sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A384265
|
G.f. A(x) satisfies A( x/A(x)^2 + x^2 ) = 1 + x*A(x)^2.
|
[
"1",
"1",
"3",
"16",
"119",
"1087",
"11408",
"132468",
"1663047",
"22234598",
"313303201",
"4618133168",
"70815362628",
"1124901511837",
"18450127411436",
"311636597558992",
"5409374008212747",
"96326565666389514",
"1757212245656330130",
"32798907320986196010",
"625759879697614204041",
"12192353855092076824051",
"242419156191210763668352"
] |
[
"nonn"
] | 12 | 0 | 3 |
[
"A145347",
"A182954",
"A383563",
"A384265"
] | null |
Paul D. Hanna, May 30 2025
| 2025-05-31T14:38:08 |
oeisdata/seq/A384/A384265.seq
|
01a06f5817176cd7d91dc31d1ad596da
|
A384266
|
G.f. A(x) = (3*sqrt(1 - 8*x) - (1 - 4*x)) / (2*(1 - 8*x - 2*x^2)).
|
[
"1",
"4",
"22",
"136",
"892",
"6064",
"42232",
"299296",
"2149360",
"15596992",
"114138592",
"841108096",
"6234779584",
"46448349952",
"347541337984",
"2610319254016",
"19671552622336",
"148689857920000",
"1126905157115392",
"8561360256526336",
"65185363066289152",
"497307750242234368",
"3800975843189291008",
"29100188150365757440"
] |
[
"nonn"
] | 27 | 0 | 2 |
[
"A179587",
"A384266"
] | null |
Paul D. Hanna, Jun 06 2025
| 2025-06-08T03:32:47 |
oeisdata/seq/A384/A384266.seq
|
99c2d9c4f4184113850152c8bfc66b94
|
A384267
|
G.f. A(x) satisfies A(x) = 1 + abs( x/A(x)^2 ).
|
[
"1",
"1",
"2",
"1",
"6",
"13",
"4",
"80",
"242",
"109",
"1702",
"5177",
"2208",
"40348",
"128560",
"56864",
"1052102",
"3406333",
"1509862",
"28900645",
"94971462",
"42420281",
"825816148",
"2740269448",
"1228678588",
"24277298940",
"81183221736",
"36526643608",
"729682028652",
"2454721201940",
"1107304048024",
"22319301025880",
"75450489469554"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A006013",
"A380708",
"A380710",
"A384267"
] | null |
Paul D. Hanna, Jun 19 2025
| 2025-06-20T10:46:39 |
oeisdata/seq/A384/A384267.seq
|
76aa53c9081cc8caf30394079922d05f
|
A384268
|
E.g.f. A(x) satisfies 1 = Sum_{n>=0} (A(x) - x^n)^n / n!.
|
[
"1",
"-1",
"8",
"-54",
"484",
"-5220",
"69978",
"-1123584",
"20636208",
"-427048560",
"9855043560",
"-251178602400",
"6999042156456",
"-211667930623968",
"6906285876838320",
"-241834002452380800",
"9045871629011352960",
"-359980905120027776640",
"15186181445703977599296",
"-676969958167108542074880",
"31797743045658537121856640"
] |
[
"sign"
] | 10 | 1 | 3 | null | null |
Paul D. Hanna, Jun 05 2025
| 2025-06-06T08:57:57 |
oeisdata/seq/A384/A384268.seq
|
aa7a19d44e9a7c9ad9cd9f7dd4df6c37
|
A384269
|
G.f. A(x) satisfies x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 + x^n).
|
[
"1",
"1",
"2",
"6",
"16",
"49",
"154",
"513",
"1747",
"6078",
"21439",
"76607",
"276685",
"1008781",
"3707512",
"13721086",
"51088860",
"191245836",
"719333008",
"2717229481",
"10303797518",
"39208957744",
"149676496756",
"573037914270",
"2199735075908",
"8464921506665",
"32648239747059",
"126185248269567",
"488657718553676",
"1895790377527674"
] |
[
"nonn"
] | 13 | 0 | 3 |
[
"A356499",
"A384269",
"A384271"
] | null |
Paul D. Hanna, May 25 2025
| 2025-06-01T04:41:19 |
oeisdata/seq/A384/A384269.seq
|
d71e639978f010364ff085e71ff48466
|
A384270
|
G.f. satisfies A(x) = A(x^4 + 4*x*A(x)^4) / A(x^3 + 3*x*A(x)^3).
|
[
"1",
"1",
"4",
"21",
"130",
"888",
"6408",
"48063",
"371020",
"2927770",
"23510106",
"191487656",
"1578141446",
"13136158810",
"110276181794",
"932581374945",
"7937416827088",
"67940240601388",
"584459497206176",
"5050440687673800",
"43818234017497418",
"381559984178906078",
"3333557306752862686",
"29212187993468834734",
"256697187873464085446"
] |
[
"nonn",
"new"
] | 12 | 1 | 3 |
[
"A376226",
"A384270"
] | null |
Paul D. Hanna, Jul 10 2025
| 2025-07-16T03:21:27 |
oeisdata/seq/A384/A384270.seq
|
18b03c1ff09a4adbc91c9443c6b1420c
|
A384271
|
G.f. A(x) satisfies -x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
|
[
"1",
"1",
"1",
"3",
"5",
"14",
"31",
"85",
"214",
"589",
"1572",
"4385",
"12124",
"34315",
"97006",
"277958",
"797969",
"2310313",
"6708311",
"19590928",
"57386238",
"168805975",
"497956135",
"1473704926",
"4372436946",
"13007158125",
"38779605810",
"115872525324",
"346897113802",
"1040486309806",
"3126167631775",
"9407946523434",
"28355033124335",
"85582565615778"
] |
[
"nonn"
] | 25 | 0 | 4 |
[
"A356499",
"A384271",
"A384272",
"A384273"
] | null |
Paul D. Hanna, May 24 2025
| 2025-05-25T04:06:47 |
oeisdata/seq/A384/A384271.seq
|
3e8b9d91244c37de275ba21dbaab1b55
|
A384272
|
G.f. A(x) satisfies -2*x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
|
[
"1",
"2",
"2",
"6",
"16",
"50",
"144",
"478",
"1510",
"5116",
"17034",
"58812",
"202166",
"709228",
"2489546",
"8848146",
"31525526",
"113236920",
"407983964",
"1478249454",
"5372468156",
"19607233026",
"71758722172",
"263480958508",
"969856453650",
"3579426292768",
"13239549874552",
"49078409375334",
"182282423994240",
"678289439131812",
"2528257204808848"
] |
[
"nonn"
] | 11 | 0 | 2 |
[
"A356499",
"A384271",
"A384272",
"A384273"
] | null |
Paul D. Hanna, Jun 29 2025
| 2025-06-30T11:57:57 |
oeisdata/seq/A384/A384272.seq
|
a76484e1eeea00396179672e1fc44f0b
|
A384273
|
G.f. A(x) satisfies -3*x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
|
[
"1",
"3",
"3",
"9",
"39",
"108",
"387",
"1581",
"5196",
"21573",
"82596",
"318279",
"1303146",
"5182389",
"20919156",
"86577264",
"351929133",
"1462075095",
"6077250693",
"25277372124",
"106131459906",
"445859648019",
"1878449392365",
"7955646845046",
"33707865532680",
"143344958486019",
"610977896794104",
"2608218534504888",
"11162376089875158"
] |
[
"nonn"
] | 13 | 0 | 2 |
[
"A356499",
"A384271",
"A384272",
"A384273"
] | null |
Paul D. Hanna, Jun 29 2025
| 2025-07-01T10:44:43 |
oeisdata/seq/A384/A384273.seq
|
c306b808c2660d09a1fc110d0109033d
|
A384274
|
Number of connected components of polyhedra in the quarter cubic honeycomb up to translation, rotation, and reflection of the honeycomb.
|
[
"1",
"2",
"2",
"5",
"20",
"96",
"581",
"4079",
"31079",
"247169",
"2018826",
"16771564",
"141113504",
"1199154541",
"10274686867"
] |
[
"nonn"
] | 16 | 0 | 2 |
[
"A038119",
"A038181",
"A343909",
"A384254",
"A384274",
"A384486"
] | null |
Peter Kagey, May 24 2025
| 2025-06-12T14:07:12 |
oeisdata/seq/A384/A384274.seq
|
beafaf1f07897a9cab930be0a0fe7ad8
|
A384275
|
a(1) = 1, a(2) = 2, a(3) = 4; for n > 3, a(n) is the smallest unused positive number that shares a factor with a(n-1) and at least one other previous term.
|
[
"1",
"2",
"4",
"6",
"8",
"10",
"12",
"3",
"9",
"15",
"5",
"20",
"14",
"16",
"18",
"21",
"7",
"28",
"22",
"24",
"26",
"30",
"25",
"35",
"40",
"32",
"34",
"36",
"27",
"33",
"11",
"44",
"38",
"42",
"39",
"13",
"52",
"46",
"48",
"45",
"50",
"54",
"51",
"17",
"68",
"56",
"49",
"63",
"57",
"19",
"76",
"58",
"60",
"55",
"65",
"70",
"62",
"64",
"66",
"69",
"23",
"92",
"72",
"74",
"78",
"75"
] |
[
"nonn"
] | 9 | 1 | 2 |
[
"A064413",
"A098550",
"A336957",
"A373390",
"A384275"
] | null |
Scott R. Shannon, May 24 2025
| 2025-05-25T09:26:39 |
oeisdata/seq/A384/A384275.seq
|
6a6f6d9d61099ea012716cccfd0d9f7e
|
A384276
|
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest unused positive number that is coprime to a(n-1) while the total number of prime factors, counted with multiplicity, of the form 4*k+1 and 4*k+3 for all terms a(1)..a(n) never differs by more than 1.
|
[
"1",
"2",
"3",
"4",
"5",
"6",
"13",
"7",
"8",
"15",
"16",
"17",
"10",
"9",
"20",
"11",
"25",
"12",
"19",
"26",
"23",
"29",
"14",
"37",
"22",
"35",
"32",
"39",
"34",
"31",
"30",
"41",
"24",
"53",
"28",
"51",
"40",
"43",
"50",
"21",
"52",
"45",
"58",
"47",
"55",
"61",
"38",
"65",
"18",
"73",
"44",
"75",
"46",
"85",
"33",
"64",
"87",
"68",
"59",
"60",
"89",
"48",
"91",
"74",
"67",
"70"
] |
[
"nonn"
] | 13 | 1 | 2 |
[
"A007350",
"A027748",
"A038698",
"A381902",
"A382091",
"A384276"
] | null |
Scott R. Shannon, May 24 2025
| 2025-06-05T09:54:17 |
oeisdata/seq/A384/A384276.seq
|
d9dac656a2279cab1377e8a6963bef70
|
A384277
|
Decimal expansion of the smallest zero of the Laguerre polynomial of degree 3.
|
[
"4",
"1",
"5",
"7",
"7",
"4",
"5",
"5",
"6",
"7",
"8",
"3",
"4",
"7",
"9",
"0",
"8",
"3",
"3",
"1",
"1",
"5",
"3",
"3",
"8",
"7",
"3",
"1",
"2",
"8",
"2",
"7",
"4",
"4",
"7",
"3",
"5",
"4",
"6",
"6",
"1",
"7",
"4",
"1",
"2",
"6",
"9",
"3",
"1",
"1",
"8",
"4",
"6",
"5",
"0",
"9",
"3",
"9",
"6",
"5",
"9",
"5",
"4",
"3",
"2",
"2",
"3",
"2",
"5",
"0",
"1",
"9",
"9",
"3",
"6",
"9",
"1",
"3",
"3",
"1",
"4",
"9",
"5",
"7",
"1",
"9",
"6"
] |
[
"nonn",
"cons"
] | 16 | 0 | 1 |
[
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281",
"A384463",
"A384464",
"A384465",
"A384466",
"A384467",
"A384586",
"A384587",
"A384588",
"A384589"
] | null |
A.H.M. Smeets, May 24 2025
| 2025-06-27T01:02:12 |
oeisdata/seq/A384/A384277.seq
|
376f8f6a16d0f02639caa96a00135ce4
|
A384278
|
Decimal expansion of the second smallest zero of the Laguerre polynomial of degree 3.
