sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A384575
G.f. A(x) satisfies A(x) = 1 + x * A(x*A(x)^5).
[ "1", "1", "1", "6", "31", "236", "2166", "22722", "269889", "3567412", "51765431", "816476196", "13892821878", "253442895075", "4930644856063", "101830536332051", "2223767436058566", "51172807259226084", "1237092039069090235", "31332521053777095784", "829389782837272248191", "22894754438382163120136" ]
[ "nonn" ]
12
0
4
[ "A087949", "A143500", "A143501", "A384574", "A384575", "A384579", "A384583" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:53:13
oeisdata/seq/A384/A384575.seq
a4ed8468ed2de3313ac307678a8bb403
A384576
G.f. A(x) satisfies A(x) = ( 1 + x * A(x*A(x))^(1/2) )^2.
[ "1", "2", "3", "8", "27", "118", "609", "3602", "23866", "174186", "1383868", "11860702", "108889022", "1064691402", "11034753421", "120739899232", "1389891203976", "16781698952902", "211959646629376", "2793804347189762", "38347179124969391", "547046497259184494", "8096627908313404104" ]
[ "nonn" ]
13
0
2
[ "A143500", "A384576", "A384580" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:52:47
oeisdata/seq/A384/A384576.seq
9bb9e050efd752ed47121d1e71d16020
A384577
G.f. A(x) satisfies A(x) = ( 1 + x * A(x*A(x))^(1/3) )^3.
[ "1", "3", "6", "19", "78", "411", "2617", "19251", "160254", "1482400", "15035622", "165545253", "1963006576", "24908182305", "336397711074", "4813816122917", "72704962269990", "1155070280657286", "19245587072017468", "335418172582313610", "6100293082529588802", "115532044092709366555", "2274095852526512246841" ]
[ "nonn" ]
12
0
2
[ "A384577", "A384581" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:53:52
oeisdata/seq/A384/A384577.seq
2bd8a187e92da6e21601011d97890411
A384578
G.f. A(x) satisfies A(x) = ( 1 + x * A(x*A(x))^(1/4) )^4.
[ "1", "4", "10", "36", "171", "1032", "7656", "66144", "651065", "7170044", "87058242", "1152623008", "16497960553", "253521890800", "4158356425944", "72446946779420", "1335030266607501", "25927404824529616", "528984983237731754", "11306375975258492540", "252529515598101796399", "5880779189553142120704" ]
[ "nonn" ]
12
0
2
[ "A384574", "A384578", "A384582" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:53:08
oeisdata/seq/A384/A384578.seq
0362aba1561bd05fbab9de3445a530f6
A384579
G.f. A(x) satisfies A(x) = ( 1 + x * A(x*A(x))^(1/5) )^5.
[ "1", "5", "15", "60", "320", "2151", "17985", "176610", "1985755", "25116455", "351852746", "5393800690", "89651625560", "1603780929525", "30688985052200", "624900202917151", "13480450499067220", "306905745410816990", "7349620218635161140", "184589745041317074895", "4849519725067777296866" ]
[ "nonn" ]
10
0
2
[ "A384575", "A384579", "A384583" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:54:04
oeisdata/seq/A384/A384579.seq
21b33c10a86bd41b90655a1e3bdba516
A384580
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A143500.
[ "1", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "3", "3", "3", "0", "1", "4", "6", "8", "10", "0", "1", "5", "10", "16", "27", "46", "0", "1", "6", "15", "28", "54", "118", "244", "0", "1", "7", "21", "45", "95", "228", "609", "1481", "0", "1", "8", "28", "68", "155", "392", "1144", "3602", "10020", "0", "1", "9", "36", "98", "240", "631", "1916", "6597", "23866", "74400", "0" ]
[ "nonn", "tabl" ]
12
0
8
[ "A000007", "A143500", "A381566", "A384576", "A384580", "A384581", "A384582", "A384583" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:52:51
oeisdata/seq/A384/A384580.seq
f2d55d930b07e7e244fa2c34f091b48c
A384581
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A143501.
[ "1", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "3", "3", "4", "0", "1", "4", "6", "10", "16", "0", "1", "5", "10", "19", "41", "92", "0", "1", "6", "15", "32", "78", "224", "616", "0", "1", "7", "21", "50", "131", "411", "1464", "4729", "0", "1", "8", "28", "74", "205", "672", "2617", "11002", "40776", "0", "1", "9", "36", "105", "306", "1031", "4170", "19251", "93234", "388057", "0" ]
[ "nonn", "tabl" ]
10
0
8
[ "A000007", "A143501", "A381566", "A384580", "A384581", "A384582", "A384583" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:53:56
oeisdata/seq/A384/A384581.seq
5b83768f405dbdc7da61e33ce5e4f6d0
A384582
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384574.
[ "1", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "3", "3", "5", "0", "1", "4", "6", "12", "23", "0", "1", "5", "10", "22", "57", "155", "0", "1", "6", "15", "36", "105", "366", "1236", "0", "1", "7", "21", "55", "171", "651", "2853", "11286", "0", "1", "8", "28", "80", "260", "1032", "4951", "25584", "116333", "0", "1", "9", "36", "112", "378", "1536", "7656", "43587", "259789", "1329433", "0" ]
[ "nonn", "tabl" ]
12
0
8
[ "A000007", "A381566", "A384574", "A384580", "A384581", "A384582", "A384583" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:54:00
oeisdata/seq/A384/A384582.seq
13a1ad26026b927d5f91863d4a2dcc8d
A384583
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384575.
[ "1", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "3", "3", "6", "0", "1", "4", "6", "14", "31", "0", "1", "5", "10", "25", "75", "236", "0", "1", "6", "15", "40", "135", "546", "2166", "0", "1", "7", "21", "60", "215", "951", "4902", "22722", "0", "1", "8", "28", "86", "320", "1476", "8338", "50620", "269889", "0", "1", "9", "36", "119", "456", "2151", "12634", "84714", "593347", "3567412", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A381566", "A384575", "A384580", "A384581", "A384582", "A384583" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-04T09:54:09
oeisdata/seq/A384/A384583.seq
c8ca3fdedc61528305d833c293cf1bc1
A384584
Numbers k such that A383844(k) = 2.
[ "4", "46", "62", "119", "145", "180", "200", "247", "305", "522", "707", "900", "1235", "1504", "1532", "1540", "2396", "3140", "4181", "4231", "6419", "9066", "9885", "14292", "17914", "22696", "33924", "35933", "38951", "80602" ]
[ "nonn", "more" ]
6
1
1
[ "A024934", "A383844", "A384584" ]
null
Miles Englezou, Jun 04 2025
2025-06-09T23:27:45
oeisdata/seq/A384/A384584.seq
c6a50a2cd2b0e6fb7472ca97457e465c
A384585
a(n) = 6 * (4*n)! / ((n+1)! * (3*n+1)!).
[ "6", "3", "8", "33", "168", "969", "6072", "40365", "280488", "2017356", "14914848", "112784399", "869046168", "6803716710", "53997506640", "433647466245", "3518801467560", "28815074239908", "237887596740192", "1978246301709540", "16558857808956320", "139428557033056785", "1180350813375438840", "10041660963789578955" ]
[ "nonn" ]
19
0
1
[ "A000260", "A002293", "A384585" ]
null
Karol A. Penson, Jun 04 2025
2025-06-22T00:51:29
oeisdata/seq/A384/A384585.seq
4d9dec9fdc264acadab84becf9faccf5
A384586
Decimal expansion of the second largest zero of the Laguerre polynomial of degree 4.
[ "4", "5", "3", "6", "6", "2", "0", "2", "9", "6", "9", "2", "1", "1", "2", "7", "9", "8", "3", "2", "7", "9", "2", "8", "5", "3", "8", "4", "9", "5", "7", "1", "3", "7", "8", "8", "0", "1", "2", "5", "7", "8", "4", "3", "5", "3", "3", "8", "6", "8", "0", "4", "6", "4", "9", "7", "4", "8", "0", "5", "7", "5", "8", "7", "5", "5", "5", "8", "2", "8", "4", "5", "0", "8", "7", "5", "1", "4", "3", "1", "5", "8", "9", "7", "6", "5", "3" ]
[ "nonn", "cons" ]
14
1
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467", "A384586", "A384587", "A384588", "A384589" ]
null
A.H.M. Smeets, Jun 04 2025
2025-06-18T12:24:13
oeisdata/seq/A384/A384586.seq
1d251b1c142f13704ad4924bb658e598
A384587
Decimal expansion of the largest zero of the Laguerre polynomial of degree 4.
[ "9", "3", "9", "5", "0", "7", "0", "9", "1", "2", "3", "0", "1", "1", "3", "3", "1", "2", "9", "2", "3", "3", "5", "3", "6", "4", "4", "3", "4", "2", "0", "5", "4", "7", "6", "1", "6", "4", "5", "6", "5", "8", "3", "9", "0", "6", "6", "0", "7", "8", "2", "7", "0", "8", "1", "2", "8", "0", "7", "0", "7", "8", "9", "7", "6", "3", "8", "7", "4", "6", "8", "1", "2", "9", "7", "4", "9", "5", "5", "6", "6", "7", "0", "1", "4", "7", "4" ]
[ "nonn", "cons" ]
11
1
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467", "A384586", "A384587", "A384588", "A384589" ]
null
A.H.M. Smeets, Jun 07 2025
2025-06-18T12:23:13
oeisdata/seq/A384/A384587.seq
073c55b48cb78fe41b7845dcd069ed0f
A384588
Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384586.
