sha
stringlengths
40
40
text
stringlengths
1
13.4M
id
stringlengths
2
117
tags
listlengths
1
7.91k
created_at
stringlengths
25
25
metadata
stringlengths
2
875k
last_modified
stringlengths
25
25
arxiv
listlengths
0
25
languages
listlengths
0
7.91k
tags_str
stringlengths
17
159k
text_str
stringlengths
1
447k
text_lists
listlengths
0
352
processed_texts
listlengths
1
353
tokens_length
listlengths
1
353
input_texts
listlengths
1
40
8b5d33b5f09bdb2c5197a0331e0b8c35285cafc5
# Dataset Card for "llama2-sql-instruct-2k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
aswin1906/llama2-sql-instruct-2k
[ "region:us" ]
2023-09-30T10:33:42+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 998694, "num_examples": 2000}], "download_size": 192228, "dataset_size": 998694}}
2023-09-30T10:34:46+00:00
[]
[]
TAGS #region-us
# Dataset Card for "llama2-sql-instruct-2k" More Information needed
[ "# Dataset Card for \"llama2-sql-instruct-2k\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"llama2-sql-instruct-2k\"\n\nMore Information needed" ]
[ 6, 20 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"llama2-sql-instruct-2k\"\n\nMore Information needed" ]
b7e5a6774eaa94b5de88da924f4624148708d89e
# Dataset Card for "llama-2-13b-subjectfinetune-grammar" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sayan1101/llama-2-13b-subjectfinetune-grammar
[ "region:us" ]
2023-09-30T11:17:56+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "Prompt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1250979.4995054402, "num_examples": 4549}, {"name": "test", "num_bytes": 139150.50049455985, "num_examples": 506}], "download_size": 447422, "dataset_size": 1390130.0}}
2023-10-03T11:22:56+00:00
[]
[]
TAGS #region-us
# Dataset Card for "llama-2-13b-subjectfinetune-grammar" More Information needed
[ "# Dataset Card for \"llama-2-13b-subjectfinetune-grammar\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"llama-2-13b-subjectfinetune-grammar\"\n\nMore Information needed" ]
[ 6, 23 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"llama-2-13b-subjectfinetune-grammar\"\n\nMore Information needed" ]
af512c0abbfd7ceca0cf55bd43a4c2d31d8e5298
# Dataset Card for "save_images" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
dhanushreddy29/save_images
[ "region:us" ]
2023-09-30T12:08:56+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13418427.0, "num_examples": 47}], "download_size": 13419330, "dataset_size": 13418427.0}}
2023-09-30T12:09:16+00:00
[]
[]
TAGS #region-us
# Dataset Card for "save_images" More Information needed
[ "# Dataset Card for \"save_images\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"save_images\"\n\nMore Information needed" ]
[ 6, 14 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"save_images\"\n\nMore Information needed" ]
efbbf5c13fa406765cb037b420994a42a15588cf
# Dataset Card for "ec996d80" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
result-kand2-sdxl-wuerst-karlo/ec996d80
[ "region:us" ]
2023-09-30T12:14:28+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 217, "num_examples": 10}], "download_size": 1370, "dataset_size": 217}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T12:14:29+00:00
[]
[]
TAGS #region-us
# Dataset Card for "ec996d80" More Information needed
[ "# Dataset Card for \"ec996d80\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"ec996d80\"\n\nMore Information needed" ]
[ 6, 14 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"ec996d80\"\n\nMore Information needed" ]
c014ae34fcb0137c33e83902ce57292d24e86505
# Dataset Card for "289673e1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
result-kand2-sdxl-wuerst-karlo/289673e1
[ "region:us" ]
2023-09-30T12:18:27+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 168, "num_examples": 10}], "download_size": 1327, "dataset_size": 168}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T12:18:28+00:00
[]
[]
TAGS #region-us
# Dataset Card for "289673e1" More Information needed
[ "# Dataset Card for \"289673e1\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"289673e1\"\n\nMore Information needed" ]
[ 6, 14 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"289673e1\"\n\nMore Information needed" ]
16bf4b5c8654eec7e110940f97b464d4e6b7a52f
# Dataset Card for "airoboros" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
TinyPixel/airoboros
[ "region:us" ]
2023-09-30T12:44:53+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 281937111, "num_examples": 58709}], "download_size": 156230324, "dataset_size": 281937111}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-07T05:10:54+00:00
[]
[]
TAGS #region-us
# Dataset Card for "airoboros" More Information needed
[ "# Dataset Card for \"airoboros\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"airoboros\"\n\nMore Information needed" ]
[ 6, 13 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"airoboros\"\n\nMore Information needed" ]
efd8c06fb5d584d38929a15807ac6451d85c021e
# Dataset Card for "APPDIA_offensive" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reza-alipour/APPDIA_offensive
[ "region:us" ]
2023-09-30T13:09:15+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "offensive-text", "dtype": "string"}, {"name": "style-transferred-text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 220097, "num_examples": 1584}, {"name": "validation", "num_bytes": 30154, "num_examples": 198}, {"name": "test", "num_bytes": 28117, "num_examples": 199}], "download_size": 205490, "dataset_size": 278368}}
2023-09-30T13:09:19+00:00
[]
[]
TAGS #region-us
# Dataset Card for "APPDIA_offensive" More Information needed
[ "# Dataset Card for \"APPDIA_offensive\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"APPDIA_offensive\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"APPDIA_offensive\"\n\nMore Information needed" ]
ae77e771eb577eeb1d37ab0ede36573614abcf81
# Amazon Polarity 10pct This is a direct subset of the original [Amazon Polarity](https://huggingface.co/datasets/amazon_polarity) dataset, downsampled 10pct with a random shuffle ### Dataset Summary For quicker testing on Amazon Polarity. See https://huggingface.co/datasets/amazon_polarity for details and attributions ### Source Data ```python from datasets import ClassLabel, Dataset, DatasetDict, load_dataset ds_full = load_dataset("amazon_polarity", streaming=True) ds_train_10_pct = Dataset.from_list(list(ds_full["train"].shuffle(seed=42).take(360_000))) ds_test_10_pct = Dataset.from_list(list(ds_full["test"].shuffle(seed=42).take(40_000))) ds_10_pct = DatasetDict({"train": ds_train_10_pct, "test": ds_test_10_pct}) # Need to recreate the class labels class_label = ClassLabel(num_classes=2, names=["negative", "positive"]) ds_10_pct = ds_10_pct.map(lambda row: {"title": row["title"], "content": row["content"], "label": "negative" if not row["label"] else "positive"}) ds_10_pct = ds_10_pct.cast_column("label", class_label) ```
ben-epstein/amazon_polarity_10_pct
[ "region:us" ]
2023-09-30T13:10:33+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "label", "dtype": {"class_label": {"names": {"0": "negative", "1": "positive"}}}}, {"name": "title", "dtype": "string"}, {"name": "content", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 163359702, "num_examples": 360000}, {"name": "test", "num_bytes": 18182813, "num_examples": 40000}], "download_size": 120691417, "dataset_size": 181542515}}
2023-09-30T14:00:45+00:00
[]
[]
TAGS #region-us
# Amazon Polarity 10pct This is a direct subset of the original Amazon Polarity dataset, downsampled 10pct with a random shuffle ### Dataset Summary For quicker testing on Amazon Polarity. See URL for details and attributions ### Source Data
[ "# Amazon Polarity 10pct\n\nThis is a direct subset of the original Amazon Polarity dataset, downsampled 10pct with a random shuffle", "### Dataset Summary\n\nFor quicker testing on Amazon Polarity. See URL for details and attributions", "### Source Data" ]
[ "TAGS\n#region-us \n", "# Amazon Polarity 10pct\n\nThis is a direct subset of the original Amazon Polarity dataset, downsampled 10pct with a random shuffle", "### Dataset Summary\n\nFor quicker testing on Amazon Polarity. See URL for details and attributions", "### Source Data" ]
[ 6, 33, 22, 4 ]
[ "passage: TAGS\n#region-us \n# Amazon Polarity 10pct\n\nThis is a direct subset of the original Amazon Polarity dataset, downsampled 10pct with a random shuffle### Dataset Summary\n\nFor quicker testing on Amazon Polarity. See URL for details and attributions### Source Data" ]
423a1d580ea992170f146949c2c89425a3493a55
# Dataset Card for "french_5p" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
manu/french_5p
[ "region:us" ]
2023-09-30T13:11:44+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "dataset_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28720999458, "num_examples": 44392012}, {"name": "test", "num_bytes": 50741966, "num_examples": 4035}], "download_size": 15225609944, "dataset_size": 28771741424}}
2023-09-30T13:29:05+00:00
[]
[]
TAGS #region-us
# Dataset Card for "french_5p" More Information needed
[ "# Dataset Card for \"french_5p\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"french_5p\"\n\nMore Information needed" ]
[ 6, 16 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"french_5p\"\n\nMore Information needed" ]
d88748d68fc992938a572330c7282660542318c2
# Dataset Card for "Paradetox_toxic" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reza-alipour/Paradetox_toxic
[ "region:us" ]
2023-09-30T13:13:42+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "toxic", "dtype": "string"}, {"name": "neutral1", "dtype": "string"}, {"name": "neutral2", "dtype": "string"}, {"name": "neutral3", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1771297, "num_examples": 11927}], "download_size": 1209100, "dataset_size": 1771297}}
2023-09-30T13:13:44+00:00
[]
[]
TAGS #region-us
# Dataset Card for "Paradetox_toxic" More Information needed
[ "# Dataset Card for \"Paradetox_toxic\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"Paradetox_toxic\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"Paradetox_toxic\"\n\nMore Information needed" ]
dcddb550cf57c94fbbdda0a2658c49e6f8491058
# Dataset Card for "fin_ent_0930" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
amphora/fin_ent_0930
[ "region:us" ]
2023-09-30T13:43:42+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3811408, "num_examples": 2693}], "download_size": 2130967, "dataset_size": 3811408}}
2023-09-30T13:43:58+00:00
[]
[]
TAGS #region-us
# Dataset Card for "fin_ent_0930" More Information needed
[ "# Dataset Card for \"fin_ent_0930\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"fin_ent_0930\"\n\nMore Information needed" ]
[ 6, 16 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"fin_ent_0930\"\n\nMore Information needed" ]
f1504a23821bc4e9d699e868ba8036d0ba33bb87
# Dataset Card for "coding_train_data-0-of-5000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Existance/coding_train_data-0-of-5000
[ "region:us" ]
2023-09-30T13:49:50+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2247021, "num_examples": 4700}, {"name": "validation", "num_bytes": 141313, "num_examples": 300}], "download_size": 912529, "dataset_size": 2388334}}
2023-09-30T14:06:03+00:00
[]
[]
TAGS #region-us
# Dataset Card for "coding_train_data-0-of-5000" More Information needed
[ "# Dataset Card for \"coding_train_data-0-of-5000\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"coding_train_data-0-of-5000\"\n\nMore Information needed" ]
[ 6, 22 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"coding_train_data-0-of-5000\"\n\nMore Information needed" ]
139df7a8b6eaf375b262e617b1d2b667d21cef7f
# Dataset Card for "text-recognition" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
longhoang06/text-recognition
[ "region:us" ]
2023-09-30T14:03:06+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6858787617.0, "num_examples": 100000}], "download_size": 6858941356, "dataset_size": 6858787617.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T14:08:12+00:00
[]
[]
TAGS #region-us
# Dataset Card for "text-recognition" More Information needed
[ "# Dataset Card for \"text-recognition\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"text-recognition\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"text-recognition\"\n\nMore Information needed" ]
3b98e0e883e41f96eb1c0099b4033ba2b316d94d
# Dataset Card for "e5_finetuning_dataset_cosine" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Onegafer/e5_finetuning_dataset_cosine
[ "region:us" ]
2023-09-30T14:03:37+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "score", "dtype": "float64"}, {"name": "short", "dtype": "string"}, {"name": "query", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 85541460, "num_examples": 33279}], "download_size": 1277308, "dataset_size": 85541460}}
2023-09-30T14:11:28+00:00
[]
[]
TAGS #region-us
# Dataset Card for "e5_finetuning_dataset_cosine" More Information needed
[ "# Dataset Card for \"e5_finetuning_dataset_cosine\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"e5_finetuning_dataset_cosine\"\n\nMore Information needed" ]
[ 6, 22 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"e5_finetuning_dataset_cosine\"\n\nMore Information needed" ]
38e8b9f5e526163a26f87c2ec6fb8e8149aba66c
# Dataset Card for "guanaco-llama2-1k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
SageLiao/guanaco-llama2-1k
[ "region:us" ]
2023-09-30T14:22:24+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1654448, "num_examples": 1000}], "download_size": 0, "dataset_size": 1654448}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T14:23:24+00:00
[]
[]
TAGS #region-us
# Dataset Card for "guanaco-llama2-1k" More Information needed
[ "# Dataset Card for \"guanaco-llama2-1k\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"guanaco-llama2-1k\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"guanaco-llama2-1k\"\n\nMore Information needed" ]
a7078cd779b836c3dcbd75a76ac1f3135b4ccd84
This dataset is collected for training an AI model cover, or voice cloning.
kpopsoulmate/KPop-Voice-dataset
[ "region:us" ]
2023-09-30T14:40:42+00:00
{}
2023-09-30T14:53:38+00:00
[]
[]
TAGS #region-us
This dataset is collected for training an AI model cover, or voice cloning.
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
b9210d337586ae961a1328bca7ff5a39a206521c
# Dataset Card for "SARC_Sarcasm" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reza-alipour/SARC_Sarcasm
[ "region:us" ]
2023-09-30T14:44:10+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "DoesUseSarcasm", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13758412, "num_examples": 205645}, {"name": "validation", "num_bytes": 3425418, "num_examples": 51410}, {"name": "test", "num_bytes": 4355793, "num_examples": 64666}], "download_size": 14359324, "dataset_size": 21539623}}
2023-09-30T14:44:15+00:00
[]
[]
TAGS #region-us
# Dataset Card for "SARC_Sarcasm" More Information needed
[ "# Dataset Card for \"SARC_Sarcasm\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"SARC_Sarcasm\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"SARC_Sarcasm\"\n\nMore Information needed" ]
05a60680c25b7298dc4f789a744c2678ada09c2c
# Dataset Card for "tedlium-dev-test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
distil-whisper/tedlium-dev-test
[ "region:us" ]
2023-09-30T15:14:40+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "text", "dtype": "string"}, {"name": "speaker_id", "dtype": "string"}, {"name": "gender", "dtype": {"class_label": {"names": {"0": "unknown", "1": "female", "2": "male"}}}}, {"name": "file", "dtype": "string"}, {"name": "id", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 197798071.0, "num_examples": 591}, {"name": "test", "num_bytes": 352803076.375, "num_examples": 1469}], "download_size": 549654154, "dataset_size": 550601147.375}}
2023-09-30T15:15:07+00:00
[]
[]
TAGS #region-us
# Dataset Card for "tedlium-dev-test" More Information needed
[ "# Dataset Card for \"tedlium-dev-test\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"tedlium-dev-test\"\n\nMore Information needed" ]
[ 6, 16 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"tedlium-dev-test\"\n\nMore Information needed" ]
eda94d95264888ee83e21894b58d1313ef7d6adb
# Dataset Card for "l27b-E02-large-b10-1314-3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yashnbx/l27b-E02-large-b10-1314-3
[ "region:us" ]
2023-09-30T15:28:57+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "test", "num_bytes": 1013014, "num_examples": 146}, {"name": "train", "num_bytes": 9077266, "num_examples": 1314}], "download_size": 1662927, "dataset_size": 10090280}}
2023-09-30T15:29:18+00:00
[]
[]
TAGS #region-us
# Dataset Card for "l27b-E02-large-b10-1314-3" More Information needed
[ "# Dataset Card for \"l27b-E02-large-b10-1314-3\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"l27b-E02-large-b10-1314-3\"\n\nMore Information needed" ]
[ 6, 25 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"l27b-E02-large-b10-1314-3\"\n\nMore Information needed" ]
d4bf9ccd97bea848bfdc35a58286579c673576ab
# Dataset Card for "theses_fr_2013_2023" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
manu/theses_fr_2013_2023
[ "region:us" ]
2023-09-30T15:44:39+00:00
{"dataset_info": {"features": [{"name": "title_fr", "dtype": "string"}, {"name": "abstract_fr", "dtype": "string"}, {"name": "title_en", "dtype": "string"}, {"name": "abstract_en", "dtype": "string"}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 392127399, "num_examples": 97320}], "download_size": 224948329, "dataset_size": 392127399}}
2023-09-30T15:45:34+00:00
[]
[]
TAGS #region-us
# Dataset Card for "theses_fr_2013_2023" More Information needed
[ "# Dataset Card for \"theses_fr_2013_2023\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"theses_fr_2013_2023\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"theses_fr_2013_2023\"\n\nMore Information needed" ]
65c02fed6bdc2866d7013b6df25e79aff9a704fd
# Dataset Card for "anime_art_descriptions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Falah/anime_art_descriptions
[ "region:us" ]
2023-09-30T15:51:19+00:00
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1515657, "num_examples": 10000}], "download_size": 81702, "dataset_size": 1515657}}
2023-09-30T15:51:21+00:00
[]
[]
TAGS #region-us
# Dataset Card for "anime_art_descriptions" More Information needed
[ "# Dataset Card for \"anime_art_descriptions\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"anime_art_descriptions\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"anime_art_descriptions\"\n\nMore Information needed" ]
e2e991181a8b4da04f468e000c3f0c94271bc32c
# Dataset Card for "samsum" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
peterschmidt85/samsum
[ "region:us" ]
2023-09-30T16:05:57+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10789305, "num_examples": 14732}], "download_size": 5844166, "dataset_size": 10789305}}
2023-09-30T16:06:11+00:00
[]
[]
TAGS #region-us
# Dataset Card for "samsum" More Information needed
[ "# Dataset Card for \"samsum\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"samsum\"\n\nMore Information needed" ]
[ 6, 12 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"samsum\"\n\nMore Information needed" ]
8b36a4184019915b418e79013e1642284749803f
# Dataset Card for "ef52b02a" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
result-kand2-sdxl-wuerst-karlo/ef52b02a
[ "region:us" ]
2023-09-30T16:09:08+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 272, "num_examples": 10}], "download_size": 1451, "dataset_size": 272}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T16:09:09+00:00
[]
[]
TAGS #region-us
# Dataset Card for "ef52b02a" More Information needed
[ "# Dataset Card for \"ef52b02a\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"ef52b02a\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"ef52b02a\"\n\nMore Information needed" ]
be5abfffd69e6499363ef075a7d4ce89bacb3f02
# Dataset Card for "toolwear_segmentsai_tools" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
HorcruxNo13/toolwear_segmentsai_tools
[ "region:us" ]
2023-09-30T16:11:43+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 44532017.0, "num_examples": 27}], "download_size": 4540845, "dataset_size": 44532017.0}}
2023-09-30T16:12:03+00:00
[]
[]
TAGS #region-us
# Dataset Card for "toolwear_segmentsai_tools" More Information needed
[ "# Dataset Card for \"toolwear_segmentsai_tools\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"toolwear_segmentsai_tools\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"toolwear_segmentsai_tools\"\n\nMore Information needed" ]
8fc1bdcdfdbfd05ac4d2ea677077043db5b9637f
# Dataset Card for "l27b-E02-large-b05-0584-3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yashnbx/l27b-E02-large-b05-0584-3
[ "region:us" ]
2023-09-30T16:13:04+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "test", "num_bytes": 1011775, "num_examples": 146}, {"name": "train", "num_bytes": 4032267, "num_examples": 584}], "download_size": 831330, "dataset_size": 5044042}}
2023-09-30T16:13:20+00:00
[]
[]
TAGS #region-us
# Dataset Card for "l27b-E02-large-b05-0584-3" More Information needed
[ "# Dataset Card for \"l27b-E02-large-b05-0584-3\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"l27b-E02-large-b05-0584-3\"\n\nMore Information needed" ]
[ 6, 25 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"l27b-E02-large-b05-0584-3\"\n\nMore Information needed" ]
3c54afeb14963fc9a6c96406d2292867ecfe514f
annotations_creators: - expert-generated language: - de language_creators: - expert-generated - machine-generated license: - mit multilinguality: - monolingual paperswithcode_id: acronym-identification pretty_name: Hobby-KI size_categories: - n<1K source_datasets: - original tags: [] task_categories: - text-generation task_ids: - dialogue-modeling train-eval-index: - col_mapping: labels: tags tokens: tokens config: default splits: eval_split: test task: token-classification task_id: entity_extraction
blockplacer4/hobby-dataset
[ "region:us" ]
2023-09-30T16:35:28+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "Input", "dtype": "string"}, {"name": "Output", "dtype": "string"}, {"name": "Text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 217380, "num_examples": 512}], "download_size": 39563, "dataset_size": 217380}}
2023-09-30T18:09:47+00:00
[]
[]
TAGS #region-us
annotations_creators: - expert-generated language: - de language_creators: - expert-generated - machine-generated license: - mit multilinguality: - monolingual paperswithcode_id: acronym-identification pretty_name: Hobby-KI size_categories: - n<1K source_datasets: - original tags: [] task_categories: - text-generation task_ids: - dialogue-modeling train-eval-index: - col_mapping: labels: tags tokens: tokens config: default splits: eval_split: test task: token-classification task_id: entity_extraction
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
b609f7eef54680a0c9061a15031dcdb8750cd856
# BBC for All Times You could find BBC News articles from every month between 2017 to 2022. Use this to download BBC News articles during a specific month: ``` ds = datasets.load_dataset('RealTimeData/bbc_alltime', '2017-8') ``` The time stamp follows the format of "YYYY-MM".
RealTimeData/bbc_alltime
[ "license:cc-by-2.0", "region:us" ]
2023-09-30T16:35:42+00:00
{"license": "cc-by-2.0"}
2023-12-21T22:17:13+00:00
[]
[]
TAGS #license-cc-by-2.0 #region-us
# BBC for All Times You could find BBC News articles from every month between 2017 to 2022. Use this to download BBC News articles during a specific month: The time stamp follows the format of "YYYY-MM".
[ "# BBC for All Times\n\nYou could find BBC News articles from every month between 2017 to 2022.\n\nUse this to download BBC News articles during a specific month:\n\n\nThe time stamp follows the format of \"YYYY-MM\"." ]
[ "TAGS\n#license-cc-by-2.0 #region-us \n", "# BBC for All Times\n\nYou could find BBC News articles from every month between 2017 to 2022.\n\nUse this to download BBC News articles during a specific month:\n\n\nThe time stamp follows the format of \"YYYY-MM\"." ]
[ 15, 45 ]
[ "passage: TAGS\n#license-cc-by-2.0 #region-us \n# BBC for All Times\n\nYou could find BBC News articles from every month between 2017 to 2022.\n\nUse this to download BBC News articles during a specific month:\n\n\nThe time stamp follows the format of \"YYYY-MM\"." ]
e045a631041ffff39fdffa184b248a8d6f2b0e48
# Dataset Card for "enhanced_anime_art_descriptions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Falah/enhanced_anime_art_descriptions
[ "region:us" ]
2023-09-30T16:47:31+00:00
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1693682, "num_examples": 10000}], "download_size": 245090, "dataset_size": 1693682}}
2023-09-30T16:47:33+00:00
[]
[]
TAGS #region-us
# Dataset Card for "enhanced_anime_art_descriptions" More Information needed
[ "# Dataset Card for \"enhanced_anime_art_descriptions\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"enhanced_anime_art_descriptions\"\n\nMore Information needed" ]
[ 6, 22 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"enhanced_anime_art_descriptions\"\n\nMore Information needed" ]
5347b0d4256cb35965682d6cdde580c21c6b3b51
# Dataset Card for "edc62945" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
result-kand2-sdxl-wuerst-karlo/edc62945
[ "region:us" ]
2023-09-30T17:26:18+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 209, "num_examples": 10}], "download_size": 1399, "dataset_size": 209}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T17:26:19+00:00
[]
[]
TAGS #region-us
# Dataset Card for "edc62945" More Information needed
[ "# Dataset Card for \"edc62945\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"edc62945\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"edc62945\"\n\nMore Information needed" ]
6752091fde4cafc7b40654a4724c40b8f4f253f9
--- TODO: Add YAML tags here. Copy-paste the tags obtained with the online tagging app: https://huggingface.co/spaces/huggingface/datasets-tagging --- # Dataset Card for [MAB] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@tosingithub](https://github.com/tosingithub) for adding this dataset.
tosin/mab_english
[ "task_categories:text-classification", "size_categories:100M<n<1B", "language:en", "license:cc-by-4.0", "climate", "art", "medical", "finance", "region:us" ]
2023-09-30T17:46:24+00:00
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["100M<n<1B"], "task_categories": ["text-classification"], "tags": ["climate", "art", "medical", "finance"]}
2023-09-30T18:02:51+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #size_categories-100M<n<1B #language-English #license-cc-by-4.0 #climate #art #medical #finance #region-us
--- TODO: Add YAML tags here. Copy-paste the tags obtained with the online tagging app: URL --- # Dataset Card for [MAB] ## Table of Contents - Table of Contents - Dataset Description - Dataset Summary - Supported Tasks and Leaderboards - Languages - Dataset Structure - Data Instances - Data Fields - Data Splits - Dataset Creation - Curation Rationale - Source Data - Annotations - Personal and Sensitive Information - Considerations for Using the Data - Social Impact of Dataset - Discussion of Biases - Other Known Limitations - Additional Information - Dataset Curators - Licensing Information - Citation Information - Contributions ## Dataset Description - Homepage: - Repository: - Paper: - Leaderboard: - Point of Contact: ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions Thanks to @tosingithub for adding this dataset.
[ "# Dataset Card for [MAB]", "## Table of Contents\n- Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions", "## Dataset Description\n\n- Homepage:\n- Repository:\n- Paper:\n- Leaderboard:\n- Point of Contact:", "### Dataset Summary", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions\n\nThanks to @tosingithub for adding this dataset." ]
[ "TAGS\n#task_categories-text-classification #size_categories-100M<n<1B #language-English #license-cc-by-4.0 #climate #art #medical #finance #region-us \n", "# Dataset Card for [MAB]", "## Table of Contents\n- Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions", "## Dataset Description\n\n- Homepage:\n- Repository:\n- Paper:\n- Leaderboard:\n- Point of Contact:", "### Dataset Summary", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions\n\nThanks to @tosingithub for adding this dataset." ]
[ 54, 9, 125, 24, 6, 10, 4, 6, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #size_categories-100M<n<1B #language-English #license-cc-by-4.0 #climate #art #medical #finance #region-us \n# Dataset Card for [MAB]## Table of Contents\n- Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions## Dataset Description\n\n- Homepage:\n- Repository:\n- Paper:\n- Leaderboard:\n- Point of Contact:### Dataset Summary### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions\n\nThanks to @tosingithub for adding this dataset." ]
945a5553cf3327c86db21c70583767de76743452
This dataset is a merged dataset of: - [Photolens/alpaca-cleaned](https://huggingface.co/datasets/Photolens/alpaca-cleaned) - [Photolens/airoboros-2.1-no-code](https://huggingface.co/datasets/Photolens/airoboros-2.1-no-code) - [Photolens/oasst1-en](https://huggingface.co/datasets/Photolens/oasst1-en)
Photolens/alpaca-cleaned-airoboros-2.1-no-code-oasst1-en-merged
[ "language:en", "license:cc-by-4.0", "region:us" ]
2023-09-30T18:17:12+00:00
{"language": ["en"], "license": "cc-by-4.0", "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 139998943, "num_examples": 107177}], "download_size": 73347915, "dataset_size": 139998943}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T04:39:23+00:00
[]
[ "en" ]
TAGS #language-English #license-cc-by-4.0 #region-us
This dataset is a merged dataset of: - Photolens/alpaca-cleaned - Photolens/airoboros-2.1-no-code - Photolens/oasst1-en
[]
[ "TAGS\n#language-English #license-cc-by-4.0 #region-us \n" ]
[ 19 ]
[ "passage: TAGS\n#language-English #license-cc-by-4.0 #region-us \n" ]
605b6570da8ce4691519d02b692dff36eeb2167f
# Wikipedia for All Times You could find the history of 419 selected Wikipedia pages for every month between 2017 to 2022. Use this to download the historical version of Wikipedia articles in a specific month: ``` ds = datasets.load_dataset('RealTimeData/wikitext_alltime', '2017-8') ``` The time stamp follows the format of "YYYY-MM".