|
[
"2",
"2",
"9",
"4",
"2",
"8",
"0",
"3",
"6",
"0",
"2",
"7",
"9",
"0",
"4",
"1",
"7",
"1",
"9",
"8",
"2",
"2",
"0",
"5",
"0",
"3",
"6",
"1",
"3",
"5",
"9",
"5",
"9",
"3",
"8",
"6",
"8",
"9",
"5",
"9",
"8",
"6",
"1",
"7",
"2",
"1",
"0",
"6",
"0",
"2",
"8",
"0",
"8",
"3",
"4",
"0",
"3",
"5",
"2",
"0",
"1",
"2",
"4",
"8",
"0",
"8",
"4",
"0",
"3",
"0",
"4",
"5",
"1",
"3",
"3",
"7",
"1",
"6",
"6",
"4",
"4",
"6",
"5",
"6",
"3",
"1",
"8"
] |
[
"nonn",
"cons"
] | 13 | 1 | 1 |
[
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281",
"A384463",
"A384464",
"A384465",
"A384466",
"A384467",
"A384586",
"A384587",
"A384588",
"A384589"
] | null |
A.H.M. Smeets, May 24 2025
| 2025-06-27T01:02:17 |
oeisdata/seq/A384/A384278.seq
|
0011b327e53db04faf9ee3a4df33994a
|
A384279
|
Decimal expansion of the largest zero of the Laguerre polynomial of degree 3.
|
[
"6",
"2",
"8",
"9",
"9",
"4",
"5",
"0",
"8",
"2",
"9",
"3",
"7",
"4",
"7",
"9",
"1",
"9",
"6",
"8",
"6",
"6",
"4",
"1",
"5",
"7",
"6",
"5",
"5",
"1",
"2",
"1",
"3",
"1",
"6",
"5",
"7",
"4",
"9",
"3",
"5",
"2",
"0",
"8",
"6",
"6",
"2",
"4",
"6",
"6",
"0",
"0",
"7",
"0",
"0",
"8",
"7",
"0",
"8",
"3",
"2",
"7",
"9",
"7",
"5",
"9",
"3",
"6",
"4",
"4",
"5",
"2",
"8",
"7",
"2",
"5",
"9",
"2",
"0",
"2",
"3",
"8",
"4",
"7",
"9",
"6",
"1"
] |
[
"nonn",
"cons"
] | 14 | 1 | 1 |
[
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281",
"A384463",
"A384464",
"A384465",
"A384466",
"A384467",
"A384586",
"A384587",
"A384588",
"A384589",
"A384590"
] | null |
A.H.M. Smeets, May 26 2025
| 2025-06-27T01:02:23 |
oeisdata/seq/A384/A384279.seq
|
62c074bc9252cfcc021842c1a7c66b28
|
A384280
|
Decimal expansion of the smallest zero of the Laguerre polynomial of degree 4.
|
[
"3",
"2",
"2",
"5",
"4",
"7",
"6",
"8",
"9",
"6",
"1",
"9",
"3",
"9",
"2",
"3",
"1",
"1",
"8",
"0",
"0",
"3",
"6",
"1",
"4",
"5",
"9",
"1",
"0",
"4",
"3",
"6",
"7",
"4",
"7",
"9",
"7",
"4",
"3",
"7",
"5",
"7",
"2",
"2",
"4",
"4",
"7",
"4",
"2",
"9",
"5",
"7",
"6",
"7",
"1",
"8",
"8",
"4",
"5",
"1",
"8",
"5",
"3",
"8",
"0",
"6",
"9",
"6",
"8",
"6",
"7",
"8",
"7",
"0",
"7",
"7",
"0",
"4",
"0",
"0",
"9",
"8",
"6",
"8",
"5",
"8",
"5"
] |
[
"nonn",
"cons"
] | 11 | 0 | 1 |
[
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281"
] | null |
A.H.M. Smeets, May 26 2025
| 2025-06-05T08:18:05 |
oeisdata/seq/A384/A384280.seq
|
d529a6f51cfb21d8fcf3dc49b36ece36
|
A384281
|
Decimal expansion of the second smallest zero of the Laguerre polynomial of degree 4.
|
[
"1",
"7",
"4",
"5",
"7",
"6",
"1",
"1",
"0",
"1",
"1",
"5",
"8",
"3",
"4",
"6",
"5",
"7",
"5",
"6",
"8",
"6",
"8",
"1",
"6",
"7",
"1",
"2",
"5",
"1",
"7",
"9",
"4",
"7",
"0",
"2",
"3",
"6",
"7",
"3",
"8",
"7",
"4",
"5",
"1",
"5",
"5",
"3",
"1",
"0",
"7",
"2",
"5",
"0",
"1",
"7",
"8",
"2",
"7",
"8",
"2",
"6",
"6",
"0",
"9",
"9",
"8",
"4",
"5",
"6",
"0",
"5",
"7",
"4",
"4",
"2",
"1",
"9",
"7",
"1",
"6",
"4",
"1",
"4",
"0",
"1",
"3"
] |
[
"nonn",
"cons"
] | 10 | 1 | 2 |
[
"A014176",
"A100954",
"A101465",
"A201488",
"A384277",
"A384278",
"A384279",
"A384280",
"A384281"
] | null |
A.H.M. Smeets, May 26 2025
| 2025-06-05T09:53:45 |
oeisdata/seq/A384/A384281.seq
|
ee02605f4fc1544dc294b7fbd208d268
|
A384282
|
a(n) is the n-th q-Catalan number for q=n.
|
[
"1",
"1",
"5",
"847",
"18245201",
"100333200992026",
"228658497157753687896157",
"319559330566264937870155968502833579",
"380933302489206359659857650468008737411766944866881",
"514667012348784999156727812545930551654233884899853599864429378680766"
] |
[
"nonn"
] | 24 | 0 | 3 |
[
"A384282",
"A384437"
] | null |
Seiichi Manyama, May 29 2025
| 2025-05-29T11:01:31 |
oeisdata/seq/A384/A384282.seq
|
27bdeaffed6a338b91376b75f66d9d49
|
A384283
|
Decimal expansion of the volume of a gyroelongated pentagonal cupola with unit edge.
|
[
"9",
"0",
"7",
"3",
"3",
"3",
"3",
"1",
"9",
"3",
"8",
"8",
"0",
"1",
"8",
"7",
"9",
"9",
"3",
"1",
"4",
"9",
"9",
"8",
"3",
"9",
"8",
"1",
"0",
"1",
"8",
"1",
"6",
"2",
"7",
"2",
"2",
"1",
"5",
"3",
"1",
"3",
"3",
"9",
"3",
"0",
"6",
"0",
"3",
"6",
"7",
"3",
"4",
"9",
"2",
"1",
"4",
"7",
"6",
"4",
"2",
"4",
"5",
"8",
"5",
"0",
"3",
"7",
"6",
"6",
"8",
"7",
"2",
"0",
"6",
"1",
"5",
"5",
"3",
"5",
"4",
"0",
"3",
"6",
"2",
"6",
"2",
"2",
"8",
"0"
] |
[
"nonn",
"cons",
"easy"
] | 8 | 1 | 1 |
[
"A002163",
"A010532",
"A179590",
"A179639",
"A179641",
"A384138",
"A384140",
"A384144",
"A384213",
"A384283",
"A384284"
] | null |
Paolo Xausa, May 26 2025
| 2025-05-28T00:59:42 |
oeisdata/seq/A384/A384283.seq
|
1a94cee1bcca09d6904bd2b0c4f4ca48
|
A384284
|
Decimal expansion of the surface area of a gyroelongated pentagonal cupola with unit edge.
|
[
"2",
"5",
"2",
"4",
"0",
"0",
"0",
"3",
"7",
"9",
"0",
"8",
"3",
"2",
"5",
"8",
"3",
"5",
"1",
"3",
"7",
"3",
"1",
"2",
"7",
"8",
"0",
"5",
"1",
"8",
"9",
"2",
"5",
"8",
"6",
"4",
"5",
"2",
"8",
"1",
"6",
"6",
"6",
"2",
"3",
"6",
"5",
"1",
"6",
"9",
"5",
"5",
"8",
"3",
"2",
"2",
"1",
"5",
"3",
"7",
"7",
"8",
"9",
"5",
"4",
"5",
"3",
"5",
"6",
"0",
"8",
"5",
"6",
"9",
"1",
"2",
"6",
"6",
"9",
"3",
"7",
"5",
"9",
"2",
"2",
"6",
"0",
"8",
"9",
"2"
] |
[
"nonn",
"cons",
"easy"
] | 6 | 2 | 1 |
[
"A002163",
"A002194",
"A179553",
"A179591",
"A179640",
"A384141",
"A384283",
"A384284"
] | null |
Paolo Xausa, May 27 2025
| 2025-05-28T00:59:51 |
oeisdata/seq/A384/A384284.seq
|
6e9416360928f79646c181413e3437c6
|
A384285
|
Decimal expansion of the volume of a gyroelongated pentagonal rotunda with unit edge.
|
[
"1",
"3",
"6",
"6",
"7",
"0",
"5",
"0",
"8",
"4",
"3",
"6",
"7",
"1",
"6",
"9",
"6",
"9",
"3",
"2",
"1",
"2",
"3",
"5",
"3",
"0",
"8",
"9",
"9",
"2",
"3",
"3",
"2",
"8",
"6",
"5",
"6",
"5",
"4",
"0",
"0",
"2",
"6",
"4",
"3",
"6",
"6",
"9",
"7",
"8",
"9",
"8",
"4",
"4",
"5",
"2",
"0",
"1",
"7",
"4",
"8",
"2",
"0",
"5",
"9",
"2",
"2",
"8",
"3",
"2",
"4",
"2",
"3",
"2",
"9",
"5",
"6",
"5",
"7",
"3",
"8",
"8",
"1",
"5",
"9",
"0",
"1",
"0",
"0",
"2"
] |
[
"nonn",
"cons",
"easy"
] | 9 | 2 | 2 |
[
"A002163",
"A179590",
"A179639",
"A179641",
"A384138",
"A384140",
"A384144",
"A384213",
"A384283",
"A384285",
"A384286"
] | null |
Paolo Xausa, May 29 2025
| 2025-05-30T10:34:51 |
oeisdata/seq/A384/A384285.seq
|
2869f73bfb6c624ae48f31e6fa588f8f
|
A384286
|
Decimal expansion of the surface area of a gyroelongated pentagonal rotunda with unit edge.
|
[
"3",
"1",
"0",
"0",
"7",
"4",
"5",
"4",
"3",
"0",
"3",
"2",
"3",
"8",
"5",
"1",
"4",
"7",
"4",
"4",
"4",
"3",
"5",
"6",
"4",
"5",
"8",
"6",
"5",
"7",
"1",
"7",
"9",
"7",
"4",
"9",
"0",
"8",
"5",
"3",
"2",
"0",
"3",
"9",
"7",
"8",
"2",
"4",
"8",
"3",
"5",
"2",
"5",
"7",
"5",
"3",
"2",
"5",
"9",
"0",
"1",
"1",
"2",
"1",
"3",
"9",
"6",
"9",
"8",
"6",
"9",
"8",
"0",
"1",
"3",
"0",
"7",
"5",
"2",
"4",
"9",
"6",
"2",
"2",
"3",
"9",
"7",
"2",
"8",
"1"
] |
[
"nonn",
"cons",
"easy"
] | 7 | 2 | 1 |
[
"A002163",
"A002194",
"A179553",
"A179591",
"A179640",
"A384141",
"A384284",
"A384285",
"A384286"
] | null |
Paolo Xausa, May 30 2025
| 2025-05-30T10:34:45 |
oeisdata/seq/A384/A384286.seq
|
669ca6d4f08222ccad52eea1393dbe41
|
A384287
|
Decimal expansion of the volume of a square orthobicupola with unit edge.