[ "0", "3", "8", "8", "8", "7", "9", "0", "8", "5", "1", "5", "0", "0", "5", "3", "8", "4", "2", "7", "2", "4", "3", "8", "1", "6", "8", "1", "5", "6", "2", "0", "9", "9", "1", "3", "7", "2", "2", "3", "0", "7", "1", "9", "1", "3", "4", "8", "2", "7", "6", "9", "0", "2", "1", "8", "1", "6", "3", "5", "2", "9", "2", "4", "0", "4", "5", "2", "5", "7", "6", "2", "9", "1", "0", "1", "7", "6", "9", "8", "0", "9", "9", "9", "8", "4", "3", "3" ]
[ "nonn", "cons" ]
11
0
2
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467", "A384586", "A384587", "A384588", "A384589" ]
null
A.H.M. Smeets, Jun 07 2025
2025-06-26T08:00:59
oeisdata/seq/A384/A384588.seq
6be59330ee6dd0a854f0bdaa71d2acb1
A384589
Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384587.
[ "0", "0", "0", "5", "3", "9", "2", "9", "4", "7", "0", "5", "5", "6", "1", "3", "2", "7", "4", "5", "0", "1", "0", "3", "7", "9", "0", "5", "6", "7", "6", "2", "0", "5", "9", "3", "2", "1", "2", "2", "7", "7", "2", "5", "6", "9", "6", "6", "4", "3", "3", "2", "4", "4", "0", "8", "5", "4", "6", "6", "4", "9", "9", "4", "7", "7", "9", "0", "1", "0", "9", "1", "7", "5", "6", "9", "3", "7", "2", "3", "0", "2", "7", "8", "5", "7", "9", "1", "1", "6" ]
[ "nonn", "cons" ]
11
0
4
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467", "A384586", "A384587", "A384588", "A384589", "A384590" ]
null
A.H.M. Smeets, Jun 14 2025
2025-06-26T08:00:09
oeisdata/seq/A384/A384589.seq
6170486aae828172b95b065cd9d06e83
A384590
a(n) = floor(X(n,n)), where X(n,n) is the largest zero of the Laguerre polynomial of degree n.
[ "1", "3", "6", "9", "12", "15", "19", "22", "26", "29", "33", "37", "40", "44", "48", "51", "55", "59", "62", "66", "70", "73", "77", "81", "85", "89", "92", "96", "100", "104", "107", "111", "115", "119", "123", "126", "130", "134", "138", "142", "146", "149", "153", "157", "161", "165", "169", "172", "176", "180", "184", "188", "192", "196", "199", "203", "207", "211" ]
[ "nonn", "changed" ]
25
1
2
[ "A014176", "A091476", "A384279", "A384587", "A384590" ]
null
A.H.M. Smeets, Jun 14 2025
2025-07-08T22:25:00
oeisdata/seq/A384/A384590.seq
2ce13df091e3204eee322ff794501456
A384591
a(n) = permanent of the n X n circulant matrix with (row 1) = (F(1), F(2), ..., F(n)), where F = A000045 (Fibonacci numbers).
[ "1", "1", "2", "16", "265", "12552", "1431040", "426749895", "323397418338", "635720375415040", "3236089602490212389", "42921641465456435652532", "1485502760348227071906663424", "134453761950835461349077548216607", "31856917244136936392984483908703780290" ]
[ "nonn", "new" ]
7
0
3
[ "A000045", "A123744", "A384080", "A384313", "A384591" ]
null
Clark Kimberling, Jun 27 2025
2025-07-02T17:20:54
oeisdata/seq/A384/A384591.seq
d7997a87ac49c10b2b1945c1d6c88124
A384592
a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(1), F(2), ..., F(n)), where F = A000045 (Fibonacci numbers), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
[ "0", "-1", "-6", "-150", "-5370", "-800640", "-190224111", "-176905217601", "-291774510700416", "-1732081174959242854", "-20169113574187183899414", "-780617739418078727245260288", "-64339950490716309261029142530799", "-16501635484912814610105139633118406681" ]
[ "sign", "new" ]
4
1
3
[ "A000045", "A123745", "A380661", "A384591", "A384592", "A384593" ]
null
Clark Kimberling, Jul 02 2025
2025-07-03T16:21:11
oeisdata/seq/A384/A384592.seq
009007698fed6e7f722c62ce8a6eb0b8
A384593
a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(1), F(2), ..., F(n)), where F = A000045 (Fibonacci numbers), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
[ "1", "1", "10", "115", "7182", "630400", "236525784", "146492200737", "343945864714624", "1504008427530969535", "22752527891269251753118", "704885020930148344661403136", "70113811460119152088048405685808", "15355281759224121782879344275585373609" ]
[ "nonn", "new" ]
4
1
3
[ "A000045", "A123745", "A380661", "A384591", "A384592", "A384593" ]
null
Clark Kimberling, Jul 02 2025
2025-07-03T16:22:01
oeisdata/seq/A384/A384593.seq
b93a0e62132f1061016a1f134d5ca0f6
A384597
Integers k such that k + 1 has a divisor that is an anagram of k, which must have the same number of digits as k.
[ "1", "41", "73", "631", "793", "6031", "6391", "6733", "7412", "7520", "7993", "8627", "9710", "25147", "37112", "43916", "49316", "51427", "60031", "60391", "60733", "62314", "63214", "63991", "66331", "67393", "67933", "70211", "71132", "72101", "74102", "74912", "75020", "75290", "78260", "79993", "81103", "85712", "86927", "89627" ]
[ "nonn", "base" ]
9
1
2
[ "A100412", "A384597" ]
null
Gonzalo Martínez, Jun 04 2025
2025-06-16T21:50:47
oeisdata/seq/A384/A384597.seq
16e6f7c934454d3263e8a13c5174c1e5
A384598
Expansion of (1-3*x^2) / (1-x-4*x^2+2*x^3+2*x^4).
[ "1", "1", "2", "4", "8", "18", "38", "86", "186", "418", "914", "2042", "4490", "9994", "22042", "48954", "108154", "239898", "530522", "1175898", "2601882", "5764634", "12759322", "28262298", "62566554", "138567834", "306790810", "679404442", "1504298906", "3331199386", "7376004506", "16333395354", "36166416794" ]
[ "nonn", "walk", "easy" ]
16
0
3
[ "A062112", "A382683", "A384598", "A384599", "A384600" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-04T18:03:01
oeisdata/seq/A384/A384598.seq
30dc89b6add3571acf3fdd13aa940f8a
A384599
Expansion of (1+3*x+2*x^2) / (1-4*x^2-2*x^3).
[ "1", "3", "6", "14", "30", "68", "148", "332", "728", "1624", "3576", "7952", "17552", "38960", "86112", "190944", "422368", "936000", "2071360", "4588736", "10157440", "22497664", "49807232", "110305536", "244224256", "540836608", "1197508096", "2651794944", "5871705600", "13002195968", "28790412288", "63752195072" ]
[ "nonn", "walk", "easy" ]
12
0
2
[ "A062112", "A382683", "A384598", "A384599", "A384600" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-04T17:46:12
oeisdata/seq/A384/A384599.seq
c087cc9b3535d0eaafbff9707d7361ec
A384600
Expansion of (1+x-x^2) / (1-x-4*x^2+2*x^3+2*x^4).
[ "1", "2", "5", "11", "25", "55", "123", "271", "603", "1331", "2955", "6531", "14483", "32035", "70995", "157107", "348051", "770419", "1706419", "3777779", "8366515", "18523955", "41021619", "90828851", "201134387", "445358643", "986195251", "2183703347", "4835498291", "10707203891", "23709399859", "52499812147" ]
[ "nonn", "walk", "easy" ]
12
0
2
[ "A062112", "A382683", "A384598", "A384599", "A384600" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-04T17:46:06
oeisdata/seq/A384/A384600.seq
094007cc1b1fb2a10d4e53694cdd4422
A384601
Numbers k such that T(k, 1) mod 3 = 1 and T(k, 2) mod 3 = 1, where T is the Wythoff array (A035513).
[ "2", "8", "17", "26", "32", "41", "56", "65", "71", "80", "89", "95", "104", "110", "119", "128", "134", "143", "158", "167", "173", "182", "191", "197", "206", "221", "230", "236", "245", "260", "269", "275", "284", "293", "299", "308", "323", "332", "338", "347", "356", "362", "371", "377", "386", "395", "401", "410", "425", "434", "440", "449", "458", "464" ]
[ "nonn" ]
15
1
1
[ "A035513", "A384601", "A384602" ]
null
Clark Kimberling, Jun 05 2025
2025-06-26T01:20:57
oeisdata/seq/A384/A384601.seq
b348a5fedc4986b18a83c08f542244d3
A384602
Numbers k such that T(k, 1) mod 3 = 1 and T(k, 2) mod 3 = 2, where T is the Wythoff array (A035513).
[ "1", "10", "16", "25", "34", "40", "49", "55", "64", "73", "79", "88", "103", "112", "118", "127", "136", "142", "151", "166", "175", "181", "190", "205", "214", "220", "229", "238", "244", "253", "268", "277", "283", "292", "301", "307", "316", "331", "340", "346", "355", "370", "379", "385", "394", "403", "409", "418", "433", "442", "448", "457", "466", "472" ]
[ "nonn" ]
11
1
2
[ "A035513", "A384601", "A384602" ]
null
Clark Kimberling, Jun 06 2025
2025-06-26T01:20:49
oeisdata/seq/A384/A384602.seq
ea50a51fd2e24227c93080eb7f7c67ec
A384603
Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is less than 2.