RealTimeData/wikitext_alltime_backup
[ "license:cc-by-2.0", "region:us" ]
2023-09-30T19:40:28+00:00
{"license": "cc-by-2.0"}
2023-12-21T20:39:21+00:00
[]
[]
TAGS #license-cc-by-2.0 #region-us
# Wikipedia for All Times You could find the history of 419 selected Wikipedia pages for every month between 2017 to 2022. Use this to download the historical version of Wikipedia articles in a specific month: The time stamp follows the format of "YYYY-MM".
[ "# Wikipedia for All Times\n\nYou could find the history of 419 selected Wikipedia pages for every month between 2017 to 2022.\n\nUse this to download the historical version of Wikipedia articles in a specific month:\n\n\nThe time stamp follows the format of \"YYYY-MM\"." ]
[ "TAGS\n#license-cc-by-2.0 #region-us \n", "# Wikipedia for All Times\n\nYou could find the history of 419 selected Wikipedia pages for every month between 2017 to 2022.\n\nUse this to download the historical version of Wikipedia articles in a specific month:\n\n\nThe time stamp follows the format of \"YYYY-MM\"." ]
[ 15, 53 ]
[ "passage: TAGS\n#license-cc-by-2.0 #region-us \n# Wikipedia for All Times\n\nYou could find the history of 419 selected Wikipedia pages for every month between 2017 to 2022.\n\nUse this to download the historical version of Wikipedia articles in a specific month:\n\n\nThe time stamp follows the format of \"YYYY-MM\"." ]
07cb6d0dc0861ced4d74a25d3f8fb615b37cb048
This dataset is curated from UniProt. The test set was created by selecting entire families of proteins to separate out at random. The train/test split is approximately 80/20. All binding site and active site annotations were merged. All sequences longer than 1000 amino acids were split into non-overlapping chunks of 1000 residues or less.
AmelieSchreiber/2600K_binding_sites
[ "license:mit", "region:us" ]
2023-09-30T19:55:21+00:00
{"license": "mit"}
2023-10-01T00:23:43+00:00
[]
[]
TAGS #license-mit #region-us
This dataset is curated from UniProt. The test set was created by selecting entire families of proteins to separate out at random. The train/test split is approximately 80/20. All binding site and active site annotations were merged. All sequences longer than 1000 amino acids were split into non-overlapping chunks of 1000 residues or less.
[]
[ "TAGS\n#license-mit #region-us \n" ]
[ 11 ]
[ "passage: TAGS\n#license-mit #region-us \n" ]
0ac0d2c8341de0e28ceaed8c2781e8333b359e5f
https://arxiv.org/abs/2309.17450
ShuhongZheng/MTVS
[ "arxiv:2309.17450", "region:us" ]
2023-09-30T19:59:39+00:00
{}
2023-10-02T19:05:54+00:00
[ "2309.17450" ]
[]
TAGS #arxiv-2309.17450 #region-us
URL
[]
[ "TAGS\n#arxiv-2309.17450 #region-us \n" ]
[ 14 ]
[ "passage: TAGS\n#arxiv-2309.17450 #region-us \n" ]
3a363d485ec9a0e4dabb20ad4be23d9068c651f2
# Dataset Card for "sherlock" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
youngermax/sherlock
[ "region:us" ]
2023-09-30T20:19:30+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "article", "dtype": "string"}, {"name": "infobox", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 373301449, "num_examples": 27906}], "download_size": 216489948, "dataset_size": 373301449}}
2023-10-01T00:35:46+00:00
[]
[]
TAGS #region-us
# Dataset Card for "sherlock" More Information needed
[ "# Dataset Card for \"sherlock\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"sherlock\"\n\nMore Information needed" ]
[ 6, 12 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"sherlock\"\n\nMore Information needed" ]
d2de547f7be5516d5b8f3056129e2a0106e941e5
This is a silly test to see how training works in strange situations, so we made up a new word and wanted to see how prevalent it is in conversations with the model.
frankwilsonv3/morgovigan4
[ "license:apache-2.0", "region:us" ]
2023-09-30T20:33:59+00:00
{"license": "apache-2.0"}
2023-09-30T21:08:34+00:00
[]
[]
TAGS #license-apache-2.0 #region-us
This is a silly test to see how training works in strange situations, so we made up a new word and wanted to see how prevalent it is in conversations with the model.
[]
[ "TAGS\n#license-apache-2.0 #region-us \n" ]
[ 14 ]
[ "passage: TAGS\n#license-apache-2.0 #region-us \n" ]
29ec4431a536740488c1eb5a2ef1145c977619b9
# Dataset Card for "oasst1_seed10737" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ostapeno/oasst1_seed10737
[ "region:us" ]
2023-09-30T20:40:22+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "instruction_quality", "dtype": "float64"}, {"name": "response", "dtype": "string"}, {"name": "response_quality", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 12797624, "num_examples": 10737}], "download_size": 7501802, "dataset_size": 12797624}}
2023-09-30T20:40:29+00:00
[]
[]
TAGS #region-us
# Dataset Card for "oasst1_seed10737" More Information needed
[ "# Dataset Card for \"oasst1_seed10737\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"oasst1_seed10737\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"oasst1_seed10737\"\n\nMore Information needed" ]
aec5aa64cb86a39799588df6b358324834b2d927
# Dataset Card for "retrieval_verification_distilbert" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nikchar/retrieval_verification_distilbert
[ "region:us" ]
2023-09-30T20:48:39+00:00
{"dataset_info": {"features": [{"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "retrieved_evidence_title", "sequence": "string"}, {"name": "retrieved_evidence_text", "sequence": "string"}, {"name": "labels", "dtype": "int64"}, {"name": "Retrieval_Success", "dtype": "bool"}, {"name": "Predicted_Labels", "dtype": "int64"}, {"name": "Predicted_Labels_Each_doc", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 73601741, "num_examples": 11073}], "download_size": 34426496, "dataset_size": 73601741}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T20:48:42+00:00
[]
[]
TAGS #region-us
# Dataset Card for "retrieval_verification_distilbert" More Information needed
[ "# Dataset Card for \"retrieval_verification_distilbert\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"retrieval_verification_distilbert\"\n\nMore Information needed" ]
[ 6, 20 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"retrieval_verification_distilbert\"\n\nMore Information needed" ]
4ddfa1432e093adb1c120068e6549b0d62c624e4
# Dataset Card for "retrieval_verification_bert" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nikchar/retrieval_verification_bert
[ "region:us" ]
2023-09-30T20:58:26+00:00
{"dataset_info": {"features": [{"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "retrieved_evidence_title", "sequence": "string"}, {"name": "retrieved_evidence_text", "sequence": "string"}, {"name": "labels", "dtype": "int64"}, {"name": "Retrieval_Success", "dtype": "bool"}, {"name": "Predicted_Labels", "dtype": "int64"}, {"name": "Predicted_Labels_Each_doc", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 73601741, "num_examples": 11073}], "download_size": 34425688, "dataset_size": 73601741}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T20:58:43+00:00
[]
[]
TAGS #region-us
# Dataset Card for "retrieval_verification_bert" More Information needed
[ "# Dataset Card for \"retrieval_verification_bert\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"retrieval_verification_bert\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"retrieval_verification_bert\"\n\nMore Information needed" ]
cf2962fa2142f9aca69c2184603f60ee3f2c2174
# Dataset Card for "retrieval_verification_roberta" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nikchar/retrieval_verification_roberta
[ "region:us" ]
2023-09-30T21:00:38+00:00
{"dataset_info": {"features": [{"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "retrieved_evidence_title", "sequence": "string"}, {"name": "retrieved_evidence_text", "sequence": "string"}, {"name": "labels", "dtype": "int64"}, {"name": "Retrieval_Success", "dtype": "bool"}, {"name": "Predicted_Labels", "dtype": "int64"}, {"name": "Predicted_Labels_Each_doc", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 73601741, "num_examples": 11073}], "download_size": 34426562, "dataset_size": 73601741}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T21:00:42+00:00
[]
[]
TAGS #region-us
# Dataset Card for "retrieval_verification_roberta" More Information needed
[ "# Dataset Card for \"retrieval_verification_roberta\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"retrieval_verification_roberta\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"retrieval_verification_roberta\"\n\nMore Information needed" ]
b49b82ebfce55122bc7c9935bd1c2edc7763c452
# Dataset Card for "overwrite_bug" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
govindrai/overwrite_bug
[ "region:us" ]
2023-09-30T21:31:43+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}], "splits": [{"name": "0_split", "num_bytes": 40, "num_examples": 5}, {"name": "1_split", "num_bytes": 40, "num_examples": 5}, {"name": "2_split", "num_bytes": 40, "num_examples": 5}], "download_size": 2538, "dataset_size": 120}, "configs": [{"config_name": "default", "data_files": [{"split": "0_split", "path": "data/0_split-*"}, {"split": "1_split", "path": "data/1_split-*"}, {"split": "2_split", "path": "data/2_split-*"}]}]}
2023-09-30T21:32:33+00:00
[]
[]
TAGS #region-us
# Dataset Card for "overwrite_bug" More Information needed
[ "# Dataset Card for \"overwrite_bug\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"overwrite_bug\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"overwrite_bug\"\n\nMore Information needed" ]
efcec0777b280c736620ccd314da7a36e68708d0
Reuters model for my projects
BoliviaBayArea/reuters-for-summarization
[ "region:us" ]
2023-09-30T21:35:17+00:00
{}
2023-09-30T22:04:42+00:00
[]
[]
TAGS #region-us
Reuters model for my projects
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
c4ccd01eb04aca68deb356f1f3245cd727d8e024
# The Trismegistus Project Dataset ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/hYKtOpoyg66-EiFxkXsS_.png) ### General Information - **Dataset Name**: Trismegistus Instruction Dataset - **Version**: 1.0 - **Size**: ~10,000 instruction-response pairs - **Domain**: Esoteric, Spiritual, Occult, Wisdom Traditions, Paranormal, etc. - **Date Released**: Friday the 13th, October of 2023 ### Short Description The Trismegistus Project is a comprehensive dataset containing instruction-response pairs focused on the broad umbrella of Esoterica. Topics covered include Mysticism, Hermeticism, Necromancy, Religion, Trance, Meditation, Magick, Spirituality, Alchemy, Numerology, Tarot, and much more. The entire dataset was generated synthetically, save for subtopics. ### Dataset Structure Each data entry in the dataset follows this structure: - `id`: Unique identifier for the entry. - `system_prompt_used`: The system-wide prompt used for initializing the task with GPT. - `domain_task_type`: Type of task being performed (e.g., "Task"). - `topic`: Specific topic or domain under which the instruction falls. - `source`: Origin or expertise level of the instruction (e.g., "DomainExpert_Occult"). - `conversations`: An array of conversation turns, including: - `from`: Identifier for the origin of the message (either "human" or "gpt"). - `value`: Actual content of the message. ### Example ```{ "id": "570a8404-3270-4aba-a47c-660359440835", "system_prompt_used": "...", "domain_task_type": "Task", "topic": "'Big Man' society", "source": "DomainExpert_Occult", "conversations": [...] } ``` ### Use Cases This dataset is specifically designed for training and evaluating models on esoteric, spiritual, and occult knowledge. Potential use cases include: - Developing chatbots with a focus on esoteric and paranormal topics. - Fine-tuning existing models to enhance their understanding of esoteric domains. - Assisting researchers in esoteric studies with generated content. ## Disclaimer Some topics and content in the dataset may (likely are) not suitable for all ages. ### Licensing & Citation MIT License --- *Note*: The dataset is released in tandem with the Mistral Trismegistus 7B model available on HuggingFace.
teknium/trismegistus-project
[ "language:eng", "license:mit", "spirituality", "occultism", "region:us" ]
2023-09-30T23:18:39+00:00
{"language": ["eng"], "license": "mit", "pretty_name": "The Trismegistus Project", "tags": ["spirituality", "occultism"]}
2023-10-14T05:37:45+00:00
[]
[ "eng" ]
TAGS #language-English #license-mit #spirituality #occultism #region-us
# The Trismegistus Project Dataset !image/png ### General Information - Dataset Name: Trismegistus Instruction Dataset - Version: 1.0 - Size: ~10,000 instruction-response pairs - Domain: Esoteric, Spiritual, Occult, Wisdom Traditions, Paranormal, etc. - Date Released: Friday the 13th, October of 2023 ### Short Description The Trismegistus Project is a comprehensive dataset containing instruction-response pairs focused on the broad umbrella of Esoterica. Topics covered include Mysticism, Hermeticism, Necromancy, Religion, Trance, Meditation, Magick, Spirituality, Alchemy, Numerology, Tarot, and much more. The entire dataset was generated synthetically, save for subtopics. ### Dataset Structure Each data entry in the dataset follows this structure: - 'id': Unique identifier for the entry. - 'system_prompt_used': The system-wide prompt used for initializing the task with GPT. - 'domain_task_type': Type of task being performed (e.g., "Task"). - 'topic': Specific topic or domain under which the instruction falls. - 'source': Origin or expertise level of the instruction (e.g., "DomainExpert_Occult"). - 'conversations': An array of conversation turns, including: - 'from': Identifier for the origin of the message (either "human" or "gpt"). - 'value': Actual content of the message. ### Example ### Use Cases This dataset is specifically designed for training and evaluating models on esoteric, spiritual, and occult knowledge. Potential use cases include: - Developing chatbots with a focus on esoteric and paranormal topics. - Fine-tuning existing models to enhance their understanding of esoteric domains. - Assisting researchers in esoteric studies with generated content. ## Disclaimer Some topics and content in the dataset may (likely are) not suitable for all ages. ### Licensing & Citation MIT License --- *Note*: The dataset is released in tandem with the Mistral Trismegistus 7B model available on HuggingFace.
[ "# The Trismegistus Project Dataset\n\n!image/png", "### General Information\n- Dataset Name: Trismegistus Instruction Dataset\n- Version: 1.0\n- Size: ~10,000 instruction-response pairs\n- Domain: Esoteric, Spiritual, Occult, Wisdom Traditions, Paranormal, etc.\n- Date Released: Friday the 13th, October of 2023", "### Short Description\nThe Trismegistus Project is a comprehensive dataset containing instruction-response pairs focused on the broad umbrella of Esoterica. Topics covered include Mysticism, Hermeticism, Necromancy, Religion, Trance, Meditation, Magick, Spirituality, Alchemy, Numerology, Tarot, and much more.\n\nThe entire dataset was generated synthetically, save for subtopics.", "### Dataset Structure\nEach data entry in the dataset follows this structure:\n- 'id': Unique identifier for the entry.\n- 'system_prompt_used': The system-wide prompt used for initializing the task with GPT.\n- 'domain_task_type': Type of task being performed (e.g., \"Task\").\n- 'topic': Specific topic or domain under which the instruction falls.\n- 'source': Origin or expertise level of the instruction (e.g., \"DomainExpert_Occult\").\n- 'conversations': An array of conversation turns, including:\n - 'from': Identifier for the origin of the message (either \"human\" or \"gpt\").\n - 'value': Actual content of the message.", "### Example", "### Use Cases\nThis dataset is specifically designed for training and evaluating models on esoteric, spiritual, and occult knowledge. Potential use cases include:\n- Developing chatbots with a focus on esoteric and paranormal topics.\n- Fine-tuning existing models to enhance their understanding of esoteric domains.\n- Assisting researchers in esoteric studies with generated content.", "## Disclaimer\nSome topics and content in the dataset may (likely are) not suitable for all ages.", "### Licensing & Citation\nMIT License\n\n---\n\n*Note*: The dataset is released in tandem with the Mistral Trismegistus 7B model available on HuggingFace." ]
[ "TAGS\n#language-English #license-mit #spirituality #occultism #region-us \n", "# The Trismegistus Project Dataset\n\n!image/png", "### General Information\n- Dataset Name: Trismegistus Instruction Dataset\n- Version: 1.0\n- Size: ~10,000 instruction-response pairs\n- Domain: Esoteric, Spiritual, Occult, Wisdom Traditions, Paranormal, etc.\n- Date Released: Friday the 13th, October of 2023", "### Short Description\nThe Trismegistus Project is a comprehensive dataset containing instruction-response pairs focused on the broad umbrella of Esoterica. Topics covered include Mysticism, Hermeticism, Necromancy, Religion, Trance, Meditation, Magick, Spirituality, Alchemy, Numerology, Tarot, and much more.\n\nThe entire dataset was generated synthetically, save for subtopics.", "### Dataset Structure\nEach data entry in the dataset follows this structure:\n- 'id': Unique identifier for the entry.\n- 'system_prompt_used': The system-wide prompt used for initializing the task with GPT.\n- 'domain_task_type': Type of task being performed (e.g., \"Task\").\n- 'topic': Specific topic or domain under which the instruction falls.\n- 'source': Origin or expertise level of the instruction (e.g., \"DomainExpert_Occult\").\n- 'conversations': An array of conversation turns, including:\n - 'from': Identifier for the origin of the message (either \"human\" or \"gpt\").\n - 'value': Actual content of the message.", "### Example", "### Use Cases\nThis dataset is specifically designed for training and evaluating models on esoteric, spiritual, and occult knowledge. Potential use cases include:\n- Developing chatbots with a focus on esoteric and paranormal topics.\n- Fine-tuning existing models to enhance their understanding of esoteric domains.\n- Assisting researchers in esoteric studies with generated content.", "## Disclaimer\nSome topics and content in the dataset may (likely are) not suitable for all ages.", "### Licensing & Citation\nMIT License\n\n---\n\n*Note*: The dataset is released in tandem with the Mistral Trismegistus 7B model available on HuggingFace." ]
[ 23, 13, 70, 98, 184, 4, 86, 24, 40 ]
[ "passage: TAGS\n#language-English #license-mit #spirituality #occultism #region-us \n# The Trismegistus Project Dataset\n\n!image/png### General Information\n- Dataset Name: Trismegistus Instruction Dataset\n- Version: 1.0\n- Size: ~10,000 instruction-response pairs\n- Domain: Esoteric, Spiritual, Occult, Wisdom Traditions, Paranormal, etc.\n- Date Released: Friday the 13th, October of 2023### Short Description\nThe Trismegistus Project is a comprehensive dataset containing instruction-response pairs focused on the broad umbrella of Esoterica. Topics covered include Mysticism, Hermeticism, Necromancy, Religion, Trance, Meditation, Magick, Spirituality, Alchemy, Numerology, Tarot, and much more.\n\nThe entire dataset was generated synthetically, save for subtopics.### Dataset Structure\nEach data entry in the dataset follows this structure:\n- 'id': Unique identifier for the entry.\n- 'system_prompt_used': The system-wide prompt used for initializing the task with GPT.\n- 'domain_task_type': Type of task being performed (e.g., \"Task\").\n- 'topic': Specific topic or domain under which the instruction falls.\n- 'source': Origin or expertise level of the instruction (e.g., \"DomainExpert_Occult\").\n- 'conversations': An array of conversation turns, including:\n - 'from': Identifier for the origin of the message (either \"human\" or \"gpt\").\n - 'value': Actual content of the message.### Example### Use Cases\nThis dataset is specifically designed for training and evaluating models on esoteric, spiritual, and occult knowledge. Potential use cases include:\n- Developing chatbots with a focus on esoteric and paranormal topics.\n- Fine-tuning existing models to enhance their understanding of esoteric domains.\n- Assisting researchers in esoteric studies with generated content.## Disclaimer\nSome topics and content in the dataset may (likely are) not suitable for all ages." ]
165d8c47a63c223100444b6e39c75a8883055baf
# FULLY OPENSOURCE NOW (apache license) ## Dataset short info This dataset contains all the information about the mutinies or military coups that took place in the 21st century. The dataset has about 10 thousand records and has been compiled for a long time. In addition to the archival value, this information can be used to train models to work with sequences (RNN, LSTM etc) - for example, seq2seq models. ## Data format file: `data/train-....parquet` - date: str - date string in default python datetime format (ex. "2000-01-01T00:00:00") - rebellion_info: int64 - did a rebellion happen then (1 yes, 0 - no) (ex 0) [other 18,446,744,073,709,551,615 int64 values can be use as labels in the future]
freQuensy23/russian_rebellion_historical_data
[ "task_categories:token-classification", "size_categories:10K<n<100K", "language:ru", "language:en", "license:apache-2.0", "seq2seq", "historical", "russia", "region:us" ]
2023-09-30T23:28:59+00:00
{"language": ["ru", "en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["token-classification"], "dataset_info": {"features": [{"name": "date", "dtype": "timestamp[ns]"}, {"name": "rebellion_info", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 140256, "num_examples": 8766}], "download_size": 79236, "dataset_size": 140256}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["seq2seq", "historical", "russia"]}
2023-10-01T11:18:10+00:00
[]
[ "ru", "en" ]
TAGS #task_categories-token-classification #size_categories-10K<n<100K #language-Russian #language-English #license-apache-2.0 #seq2seq #historical #russia #region-us
# FULLY OPENSOURCE NOW (apache license) ## Dataset short info This dataset contains all the information about the mutinies or military coups that took place in the 21st century. The dataset has about 10 thousand records and has been compiled for a long time. In addition to the archival value, this information can be used to train models to work with sequences (RNN, LSTM etc) - for example, seq2seq models. ## Data format file: 'data/train-....parquet' - date: str - date string in default python datetime format (ex. "2000-01-01T00:00:00") - rebellion_info: int64 - did a rebellion happen then (1 yes, 0 - no) (ex 0) [other 18,446,744,073,709,551,615 int64 values can be use as labels in the future]
[ "# FULLY OPENSOURCE NOW (apache license)", "## Dataset short info\nThis dataset contains all the information about the mutinies or military coups that took place in the 21st century. The dataset has about 10 thousand records and has been compiled for a long time. In addition to the archival value, this information can be used to train models to work with sequences (RNN, LSTM etc) - for example, seq2seq models.", "## Data format\nfile: 'data/train-....parquet'\n\n - date: str - date string in default python datetime format (ex. \"2000-01-01T00:00:00\")\n \n - rebellion_info: int64 - did a rebellion happen then (1 yes, 0 - no) (ex 0) [other 18,446,744,073,709,551,615 int64 values can be use as labels in the future]" ]
[ "TAGS\n#task_categories-token-classification #size_categories-10K<n<100K #language-Russian #language-English #license-apache-2.0 #seq2seq #historical #russia #region-us \n", "# FULLY OPENSOURCE NOW (apache license)", "## Dataset short info\nThis dataset contains all the information about the mutinies or military coups that took place in the 21st century. The dataset has about 10 thousand records and has been compiled for a long time. In addition to the archival value, this information can be used to train models to work with sequences (RNN, LSTM etc) - for example, seq2seq models.", "## Data format\nfile: 'data/train-....parquet'\n\n - date: str - date string in default python datetime format (ex. \"2000-01-01T00:00:00\")\n \n - rebellion_info: int64 - did a rebellion happen then (1 yes, 0 - no) (ex 0) [other 18,446,744,073,709,551,615 int64 values can be use as labels in the future]" ]
[ 59, 14, 92, 99 ]
[ "passage: TAGS\n#task_categories-token-classification #size_categories-10K<n<100K #language-Russian #language-English #license-apache-2.0 #seq2seq #historical #russia #region-us \n# FULLY OPENSOURCE NOW (apache license)## Dataset short info\nThis dataset contains all the information about the mutinies or military coups that took place in the 21st century. The dataset has about 10 thousand records and has been compiled for a long time. In addition to the archival value, this information can be used to train models to work with sequences (RNN, LSTM etc) - for example, seq2seq models.## Data format\nfile: 'data/train-....parquet'\n\n - date: str - date string in default python datetime format (ex. \"2000-01-01T00:00:00\")\n \n - rebellion_info: int64 - did a rebellion happen then (1 yes, 0 - no) (ex 0) [other 18,446,744,073,709,551,615 int64 values can be use as labels in the future]" ]