|
[
"3",
"8",
"8",
"5",
"6",
"1",
"8",
"0",
"8",
"3",
"1",
"6",
"4",
"1",
"2",
"6",
"7",
"3",
"1",
"7",
"3",
"5",
"5",
"8",
"4",
"9",
"6",
"5",
"6",
"1",
"2",
"9",
"3",
"0",
"7",
"7",
"1",
"4",
"2",
"6",
"2",
"2",
"9",
"1",
"6",
"7",
"1",
"6",
"9",
"2",
"6",
"4",
"0",
"9",
"7",
"5",
"6",
"8",
"9",
"0",
"6",
"3",
"1",
"7",
"3",
"2",
"0",
"9",
"7",
"6",
"6",
"3",
"7",
"9",
"4",
"9",
"4",
"7",
"6",
"0",
"5",
"1",
"8",
"0",
"0",
"5",
"1",
"6",
"7",
"1"
] |
[
"nonn",
"cons",
"easy"
] | 10 | 1 | 1 |
[
"A002193",
"A010469",
"A010487",
"A384287",
"A384624"
] | null |
Paolo Xausa, Jun 05 2025
| 2025-06-09T10:37:53 |
oeisdata/seq/A384/A384287.seq
|
1658b194fdace2d101d0ea27dc2fad80
|
A384288
|
Three-column table read by rows: row n is the unique primitive Pythagorean triple whose inradius is A002378(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
|
[
"1",
"0",
"1",
"5",
"12",
"13",
"13",
"84",
"85",
"25",
"312",
"313",
"41",
"840",
"841",
"61",
"1860",
"1861",
"85",
"3612",
"3613",
"113",
"6384",
"6385",
"145",
"10512",
"10513",
"181",
"16380",
"16381",
"221",
"24420",
"24421",
"265",
"35112",
"35113",
"313",
"48984",
"48985",
"365",
"66612",
"66613",
"421",
"88620",
"88621",
"481",
"115680",
"115681",
"545",
"148512",
"148513",
"613",
"187884",
"187885",
"685",
"234612",
"234613",
"761",
"289560",
"289561",
"841",
"353640",
"353641"
] |
[
"nonn",
"easy",
"tabf",
"changed"
] | 41 | 0 | 4 |
[
"A001844",
"A002378",
"A008514",
"A237516",
"A384288",
"A384566"
] | null |
Miguel-Ángel Pérez García-Ortega, May 31 2025
| 2025-07-13T17:25:28 |
oeisdata/seq/A384/A384288.seq
|
343df9c431df531c67f9453e768cc4c9
|
A384289
|
Consecutive internal states of the linear congruential pseudo-random number generator for GWBASIC 3.23 when started at 1.
|
[
"1",
"2745024",
"2356867",
"12486458",
"8679701",
"14802820",
"7082039",
"14027294",
"11434089",
"5380488",
"9466411",
"4830274",
"15796733",
"15840460",
"12300383",
"15321510",
"15423953",
"11736400",
"10919635",
"14405194",
"3988453",
"8904468",
"807303",
"4097582",
"10044473",
"2422296",
"6167675",
"914770"
] |
[
"nonn",
"easy"
] | 16 | 1 | 2 |
[
"A096550",
"A096561",
"A384289",
"A384290",
"A384291"
] | null |
Sean A. Irvine, May 24 2025
| 2025-06-19T19:46:06 |
oeisdata/seq/A384/A384289.seq
|
b87488370dc59d1b4109c27c26cab1ae
|
A384290
|
Consecutive internal states of the linear congruential pseudo-random number generator (214013*s+10395331) mod 2^24 when started at s=1.
|
[
"1",
"10609344",
"3405443",
"427834",
"2388245",
"7987076",
"1839159",
"4065822",
"15628393",
"661896",
"14709291",
"13743170",
"13699581",
"13219020",
"11251807",
"9554342",
"7035345",
"11212112",
"3579603",
"10735178",
"6085605",
"10477332",
"3953031",
"2524718",
"5850169",
"6092312",
"3021947",
"1439058"
] |
[
"nonn",
"easy"
] | 17 | 1 | 2 |
[
"A383645",
"A384289",
"A384290",
"A384291"
] | null |
Sean A. Irvine, May 24 2025
| 2025-05-27T06:12:03 |
oeisdata/seq/A384/A384290.seq
|
d3c4f0171acc87007d074e60dc3677d1
|
A384291
|
Consecutive internal states of the linear congruential pseudo-random number generator (214013*s+13737667) mod 2^24 when started at s=1.
|
[
"1",
"13951680",
"13497987",
"7046970",
"2650389",
"10542980",
"14290999",
"3607070",
"3569769",
"6625672",
"160299",
"10400834",
"10291709",
"10007756",
"7450719",
"7522726",
"16472529",
"3020112",
"14720723",
"14208586",
"15784933",
"1498900",
"676231",
"15697454",
"3228729",
"521752",
"6298747",
"11728210"
] |
[
"nonn",
"easy"
] | 11 | 1 | 2 |
[
"A384289",
"A384290",
"A384291"
] | null |
Sean A. Irvine, May 24 2025
| 2025-06-19T19:49:56 |
oeisdata/seq/A384/A384291.seq
|
76a6a87e904fe668fbadea3ed6bb741f
|
A384292
|
Consecutive internal states of the linear congruential pseudo-random number generator (214013*s+13523655) mod 2^24 when started at s=1.
|
[
"1",
"13737668",
"13733499",
"10705750",
"2695365",
"5655672",
"8607071",
"956074",
"10862281",
"15041132",
"426883",
"3316798",
"7405069",
"1954976",
"13589735",
"12754962",
"4276881",
"7083796",
"15164811",
"11671078",
"798805",
"8347080",
"9527663",
"4764282",
"13282137",
"16579772",
"2970771",
"7760142"
] |
[
"nonn",
"easy"
] | 15 | 1 | 2 |
[
"A384289",
"A384290",
"A384291",
"A384292"
] | null |
Sean A. Irvine, May 24 2025
| 2025-06-19T19:50:59 |
oeisdata/seq/A384/A384292.seq
|
d1c2fe754d320715a20fa7d743614a50
|
A384293
|
Consecutive internal states of the pseudo-random number generator (214013*(s mod 2^16)+13523655) mod 2^24 when started at s=1.
|
[
"1",
"13737668",
"4492923",
"1465174",
"1188037",
"13716600",
"8738143",
"9934506",
"13614793",
"13927020",
"11895683",
"4496446",
"458253",
"7197856",
"2514151",
"3121170",
"8864401",
"3086100",
"2844043",
"6755878",
"2240597",
"10706376",
"942447",
"16495226",
"10660697",
"5962940",
"2184339",
"16607502"
] |
[
"nonn",
"easy"
] | 12 | 1 | 2 |
[
"A384289",
"A384290",
"A384291",
"A384292",
"A384293"
] | null |
Sean A. Irvine, May 24 2025
| 2025-06-19T19:54:42 |
oeisdata/seq/A384/A384293.seq
|
d31f9df3dfbf82a6f4be0877b2bd8db6
|
A384294
|
The number of Hamiltonian cycles in the concentric ring graph of order n.
|
[
"6",
"12",
"30",
"34",
"56",
"108",
"150",
"244",
"418",
"642",
"1040",
"1712",
"2726",
"4412",
"7174",
"11554",
"18696",
"30292",
"48950",
"79204",
"128202",
"207362",
"335520",
"542936",
"878406",
"1421292",
"2299758",
"3720994",
"6020696",
"9741756",
"15762390",
"25504084",
"41266546",
"66770562",
"108037040",
"174807680",
"282844646",
"457652252",
"740496982",
"1198149154",
"1938646056"
] |
[
"nonn",
"easy"
] | 24 | 3 | 1 |
[
"A000032",
"A384294"
] | null |
Don Knuth, May 24 2025
| 2025-05-27T01:14:13 |
oeisdata/seq/A384/A384294.seq
|
65aac222411877c04bb4cf7f4f9db536
|
A384295
|
a(n) is the number of integer sextuples (a,b,c,d,e,f) satisfying a system of linear inequalities and congruences specified in the comments.
|
[
"1",
"42",
"684",
"4388",
"17976",
"56076",
"145630",
"331410",
"682596",
"1300338",
"2326422",
"3952896",
"6432777",
"10091748",
"15340947",
"22690710",
"32765418",
"46319334",
"64253491",
"87633588",
"117708960",
"155932526",
"203981823",
"263781030",
"337524061",
"427698636",
"537111456",
"668914338",
"826631436"
] |
[
"nonn"
] | 22 | 0 | 2 |
[
"A370349",
"A384127",
"A384295"
] | null |
Jeffery Opoku, May 24 2025
| 2025-06-04T10:12:01 |
oeisdata/seq/A384/A384295.seq
|
f6904121b109b94dd58f05ae6adb3667
|
A384296
|
Square numbers whose iterative sums of digits are squares.
|
[
"0",
"1",
"4",
"9",
"36",
"81",
"100",
"121",
"144",
"225",
"324",
"400",
"441",
"900",
"1521",
"2025",
"2304",
"2601",
"3600",
"8100",
"10000",
"10201",
"10404",
"11025",
"12100",
"12321",
"14400",
"22500",
"32400",
"40000",
"40401",
"44100",
"62001",
"69696",
"90000",
"101124",
"103041",
"121104",
"123201",
"149769",
"152100",
"173889",
"178929",
"199809",
"202500",
"230400",
"251001"
] |
[
"nonn",
"base"
] | 25 | 1 | 3 |
[
"A004159",
"A053057",
"A070027",
"A117676",
"A384296"
] | null |
Huaineng He, May 24 2025
| 2025-05-29T23:25:58 |
oeisdata/seq/A384/A384296.seq
|
ac818294bc4be0f035daf6d0551cd3f0
|
A384297
|
Consecutive internal states of the linear congruential pseudo-random number generator for Microsoft QBASIC when started at 1.
|
[
"1",
"12640960",
"8124035",
"4294458",
"3961109",
"14212996",
"790583",
"4786718",
"4094057",
"13179272",
"9990699",
"13415490",
"7932413",
"570572",
"4960351",
"10275238",
"9132497",
"9049424",
"14589651",
"14601802",
"1367013",
"4120340",
"807303",
"11634222",
"13190201",
"14415384",
"4594811",
"1111378"
] |
[
"nonn",
"easy"
] | 18 | 1 | 2 |
[
"A096550",
"A096561",
"A384297"
] | null |
Sean A. Irvine, May 24 2025
| 2025-05-27T10:32:20 |
oeisdata/seq/A384/A384297.seq
|
def0e3ea36baf2ac23b7effdcef88447
|
A384298
|
Primes p such that p + 4, p + 12 and p + 16 are also primes.
|
[
"7",
"67",
"97",
"487",
"757",
"1567",
"1597",
"2377",
"3907",
"7687",
"8677",
"12097",
"12907",
"13147",
"14407",
"14767",
"15667",
"16057",
"19417",
"21487",
"31177",
"38317",
"43777",
"52567",
"57637",
"58897",
"65167",
"65827",
"67477",
"67927",
"74857",
"81547",
"90007",
"90187",
"93967",
"94777",
"95467",
"95617",
"102547",
"111427",
"112237",
"114757",
"123817",
"129277"
] |
[
"nonn"
] | 16 | 1 | 1 |
[
"A000040",
"A001223",
"A052378",
"A136162",
"A382810",
"A384298"
] | null |
Alexander Yutkin, May 25 2025
| 2025-05-30T10:39:53 |
oeisdata/seq/A384/A384298.seq
|
22181d38abba885fabb0b02184a76824
|
A384299
|
Primes p such that p + 8, p + 12 and p + 20 are also primes.
