64", "65", "65", "70", "70", "71", "71", "74", "76", "77", "77", "86", "92", "97", "97", "100", "100", "103", "103", "108", "108", "109", "109", "118", "118", "119", "121", "130" ]
[ "nonn" ]
34
1
4
[ "A384469", "A384666" ]
null
Ctibor O. Zizka, May 30 2025
2025-06-13T14:25:25
oeisdata/seq/A384/A384469.seq
9e8cadd3f53507246709affd0f7b009b
A384470
a(n) = n! * Sum_{k=0..n} Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) / binomial(n,k).
[ "1", "2", "29", "1108", "82924", "10302768", "1917699552", "499332175200", "173242955039616", "77238974345915520", "43027312823342164800", "29285800226400628915200", "23913110797474508388449280", "23071378298963178620672409600", "25964692904608781751347296204800", "33711625062334209438536728660070400" ]
[ "nonn" ]
8
0
2
[ "A187655", "A187657", "A226775", "A384470", "A384471", "A384472" ]
null
Vaclav Kotesovec, May 30 2025
2025-05-30T10:06:25
oeisdata/seq/A384/A384470.seq
e398f76dc4cce7375f2abd992e1eae86
A384471
a(n) = Sum_{k=0..n} binomial(n,k)^2 * Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k).
[ "1", "2", "18", "306", "8046", "296100", "14307254", "865996306", "63308257198", "5432272670376", "535074966419260", "59461066810476232", "7354069129792197762", "1001371912804041913056", "148806933109572134044158", "23958722845801073318076450", "4154065510530807075869275150", "771608888261061026185781127184" ]
[ "nonn" ]
7
0
2
[ "A187655", "A187657", "A226775", "A384470", "A384471", "A384472" ]
null
Vaclav Kotesovec, May 30 2025
2025-05-30T10:06:29
oeisdata/seq/A384/A384471.seq
9cb6564cfe96785cb44dbf5a22c98aa1
A384472
a(n) = Sum_{k=0..n} binomial(n,k)^3 * Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k).
[ "1", "2", "22", "558", "25506", "1770300", "166190354", "19647687682", "2798281247682", "466166725448544", "88942246964278060", "19127775950813311232", "4578817457796314714502", "1207681779462031251096888", "348018457509475159702959174", "108798555057988053563408904750", "36676526343321856806298038370210" ]
[ "nonn" ]
9
0
2
[ "A187655", "A187657", "A226775", "A384470", "A384471", "A384472" ]
null
Vaclav Kotesovec, May 30 2025
2025-05-30T10:53:41
oeisdata/seq/A384/A384472.seq
e2beb3919e508986ce8661df9387b46f
A384473
Decimal expansion of the middle interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon.
[ "1", "0", "8", "3", "6", "6", "1", "2", "0", "1", "6", "2", "5", "6", "1", "4", "6", "7", "0", "0", "8", "0", "4", "6", "9", "3", "5", "2", "7", "7", "1", "6", "4", "4", "2", "9", "8", "9", "6", "1", "3", "3", "4", "3", "1", "0", "0", "3", "4", "2", "3", "5", "2", "3", "9", "7", "3", "8", "8", "0", "2", "8", "4", "3", "2", "0", "7", "0", "3", "4", "6", "2", "9", "1", "5", "7", "9", "8", "0", "4", "9", "4", "1", "5", "2", "1", "2", "4", "6", "8", "8", "1", "2", "1", "0", "1", "3", "3", "1", "8" ]
[ "nonn", "cons" ]
18
3
3
[ "A002194", "A019824", "A072097", "A177870", "A228719", "A384473", "A384474", "A384475", "A384476", "A384477", "A384478" ]
null
Stefano Spezia, May 30 2025
2025-05-31T11:05:20
oeisdata/seq/A384/A384473.seq
c2ee68efc06fdd67dbddd8eda9931c7e