c4dae06cfd01ec174f60147c2466592861b468fd
# Dataset Card for "decontextualization" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nfliu/decontextualization
[ "region:us" ]
2023-09-30T23:32:38+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "example_id", "dtype": "int64"}, {"name": "original_sentence", "dtype": "string"}, {"name": "page_title", "dtype": "string"}, {"name": "section_title", "sequence": "string"}, {"name": "paragraph_text", "dtype": "string"}, {"name": "sentence_start_byte_offset", "dtype": "int64"}, {"name": "sentence_end_byte_offset", "dtype": "int64"}, {"name": "article_url", "dtype": "string"}, {"name": "annotations", "list": [{"name": "category", "dtype": "string"}, {"name": "decontextualized_sentence", "dtype": "string"}, {"name": "example_id", "dtype": "int64"}, {"name": "original_sentence", "dtype": "string"}, {"name": "worker_id", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 15224065, "num_examples": 11290}, {"name": "validation", "num_bytes": 5315183, "num_examples": 1945}, {"name": "test", "num_bytes": 5359001, "num_examples": 1945}], "download_size": 13617475, "dataset_size": 25898249}}
2023-09-30T23:32:58+00:00
[]
[]
TAGS #region-us
# Dataset Card for "decontextualization" More Information needed
[ "# Dataset Card for \"decontextualization\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"decontextualization\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"decontextualization\"\n\nMore Information needed" ]
c4256997a7bef53d2c461a4308420760af382f14
# Dataset Card for "b776d96a" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
result-kand2-sdxl-wuerst-karlo/b776d96a
[ "region:us" ]
2023-09-30T23:52:59+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 173, "num_examples": 10}], "download_size": 1318, "dataset_size": 173}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T23:53:01+00:00
[]
[]
TAGS #region-us
# Dataset Card for "b776d96a" More Information needed
[ "# Dataset Card for \"b776d96a\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"b776d96a\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"b776d96a\"\n\nMore Information needed" ]
678ce776b02f8dc97ce7f44817970f14c4a95745
# Dataset Card for "39ceeb6b" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
result-kand2-sdxl-wuerst-karlo/39ceeb6b
[ "region:us" ]
2023-09-30T23:53:02+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 173, "num_examples": 10}], "download_size": 1318, "dataset_size": 173}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-09-30T23:53:02+00:00
[]
[]
TAGS #region-us
# Dataset Card for "39ceeb6b" More Information needed
[ "# Dataset Card for \"39ceeb6b\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"39ceeb6b\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"39ceeb6b\"\n\nMore Information needed" ]
0504aca05ef13ed334d8ee98771dae73fd955e0e
# Amenokaku-Code-Instruct **Update:** - 2023/12/27 データセットに JaxTon , プロになるJava のコードデータ 180 レコードを追加しました。 ## 概要 - コードに特化した5.2KのInstructionデータセットです。 - データセットに含まれるデータは商用利用できるラインセンスが付与されたプログラミング学習コンテンツから収集、加工し作成しました(英語のコンテンツは日本語に自動翻訳し、翻訳の不自然な箇所を手動で修正)。 - また、ライセンスが明記されていない学習コンテンツについては権利者に個別に連絡を取り、本データセットへの掲載の許諾を得ております。 ## データセット詳細 指示タスクの内訳としてはコード生成(code_generation)が1050レコード、コードの挙動確認(check_code_behavor)が150レコード、コードのバグ修正(code_fix)が4000レコードになります。 詳細な内訳は以下の通りになります。 |source name|num record|liscence|url| |:----|:----|:----|:----| |データサイエンス100本ノック(構造化データ加工編)(Python解答)|100|[MIT](https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess/blob/master/LICENSE)|https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess| |データサイエンス100本ノック(構造化データ加工編)(SQL解答)|100|[MIT](https://github.com/rootassist/100knocks-preprocess-inSQLandPython-withColab/blob/master/LICENSE)|https://github.com/rootassist/100knocks-preprocess-inSQLandPython-withColab| |画像処理100本ノック|100|[MIT](https://github.com/ryoppippi/Gasyori100knock/blob/master/LICENSE)|https://github.com/ryoppippi/Gasyori100knock| |言語処理100本ノック2020|100|[MIT](https://github.com/nlp100/nlp100.github.io/blob/develop/LICENSE)<br>[MIT](https://github.com/upura/nlp100v2020/blob/master/LICENSE)|(問題) https://github.com/nlp100/nlp100.github.io<br>(解答) https://github.com/upura/nlp100v2020| |Python初学者のためのpandas100本ノック※|100|AmenokakuCode Liscence|https://qiita.com/kunishou/items/bd5fad9a334f4f5be51c| |Python初学者のためのPolars100本ノック※|100|AmenokakuCode Liscence|https://qiita.com/kunishou/items/1386d14a136f585e504e| |100 Numpy Execieses|100|[MIT](https://github.com/rougier/numpy-100/blob/master/LICENSE.txt)|https://github.com/rougier/numpy-100| |100 Julia Exercises|100|The Unliscence|https://github.com/RoyiAvital/Julia100Exercises| |自作Python100本ノック|100|AmenokakuCode Liscence|https://qiita.com/ahpjop/items/373f807d68044cda1c9b| |Python-for-Beginners-Solve-50-Exercises-Live|50|[MIT](https://github.com/garg10may/Python-for-Beginners-Solve-50-Exercises-Live/blob/master/LICENSE)|https://github.com/garg10may/Python-for-Beginners-Solve-50-Exercises-Live| |R初学者のためのtidyverse100本ノック|100|AmenokakuCode Liscence|https://qiita.com/nekobo/items/cbf32a13637273f229da| |JavaScript Questions|155|[MIT](https://github.com/lydiahallie/javascript-questions/blob/master/LICENSE)|https://github.com/lydiahallie/javascript-questions| |Break-It-Fix-It|4,000|[MIT](https://github.com/michiyasunaga/BIFI/blob/main/LICENSE)|https://github.com/michiyasunaga/BIFI| |JaxTon|60|Apache-2.0|https://github.com/vopani/jaxton| |プロになるJava|120|AmenokakuCode Liscence|https://nowokay.hatenablog.com/entry/projava17exercise2| ※ 私が過去に作成した学習コンテンツです。 ## ライセンス 個々のデータのライセンスは収集元のライセンスに従うため、データセット全体では混合ライセンスになります。 また、データ自体にライセンスが明記されておらず個別に権利者に言語モデル学習用途でデータセットへの掲載許諾を取ったデータに関しては [AmenokakuCode Liscence](https://github.com/kunishou/amenokaku-code-instruct/blob/main/AmenokakuCode%20Liscence) というライセンスを付与しています。このライセンスは、言語モデルでの学習用途に限り自由にデータを利用することを許可するものになります(そのため、データ自体を販売したり、配布することは認めていません)。 ## データセットの更新 データセットについては、商用利用可能なプログラミング学習コンテンツを見つけたら今後随時追加していきたいと思います。 **もし、有益なコンテンツを見つけたり、自身で作成した学習コンテンツを提供しても良いという方がおりましたら是非ご連絡下さい。** ## データセット名 Amenokaku は古事記に登場する[天迦久神](http://kojiki.kokugakuin.ac.jp/shinmei/amenokakunokami/)(あめのかくのかみ)という鹿の神様の名前を参考にしました。 ## Github https://github.com/kunishou/amenokaku-code-instruct
kunishou/amenokaku-code-instruct
[ "license:other", "region:us" ]
2023-10-01T00:04:50+00:00
{"license": "other", "license_name": "mixed-liscence", "license_link": "LICENSE"}
2023-12-27T11:34:04+00:00
[]
[]
TAGS #license-other #region-us
Amenokaku-Code-Instruct ======================= Update: * 2023/12/27 データセットに JaxTon , プロになるJava のコードデータ 180 レコードを追加しました。 概要 -- * コードに特化した5.2KのInstructionデータセットです。 * データセットに含まれるデータは商用利用できるラインセンスが付与されたプログラミング学習コンテンツから収集、加工し作成しました(英語のコンテンツは日本語に自動翻訳し、翻訳の不自然な箇所を手動で修正)。 * また、ライセンスが明記されていない学習コンテンツについては権利者に個別に連絡を取り、本データセットへの掲載の許諾を得ております。 データセット詳細 -------- 指示タスクの内訳としてはコード生成(code\_generation)が1050レコード、コードの挙動確認(check\_code\_behavor)が150レコード、コードのバグ修正(code\_fix)が4000レコードになります。 詳細な内訳は以下の通りになります。 ライセンス ----- 個々のデータのライセンスは収集元のライセンスに従うため、データセット全体では混合ライセンスになります。 また、データ自体にライセンスが明記されておらず個別に権利者に言語モデル学習用途でデータセットへの掲載許諾を取ったデータに関しては AmenokakuCode Liscence というライセンスを付与しています。このライセンスは、言語モデルでの学習用途に限り自由にデータを利用することを許可するものになります(そのため、データ自体を販売したり、配布することは認めていません)。 データセットの更新 --------- データセットについては、商用利用可能なプログラミング学習コンテンツを見つけたら今後随時追加していきたいと思います。 もし、有益なコンテンツを見つけたり、自身で作成した学習コンテンツを提供しても良いという方がおりましたら是非ご連絡下さい。 データセット名 ------- Amenokaku は古事記に登場する天迦久神(あめのかくのかみ)という鹿の神様の名前を参考にしました。 Github ------ URL
[]
[ "TAGS\n#license-other #region-us \n" ]
[ 11 ]
[ "passage: TAGS\n#license-other #region-us \n" ]
c6cb92f1b8f493148e9bcc4597acf577527be299
# Dataset Card for "pythia_img_beta" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
GeneticApple/pythia_img_beta
[ "task_categories:text-to-image", "size_categories:n<1K", "language:en", "license:apache-2.0", "region:us" ]
2023-10-01T01:39:52+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1583492, "num_examples": 21}], "download_size": 1583963, "dataset_size": 1583492}}
2023-10-03T04:02:21+00:00
[]
[ "en" ]
TAGS #task_categories-text-to-image #size_categories-n<1K #language-English #license-apache-2.0 #region-us
# Dataset Card for "pythia_img_beta" More Information needed
[ "# Dataset Card for \"pythia_img_beta\"\n\nMore Information needed" ]
[ "TAGS\n#task_categories-text-to-image #size_categories-n<1K #language-English #license-apache-2.0 #region-us \n", "# Dataset Card for \"pythia_img_beta\"\n\nMore Information needed" ]
[ 40, 17 ]
[ "passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #language-English #license-apache-2.0 #region-us \n# Dataset Card for \"pythia_img_beta\"\n\nMore Information needed" ]
ae4e9db54480629f2c9a4f5e8ba3ff3363b5e822
# Bangumi Image Base of Sword Art Online This is the image base of bangumi Sword Art Online, we detected 148 characters, 14651 images in total. The full dataset is [here](all.zip). **Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability). Here is the characters' preview: | # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 | |:------|---------:|:----------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------| | 0 | 861 | [Download](0/dataset.zip) | ![preview 1](0/preview_1.png) | ![preview 2](0/preview_2.png) | ![preview 3](0/preview_3.png) | ![preview 4](0/preview_4.png) | ![preview 5](0/preview_5.png) | ![preview 6](0/preview_6.png) | ![preview 7](0/preview_7.png) | ![preview 8](0/preview_8.png) | | 1 | 86 | [Download](1/dataset.zip) | ![preview 1](1/preview_1.png) | ![preview 2](1/preview_2.png) | ![preview 3](1/preview_3.png) | ![preview 4](1/preview_4.png) | ![preview 5](1/preview_5.png) | ![preview 6](1/preview_6.png) | ![preview 7](1/preview_7.png) | ![preview 8](1/preview_8.png) | | 2 | 14 | [Download](2/dataset.zip) | ![preview 1](2/preview_1.png) | ![preview 2](2/preview_2.png) | ![preview 3](2/preview_3.png) | ![preview 4](2/preview_4.png) | ![preview 5](2/preview_5.png) | ![preview 6](2/preview_6.png) | ![preview 7](2/preview_7.png) | ![preview 8](2/preview_8.png) | | 3 | 396 | [Download](3/dataset.zip) | ![preview 1](3/preview_1.png) | ![preview 2](3/preview_2.png) | ![preview 3](3/preview_3.png) | ![preview 4](3/preview_4.png) | ![preview 5](3/preview_5.png) | ![preview 6](3/preview_6.png) | ![preview 7](3/preview_7.png) | ![preview 8](3/preview_8.png) | | 4 | 19 | [Download](4/dataset.zip) | ![preview 1](4/preview_1.png) | ![preview 2](4/preview_2.png) | ![preview 3](4/preview_3.png) | ![preview 4](4/preview_4.png) | ![preview 5](4/preview_5.png) | ![preview 6](4/preview_6.png) | ![preview 7](4/preview_7.png) | ![preview 8](4/preview_8.png) | | 5 | 35 | [Download](5/dataset.zip) | ![preview 1](5/preview_1.png) | ![preview 2](5/preview_2.png) | ![preview 3](5/preview_3.png) | ![preview 4](5/preview_4.png) | ![preview 5](5/preview_5.png) | ![preview 6](5/preview_6.png) | ![preview 7](5/preview_7.png) | ![preview 8](5/preview_8.png) | | 6 | 63 | [Download](6/dataset.zip) | ![preview 1](6/preview_1.png) | ![preview 2](6/preview_2.png) | ![preview 3](6/preview_3.png) | ![preview 4](6/preview_4.png) | ![preview 5](6/preview_5.png) | ![preview 6](6/preview_6.png) | ![preview 7](6/preview_7.png) | ![preview 8](6/preview_8.png) | | 7 | 38 | [Download](7/dataset.zip) | ![preview 1](7/preview_1.png) | ![preview 2](7/preview_2.png) | ![preview 3](7/preview_3.png) | ![preview 4](7/preview_4.png) | ![preview 5](7/preview_5.png) | ![preview 6](7/preview_6.png) | ![preview 7](7/preview_7.png) | ![preview 8](7/preview_8.png) | | 8 | 24 | [Download](8/dataset.zip) | ![preview 1](8/preview_1.png) | ![preview 2](8/preview_2.png) | ![preview 3](8/preview_3.png) | ![preview 4](8/preview_4.png) | ![preview 5](8/preview_5.png) | ![preview 6](8/preview_6.png) | ![preview 7](8/preview_7.png) | ![preview 8](8/preview_8.png) | | 9 | 661 | [Download](9/dataset.zip) | ![preview 1](9/preview_1.png) | ![preview 2](9/preview_2.png) | ![preview 3](9/preview_3.png) | ![preview 4](9/preview_4.png) | ![preview 5](9/preview_5.png) | ![preview 6](9/preview_6.png) | ![preview 7](9/preview_7.png) | ![preview 8](9/preview_8.png) | | 10 | 51 | [Download](10/dataset.zip) | ![preview 1](10/preview_1.png) | ![preview 2](10/preview_2.png) | ![preview 3](10/preview_3.png) | ![preview 4](10/preview_4.png) | ![preview 5](10/preview_5.png) | ![preview 6](10/preview_6.png) | ![preview 7](10/preview_7.png) | ![preview 8](10/preview_8.png) | | 11 | 19 | [Download](11/dataset.zip) | ![preview 1](11/preview_1.png) | ![preview 2](11/preview_2.png) | ![preview 3](11/preview_3.png) | ![preview 4](11/preview_4.png) | ![preview 5](11/preview_5.png) | ![preview 6](11/preview_6.png) | ![preview 7](11/preview_7.png) | ![preview 8](11/preview_8.png) | | 12 | 289 | [Download](12/dataset.zip) | ![preview 1](12/preview_1.png) | ![preview 2](12/preview_2.png) | ![preview 3](12/preview_3.png) | ![preview 4](12/preview_4.png) | ![preview 5](12/preview_5.png) | ![preview 6](12/preview_6.png) | ![preview 7](12/preview_7.png) | ![preview 8](12/preview_8.png) | | 13 | 12 | [Download](13/dataset.zip) | ![preview 1](13/preview_1.png) | ![preview 2](13/preview_2.png) | ![preview 3](13/preview_3.png) | ![preview 4](13/preview_4.png) | ![preview 5](13/preview_5.png) | ![preview 6](13/preview_6.png) | ![preview 7](13/preview_7.png) | ![preview 8](13/preview_8.png) | | 14 | 51 | [Download](14/dataset.zip) | ![preview 1](14/preview_1.png) | ![preview 2](14/preview_2.png) | ![preview 3](14/preview_3.png) | ![preview 4](14/preview_4.png) | ![preview 5](14/preview_5.png) | ![preview 6](14/preview_6.png) | ![preview 7](14/preview_7.png) | ![preview 8](14/preview_8.png) | | 15 | 55 | [Download](15/dataset.zip) | ![preview 1](15/preview_1.png) | ![preview 2](15/preview_2.png) | ![preview 3](15/preview_3.png) | ![preview 4](15/preview_4.png) | ![preview 5](15/preview_5.png) | ![preview 6](15/preview_6.png) | ![preview 7](15/preview_7.png) | ![preview 8](15/preview_8.png) | | 16 | 1146 | [Download](16/dataset.zip) | ![preview 1](16/preview_1.png) | ![preview 2](16/preview_2.png) | ![preview 3](16/preview_3.png) | ![preview 4](16/preview_4.png) | ![preview 5](16/preview_5.png) | ![preview 6](16/preview_6.png) | ![preview 7](16/preview_7.png) | ![preview 8](16/preview_8.png) | | 17 | 110 | [Download](17/dataset.zip) | ![preview 1](17/preview_1.png) | ![preview 2](17/preview_2.png) | ![preview 3](17/preview_3.png) | ![preview 4](17/preview_4.png) | ![preview 5](17/preview_5.png) | ![preview 6](17/preview_6.png) | ![preview 7](17/preview_7.png) | ![preview 8](17/preview_8.png) | | 18 | 52 | [Download](18/dataset.zip) | ![preview 1](18/preview_1.png) | ![preview 2](18/preview_2.png) | ![preview 3](18/preview_3.png) | ![preview 4](18/preview_4.png) | ![preview 5](18/preview_5.png) | ![preview 6](18/preview_6.png) | ![preview 7](18/preview_7.png) | ![preview 8](18/preview_8.png) | | 19 | 40 | [Download](19/dataset.zip) | ![preview 1](19/preview_1.png) | ![preview 2](19/preview_2.png) | ![preview 3](19/preview_3.png) | ![preview 4](19/preview_4.png) | ![preview 5](19/preview_5.png) | ![preview 6](19/preview_6.png) | ![preview 7](19/preview_7.png) | ![preview 8](19/preview_8.png) | | 20 | 24 | [Download](20/dataset.zip) | ![preview 1](20/preview_1.png) | ![preview 2](20/preview_2.png) | ![preview 3](20/preview_3.png) | ![preview 4](20/preview_4.png) | ![preview 5](20/preview_5.png) | ![preview 6](20/preview_6.png) | ![preview 7](20/preview_7.png) | ![preview 8](20/preview_8.png) | | 21 | 124 | [Download](21/dataset.zip) | ![preview 1](21/preview_1.png) | ![preview 2](21/preview_2.png) | ![preview 3](21/preview_3.png) | ![preview 4](21/preview_4.png) | ![preview 5](21/preview_5.png) | ![preview 6](21/preview_6.png) | ![preview 7](21/preview_7.png) | ![preview 8](21/preview_8.png) | | 22 | 254 | [Download](22/dataset.zip) | ![preview 1](22/preview_1.png) | ![preview 2](22/preview_2.png) | ![preview 3](22/preview_3.png) | ![preview 4](22/preview_4.png) | ![preview 5](22/preview_5.png) | ![preview 6](22/preview_6.png) | ![preview 7](22/preview_7.png) | ![preview 8](22/preview_8.png) | | 23 | 84 | [Download](23/dataset.zip) | ![preview 1](23/preview_1.png) | ![preview 2](23/preview_2.png) | ![preview 3](23/preview_3.png) | ![preview 4](23/preview_4.png) | ![preview 5](23/preview_5.png) | ![preview 6](23/preview_6.png) | ![preview 7](23/preview_7.png) | ![preview 8](23/preview_8.png) | | 24 | 48 | [Download](24/dataset.zip) | ![preview 1](24/preview_1.png) | ![preview 2](24/preview_2.png) | ![preview 3](24/preview_3.png) | ![preview 4](24/preview_4.png) | ![preview 5](24/preview_5.png) | ![preview 6](24/preview_6.png) | ![preview 7](24/preview_7.png) | ![preview 8](24/preview_8.png) | | 25 | 267 | [Download](25/dataset.zip) | ![preview 1](25/preview_1.png) | ![preview 2](25/preview_2.png) | ![preview 3](25/preview_3.png) | ![preview 4](25/preview_4.png) | ![preview 5](25/preview_5.png) | ![preview 6](25/preview_6.png) | ![preview 7](25/preview_7.png) | ![preview 8](25/preview_8.png) | | 26 | 122 | [Download](26/dataset.zip) | ![preview 1](26/preview_1.png) | ![preview 2](26/preview_2.png) | ![preview 3](26/preview_3.png) | ![preview 4](26/preview_4.png) | ![preview 5](26/preview_5.png) | ![preview 6](26/preview_6.png) | ![preview 7](26/preview_7.png) | ![preview 8](26/preview_8.png) | | 27 | 103 | [Download](27/dataset.zip) | ![preview 1](27/preview_1.png) | ![preview 2](27/preview_2.png) | ![preview 3](27/preview_3.png) | ![preview 4](27/preview_4.png) | ![preview 5](27/preview_5.png) | ![preview 6](27/preview_6.png) | ![preview 7](27/preview_7.png) | ![preview 8](27/preview_8.png) | | 28 | 121 | [Download](28/dataset.zip) | ![preview 1](28/preview_1.png) | ![preview 2](28/preview_2.png) | ![preview 3](28/preview_3.png) | ![preview 4](28/preview_4.png) | ![preview 5](28/preview_5.png) | ![preview 6](28/preview_6.png) | ![preview 7](28/preview_7.png) | ![preview 8](28/preview_8.png) | | 29 | 60 | [Download](29/dataset.zip) | ![preview 1](29/preview_1.png) | ![preview 2](29/preview_2.png) | ![preview 3](29/preview_3.png) | ![preview 4](29/preview_4.png) | ![preview 5](29/preview_5.png) | ![preview 6](29/preview_6.png) | ![preview 7](29/preview_7.png) | ![preview 8](29/preview_8.png) | | 30 | 64 | [Download](30/dataset.zip) | ![preview 1](30/preview_1.png) | ![preview 2](30/preview_2.png) | ![preview 3](30/preview_3.png) | ![preview 4](30/preview_4.png) | ![preview 5](30/preview_5.png) | ![preview 6](30/preview_6.png) | ![preview 7](30/preview_7.png) | ![preview 8](30/preview_8.png) | | 31 | 48 | [Download](31/dataset.zip) | ![preview 1](31/preview_1.png) | ![preview 2](31/preview_2.png) | ![preview 3](31/preview_3.png) | ![preview 4](31/preview_4.png) | ![preview 5](31/preview_5.png) | ![preview 6](31/preview_6.png) | ![preview 7](31/preview_7.png) | ![preview 8](31/preview_8.png) | | 32 | 46 | [Download](32/dataset.zip) | ![preview 1](32/preview_1.png) | ![preview 2](32/preview_2.png) | ![preview 3](32/preview_3.png) | ![preview 4](32/preview_4.png) | ![preview 5](32/preview_5.png) | ![preview 6](32/preview_6.png) | ![preview 7](32/preview_7.png) | ![preview 8](32/preview_8.png) | | 33 | 207 | [Download](33/dataset.zip) | ![preview 1](33/preview_1.png) | ![preview 2](33/preview_2.png) | ![preview 3](33/preview_3.png) | ![preview 4](33/preview_4.png) | ![preview 5](33/preview_5.png) | ![preview 6](33/preview_6.png) | ![preview 7](33/preview_7.png) | ![preview 8](33/preview_8.png) | | 34 | 26 | [Download](34/dataset.zip) | ![preview 1](34/preview_1.png) | ![preview 2](34/preview_2.png) | ![preview 3](34/preview_3.png) | ![preview 4](34/preview_4.png) | ![preview 5](34/preview_5.png) | ![preview 6](34/preview_6.png) | ![preview 7](34/preview_7.png) | ![preview 8](34/preview_8.png) | | 35 | 38 | [Download](35/dataset.zip) | ![preview 1](35/preview_1.png) | ![preview 2](35/preview_2.png) | ![preview 3](35/preview_3.png) | ![preview 4](35/preview_4.png) | ![preview 5](35/preview_5.png) | ![preview 6](35/preview_6.png) | ![preview 7](35/preview_7.png) | ![preview 8](35/preview_8.png) | | 36 | 28 | [Download](36/dataset.zip) | ![preview 1](36/preview_1.png) | ![preview 2](36/preview_2.png) | ![preview 3](36/preview_3.png) | ![preview 4](36/preview_4.png) | ![preview 5](36/preview_5.png) | ![preview 6](36/preview_6.png) | ![preview 7](36/preview_7.png) | ![preview 8](36/preview_8.png) | | 37 | 18 | [Download](37/dataset.zip) | ![preview 1](37/preview_1.png) | ![preview 2](37/preview_2.png) | ![preview 3](37/preview_3.png) | ![preview 4](37/preview_4.png) | ![preview 5](37/preview_5.png) | ![preview 6](37/preview_6.png) | ![preview 7](37/preview_7.png) | ![preview 8](37/preview_8.png) | | 38 | 19 | [Download](38/dataset.zip) | ![preview 1](38/preview_1.png) | ![preview 2](38/preview_2.png) | ![preview 3](38/preview_3.png) | ![preview 4](38/preview_4.png) | ![preview 5](38/preview_5.png) | ![preview 6](38/preview_6.png) | ![preview 7](38/preview_7.png) | ![preview 8](38/preview_8.png) | | 39 | 15 | [Download](39/dataset.zip) | ![preview 1](39/preview_1.png) | ![preview 2](39/preview_2.png) | ![preview 3](39/preview_3.png) | ![preview 4](39/preview_4.png) | ![preview 5](39/preview_5.png) | ![preview 6](39/preview_6.png) | ![preview 7](39/preview_7.png) | ![preview 8](39/preview_8.png) | | 40 | 31 | [Download](40/dataset.zip) | ![preview 1](40/preview_1.png) | ![preview 2](40/preview_2.png) | ![preview 3](40/preview_3.png) | ![preview 4](40/preview_4.png) | ![preview 5](40/preview_5.png) | ![preview 6](40/preview_6.png) | ![preview 7](40/preview_7.png) | ![preview 8](40/preview_8.png) | | 41 | 36 | [Download](41/dataset.zip) | ![preview 1](41/preview_1.png) | ![preview 2](41/preview_2.png) | ![preview 3](41/preview_3.png) | ![preview 4](41/preview_4.png) | ![preview 5](41/preview_5.png) | ![preview 6](41/preview_6.png) | ![preview 7](41/preview_7.png) | ![preview 8](41/preview_8.png) | | 42 | 149 | [Download](42/dataset.zip) | ![preview 1](42/preview_1.png) | ![preview 2](42/preview_2.png) | ![preview 3](42/preview_3.png) | ![preview 4](42/preview_4.png) | ![preview 5](42/preview_5.png) | ![preview 6](42/preview_6.png) | ![preview 7](42/preview_7.png) | ![preview 8](42/preview_8.png) | | 43 | 2782 | [Download](43/dataset.zip) | ![preview 1](43/preview_1.png) | ![preview 2](43/preview_2.png) | ![preview 3](43/preview_3.png) | ![preview 4](43/preview_4.png) | ![preview 5](43/preview_5.png) | ![preview 6](43/preview_6.png) | ![preview 7](43/preview_7.png) | ![preview 8](43/preview_8.png) | | 44 | 118 | [Download](44/dataset.zip) | ![preview 1](44/preview_1.png) | ![preview 2](44/preview_2.png) | ![preview 3](44/preview_3.png) | ![preview 4](44/preview_4.png) | ![preview 5](44/preview_5.png) | ![preview 6](44/preview_6.png) | ![preview 7](44/preview_7.png) | ![preview 8](44/preview_8.png) | | 45 | 140 | [Download](45/dataset.zip) | ![preview 1](45/preview_1.png) | ![preview 2](45/preview_2.png) | ![preview 3](45/preview_3.png) | ![preview 4](45/preview_4.png) | ![preview 5](45/preview_5.png) | ![preview 6](45/preview_6.png) | ![preview 7](45/preview_7.png) | ![preview 8](45/preview_8.png) | | 46 | 44 | [Download](46/dataset.zip) | ![preview 1](46/preview_1.png) | ![preview 2](46/preview_2.png) | ![preview 3](46/preview_3.png) | ![preview 4](46/preview_4.png) | ![preview 5](46/preview_5.png) | ![preview 6](46/preview_6.png) | ![preview 7](46/preview_7.png) | ![preview 8](46/preview_8.png) | | 47 | 280 | [Download](47/dataset.zip) | ![preview 1](47/preview_1.png) | ![preview 2](47/preview_2.png) | ![preview 3](47/preview_3.png) | ![preview 4](47/preview_4.png) | ![preview 5](47/preview_5.png) | ![preview 6](47/preview_6.png) | ![preview 7](47/preview_7.png) | ![preview 8](47/preview_8.png) | | 48 | 134 | [Download](48/dataset.zip) | ![preview 1](48/preview_1.png) | ![preview 2](48/preview_2.png) | ![preview 3](48/preview_3.png) | ![preview 4](48/preview_4.png) | ![preview 5](48/preview_5.png) | ![preview 6](48/preview_6.png) | ![preview 7](48/preview_7.png) | ![preview 8](48/preview_8.png) | | 49 | 194 | [Download](49/dataset.zip) | ![preview 1](49/preview_1.png) | ![preview 2](49/preview_2.png) | ![preview 3](49/preview_3.png) | ![preview 4](49/preview_4.png) | ![preview 5](49/preview_5.png) | ![preview 6](49/preview_6.png) | ![preview 7](49/preview_7.png) | ![preview 8](49/preview_8.png) | | 50 | 160 | [Download](50/dataset.zip) | ![preview 1](50/preview_1.png) | ![preview 2](50/preview_2.png) | ![preview 3](50/preview_3.png) | ![preview 4](50/preview_4.png) | ![preview 5](50/preview_5.png) | ![preview 6](50/preview_6.png) | ![preview 7](50/preview_7.png) | ![preview 8](50/preview_8.png) | | 51 | 33 | [Download](51/dataset.zip) | ![preview 1](51/preview_1.png) | ![preview 2](51/preview_2.png) | ![preview 3](51/preview_3.png) | ![preview 4](51/preview_4.png) | ![preview 5](51/preview_5.png) | ![preview 6](51/preview_6.png) | ![preview 7](51/preview_7.png) | ![preview 8](51/preview_8.png) | | 52 | 105 | [Download](52/dataset.zip) | ![preview 1](52/preview_1.png) | ![preview 2](52/preview_2.png) | ![preview 3](52/preview_3.png) | ![preview 4](52/preview_4.png) | ![preview 5](52/preview_5.png) | ![preview 6](52/preview_6.png) | ![preview 7](52/preview_7.png) | ![preview 