|
[
"11",
"59",
"89",
"389",
"479",
"1439",
"1559",
"1601",
"2531",
"2699",
"3209",
"3449",
"3911",
"5639",
"5849",
"7529",
"8081",
"8669",
"10091",
"12269",
"12401",
"12899",
"13151",
"14411",
"14759",
"17021",
"19421",
"21011",
"21851",
"22271",
"23189",
"25931",
"26099",
"28649",
"28859",
"31139",
"31469",
"33191",
"33569",
"36551",
"39659",
"40751",
"42689",
"43391",
"43781",
"44111"
] |
[
"nonn"
] | 11 | 1 | 1 |
[
"A000040",
"A001223",
"A052378",
"A136162",
"A382810",
"A384299"
] | null |
Alexander Yutkin, May 25 2025
| 2025-05-29T21:54:32 |
oeisdata/seq/A384/A384299.seq
|
2d7d776c3bf26d31dcec2651d2bc78fa
|
A384300
|
a(n) = Product_{k=0..2*n-1} (3*n+k-2).
|
[
"1",
"2",
"840",
"665280",
"980179200",
"2346549004800",
"8326896754176000",
"41098950018846720000",
"269397128065642536960000",
"2264501147602213494374400000",
"23751156416080627455365283840000",
"304080322557324667642345606348800000",
"4667216066941750219330172809445376000000"
] |
[
"nonn",
"easy"
] | 11 | 0 | 2 |
[
"A384262",
"A384300",
"A384301",
"A384302",
"A384303"
] | null |
Seiichi Manyama, May 25 2025
| 2025-05-26T05:20:23 |
oeisdata/seq/A384/A384300.seq
|
f319b8f7140d0473893b1c14d77d3449
|
A384301
|
a(n) = Product_{k=0..2*n-1} (3*n+k-1).
|
[
"1",
"6",
"1680",
"1235520",
"1764322560",
"4151586700800",
"14572069319808000",
"71382386874839040000",
"465322312113382563840000",
"3894941973875807210323968000",
"40716268141852504209197629440000",
"519879261146393786614332810854400000",
"7961721525959456256504412439642112000000"
] |
[
"nonn",
"easy"
] | 12 | 0 | 2 |
[
"A384263",
"A384300",
"A384301",
"A384302",
"A384303"
] | null |
Seiichi Manyama, May 25 2025
| 2025-05-26T05:20:31 |
oeisdata/seq/A384/A384301.seq
|
9835d5330c5457b4ce59d44b051a825a
|
A384302
|
a(n) = Product_{k=0..2*n-1} (3*n+k).
|
[
"1",
"12",
"3024",
"2162160",
"3047466240",
"7117005772800",
"24858235898496000",
"121350057687226368000",
"789024790105300869120000",
"6591440263482135279009792000",
"68796453067268024353471856640000",
"877296253184539514911686618316800000",
"13421187715188797689536009541110988800000"
] |
[
"nonn",
"easy"
] | 12 | 0 | 2 |
[
"A384300",
"A384301",
"A384302",
"A384303"
] | null |
Seiichi Manyama, May 25 2025
| 2025-05-26T05:20:38 |
oeisdata/seq/A384/A384302.seq
|
5c0fdafc0b48e33ff14d599e4c059ae8
|
A384303
|
a(n) = Product_{k=0..2*n-1} (3*n+k+1).
|
[
"1",
"20",
"5040",
"3603600",
"5079110400",
"11861676288000",
"41430393164160000",
"202250096145377280000",
"1315041316842168115200000",
"10985733772470225465016320000",
"114660755112113373922453094400000",
"1462160421974232524852811030528000000",
"22368646191981329482560015901851648000000"
] |
[
"nonn",
"easy"
] | 13 | 0 | 2 |
[
"A166384",
"A384300",
"A384301",
"A384302",
"A384303"
] | null |
Seiichi Manyama, May 25 2025
| 2025-05-26T07:55:24 |
oeisdata/seq/A384/A384303.seq
|
0e9553ad1cf42df317abf3dc242aa6fb
|
A384304
|
Population of elementary triangular automaton rule 86 at generation n, starting from a lone 1 cell at generation 0.
|
[
"1",
"4",
"6",
"18",
"18",
"39",
"33",
"69",
"57",
"111",
"81",
"123",
"144",
"195",
"162",
"252",
"243",
"306",
"300",
"336",
"369",
"414",
"435",
"495",
"525",
"603",
"549",
"693",
"738",
"807",
"780",
"933",
"876",
"1014",
"1089",
"1050",
"1239",
"1263",
"1257",
"1296",
"1416",
"1590",
"1506",
"1674",
"1758",
"1938",
"1851",
"1869",
"1992",
"2256",
"2157"
] |
[
"nonn"
] | 9 | 0 | 2 | null | null |
Paul Cousin, May 25 2025
| 2025-05-25T09:22:54 |
oeisdata/seq/A384/A384304.seq
|
f30d53da8cc1183445c41b2049a30825
|
A384305
|
Expansion of Product_{k>=1} 1/(1 - k*x)^((5/6)^k).
|
[
"1",
"30",
"615",
"11260",
"205695",
"4013406",
"88035585",
"2255192280",
"68859250020",
"2506898720040",
"107238427737876",
"5281094776037040",
"293625956135692020",
"18139856902224931080",
"1229886945212115522060",
"90641666662687182976896",
"7206758883035555464430370",
"614391718014749017022916060"
] |
[
"nonn"
] | 29 | 0 | 2 |
[
"A084785",
"A090358",
"A090362",
"A094418",
"A384305",
"A384324",
"A384325",
"A384326"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-31T04:10:25 |
oeisdata/seq/A384/A384305.seq
|
8282af4d4ddd3e13df8a98dcf5c16c74
|
A384306
|
Primes whose sum of digits in both base 8 and base 10 are recursively prime down to 2, 3, 5, or 7.
|
[
"2",
"3",
"5",
"7",
"131",
"311",
"887",
"1013",
"1949",
"2399",
"2621",
"2957",
"3251",
"3323",
"3701",
"4289",
"4919",
"4973",
"5099",
"5101",
"5477",
"5927",
"5981",
"6359",
"6599",
"6779",
"6863",
"8069",
"8447",
"8573",
"8627",
"8669",
"8951",
"9677",
"10141",
"10181",
"10211",
"10589",
"10631",
"11399",
"11597",
"12101",
"12479",
"12659",
"12983"
] |
[
"nonn",
"base"
] | 44 | 1 | 1 |
[
"A000040",
"A007953",
"A070027",
"A384306"
] | null |
Jean-Louis Lascoux, May 25 2025
| 2025-06-10T12:25:36 |
oeisdata/seq/A384/A384306.seq
|
a27d646e4e0826dec61d80d0ee22b0ac
|
A384307
|
Decimal expansion of sqrt(6/Pi)*Gamma(2/3)/3^(1/3).
|
[
"1",
"2",
"9",
"7",
"5",
"2",
"8",
"0",
"7",
"1",
"1",
"4",
"0",
"3",
"7",
"5",
"0",
"6",
"5",
"0",
"6",
"0",
"1",
"2",
"2",
"2",
"7",
"4",
"0",
"9",
"0",
"9",
"2",
"8",
"6",
"2",
"9",
"6",
"3",
"8",
"8",
"0",
"9",
"0",
"2",
"9",
"1",
"2",
"9",
"9",
"7",
"5",
"6",
"9",
"8",
"2",
"3",
"9",
"6",
"4",
"2",
"4",
"1",
"5",
"1",
"3",
"4",
"1",
"1",
"8",
"0",
"3",
"9",
"4",
"1",
"0",
"5",
"9",
"9",
"5",
"8",
"5",
"8",
"7",
"6",
"0",
"5",
"4",
"2",
"0",
"2",
"7",
"4",
"9",
"0",
"4",
"8",
"1",
"3",
"3"
] |
[
"nonn",
"cons"
] | 8 | 1 | 2 |
[
"A002581",
"A073006",
"A132696",
"A384307"
] | null |
Stefano Spezia, May 25 2025
| 2025-05-27T01:15:33 |
oeisdata/seq/A384/A384307.seq
|
8f80b13499c24e373bf7c2dbdec10e14
|
A384308
|
a(1) = 3; for n > 1, a(n) is the smallest number that has not appeared before and has the same set of prime divisors as a(n-1) + 1.
|
[
"3",
"2",
"9",
"10",
"11",
"6",
"7",
"4",
"5",
"12",
"13",
"14",
"15",
"8",
"27",
"28",
"29",
"30",
"31",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"81",
"82",
"83",
"42",
"43",
"44",
"45",
"46",
"47",
"36",
"37",
"38",
"39",
"40",
"41",
"84",
"85",
"86",
"87",
"88",
"89",
"60",
"61",
"62",
"63",
"32",
"33",
"34",
"35",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"90",
"91",
"92",
"93",
"94",
"95",
"72",
"73",
"74",
"75"
] |
[
"nonn"
] | 45 | 1 | 1 |
[
"A064413",
"A257218",
"A384308"
] | null |
SiYang Hu, May 25 2025
| 2025-06-04T11:07:19 |
oeisdata/seq/A384/A384308.seq
|
c075c43afae544321ff3fb83174365c5
|
A384309
|
a(1) = 1. Thereafter a(n) is the cardinality of the set of terms whose leading decimal digit is the same as that of a(n-1).
|
[
"1",
"1",
"2",
"1",
"3",
"1",
"4",
"1",
"5",
"1",
"6",
"1",
"7",
"1",
"8",
"1",
"9",
"1",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"2",
"3",
"2",
"4",
"2",
"5",
"2",
"6",
"2",
"7",
"2",
"8",
"2",
"9",
"2",
"10",
"21",
"11",
"22",
"12",
"23",
"13",
"24",
"14",
"25",
"15",
"26",
"16",
"27",
"17",
"28",
"18",
"29",
"19",
"30",
"3",
"4",
"3",
"5",
"3",
"6",
"3",
"7",
"3",
"8",
"3",
"9",
"3",
"10",
"31",
"11"
] |
[
"nonn",
"base",
"look"
] | 24 | 1 | 3 |
[
"A00003",
"A248034",
"A384309"
] | null |
David James Sycamore, May 25 2025
| 2025-06-02T16:23:52 |
oeisdata/seq/A384/A384309.seq
|
3e0b3fc601c4ed8d666f4c2f09027b8e
|
A384310
|
Numbers k such that A383844(k) and A383844(k+1) are nonzero.
|
[
"0",
"3",
"6",
"7",
"12",
"20",
"26",
"27",
"28",
"53",
"56",
"61",
"74",
"88",
"145",
"146",
"252",
"289",
"299",
"308",
"320",
"323",
"340",
"471",
"577",
"578",
"739",
"1240",
"1517",
"1568",
"1579",
"1857",
"2638",
"3042",
"3043",
"3133",
"3455",
"3565",
"4910",
"8683",
"8684",
"8857",
"8858",
"9291",
"14549",
"17913",
"18117",
"20005",
"21989",
"32552",
"37902",
"42514",
"44869",
"47877",
"49942"
] |
[
"nonn"
] | 29 | 1 | 2 |
[
"A024934",
"A383844",
"A384310"
] | null |
Miles Englezou, Jun 04 2025
| 2025-06-10T00:37:47 |
oeisdata/seq/A384/A384310.seq
|
e08c46fe74caf936564a1fc2cdb42807
|
A384311
|
a(n) is the number of ways to partition an n X n X n cube into 4 cuboids of different dimensions.