[ "5", "23", "37", "47", "53", "67", "79", "83", "89", "131", "157", "163", "167", "173", "211", "233", "251", "257", "263", "277", "293", "337", "353", "359", "367", "373", "379", "383", "389", "409", "439", "443", "449", "479", "503", "547", "557", "563", "577", "587", "593", "607", "613", "631", "647", "653", "677", "683", "691", "701", "709", "719", "727", "733", "739", "751", "757", "787", "797" ]
[ "nonn" ]
10
1
1
[ "A383215", "A384603" ]
null
Alain Rocchelli, Jun 04 2025
2025-06-11T03:19:59
oeisdata/seq/A384/A384603.seq
97b673a1d0e3602d429d552241b42b74
A384604
Expansion of (1-x^2) / (1-x-4*x^2+2*x^3).
[ "1", "1", "4", "6", "20", "36", "104", "208", "552", "1176", "2968", "6568", "16088", "36424", "87640", "201160", "478872", "1108232", "2621400", "6096584", "14365720", "33509256", "78778968", "184084552", "432181912", "1010962184", "2371520728", "5551005640", "13015164184", "30476145288", "71434790744", "167309043528" ]
[ "nonn", "easy", "walk" ]
7
0
3
[ "A213173", "A382683", "A384604", "A384605" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-04T23:22:04
oeisdata/seq/A384/A384604.seq
ac9abb64b53b0505bfd96ed2977ac769
A384605
Expansion of (1+x) / (1-x-4*x^2+2*x^3).
[ "1", "2", "6", "12", "32", "68", "172", "380", "932", "2108", "5076", "11644", "27732", "64156", "151796", "352956", "831828", "1940060", "4561460", "10658044", "25023764", "58533020", "137311988", "321396540", "753578452", "1764540636", "4136061364", "9687067004", "22702231188", "53178376476", "124613167220" ]
[ "nonn", "easy", "walk" ]
7
0
2
[ "A213173", "A382683", "A384604", "A384605" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-04T23:21:59
oeisdata/seq/A384/A384605.seq
6842e1669192b23bed1fa3f9bca88df7
A384606
Possible values for the number of groups of order equal to a prime power, in order of first appearance.
[ "1", "2", "5", "14", "51", "267", "15", "2328", "67", "56092", "10494213", "504", "49487367289" ]
[ "nonn", "more", "hard" ]
10
1
2
[ "A098885", "A384606", "A384607" ]
null
Robin Jones, Jun 04 2025
2025-06-16T18:38:35
oeisdata/seq/A384/A384606.seq
65c995453490e41f0778ba9305c081c2
A384607
Possible values for the number of groups of order equal to a prime power, in order of size.
[ "1", "2", "5", "14", "15", "51", "67", "77", "83", "87", "97", "101", "107", "111", "125", "131", "145", "149", "155", "159", "173", "183", "193", "203", "207", "217", "227", "231", "245", "265", "267", "269", "275", "279", "289", "293", "323", "327", "341", "347", "365", "371", "385", "395", "399", "413", "423", "433", "447", "457", "461", "467", "491", "504", "515" ]
[ "nonn" ]
14
1
2
[ "A000001", "A098885", "A384606", "A384607" ]
null
Robin Jones, Jun 04 2025
2025-06-16T18:44:01
oeisdata/seq/A384/A384607.seq
39ccaebe1a7b8c9a7698e0dabd018960
A384608
Consecutive states of the linear congruential pseudo-random number generator (129*s+27098671125) mod 2^35 when started at s=1.
[ "1", "27098671254", "18133949355", "29915928896", "3603063125", "10857477098", "18963943679", "33905981588", "2923784873", "26309797694", "19448475219", "27691073512", "25834363901", "26836992658", "18737148839", "4649447228", "8402072913", "11454449126", "27253858555", "3793372816", "1047688869" ]
[ "nonn", "easy" ]
16
1
2
[ "A096550", "A096561", "A384387", "A384565", "A384608" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-12T05:56:53
oeisdata/seq/A384/A384608.seq
2d82e49a96f44cd4f068f24d1e586376
A384609
Possible values for the number of nilpotent groups of a finite order, ordered by size.
[ "1", "2", "4", "5", "8", "10", "14", "15", "16", "20", "25", "28", "30", "32", "40", "50", "51", "56", "60", "64", "67", "70", "75", "77", "80", "83", "87", "97", "100", "101", "102", "107", "111", "112", "120", "125", "128", "131", "134", "140", "145", "149", "150", "154", "155", "159", "160", "166", "173", "174", "183", "193", "194", "196", "200", "202", "203", "204", "207" ]
[ "nonn" ]
15
1
2
[ "A066060", "A384607", "A384609" ]
null
Robin Jones, Jun 04 2025
2025-06-11T00:02:17
oeisdata/seq/A384/A384609.seq
eb00ab8998405f959b01acc4fd27d27d
A384610
Consecutive states of the linear congruential pseudo-random number generator (262145*s+3) mod 2^35 when started at s=1.
[ "1", "262148", "1310727", "3145738", "5767181", "9175056", "13369363", "18350102", "24117273", "30670876", "38010911", "46137378", "55050277", "64749608", "75235371", "86507566", "98566193", "111411252", "125042743", "139460666", "154665021", "170655808", "187433027", "204996678", "223346761", "242483276" ]
[ "nonn", "easy" ]
11
1
2
[ "A096550", "A096561", "A384160", "A384387", "A384565", "A384608", "A384610" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-12T05:58:44
oeisdata/seq/A384/A384610.seq
20916aef23fc8506ffdf0afd924290b3
A384611
Expansion of (1+2*x-x^3) / (1-5*x^2+2*x^4).
[ "1", "2", "5", "9", "23", "41", "105", "187", "479", "853", "2185", "3891", "9967", "17749", "45465", "80963", "207391", "369317", "946025", "1684659", "4315343", "7684661", "19684665", "35053987", "89792639", "159900613", "409593865", "729395091", "1868384047", "3327174229", "8522732505", "15177080963", "38876894431" ]
[ "nonn", "easy", "walk" ]
6
0
2
[ "A000079", "A005824", "A079162", "A384611" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-04T23:20:58
oeisdata/seq/A384/A384611.seq
e97af8c0ba01f110fb853751d3778178
A384612
a(n) is the smallest integer k such that k^n is an abelian square; or -1 if no such k exists.
[ "11", "836", "11", "207", "624", "818222", "1001", "2776", "100001", "32323107", "100001", "85692627", "10000001", "501249084", "10000001", "27962757", "41695607", "70983559", "72768046", "977688137", "219873071", "112562383", "2338280974", "2435385853", "1231380445", "4557057314", "361499019", "8096434047", "5278552513" ]
[ "nonn", "base", "changed" ]
52
1
1
[ "A001597", "A001700", "A075786", "A272655", "A342942", "A384612" ]
null
Gonzalo Martínez, Jun 04 2025
2025-07-12T08:36:08
oeisdata/seq/A384/A384612.seq
3f4c08249786b1ba6f27fbd37f99d07c
A384613
Number of rooted ordered trees with n non-root nodes such that all leaf nodes can be k different colors where k is the degree of their parent node.
[ "1", "1", "5", "36", "340", "4019", "57696", "982146", "19419042", "438068191", "11106513798", "312555754796", "9663786464541", "325515760762637", "11861723942987878", "464834173383876612", "19490387161582849600", "870582781070074780946", "41266849779858887379029", "2068827708558025551348644" ]
[ "nonn" ]
6
0
3
[ "A000108", "A002212", "A007318", "A102407", "A258173", "A384613" ]
null
John Tyler Rascoe, Jun 04 2025
2025-06-05T09:56:05
oeisdata/seq/A384/A384613.seq
01a6b2f3133931ed87a732b03b01a248
A384614
Expansion of (1+x+x^2) / (1-x-3*x^2).
[ "1", "2", "6", "12", "30", "66", "156", "354", "822", "1884", "4350", "10002", "23052", "53058", "122214", "281388", "648030", "1492194", "3436284", "7912866", "18221718", "41960316", "96625470", "222506418", "512382828", "1179902082", "2717050566", "6256756812", "14407908510", "33178178946", "76401904476", "175936441314" ]
[ "nonn", "easy", "walk" ]
5
0
2
[ "A105476", "A382683", "A384614" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-04T23:20:44
oeisdata/seq/A384/A384614.seq
732058d57b549a5c55fbc33cc5bf3022
A384615
Consecutive states of the linear congruential pseudo-random number generator for GLIM3 when started at 1.
[ "1", "8404998", "360890399", "5017796764", "15125873421", "33338412866", "27454835787", "8568995192", "3575673689", "25551208638", "18220712887", "6754914964", "4760804581", "21551239290", "20533449315", "8548686832", "11051010993", "29945330294", "1980032079", "24405357964", "9609153469", "4583291570" ]
[ "nonn", "easy" ]
10
1
2
[ "A096550", "A096561", "A384615" ]
null
Sean A. Irvine, Jun 04 2025
2025-06-12T12:59:11
oeisdata/seq/A384/A384615.seq
367a252334eebd7f3317ed6af02872f4
A384616
A(m,n) is the maximum sum of absolute differences of the labels of adjacent vertices of the grid graph P_m X P_n where the m*n labels are exactly 1, 2, ..., m*n.
[ "0", "1", "8", "3", "23", "58", "7", "44", "115" ]
[ "nonn", "tabl", "more", "changed" ]
43
1
3
[ "A047838", "A067725", "A384616" ]
null
Sela Fried, Jun 07 2025
2025-06-30T17:21:00
oeisdata/seq/A384/A384616.seq
56e7689aadef13d98f60ee6d0d81d6f7
A384617
E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x))^2 ).