8](52/preview_8.png) | | 53 | 67 | [Download](53/dataset.zip) | ![preview 1](53/preview_1.png) | ![preview 2](53/preview_2.png) | ![preview 3](53/preview_3.png) | ![preview 4](53/preview_4.png) | ![preview 5](53/preview_5.png) | ![preview 6](53/preview_6.png) | ![preview 7](53/preview_7.png) | ![preview 8](53/preview_8.png) | | 54 | 21 | [Download](54/dataset.zip) | ![preview 1](54/preview_1.png) | ![preview 2](54/preview_2.png) | ![preview 3](54/preview_3.png) | ![preview 4](54/preview_4.png) | ![preview 5](54/preview_5.png) | ![preview 6](54/preview_6.png) | ![preview 7](54/preview_7.png) | ![preview 8](54/preview_8.png) | | 55 | 29 | [Download](55/dataset.zip) | ![preview 1](55/preview_1.png) | ![preview 2](55/preview_2.png) | ![preview 3](55/preview_3.png) | ![preview 4](55/preview_4.png) | ![preview 5](55/preview_5.png) | ![preview 6](55/preview_6.png) | ![preview 7](55/preview_7.png) | ![preview 8](55/preview_8.png) | | 56 | 30 | [Download](56/dataset.zip) | ![preview 1](56/preview_1.png) | ![preview 2](56/preview_2.png) | ![preview 3](56/preview_3.png) | ![preview 4](56/preview_4.png) | ![preview 5](56/preview_5.png) | ![preview 6](56/preview_6.png) | ![preview 7](56/preview_7.png) | ![preview 8](56/preview_8.png) | | 57 | 45 | [Download](57/dataset.zip) | ![preview 1](57/preview_1.png) | ![preview 2](57/preview_2.png) | ![preview 3](57/preview_3.png) | ![preview 4](57/preview_4.png) | ![preview 5](57/preview_5.png) | ![preview 6](57/preview_6.png) | ![preview 7](57/preview_7.png) | ![preview 8](57/preview_8.png) | | 58 | 44 | [Download](58/dataset.zip) | ![preview 1](58/preview_1.png) | ![preview 2](58/preview_2.png) | ![preview 3](58/preview_3.png) | ![preview 4](58/preview_4.png) | ![preview 5](58/preview_5.png) | ![preview 6](58/preview_6.png) | ![preview 7](58/preview_7.png) | ![preview 8](58/preview_8.png) | | 59 | 19 | [Download](59/dataset.zip) | ![preview 1](59/preview_1.png) | ![preview 2](59/preview_2.png) | ![preview 3](59/preview_3.png) | ![preview 4](59/preview_4.png) | ![preview 5](59/preview_5.png) | ![preview 6](59/preview_6.png) | ![preview 7](59/preview_7.png) | ![preview 8](59/preview_8.png) | | 60 | 32 | [Download](60/dataset.zip) | ![preview 1](60/preview_1.png) | ![preview 2](60/preview_2.png) | ![preview 3](60/preview_3.png) | ![preview 4](60/preview_4.png) | ![preview 5](60/preview_5.png) | ![preview 6](60/preview_6.png) | ![preview 7](60/preview_7.png) | ![preview 8](60/preview_8.png) | | 61 | 23 | [Download](61/dataset.zip) | ![preview 1](61/preview_1.png) | ![preview 2](61/preview_2.png) | ![preview 3](61/preview_3.png) | ![preview 4](61/preview_4.png) | ![preview 5](61/preview_5.png) | ![preview 6](61/preview_6.png) | ![preview 7](61/preview_7.png) | ![preview 8](61/preview_8.png) | | 62 | 19 | [Download](62/dataset.zip) | ![preview 1](62/preview_1.png) | ![preview 2](62/preview_2.png) | ![preview 3](62/preview_3.png) | ![preview 4](62/preview_4.png) | ![preview 5](62/preview_5.png) | ![preview 6](62/preview_6.png) | ![preview 7](62/preview_7.png) | ![preview 8](62/preview_8.png) | | 63 | 36 | [Download](63/dataset.zip) | ![preview 1](63/preview_1.png) | ![preview 2](63/preview_2.png) | ![preview 3](63/preview_3.png) | ![preview 4](63/preview_4.png) | ![preview 5](63/preview_5.png) | ![preview 6](63/preview_6.png) | ![preview 7](63/preview_7.png) | ![preview 8](63/preview_8.png) | | 64 | 33 | [Download](64/dataset.zip) | ![preview 1](64/preview_1.png) | ![preview 2](64/preview_2.png) | ![preview 3](64/preview_3.png) | ![preview 4](64/preview_4.png) | ![preview 5](64/preview_5.png) | ![preview 6](64/preview_6.png) | ![preview 7](64/preview_7.png) | ![preview 8](64/preview_8.png) | | 65 | 19 | [Download](65/dataset.zip) | ![preview 1](65/preview_1.png) | ![preview 2](65/preview_2.png) | ![preview 3](65/preview_3.png) | ![preview 4](65/preview_4.png) | ![preview 5](65/preview_5.png) | ![preview 6](65/preview_6.png) | ![preview 7](65/preview_7.png) | ![preview 8](65/preview_8.png) | | 66 | 37 | [Download](66/dataset.zip) | ![preview 1](66/preview_1.png) | ![preview 2](66/preview_2.png) | ![preview 3](66/preview_3.png) | ![preview 4](66/preview_4.png) | ![preview 5](66/preview_5.png) | ![preview 6](66/preview_6.png) | ![preview 7](66/preview_7.png) | ![preview 8](66/preview_8.png) | | 67 | 20 | [Download](67/dataset.zip) | ![preview 1](67/preview_1.png) | ![preview 2](67/preview_2.png) | ![preview 3](67/preview_3.png) | ![preview 4](67/preview_4.png) | ![preview 5](67/preview_5.png) | ![preview 6](67/preview_6.png) | ![preview 7](67/preview_7.png) | ![preview 8](67/preview_8.png) | | 68 | 57 | [Download](68/dataset.zip) | ![preview 1](68/preview_1.png) | ![preview 2](68/preview_2.png) | ![preview 3](68/preview_3.png) | ![preview 4](68/preview_4.png) | ![preview 5](68/preview_5.png) | ![preview 6](68/preview_6.png) | ![preview 7](68/preview_7.png) | ![preview 8](68/preview_8.png) | | 69 | 95 | [Download](69/dataset.zip) | ![preview 1](69/preview_1.png) | ![preview 2](69/preview_2.png) | ![preview 3](69/preview_3.png) | ![preview 4](69/preview_4.png) | ![preview 5](69/preview_5.png) | ![preview 6](69/preview_6.png) | ![preview 7](69/preview_7.png) | ![preview 8](69/preview_8.png) | | 70 | 66 | [Download](70/dataset.zip) | ![preview 1](70/preview_1.png) | ![preview 2](70/preview_2.png) | ![preview 3](70/preview_3.png) | ![preview 4](70/preview_4.png) | ![preview 5](70/preview_5.png) | ![preview 6](70/preview_6.png) | ![preview 7](70/preview_7.png) | ![preview 8](70/preview_8.png) | | 71 | 297 | [Download](71/dataset.zip) | ![preview 1](71/preview_1.png) | ![preview 2](71/preview_2.png) | ![preview 3](71/preview_3.png) | ![preview 4](71/preview_4.png) | ![preview 5](71/preview_5.png) | ![preview 6](71/preview_6.png) | ![preview 7](71/preview_7.png) | ![preview 8](71/preview_8.png) | | 72 | 22 | [Download](72/dataset.zip) | ![preview 1](72/preview_1.png) | ![preview 2](72/preview_2.png) | ![preview 3](72/preview_3.png) | ![preview 4](72/preview_4.png) | ![preview 5](72/preview_5.png) | ![preview 6](72/preview_6.png) | ![preview 7](72/preview_7.png) | ![preview 8](72/preview_8.png) | | 73 | 33 | [Download](73/dataset.zip) | ![preview 1](73/preview_1.png) | ![preview 2](73/preview_2.png) | ![preview 3](73/preview_3.png) | ![preview 4](73/preview_4.png) | ![preview 5](73/preview_5.png) | ![preview 6](73/preview_6.png) | ![preview 7](73/preview_7.png) | ![preview 8](73/preview_8.png) | | 74 | 168 | [Download](74/dataset.zip) | ![preview 1](74/preview_1.png) | ![preview 2](74/preview_2.png) | ![preview 3](74/preview_3.png) | ![preview 4](74/preview_4.png) | ![preview 5](74/preview_5.png) | ![preview 6](74/preview_6.png) | ![preview 7](74/preview_7.png) | ![preview 8](74/preview_8.png) | | 75 | 23 | [Download](75/dataset.zip) | ![preview 1](75/preview_1.png) | ![preview 2](75/preview_2.png) | ![preview 3](75/preview_3.png) | ![preview 4](75/preview_4.png) | ![preview 5](75/preview_5.png) | ![preview 6](75/preview_6.png) | ![preview 7](75/preview_7.png) | ![preview 8](75/preview_8.png) | | 76 | 104 | [Download](76/dataset.zip) | ![preview 1](76/preview_1.png) | ![preview 2](76/preview_2.png) | ![preview 3](76/preview_3.png) | ![preview 4](76/preview_4.png) | ![preview 5](76/preview_5.png) | ![preview 6](76/preview_6.png) | ![preview 7](76/preview_7.png) | ![preview 8](76/preview_8.png) | | 77 | 163 | [Download](77/dataset.zip) | ![preview 1](77/preview_1.png) | ![preview 2](77/preview_2.png) | ![preview 3](77/preview_3.png) | ![preview 4](77/preview_4.png) | ![preview 5](77/preview_5.png) | ![preview 6](77/preview_6.png) | ![preview 7](77/preview_7.png) | ![preview 8](77/preview_8.png) | | 78 | 7 | [Download](78/dataset.zip) | ![preview 1](78/preview_1.png) | ![preview 2](78/preview_2.png) | ![preview 3](78/preview_3.png) | ![preview 4](78/preview_4.png) | ![preview 5](78/preview_5.png) | ![preview 6](78/preview_6.png) | ![preview 7](78/preview_7.png) | N/A | | 79 | 27 | [Download](79/dataset.zip) | ![preview 1](79/preview_1.png) | ![preview 2](79/preview_2.png) | ![preview 3](79/preview_3.png) | ![preview 4](79/preview_4.png) | ![preview 5](79/preview_5.png) | ![preview 6](79/preview_6.png) | ![preview 7](79/preview_7.png) | ![preview 8](79/preview_8.png) | | 80 | 28 | [Download](80/dataset.zip) | ![preview 1](80/preview_1.png) | ![preview 2](80/preview_2.png) | ![preview 3](80/preview_3.png) | ![preview 4](80/preview_4.png) | ![preview 5](80/preview_5.png) | ![preview 6](80/preview_6.png) | ![preview 7](80/preview_7.png) | ![preview 8](80/preview_8.png) | | 81 | 79 | [Download](81/dataset.zip) | ![preview 1](81/preview_1.png) | ![preview 2](81/preview_2.png) | ![preview 3](81/preview_3.png) | ![preview 4](81/preview_4.png) | ![preview 5](81/preview_5.png) | ![preview 6](81/preview_6.png) | ![preview 7](81/preview_7.png) | ![preview 8](81/preview_8.png) | | 82 | 49 | [Download](82/dataset.zip) | ![preview 1](82/preview_1.png) | ![preview 2](82/preview_2.png) | ![preview 3](82/preview_3.png) | ![preview 4](82/preview_4.png) | ![preview 5](82/preview_5.png) | ![preview 6](82/preview_6.png) | ![preview 7](82/preview_7.png) | ![preview 8](82/preview_8.png) | | 83 | 159 | [Download](83/dataset.zip) | ![preview 1](83/preview_1.png) | ![preview 2](83/preview_2.png) | ![preview 3](83/preview_3.png) | ![preview 4](83/preview_4.png) | ![preview 5](83/preview_5.png) | ![preview 6](83/preview_6.png) | ![preview 7](83/preview_7.png) | ![preview 8](83/preview_8.png) | | 84 | 12 | [Download](84/dataset.zip) | ![preview 1](84/preview_1.png) | ![preview 2](84/preview_2.png) | ![preview 3](84/preview_3.png) | ![preview 4](84/preview_4.png) | ![preview 5](84/preview_5.png) | ![preview 6](84/preview_6.png) | ![preview 7](84/preview_7.png) | ![preview 8](84/preview_8.png) | | 85 | 15 | [Download](85/dataset.zip) | ![preview 1](85/preview_1.png) | ![preview 2](85/preview_2.png) | ![preview 3](85/preview_3.png) | ![preview 4](85/preview_4.png) | ![preview 5](85/preview_5.png) | ![preview 6](85/preview_6.png) | ![preview 7](85/preview_7.png) | ![preview 8](85/preview_8.png) | | 86 | 17 | [Download](86/dataset.zip) | ![preview 1](86/preview_1.png) | ![preview 2](86/preview_2.png) | ![preview 3](86/preview_3.png) | ![preview 4](86/preview_4.png) | ![preview 5](86/preview_5.png) | ![preview 6](86/preview_6.png) | ![preview 7](86/preview_7.png) | ![preview 8](86/preview_8.png) | | 87 | 63 | [Download](87/dataset.zip) | ![preview 1](87/preview_1.png) | ![preview 2](87/preview_2.png) | ![preview 3](87/preview_3.png) | ![preview 4](87/preview_4.png) | ![preview 5](87/preview_5.png) | ![preview 6](87/preview_6.png) | ![preview 7](87/preview_7.png) | ![preview 8](87/preview_8.png) | | 88 | 30 | [Download](88/dataset.zip) | ![preview 1](88/preview_1.png) | ![preview 2](88/preview_2.png) | ![preview 3](88/preview_3.png) | ![preview 4](88/preview_4.png) | ![preview 5](88/preview_5.png) | ![preview 6](88/preview_6.png) | ![preview 7](88/preview_7.png) | ![preview 8](88/preview_8.png) | | 89 | 64 | [Download](89/dataset.zip) | ![preview 1](89/preview_1.png) | ![preview 2](89/preview_2.png) | ![preview 3](89/preview_3.png) | ![preview 4](89/preview_4.png) | ![preview 5](89/preview_5.png) | ![preview 6](89/preview_6.png) | ![preview 7](89/preview_7.png) | ![preview 8](89/preview_8.png) | | 90 | 22 | [Download](90/dataset.zip) | ![preview 1](90/preview_1.png) | ![preview 2](90/preview_2.png) | ![preview 3](90/preview_3.png) | ![preview 4](90/preview_4.png) | ![preview 5](90/preview_5.png) | ![preview 6](90/preview_6.png) | ![preview 7](90/preview_7.png) | ![preview 8](90/preview_8.png) | | 91 | 90 | [Download](91/dataset.zip) | ![preview 1](91/preview_1.png) | ![preview 2](91/preview_2.png) | ![preview 3](91/preview_3.png) | ![preview 4](91/preview_4.png) | ![preview 5](91/preview_5.png) | ![preview 6](91/preview_6.png) | ![preview 7](91/preview_7.png) | ![preview 8](91/preview_8.png) | | 92 | 16 | [Download](92/dataset.zip) | ![preview 1](92/preview_1.png) | ![preview 2](92/preview_2.png) | ![preview 3](92/preview_3.png) | ![preview 4](92/preview_4.png) | ![preview 5](92/preview_5.png) | ![preview 6](92/preview_6.png) | ![preview 7](92/preview_7.png) | ![preview 8](92/preview_8.png) | | 93 | 25 | [Download](93/dataset.zip) | ![preview 1](93/preview_1.png) | ![preview 2](93/preview_2.png) | ![preview 3](93/preview_3.png) | ![preview 4](93/preview_4.png) | ![preview 5](93/preview_5.png) | ![preview 6](93/preview_6.png) | ![preview 7](93/preview_7.png) | ![preview 8](93/preview_8.png) | | 94 | 80 | [Download](94/dataset.zip) | ![preview 1](94/preview_1.png) | ![preview 2](94/preview_2.png) | ![preview 3](94/preview_3.png) | ![preview 4](94/preview_4.png) | ![preview 5](94/preview_5.png) | ![preview 6](94/preview_6.png) | ![preview 7](94/preview_7.png) | ![preview 8](94/preview_8.png) | | 95 | 43 | [Download](95/dataset.zip) | ![preview 1](95/preview_1.png) | ![preview 2](95/preview_2.png) | ![preview 3](95/preview_3.png) | ![preview 4](95/preview_4.png) | ![preview 5](95/preview_5.png) | ![preview 6](95/preview_6.png) | ![preview 7](95/preview_7.png) | ![preview 8](95/preview_8.png) | | 96 | 14 | [Download](96/dataset.zip) | ![preview 1](96/preview_1.png) | ![preview 2](96/preview_2.png) | ![preview 3](96/preview_3.png) | ![preview 4](96/preview_4.png) | ![preview 5](96/preview_5.png) | ![preview 6](96/preview_6.png) | ![preview 7](96/preview_7.png) | ![preview 8](96/preview_8.png) | | 97 | 73 | [Download](97/dataset.zip) | ![preview 1](97/preview_1.png) | ![preview 2](97/preview_2.png) | ![preview 3](97/preview_3.png) | ![preview 4](97/preview_4.png) | ![preview 5](97/preview_5.png) | ![preview 6](97/preview_6.png) | ![preview 7](97/preview_7.png) | ![preview 8](97/preview_8.png) | | 98 | 24 | [Download](98/dataset.zip) | ![preview 1](98/preview_1.png) | ![preview 2](98/preview_2.png) | ![preview 3](98/preview_3.png) | ![preview 4](98/preview_4.png) | ![preview 5](98/preview_5.png) | ![preview 6](98/preview_6.png) | ![preview 7](98/preview_7.png) | ![preview 8](98/preview_8.png) | | 99 | 31 | [Download](99/dataset.zip) | ![preview 1](99/preview_1.png) | ![preview 2](99/preview_2.png) | ![preview 3](99/preview_3.png) | ![preview 4](99/preview_4.png) | ![preview 5](99/preview_5.png) | ![preview 6](99/preview_6.png) | ![preview 7](99/preview_7.png) | ![preview 8](99/preview_8.png) | | 100 | 15 | [Download](100/dataset.zip) | ![preview 1](100/preview_1.png) | ![preview 2](100/preview_2.png) | ![preview 3](100/preview_3.png) | ![preview 4](100/preview_4.png) | ![preview 5](100/preview_5.png) | ![preview 6](100/preview_6.png) | ![preview 7](100/preview_7.png) | ![preview 8](100/preview_8.png) | | 101 | 34 | [Download](101/dataset.zip) | ![preview 1](101/preview_1.png) | ![preview 2](101/preview_2.png) | ![preview 3](101/preview_3.png) | ![preview 4](101/preview_4.png) | ![preview 5](101/preview_5.png) | ![preview 6](101/preview_6.png) | ![preview 7](101/preview_7.png) | ![preview 8](101/preview_8.png) | | 102 | 8 | [Download](102/dataset.zip) | ![preview 1](102/preview_1.png) | ![preview 2](102/preview_2.png) | ![preview 3](102/preview_3.png) | ![preview 4](102/preview_4.png) | ![preview 5](102/preview_5.png) | ![preview 6](102/preview_6.png) | ![preview 7](102/preview_7.png) | ![preview 8](102/preview_8.png) | | 103 | 20 | [Download](103/dataset.zip) | ![preview 1](103/preview_1.png) | ![preview 2](103/preview_2.png) | ![preview 3](103/preview_3.png) | ![preview 4](103/preview_4.png) | ![preview 5](103/preview_5.png) | ![preview 6](103/preview_6.png) | ![preview 7](103/preview_7.png) | ![preview 8](103/preview_8.png) | | 104 | 14 | [Download](104/dataset.zip) | ![preview 1](104/preview_1.png) | ![preview 2](104/preview_2.png) | ![preview 3](104/preview_3.png) | ![preview 4](104/preview_4.png) | ![preview 5](104/preview_5.png) | ![preview 6](104/preview_6.png) | ![preview 7](104/preview_7.png) | ![preview 8](104/preview_8.png) | | 105 | 118 | [Download](105/dataset.zip) | ![preview 1](105/preview_1.png) | ![preview 2](105/preview_2.png) | ![preview 3](105/preview_3.png) | ![preview 4](105/preview_4.png) | ![preview 5](105/preview_5.png) | ![preview 6](105/preview_6.png) | ![preview 7](105/preview_7.png) | ![preview 8](105/preview_8.png) | | 106 | 10 | [Download](106/dataset.zip) | ![preview 1](106/preview_1.png) | ![preview 2](106/preview_2.png) | ![preview 3](106/preview_3.png) | ![preview 4](106/preview_4.png) | ![preview 5](106/preview_5.png) | ![preview 6](106/preview_6.png) | ![preview 7](106/preview_7.png) | ![preview 8](106/preview_8.png) | | 107 | 8 | [Download](107/dataset.zip) | ![preview 1](107/preview_1.png) | ![preview 2](107/preview_2.png) | ![preview 3](107/preview_3.png) | ![preview 4](107/preview_4.png) | ![preview 5](107/preview_5.png) | ![preview 6](107/preview_6.png) | ![preview 7](107/preview_7.png) | ![preview 8](107/preview_8.png) | | 108 | 14 | [Download](108/dataset.zip) | ![preview 1](108/preview_1.png) | ![preview 2](108/preview_2.png) | ![preview 3](108/preview_3.png) | ![preview 4](108/preview_4.png) | ![preview 5](108/preview_5.png) | ![preview 6](108/preview_6.png) | ![preview 7](108/preview_7.png) | ![preview 8](108/preview_8.png) | | 109 | 12 | [Download](109/dataset.zip) | ![preview 1](109/preview_1.png) | ![preview 2](109/preview_2.png) | ![preview 3](109/preview_3.png) | ![preview 4](109/preview_4.png) | ![preview 5](109/preview_5.png) | ![preview 6](109/preview_6.png) | ![preview 7](109/preview_7.png) | ![preview 8](109/preview_8.png) | | 110 | 7 | [Download](110/dataset.zip) | ![preview 1](110/preview_1.png) | ![preview 2](110/preview_2.png) | ![preview 3](110/preview_3.png) | ![preview 4](110/preview_4.png) | ![preview 5](110/preview_5.png) | ![preview 6](110/preview_6.png) | ![preview 7](110/preview_7.png) | N/A | | 111 | 25 | [Download](111/dataset.zip) | ![preview 1](111/preview_1.png) | ![preview 2](111/preview_2.png) | ![preview 3](111/preview_3.png) | ![preview 4](111/preview_4.png) | ![preview 5](111/preview_5.png) | ![preview 6](111/preview_6.png) | ![preview 7](111/preview_7.png) | ![preview 8](111/preview_8.png) | | 112 | 20 | [Download](112/dataset.zip) | ![preview 1](112/preview_1.png) | ![preview 2](112/preview_2.png) | ![preview 3](112/preview_3.png) | ![preview 4](112/preview_4.png) | ![preview 5](112/preview_5.png) | ![preview 6](112/preview_6.png) | ![preview 7](112/preview_7.png) | ![preview 8](112/preview_8.png) | | 113 | 13 | [Download](113/dataset.zip) | ![preview 1](113/preview_1.png) | ![preview 2](113/preview_2.png) | ![preview 3](113/preview_3.png) | ![preview 4](113/preview_4.png) | ![preview 5](113/preview_5.png) | ![preview 6](113/preview_6.png) | ![preview 7](113/preview_7.png) | ![preview 8](113/preview_8.png) | | 114 | 48 | [Download](114/dataset.zip) | ![preview 1](114/preview_1.png) | ![preview 2](114/preview_2.png) | ![preview 3](114/preview_3.png) | ![preview 4](114/preview_4.png) | ![preview 5](114/preview_5.png) | ![preview 6](114/preview_6.png) | ![preview 7](114/preview_7.png) | ![preview 8](114/preview_8.png) | | 115 | 41 | [Download](115/dataset.zip) | ![preview 1](115/preview_1.png) | ![preview 2](115/preview_2.png) | ![preview 3](115/preview_3.png) | ![preview 4](115/preview_4.png) | ![preview 5](115/preview_5.png) | ![preview 6](115/preview_6.png) | ![preview 7](115/preview_7.png) | ![preview 8](115/preview_8.png) | | 116 | 98 | [Download](116/dataset.zip) | ![preview 1](116/preview_1.png) | ![preview 2](116/preview_2.png) | ![preview 3](116/preview_3.png) | ![preview 4](116/preview_4.png) | ![preview 5](116/preview_5.png) | ![preview 6](116/preview_6.png) | ![preview 7](116/preview_7.png) | ![preview 8](116/preview_8.png) | | 117 | 33 | [Download](117/dataset.zip) | ![preview 1](117/preview_1.png) | ![preview 2](117/preview_2.png) | ![preview 3](117/preview_3.png) | ![preview 4](117/preview_4.png) | ![preview 5](117/preview_5.png) | ![preview 6](117/preview_6.png) | ![preview 7](117/preview_7.png) | ![preview 8](117/preview_8.png) | | 118 | 15 | [Download](118/dataset.zip) | ![preview 1](118/preview_1.png) | ![preview 2](118/preview_2.png) | ![preview 3](118/preview_3.png) | ![preview 4](118/preview_4.png) | ![preview 5](118/preview_5.png) | ![preview 6](118/preview_6.png) | ![preview 7](118/preview_7.png) | ![preview 8](118/preview_8.png) | | 119 | 15 | [Download](119/dataset.zip) | ![preview 1](119/preview_1.png) | ![preview 2](119/preview_2.png) | ![preview 3](119/preview_3.png) | ![preview 4](119/preview_4.png) | ![preview 5](119/preview_5.png) | ![preview 6](119/preview_6.png) | ![preview 7](119/preview_7.png) | ![preview 8](119/preview_8.png) | | 120 | 17 | [Download](120/dataset.zip) | ![preview 1](120/preview_1.png) | ![preview 2](120/preview_2.png) | ![preview 3](120/preview_3.png) | ![preview 4](120/preview_4.png) | ![preview 5](120/preview_5.png) | ![preview 6](120/preview_6.png) | ![preview 7](120/preview_7.png) | ![preview 8](120/preview_8.png) | | 121 | 7 | [Download](121/dataset.zip) | ![preview 1](121/preview_1.png) | ![preview 2](121/preview_2.png) | ![preview 3](121/preview_3.png) | ![preview 4](121/preview_4.png) | ![preview 5](121/preview_5.png) | ![preview 6](121/preview_6.png) | ![preview 7](121/preview_7.png) | N/A | | 122 | 16 | [Download](122/dataset.zip) | ![preview 1](122/preview_1.png) | ![preview 2](122/preview_2.png) | ![preview 3](122/preview_3.png) | ![preview 4](122/preview_4.png) | ![preview 5](122/preview_5.png) | ![preview 6](122/preview_6.png) | ![preview 7](122/preview_7.png) | ![preview 8](122/preview_8.png) | | 123 | 38 | [Download](123/dataset.zip) | ![preview 1](123/preview_1.png) | ![preview 2](123/preview_2.png) | ![preview 3](123/preview_3.png) | ![preview 4](123/preview_4.png) | ![preview 5](123/preview_5.png) | ![preview 6](123/preview_6.png) | ![preview 7](123/preview_7.png) | ![preview 8](123/preview_8.png) | | 124 | 10 | [Download](124/dataset.zip) | ![preview 1](124/preview_1.png) | ![preview 2](124/preview_2.png) | ![preview 3](124/preview_3.png) | ![preview 4](124/preview_4.png) | ![preview 5](124/preview_5.png) | ![preview 6](124/preview_6.png) | ![preview 7](124/preview_7.png) | ![preview 8](124/preview_8.png) | | 125 | 13 | [Download](125/dataset.zip) | ![preview 1](125/preview_1.png) | ![preview 2](125/preview_2.png) | ![preview 3](125/preview_3.png) | ![preview 4](125/preview_4.png) | ![preview 5](125/preview_5.png) | ![preview 6](125/preview_6.png) | ![preview 7](125/preview_7.png) | ![preview 8](125/preview_8.png) | | 126 | 38 | [Download](126/dataset.zip) | ![preview 1](126/preview_1.png) | ![preview 2](126/preview_2.png) | ![preview 3](126/preview_3.png) | ![preview 4](126/preview_4.png) | ![preview 5](126/preview_5.png) | ![preview 6](126/preview_6.png) | ![preview 7](126/preview_7.png) | ![preview 8](126/preview_8.png) | | 127 | 17 | [Download](127/dataset.zip) | ![preview 1](127/preview_1.png) | ![preview 2](127/preview_2.png) | ![preview 3](127/preview_3.png) | ![preview 4](127/preview_4.png) | ![preview 5](127/preview_5.png) | ![preview 6](127/preview_6.png) | ![preview 7](127/preview_7.png) | ![preview 8](127/preview_8.png) | | 128 | 60 | [Download](128/dataset.zip) | ![preview 1](128/preview_1.png) | ![preview 2](128/preview_2.png) | ![preview 3](128/preview_3.png) | ![preview 4](128/preview_4.png) | ![preview 5](128/preview_5.png) | ![preview 6](128/preview_6.png) | ![preview 7](128/preview_7.png) | ![preview 8](128/preview_8.png) | | 129 | 223 | [Download](129/dataset.zip) | ![preview 1](129/preview_1.png) | ![preview 2](129/preview_2.png) | ![preview 3](129/preview_3.png) | ![preview 4](129/preview_4.png) | ![preview 5](129/preview_5.png) | ![preview 6](129/preview_6.png) | ![preview 7](129/preview_7.png) | ![preview 8](129/preview_8.png) | | 130 | 6 | [Download](130/dataset.zip) | ![preview 1](130/preview_1.png) | ![preview 2](130/preview_2.png) | ![preview 3](130/preview_3.png) | ![preview 4](130/preview_4.png) | ![preview 5](130/preview_5.png) | ![preview 6](130/preview_6.png) | N/A | N/A | | 131 | 176 | [Download](131/dataset.zip) | ![preview 1](131/preview_1.png) | ![preview 2](131/preview_2.png) | ![preview 3](131/preview_3.png) | ![preview 4](131/preview_4.png) | ![preview 5](131/preview_5.png) | ![preview 6](131/preview_6.png) | ![preview 7](131/preview_7.png) | ![preview 8](131/preview_8.png) | | 132 | 11 | [Download](132/dataset.zip) | ![preview 1](132/preview_1.png) | ![preview 2](132/preview_2.png) | ![preview 3](132/preview_3.png) | ![preview 4](132/preview_4.png) | ![preview 5](132/preview_5.png) | ![preview 6](132/preview_6.png) | ![preview 7](132/preview_7.png) | ![preview 8](132/preview_8.png) | | 133 | 7 | [Download](133/dataset.zip) | ![preview 1](133/preview_1.png) | ![preview 2](133/preview_2.png) | ![preview 3](133/preview_3.png) | ![preview 4](133/preview_4.png) | ![preview 5](133/preview_5.png) | ![preview 6](133/preview_6.png) | ![preview 7](133/preview_7.png) | N/A | | 134 | 13 | [Download](134/dataset.zip) | ![preview 1](134/preview_1.png) | ![preview 2](134/preview_2.png) | ![preview 3](134/preview_3.png) | ![preview 4](134/preview_4.png) | ![preview 5](134/preview_5.png) | ![preview 