|
[
"0",
"0",
"4",
"12",
"47",
"85",
"183",
"266",
"466",
"613",
"941",
"1179",
"1668",
"2007",
"2701",
"3159",
"4079",
"4690",
"5868",
"6635",
"8122",
"9064",
"10874",
"12030",
"14196",
"15564",
"18142",
"19740",
"22739",
"24613",
"28065",
"30206",
"34174",
"36601",
"41087",
"43851",
"48888",
"51975",
"57631",
"61059",
"67331",
"71158",
"78078"
] |
[
"nonn"
] | 13 | 1 | 3 |
[
"A381847",
"A384311"
] | null |
Janaka Rodrigo, May 25 2025
| 2025-05-31T08:13:02 |
oeisdata/seq/A384/A384311.seq
|
19935dfe5f39deae4bf4fbcb8feb831b
|
A384312
|
Third center column of elementary triangular automaton rule 86, starting from a lone 1 cell.
|
[
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1"
] |
[
"nonn"
] | 12 | 0 | null |
[
"A384304",
"A384312"
] | null |
Paul Cousin, May 25 2025
| 2025-05-27T01:15:12 |
oeisdata/seq/A384/A384312.seq
|
21b49f4c30cbebe1fc3ba9798e73f642
|
A384313
|
a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(0), F(1), ..., F(n-1)), where F = A000045 (Fibonacci numbers), and pos(M(n)) is the positive part of the determinant of M(n); see A380661.
|
[
"0",
"0",
"2",
"9",
"582",
"27136",
"7661772",
"2797055478",
"4374706319136",
"11681281664592429",
"112352959301265272414",
"2147474541377915674682880",
"133430162305143400794479937840",
"18069411470335957872130103264497774",
"7436752857750595469877425837627133763584"
] |
[
"nonn"
] | 7 | 1 | 3 |
[
"A123744",
"A380661",
"A384079",
"A384080",
"A384313"
] | null |
Clark Kimberling, Jun 27 2025
| 2025-07-02T00:52:42 |
oeisdata/seq/A384/A384313.seq
|
ec1be36875aebb631504dd0d0d4945e5
|
A384314
|
Numbers k such that the nonzero digits in the ternary expansion k = d(1),...,d(m) satisfy d(2*i+1) = d(1) and d(2*i) = 3-d(1).
|
[
"0",
"1",
"2",
"3",
"5",
"6",
"7",
"9",
"10",
"15",
"16",
"18",
"20",
"21",
"23",
"27",
"29",
"30",
"32",
"45",
"47",
"48",
"50",
"54",
"55",
"60",
"61",
"63",
"64",
"69",
"70",
"81",
"82",
"87",
"88",
"90",
"91",
"96",
"97",
"135",
"136",
"141",
"142",
"144",
"145",
"150",
"151",
"162",
"164",
"165",
"167",
"180",
"182",
"183",
"185",
"189",
"191",
"192",
"194",
"207",
"209"
] |
[
"base",
"easy",
"nonn"
] | 29 | 1 | 3 | null | null |
Frederik P.J. Vandecasteele, May 25 2025
| 2025-06-18T19:02:57 |
oeisdata/seq/A384/A384314.seq
|
a2df53399fc1a29d4a4b9b32e21eb328
|
A384315
|
Consecutive internal states of the linear congruential pseudo-random number generator for Demos started at 1.
|
[
"1",
"8192",
"9317",
"9225317",
"19706942",
"64858329",
"25218022",
"53630558",
"40796927",
"52681924",
"53134651",
"4299603",
"62185148",
"971592",
"41535118",
"60983366",
"19606857",
"50156573",
"32119735",
"27545333",
"62690922",
"51199833",
"56863186",
"18164438",
"43380397",
"13011312",
"34587268",
"44612022"
] |
[
"nonn",
"easy"
] | 17 | 1 | 2 |
[
"A096550",
"A096561",
"A384315"
] | null |
Sean A. Irvine, May 25 2025
| 2025-05-28T20:00:07 |
oeisdata/seq/A384/A384315.seq
|
ea7d189c5ec210ec6c3a1ec038656f01
|
A384316
|
Consecutive states of the linear congruential pseudo-random number generator 3125*s mod 2^26 when started at s=1.
|
[
"1",
"3125",
"9765625",
"50153869",
"31643185",
"33596453",
"30652329",
"24179197",
"62518625",
"16800021",
"20933977",
"54644589",
"39390609",
"17996549",
"1987593",
"37212637",
"56938177",
"26204661",
"16751545",
"3664205",
"42133745",
"361957",
"57373801",
"45352381",
"59378721",
"2494165",
"9637401",
"52107053"
] |
[
"nonn",
"easy"
] | 12 | 1 | 2 |
[
"A096550",
"A096561",
"A384316"
] | null |
Sean A. Irvine, May 25 2025
| 2025-05-27T16:41:36 |
oeisdata/seq/A384/A384316.seq
|
7fc08d60b0dde36bd6c2a93b48ada92a
|
A384317
|
Number of integer partitions of n with more than one possible way to choose disjoint strict partitions of each part.
|
[
"0",
"0",
"0",
"1",
"1",
"1",
"4",
"4",
"5",
"5",
"12",
"12",
"16",
"19",
"22",
"35",
"38",
"48",
"58",
"68",
"79",
"110",
"121",
"149",
"175",
"207",
"242",
"281",
"352",
"397",
"473"
] |
[
"nonn",
"more"
] | 6 | 0 | 7 |
[
"A098859",
"A179009",
"A239455",
"A299200",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382525",
"A382912",
"A382913",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384317",
"A384318",
"A384319",
"A384320",
"A384321",
"A384322",
"A384323",
"A384347"
] | null |
Gus Wiseman, May 28 2025
| 2025-05-28T09:17:21 |
oeisdata/seq/A384/A384317.seq
|
8e819437ad29123e33c32fd4405d9604
|
A384318
|
Number of strict integer partitions of n that are not maximally refined.
|
[
"0",
"0",
"0",
"1",
"1",
"1",
"3",
"4",
"4",
"5",
"9",
"10",
"13",
"15",
"17",
"26",
"29",
"36",
"43",
"49",
"57",
"74",
"84",
"101",
"118",
"136",
"158",
"181",
"219",
"248",
"291"
] |
[
"nonn",
"more"
] | 14 | 0 | 7 |
[
"A048767",
"A098859",
"A179009",
"A179822",
"A239455",
"A279375",
"A317142",
"A326080",
"A351293",
"A357982",
"A382525",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384317",
"A384318",
"A384319",
"A384320",
"A384321",
"A384322",
"A384323",
"A384350",
"A384391",
"A384392"
] | null |
Gus Wiseman, May 28 2025
| 2025-06-11T23:41:02 |
oeisdata/seq/A384/A384318.seq
|
77a8bb40150dcc3393fbbad27f3958d9
|
A384319
|
Number of strict integer partitions of n with exactly two possible ways to choose disjoint strict partitions of each part.
|
[
"0",
"0",
"0",
"1",
"1",
"0",
"2",
"3",
"1",
"0",
"4",
"4",
"4",
"2",
"0",
"6",
"7",
"8",
"8",
"3",
"2",
"9",
"9",
"14",
"13",
"6",
"7",
"3",
"15",
"13",
"20"
] |
[
"nonn",
"more"
] | 5 | 0 | 7 |
[
"A098859",
"A179009",
"A239455",
"A279375",
"A299200",
"A317142",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382912",
"A382913",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384317",
"A384318",
"A384319",
"A384320",
"A384321",
"A384322",
"A384323",
"A384347",
"A384390"
] | null |
Gus Wiseman, May 28 2025
| 2025-05-28T09:17:12 |
oeisdata/seq/A384/A384319.seq
|
086c33617b34b1b515d7cdd41c8d7958
|
A384320
|
Heinz numbers of integer partitions whose distinct parts are maximally refined.
|
[
"1",
"2",
"3",
"4",
"6",
"8",
"9",
"10",
"12",
"14",
"15",
"16",
"18",
"20",
"24",
"27",
"28",
"30",
"32",
"36",
"40",
"42",
"45",
"48",
"50",
"54",
"56",
"60",
"64",
"66",
"70",
"72",
"75",
"78",
"80",
"81",
"84",
"90",
"96",
"98",
"100",
"105",
"108",
"110",
"112",
"120",
"126",
"128",
"132",
"135",
"140",
"144",
"150",
"156",
"160",
"162",
"168",
"180",
"182",
"192",
"196"
] |
[
"nonn"
] | 16 | 1 | 2 |
[
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A112798",
"A130091",
"A179009",
"A279375",
"A279790",
"A299200",
"A317142",
"A326080",
"A351294",
"A351295",
"A357982",
"A381454",
"A382525",
"A383706",
"A383707",
"A384318",
"A384320",
"A384321",
"A384322",
"A384390",
"A384392"
] | null |
Gus Wiseman, Jun 01 2025
| 2025-06-10T16:26:02 |
oeisdata/seq/A384/A384320.seq
|
4bbe335108a96e074929e3def8ab85f0
|
A384321
|
Numbers whose distinct prime indices are not maximally refined.
|
[
"5",
"7",
"11",
"13",
"17",
"19",
"21",
"22",
"23",
"25",
"26",
"29",
"31",
"33",
"34",
"35",
"37",
"38",
"39",
"41",
"43",
"46",
"47",
"49",
"51",
"53",
"55",
"57",
"58",
"59",
"61",
"62",
"65",
"67",
"69",
"71",
"73",
"74",
"77",
"79",
"82",
"83",
"85",
"86",
"87",
"89",
"91",
"93",
"94",
"95",
"97",
"101",
"102",
"103",
"106",
"107",
"109",
"111",
"113",
"114",
"115",
"118",
"119"
] |
[
"nonn"
] | 10 | 1 | 1 |
[
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A098859",
"A112798",
"A122111",
"A130091",
"A179009",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A317142",
"A326080",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382525",
"A383706",
"A383707",
"A384005",
"A384317",
"A384318",
"A384320",
"A384321",
"A384322",
"A384323",
"A384390"
] | null |
Gus Wiseman, Jun 01 2025
| 2025-06-11T23:40:56 |
oeisdata/seq/A384/A384321.seq
|
f904e16b1e0c3cb27a07a0ff977d7999
|
A384322
|
Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.
|
[
"5",
"7",
"11",
"13",
"17",
"19",
"21",
"22",
"23",
"26",
"29",
"31",
"33",
"34",
"35",
"37",
"38",
"39",
"41",
"43",
"46",
"47",
"51",
"53",
"55",
"57",
"58",
"59",
"61",
"62",
"65",
"67",
"69",
"71",
"73",
"74",
"77",
"79",
"82",
"83",
"85",
"86",
"87",
"89",
"91",
"93",
"94",
"95",
"97",
"101",
"102",
"103",
"106",
"107",
"109",
"111",
"113",
"114",
"115",
"118",
"119",
"122"
] |
[
"nonn"
] | 5 | 1 | 1 |
[
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A098859",
"A112798",
"A122111",
"A130091",
"A179009",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A317142",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382525",
"A382912",
"A382913",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384005",
"A384317",
"A384318",
"A384319",
"A384320",
"A384321",
"A384322",
"A384323",
"A384347",
"A384390"
] | null |
Gus Wiseman, Jun 01 2025
| 2025-06-01T22:18:28 |
oeisdata/seq/A384/A384322.seq
|
079fe5d29e4d643c31938beae4a63c7c
|
A384323
|
Number of integer partitions of n with exactly two possible ways to choose disjoint strict partitions of each part.
|
[
"0",
"0",
"0",
"1",
"1",
"0",
"3",
"3",
"2",
"0",
"6",
"6",
"6",
"6",
"4",
"10",
"10",
"14",
"16",
"15",
"16",
"17",
"20",
"25",
"27",
"28",
"37",
"43",
"31",
"42",
"44"
] |
[
"nonn",
"more"
] | 8 | 0 | 7 |
[
"A000009",
"A000041",
"A048767",
"A048768",
"A098859",
"A179009",
"A217605",
"A239455",
"A279790",
"A299200",
"A317142",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382525",
"A382912",
"A382913",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384005",
"A384317",
"A384318",
"A384319",
"A384321",
"A384322",
"A384323",
"A384347",
"A384390"
] | null |
Gus Wiseman, May 30 2025
| 2025-05-30T23:14:24 |
oeisdata/seq/A384/A384323.seq
|
10887137263205b0e2b2dcaedda5e886
|
A384324
|
Expansion of Product_{k>=1} 1/(1 - k*x)^((2/3)^k).