[ "1", "1", "5", "13", "-63", "-2279", "-51167", "-423387", "13717889", "885044593", "37051519041", "779965433149", "-14179999608959", "-2798466635425239", "-224720509492366495", "-11148988922254048619", "-300176114650473574143", "18804123010954180467937", "4351564646569010083711105" ]
[ "sign" ]
22
0
3
[ "A052750", "A213108", "A213110", "A213111", "A384617", "A384808", "A384809", "A384810" ]
null
Seiichi Manyama, Jun 10 2025
2025-06-10T13:57:25
oeisdata/seq/A384/A384617.seq
3c439b10d252fd0fb8f437e32622adc8
A384618
Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is greater than 2.
[ "29", "31", "59", "61", "73", "113", "127", "137", "139", "149", "151", "179", "181", "191", "199", "223", "239", "241", "269", "271", "283", "307", "317", "331", "347", "419", "421", "431", "433", "467", "521", "523", "541", "569", "571", "599", "601", "619", "641", "659", "661", "673", "773", "809", "811", "821", "829", "853", "863", "877", "887", "907", "953", "967" ]
[ "nonn" ]
12
1
1
[ "A384603", "A384618" ]
null
Alain Rocchelli, Jun 04 2025
2025-06-11T03:05:14
oeisdata/seq/A384/A384618.seq
1c283e4a672ce1d219fe6791becd2d99
A384619
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A213591.
[ "1", "1", "0", "1", "1", "0", "1", "2", "4", "0", "1", "3", "9", "24", "0", "1", "4", "15", "56", "178", "0", "1", "5", "22", "97", "420", "1512", "0", "1", "6", "30", "148", "738", "3572", "14152", "0", "1", "7", "39", "210", "1145", "6300", "33328", "142705", "0", "1", "8", "49", "284", "1655", "9832", "58702", "334354", "1528212", "0", "1", "9", "60", "371", "2283", "14321", "91640", "586635", "3559310", "17211564", "0" ]
[ "nonn", "tabl" ]
12
0
8
[ "A000007", "A213591", "A379599", "A384619", "A384620", "A384621", "A384623" ]
null
Seiichi Manyama, Jun 04 2025
2025-06-05T09:55:37
oeisdata/seq/A384/A384619.seq
16f449a48955c08afe8d96ef70d70a9b
A384620
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A213639.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "11", "38", "0", "1", "4", "18", "86", "357", "0", "1", "5", "26", "145", "815", "3832", "0", "1", "6", "35", "216", "1389", "8758", "45189", "0", "1", "7", "45", "300", "2095", "14967", "103056", "572378", "0", "1", "8", "56", "398", "2950", "22668", "175937", "1300586", "7676653", "0", "1", "9", "68", "511", "3972", "32091", "266470", "2214012", "17368633", "107971691", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A213639", "A379599", "A384619", "A384620", "A384621", "A384623" ]
null
Seiichi Manyama, Jun 05 2025
2025-06-05T09:55:30
oeisdata/seq/A384/A384620.seq
6914c1016d9ba9997db5831de7495007
A384621
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A376176.
[ "1", "1", "0", "1", "1", "0", "1", "2", "6", "0", "1", "3", "13", "55", "0", "1", "4", "21", "122", "622", "0", "1", "5", "30", "202", "1390", "8015", "0", "1", "6", "40", "296", "2322", "17934", "113164", "0", "1", "7", "51", "405", "3437", "30030", "252847", "1711898", "0", "1", "8", "63", "530", "4755", "44600", "423111", "3814724", "27357970", "0", "1", "9", "76", "672", "6297", "61966", "628454", "6369930", "60766238", "457507917", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A376176", "A379599", "A384619", "A384620", "A384621", "A384623" ]
null
Seiichi Manyama, Jun 05 2025
2025-06-05T09:55:26
oeisdata/seq/A384/A384621.seq
f335c11e1fd42368ce866582da680e76
A384622
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) * A(x*A(x))^5 ).
[ "1", "1", "7", "75", "989", "14822", "242833", "4253818", "78573475", "1516124048", "30358711661", "627789264431", "13357722853019", "291611321803145", "6517101781199460", "148833150175812360", "3468184751644757228", "82363850033966966043", "1991430772785525516280", "48980124394583747435367" ]
[ "nonn" ]
10
0
3
[ "A088714", "A213591", "A213639", "A376176", "A384622", "A384623" ]
null
Seiichi Manyama, Jun 05 2025
2025-06-05T04:50:29
oeisdata/seq/A384/A384622.seq
459862da81b56c27af3d87ef085ecf27
A384623
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384622.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "15", "75", "0", "1", "4", "24", "164", "989", "0", "1", "5", "34", "268", "2177", "14822", "0", "1", "6", "45", "388", "3585", "32672", "242833", "0", "1", "7", "57", "525", "5235", "53922", "534781", "4253818", "0", "1", "8", "70", "680", "7150", "78972", "882304", "9349160", "78573475", "0", "1", "9", "84", "854", "9354", "108251", "1292456", "15399930", "172255669", "1516124048", "0" ]
[ "nonn", "tabl" ]
10
0
8
[ "A000007", "A379599", "A384619", "A384620", "A384621", "A384622", "A384623" ]
null
Seiichi Manyama, Jun 05 2025
2025-06-05T09:55:23
oeisdata/seq/A384/A384623.seq
1a2fd76d6b8089ed3f531d50fa251c5f
A384624
Decimal expansion of the volume of a pentagonal orthobicupola with unit edge.
[ "4", "6", "4", "8", "0", "9", "0", "6", "3", "6", "6", "6", "6", "3", "8", "6", "2", "6", "1", "8", "7", "8", "8", "9", "8", "2", "2", "4", "9", "7", "5", "0", "3", "4", "9", "8", "0", "5", "8", "7", "4", "9", "1", "1", "4", "6", "1", "4", "8", "7", "0", "0", "9", "6", "5", "6", "9", "4", "5", "2", "9", "6", "6", "0", "5", "4", "7", "3", "6", "1", "2", "3", "4", "1", "8", "3", "7", "3", "9", "8", "6", "5", "8", "8", "5", "8", "8", "5", "8", "7" ]
[ "nonn", "cons", "easy" ]
10
1
1
[ "A010532", "A384287", "A384624", "A384625" ]
null
Paolo Xausa, Jun 05 2025
2025-06-09T10:37:45
oeisdata/seq/A384/A384624.seq
049b54b73d964a75b2c86e759da65698
A384625
Decimal expansion of the surface area of a pentagonal orthobicupola with unit edge.
[ "1", "7", "7", "7", "1", "0", "8", "1", "8", "2", "0", "1", "0", "0", "1", "2", "7", "0", "7", "9", "3", "3", "6", "6", "3", "9", "8", "0", "8", "5", "4", "1", "9", "0", "0", "1", "1", "6", "1", "7", "1", "7", "6", "1", "4", "7", "4", "5", "4", "6", "3", "4", "8", "2", "2", "8", "5", "5", "3", "7", "0", "6", "8", "6", "2", "6", "7", "7", "5", "7", "0", "5", "2", "6", "6", "8", "9", "9", "3", "2", "5", "5", "5", "3", "6", "7", "7", "4", "7", "9" ]
[ "nonn", "cons", "easy" ]
13
2
2
[ "A002163", "A384284", "A384286", "A384624", "A384625", "A384872" ]
null
Paolo Xausa, Jun 05 2025
2025-06-12T12:59:31
oeisdata/seq/A384/A384625.seq
d6d05765ce2a80bf56af60962df3868b
A384626
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A143426.
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "5", "7", "0", "1", "4", "9", "18", "32", "0", "1", "5", "14", "34", "82", "175", "0", "1", "6", "20", "56", "156", "442", "1086", "0", "1", "7", "27", "85", "261", "834", "2699", "7429", "0", "1", "8", "35", "122", "405", "1392", "5027", "18178", "54994", "0", "1", "9", "44", "168", "597", "2166", "8310", "33387", "132664", "435120", "0" ]
[ "nonn", "tabl" ]
10
0
8
[ "A000007", "A143426", "A384626" ]
null
Seiichi Manyama, Jun 05 2025
2025-06-05T09:52:15
oeisdata/seq/A384/A384626.seq
5a99e3a414a122884e04c321084b8e39
A384627
Decimal expansion of 1/998001.
[ "0", "0", "0", "0", "0", "1", "0", "0", "2", "0", "0", "3", "0", "0", "4", "0", "0", "5", "0", "0", "6", "0", "0", "7", "0", "0", "8", "0", "0", "9", "0", "1", "0", "0", "1", "1", "0", "1", "2", "0", "1", "3", "0", "1", "4", "0", "1", "5", "0", "1", "6", "0", "1", "7", "0", "1", "8", "0", "1", "9", "0", "2", "0", "0", "2", "1", "0", "2", "2", "0", "2", "3", "0", "2", "4", "0", "2", "5", "0", "2", "6", "0", "2", "7", "0", "2", "8", "0", "2", "9" ]
[ "nonn", "cons", "easy" ]
10
0
9
[ "A021085", "A034948", "A384627" ]
null
Paolo Xausa, Jun 05 2025
2025-06-05T09:52:26
oeisdata/seq/A384/A384627.seq
8ea9939ea2883d8cb0277cd4ec84193b
A384628
a(n) = Sum_{k = 1..n} gcd(n, floor(n / k)).