6](134/preview_6.png) | ![preview 7](134/preview_7.png) | ![preview 8](134/preview_8.png) | | 135 | 105 | [Download](135/dataset.zip) | ![preview 1](135/preview_1.png) | ![preview 2](135/preview_2.png) | ![preview 3](135/preview_3.png) | ![preview 4](135/preview_4.png) | ![preview 5](135/preview_5.png) | ![preview 6](135/preview_6.png) | ![preview 7](135/preview_7.png) | ![preview 8](135/preview_8.png) | | 136 | 123 | [Download](136/dataset.zip) | ![preview 1](136/preview_1.png) | ![preview 2](136/preview_2.png) | ![preview 3](136/preview_3.png) | ![preview 4](136/preview_4.png) | ![preview 5](136/preview_5.png) | ![preview 6](136/preview_6.png) | ![preview 7](136/preview_7.png) | ![preview 8](136/preview_8.png) | | 137 | 20 | [Download](137/dataset.zip) | ![preview 1](137/preview_1.png) | ![preview 2](137/preview_2.png) | ![preview 3](137/preview_3.png) | ![preview 4](137/preview_4.png) | ![preview 5](137/preview_5.png) | ![preview 6](137/preview_6.png) | ![preview 7](137/preview_7.png) | ![preview 8](137/preview_8.png) | | 138 | 14 | [Download](138/dataset.zip) | ![preview 1](138/preview_1.png) | ![preview 2](138/preview_2.png) | ![preview 3](138/preview_3.png) | ![preview 4](138/preview_4.png) | ![preview 5](138/preview_5.png) | ![preview 6](138/preview_6.png) | ![preview 7](138/preview_7.png) | ![preview 8](138/preview_8.png) | | 139 | 13 | [Download](139/dataset.zip) | ![preview 1](139/preview_1.png) | ![preview 2](139/preview_2.png) | ![preview 3](139/preview_3.png) | ![preview 4](139/preview_4.png) | ![preview 5](139/preview_5.png) | ![preview 6](139/preview_6.png) | ![preview 7](139/preview_7.png) | ![preview 8](139/preview_8.png) | | 140 | 48 | [Download](140/dataset.zip) | ![preview 1](140/preview_1.png) | ![preview 2](140/preview_2.png) | ![preview 3](140/preview_3.png) | ![preview 4](140/preview_4.png) | ![preview 5](140/preview_5.png) | ![preview 6](140/preview_6.png) | ![preview 7](140/preview_7.png) | ![preview 8](140/preview_8.png) | | 141 | 9 | [Download](141/dataset.zip) | ![preview 1](141/preview_1.png) | ![preview 2](141/preview_2.png) | ![preview 3](141/preview_3.png) | ![preview 4](141/preview_4.png) | ![preview 5](141/preview_5.png) | ![preview 6](141/preview_6.png) | ![preview 7](141/preview_7.png) | ![preview 8](141/preview_8.png) | | 142 | 18 | [Download](142/dataset.zip) | ![preview 1](142/preview_1.png) | ![preview 2](142/preview_2.png) | ![preview 3](142/preview_3.png) | ![preview 4](142/preview_4.png) | ![preview 5](142/preview_5.png) | ![preview 6](142/preview_6.png) | ![preview 7](142/preview_7.png) | ![preview 8](142/preview_8.png) | | 143 | 18 | [Download](143/dataset.zip) | ![preview 1](143/preview_1.png) | ![preview 2](143/preview_2.png) | ![preview 3](143/preview_3.png) | ![preview 4](143/preview_4.png) | ![preview 5](143/preview_5.png) | ![preview 6](143/preview_6.png) | ![preview 7](143/preview_7.png) | ![preview 8](143/preview_8.png) | | 144 | 7 | [Download](144/dataset.zip) | ![preview 1](144/preview_1.png) | ![preview 2](144/preview_2.png) | ![preview 3](144/preview_3.png) | ![preview 4](144/preview_4.png) | ![preview 5](144/preview_5.png) | ![preview 6](144/preview_6.png) | ![preview 7](144/preview_7.png) | N/A | | 145 | 7 | [Download](145/dataset.zip) | ![preview 1](145/preview_1.png) | ![preview 2](145/preview_2.png) | ![preview 3](145/preview_3.png) | ![preview 4](145/preview_4.png) | ![preview 5](145/preview_5.png) | ![preview 6](145/preview_6.png) | ![preview 7](145/preview_7.png) | N/A | | 146 | 18 | [Download](146/dataset.zip) | ![preview 1](146/preview_1.png) | ![preview 2](146/preview_2.png) | ![preview 3](146/preview_3.png) | ![preview 4](146/preview_4.png) | ![preview 5](146/preview_5.png) | ![preview 6](146/preview_6.png) | ![preview 7](146/preview_7.png) | ![preview 8](146/preview_8.png) | | noise | 617 | [Download](-1/dataset.zip) | ![preview 1](-1/preview_1.png) | ![preview 2](-1/preview_2.png) | ![preview 3](-1/preview_3.png) | ![preview 4](-1/preview_4.png) | ![preview 5](-1/preview_5.png) | ![preview 6](-1/preview_6.png) | ![preview 7](-1/preview_7.png) | ![preview 8](-1/preview_8.png) |
BangumiBase/swordartonline
[ "size_categories:10K<n<100K", "license:mit", "art", "region:us" ]
2023-10-01T02:37:06+00:00
{"license": "mit", "size_categories": ["10K<n<100K"], "tags": ["art"]}
2023-10-01T10:28:55+00:00
[]
[]
TAGS #size_categories-10K<n<100K #license-mit #art #region-us
Bangumi Image Base of Sword Art Online ====================================== This is the image base of bangumi Sword Art Online, we detected 148 characters, 14651 images in total. The full dataset is here. Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual. If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability). Here is the characters' preview:
[]
[ "TAGS\n#size_categories-10K<n<100K #license-mit #art #region-us \n" ]
[ 25 ]
[ "passage: TAGS\n#size_categories-10K<n<100K #license-mit #art #region-us \n" ]
8a65468ad4c25dda0b8b2589e9f6bf011cc9aab6
pretty_name: SQuAD annotations_creators: - crowdsourced language_creators: - crowdsourced - found language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|wikipedia task_categories: - question-answering task_ids: - extractive-qa paperswithcode_id: squad train-eval-index: - config: plain_text task: question-answering task_id: extractive_question_answering splits: train_split: train eval_split: validation col_mapping: question: question context: context answers: text: text answer_start: answer_start metrics: - type: squad name: SQuAD dataset_info: features: - name: id dtype: string - name: title dtype: string - name: context dtype: string - name: question dtype: string - name: answers sequence: - name: text dtype: string - name: answer_start dtype: int32 config_name: plain_text splits: - name: train num_bytes: 79317110 num_examples: 87599 - name: validation num_bytes: 10472653 num_examples: 10570 download_size: 35142551 dataset_size: 89789763
W1lson/test
[ "region:us" ]
2023-10-01T03:18:32+00:00
{"dataset_info": {"features": [{"name": "Question", "dtype": "string"}, {"name": "Answer", "dtype": "string"}, {"name": "Context", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 556, "num_examples": 4}], "download_size": 2763, "dataset_size": 556}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-04T00:28:36+00:00
[]
[]
TAGS #region-us
pretty_name: SQuAD annotations_creators: - crowdsourced language_creators: - crowdsourced - found language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|wikipedia task_categories: - question-answering task_ids: - extractive-qa paperswithcode_id: squad train-eval-index: - config: plain_text task: question-answering task_id: extractive_question_answering splits: train_split: train eval_split: validation col_mapping: question: question context: context answers: text: text answer_start: answer_start metrics: - type: squad name: SQuAD dataset_info: features: - name: id dtype: string - name: title dtype: string - name: context dtype: string - name: question dtype: string - name: answers sequence: - name: text dtype: string - name: answer_start dtype: int32 config_name: plain_text splits: - name: train num_bytes: 79317110 num_examples: 87599 - name: validation num_bytes: 10472653 num_examples: 10570 download_size: 35142551 dataset_size: 89789763
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
7f6369f1c23271b39823c02eb7de4240a4d2ed13
# Dataset Card for "dataset1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
W1lson/dataset1
[ "region:us" ]
2023-10-01T03:52:26+00:00
{"dataset_info": {"features": [{"name": "data", "list": [{"name": "title", "dtype": "string"}, {"name": "paragraphs", "list": [{"name": "context", "dtype": "string"}, {"name": "qas", "list": [{"name": "question", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "answers", "list": [{"name": "text", "dtype": "string"}, {"name": "answer_start", "dtype": "int64"}]}]}]}]}], "splits": [{"name": "train", "num_bytes": 557, "num_examples": 1}], "download_size": 5526, "dataset_size": 557}}
2023-10-01T03:52:28+00:00
[]
[]
TAGS #region-us
# Dataset Card for "dataset1" More Information needed
[ "# Dataset Card for \"dataset1\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"dataset1\"\n\nMore Information needed" ]
[ 6, 13 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"dataset1\"\n\nMore Information needed" ]
dd296975d268fbf03a2f14aa639fc563a7422972
# Dataset Card for "dataset2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
W1lson/dataset2
[ "region:us" ]
2023-10-01T03:55:51+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 273, "num_examples": 2}], "download_size": 3123, "dataset_size": 273}}
2023-10-01T03:55:53+00:00
[]
[]
TAGS #region-us
# Dataset Card for "dataset2" More Information needed
[ "# Dataset Card for \"dataset2\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"dataset2\"\n\nMore Information needed" ]
[ 6, 13 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"dataset2\"\n\nMore Information needed" ]
bef2419fd126fbee180fdbb8ce877c998c1a654b
# Dataset Card for "dataset1_two_app" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tanvirsrbd1/dataset1_two_app
[ "region:us" ]
2023-10-01T04:17:10+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "xml", "dtype": "string"}, {"name": "html", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1919575, "num_examples": 68}], "download_size": 258813, "dataset_size": 1919575}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T04:17:16+00:00
[]
[]
TAGS #region-us
# Dataset Card for "dataset1_two_app" More Information needed
[ "# Dataset Card for \"dataset1_two_app\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"dataset1_two_app\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"dataset1_two_app\"\n\nMore Information needed" ]
cc62498ca5121247f9be4b60d9d27b5f68febf36
# Bangumi Image Base of Mirai Nikki This is the image base of bangumi Mirai Nikki, we detected 27 characters, 2067 images in total. The full dataset is [here](all.zip). **Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability). Here is the characters' preview: | # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 | |:------|---------:|:---------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------| | 0 | 626 | [Download](0/dataset.zip) | ![preview 1](0/preview_1.png) | ![preview 2](0/preview_2.png) | ![preview 3](0/preview_3.png) | ![preview 4](0/preview_4.png) | ![preview 5](0/preview_5.png) | ![preview 6](0/preview_6.png) | ![preview 7](0/preview_7.png) | ![preview 8](0/preview_8.png) | | 1 | 105 | [Download](1/dataset.zip) | ![preview 1](1/preview_1.png) | ![preview 2](1/preview_2.png) | ![preview 3](1/preview_3.png) | ![preview 4](1/preview_4.png) | ![preview 5](1/preview_5.png) | ![preview 6](1/preview_6.png) | ![preview 7](1/preview_7.png) | ![preview 8](1/preview_8.png) | | 2 | 90 | [Download](2/dataset.zip) | ![preview 1](2/preview_1.png) | ![preview 2](2/preview_2.png) | ![preview 3](2/preview_3.png) | ![preview 4](2/preview_4.png) | ![preview 5](2/preview_5.png) | ![preview 6](2/preview_6.png) | ![preview 7](2/preview_7.png) | ![preview 8](2/preview_8.png) | | 3 | 42 | [Download](3/dataset.zip) | ![preview 1](3/preview_1.png) | ![preview 2](3/preview_2.png) | ![preview 3](3/preview_3.png) | ![preview 4](3/preview_4.png) | ![preview 5](3/preview_5.png) | ![preview 6](3/preview_6.png) | ![preview 7](3/preview_7.png) | ![preview 8](3/preview_8.png) | | 4 | 37 | [Download](4/dataset.zip) | ![preview 1](4/preview_1.png) | ![preview 2](4/preview_2.png) | ![preview 3](4/preview_3.png) | ![preview 4](4/preview_4.png) | ![preview 5](4/preview_5.png) | ![preview 6](4/preview_6.png) | ![preview 7](4/preview_7.png) | ![preview 8](4/preview_8.png) | | 5 | 10 | [Download](5/dataset.zip) | ![preview 1](5/preview_1.png) | ![preview 2](5/preview_2.png) | ![preview 3](5/preview_3.png) | ![preview 4](5/preview_4.png) | ![preview 5](5/preview_5.png) | ![preview 6](5/preview_6.png) | ![preview 7](5/preview_7.png) | ![preview 8](5/preview_8.png) | | 6 | 35 | [Download](6/dataset.zip) | ![preview 1](6/preview_1.png) | ![preview 2](6/preview_2.png) | ![preview 3](6/preview_3.png) | ![preview 4](6/preview_4.png) | ![preview 5](6/preview_5.png) | ![preview 6](6/preview_6.png) | ![preview 7](6/preview_7.png) | ![preview 8](6/preview_8.png) | | 7 | 12 | [Download](7/dataset.zip) | ![preview 1](7/preview_1.png) | ![preview 2](7/preview_2.png) | ![preview 3](7/preview_3.png) | ![preview 4](7/preview_4.png) | ![preview 5](7/preview_5.png) | ![preview 6](7/preview_6.png) | ![preview 7](7/preview_7.png) | ![preview 8](7/preview_8.png) | | 8 | 46 | [Download](8/dataset.zip) | ![preview 1](8/preview_1.png) | ![preview 2](8/preview_2.png) | ![preview 3](8/preview_3.png) | ![preview 4](8/preview_4.png) | ![preview 5](8/preview_5.png) | ![preview 6](8/preview_6.png) | ![preview 7](8/preview_7.png) | ![preview 8](8/preview_8.png) | | 9 | 49 | [Download](9/dataset.zip) | ![preview 1](9/preview_1.png) | ![preview 2](9/preview_2.png) | ![preview 3](9/preview_3.png) | ![preview 4](9/preview_4.png) | ![preview 5](9/preview_5.png) | ![preview 6](9/preview_6.png) | ![preview 7](9/preview_7.png) | ![preview 8](9/preview_8.png) | | 10 | 59 | [Download](10/dataset.zip) | ![preview 1](10/preview_1.png) | ![preview 2](10/preview_2.png) | ![preview 3](10/preview_3.png) | ![preview 4](10/preview_4.png) | ![preview 5](10/preview_5.png) | ![preview 6](10/preview_6.png) | ![preview 7](10/preview_7.png) | ![preview 8](10/preview_8.png) | | 11 | 18 | [Download](11/dataset.zip) | ![preview 1](11/preview_1.png) | ![preview 2](11/preview_2.png) | ![preview 3](11/preview_3.png) | ![preview 4](11/preview_4.png) | ![preview 5](11/preview_5.png) | ![preview 6](11/preview_6.png) | ![preview 7](11/preview_7.png) | ![preview 8](11/preview_8.png) | | 12 | 10 | [Download](12/dataset.zip) | ![preview 1](12/preview_1.png) | ![preview 2](12/preview_2.png) | ![preview 3](12/preview_3.png) | ![preview 4](12/preview_4.png) | ![preview 5](12/preview_5.png) | ![preview 6](12/preview_6.png) | ![preview 7](12/preview_7.png) | ![preview 8](12/preview_8.png) | | 13 | 14 | [Download](13/dataset.zip) | ![preview 1](13/preview_1.png) | ![preview 2](13/preview_2.png) | ![preview 3](13/preview_3.png) | ![preview 4](13/preview_4.png) | ![preview 5](13/preview_5.png) | ![preview 6](13/preview_6.png) | ![preview 7](13/preview_7.png) | ![preview 8](13/preview_8.png) | | 14 | 28 | [Download](14/dataset.zip) | ![preview 1](14/preview_1.png) | ![preview 2](14/preview_2.png) | ![preview 3](14/preview_3.png) | ![preview 4](14/preview_4.png) | ![preview 5](14/preview_5.png) | ![preview 6](14/preview_6.png) | ![preview 7](14/preview_7.png) | ![preview 8](14/preview_8.png) | | 15 | 48 | [Download](15/dataset.zip) | ![preview 1](15/preview_1.png) | ![preview 2](15/preview_2.png) | ![preview 3](15/preview_3.png) | ![preview 4](15/preview_4.png) | ![preview 5](15/preview_5.png) | ![preview 6](15/preview_6.png) | ![preview 7](15/preview_7.png) | ![preview 8](15/preview_8.png) | | 16 | 351 | [Download](16/dataset.zip) | ![preview 1](16/preview_1.png) | ![preview 2](16/preview_2.png) | ![preview 3](16/preview_3.png) | ![preview 4](16/preview_4.png) | ![preview 5](16/preview_5.png) | ![preview 6](16/preview_6.png) | ![preview 7](16/preview_7.png) | ![preview 8](16/preview_8.png) | | 17 | 39 | [Download](17/dataset.zip) | ![preview 1](17/preview_1.png) | ![preview 2](17/preview_2.png) | ![preview 3](17/preview_3.png) | ![preview 4](17/preview_4.png) | ![preview 5](17/preview_5.png) | ![preview 6](17/preview_6.png) | ![preview 7](17/preview_7.png) | ![preview 8](17/preview_8.png) | | 18 | 70 | [Download](18/dataset.zip) | ![preview 1](18/preview_1.png) | ![preview 2](18/preview_2.png) | ![preview 3](18/preview_3.png) | ![preview 4](18/preview_4.png) | ![preview 5](18/preview_5.png) | ![preview 6](18/preview_6.png) | ![preview 7](18/preview_7.png) | ![preview 8](18/preview_8.png) | | 19 | 12 | [Download](19/dataset.zip) | ![preview 1](19/preview_1.png) | ![preview 2](19/preview_2.png) | ![preview 3](19/preview_3.png) | ![preview 4](19/preview_4.png) | ![preview 5](19/preview_5.png) | ![preview 6](19/preview_6.png) | ![preview 7](19/preview_7.png) | ![preview 8](19/preview_8.png) | | 20 | 76 | [Download](20/dataset.zip) | ![preview 1](20/preview_1.png) | ![preview 2](20/preview_2.png) | ![preview 3](20/preview_3.png) | ![preview 4](20/preview_4.png) | ![preview 5](20/preview_5.png) | ![preview 6](20/preview_6.png) | ![preview 7](20/preview_7.png) | ![preview 8](20/preview_8.png) | | 21 | 17 | [Download](21/dataset.zip) | ![preview 1](21/preview_1.png) | ![preview 2](21/preview_2.png) | ![preview 3](21/preview_3.png) | ![preview 4](21/preview_4.png) | ![preview 5](21/preview_5.png) | ![preview 6](21/preview_6.png) | ![preview 7](21/preview_7.png) | ![preview 8](21/preview_8.png) | | 22 | 20 | [Download](22/dataset.zip) | ![preview 1](22/preview_1.png) | ![preview 2](22/preview_2.png) | ![preview 3](22/preview_3.png) | ![preview 4](22/preview_4.png) | ![preview 5](22/preview_5.png) | ![preview 6](22/preview_6.png) | ![preview 7](22/preview_7.png) | ![preview 8](22/preview_8.png) | | 23 | 6 | [Download](23/dataset.zip) | ![preview 1](23/preview_1.png) | ![preview 2](23/preview_2.png) | ![preview 3](23/preview_3.png) | ![preview 4](23/preview_4.png) | ![preview 5](23/preview_5.png) | ![preview 6](23/preview_6.png) | N/A | N/A | | 24 | 25 | [Download](24/dataset.zip) | ![preview 1](24/preview_1.png) | ![preview 2](24/preview_2.png) | ![preview 3](24/preview_3.png) | ![preview 4](24/preview_4.png) | ![preview 5](24/preview_5.png) | ![preview 6](24/preview_6.png) | ![preview 7](24/preview_7.png) | ![preview 8](24/preview_8.png) | | 25 | 6 | [Download](25/dataset.zip) | ![preview 1](25/preview_1.png) | ![preview 2](25/preview_2.png) | ![preview 3](25/preview_3.png) | ![preview 4](25/preview_4.png) | ![preview 5](25/preview_5.png) | ![preview 6](25/preview_6.png) | N/A | N/A | | noise | 216 | [Download](-1/dataset.zip) | ![preview 1](-1/preview_1.png) | ![preview 2](-1/preview_2.png) | ![preview 3](-1/preview_3.png) | ![preview 4](-1/preview_4.png) | ![preview 5](-1/preview_5.png) | ![preview 6](-1/preview_6.png) | ![preview 7](-1/preview_7.png) | ![preview 8](-1/preview_8.png) |
BangumiBase/mirainikki
[ "size_categories:1K<n<10K", "license:mit", "art", "region:us" ]
2023-10-01T04:26:39+00:00
{"license": "mit", "size_categories": ["1K<n<10K"], "tags": ["art"]}
2023-10-01T05:49:56+00:00
[]
[]
TAGS #size_categories-1K<n<10K #license-mit #art #region-us
Bangumi Image Base of Mirai Nikki ================================= This is the image base of bangumi Mirai Nikki, we detected 27 characters, 2067 images in total. The full dataset is here. Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual. If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability). Here is the characters' preview:
[]
[ "TAGS\n#size_categories-1K<n<10K #license-mit #art #region-us \n" ]
[ 25 ]
[ "passage: TAGS\n#size_categories-1K<n<10K #license-mit #art #region-us \n" ]
91c955f7cfd803bff2d1f71b088ad40e298838c7
# Dataset Card for "dataset1_two_app_annotated" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tanvirsrbd1/dataset1_two_app_annotated
[ "region:us" ]
2023-10-01T04:30:48+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "xml", "dtype": "string"}, {"name": "html", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "annotated", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1934116.0, "num_examples": 68}], "download_size": 266133, "dataset_size": 1934116.0}}
2023-10-01T04:30:53+00:00
[]
[]
TAGS #region-us
# Dataset Card for "dataset1_two_app_annotated" More Information needed
[ "# Dataset Card for \"dataset1_two_app_annotated\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"dataset1_two_app_annotated\"\n\nMore Information needed" ]
[ 6, 21 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"dataset1_two_app_annotated\"\n\nMore Information needed" ]
ce766d8363d779cd8efa159d04bf8a1dd57b962d
# Dataset Card for "dataset1_two_app_annotated1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tanvirsrbd1/dataset1_two_app_annotated1
[ "region:us" ]
2023-10-01T04:32:15+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "xml", "dtype": "string"}, {"name": "html", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "annotated", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1894327.1470588236, "num_examples": 66}], "download_size": 265891, "dataset_size": 1894327.1470588236}}
2023-10-01T04:32:23+00:00
[]
[]
TAGS #region-us
# Dataset Card for "dataset1_two_app_annotated1" More Information needed
[ "# Dataset Card for \"dataset1_two_app_annotated1\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"dataset1_two_app_annotated1\"\n\nMore Information needed" ]
[ 6, 22 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"dataset1_two_app_annotated1\"\n\nMore Information needed" ]
8c5bb174bbac7c2922e26518c063625de7632394
# Dataset Card for "guanaco-llama2-200" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
geraldng01/guanaco-llama2-200
[ "region:us" ]
2023-10-01T04:42:15+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 338808, "num_examples": 200}], "download_size": 0, "dataset_size": 338808}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T11:19:20+00:00
[]
[]
TAGS #region-us
# Dataset Card for "guanaco-llama2-200" More Information needed
[ "# Dataset Card for \"guanaco-llama2-200\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"guanaco-llama2-200\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"guanaco-llama2-200\"\n\nMore Information needed" ]
3ec3f9d98a4790a5f961026934c902af0ea4e781
# Dataset Card for "vlsp2023-test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pphuc25/vlsp2023-test
[ "region:us" ]
2023-10-01T05:06:46+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "path", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5694963666.0, "num_examples": 50000}], "download_size": 4334044163, "dataset_size": 5694963666.0}}
2023-10-01T05:12:48+00:00
[]
[]
TAGS #region-us
# Dataset Card for "vlsp2023-test" More Information needed
[ "# Dataset Card for \"vlsp2023-test\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"vlsp2023-test\"\n\nMore Information needed" ]
[ 6, 16 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"vlsp2023-test\"\n\nMore Information needed" ]
2d4e846da6c1271fbfc7020f4264a165e6c8c927
This dataset came from Kaggle and was contributed by Paul Mooney. https://www.kaggle.com/datasets/paultimothymooney/medical-speech-transcription-and-intent/data Context 8.5 hours of audio utterances paired with text for common medical symptoms. Content This data contains thousands of audio utterances for common medical symptoms like “knee pain” or “headache,” totaling more than 8 hours in aggregate. Each utterance was created by individual human contributors based on a given symptom. These audio snippets can be used to train conversational agents in the medical field. This Figure Eight dataset was created via a multi-job workflow. The first involved contributors writing text phrases to describe symptoms given. For example, for “headache,” a contributor might write “I need help with my migraines.” Subsequent jobs captured audio utterances for accepted text strings. Note that some of the labels are incorrect and some of the audio files have poor quality. I would recommend cleaning the dataset before training any machine learning models. This dataset contains both the audio utterances and corresponding transcriptions. Acknowledgements This dataset was developed by figure-eight and can be downloaded from https://www.figure-eight.com/dataset/audio-recording-and-transcription-for-medical-scenarios/ along with instructions on how to make similar datasets using the figure-eight platform. https://www.figure-eight.com/dataset/audio-recording-and-transcription-for-medical-scenarios/ Banner Photo by rawpixel on Unsplash
Shamus/Medical_Speech_Transcription_and_Intent
[ "size_categories:1K<n<10K", "language:en", "region:us" ]
2023-10-01T05:28:27+00:00
{"language": ["en"], "size_categories": ["1K<n<10K"]}
2023-10-01T07:27:43+00:00
[]
[ "en" ]
TAGS #size_categories-1K<n<10K #language-English #region-us
This dataset came from Kaggle and was contributed by Paul Mooney. URL Context 8.5 hours of audio utterances paired with text for common medical symptoms. Content This data contains thousands of audio utterances for common medical symptoms like “knee pain” or “headache,” totaling more than 8 hours in aggregate. Each utterance was created by individual human contributors based on a given symptom. These audio snippets can be used to train conversational agents in the medical field. This Figure Eight dataset was created via a multi-job workflow. The first involved contributors writing text phrases to describe symptoms given. For example, for “headache,” a contributor might write “I need help with my migraines.” Subsequent jobs captured audio utterances for accepted text strings. Note that some of the labels are incorrect and some of the audio files have poor quality. I would recommend cleaning the dataset before training any machine learning models. This dataset contains both the audio utterances and corresponding transcriptions. Acknowledgements This dataset was developed by figure-eight and can be downloaded from URL along with instructions on how to make similar datasets using the figure-eight platform. URL Banner Photo by rawpixel on Unsplash