|
[
"1",
"6",
"33",
"200",
"1428",
"12408",
"132604",
"1730160",
"27043866",
"495026316",
"10388326986",
"245555445888",
"6446710871724",
"185904786328920",
"5836500883321164",
"198054400887909264",
"7220679972923312487",
"281402128806812402490",
"11671796413017231008663"
] |
[
"nonn"
] | 17 | 0 | 2 |
[
"A004123",
"A084785",
"A090351",
"A090352",
"A384305",
"A384324",
"A384325",
"A384326"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-27T10:10:25 |
oeisdata/seq/A384/A384324.seq
|
bcd629cf733e475255069413fbb17802
|
A384325
|
Expansion of Product_{k>=1} 1/(1 - k*x)^((3/4)^k).
|
[
"1",
"12",
"114",
"1084",
"11319",
"136920",
"1981228",
"34705656",
"731268315",
"18203860748",
"524073230394",
"17111173850652",
"623571696107069",
"25046605210733184",
"1097919954149781264",
"52109508350206511840",
"2660615337817983390318",
"145353541761618312219336"
] |
[
"nonn"
] | 14 | 0 | 2 |
[
"A032033",
"A084785",
"A090353",
"A384305",
"A384324",
"A384325",
"A384326"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-27T07:56:56 |
oeisdata/seq/A384/A384325.seq
|
39908b5c930fbb5ce21bbb0b239c3fbf
|
A384326
|
Expansion of Product_{k>=1} 1/(1 - k*x)^((4/5)^k).
|
[
"1",
"20",
"290",
"3940",
"55695",
"872904",
"15862460",
"343510120",
"8931896095",
"276115329860",
"9954870557826",
"410042908659060",
"18954497571869745",
"969420292296268320",
"54253252462944958560",
"3293672518482920204544",
"215400856153695252763320",
"15088195059520554250863840"
] |
[
"nonn"
] | 13 | 0 | 2 |
[
"A084785",
"A090356",
"A094417",
"A384305",
"A384324",
"A384325",
"A384326"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-27T07:58:13 |
oeisdata/seq/A384/A384326.seq
|
58cc703a2e332c7f02392ca379a59ff8
|
A384327
|
Minimal Trips Around The Collatz Galaxy: a(n) is the minimal cycle length containing n. Each step in the cycle must be either to the next larger integer or follow a Collatz trajectory: k -> 3k+1 if k is odd or k -> k/2 if k is even.
|
[
"2",
"2",
"3",
"3",
"4",
"4",
"5",
"4",
"5",
"4",
"5",
"5",
"6",
"5",
"6",
"4",
"6",
"6",
"7",
"6",
"7",
"5",
"6",
"6",
"8",
"7",
"8",
"5",
"7",
"7",
"8",
"8",
"9",
"6",
"7",
"7",
"9",
"9",
"10",
"6",
"8",
"8",
"9",
"9",
"11",
"7",
"8",
"8",
"10",
"10",
"11",
"7",
"9",
"9",
"10",
"10",
"12",
"8",
"9",
"9",
"11",
"11",
"12",
"8",
"10",
"10",
"11",
"11",
"13",
"9",
"10",
"10",
"12",
"12",
"13",
"9",
"11",
"11",
"12"
] |
[
"nonn"
] | 23 | 1 | 1 |
[
"A006370",
"A384327"
] | null |
Gordon Hamilton, May 26 2025
| 2025-06-24T00:51:24 |
oeisdata/seq/A384/A384327.seq
|
a3283788910970bfa504b1ff845dfcc3
|
A384328
|
Expansion of 1 / ((1-x)^3 * (1-x^7)).
|
[
"1",
"3",
"6",
"10",
"15",
"21",
"28",
"37",
"48",
"61",
"76",
"93",
"112",
"133",
"157",
"184",
"214",
"247",
"283",
"322",
"364",
"410",
"460",
"514",
"572",
"634",
"700",
"770",
"845",
"925",
"1010",
"1100",
"1195",
"1295",
"1400",
"1511",
"1628",
"1751",
"1880",
"2015",
"2156",
"2303",
"2457",
"2618",
"2786",
"2961"
] |
[
"nonn",
"easy"
] | 40 | 0 | 2 |
[
"A000292",
"A002623",
"A014125",
"A122046",
"A122047",
"A175724",
"A384328"
] | null |
Hoang Xuan Thanh, May 26 2025
| 2025-06-09T21:10:28 |
oeisdata/seq/A384/A384328.seq
|
286ddf64da665c06f71314990b8521a8
|
A384329
|
Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000217(n) and its long leg and hypotenuse are consecutive natural numbers, n >= 0.
|
[
"-1",
"0",
"1",
"1",
"0",
"1",
"5",
"12",
"13",
"11",
"60",
"61",
"19",
"180",
"181",
"29",
"420",
"421",
"41",
"840",
"841",
"55",
"1512",
"1513",
"71",
"2520",
"2521",
"89",
"3960",
"3961",
"109",
"5940",
"5941",
"131",
"8580",
"8581",
"155",
"12012",
"12013",
"181",
"16380",
"16381",
"209",
"21840",
"21841",
"239",
"28560",
"28561",
"271",
"36720",
"36721",
"305",
"46512",
"46513",
"341",
"58140",
"58141"
] |
[
"sign",
"easy",
"tabf",
"changed"
] | 19 | 0 | 7 |
[
"A000217",
"A062392",
"A165900",
"A384329",
"A384498"
] | null |
Miguel-Ángel Pérez García-Ortega, May 26 2025
| 2025-07-13T17:25:16 |
oeisdata/seq/A384/A384329.seq
|
f83a3dccbd9607260fe93cf479315d7c
|
A384330
|
Number of distinct subsets S of [n] such that for all 1 <= k <= n, there exist elements x,y in S (not necessarily distinct) such that x*y = 2k.
|
[
"1",
"0",
"1",
"1",
"1",
"1",
"3",
"3",
"8",
"11",
"30",
"30",
"57",
"57",
"159",
"295",
"427",
"427",
"1033",
"1033",
"1973",
"3610",
"10427",
"10427",
"20575",
"28731",
"83535",
"142793",
"273755",
"273755",
"549946",
"549946",
"1245416",
"2289562",
"6665252",
"12386159",
"24210731",
"24210731",
"71150197",
"131657471",
"256115337",
"256115337"
] |
[
"nonn"
] | 26 | 0 | 7 |
[
"A000079",
"A000225",
"A383968",
"A384330"
] | null |
Darío Clavijo, May 26 2025
| 2025-05-26T18:29:21 |
oeisdata/seq/A384/A384330.seq
|
a3d6320ef649413f68a3a7ee4a92606f
|
A384331
|
Consecutive internal states of a linear congruential pseudo-random number generator for Microsoft C and C++ when started at 1.
|
[
"1",
"2745024",
"1210316419",
"415139642",
"1736732949",
"1256316804",
"1030492215",
"752224798",
"1924036713",
"1766988168",
"1603301931",
"373929026",
"1844513277",
"1525789900",
"1102819423",
"652855718",
"32201169",
"196285776",
"782671571",
"316395082",
"356309989",
"2122833684",
"957108615"
] |
[
"nonn",
"easy"
] | 47 | 1 | 2 |
[
"A096557",
"A384289",
"A384331"
] | null |
Sean A. Irvine, May 28 2025
| 2025-06-19T19:56:33 |
oeisdata/seq/A384/A384331.seq
|
27fd054af013cb0305a96492e7bd7d34
|
A384332
|
Expansion of Product_{k>=1} (1 + k*x)^((2/3)^k).
|
[
"1",
"6",
"3",
"20",
"-207",
"2538",
"-36381",
"599760",
"-11210229",
"234779146",
"-5455240455",
"139445920452",
"-3892724842549",
"117916363928070",
"-3854035833235839",
"135241405277665656",
"-5072575747811807052",
"202559732310632082120",
"-8581116791103001216108"
] |
[
"sign"
] | 15 | 0 | 2 |
[
"A004123",
"A116603",
"A384324",
"A384332",
"A384333",
"A384334",
"A384344"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-27T10:10:33 |
oeisdata/seq/A384/A384332.seq
|
f7a9c745fef12c092017e67f7c36e539
|
A384333
|
Expansion of Product_{k>=1} (1 + k*x)^((3/4)^k).
|
[
"1",
"12",
"30",
"76",
"-819",
"15120",
"-320568",
"7719984",
"-208986462",
"6300545128",
"-209806494828",
"7660698340008",
"-304718887446110",
"13127557400200944",
"-609336227455254936",
"30330991088734345200",
"-1612305658103085757467",
"91179423240593288760396",
"-5467060640706775435713298"
] |
[
"sign"
] | 14 | 0 | 2 |
[
"A032033",
"A116603",
"A381890",
"A384325",
"A384332",
"A384333",
"A384334"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-27T10:10:37 |
oeisdata/seq/A384/A384333.seq
|
17fdc4bcb6f7cae9581b4de59e109f90
|
A384334
|
Expansion of Product_{k>=1} (1 + k*x)^((4/5)^k).
|
[
"1",
"20",
"110",
"340",
"-1995",
"53904",
"-1534600",
"49159600",
"-1758057650",
"69662897000",
"-3037327435860",
"144787947993000",
"-7502235351828450",
"420296374337607600",
"-25335189019626256200",
"1636008982452733508400",
"-112721505676611504401025",
"8256863266451569604835900"
] |
[
"sign"
] | 15 | 0 | 2 |
[
"A094417",
"A116603",
"A384326",
"A384332",
"A384333",
"A384334",
"A384345"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-27T10:10:40 |
oeisdata/seq/A384/A384334.seq
|
1cdc5298129d034d2e43d9c1364cd64a
|
A384335
|
Expansion of g.f.: cosh(7*arctanh(6*sqrt(x))).
|
[
"1",
"882",
"150822",
"14431284",
"1052738694",
"65805858972",
"3724625506140",
"196735568051880",
"9876433300259526",
"476865669055691916",
"22326189769485093492",
"1019514155600973935448",
"45604820017276687744668",
"2004918589790139365901720",
"86848896758228990302070520",
"3714470212008822424691576400"
] |
[
"nonn"
] | 11 | 0 | 2 |
[
"A383928",
"A384335"
] | null |
Karol A. Penson, May 26 2025
| 2025-05-28T01:05:53 |
oeisdata/seq/A384/A384335.seq
|
b0c8653c5db61594564f3dd78cac90b3
|
A384336
|
a(1) = 1, a(2) = 2. For n > 2, a(n) = number of a(k), k = 1..n-2 such that a(k) divides a(n-1).
|
[
"1",
"2",
"1",
"1",
"2",
"4",
"5",
"3",
"3",
"4",
"6",
"7",
"3",
"5",
"4",
"7",
"4",
"8",
"9",
"6",
"9",
"7",
"5",
"5",
"6",
"10",
"9",
"8",
"10",
"10",
"11",
"3",
"6",
"12",
"17",
"3",
"7",
"6",
"14",
"9",
"11",
"4",
"9",
"12",
"21",
"12",
"22",
"7",
"7",
"8",
"12",
"23",
"3",
"8",
"13",
"3",
"9",
"15",
"14",
"12",
"26",
"6",
"17",
"4",
"10",
"12",
"29",
"3",
"10",
"13",
"4",
"11",
"5",
"7",
"9",
"17",
"5",
"8"
] |
[
"nonn"
] | 53 | 1 | 2 |
[
"A000005",
"A384336"
] | null |
David James Sycamore, May 28 2025
| 2025-06-01T16:36:25 |
oeisdata/seq/A384/A384336.seq
|
1f87b9fdf9b707c9d9245c3a0be4d635
|
A384337
|
Numbers k such that there exists m > k with k | m^3 + 1 and m | k^3 + 1.
