Improve dataset card: Add metadata, paper and code links, and English summary
#2
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,3 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
## ReasonBench:用于复杂图形推理的视觉语言模型评估基准
|
2 |
|
3 |
ReasonBench 旨在评估视觉语言模型(VLMs)在复杂图形推理中的表现。数据集包含从真实智力测试中收集的 1,613 个问题,覆盖 11 个核心认知推理维度和 29 种任务类型,为评估 VLMs 的空间、关系和抽象推理能力提供综合框架。
|
@@ -45,4 +64,4 @@ ReasonBench 旨在评估视觉语言模型(VLMs)在复杂图形推理中的
|
|
45 |
|
46 |
为未来研究者方便复现以及后续研究,我们将所有格式的图片url全部公开,分别对应题目,4-8个选项,题目➕选项。
|
47 |
|
48 |
-
同时,我们公开了人类基准的准确率。
|
|
|
1 |
+
---
|
2 |
+
task_categories:
|
3 |
+
- image-text-to-text
|
4 |
+
language:
|
5 |
+
- zh
|
6 |
+
tags:
|
7 |
+
- benchmark
|
8 |
+
- vlm
|
9 |
+
- graphic-reasoning
|
10 |
+
- intelligence-test
|
11 |
+
---
|
12 |
+
|
13 |
+
This repository contains **ReasonBench**, a novel benchmark designed to evaluate Visual Language Models (VLMs) on complex graphic reasoning tasks. It comprises 1,613 questions derived from real-world intelligence tests, covering reasoning dimensions related to location, attribute, quantity, and multi-element tasks. ReasonBench provides a comprehensive framework for assessing VLMs' spatial, relational, and abstract reasoning capabilities.
|
14 |
+
|
15 |
+
Paper: [Oedipus and the Sphinx: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning](https://huggingface.co/papers/2508.00323)
|
16 |
+
Code and Data: https://github.com/ReasonBench/ReasonBench
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
## ReasonBench:用于复杂图形推理的视觉语言模型评估基准
|
21 |
|
22 |
ReasonBench 旨在评估视觉语言模型(VLMs)在复杂图形推理中的表现。数据集包含从真实智力测试中收集的 1,613 个问题,覆盖 11 个核心认知推理维度和 29 种任务类型,为评估 VLMs 的空间、关系和抽象推理能力提供综合框架。
|
|
|
64 |
|
65 |
为未来研究者方便复现以及后续研究,我们将所有格式的图片url全部公开,分别对应题目,4-8个选项,题目➕选项。
|
66 |
|
67 |
+
同时,我们公开了人类基准的准确率。
|