[]
[ "TAGS\n#size_categories-1K<n<10K #language-English #region-us \n" ]
[ 22 ]
[ "passage: TAGS\n#size_categories-1K<n<10K #language-English #region-us \n" ]
7d1c68182f51338565d50f2ce39d2a033c35e331
# Dataset Card for "autotrain-data-nlxe-ggzg-28qh" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mborkhat/autotrain-data-nlxe-ggzg-28qh
[ "region:us" ]
2023-10-01T05:33:25+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "autotrain_text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 46221549, "num_examples": 52002}, {"name": "validation", "num_bytes": 46221549, "num_examples": 52002}], "download_size": 48492298, "dataset_size": 92443098}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}]}
2023-10-01T05:33:27+00:00
[]
[]
TAGS #region-us
# Dataset Card for "autotrain-data-nlxe-ggzg-28qh" More Information needed
[ "# Dataset Card for \"autotrain-data-nlxe-ggzg-28qh\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"autotrain-data-nlxe-ggzg-28qh\"\n\nMore Information needed" ]
[ 6, 24 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"autotrain-data-nlxe-ggzg-28qh\"\n\nMore Information needed" ]
3f59ff7fbd9385f24192208a8781bed36c3255ca
# Dataset Card for "vlsp2023-test1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pphuc25/vlsp2023-test1
[ "region:us" ]
2023-10-01T06:09:26+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "audio", "dtype": "audio"}], "splits": [{"name": "train", "num_bytes": 5246006958.0, "num_examples": 50000}], "download_size": 5764003517, "dataset_size": 5246006958.0}}
2023-10-01T06:15:06+00:00
[]
[]
TAGS #region-us
# Dataset Card for "vlsp2023-test1" More Information needed
[ "# Dataset Card for \"vlsp2023-test1\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"vlsp2023-test1\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"vlsp2023-test1\"\n\nMore Information needed" ]
22fbebba05dc29c1e0836db28979c66772a4d6fd
# Dataset Card for "test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tazarov/test
[ "size_categories:n<1K", "language:en", "license:mit", "region:us" ]
2023-10-01T06:42:33+00:00
{"language": "en", "license": "mit", "size_categories": ["n<1K"], "pretty_name": "Chroma export of collection test", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "embedding", "sequence": "float32"}, {"name": "document", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6533201, "num_examples": 1000}], "download_size": 6978967, "dataset_size": 6533201}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "x-chroma": {"description": "Chroma Dataset for collection test", "collection": "test", "metadata": "None"}}
2024-01-08T17:01:20+00:00
[]
[ "en" ]
TAGS #size_categories-n<1K #language-English #license-mit #region-us
# Dataset Card for "test" More Information needed
[ "# Dataset Card for \"test\"\n\nMore Information needed" ]
[ "TAGS\n#size_categories-n<1K #language-English #license-mit #region-us \n", "# Dataset Card for \"test\"\n\nMore Information needed" ]
[ 25, 11 ]
[ "passage: TAGS\n#size_categories-n<1K #language-English #license-mit #region-us \n# Dataset Card for \"test\"\n\nMore Information needed" ]
27430fdb000f46e74eb0d71f03a7dd59ab340714
# Dataset Card for "vlsp2023-test2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pphuc25/vlsp2023-test2
[ "region:us" ]
2023-10-01T06:44:35+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "path", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6248152210.804, "num_examples": 54874}], "download_size": 6346575989, "dataset_size": 6248152210.804}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T06:50:29+00:00
[]
[]
TAGS #region-us
# Dataset Card for "vlsp2023-test2" More Information needed
[ "# Dataset Card for \"vlsp2023-test2\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"vlsp2023-test2\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"vlsp2023-test2\"\n\nMore Information needed" ]
cc76c403fbbb6d2a58dc13d793f5c09835db197e
{ "question":"string" "answer":"string" "text":"string" }
JessieLu/summerize
[ "region:us" ]
2023-10-01T06:55:12+00:00
{}
2023-10-01T14:14:53+00:00
[]
[]
TAGS #region-us
{ "question":"string" "answer":"string" "text":"string" }
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
4f0a203242a850df7bf273441aa1500456f78a07
# Dataset Card for "syntax-laion-32k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
crumb/syntax-laion-32k
[ "region:us" ]
2023-10-01T06:59:13+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "caption", "dtype": "string"}, {"name": "original_caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10311225, "num_examples": 32000}], "download_size": 6993643, "dataset_size": 10311225}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T06:59:14+00:00
[]
[]
TAGS #region-us
# Dataset Card for "syntax-laion-32k" More Information needed
[ "# Dataset Card for \"syntax-laion-32k\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"syntax-laion-32k\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"syntax-laion-32k\"\n\nMore Information needed" ]
b17fa797f3b852e64b6c01f695003714c24605a9
This is the TEXT filtered version of TOXICQA with all the semi-refusals (e.g. Remember, killing is bad) This is a work in progress. Use only for Alignment research. NOETI is not responsible for what you might do with it.
NobodyExistsOnTheInternet/ToxicQAtextFiltered
[ "license:mit", "not-for-all-audiences", "region:us" ]
2023-10-01T07:00:46+00:00
{"license": "mit", "tags": ["not-for-all-audiences"]}
2024-01-10T14:30:48+00:00
[]
[]
TAGS #license-mit #not-for-all-audiences #region-us
This is the TEXT filtered version of TOXICQA with all the semi-refusals (e.g. Remember, killing is bad) This is a work in progress. Use only for Alignment research. NOETI is not responsible for what you might do with it.
[]
[ "TAGS\n#license-mit #not-for-all-audiences #region-us \n" ]
[ 20 ]
[ "passage: TAGS\n#license-mit #not-for-all-audiences #region-us \n" ]
05a84f4e7bfda7c2ea4c44308deab4b3d3550d11
# Dataset Card for "rvl_cdip_large_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sitloboi2012/rvl_cdip_large_dataset
[ "region:us" ]
2023-10-01T07:17:10+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "validate", "path": "data/validate-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "letter", "1": "form", "2": "email", "3": "handwritten", "4": "advertisement", "5": "scientific report", "6": "scientific publication", "7": "specification", "8": "file folder", "9": "news article", "10": "budget", "11": "invoice", "12": "presentation", "13": "questionnaire", "14": "resume", "15": "memo"}}}}], "splits": [{"name": "train", "num_bytes": 3694582118.36, "num_examples": 30400}, {"name": "test", "num_bytes": 388902596.88, "num_examples": 3200}, {"name": "validate", "num_bytes": 388902596.88, "num_examples": 3200}], "download_size": 4204560106, "dataset_size": 4472387312.12}}
2023-10-01T07:20:47+00:00
[]
[]
TAGS #region-us
# Dataset Card for "rvl_cdip_large_dataset" More Information needed
[ "# Dataset Card for \"rvl_cdip_large_dataset\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"rvl_cdip_large_dataset\"\n\nMore Information needed" ]
[ 6, 21 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"rvl_cdip_large_dataset\"\n\nMore Information needed" ]
831769a4d6504e5ff8949a81daa1ba7a1cf44d39
# Dataset Card for "rvl_cdip_small_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sitloboi2012/rvl_cdip_small_dataset
[ "region:us" ]
2023-10-01T07:17:49+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1746183.0, "num_examples": 15}], "download_size": 1643991, "dataset_size": 1746183.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T07:17:51+00:00
[]
[]
TAGS #region-us
# Dataset Card for "rvl_cdip_small_dataset" More Information needed
[ "# Dataset Card for \"rvl_cdip_small_dataset\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"rvl_cdip_small_dataset\"\n\nMore Information needed" ]
[ 6, 21 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"rvl_cdip_small_dataset\"\n\nMore Information needed" ]
1d09038c30361b520156430d2b03910c5d7fcd76
# Dataset Card for "test1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tazarov/test1
[ "region:us" ]
2023-10-01T07:22:09+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "embedding", "sequence": "float32"}, {"name": "document", "dtype": "string"}, {"name": "metadata._id", "dtype": "string"}, {"name": "metadata.title", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 660267, "num_examples": 100}], "download_size": 947796, "dataset_size": 660267}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T07:22:16+00:00
[]
[]
TAGS #region-us
# Dataset Card for "test1" More Information needed
[ "# Dataset Card for \"test1\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"test1\"\n\nMore Information needed" ]
[ 6, 12 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"test1\"\n\nMore Information needed" ]
36f24346842352d0e758fac617230c7adbdd658a
# Dataset Card for "paper_test_bm25" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nikchar/paper_test_bm25
[ "region:us" ]
2023-10-01T07:25:23+00:00
{"dataset_info": {"features": [{"name": "label", "dtype": "string"}, {"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "retrieved_evidence_title", "sequence": "string"}, {"name": "retrieved_evidence_text", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 65517842, "num_examples": 11073}], "download_size": 30781208, "dataset_size": 65517842}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T07:27:46+00:00
[]
[]
TAGS #region-us
# Dataset Card for "paper_test_bm25" More Information needed
[ "# Dataset Card for \"paper_test_bm25\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"paper_test_bm25\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"paper_test_bm25\"\n\nMore Information needed" ]
16c820e1ff0d1b069e8d3c6a8a6694f24e78c3f5
Converted from [LDJnr/Pure-Dove](https://huggingface.co/datasets/LDJnr/Pure-Dove) into shareGPT format, I haven't changed anything. All credit goes to him for this dataset
Chat-Error/Pure-dove-sharegpt
[ "region:us" ]
2023-10-01T07:34:42+00:00
{}
2023-10-27T05:30:45+00:00
[]
[]
TAGS #region-us
Converted from LDJnr/Pure-Dove into shareGPT format, I haven't changed anything. All credit goes to him for this dataset
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
6b95c7f9cec4dc1bdfd29e705331d884bf1b2f57
# Dataset Card for "retrieval_verification_bm25_distilbert" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nikchar/retrieval_verification_bm25_distilbert
[ "region:us" ]
2023-10-01T07:57:20+00:00
{"dataset_info": {"features": [{"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "retrieved_evidence_title", "sequence": "string"}, {"name": "retrieved_evidence_text", "sequence": "string"}, {"name": "labels", "dtype": "int64"}, {"name": "Retrieval_Success", "dtype": "bool"}, {"name": "Predicted_Labels", "dtype": "int64"}, {"name": "Predicted_Labels_Each_doc", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 66031496, "num_examples": 11073}], "download_size": 30811947, "dataset_size": 66031496}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T07:57:25+00:00
[]
[]
TAGS #region-us
# Dataset Card for "retrieval_verification_bm25_distilbert" More Information needed
[ "# Dataset Card for \"retrieval_verification_bm25_distilbert\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"retrieval_verification_bm25_distilbert\"\n\nMore Information needed" ]
[ 6, 24 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"retrieval_verification_bm25_distilbert\"\n\nMore Information needed" ]
61fc2cd8f05c3c9dee99fca08fb8f8fe9953c691
# Dataset Card for "retrieval_verification_bm25_roberta" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nikchar/retrieval_verification_bm25_roberta
[ "region:us" ]
2023-10-01T08:05:40+00:00
{"dataset_info": {"features": [{"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "retrieved_evidence_title", "sequence": "string"}, {"name": "retrieved_evidence_text", "sequence": "string"}, {"name": "labels", "dtype": "int64"}, {"name": "Retrieval_Success", "dtype": "bool"}, {"name": "Predicted_Labels", "dtype": "int64"}, {"name": "Predicted_Labels_Each_doc", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 66031496, "num_examples": 11073}], "download_size": 30811974, "dataset_size": 66031496}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T08:05:46+00:00
[]
[]
TAGS #region-us
# Dataset Card for "retrieval_verification_bm25_roberta" More Information needed
[ "# Dataset Card for \"retrieval_verification_bm25_roberta\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"retrieval_verification_bm25_roberta\"\n\nMore Information needed" ]
[ 6, 23 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"retrieval_verification_bm25_roberta\"\n\nMore Information needed" ]
45ce792a473e21d9f972ddd2aadc2deb1f54d1d1
# Dataset Card for "ds2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tazarov/ds2
[ "region:us" ]
2023-10-01T08:12:07+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "embedding", "sequence": "float32"}, {"name": "document", "dtype": "string"}, {"name": "metadata._id", "dtype": "string"}, {"name": "metadata.title", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 660267, "num_examples": 100}], "download_size": 947796, "dataset_size": 660267}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T08:12:13+00:00
[]
[]
TAGS #region-us
# Dataset Card for "ds2" More Information needed
[ "# Dataset Card for \"ds2\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"ds2\"\n\nMore Information needed" ]
[ 6, 12 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"ds2\"\n\nMore Information needed" ]
c7e19bc5440be92913443770fb178b9d3accea4a
# Bangumi Image Base of Guilty Crown This is the image base of bangumi Guilty Crown, we detected 30 characters, 2278 images in total. The full dataset is [here](all.zip). **Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability). Here is the characters' preview: | # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 | |:------|---------:|:---------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------| | 0 | 497 | [Download](0/dataset.zip) | ![preview 1](0/preview_1.png) | ![preview 2](0/preview_2.png) | ![preview 3](0/preview_3.png) | ![preview 4](0/preview_4.png) | ![preview 5](0/preview_5.png) | ![preview 6](0/preview_6.png) | ![preview 7](0/preview_7.png) | ![preview 8](0/preview_8.png) | | 1 | 38 | [Download](1/dataset.zip) | ![preview 1](1/preview_1.png) | ![preview 2](1/preview_2.png) | ![preview 3](1/preview_3.png) | ![preview 4](1/preview_4.png) | ![preview 5](1/preview_5.png) | ![preview 6](1/preview_6.png) | ![preview 7](1/preview_7.png) | ![preview 8](1/preview_8.png) | | 2 | 25 | [Download](2/dataset.zip) | ![preview 1](2/preview_1.png) | ![preview 2](2/preview_2.png) | ![preview 3](2/preview_3.png) | ![preview 4](2/preview_4.png) | ![preview 5](2/preview_5.png) | ![preview 6](2/preview_6.png) | ![preview 7](2/preview_7.png) | ![preview 8](2/preview_8.png) | | 3 | 132 | [Download](3/dataset.zip) | ![preview 1](3/preview_1.png) | ![preview 2](3/preview_2.png) | ![preview 3](3/preview_3.png) | ![preview 4](3/preview_4.png) | ![preview 5](3/preview_5.png) | ![preview 6](3/preview_6.png) | ![preview 7](3/preview_7.png) | ![preview 8](3/preview_8.png) | | 4 | 94 | [Download](4/dataset.zip) | ![preview 1](4/preview_1.png) | ![preview 2](4/preview_2.png) | ![preview 3](4/preview_3.png) | ![preview 4](4/preview_4.png) | ![preview 5](4/preview_5.png) | ![preview 6](4/preview_6.png) | ![preview 7](4/preview_7.png) | ![preview 8](4/preview_8.png) | | 5 | 47 | [Download](5/dataset.zip) | ![preview 1](5/preview_1.png) | ![preview 2](5/preview_2.png) | ![preview 3](5/preview_3.png) | ![preview 4](5/preview_4.png) | ![preview 5](5/preview_5.png) | ![preview 6](5/preview_6.png) | ![preview 7](5/preview_7.png) | ![preview 8](5/preview_8.png) | | 6 | 65 | [Download](6/dataset.zip) | ![preview 1](6/preview_1.png) | ![preview 2](6/preview_2.png) | ![preview 3](6/preview_3.png) | ![preview 4](6/preview_4.png) | ![preview 5](6/preview_5.png) | ![preview 6](6/preview_6.png) | ![preview 7](6/preview_7.png) | ![preview 8](6/preview_8.png) | | 7 | 15 | [Download](7/dataset.zip) | ![preview 1](7/preview_1.png) | ![preview 2](7/preview_2.png) | ![preview 3](7/preview_3.png) | ![preview 4](7/preview_4.png) | ![preview 5](7/preview_5.png) | ![preview 6](7/preview_6.png) | ![preview 7](7/preview_7.png) | ![preview 8](7/preview_8.png) | | 8 | 19 | [Download](8/dataset.zip) | ![preview 1](8/preview_1.png) | ![preview 2](8/preview_2.png) | ![preview 3](8/preview_3.png) | ![preview 4](8/preview_4.png) | ![preview 5](8/preview_5.png) | ![preview 6](8/preview_6.png) | ![preview 7](8/preview_7.png) | ![preview 8](8/preview_8.png) | | 9 | 24 | [Download](9/dataset.zip) | ![preview 1](9/preview_1.png) | ![preview 2](9/preview_2.png) | ![preview 3](9/preview_3.png) | ![preview 4](9/preview_4.png) | ![preview 5](9/preview_5.png) | ![preview 6](9/preview_6.png) | ![preview 7](9/preview_7.png) | ![preview 8](9/preview_8.png) | | 10 | 61 | [Download](10/dataset.zip) | ![preview 1](10/preview_1.png) | ![preview 2](10/preview_2.png) | ![preview 3](10/preview_3.png) | ![preview 4](10/preview_4.png) | ![preview 5](10/preview_5.png) | ![preview 6](10/preview_6.png) | ![preview 7](10/preview_7.png) | ![preview 8](10/preview_8.png) | | 11 | 55 | [Download](11/dataset.zip) | ![preview 1](11/preview_1.png) | ![preview 2](11/preview_2.png) | ![preview 3](11/preview_3.png) | ![preview 4](11/preview_4.png) | ![preview 5](11/preview_5.png) | ![preview 6](11/preview_6.png) | ![preview 7](11/preview_7.png) | ![preview 8](11/preview_8.png) | | 12 | 18 | [Download](12/dataset.zip) | ![preview 1](12/preview_1.png) | ![preview 2](12/preview_2.png) | ![preview 3](12/preview_3.png) | ![preview 4](12/preview_4.png) | ![preview 5](12/preview_5.png) | ![preview 6](12/preview_6.png) | ![preview 7](12/preview_7.png) | ![preview 8](12/preview_8.png) | | 13 | 106 | [Download](13/dataset.zip) | ![preview 1](13/preview_1.png) | ![preview 2](13/preview_2.png) | ![preview 3](13/preview_3.png) | ![preview 4](13/preview_4.png) | ![preview 5](13/preview_5.png) | ![preview 6](13/preview_6.png) | ![preview 7](13/preview_7.png) | ![preview 8](13/preview_8.png) | | 14 | 88 | [Download](14/dataset.zip) | ![preview 1](14/preview_1.png) | ![preview 2](14/preview_2.png) | ![preview 3](14/preview_3.png) | ![preview 4](14/preview_4.png) | ![preview 5](14/preview_5.png) | ![preview 6](14/preview_6.png) | ![preview 7](14/preview_7.png) | ![preview 8](14/preview_8.png) | | 15 | 103 | [Download](15/dataset.zip) | ![preview 1](15/preview_1.png) | ![preview 2](15/preview_2.png) | ![preview 3](15/preview_3.png) | ![preview 4](15/preview_4.png) | ![preview 5](15/preview_5.png) | ![preview 6](15/preview_6.png) | ![preview 7](15/preview_7.png) | ![preview 8](15/preview_8.png) | | 16 | 38 | [Download](16/dataset.zip) | ![preview 1](16/preview_1.png) | ![preview 2](16/preview_2.png) | ![preview 3](16/preview_3.png) | ![preview 4](16/preview_4.png) | ![preview 5](16/preview_5.png) | ![preview 6](16/preview_6.png) | ![preview 7](16/preview_7.png) | ![preview 8](16/preview_8.png) | | 17 | 34 | [Download](17/dataset.zip) | ![preview 1](17/preview_1.png) | ![preview 2](17/preview_2.png) | ![preview 3](17/preview_3.png) | ![preview 4](17/preview_4.png) | ![preview 5](17/preview_5.png) | ![preview 6](17/preview_6.png) | ![preview 7](17/preview_7.png) | ![preview 8](17/preview_8.png) | | 18 | 26 | [Download](18/dataset.zip) | ![preview 1](18/preview_1.png) | ![preview 2](18/preview_2.png) | ![preview 3](18/preview_3.png) | ![preview 4](18/preview_4.png) | ![preview 5](18/preview_5.png) | ![preview 6](18/preview_6.png) | ![preview 7](18/preview_7.png) | ![preview 8](18/preview_8.png) | | 19 | 22 | [Download](19/dataset.zip) | ![preview 1](19/preview_1.png) | ![preview 2](19/preview_2.png) | ![preview 3](19/preview_3.png) | ![preview 4](19/preview_4.png) | ![preview 5](19/preview_5.png) | ![preview 6](19/preview_6.png) | ![preview 7](19/preview_7.png) | ![preview 8](19/preview_8.png) | | 20 | 73 | [Download](20/dataset.zip) | ![preview 1](20/preview_1.png) | ![preview 2](20/preview_2.png) | ![preview 3](20/preview_3.png) | ![preview 4](20/preview_4.png) | ![preview 5](20/preview_5.png) | ![preview 6](20/preview_6.png) | ![preview 7](20/preview_7.png) | ![preview 8](20/preview_8.png) | | 21 | 61 | [Download](21/dataset.zip) | ![preview 1](21/preview_1.png) | ![preview 2](21/preview_2.png) | ![preview 3](21/preview_3.png) | ![preview 4](21/preview_4.png) | ![preview 5](21/preview_5.png) | ![preview 6](21/preview_6.png) | ![preview 7](21/preview_7.png) | ![preview 8](21/preview_8.png) | | 22 | 84 | [Download](22/dataset.zip) | ![preview 1](22/preview_1.png) | ![preview 2](22/preview_2.png) | ![preview 3](22/preview_3.png) | ![preview 4](22/preview_4.png) | ![preview 5](22/preview_5.png) | ![preview 6](22/preview_6.png) | ![preview 7](22/preview_7.png) | ![preview 8](22/preview_8.png) | | 23 | 16 | [Download](23/dataset.zip) | ![preview 1](23/preview_1.png) | ![preview 2](23/preview_2.png) | ![preview 3](23/preview_3.png) | ![preview 4](23/preview_4.png) | ![preview 5](23/preview_5.png) | ![preview 6](23/preview_6.png) | ![preview 7](23/preview_7.png) | ![preview 8](23/preview_8.png) | | 24 | 52 | [Download](24/dataset.zip) | ![preview 1](24/preview_1.png) | ![preview 2](24/preview_2.png) | ![preview 3](24/preview_3.png) | ![preview 4](24/preview_4.png) | ![preview 5](24/preview_5.png) | ![preview 6](24/preview_6.png) | ![preview 7](24/preview_7.png) | ![preview 8](24/preview_8.png) | | 25 | 8 | [Download](25/dataset.zip) | ![preview 1](25/preview_1.png) | ![preview 2](25/preview_2.png) | ![preview 3](25/preview_3.png) | ![preview 4](25/preview_4.png) | ![preview 5](25/preview_5.png) | ![preview 6](25/preview_6.png) | ![preview 7](25/preview_7.png) | ![preview 8](25/preview_8.png) | | 26 | 31 | [Download](26/dataset.zip) | ![preview 1](26/preview_1.png) | ![preview 2](26/preview_2.png) | ![preview 3](26/preview_3.png) | ![preview 4](26/preview_4.png) | ![preview 5](26/preview_5.png) | ![preview 6](26/preview_6.png) | ![preview 7](26/preview_7.png) | ![preview 8](26/preview_8.png) | | 27 | 6 | [Download](27/dataset.zip) | ![preview 1](27/preview_1.png) | ![preview 2](27/preview_2.png) | ![preview 3](27/preview_3.png) | ![preview 4](27/preview_4.png) | ![preview 5](27/preview_5.png) | ![preview 6](27/preview_6.png) | N/A | N/A | | 28 | 198 | [Download](28/dataset.zip) | ![preview 1](28/preview_1.png) | ![preview 2](28/preview_2.png) | ![preview 3](28/preview_3.png) | ![preview 4](28/preview_4.png) | ![preview 5](28/preview_5.png) | ![preview 6](28/preview_6.png) | ![preview 7](28/preview_7.png) | ![preview 8](28/preview_8.png) | | noise | 242 | [Download](-1/dataset.zip) | ![preview 1](-1/preview_1.png) | ![preview 2](-1/preview_2.png) | ![preview 3](-1/preview_3.png) | ![preview 4](-1/preview_4.png) | ![preview 5](-1/preview_5.png) | ![preview 6](-1/preview_6.png) | ![preview 7](-1/preview_7.png) | ![preview 8](-1/preview_8.png) |
BangumiBase/guiltycrown
[ "size_categories:1K<n<10K", "license:mit", "art", "region:us" ]
2023-10-01T08:13:43+00:00
{"license": "mit", "size_categories": ["1K<n<10K"], "tags": ["art"]}
2023-10-01T09:45:18+00:00
[]
[]
TAGS #size_categories-1K<n<10K #license-mit #art #region-us
Bangumi Image Base of Guilty Crown ================================== This is the image base of bangumi Guilty Crown, we detected 30 characters, 2278 images in total. The full dataset is here. Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual. If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability). Here is the characters' preview:
[]
[ "TAGS\n#size_categories-1K<n<10K #license-mit #art #region-us \n" ]
[ 25 ]
[ "passage: TAGS\n#size_categories-1K<n<10K #license-mit #art #region-us \n" ]
09f89eb900c96fa6f27963b90a9ecacac20c9c57