[ "1", "3", "5", "8", "9", "14", "13", "20", "19", "25", "21", "35", "25", "37", "37", "44", "33", "56", "37", "60", "51", "58", "45", "84", "53", "71", "69", "85", "57", "103", "61", "99", "83", "93", "83", "130", "73", "104", "101", "136", "81", "146", "85", "140", "129", "124", "93", "188", "103", "155", "131", "163", "105", "191", "127", "185", "145", "159", "117", "251", "121" ]
[ "nonn" ]
35
1
2
[ "A000040", "A000203", "A005408", "A018804", "A384628" ]
null
Ctibor O. Zizka, Jun 05 2025
2025-06-17T13:59:30
oeisdata/seq/A384/A384628.seq
0cb03855be1df4de821e49e59186e515
A384629
Maximum number of steps that an n-instruction Turing machine (allowing any number of states and symbols) can take on an initially blank tape before eventually halting.
[ "0", "1", "3", "5", "16", "37" ]
[ "hard", "more", "nonn" ]
16
0
3
[ "A060843", "A384629" ]
null
Brian Galebach, Jun 05 2025
2025-06-09T00:27:53
oeisdata/seq/A384/A384629.seq
286c136f0d47e2e0b1ca7b05ba1e3483
A384630
Number of self-inverse double cosets in Z_n\S_n/Z_n.
[ "1", "1", "2", "3", "6", "14", "34", "98", "294", "952", "3246", "11698", "43732", "170752", "689996", "2888034", "12458784", "55406422", "253142182", "1187934740", "5712033368", "28131119956", "141645386202", "728841303696", "3827217750492", "20499431084644", "111876916526070", "621831335167486", "3516904353610572" ]
[ "nonn" ]
13
1
3
[ "A000142", "A002619", "A384630", "A384631" ]
null
Ludovic Schwob, Jun 05 2025
2025-06-17T19:28:37
oeisdata/seq/A384/A384630.seq
53b203e55da56641efc119f8d60c297d
A384631
Number of self-inverse double cosets in D_n\S_n/D_n.
[ "1", "2", "4", "8", "17", "52", "153", "482", "1623", "5879", "21926", "85436", "344998", "1444437", "6230232", "27704051", "126571091", "593974930", "2856031804", "14065575098", "70822693101", "364420818168", "1913609207886", "10249715874962", "55938458263035", "310915671908063", "1758452185453926", "10115287840489764" ]
[ "nonn" ]
15
3
2
[ "A000940", "A001710", "A384630", "A384631" ]
null
Ludovic Schwob, Jun 05 2025
2025-06-22T19:35:43
oeisdata/seq/A384/A384631.seq
2a03a614f4fb767714a8e51b3a0d765b
A384632
a(0)=0. For each digit d in the sequence, let a(n) equal the smallest unused integer which has at least d divisors.
[ "0", "1", "2", "3", "4", "6", "12", "5", "7", "16", "24", "8", "18", "9", "10", "30", "11", "36", "48", "13", "14", "15", "17", "19", "20", "21", "28", "22", "40", "23", "25", "26", "27", "29", "32", "31", "42", "33", "60", "34", "35", "37", "38", "39", "54", "41", "43", "44", "45", "46", "49", "47", "50", "51", "52", "53", "56", "55", "72", "57", "58", "62", "59", "63", "61", "64", "65" ]
[ "nonn", "base" ]
13
0
3
[ "A000005", "A362371", "A362551", "A384632" ]
null
Gavin Lupo, Jun 05 2025
2025-06-17T18:00:47
oeisdata/seq/A384/A384632.seq
f55e6c479fb72ee456c3abacb925b72f
A384633
Expansion of (1+x-2*x^2-2*x^3) / (1-6*x^2-4*x^3+2*x^4).
[ "1", "1", "4", "8", "26", "62", "180", "460", "1276", "3356", "9136", "24320", "65688", "175752", "473136", "1268624", "3410448", "9152784", "24590912", "66021248", "177335712", "476185568", "1278917440", "3434413760", "9223575488", "24769781184", "66521273088", "178644161536", "479759612288", "1288410499200" ]
[ "nonn", "easy", "walk", "changed" ]
8
0
3
[ "A005824", "A105476", "A384633", "A384634", "A384635" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:48:04
oeisdata/seq/A384/A384633.seq
cd4545d5827ba60e25379e94608506d6
A384634
Expansion of (1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4).
[ "1", "2", "7", "16", "48", "120", "338", "880", "2412", "6392", "17316", "46240", "124640", "333920", "898168", "2409600", "6475408", "17382432", "46694512", "125377024", "336745984", "904275328", "2428594976", "6521881856", "17515179200", "47037120384", "126321412672", "339239675392", "911046599168", "2446649462272" ]
[ "nonn", "easy", "walk", "changed" ]
7
0
2
[ "A005824", "A105476", "A384633", "A384634", "A384635" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:49:43
oeisdata/seq/A384/A384634.seq
df5baf6a68f236ebf777a3d01119fc41
A384635
Expansion of (1+3*x+2*x^2) / (1-6*x^2-4*x^3+2*x^4).
[ "1", "3", "8", "22", "58", "158", "420", "1136", "3036", "8180", "21920", "58952", "158168", "425032", "1140976", "3064960", "8229648", "22103600", "59355776", "159410272", "428089760", "1149677536", "3087468096", "8291603712", "22267339200", "59800139584", "160595513856", "431286986880", "1158238963072" ]
[ "nonn", "easy", "walk", "changed" ]
6
0
2
[ "A005824", "A105476", "A384633", "A384634", "A384635" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:50:39
oeisdata/seq/A384/A384635.seq
2e58d33e3bb0bcdbe64f124411e4215b
A384636
Triprimes that are the concatenation of three consecutive primes in reverse order.
[ "1175", "231917", "434137", "534743", "595347", "10310197", "107103101", "137131127", "149139137", "163157151", "167163157", "179173167", "223211199", "239233229", "251241239", "269263257", "281277271", "293283281", "311307293", "349347337", "383379373", "401397389", "419409401", "421419409", "449443439", "457449443", "487479467", "491487479" ]
[ "nonn", "base" ]
13
1
1
[ "A014612", "A383114", "A384636", "A384638" ]
null
Will Gosnell and Robert Israel, Jun 05 2025
2025-06-09T11:13:00
oeisdata/seq/A384/A384636.seq
323a216a38d5fb14ee2c88e4cdff747f
A384637
Consecutive states of the linear congruential pseudo-random number generator 5^13*s mod 2^35 when started at s=1.
[ "1", "1220703125", "30903841977", "6589172397", "2335288753", "33236884229", "14113929449", "5184031389", "9287939169", "11535683445", "23833284121", "2547937165", "6466389009", "29109403877", "12213593161", "31057406333", "2513210561", "12977872725", "17811893113", "2710136941", "28076457585" ]
[ "nonn", "easy" ]
20
1
2
[ "A096550", "A096561", "A384637" ]
null
Sean A. Irvine, Jun 05 2025
2025-06-19T20:14:25
oeisdata/seq/A384/A384637.seq
3f2398635ad388f322556337c06b1b94
A384638
Primes p such that the concatenations of three consecutive primes starting with p, in both forward and backwards orders, are triprimes.
[ "43", "47", "97", "101", "151", "157", "167", "199", "281", "293", "487", "601", "607", "809", "839", "967", "1013", "1069", "1129", "1223", "1249", "1259", "1289", "1361", "1367", "1543", "1571", "1663", "1753", "1861", "1871", "1873", "1997", "2141", "2281", "2551", "2593", "2909", "3121", "3271", "3313", "3361", "3371", "3461", "3823", "3881", "3907", "4019", "4211", "4289", "4327", "4349", "4451", "4513" ]
[ "nonn", "base" ]
29
1
1
[ "A014612", "A383114", "A384636", "A384638" ]
null
Will Gosnell and Robert Israel, Jun 05 2025
2025-06-20T15:41:36
oeisdata/seq/A384/A384638.seq
47ffdad9585c6cdc52562f551349afe0
A384640
Expansion of (1-3*x^2) / (1-x-5*x^2+x^3+2*x^4).
[ "1", "1", "3", "7", "19", "49", "131", "343", "911", "2397", "6347", "16735", "44251", "116785", "308611", "814815", "2152583", "5684477", "15015355", "39655527", "104742659", "276635985", "730663043", "1929789255", "5096983167", "13461994429", "35555794923", "93909205391", "248032219243", "655098462417", "1730238763395" ]
[ "nonn", "easy", "walk", "changed" ]
7
0
3
[ "A005824", "A026597", "A384640", "A384641", "A384642" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:52:09
oeisdata/seq/A384/A384640.seq
6909e846e0853c6583bdafac2fb77171
A384641
Expansion of (1+2*x-x^3) / (1-x-5*x^2+x^3+2*x^4).
[ "1", "3", "8", "21", "56", "147", "390", "1027", "2718", "7169", "18952", "50025", "132180", "349015", "921986", "2434831", "6431386", "16985525", "44863652", "118490229", "312960192", "826576635", "2183160062", "5766102587", "15229405878", "40223605481", "106238212160", "280594628513", "741103272076", "1957390991519" ]
[ "nonn", "easy", "walk", "changed" ]
6
0
2
[ "A005824", "A026597", "A384640", "A384641", "A384642" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:54:18
oeisdata/seq/A384/A384641.seq
4e36563b56636150427a9ed0c4733570
A384642
Expansion of (1+x-x^2+x^3) / (1-x-5*x^2+x^3+2*x^4).
[ "1", "2", "6", "16", "42", "112", "294", "780", "2054", "5436", "14338", "37904", "100050", "264360", "698030", "1843972", "4869662", "12862772", "33971050", "89727304", "236980458", "625920384", "1653153270", "4366320124", "11532205174", "30458811756", "80447210962", "212476424320", "561189257026", "1482206544152" ]
[ "nonn", "easy", "walk", "changed" ]
6
0
2
[ "A005824", "A026597", "A384640", "A384641", "A384642" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:55:01
oeisdata/seq/A384/A384642.seq
acdcef094586784ae9b01aadeb2bceff
A384643
Consecutive states of the linear congruential pseudo-random number generator for Simula on the UNIVAC when started at 1.