|
[
"1",
"2",
"3",
"5",
"9",
"14",
"35",
"45",
"49",
"54",
"61",
"65",
"93",
"99",
"114",
"117",
"146",
"147",
"185",
"234",
"299",
"325",
"329",
"362",
"365",
"398",
"413",
"434",
"437",
"549",
"594",
"619",
"626",
"635",
"794",
"874",
"915",
"962",
"981",
"1057",
"1209",
"1251",
"1550",
"1638",
"1699",
"2021",
"2110",
"2149",
"2219",
"2345",
"2394",
"2409",
"2449",
"2667",
"2763",
"2771",
"2881",
"2989",
"3002"
] |
[
"nonn"
] | 16 | 1 | 2 | null | null |
Robert Israel, May 26 2025
| 2025-06-02T13:22:25 |
oeisdata/seq/A384/A384337.seq
|
2ec02817685745313bedf9e6c08f5482
|
A384339
|
Consecutive states of the linear congruential pseudo-random number generator for Berkeley Pascal 3.1 when started at 1.
|
[
"1",
"113280614",
"518180871",
"401789364",
"123511293",
"522841650",
"132082531",
"254284640",
"306822585",
"36791486",
"267986559",
"195744204",
"63672117",
"39581194",
"434609499",
"223082744",
"48501361",
"535916054",
"463875063",
"53294308",
"487523181",
"390617314",
"240119379",
"401404304",
"176021033"
] |
[
"nonn",
"easy"
] | 10 | 1 | 2 |
[
"A383940",
"A384150",
"A384194",
"A384236",
"A384339"
] | null |
Sean A. Irvine, May 26 2025
| 2025-05-27T08:40:13 |
oeisdata/seq/A384/A384339.seq
|
dbb194bd4597e9d74c52f508a829546c
|
A384340
|
Consecutive states of the linear congruential pseudo-random number generator (314159221*s+211324863) mod 10^9 when started at s=1.
|
[
"1",
"525484084",
"688663427",
"968835230",
"345480693",
"594745016",
"131517399",
"829111042",
"288543145",
"869414908",
"434391531",
"199282214",
"320720157",
"893442560",
"869170623",
"49089546",
"741928529",
"919640772",
"742683475",
"166897838",
"983989061",
"87606344",
"997022887",
"710415890"
] |
[
"nonn",
"easy"
] | 14 | 1 | 2 |
[
"A384081",
"A384340",
"A384341"
] | null |
Sean A. Irvine, May 26 2025
| 2025-05-27T08:39:20 |
oeisdata/seq/A384/A384340.seq
|
bff45008be3531ff818b5d185889a8b2
|
A384341
|
Consecutive states of the linear congruential pseudo-random number generator (31481*s+21139) mod 10^5 when started at s=1.
|
[
"1",
"52620",
"51359",
"53818",
"65597",
"80296",
"19515",
"72854",
"37913",
"60292",
"73591",
"39410",
"87349",
"55008",
"27987",
"79886",
"12305",
"94844",
"5103",
"68682",
"99181",
"38200",
"95339",
"88198",
"82377",
"31476",
"17095",
"88834",
"4293",
"69072",
"76771",
"48990",
"75329",
"53388",
"28767",
"35066",
"33885",
"54824"
] |
[
"nonn",
"easy"
] | 11 | 1 | 2 |
[
"A384081",
"A384340",
"A384341"
] | null |
Sean A. Irvine, May 26 2025
| 2025-05-27T08:38:31 |
oeisdata/seq/A384/A384341.seq
|
6352f50149f03916fc48ba2977c9daeb
|
A384343
|
Expansion of Product_{k>=1} (1 + k*x)^((1/2)^(k+1)).
|
[
"1",
"1",
"-1",
"3",
"-14",
"86",
"-650",
"5822",
"-60287",
"708873",
"-9334633",
"136142011",
"-2179136696",
"37987580268",
"-716513806824",
"14540745561432",
"-315936103907094",
"7318039354370826",
"-180020739049731594",
"4687207255550122014",
"-128782014195949550724",
"3723598212075752653284",
"-113023054997369519314572"
] |
[
"sign"
] | 14 | 0 | 4 |
[
"A000670",
"A084784",
"A381890",
"A384343",
"A384344",
"A384345"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-29T07:16:19 |
oeisdata/seq/A384/A384343.seq
|
3f80dbfea5a84b8c19bfc45b063fd0a7
|
A384344
|
Expansion of Product_{k>=1} (1 + k*x)^((1/6) * (2/3)^k).
|
[
"1",
"1",
"-2",
"10",
"-77",
"787",
"-9972",
"150552",
"-2637729",
"52615903",
"-1177590290",
"29228602546",
"-796945212035",
"23681656958269",
"-761803800466856",
"26376749702235900",
"-978091742247376932",
"38674335439691203644",
"-1624351949069462807480",
"72221688529265896447384"
] |
[
"sign"
] | 11 | 0 | 3 |
[
"A050351",
"A090351",
"A381890",
"A384343",
"A384344",
"A384345"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-27T10:34:24 |
oeisdata/seq/A384/A384344.seq
|
34f51a8598e2d97b7117c2da636c3e9c
|
A384345
|
Expansion of Product_{k>=1} (1 + k*x)^((1/20) * (4/5)^k).
|
[
"1",
"1",
"-4",
"36",
"-494",
"9026",
"-205284",
"5581276",
"-176518189",
"6366839811",
"-257967985400",
"11601382088720",
"-573484266103260",
"30909105184132900",
"-1804012437852543160",
"113356419526025564808",
"-7629831521445348113927",
"547688013439312943707673",
"-41765446604358525581076812"
] |
[
"sign"
] | 10 | 0 | 3 |
[
"A050353",
"A090356",
"A381890",
"A384343",
"A384344",
"A384345"
] | null |
Seiichi Manyama, May 26 2025
| 2025-05-27T10:34:36 |
oeisdata/seq/A384/A384345.seq
|
996e0f9d8a67ea7eb3856417f60670e2
|
A384346
|
Consecutive internal states of the linear congruential pseudo-random number generator (4253261*s+12896793) mod 2^24 when started at s=1.
|
[
"1",
"372838",
"7765191",
"4398068",
"1141373",
"15605682",
"6176419",
"2364192",
"13454009",
"15104446",
"16260159",
"8774412",
"449717",
"6277770",
"831899",
"15169464",
"15932529",
"11656726",
"5003959",
"16547108",
"2409965",
"15155298",
"11219859",
"5857104",
"4740393",
"4799854",
"8198191",
"14633532"
] |
[
"nonn",
"easy"
] | 10 | 1 | 2 |
[
"A096550",
"A096561",
"A384346"
] | null |
Sean A. Irvine, May 27 2025
| 2025-06-19T19:57:37 |
oeisdata/seq/A384/A384346.seq
|
5e3d1ac7a808d94f62948c03a700aa41
|
A384347
|
Heinz numbers of integer partitions with exactly two possible ways to choose disjoint strict partitions of each part.
|
[
"5",
"7",
"21",
"22",
"25",
"26",
"33",
"35",
"39",
"49",
"102",
"114",
"130",
"147",
"154",
"165",
"170",
"175",
"190",
"195",
"231",
"238",
"242",
"255",
"275",
"285"
] |
[
"nonn",
"more"
] | 7 | 1 | 1 |
[
"A048767",
"A055396",
"A056239",
"A061395",
"A112798",
"A179009",
"A239455",
"A299200",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A382525",
"A382771",
"A382857",
"A382912",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384317",
"A384318",
"A384319",
"A384320",
"A384321",
"A384322",
"A384323",
"A384347"
] | null |
Gus Wiseman, May 27 2025
| 2025-05-28T10:53:22 |
oeisdata/seq/A384/A384347.seq
|
c1d28f08fd6be072a1bad61d8197f195
|
A384348
|
Number of integer partitions of n with no proper way to choose disjoint strict partitions of each part.
|
[
"1",
"1",
"2",
"2",
"4",
"6",
"7",
"11",
"17",
"25",
"30",
"44",
"61",
"82",
"113",
"141",
"193",
"249",
"327",
"422",
"548",
"682",
"881",
"1106",
"1400",
"1751"
] |
[
"nonn"
] | 5 | 0 | 3 |
[
"A000009",
"A000041",
"A048767",
"A048768",
"A098859",
"A179009",
"A217605",
"A239455",
"A279790",
"A299200",
"A317142",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A381454",
"A382525",
"A382912",
"A382913",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384005",
"A384317",
"A384318",
"A384319",
"A384321",
"A384322",
"A384323",
"A384347",
"A384348",
"A384349",
"A384390",
"A384393",
"A384395"
] | null |
Gus Wiseman, May 30 2025
| 2025-05-30T23:12:25 |
oeisdata/seq/A384/A384348.seq
|
267bee9dd07bb572c61d3f5674fd4f26
|
A384349
|
Heinz numbers of integer partitions with no proper way to choose disjoint strict partitions of each part.
|
[
"1",
"2",
"3",
"4",
"6",
"8",
"9",
"10",
"12",
"14",
"15",
"16",
"18",
"20",
"24",
"27",
"28",
"30",
"32",
"36",
"40",
"42",
"44",
"45",
"48",
"50",
"52",
"54",
"56",
"60",
"63",
"64",
"66",
"68",
"70",
"72",
"75",
"76",
"78",
"80",
"81",
"84",
"88",
"90",
"92",
"96",
"98",
"99",
"100",
"104",
"105",
"108",
"110",
"112",
"116",
"117",
"120",
"124",
"125",
"126",
"128",
"132",
"135"
] |
[
"nonn"
] | 7 | 1 | 2 |
[
"A048767",
"A048768",
"A056239",
"A112798",
"A122111",
"A130091",
"A179009",
"A279375",
"A279790",
"A317142",
"A326080",
"A351294",
"A357982",
"A381454",
"A382525",
"A382912",
"A382913",
"A383706",
"A383707",
"A383708",
"A383710",
"A384317",
"A384319",
"A384320",
"A384321",
"A384322",
"A384348",
"A384349",
"A384389",
"A384390"
] | null |
Gus Wiseman, Jun 03 2025
| 2025-06-05T09:54:29 |
oeisdata/seq/A384/A384349.seq
|
04881dbad16c4d77d0f7af792d368b8e
|
A384350
|
Number of subsets of {1..n} containing at least one element that is a sum of distinct non-elements.
|
[
"0",
"0",
"0",
"1",
"4",
"13",
"33",
"81",
"183",
"402",
"856",
"1801",
"3721",
"7646",
"15567",
"31575"
] |
[
"nonn",
"more"
] | 8 | 0 | 5 |
[
"A048767",
"A048768",
"A179009",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A317141",
"A317142",
"A326080",
"A326083",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A383706",
"A383707",
"A383708",
"A383710",
"A384317",
"A384318",
"A384319",
"A384320",
"A384321",
"A384322",
"A384350",
"A384391"
] | null |
Gus Wiseman, Jun 05 2025
| 2025-06-07T16:45:56 |
oeisdata/seq/A384/A384350.seq
|
14407bcb4642798f6902fb2e845f2059
|
A384351
|
Expansion of Product_{k>=1} 1/(1 - k*(k+1)/2 * x)^((1/2)^(k+2)).