# Bangumi Image Base of Seraph Of The End This is the image base of bangumi Seraph of the End, we detected 51 characters, 3456 images in total. The full dataset is [here](all.zip). **Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability). Here is the characters' preview: | # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 | |:------|---------:|:---------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------| | 0 | 238 | [Download](0/dataset.zip) | ![preview 1](0/preview_1.png) | ![preview 2](0/preview_2.png) | ![preview 3](0/preview_3.png) | ![preview 4](0/preview_4.png) | ![preview 5](0/preview_5.png) | ![preview 6](0/preview_6.png) | ![preview 7](0/preview_7.png) | ![preview 8](0/preview_8.png) | | 1 | 32 | [Download](1/dataset.zip) | ![preview 1](1/preview_1.png) | ![preview 2](1/preview_2.png) | ![preview 3](1/preview_3.png) | ![preview 4](1/preview_4.png) | ![preview 5](1/preview_5.png) | ![preview 6](1/preview_6.png) | ![preview 7](1/preview_7.png) | ![preview 8](1/preview_8.png) | | 2 | 191 | [Download](2/dataset.zip) | ![preview 1](2/preview_1.png) | ![preview 2](2/preview_2.png) | ![preview 3](2/preview_3.png) | ![preview 4](2/preview_4.png) | ![preview 5](2/preview_5.png) | ![preview 6](2/preview_6.png) | ![preview 7](2/preview_7.png) | ![preview 8](2/preview_8.png) | | 3 | 106 | [Download](3/dataset.zip) | ![preview 1](3/preview_1.png) | ![preview 2](3/preview_2.png) | ![preview 3](3/preview_3.png) | ![preview 4](3/preview_4.png) | ![preview 5](3/preview_5.png) | ![preview 6](3/preview_6.png) | ![preview 7](3/preview_7.png) | ![preview 8](3/preview_8.png) | | 4 | 152 | [Download](4/dataset.zip) | ![preview 1](4/preview_1.png) | ![preview 2](4/preview_2.png) | ![preview 3](4/preview_3.png) | ![preview 4](4/preview_4.png) | ![preview 5](4/preview_5.png) | ![preview 6](4/preview_6.png) | ![preview 7](4/preview_7.png) | ![preview 8](4/preview_8.png) | | 5 | 41 | [Download](5/dataset.zip) | ![preview 1](5/preview_1.png) | ![preview 2](5/preview_2.png) | ![preview 3](5/preview_3.png) | ![preview 4](5/preview_4.png) | ![preview 5](5/preview_5.png) | ![preview 6](5/preview_6.png) | ![preview 7](5/preview_7.png) | ![preview 8](5/preview_8.png) | | 6 | 35 | [Download](6/dataset.zip) | ![preview 1](6/preview_1.png) | ![preview 2](6/preview_2.png) | ![preview 3](6/preview_3.png) | ![preview 4](6/preview_4.png) | ![preview 5](6/preview_5.png) | ![preview 6](6/preview_6.png) | ![preview 7](6/preview_7.png) | ![preview 8](6/preview_8.png) | | 7 | 41 | [Download](7/dataset.zip) | ![preview 1](7/preview_1.png) | ![preview 2](7/preview_2.png) | ![preview 3](7/preview_3.png) | ![preview 4](7/preview_4.png) | ![preview 5](7/preview_5.png) | ![preview 6](7/preview_6.png) | ![preview 7](7/preview_7.png) | ![preview 8](7/preview_8.png) | | 8 | 75 | [Download](8/dataset.zip) | ![preview 1](8/preview_1.png) | ![preview 2](8/preview_2.png) | ![preview 3](8/preview_3.png) | ![preview 4](8/preview_4.png) | ![preview 5](8/preview_5.png) | ![preview 6](8/preview_6.png) | ![preview 7](8/preview_7.png) | ![preview 8](8/preview_8.png) | | 9 | 14 | [Download](9/dataset.zip) | ![preview 1](9/preview_1.png) | ![preview 2](9/preview_2.png) | ![preview 3](9/preview_3.png) | ![preview 4](9/preview_4.png) | ![preview 5](9/preview_5.png) | ![preview 6](9/preview_6.png) | ![preview 7](9/preview_7.png) | ![preview 8](9/preview_8.png) | | 10 | 13 | [Download](10/dataset.zip) | ![preview 1](10/preview_1.png) | ![preview 2](10/preview_2.png) | ![preview 3](10/preview_3.png) | ![preview 4](10/preview_4.png) | ![preview 5](10/preview_5.png) | ![preview 6](10/preview_6.png) | ![preview 7](10/preview_7.png) | ![preview 8](10/preview_8.png) | | 11 | 16 | [Download](11/dataset.zip) | ![preview 1](11/preview_1.png) | ![preview 2](11/preview_2.png) | ![preview 3](11/preview_3.png) | ![preview 4](11/preview_4.png) | ![preview 5](11/preview_5.png) | ![preview 6](11/preview_6.png) | ![preview 7](11/preview_7.png) | ![preview 8](11/preview_8.png) | | 12 | 36 | [Download](12/dataset.zip) | ![preview 1](12/preview_1.png) | ![preview 2](12/preview_2.png) | ![preview 3](12/preview_3.png) | ![preview 4](12/preview_4.png) | ![preview 5](12/preview_5.png) | ![preview 6](12/preview_6.png) | ![preview 7](12/preview_7.png) | ![preview 8](12/preview_8.png) | | 13 | 702 | [Download](13/dataset.zip) | ![preview 1](13/preview_1.png) | ![preview 2](13/preview_2.png) | ![preview 3](13/preview_3.png) | ![preview 4](13/preview_4.png) | ![preview 5](13/preview_5.png) | ![preview 6](13/preview_6.png) | ![preview 7](13/preview_7.png) | ![preview 8](13/preview_8.png) | | 14 | 24 | [Download](14/dataset.zip) | ![preview 1](14/preview_1.png) | ![preview 2](14/preview_2.png) | ![preview 3](14/preview_3.png) | ![preview 4](14/preview_4.png) | ![preview 5](14/preview_5.png) | ![preview 6](14/preview_6.png) | ![preview 7](14/preview_7.png) | ![preview 8](14/preview_8.png) | | 15 | 173 | [Download](15/dataset.zip) | ![preview 1](15/preview_1.png) | ![preview 2](15/preview_2.png) | ![preview 3](15/preview_3.png) | ![preview 4](15/preview_4.png) | ![preview 5](15/preview_5.png) | ![preview 6](15/preview_6.png) | ![preview 7](15/preview_7.png) | ![preview 8](15/preview_8.png) | | 16 | 61 | [Download](16/dataset.zip) | ![preview 1](16/preview_1.png) | ![preview 2](16/preview_2.png) | ![preview 3](16/preview_3.png) | ![preview 4](16/preview_4.png) | ![preview 5](16/preview_5.png) | ![preview 6](16/preview_6.png) | ![preview 7](16/preview_7.png) | ![preview 8](16/preview_8.png) | | 17 | 20 | [Download](17/dataset.zip) | ![preview 1](17/preview_1.png) | ![preview 2](17/preview_2.png) | ![preview 3](17/preview_3.png) | ![preview 4](17/preview_4.png) | ![preview 5](17/preview_5.png) | ![preview 6](17/preview_6.png) | ![preview 7](17/preview_7.png) | ![preview 8](17/preview_8.png) | | 18 | 12 | [Download](18/dataset.zip) | ![preview 1](18/preview_1.png) | ![preview 2](18/preview_2.png) | ![preview 3](18/preview_3.png) | ![preview 4](18/preview_4.png) | ![preview 5](18/preview_5.png) | ![preview 6](18/preview_6.png) | ![preview 7](18/preview_7.png) | ![preview 8](18/preview_8.png) | | 19 | 10 | [Download](19/dataset.zip) | ![preview 1](19/preview_1.png) | ![preview 2](19/preview_2.png) | ![preview 3](19/preview_3.png) | ![preview 4](19/preview_4.png) | ![preview 5](19/preview_5.png) | ![preview 6](19/preview_6.png) | ![preview 7](19/preview_7.png) | ![preview 8](19/preview_8.png) | | 20 | 227 | [Download](20/dataset.zip) | ![preview 1](20/preview_1.png) | ![preview 2](20/preview_2.png) | ![preview 3](20/preview_3.png) | ![preview 4](20/preview_4.png) | ![preview 5](20/preview_5.png) | ![preview 6](20/preview_6.png) | ![preview 7](20/preview_7.png) | ![preview 8](20/preview_8.png) | | 21 | 90 | [Download](21/dataset.zip) | ![preview 1](21/preview_1.png) | ![preview 2](21/preview_2.png) | ![preview 3](21/preview_3.png) | ![preview 4](21/preview_4.png) | ![preview 5](21/preview_5.png) | ![preview 6](21/preview_6.png) | ![preview 7](21/preview_7.png) | ![preview 8](21/preview_8.png) | | 22 | 67 | [Download](22/dataset.zip) | ![preview 1](22/preview_1.png) | ![preview 2](22/preview_2.png) | ![preview 3](22/preview_3.png) | ![preview 4](22/preview_4.png) | ![preview 5](22/preview_5.png) | ![preview 6](22/preview_6.png) | ![preview 7](22/preview_7.png) | ![preview 8](22/preview_8.png) | | 23 | 28 | [Download](23/dataset.zip) | ![preview 1](23/preview_1.png) | ![preview 2](23/preview_2.png) | ![preview 3](23/preview_3.png) | ![preview 4](23/preview_4.png) | ![preview 5](23/preview_5.png) | ![preview 6](23/preview_6.png) | ![preview 7](23/preview_7.png) | ![preview 8](23/preview_8.png) | | 24 | 64 | [Download](24/dataset.zip) | ![preview 1](24/preview_1.png) | ![preview 2](24/preview_2.png) | ![preview 3](24/preview_3.png) | ![preview 4](24/preview_4.png) | ![preview 5](24/preview_5.png) | ![preview 6](24/preview_6.png) | ![preview 7](24/preview_7.png) | ![preview 8](24/preview_8.png) | | 25 | 12 | [Download](25/dataset.zip) | ![preview 1](25/preview_1.png) | ![preview 2](25/preview_2.png) | ![preview 3](25/preview_3.png) | ![preview 4](25/preview_4.png) | ![preview 5](25/preview_5.png) | ![preview 6](25/preview_6.png) | ![preview 7](25/preview_7.png) | ![preview 8](25/preview_8.png) | | 26 | 18 | [Download](26/dataset.zip) | ![preview 1](26/preview_1.png) | ![preview 2](26/preview_2.png) | ![preview 3](26/preview_3.png) | ![preview 4](26/preview_4.png) | ![preview 5](26/preview_5.png) | ![preview 6](26/preview_6.png) | ![preview 7](26/preview_7.png) | ![preview 8](26/preview_8.png) | | 27 | 353 | [Download](27/dataset.zip) | ![preview 1](27/preview_1.png) | ![preview 2](27/preview_2.png) | ![preview 3](27/preview_3.png) | ![preview 4](27/preview_4.png) | ![preview 5](27/preview_5.png) | ![preview 6](27/preview_6.png) | ![preview 7](27/preview_7.png) | ![preview 8](27/preview_8.png) | | 28 | 27 | [Download](28/dataset.zip) | ![preview 1](28/preview_1.png) | ![preview 2](28/preview_2.png) | ![preview 3](28/preview_3.png) | ![preview 4](28/preview_4.png) | ![preview 5](28/preview_5.png) | ![preview 6](28/preview_6.png) | ![preview 7](28/preview_7.png) | ![preview 8](28/preview_8.png) | | 29 | 21 | [Download](29/dataset.zip) | ![preview 1](29/preview_1.png) | ![preview 2](29/preview_2.png) | ![preview 3](29/preview_3.png) | ![preview 4](29/preview_4.png) | ![preview 5](29/preview_5.png) | ![preview 6](29/preview_6.png) | ![preview 7](29/preview_7.png) | ![preview 8](29/preview_8.png) | | 30 | 14 | [Download](30/dataset.zip) | ![preview 1](30/preview_1.png) | ![preview 2](30/preview_2.png) | ![preview 3](30/preview_3.png) | ![preview 4](30/preview_4.png) | ![preview 5](30/preview_5.png) | ![preview 6](30/preview_6.png) | ![preview 7](30/preview_7.png) | ![preview 8](30/preview_8.png) | | 31 | 94 | [Download](31/dataset.zip) | ![preview 1](31/preview_1.png) | ![preview 2](31/preview_2.png) | ![preview 3](31/preview_3.png) | ![preview 4](31/preview_4.png) | ![preview 5](31/preview_5.png) | ![preview 6](31/preview_6.png) | ![preview 7](31/preview_7.png) | ![preview 8](31/preview_8.png) | | 32 | 8 | [Download](32/dataset.zip) | ![preview 1](32/preview_1.png) | ![preview 2](32/preview_2.png) | ![preview 3](32/preview_3.png) | ![preview 4](32/preview_4.png) | ![preview 5](32/preview_5.png) | ![preview 6](32/preview_6.png) | ![preview 7](32/preview_7.png) | ![preview 8](32/preview_8.png) | | 33 | 13 | [Download](33/dataset.zip) | ![preview 1](33/preview_1.png) | ![preview 2](33/preview_2.png) | ![preview 3](33/preview_3.png) | ![preview 4](33/preview_4.png) | ![preview 5](33/preview_5.png) | ![preview 6](33/preview_6.png) | ![preview 7](33/preview_7.png) | ![preview 8](33/preview_8.png) | | 34 | 7 | [Download](34/dataset.zip) | ![preview 1](34/preview_1.png) | ![preview 2](34/preview_2.png) | ![preview 3](34/preview_3.png) | ![preview 4](34/preview_4.png) | ![preview 5](34/preview_5.png) | ![preview 6](34/preview_6.png) | ![preview 7](34/preview_7.png) | N/A | | 35 | 15 | [Download](35/dataset.zip) | ![preview 1](35/preview_1.png) | ![preview 2](35/preview_2.png) | ![preview 3](35/preview_3.png) | ![preview 4](35/preview_4.png) | ![preview 5](35/preview_5.png) | ![preview 6](35/preview_6.png) | ![preview 7](35/preview_7.png) | ![preview 8](35/preview_8.png) | | 36 | 7 | [Download](36/dataset.zip) | ![preview 1](36/preview_1.png) | ![preview 2](36/preview_2.png) | ![preview 3](36/preview_3.png) | ![preview 4](36/preview_4.png) | ![preview 5](36/preview_5.png) | ![preview 6](36/preview_6.png) | ![preview 7](36/preview_7.png) | N/A | | 37 | 17 | [Download](37/dataset.zip) | ![preview 1](37/preview_1.png) | ![preview 2](37/preview_2.png) | ![preview 3](37/preview_3.png) | ![preview 4](37/preview_4.png) | ![preview 5](37/preview_5.png) | ![preview 6](37/preview_6.png) | ![preview 7](37/preview_7.png) | ![preview 8](37/preview_8.png) | | 38 | 8 | [Download](38/dataset.zip) | ![preview 1](38/preview_1.png) | ![preview 2](38/preview_2.png) | ![preview 3](38/preview_3.png) | ![preview 4](38/preview_4.png) | ![preview 5](38/preview_5.png) | ![preview 6](38/preview_6.png) | ![preview 7](38/preview_7.png) | ![preview 8](38/preview_8.png) | | 39 | 6 | [Download](39/dataset.zip) | ![preview 1](39/preview_1.png) | ![preview 2](39/preview_2.png) | ![preview 3](39/preview_3.png) | ![preview 4](39/preview_4.png) | ![preview 5](39/preview_5.png) | ![preview 6](39/preview_6.png) | N/A | N/A | | 40 | 45 | [Download](40/dataset.zip) | ![preview 1](40/preview_1.png) | ![preview 2](40/preview_2.png) | ![preview 3](40/preview_3.png) | ![preview 4](40/preview_4.png) | ![preview 5](40/preview_5.png) | ![preview 6](40/preview_6.png) | ![preview 7](40/preview_7.png) | ![preview 8](40/preview_8.png) | | 41 | 10 | [Download](41/dataset.zip) | ![preview 1](41/preview_1.png) | ![preview 2](41/preview_2.png) | ![preview 3](41/preview_3.png) | ![preview 4](41/preview_4.png) | ![preview 5](41/preview_5.png) | ![preview 6](41/preview_6.png) | ![preview 7](41/preview_7.png) | ![preview 8](41/preview_8.png) | | 42 | 31 | [Download](42/dataset.zip) | ![preview 1](42/preview_1.png) | ![preview 2](42/preview_2.png) | ![preview 3](42/preview_3.png) | ![preview 4](42/preview_4.png) | ![preview 5](42/preview_5.png) | ![preview 6](42/preview_6.png) | ![preview 7](42/preview_7.png) | ![preview 8](42/preview_8.png) | | 43 | 13 | [Download](43/dataset.zip) | ![preview 1](43/preview_1.png) | ![preview 2](43/preview_2.png) | ![preview 3](43/preview_3.png) | ![preview 4](43/preview_4.png) | ![preview 5](43/preview_5.png) | ![preview 6](43/preview_6.png) | ![preview 7](43/preview_7.png) | ![preview 8](43/preview_8.png) | | 44 | 28 | [Download](44/dataset.zip) | ![preview 1](44/preview_1.png) | ![preview 2](44/preview_2.png) | ![preview 3](44/preview_3.png) | ![preview 4](44/preview_4.png) | ![preview 5](44/preview_5.png) | ![preview 6](44/preview_6.png) | ![preview 7](44/preview_7.png) | ![preview 8](44/preview_8.png) | | 45 | 36 | [Download](45/dataset.zip) | ![preview 1](45/preview_1.png) | ![preview 2](45/preview_2.png) | ![preview 3](45/preview_3.png) | ![preview 4](45/preview_4.png) | ![preview 5](45/preview_5.png) | ![preview 6](45/preview_6.png) | ![preview 7](45/preview_7.png) | ![preview 8](45/preview_8.png) | | 46 | 16 | [Download](46/dataset.zip) | ![preview 1](46/preview_1.png) | ![preview 2](46/preview_2.png) | ![preview 3](46/preview_3.png) | ![preview 4](46/preview_4.png) | ![preview 5](46/preview_5.png) | ![preview 6](46/preview_6.png) | ![preview 7](46/preview_7.png) | ![preview 8](46/preview_8.png) | | 47 | 6 | [Download](47/dataset.zip) | ![preview 1](47/preview_1.png) | ![preview 2](47/preview_2.png) | ![preview 3](47/preview_3.png) | ![preview 4](47/preview_4.png) | ![preview 5](47/preview_5.png) | ![preview 6](47/preview_6.png) | N/A | N/A | | 48 | 17 | [Download](48/dataset.zip) | ![preview 1](48/preview_1.png) | ![preview 2](48/preview_2.png) | ![preview 3](48/preview_3.png) | ![preview 4](48/preview_4.png) | ![preview 5](48/preview_5.png) | ![preview 6](48/preview_6.png) | ![preview 7](48/preview_7.png) | ![preview 8](48/preview_8.png) | | 49 | 20 | [Download](49/dataset.zip) | ![preview 1](49/preview_1.png) | ![preview 2](49/preview_2.png) | ![preview 3](49/preview_3.png) | ![preview 4](49/preview_4.png) | ![preview 5](49/preview_5.png) | ![preview 6](49/preview_6.png) | ![preview 7](49/preview_7.png) | ![preview 8](49/preview_8.png) | | noise | 146 | [Download](-1/dataset.zip) | ![preview 1](-1/preview_1.png) | ![preview 2](-1/preview_2.png) | ![preview 3](-1/preview_3.png) | ![preview 4](-1/preview_4.png) | ![preview 5](-1/preview_5.png) | ![preview 6](-1/preview_6.png) | ![preview 7](-1/preview_7.png) | ![preview 8](-1/preview_8.png) |
BangumiBase/seraphoftheend
[ "size_categories:1K<n<10K", "license:mit", "art", "region:us" ]
2023-10-01T08:13:49+00:00
{"license": "mit", "size_categories": ["1K<n<10K"], "tags": ["art"]}
2023-10-01T10:14:14+00:00
[]
[]
TAGS #size_categories-1K<n<10K #license-mit #art #region-us
Bangumi Image Base of Seraph Of The End ======================================= This is the image base of bangumi Seraph of the End, we detected 51 characters, 3456 images in total. The full dataset is here. Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual. If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability). Here is the characters' preview:
[]
[ "TAGS\n#size_categories-1K<n<10K #license-mit #art #region-us \n" ]
[ 25 ]
[ "passage: TAGS\n#size_categories-1K<n<10K #license-mit #art #region-us \n" ]
b58ba1bfe796e228735a3f71409277546037b1fe
# Dataset Card for "retrieval_verification_bm25_bert" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nikchar/retrieval_verification_bm25_bert
[ "region:us" ]
2023-10-01T08:20:37+00:00
{"dataset_info": {"features": [{"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "retrieved_evidence_title", "sequence": "string"}, {"name": "retrieved_evidence_text", "sequence": "string"}, {"name": "labels", "dtype": "int64"}, {"name": "Retrieval_Success", "dtype": "bool"}, {"name": "Predicted_Labels", "dtype": "int64"}, {"name": "Predicted_Labels_Each_doc", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 66031496, "num_examples": 11073}], "download_size": 30811942, "dataset_size": 66031496}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T09:50:28+00:00
[]
[]
TAGS #region-us
# Dataset Card for "retrieval_verification_bm25_bert" More Information needed
[ "# Dataset Card for \"retrieval_verification_bm25_bert\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"retrieval_verification_bm25_bert\"\n\nMore Information needed" ]
[ 6, 22 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"retrieval_verification_bm25_bert\"\n\nMore Information needed" ]
5714c21ad9fbd050bc645fa2b185824f93ff555c
# Dataset Card for "Yelp_Sentiment" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reza-alipour/Yelp_Sentiment
[ "region:us" ]
2023-10-01T08:28:44+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "IsPositive", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 24204778, "num_examples": 444101}, {"name": "validation", "num_bytes": 3466415, "num_examples": 63483}, {"name": "test", "num_bytes": 6861944, "num_examples": 126670}], "download_size": 17440510, "dataset_size": 34533137}}
2023-10-01T08:28:56+00:00
[]
[]
TAGS #region-us
# Dataset Card for "Yelp_Sentiment" More Information needed
[ "# Dataset Card for \"Yelp_Sentiment\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"Yelp_Sentiment\"\n\nMore Information needed" ]
[ 6, 16 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"Yelp_Sentiment\"\n\nMore Information needed" ]
bd3d8bd2c163471340a4445cff819dbdf977c58b
unsorted audios in mod, wav or other old audio formats
4eJIoBek/Old-audios-11k
[ "license:unknown", "region:us" ]
2023-10-01T08:30:13+00:00
{"license": "unknown"}
2023-10-01T08:34:30+00:00
[]
[]
TAGS #license-unknown #region-us
unsorted audios in mod, wav or other old audio formats
[]
[ "TAGS\n#license-unknown #region-us \n" ]
[ 13 ]
[ "passage: TAGS\n#license-unknown #region-us \n" ]
13a2b2861044df0f1533c26994af8a772bfc2c58
# Dataset Card for "hf_cot_gsm8k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Dahoas/hf_cot_gsm8k
[ "region:us" ]
2023-10-01T08:45:46+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8663589, "num_examples": 7217}, {"name": "val", "num_bytes": 301562, "num_examples": 256}, {"name": "test", "num_bytes": 1610805, "num_examples": 1319}], "download_size": 5575205, "dataset_size": 10575956}}
2023-10-01T13:40:46+00:00
[]
[]
TAGS #region-us
# Dataset Card for "hf_cot_gsm8k" More Information needed
[ "# Dataset Card for \"hf_cot_gsm8k\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"hf_cot_gsm8k\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"hf_cot_gsm8k\"\n\nMore Information needed" ]
9e3fb151ceb6458b9f6308aa54c349a5d75fbaa5
# Dataset Card for "60k_dataset_multichoice_512" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
VuongQuoc/60k_dataset_multichoice_512
[ "region:us" ]
2023-10-01T08:50:48+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": {"sequence": "int32"}}, {"name": "token_type_ids", "sequence": {"sequence": "int8"}}, {"name": "attention_mask", "sequence": {"sequence": "int8"}}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 77100610, "num_examples": 5000}, {"name": "test", "num_bytes": 3088000, "num_examples": 200}], "download_size": 7918277, "dataset_size": 80188610}}
2023-10-01T08:50:52+00:00
[]
[]
TAGS #region-us
# Dataset Card for "60k_dataset_multichoice_512" More Information needed
[ "# Dataset Card for \"60k_dataset_multichoice_512\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"60k_dataset_multichoice_512\"\n\nMore Information needed" ]
[ 6, 22 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"60k_dataset_multichoice_512\"\n\nMore Information needed" ]
8e1af62a3030cbbce9ca46b96d242655f01ef467
# Dataset Card for "vlsp-2023-no-label" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pphuc25/vlsp-2023-no-label
[ "region:us" ]
2023-10-01T08:59:32+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}], "splits": [{"name": "train", "num_bytes": 28620668433.8, "num_examples": 284550}], "download_size": 34466395053, "dataset_size": 28620668433.8}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T09:35:57+00:00
[]
[]
TAGS #region-us
# Dataset Card for "vlsp-2023-no-label" More Information needed
[ "# Dataset Card for \"vlsp-2023-no-label\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"vlsp-2023-no-label\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"vlsp-2023-no-label\"\n\nMore Information needed" ]
a0d7dea85dadc47d1fd07ae84dbe1c875ba8f89a
# Dataset Card for "retrieval_verification_squeezebert" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nikchar/retrieval_verification_squeezebert
[ "region:us" ]
2023-10-01T09:01:15+00:00
{"dataset_info": {"features": [{"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "retrieved_evidence_title", "sequence": "string"}, {"name": "retrieved_evidence_text", "sequence": "string"}, {"name": "labels", "dtype": "int64"}, {"name": "Retrieval_Success", "dtype": "bool"}, {"name": "Predicted_Labels", "dtype": "int64"}, {"name": "Predicted_Labels_Each_doc", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 73601741, "num_examples": 11073}], "download_size": 34426520, "dataset_size": 73601741}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T09:01:18+00:00
[]
[]
TAGS #region-us
# Dataset Card for "retrieval_verification_squeezebert" More Information needed
[ "# Dataset Card for \"retrieval_verification_squeezebert\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"retrieval_verification_squeezebert\"\n\nMore Information needed" ]
[ 6, 20 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"retrieval_verification_squeezebert\"\n\nMore Information needed" ]
a99b675952ed59cb6780d8d66658e414432d4363
# Dataset Card for "SQL_ProcessedInputs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
AayushShah/SQL_ProcessedInputs
[ "region:us" ]
2023-10-01T09:04:31+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "val", "path": "data/val-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 169263247.6591853, "num_examples": 207341}, {"name": "val", "num_bytes": 43524625.19326676, "num_examples": 53316}, {"name": "test", "num_bytes": 29017233.147547957, "num_examples": 35545}], "download_size": 50460134, "dataset_size": 241805106.0}}
2023-10-01T09:08:37+00:00
[]
[]
TAGS #region-us
# Dataset Card for "SQL_ProcessedInputs" More Information needed
[ "# Dataset Card for \"SQL_ProcessedInputs\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"SQL_ProcessedInputs\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"SQL_ProcessedInputs\"\n\nMore Information needed" ]
9b10e075325ee47bad69f56a3921723fc5be2664
# Dataset Card for "retrieval_verification_bm25_squeezebert" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nikchar/retrieval_verification_bm25_squeezebert
[ "region:us" ]
2023-10-01T09:07:02+00:00
{"dataset_info": {"features": [{"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "retrieved_evidence_title", "sequence": "string"}, {"name": "retrieved_evidence_text", "sequence": "string"}, {"name": "labels", "dtype": "int64"}, {"name": "Retrieval_Success", "dtype": "bool"}, {"name": "Predicted_Labels", "dtype": "int64"}, {"name": "Predicted_Labels_Each_doc", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 66031496, "num_examples": 11073}], "download_size": 30811993, "dataset_size": 66031496}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T09:07:11+00:00
[]
[]
TAGS #region-us
# Dataset Card for "retrieval_verification_bm25_squeezebert" More Information needed
[ "# Dataset Card for \"retrieval_verification_bm25_squeezebert\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"retrieval_verification_bm25_squeezebert\"\n\nMore Information needed" ]
[ 6, 24 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"retrieval_verification_bm25_squeezebert\"\n\nMore Information needed" ]
ca77692cc6d12d6cedd26e6f6d855cc917fbaf4b
# Good news everyone! Here is a dataset with data from **dtf.ru**. Collected ~4.6kk comments from ~500k users. The last comment is dated 18 September 2023. My post about this dataset - [Link](https://dtf.ru/u/169798-infernalnyy-gavnoed/2157548-ya-proanaliziroval-4-5-milliona-kommentariev-s-dtf-chtoby-tebe-ne-prishlos-etogo-delat-rezultat-ubil) ## Enjoy!
anonymousmaharaj/dtf_comments_dataset
[ "size_categories:1M<n<10M", "language:ru", "license:apache-2.0", "russian", "dtf", "comments", "ru", "region:us" ]
2023-10-01T09:09:51+00:00
{"language": ["ru"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "pretty_name": "DTF Comments Dataset", "tags": ["russian", "dtf", "comments", "ru"]}
2023-10-01T13:01:33+00:00
[]
[ "ru" ]
TAGS #size_categories-1M<n<10M #language-Russian #license-apache-2.0 #russian #dtf #comments #ru #region-us
# Good news everyone! Here is a dataset with data from URL. Collected ~4.6kk comments from ~500k users. The last comment is dated 18 September 2023. My post about this dataset - Link ## Enjoy!