[ "1", "30517578125", "4728272809", "14042552597", "5475208593", "22652899805", "14780701625", "12079957477", "33211157537", "21459834669", "11626649801", "22641538997", "32099503025", "31057406333", "28470525657", "2272198277", "31308848193", "23703460045", "6636903913", "5151124053", "2502905297" ]
[ "nonn", "easy" ]
9
1
2
[ "A096550", "A096561", "A384643" ]
null
Sean A. Irvine, Jun 05 2025
2025-06-12T05:59:56
oeisdata/seq/A384/A384643.seq
4b6458ddf8dac960334dfacd43c5d479
A384644
a(n) is the least k such that {A007504(1), A007504(2), ..., A007504(k)} mod n = {0,...,n-1}.
[ "1", "2", "10", "20", "10", "57", "18", "24", "20", "35", "25", "97", "49", "27", "67", "43", "115", "113", "60", "62", "97", "50", "107", "187", "98", "92", "72", "94", "66", "230", "125", "132", "191", "130", "180", "168", "91", "113", "142", "199", "157", "305", "184", "224", "242", "229", "119", "297", "200", "292", "179", "133", "198", "341", "357", "286", "324", "329" ]
[ "nonn" ]
14
1
2
[ "A007504", "A384644" ]
null
Charles L. Hohn, Jun 05 2025
2025-06-12T19:27:32
oeisdata/seq/A384/A384644.seq
a523fb617b2bd0342b4d6dd8a62aa392
A384645
Consecutive states of the linear congruential pseudo-random number generator HSRPUN when started at 1.
[ "1", "3418906842", "8274876767", "11636484000", "6772886125", "17960856150", "33658810027", "33635241596", "6134001049", "12062168466", "17176042167", "27491204376", "18560177541", "31970401934", "4441762179", "1351356276", "30265814577", "5092081994", "21499143951", "17730019728", "16438010781" ]
[ "nonn", "easy" ]
11
1
2
[ "A384643", "A384645" ]
null
Sean A. Irvine, Jun 05 2025
2025-06-12T12:59:42
oeisdata/seq/A384/A384645.seq
d6293ad76c084a52c097394036262076
A384646
Expansion of (1+x) / (1-x-5*x^2-2*x^3).
[ "1", "2", "7", "19", "58", "167", "495", "1446", "4255", "12475", "36642", "107527", "315687", "926606", "2720095", "7984499", "23438186", "68800871", "201960799", "592841526", "1740247263", "5108376491", "14995295858", "44017672839", "129210905111", "379289861022", "1113379732255", "3268250847587", "9593729230906" ]
[ "nonn", "easy", "walk", "changed" ]
10
0
2
[ "A077937", "A384646", "A384647", "A384648" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:56:10
oeisdata/seq/A384/A384646.seq
0d4e4bee31fe54097d8e5fed1eda7d80
A384647
Expansion of (1+3*x+x^2) / (1-x-5*x^2-2*x^3).
[ "1", "4", "10", "32", "90", "270", "784", "2314", "6774", "19912", "58410", "171518", "503392", "1477802", "4337798", "12733592", "37378186", "109721742", "322079856", "945444938", "2775287702", "8146672104", "23914000490", "70197936414", "206061283072", "604878966122", "1775581254310", "5212098651064" ]
[ "nonn", "easy", "walk", "changed" ]
6
0
2
[ "A077937", "A384646", "A384647", "A384648" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:57:04
oeisdata/seq/A384/A384647.seq
7aa2ca27528a6ecc7ea64114438a9eda
A384648
Expansion of (1+2*x+x^2) / (1-x-5*x^2-2*x^3).
[ "1", "3", "9", "26", "77", "225", "662", "1941", "5701", "16730", "49117", "144169", "423214", "1242293", "3646701", "10704594", "31422685", "92239057", "270761670", "794802325", "2333088789", "6848623754", "20103672349", "59012968697", "173228577950", "508500766133", "1492669593277", "4381630579842" ]
[ "nonn", "easy", "walk", "changed" ]
7
0
2
[ "A077937", "A384646", "A384647", "A384648" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:57:59
oeisdata/seq/A384/A384648.seq
cd04fdf5e19817a657e1835f7cf36f78
A384649
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x*A(x)^4) ).
[ "1", "1", "2", "9", "56", "432", "3935", "40820", "471633", "5980210", "82329140", "1220547845", "19359684220", "326799737576", "5844913732057", "110341722975077", "2191461358459051", "45656013573862832", "995196646595460516", "22644288881875546322", "536706817952488705651", "13225669497771610891404" ]
[ "nonn" ]
9
0
3
[ "A110447", "A162661", "A384145", "A384649", "A384650", "A384653" ]
null
Seiichi Manyama, Jun 06 2025
2025-06-06T08:35:57
oeisdata/seq/A384/A384649.seq
7f64cfb15a93f0f3915d6493a0cab19e
A384650
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x*A(x)^5) ).
[ "1", "1", "2", "10", "69", "592", "6052", "70870", "928497", "13404514", "210892157", "3584892350", "65390514877", "1272723903336", "26307949481077", "575201364472316", "13255835789428863", "320999903683710948", "8145524458876305526", "216062918679078474529", "5977572987203090333399" ]
[ "nonn" ]
10
0
3
[ "A110447", "A162661", "A384145", "A384649", "A384650", "A384654" ]
null
Seiichi Manyama, Jun 06 2025
2025-06-06T08:35:53
oeisdata/seq/A384/A384650.seq
14a739c8c6f5ce665befd896d4239f43
A384651
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A162661.
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "5", "7", "0", "1", "4", "9", "18", "33", "0", "1", "5", "14", "34", "84", "189", "0", "1", "6", "20", "56", "159", "472", "1249", "0", "1", "7", "27", "85", "265", "882", "3057", "9237", "0", "1", "8", "35", "122", "410", "1460", "5615", "22190", "74972", "0", "1", "9", "44", "168", "603", "2256", "9166", "40053", "177149", "659042", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A162661", "A379598", "A384651", "A384652", "A384653", "A384654" ]
null
Seiichi Manyama, Jun 06 2025
2025-06-06T08:35:41
oeisdata/seq/A384/A384651.seq
87b7caeeaad5292617dfc3a8bb8e4b31
A384652
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384145.
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "5", "8", "0", "1", "4", "9", "20", "44", "0", "1", "5", "14", "37", "108", "298", "0", "1", "6", "20", "60", "198", "716", "2359", "0", "1", "7", "27", "90", "321", "1290", "5554", "21112", "0", "1", "8", "35", "128", "485", "2064", "9821", "48838", "209175", "0", "1", "9", "44", "175", "699", "3091", "15452", "84888", "476714", "2262121", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A379598", "A384145", "A384651", "A384652", "A384653", "A384654" ]
null
Seiichi Manyama, Jun 06 2025
2025-06-06T08:35:45
oeisdata/seq/A384/A384652.seq
5b933cfb4fb6a8c030c781694be9c557
A384653
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384649.
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "5", "9", "0", "1", "4", "9", "22", "56", "0", "1", "5", "14", "40", "134", "432", "0", "1", "6", "20", "64", "240", "1012", "3935", "0", "1", "7", "27", "95", "381", "1779", "9039", "40820", "0", "1", "8", "35", "134", "565", "2780", "15596", "92246", "471633", "0", "1", "9", "44", "182", "801", "4071", "23950", "156597", "1051558", "5980210", "0" ]
[ "nonn", "tabl" ]
11
0
8
[ "A000007", "A379598", "A384649", "A384651", "A384652", "A384653", "A384654" ]
null
Seiichi Manyama, Jun 06 2025
2025-06-06T08:35:48
oeisdata/seq/A384/A384653.seq
bc343b3cffff4bb274944d50d70802f5
A384654
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384650.
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "5", "10", "0", "1", "4", "9", "24", "69", "0", "1", "5", "14", "43", "162", "592", "0", "1", "6", "20", "68", "285", "1362", "6052", "0", "1", "7", "27", "100", "445", "2352", "13664", "70870", "0", "1", "8", "35", "140", "650", "3612", "23171", "157592", "928497", "0", "1", "9", "44", "189", "909", "5201", "34972", "263190", "2039543", "13404514", "0" ]
[ "nonn", "tabl" ]
12
0
8
[ "A000007", "A379598", "A384650", "A384651", "A384652", "A384653", "A384654" ]
null
Seiichi Manyama, Jun 06 2025
2025-06-06T08:35:37
oeisdata/seq/A384/A384654.seq
428e773d244b119b1209f864a0668081
A384655
a(n) = Sum_{k=1..n} A051903(gcd(n,k)).
[ "0", "1", "1", "3", "1", "4", "1", "7", "4", "6", "1", "11", "1", "8", "7", "15", "1", "14", "1", "17", "9", "12", "1", "25", "6", "14", "13", "23", "1", "22", "1", "31", "13", "18", "11", "36", "1", "20", "15", "39", "1", "30", "1", "35", "26", "24", "1", "53", "8", "32", "19", "41", "1", "44", "15", "53", "21", "30", "1", "59", "1", "32", "34", "63", "17", "46", "1", "53", "25", "46", "1", "81", "1", "38" ]
[ "nonn" ]
8
1
4
[ "A000010", "A005117", "A033150", "A050873", "A051903", "A051953", "A063659", "A067259", "A254926", "A357310", "A383156", "A384655", "A384656" ]
null
Amiram Eldar, Jun 06 2025
2025-06-07T08:18:30
oeisdata/seq/A384/A384655.seq
58bd7abc4f7e1bf26fee055ea0cc0da5
A384656
a(n) = Sum_{k=1..n} A051903(ugcd(n,k)), where ugcd(n,k) is the greatest divisor of k that is a unitary divisor of n.