|
[
"1",
"1",
"7",
"143",
"6140",
"455828",
"51947988",
"8414718996",
"1836791273514",
"519582028795210",
"184852108308617398",
"80776494267416227078",
"42529172631705836804876",
"26553065315757661351020284",
"19397441882229095276127402500",
"16390942374821715002096327774628"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A055203",
"A084784",
"A262809",
"A384351",
"A384352",
"A384353"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-29T07:03:08 |
oeisdata/seq/A384/A384351.seq
|
2f47b4906f783198c81421e45b2695bf
|
A384352
|
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/2)^(k+3)).
|
[
"1",
"1",
"32",
"5392",
"2676188",
"2930633692",
"5993325199448",
"20540879727692152",
"109337218761743017718",
"854254522610491562826582",
"9378640254148405369808277352",
"139752461092050444767050922501096",
"2747716352285121538660626991038190636",
"69628008338488529846443753577404293410060"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A062208",
"A084784",
"A262809",
"A384351",
"A384352",
"A384353"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-27T10:33:25 |
oeisdata/seq/A384/A384352.seq
|
517b3ab33900b7fa0f765a6d071c9e1a
|
A384353
|
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)*(k+3)/24 * x)^((1/2)^(k+4)).
|
[
"1",
"1",
"161",
"233201",
"1388333781",
"23407417517205",
"900363695229160325",
"68584682130559722233525",
"9362104205577409136806214275",
"2125938144923623062958782871506275",
"758178276483321320080629434392636915075",
"405630344408921348237973282862682052175313075"
] |
[
"nonn"
] | 12 | 0 | 3 |
[
"A062205",
"A084784",
"A262809",
"A384351",
"A384352",
"A384353"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-27T10:33:22 |
oeisdata/seq/A384/A384353.seq
|
833a0bfe5967aacdfca7d64f84a02683
|
A384354
|
Numbers k such that the arithmetic mean of the divisors of k evenly divides k+1.
|
[
"1",
"2",
"3",
"5",
"7",
"11",
"13",
"17",
"19",
"20",
"23",
"29",
"31",
"35",
"37",
"41",
"43",
"47",
"53",
"59",
"61",
"67",
"71",
"73",
"79",
"83",
"89",
"97",
"101",
"103",
"104",
"107",
"109",
"113",
"127",
"131",
"137",
"139",
"149",
"151",
"157",
"163",
"167",
"173",
"179",
"181",
"191",
"193",
"197",
"199",
"207",
"211",
"223",
"227",
"229",
"233",
"239",
"241",
"251",
"257",
"263",
"269",
"271",
"277",
"281",
"283",
"293"
] |
[
"nonn"
] | 24 | 1 | 2 |
[
"A000005",
"A000040",
"A000203",
"A384354"
] | null |
Ivan N. Ianakiev, May 27 2025
| 2025-06-04T17:58:56 |
oeisdata/seq/A384/A384354.seq
|
f950dd7281738a094764ff39ac72e720
|
A384355
|
Population of elementary triangular automaton rule 58 at generation n, starting from a lone 1 cell at generation 0.
|
[
"1",
"4",
"9",
"13",
"22",
"18",
"36",
"54",
"48",
"54",
"84",
"96",
"108",
"132",
"180",
"204",
"174",
"186",
"252",
"216",
"294",
"258",
"264",
"432",
"324",
"426",
"474",
"534",
"498",
"702",
"666",
"732",
"648",
"792",
"750",
"816",
"834",
"864",
"840",
"942",
"852",
"1068",
"972",
"1218",
"1080",
"1272",
"1392",
"1572",
"1506",
"1380",
"1728",
"1716",
"1662"
] |
[
"nonn"
] | 9 | 0 | 2 |
[
"A384355",
"A384363"
] | null |
Paul Cousin, May 27 2025
| 2025-05-28T00:58:48 |
oeisdata/seq/A384/A384355.seq
|
e833670ded72da5384e21ffc5d744a6a
|
A384356
|
Expansion of Product_{k>=1} 1/(1 - k*(k+1)/2 * x)^((1/18) * (2/3)^k).
|
[
"1",
"1",
"19",
"1147",
"145606",
"31784062",
"10617130378",
"5033441934298",
"3213448742033479",
"2657684269018334807",
"2763967539211567981613",
"3530274805575983022456005",
"5432490565296371673408076892",
"9912854399723224290769677025316",
"21163615551469069985356131546443588"
] |
[
"nonn"
] | 12 | 0 | 3 |
[
"A384356",
"A384362"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-27T10:33:09 |
oeisdata/seq/A384/A384356.seq
|
26056732949e8fcb8e790eab1699e67b
|
A384357
|
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/54) * (2/3)^k).
|
[
"1",
"1",
"153",
"128793",
"319155321",
"1744213657689",
"17803590830142393",
"304609764628470426969",
"8095576593110601916260369",
"315845539893724747798646514673",
"17317064152543324914717101316522961",
"1288754843591816442932799782872809777393",
"126555732798742295186573610437899751882638209"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A384357",
"A384362"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-27T10:33:14 |
oeisdata/seq/A384/A384357.seq
|
a74ba6886e8cc914840b8d31a5ec4277
|
A384358
|
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)*(k+3)/24 * x)^((1/162) * (2/3)^k).
|
[
"1",
"1",
"1321",
"16210201",
"820657237561",
"117856012064818489",
"38648527065793350391329",
"25112088578490906968072202609",
"29248901038277816617484354852346429",
"56683882435365104654655753669402941927069",
"172551008002533192343018045442364399983107657925"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A384358",
"A384362"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-27T10:33:18 |
oeisdata/seq/A384/A384358.seq
|
58a4be1026f48cfb605d67bbef295b9d
|
A384359
|
Expansion of Product_{k>=1} 1/(1 - k*(k+1)/2 * x)^((1/48) * (3/4)^k).
|
[
"1",
"1",
"37",
"4453",
"1126375",
"489185863",
"324848377243",
"306044183298331",
"388203452145317314",
"637855747987693348770",
"1317841032827800659419754",
"3343784211346797764798294634",
"10221662989279986155378379955158",
"37051850653048390530321630384383382",
"157140052593846256021318451838028238910"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A384359",
"A384364"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-27T10:33:05 |
oeisdata/seq/A384/A384359.seq
|
6fea3f2402eba7e888c5f154acd467d8
|
A384360
|
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/192) * (3/4)^k).
|
[
"1",
"1",
"424",
"998584",
"6925040260",
"105920615923684",
"3026129933925315784",
"144928319460945421096936",
"10782220800085014574469693026",
"1177609713750570874317795178806210",
"180749886489278186545417627942230436008",
"37658177020555445685152123914054243838809128"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A384360",
"A384364"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-27T10:33:02 |
oeisdata/seq/A384/A384360.seq
|
6127042ea2204a9d35a2732a5e1aa66c
|
A384361
|
Consecutive internal states of the linear congruential pseudo-random number generator of the HP 48 series calculators when started at 999500333083533.
|
[
"999500333083533",
"529199358633911",
"43582181444437",
"294922982088079",
"41089642444893",
"284830972469031",
"786870433805477",
"40703079813759",
"869103111377453",
"156083179654551",
"561556952003317",
"315753873725039",
"722319935785213",
"518159379358471",
"201897051493957",
"715330849773919"
] |
[
"nonn",
"easy"
] | 17 | 1 | 1 |
[
"A096550",
"A096561",
"A381318",
"A382535",
"A383809",
"A384081",
"A384221",
"A384361",
"A384416"
] | null |
Paolo Xausa, May 27 2025
| 2025-05-28T10:45:39 |
oeisdata/seq/A384/A384361.seq
|
bc14827b699ef48220f935608b5233fc
|
A384362
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{i=0..k*n} 2^i * Sum_{j=0..i} (-1)^j * binomial(i,j) * binomial(i-j,n)^k.
|
[
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"10",
"4",
"1",
"1",
"74",
"148",
"8",
"1",
"1",
"730",
"13540",
"2440",
"16",
"1",
"1",
"9002",
"2308756",
"3087368",
"42256",
"32",
"1",
"1",
"133210",
"632363044",
"10208479240",
"778026256",
"752800",
"64",
"1",
"1",
"2299754",
"253970683348",
"69754997963528",
"52520969994256",
"207633589664",
"13660480",
"128",
"1"
] |
[
"nonn",
"tabl"
] | 18 | 0 | 5 |
[
"A000012",
"A000079",
"A004123",
"A098270",
"A262809",
"A384362",
"A384364"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-28T04:33:21 |
oeisdata/seq/A384/A384362.seq
|
c88817fb880f46c28916c087b69c8fbc
|
A384363
|
Slice of elementary triangular automaton rule 58, starting from a lone 1 cell.
|
[
"1",
"3",
"6",
"13",
"31",
"48",
"104",
"220",
"484",
"796",
"1700",
"3580",
"7940",
"12588",
"27516",
"57284",
"122956",
"201036",
"439756",
"909068",
"2048428",
"3260604",
"6950308",
"14619132",
"31505156",
"51481228",
"112237244",
"232238020",
"525920332",
"837265868",
"1779497548",
"3753480012",
"8055847244",
"13161451340"
] |
[
"nonn"
] | 12 | 0 | 2 |
[
"A384355",
"A384363"
] | null |
Paul Cousin, May 27 2025
| 2025-05-28T00:58:42 |
oeisdata/seq/A384/A384363.seq
|
7d5a7d6b84f9776756a3f6c19e23eba2
|
A384364
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{i=0..k*n} 3^i * Sum_{j=0..i} (-1)^j * binomial(i,j) * binomial(i-j,n)^k.
|
[
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"21",
"9",
"1",
"1",
"219",
"657",
"27",
"1",
"1",
"3045",
"119241",
"22869",
"81",
"1",
"1",
"52923",
"40365873",
"80850987",
"836001",
"243",
"1",
"1",
"1103781",
"21955523049",
"747786838869",
"60579666801",
"31436181",
"729",
"1",
"1",
"26857659",
"17512689629457",
"14298291269335467",
"16117269494868801",
"48066954848379",
"1204022961",
"2187",
"1"
] |
[
"nonn",
"tabl"
] | 15 | 0 | 5 |
[
"A000012",
"A000244",
"A032033",
"A084768",
"A262809",
"A384362",
"A384364"
] | null |
Seiichi Manyama, May 27 2025
| 2025-05-28T04:33:12 |
oeisdata/seq/A384/A384364.seq
|
a6d0d4572ff8f2e8d0dbe3ec168fe11f
|
A384367
|
a(n) = a(n-1)+2*a(n-2)+a(n-3) with a(0)=1, a(1)=4, a(2) = 6.
|
[
"1",
"4",
"6",
"15",
"31",
"67",
"144",
"309",
"664",
"1426",
"3063",
"6579",
"14131",
"30352",
"65193",
"140028",
"300766",
"646015",
"1387575",
"2980371",
"6401536",
"13749853",
"29533296",
"63434538",
"136250983",
"292653355",
"628589859",
"1350147552",
"2899980625",
"6228865588",
"13378974390",
"28736686191"
] |
[
"nonn",
"easy"
] | 11 | 0 | 2 |
[
"A016957",
"A384367"
] | null |
Eric W. Weisstein, May 27 2025
| 2025-05-27T11:05:32 |
oeisdata/seq/A384/A384367.seq
|
390c803e68c590fbc5aad9a61cafab3b
|
A384368
|
Number of permutations of [2n] with n inversions.
|
[
"1",
"1",
"5",
"29",
"174",
"1068",
"6655",
"41926",
"266338",
"1703027",
"10947079",
"70673825",
"457927079",
"2976282415",
"19395654894",
"126688273871",
"829176461458",
"5436687172806",
"35703722618623",
"234807844921153",
"1546217013188447",
"10193761267335877",
"67275841673522196",
"444431529264364506"
] |
[
"nonn"
] | 32 | 0 | 3 |
[
"A008302",
"A100220",
"A128566",
"A384368"
] | null |
Alois P. Heinz, May 27 2025
| 2025-06-09T06:18:41 |
oeisdata/seq/A384/A384368.seq
|
b5cecb9e183b26c068c5905a12ea5cf6
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.