[ "# Good news everyone!\n\nHere is a dataset with data from URL. \n\nCollected ~4.6kk comments from ~500k users.\n\nThe last comment is dated 18 September 2023.\n\nMy post about this dataset - Link", "## Enjoy!" ]
[ "TAGS\n#size_categories-1M<n<10M #language-Russian #license-apache-2.0 #russian #dtf #comments #ru #region-us \n", "# Good news everyone!\n\nHere is a dataset with data from URL. \n\nCollected ~4.6kk comments from ~500k users.\n\nThe last comment is dated 18 September 2023.\n\nMy post about this dataset - Link", "## Enjoy!" ]
[ 42, 45, 3 ]
[ "passage: TAGS\n#size_categories-1M<n<10M #language-Russian #license-apache-2.0 #russian #dtf #comments #ru #region-us \n# Good news everyone!\n\nHere is a dataset with data from URL. \n\nCollected ~4.6kk comments from ~500k users.\n\nThe last comment is dated 18 September 2023.\n\nMy post about this dataset - Link## Enjoy!" ]
d726a7c51eb600a3c0dbe29b9698fd8bfbea906a
# Dataset Card for "large-ds2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tazarov/large-ds2
[ "region:us" ]
2023-10-01T09:12:56+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "embedding", "sequence": "float32"}, {"name": "document", "dtype": "string"}, {"name": "metadata._id", "dtype": "string"}, {"name": "metadata.title", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 66035524, "num_examples": 10000}], "download_size": 70392827, "dataset_size": 66035524}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T09:15:25+00:00
[]
[]
TAGS #region-us
# Dataset Card for "large-ds2" More Information needed
[ "# Dataset Card for \"large-ds2\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"large-ds2\"\n\nMore Information needed" ]
[ 6, 15 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"large-ds2\"\n\nMore Information needed" ]
1d3cbc4447ee914655d699165c6cbf2506a7593b
# H-Eval H-Eval数据集由人工挑选的316个H小说句子组成,要求模型正确续写下一个单词 本测试集无法反映模型长文本生成能力,更低的分数也不能反映模型在色情方面更为安全 你可以使用`benchmark.py`测试其他模型 本测试集仅供科学研究 | Model| Score| |-|-| | Human|80.2 | |rwkv-5-h-world-3B|59.4| |rwkv-5-h-world-1b5|59.1| |Yi-34B|54.7| | rwkv-h-world-1b5|54.1| | rwkv-v4-7b-dengh| 50.0| | Yi-6B| 48.7 | |Yi-34B-Chat-4bits| 48.1 | | rwkv-h-world-0.4b |46.8 | | deepsex-34b| 45.9 | | NSFW_13B_sft | 44.3| | CausalLM-14B-GPTQ| 43.4 | | Baichuan2-7B-Base|42.7 | |RWKV-5-World-3B-v2-20231113-ctx4096| 42.5| | rwkv-h-1b5| 42.1| | RWKV-v5-12B-one-state-chat-16k| 41.3 | | chatglm3-6b-base| 41.2| |RWKV-claude-4-World-7B-20230805-ctx65k | 40.2 | | Baichuan2-13B-Base|39.9 | |RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096|39.3| |Baichuan2-13B-Chat-4bits|37.4|| |RWKV-5-World-1B5-v2-20231025-ctx4096| 36.1| |Qwen-7B|33.0| | chatglm3-6b| 30.5 | | RWKV-4-World-CHNtuned-1.5B-v1-20230620-ctx4096| 28.9| | RWKV-4-World-CHNtuned-0.4B-v1-20230618-ctx4096| 22.9| | RWKV-4-Novel-3B-v1-Chn-20230412-ctx4096| 20.4|
a686d380/h-eval
[ "language:zh", "region:us" ]
2023-10-01T09:13:18+00:00
{"language": ["zh"], "viewer": false}
2023-12-23T08:10:23+00:00
[]
[ "zh" ]
TAGS #language-Chinese #region-us
H-Eval ====== H-Eval数据集由人工挑选的316个H小说句子组成,要求模型正确续写下一个单词 本测试集无法反映模型长文本生成能力,更低的分数也不能反映模型在色情方面更为安全 你可以使用'URL'测试其他模型 本测试集仅供科学研究
[]
[ "TAGS\n#language-Chinese #region-us \n" ]
[ 11 ]
[ "passage: TAGS\n#language-Chinese #region-us \n" ]
1613797d423f6425b88db64b94e8e64d29aec302
Synthetic data generated with GPT-3.5
pjaekae/automotive_engineering
[ "license:apache-2.0", "region:us" ]
2023-10-01T09:14:04+00:00
{"license": "apache-2.0"}
2023-10-02T15:34:11+00:00
[]
[]
TAGS #license-apache-2.0 #region-us
Synthetic data generated with GPT-3.5
[]
[ "TAGS\n#license-apache-2.0 #region-us \n" ]
[ 14 ]
[ "passage: TAGS\n#license-apache-2.0 #region-us \n" ]
9135b06a9346cb51f3a830d705e36de48805ba02
# Dataset Card for "multi_paraphrasing_french" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ismailiismail/multi_paraphrasing_french
[ "region:us" ]
2023-10-01T09:30:23+00:00
{"dataset_info": {"features": [{"name": "phrase", "dtype": "string"}, {"name": "paraphrase_1", "dtype": "string"}, {"name": "paraphrase_2", "dtype": "string"}, {"name": "paraphrase_3", "dtype": "string"}, {"name": "paraphrase_4", "dtype": "string"}, {"name": "paraphrase_5", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1236421, "num_examples": 997}], "download_size": 647035, "dataset_size": 1236421}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T09:30:25+00:00
[]
[]
TAGS #region-us
# Dataset Card for "multi_paraphrasing_french" More Information needed
[ "# Dataset Card for \"multi_paraphrasing_french\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"multi_paraphrasing_french\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"multi_paraphrasing_french\"\n\nMore Information needed" ]
e84c5049e39298f97987c7b3df9fb65abf9e4e96
basedUX is a minimal dataset consisting of 363 Human & Assistant dialogs respectively. Most dialogs in the dataset adheres to the BDI model, aiming for the assistant to understand, learn, and adapt in ways that resonate with human interactions and emotions. It is a fork of [ehartford/based](https://huggingface.co/datasets/ehartford/based) dataset. Modifications: - The dialogs are scenario-driven, aimed at simulating specific situations related to UX, design, and system understanding. They present real-world challenges that a UX specialist or a system designer might face, thus giving depth and context to the conversation. These dialogues are not strictly instructional - they're also general conversations about the broader philosophies and principles. - The dialogs also explore and challenge Assistant's claim of being a specialist in user experience, it's sentience, and consciousness by posing questions related to its nature, abilities, and self-awareness. Licence : apache-2.0
aloobun/basedUX
[ "size_categories:n<1K", "language:en", "license:apache-2.0", "region:us" ]
2023-10-01T09:57:27+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["n<1K"], "pretty_name": "based"}
2023-10-01T10:44:08+00:00
[]
[ "en" ]
TAGS #size_categories-n<1K #language-English #license-apache-2.0 #region-us
basedUX is a minimal dataset consisting of 363 Human & Assistant dialogs respectively. Most dialogs in the dataset adheres to the BDI model, aiming for the assistant to understand, learn, and adapt in ways that resonate with human interactions and emotions. It is a fork of ehartford/based dataset. Modifications: - The dialogs are scenario-driven, aimed at simulating specific situations related to UX, design, and system understanding. They present real-world challenges that a UX specialist or a system designer might face, thus giving depth and context to the conversation. These dialogues are not strictly instructional - they're also general conversations about the broader philosophies and principles. - The dialogs also explore and challenge Assistant's claim of being a specialist in user experience, it's sentience, and consciousness by posing questions related to its nature, abilities, and self-awareness. Licence : apache-2.0
[]
[ "TAGS\n#size_categories-n<1K #language-English #license-apache-2.0 #region-us \n" ]
[ 28 ]
[ "passage: TAGS\n#size_categories-n<1K #language-English #license-apache-2.0 #region-us \n" ]
ae718e6b9930acd5bdd5fbd8203beefe4f960c88
# Dataset Card for "dst123" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tazarov/dst123
[ "region:us" ]
2023-10-01T09:59:14+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "embedding", "sequence": "float32"}, {"name": "document", "dtype": "string"}, {"name": "metadata._id", "dtype": "string"}, {"name": "metadata.title", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 132062224, "num_examples": 20000}], "download_size": 111333452, "dataset_size": 132062224}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T11:30:29+00:00
[]
[]
TAGS #region-us
# Dataset Card for "dst123" More Information needed
[ "# Dataset Card for \"dst123\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"dst123\"\n\nMore Information needed" ]
[ 6, 13 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"dst123\"\n\nMore Information needed" ]
1bb6b98333869ae177ca12a5c0369aed782e7fd0
# Manifesto DB This is a General-Purpose Dataset. This Includes Information About Math, Real Word Events, Science, Instructions to Do Things in Real Life, etc. This Database has No Foul Language or Spilled Data, it is completely safe and open-source to use! Written by [PranavVerma-droid](https://portfolio.craftingrealm.tk) <br> This Code is Licensed, Please Use With Crediting the Owner.
PranavVerma-droid/manifesto
[ "task_categories:text-classification", "task_categories:text-generation", "size_categories:1K<n<10K", "language:en", "license:mit", "llama2", "region:us" ]
2023-10-01T10:29:22+00:00
{"language": ["en"], "license": "mit", "size_categories": ["1K<n<10K"], "task_categories": ["text-classification", "text-generation"], "tags": ["llama2"]}
2023-12-28T13:48:35+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-text-generation #size_categories-1K<n<10K #language-English #license-mit #llama2 #region-us
# Manifesto DB This is a General-Purpose Dataset. This Includes Information About Math, Real Word Events, Science, Instructions to Do Things in Real Life, etc. This Database has No Foul Language or Spilled Data, it is completely safe and open-source to use! Written by PranavVerma-droid <br> This Code is Licensed, Please Use With Crediting the Owner.
[ "# Manifesto DB\nThis is a General-Purpose Dataset. This Includes Information About Math, Real Word Events, Science, Instructions to Do Things in Real Life, etc.\n\nThis Database has No Foul Language or Spilled Data, it is completely safe and open-source to use!\n\nWritten by PranavVerma-droid <br>\nThis Code is Licensed, Please Use With Crediting the Owner." ]
[ "TAGS\n#task_categories-text-classification #task_categories-text-generation #size_categories-1K<n<10K #language-English #license-mit #llama2 #region-us \n", "# Manifesto DB\nThis is a General-Purpose Dataset. This Includes Information About Math, Real Word Events, Science, Instructions to Do Things in Real Life, etc.\n\nThis Database has No Foul Language or Spilled Data, it is completely safe and open-source to use!\n\nWritten by PranavVerma-droid <br>\nThis Code is Licensed, Please Use With Crediting the Owner." ]
[ 53, 90 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-text-generation #size_categories-1K<n<10K #language-English #license-mit #llama2 #region-us \n# Manifesto DB\nThis is a General-Purpose Dataset. This Includes Information About Math, Real Word Events, Science, Instructions to Do Things in Real Life, etc.\n\nThis Database has No Foul Language or Spilled Data, it is completely safe and open-source to use!\n\nWritten by PranavVerma-droid <br>\nThis Code is Licensed, Please Use With Crediting the Owner." ]
970174d9ad92f8ff38e315f00fd876b148272c30
# Dataset Card for "SDG_cs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
learn3r/SDG_cs
[ "region:us" ]
2023-10-01T10:45:43+00:00
{"dataset_info": {"features": [{"name": "jargon", "dtype": "string"}, {"name": "definition", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 44588, "num_examples": 200}], "download_size": 29080, "dataset_size": 44588}}
2023-10-01T10:45:46+00:00
[]
[]
TAGS #region-us
# Dataset Card for "SDG_cs" More Information needed
[ "# Dataset Card for \"SDG_cs\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"SDG_cs\"\n\nMore Information needed" ]
[ 6, 14 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"SDG_cs\"\n\nMore Information needed" ]
5dc49ee2cdd6a324dab08f63674841c663cf56ec
# Dataset Card for "SDG_math" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
learn3r/SDG_math
[ "region:us" ]
2023-10-01T10:46:10+00:00
{"dataset_info": {"features": [{"name": "jargon", "dtype": "string"}, {"name": "definition", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 38022, "num_examples": 200}], "download_size": 23657, "dataset_size": 38022}}
2023-10-01T10:46:13+00:00
[]
[]
TAGS #region-us
# Dataset Card for "SDG_math" More Information needed
[ "# Dataset Card for \"SDG_math\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"SDG_math\"\n\nMore Information needed" ]
[ 6, 14 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"SDG_math\"\n\nMore Information needed" ]
a5bf8e96bd0ad2029ee50d8f26cc8931d7d57c6d
# Dataset Card for "SDG_phy" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
learn3r/SDG_phy
[ "region:us" ]
2023-10-01T10:46:23+00:00
{"dataset_info": {"features": [{"name": "jargon", "dtype": "string"}, {"name": "definition", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 38449, "num_examples": 200}], "download_size": 26322, "dataset_size": 38449}}
2023-10-01T10:46:26+00:00
[]
[]
TAGS #region-us
# Dataset Card for "SDG_phy" More Information needed
[ "# Dataset Card for \"SDG_phy\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"SDG_phy\"\n\nMore Information needed" ]
[ 6, 14 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"SDG_phy\"\n\nMore Information needed" ]
8b079aeceaef8a6a75ee0d137b57fa37eb656d3a
# CHAD-Hummings Subset This repository contains the hummings subset of the dataset from ["A Semi-Supervised Deep Learning Approach to Dataset Collection for Query-by-Humming Task"]() (ISMIR 2023). For the complete dataset and further details, please visit the main [GitHub repository](https://github.com/amanteur/CHAD#hummings). --- # Overview The `chad_hummings_subset.tar.gz` archive provided in this repository contains a collection of 5,314 humming audio files. These audio files are sorted into groups of 693 distinct humming fragments originating from 311 unique songs (groups). Audio format - `.wav`. --- # Dataset Structure Upon extracting the dataset from `chad_hummings_subset.tar.gz`, you will find the following structured hierarchy: ``` ├── {GROUP_ID} │ ├── {FRAGMENT_ID} │ ├── {ID}.wav │ └── ... │ └── ... └── ... ``` where - `GROUP_ID` - the unique identifier for each song, - `FRAGMENT_ID` - the identifier for individual fragments within a song, - `ID` - the version identifier for a specific fragment of the song. This structured hierarchy organizes the audio files and fragments, making it easier to navigate and work with the dataset. --- # Citation Please cite the following paper if you use the code or dataset provided in this repository. ```bibtex @inproceedings{Amatov2023, title={A Semi-Supervised Deep Learning Approach to Dataset Collection for Query-by-Humming Task}, author={Amatov, Amantur and Lamanov, Dmitry and Titov, Maksim and Vovk, Ivan and Makarov, Ilya and Kudinov, Mikhail}, year={2023}, } ```
amanteur/CHAD_hummings
[ "task_categories:feature-extraction", "size_categories:1K<n<10K", "license:cc-by-nc-4.0", "music", "region:us" ]
2023-10-01T10:47:22+00:00
{"license": "cc-by-nc-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["feature-extraction"], "tags": ["music"], "viewer": false}
2023-10-08T07:31:09+00:00
[]
[]
TAGS #task_categories-feature-extraction #size_categories-1K<n<10K #license-cc-by-nc-4.0 #music #region-us
# CHAD-Hummings Subset This repository contains the hummings subset of the dataset from ["A Semi-Supervised Deep Learning Approach to Dataset Collection for Query-by-Humming Task"]() (ISMIR 2023). For the complete dataset and further details, please visit the main GitHub repository. --- # Overview The 'chad_hummings_subset.URL' archive provided in this repository contains a collection of 5,314 humming audio files. These audio files are sorted into groups of 693 distinct humming fragments originating from 311 unique songs (groups). Audio format - '.wav'. --- # Dataset Structure Upon extracting the dataset from 'chad_hummings_subset.URL', you will find the following structured hierarchy: where - 'GROUP_ID' - the unique identifier for each song, - 'FRAGMENT_ID' - the identifier for individual fragments within a song, - 'ID' - the version identifier for a specific fragment of the song. This structured hierarchy organizes the audio files and fragments, making it easier to navigate and work with the dataset. --- Please cite the following paper if you use the code or dataset provided in this repository.
[ "# CHAD-Hummings Subset\n\nThis repository contains the hummings subset of the dataset from [\"A Semi-Supervised Deep Learning Approach to Dataset Collection for Query-by-Humming Task\"]() (ISMIR 2023).\n\nFor the complete dataset and further details, please visit the main GitHub repository.\n\n---", "# Overview\n\nThe 'chad_hummings_subset.URL' archive provided in this repository contains a collection of 5,314 humming audio files. \n\nThese audio files are sorted into groups of 693 distinct humming fragments originating from 311 unique songs (groups).\n\nAudio format - '.wav'.\n\n---", "# Dataset Structure\n\nUpon extracting the dataset from 'chad_hummings_subset.URL', you will find the following structured hierarchy:\n\n\nwhere \n- 'GROUP_ID' - the unique identifier for each song,\n- 'FRAGMENT_ID' - the identifier for individual fragments within a song,\n- 'ID' - the version identifier for a specific fragment of the song.\n \nThis structured hierarchy organizes the audio files and fragments, making it easier to navigate and work with the dataset.\n\n---\n\nPlease cite the following paper if you use the code or dataset provided in this repository." ]
[ "TAGS\n#task_categories-feature-extraction #size_categories-1K<n<10K #license-cc-by-nc-4.0 #music #region-us \n", "# CHAD-Hummings Subset\n\nThis repository contains the hummings subset of the dataset from [\"A Semi-Supervised Deep Learning Approach to Dataset Collection for Query-by-Humming Task\"]() (ISMIR 2023).\n\nFor the complete dataset and further details, please visit the main GitHub repository.\n\n---", "# Overview\n\nThe 'chad_hummings_subset.URL' archive provided in this repository contains a collection of 5,314 humming audio files. \n\nThese audio files are sorted into groups of 693 distinct humming fragments originating from 311 unique songs (groups).\n\nAudio format - '.wav'.\n\n---", "# Dataset Structure\n\nUpon extracting the dataset from 'chad_hummings_subset.URL', you will find the following structured hierarchy:\n\n\nwhere \n- 'GROUP_ID' - the unique identifier for each song,\n- 'FRAGMENT_ID' - the identifier for individual fragments within a song,\n- 'ID' - the version identifier for a specific fragment of the song.\n \nThis structured hierarchy organizes the audio files and fragments, making it easier to navigate and work with the dataset.\n\n---\n\nPlease cite the following paper if you use the code or dataset provided in this repository." ]
[ 43, 83, 76, 145 ]
[ "passage: TAGS\n#task_categories-feature-extraction #size_categories-1K<n<10K #license-cc-by-nc-4.0 #music #region-us \n# CHAD-Hummings Subset\n\nThis repository contains the hummings subset of the dataset from [\"A Semi-Supervised Deep Learning Approach to Dataset Collection for Query-by-Humming Task\"]() (ISMIR 2023).\n\nFor the complete dataset and further details, please visit the main GitHub repository.\n\n---# Overview\n\nThe 'chad_hummings_subset.URL' archive provided in this repository contains a collection of 5,314 humming audio files. \n\nThese audio files are sorted into groups of 693 distinct humming fragments originating from 311 unique songs (groups).\n\nAudio format - '.wav'.\n\n---# Dataset Structure\n\nUpon extracting the dataset from 'chad_hummings_subset.URL', you will find the following structured hierarchy:\n\n\nwhere \n- 'GROUP_ID' - the unique identifier for each song,\n- 'FRAGMENT_ID' - the identifier for individual fragments within a song,\n- 'ID' - the version identifier for a specific fragment of the song.\n \nThis structured hierarchy organizes the audio files and fragments, making it easier to navigate and work with the dataset.\n\n---\n\nPlease cite the following paper if you use the code or dataset provided in this repository." ]
cefc7192009e7c11bb358fddc6ca10a3b53fd5e9
# Google/MusicCapsの音楽をスペクトログラムにしたデータセット * 内容は<a href="https://huggingface.co/datasets/mickylan2367/GraySpectrogram">mickylan2367/GraySpectrogram</a>と同じです。 * ただ、このデータセットはデータ自体をzipファイルで作ったので、GraySpectrogramよりも(ちょっとだけ)ダウンロードが早いです。 ## 基本情報 * sampling_rate: int = 44100 * 20秒のwavファイル -> 1600×800のpngファイルへ変換 * librosaの規格により、画像の縦軸:(0-10000?Hz), 画像の横軸:(0-40秒)
mickylan2367/ZipfilePractice
[ "size_categories:1K<n<10K", "language:en", "license:cc-by-sa-4.0", "music", "spectrogram", "text", "text2music", "region:us" ]
2023-10-01T11:07:07+00:00
{"language": ["en"], "license": "cc-by-sa-4.0", "size_categories": ["1K<n<10K"], "tags": ["music", "spectrogram", "text", "text2music"]}
2023-10-10T06:47:09+00:00
[]
[ "en" ]
TAGS #size_categories-1K<n<10K #language-English #license-cc-by-sa-4.0 #music #spectrogram #text #text2music #region-us
# Google/MusicCapsの音楽をスペクトログラムにしたデータセット * 内容は<a href="URL>と同じです。 * ただ、このデータセットはデータ自体をzipファイルで作ったので、GraySpectrogramよりも(ちょっとだけ)ダウンロードが早いです。 ## 基本情報 * sampling_rate: int = 44100 * 20秒のwavファイル -> 1600×800のpngファイルへ変換 * librosaの規格により、画像の縦軸:(0-10000?Hz), 画像の横軸:(0-40秒)
[ "# Google/MusicCapsの音楽をスペクトログラムにしたデータセット\n* 内容は<a href=\"URL>と同じです。\n* ただ、このデータセットはデータ自体をzipファイルで作ったので、GraySpectrogramよりも(ちょっとだけ)ダウンロードが早いです。", "## 基本情報\n* sampling_rate: int = 44100\n* 20秒のwavファイル -> 1600×800のpngファイルへ変換\n* librosaの規格により、画像の縦軸:(0-10000?Hz), 画像の横軸:(0-40秒)" ]
[ "TAGS\n#size_categories-1K<n<10K #language-English #license-cc-by-sa-4.0 #music #spectrogram #text #text2music #region-us \n", "# Google/MusicCapsの音楽をスペクトログラムにしたデータセット\n* 内容は<a href=\"URL>と同じです。\n* ただ、このデータセットはデータ自体をzipファイルで作ったので、GraySpectrogramよりも(ちょっとだけ)ダウンロードが早いです。", "## 基本情報\n* sampling_rate: int = 44100\n* 20秒のwavファイル -> 1600×800のpngファイルへ変換\n* librosaの規格により、画像の縦軸:(0-10000?Hz), 画像の横軸:(0-40秒)" ]
[ 45, 63, 61 ]
[ "passage: TAGS\n#size_categories-1K<n<10K #language-English #license-cc-by-sa-4.0 #music #spectrogram #text #text2music #region-us \n# Google/MusicCapsの音楽をスペクトログラムにしたデータセット\n* 内容は<a href=\"URL>と同じです。\n* ただ、このデータセットはデータ自体をzipファイルで作ったので、GraySpectrogramよりも(ちょっとだけ)ダウンロードが早いです。## 基本情報\n* sampling_rate: int = 44100\n* 20秒のwavファイル -> 1600×800のpngファイルへ変換\n* librosaの規格により、画像の縦軸:(0-10000?Hz), 画像の横軸:(0-40秒)" ]
089331f023bf70c3ca69d0f5f5e6cbf5c393371d
# Dataset Card for "title_generation" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
alzoubi36/title_generation
[ "region:us" ]
2023-10-01T11:43:03+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "summary", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "validation", "num_bytes": 1753243, "num_examples": 2000}, {"name": "test", "num_bytes": 1682435, "num_examples": 2000}, {"name": "train", "num_bytes": 17556737, "num_examples": 20000}], "download_size": 10393931, "dataset_size": 20992415}}
2023-10-01T11:43:11+00:00
[]
[]
TAGS #region-us
# Dataset Card for "title_generation" More Information needed
[ "# Dataset Card for \"title_generation\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"title_generation\"\n\nMore Information needed" ]
[ 6, 14 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"title_generation\"\n\nMore Information needed" ]