[ "0", "1", "1", "2", "1", "4", "1", "3", "2", "6", "1", "9", "1", "8", "7", "4", "1", "12", "1", "13", "9", "12", "1", "16", "2", "14", "3", "17", "1", "22", "1", "5", "13", "18", "11", "24", "1", "20", "15", "22", "1", "30", "1", "25", "18", "24", "1", "27", "2", "28", "19", "29", "1", "32", "15", "28", "21", "30", "1", "51", "1", "32", "22", "6", "17", "46", "1", "37", "25", "46", "1", "41", "1", "38", "30" ]
[ "nonn" ]
8
1
4
[ "A000961", "A002110", "A005117", "A047994", "A051953", "A088860", "A097250", "A383159", "A384046", "A384048", "A384049", "A384655", "A384656" ]
null
Amiram Eldar, Jun 06 2025
2025-06-07T08:18:42
oeisdata/seq/A384/A384656.seq
a74af3839340148d9783c19abc0df412
A384657
Numbers k such that A384655(k) > k.
[ "24", "48", "72", "80", "96", "108", "112", "120", "144", "160", "168", "180", "192", "200", "216", "224", "240", "252", "264", "280", "288", "300", "312", "320", "324", "336", "352", "360", "384", "396", "400", "408", "416", "420", "432", "440", "448", "456", "468", "480", "504", "520", "528", "540", "552", "560", "576", "600", "612", "624", "640", "648", "660", "672", "684", "696" ]
[ "nonn" ]
8
1
1
[ "A005117", "A013929", "A051953", "A384655", "A384657", "A384658" ]
null
Amiram Eldar, Jun 06 2025
2025-06-07T08:18:47
oeisdata/seq/A384/A384657.seq
1f6db9aabc3609751254560d70c73647
A384658
Primitive terms in A384657: numbers k such that A384655(k) > k and A384655(d) <= d for every proper divisor d of k.
[ "24", "80", "108", "112", "180", "200", "252", "280", "300", "352", "396", "416", "420", "440", "468", "520", "612", "660", "684", "780", "828", "1044", "1088", "1116", "1216", "1332", "1472", "1476", "1548", "1692", "1856", "1908", "1984", "2124", "2196", "2288", "2412", "2556", "2628", "2844", "2988", "2992", "3204", "3344", "3492", "3536", "3636", "3708", "3852", "3924", "3952" ]
[ "nonn" ]
7
1
1
[ "A013929", "A384655", "A384657", "A384658" ]
null
Amiram Eldar, Jun 06 2025
2025-06-07T08:18:53
oeisdata/seq/A384/A384658.seq
0903cb1a696b805904d6c0c46971433c
A384659
Numbers k such that A384655(k)/k > A384655(m)/m for all m < k.
[ "1", "2", "4", "8", "12", "16", "24", "48", "72", "96", "144", "288", "432", "576", "720", "1440", "2160", "2880", "4320", "8640", "17280", "21600", "25920", "30240", "43200", "60480", "120960", "151200", "181440", "241920", "302400", "604800", "907200", "1209600", "1814400", "3326400", "3628800", "5443200", "6350400", "6652800", "9979200" ]
[ "nonn" ]
7
1
2
[ "A013929", "A025487", "A033150", "A384655", "A384659" ]
null
Amiram Eldar, Jun 06 2025
2025-06-07T08:18:58
oeisdata/seq/A384/A384659.seq
7ca8df30b882a12ec9aa499959a40b70
A384660
a(1) = 1. Thereafter a(n) = a(a(n-1)) if a(n-1) is a novel term, or n - S(n) if a(n-1) is a repeat term. S(n) is the sum of distinct terms in multiset {a(1),a(2),..a(n-1)}.
[ "1", "1", "2", "1", "2", "3", "2", "2", "3", "4", "1", "2", "3", "4", "5", "2", "2", "3", "4", "5", "6", "3", "2", "3", "4", "5", "6", "7", "2", "2", "3", "4", "5", "6", "7", "8", "2", "2", "3", "4", "5", "6", "7", "8", "9", "3", "2", "3", "4", "5", "6", "7", "8", "9", "10", "4", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "2", "2", "3", "4", "5", "6", "7" ]
[ "nonn", "easy" ]
12
1
3
[ "A002260", "A384660" ]
null
David James Sycamore, Jun 06 2025
2025-06-07T08:22:27
oeisdata/seq/A384/A384660.seq
387a0ef9375a55c86200aa6cbf4c670e
A384661
Solution of the complementary equation b(n)=a(a(n))+a(n)+2 with a(1)=1; this is the sequence a(n).
[ "1", "2", "3", "5", "7", "9", "10", "11", "12", "13", "15", "16", "17", "18", "20", "21", "22", "24", "26", "27", "29", "31", "33", "34", "35", "36", "38", "40", "42", "43", "45", "46", "47", "48", "50", "51", "53", "54", "56", "57", "58", "59", "61", "62", "63", "65", "66", "68", "69", "70", "71", "72", "74", "75", "76", "77", "79", "80", "81", "83", "85", "86", "88", "90", "91", "92" ]
[ "nonn" ]
8
1
2
[ "A136497", "A136499", "A136500", "A384661", "A384662", "A384663", "A384664" ]
null
Clark Kimberling, Jun 06 2025
2025-06-16T00:00:14
oeisdata/seq/A384/A384661.seq
f59e32fbb332cb44daaafd9ffab275e6
A384662
Solution of the complementary equation b(n)=a(a(n))+a(n)+2 with a(1)=1; this is the sequence b.
[ "4", "6", "8", "14", "19", "23", "25", "28", "30", "32", "37", "39", "41", "44", "49", "52", "55", "60", "64", "67", "73", "78", "82", "84", "87", "89", "94", "99", "103", "106", "110", "113", "115", "118", "122", "124", "129", "131", "135", "138", "140", "142", "148", "150", "153", "158", "160", "165", "167", "169", "171", "174", "178", "181", "183", "186", "190", "193" ]
[ "nonn" ]
7
1
1
[ "A136498", "A136499", "A136500", "A384661", "A384662", "A384663", "A384664" ]
null
Clark Kimberling, Jun 09 2025
2025-06-16T00:00:27
oeisdata/seq/A384/A384662.seq
756e08cf0aa44f6c9cbf71e678a3fb03
A384663
Solution of the complementary equation b(n)=a(a(n))+a(n)+3 with a(1)=1; this is the sequence a. Sequence b is A384664.
[ "1", "2", "3", "4", "6", "8", "10", "12", "13", "14", "15", "16", "18", "19", "20", "21", "22", "24", "25", "26", "28", "29", "30", "32", "33", "35", "37", "39", "41", "42", "43", "44", "46", "48", "50", "51", "53", "55", "56", "57", "58", "60", "62", "63", "65", "66", "67", "68", "69", "71", "72", "74", "76", "77", "78", "80", "81", "83", "84", "85", "86", "87", "89", "90", "91", "92" ]
[ "nonn" ]
7
1
2
[ "A136499", "A136500", "A384661", "A384662", "A384663", "A384664" ]
null
Clark Kimberling, Jun 11 2025
2025-06-22T18:24:50
oeisdata/seq/A384/A384663.seq
d402205bb5519b1c04bbba8e9cc8f53f
A384664
Solution of the complementary equation b(n)=a(a(n))+a(n)+3 with a(1)=1; this is the sequence b. Sequence a is A384663.
[ "5", "7", "9", "11", "17", "23", "27", "31", "34", "36", "38", "40", "45", "47", "49", "52", "54", "59", "61", "64", "70", "73", "75", "79", "82", "88", "93", "98", "102", "105", "108", "110", "115", "119", "124", "126", "132", "136", "139", "141", "144", "148", "152", "155", "159", "161", "164", "166", "168", "173", "175", "180", "185", "187", "190", "195", "197", "202" ]
[ "nonn" ]
5
1
1
[ "A136499", "A136500", "A384661", "A384662", "A384663", "A384664" ]
null
Clark Kimberling, Jun 16 2025
2025-06-22T18:25:07
oeisdata/seq/A384/A384664.seq
1e43494dc6ea5c8835189945b9e7534c
A384665
Smallest odd multiplier k such that k*n is abundant.
[ "945", "9", "315", "3", "189", "3", "135", "3", "105", "3", "315", "1", "315", "3", "63", "3", "315", "1", "315", "1", "45", "3", "315", "1", "63", "3", "35", "3", "315", "1", "315", "3", "105", "3", "27", "1", "315", "3", "105", "1", "315", "1", "315", "3", "21", "3", "315", "1", "45", "3", "105", "3", "315", "1", "63", "1", "105", "3", "315", "1", "315", "3", "15", "3", "63", "1", "315", "3" ]
[ "nonn", "changed" ]
25
1
1
[ "A005101", "A005231", "A023196", "A254571", "A384665" ]
null
Sergio Pimentel, Jun 06 2025
2025-07-06T14:57:25
oeisdata/seq/A384/A384665.seq
9cbfe719970822415d6e30565ae57948
A384666
Number of distinct values of the quadratic discriminant D=b^2-4*a*c, for a,b,c in the range [-n,n].
[ "1", "6", "17", "35", "56", "90", "125", "178", "223", "282", "344", "436", "499", "608", "701", "804", "904", "1062", "1164", "1339", "1450", "1604", "1765", "1988", "2114", "2335", "2525", "2735", "2909", "3194", "3366", "3679", "3887", "4137", "4389", "4661", "4840", "5237", "5536", "5835", "6068", "6507", "6759", "7195", "7473", "7773", "8148", "8645" ]
[ "nonn" ]
8
0
2
[ "A000217", "A027384", "A384666" ]
null
Darío Clavijo, Jun 06 2025
2025-06-12T17:05:59
oeisdata/seq/A384/A384666.seq
08eeb14f900c20c27b0f42e66a562847
A384667
Characteristic function of powers of squarefree numbers (A072774).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1" ]
[ "nonn" ]
21
1
null
[ "A005117", "A059404", "A059956", "A072774", "A382883", "A384667" ]
null
Friedjof Tellkamp, Jun 07 2025
2025-06-17T22:48:26
oeisdata/seq/A384/A384667.seq
9db3798eae228dfab38215d317a59ee3
A384668
a(n) = 12 * (5*n+2)! / ((3*n+1)! * (2*n+2)!).
[ "12", "105", "1584", "29172", "596904", "13037895", "297748800", "7023149820", "169774618104", "4183919862474", "104722807600320", "2654939113240050", "68033328627480804", "1759318006963275528", "45853277234783179392", "1203249937243079847660", "31764232607604306053400", "842982010030680328418706" ]
[ "nonn" ]
13
0
1
[ "A000260", "A001450", "A002293", "A384585", "A384668" ]
null
Karol A. Penson, Jun 06 2025
2025-06-12T10:22:39
oeisdata/seq/A384/A384668.seq
281207cb9ddaf79d28d54c6af0c8bd87
A384669
Positive integers setting a new record for the sum of the square roots of the prime exponents.
[ "1", "2", "4", "6", "12", "24", "30", "60", "120", "180", "210", "360", "420", "840", "1260", "1680", "2520", "3360", "4620", "6720", "7560", "9240", "13860", "18480", "27720", "36960", "55440", "73920", "83160", "110880", "120120", "180180", "221760", "240240", "360360", "480480", "720720", "960960", "1081080", "1441440", "2042040", "2882880", "4084080", "5765760", "6126120" ]
[ "nonn", "changed" ]
29
1
2
[ "A000079", "A001221", "A001222", "A002110", "A002182", "A007814", "A025487", "A029744", "A046523", "A051903", "A056169", "A095848", "A168264", "A384669" ]
null
Hal M. Switkay, Jun 06 2025
2025-07-05T00:07:59
oeisdata/seq/A384/A384669.seq
1a66b618996cfda0a1e69d70ec6beb17
A384670
Smallest denominator y for which there exists an integer x with round(100*x/y) = n.
[ "1", "67", "41", "29", "23", "19", "16", "14", "12", "11", "10", "9", "17", "8", "7", "13", "19", "6", "11", "16", "5", "14", "9", "13", "17", "4", "19", "11", "18", "7", "10", "13", "19", "3", "29", "17", "11", "19", "8", "18", "5", "17", "12", "7", "9", "11", "13", "15", "21", "35", "2", "35", "21", "15", "13", "11", "9", "7", "12", "17", "5", "18", "13", "8", "11", "17", "29", "3", "19", "13", "10", "7", "18", "11", "19", "4", "17", "13", "9", "14", "5", "16", "11", "6", "19", "13", "7", "15", "8", "9", "10", "11", "12", "14", "16", "19", "23", "29", "40", "67", "1" ]
[ "nonn", "easy" ]
20
0
2
[ "A239525", "A384670" ]
null
James Beazley, Jun 06 2025
2025-06-28T20:19:37
oeisdata/seq/A384/A384670.seq
40b2eb946b10ce767c177e05664c6f2c
A384671
Expansion of (1-x^2) / (1-2*x-5*x^2+2*x^3).
[ "1", "2", "8", "24", "84", "272", "916", "3024", "10084", "33456", "111284", "369680", "1228868", "4083568", "13572116", "45104336", "149902116", "498181680", "1655665268", "5502434704", "18286832388", "60774507760", "201978308052", "671255490128", "2230853504996", "7414027844528", "24639812233780" ]
[ "nonn", "easy", "walk" ]
7
0
2
[ "A384646", "A384671", "A384672", "A384673" ]
null
Sean A. Irvine, Jun 05 2025
2025-06-07T09:02:17
oeisdata/seq/A384/A384671.seq
093b2b22a837f28fc20cbd0aa2661572
A384672
Expansion of (1+2*x-x^2) / (1-2*x-5*x^2+2*x^3).
[ "1", "4", "12", "42", "136", "458", "1512", "5042", "16728", "55642", "184840", "614434", "2041784", "6786058", "22552168", "74951058", "249090840", "827832634", "2751217352", "9143416194", "30387253880", "100989154026", "335627745064", "1115426752498", "3707013922264", "12319906116890", "40944028340104" ]
[ "nonn", "easy", "walk" ]
6
0
2
[ "A384646", "A384671", "A384672", "A384673" ]
null
Sean A. Irvine, Jun 05 2025
2025-06-07T00:12:20
oeisdata/seq/A384/A384672.seq
262e736f564140848c816d9254f2a55b
A384673
Expansion of (1+x) / (1-2*x-5*x^2+2*x^3).
[ "1", "3", "11", "35", "119", "391", "1307", "4331", "14415", "47871", "159155", "528835", "1757703", "5841271", "19413387", "64517723", "214419839", "712601519", "2368266787", "7870701491", "26157533879", "86932041639", "288910349691", "960165839819", "3191019344815", "10605047189343", "35244859423123" ]
[ "nonn", "easy", "walk" ]
4
0
2
[ "A384646", "A384671", "A384672", "A384673" ]
null
Sean A. Irvine, Jun 05 2025
2025-06-07T00:12:03
oeisdata/seq/A384/A384673.seq
b11a5c2a6c0df7af9e6d4945ef15cf55
A384674
Lexicographically smallest sequence of distinct primes whose inverse binomial transform consists only of primes.
[ "2", "5", "11", "23", "47", "97", "211", "491", "1187", "2857", "6659", "14879", "31891", "65929", "132469", "261059", "510031", "999721", "1988797", "4048339", "8450557", "18014701", "38902439", "84347189", "182269327", "390630769", "828123239", "1735146097", "3594509969", "7369765889", "14975024861", "30200498591", "60537295711" ]
[ "nonn" ]
22
0
1
[ "A000040", "A007442", "A111107", "A384674" ]
null
Alexander R. Povolotsky, Jun 06 2025
2025-06-08T21:29:49
oeisdata/seq/A384/A384674.seq
a969f5da1caf59219592fc2c25c935cc
A384675
Consecutive states of the linear congruential pseudo-random number generator 7^13*s mod 10^11 when started at 1.
[ "1", "96889010407", "47754305649", "5019889143", "18113311201", "58918668807", "8009274449", "41680190743", "64272062401", "49842407207", "88954803249", "44998412343", "99404253601", "47356225607", "72862892049", "19678553943", "78037884801", "24356124007", "88405540849", "55224615543", "68300956001" ]
[ "nonn", "easy" ]
10
1
2
[ "A096550", "A096561", "A384675" ]
null
Sean A. Irvine, Jun 06 2025
2025-06-12T10:17:16
oeisdata/seq/A384/A384675.seq
749252671c48d8624501bfce1339d559
A384676
Binomial transform of A111107.
[ "2", "5", "13", "37", "101", "271", "727", "1931", "5003", "12547", "30449", "71761", "165037", "372149", "826303", "1813219", "3944921", "8533073", "18393821", "39588071", "85192381", "183479291", "395667617", "854417989", "1847225579", "3996807053", "8650687127", "18721431499", "40496966207", "87538925959", "189076973699" ]
[ "nonn" ]
9
0
1
[ "A000040", "A111107", "A384676" ]
null
Alois P. Heinz, Jun 06 2025
2025-06-06T18:17:01
oeisdata/seq/A384/A384676.seq
453b4e050fbe5aee44e606dec3ee4cc5
A384677
Expansion of (1-x-2*x^2) / (1-2*x-4*x^2+2*x^3).
[ "1", "1", "4", "10", "34", "100", "316", "964", "2992", "9208", "28456", "87760", "270928", "835984", "2580160", "7962400", "24573472", "75836224", "234041536", "722281024", "2229055744", "6879152512", "21229965952", "65518430464", "202198419712", "624010629376", "1925778076672", "5943201831424", "18341494710784" ]
[ "nonn", "easy", "walk", "changed" ]
11
0
3
[ "A000244", "A384633", "A384640", "A384677", "A384678" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-08T11:46:15
oeisdata/seq/A384/A384677.seq
049750a61b793052f67002b149092a57
A384678
Expansion of (1+x) / (1-2*x-4*x^2+2*x^3).
[ "1", "3", "10", "30", "94", "288", "892", "2748", "8488", "26184", "80824", "249408", "769744", "2375472", "7331104", "22624608", "69822688", "215481600", "665004736", "2052290496", "6333636736", "19546425984", "60322817920", "186164066304", "574526552320", "1773063734016", "5471905544704", "16887012920832" ]
[ "nonn", "easy", "walk", "changed" ]
9
0
2
[ "A000244", "A384633", "A384640", "A384677", "A384678" ]
null
Sean A. Irvine, Jun 05 2025
2025-07-07T18:40:50
oeisdata/seq/A384/A384678.seq
c64c0d1b50116a81e9584021d73c4a4b