sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
6ec414f8ea7d6e2b4c5feaab573fd324e66ac518
PhanAnh/monet_picture
[ "license:creativeml-openrail-m", "region:us" ]
2023-01-19T03:07:38+00:00
{"license": "creativeml-openrail-m"}
2023-01-19T03:07:38+00:00
8a17207bcc901d031abd94bbb22276e770826229
# Dataset Card for Douban Dushu (豆瓣读书). ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description This dataset contains book reviews from DouBan Dushu. DouBan DuShu is a Chinese website where users can share their reviews about various kinds of books. Most of the users in this website are unprofessional book reviewers. Therefore, the comments are usually spoken Chinese or even Internet slang. - **Repository:** https://github.com/JaniceZhao/Douban-Dushu-Dataset - **Paper:** LSICC: A Large Scale Informal Chinese Corpus ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages Chinese ## Dataset Structure ### Data Instances ``` { 'tag': '日本文学', 'book_name': '厨房', 'user_name': '林大东', 'date': '2013-03-12', 'comment': '满月没有另外两篇好看', 'star': 5, 'vote_count': 0 } ``` ### Data Fields ``` { "tag": datasets.Value("string"), "book_name": datasets.Value("string"), "user_name": datasets.Value("string"), "date": datasets.Value("string"), "comment": datasets.Value("string"), "star": datasets.Value("int32"), "vote_count": datasets.Value("int32"), } ``` ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data https://drive.google.com/drive/folders/1Me0aswzCCMtJt3clWiA39J5i-tbREgze #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information @article{zhao2018lsicc, title={LSICC: A Large Scale Informal Chinese Corpus}, author={Zhao, Jianyu and Ji, Zhuoran}, journal={arXiv preprint arXiv:1811.10167}, year={2018} } ### Contributions Thanks to [@larrylawl](https://github.com/larrylawl) for adding this dataset.
larrylawl/douban-dushu
[ "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:10M<n<100M", "language:zh", "license:cc-by-4.0", "region:us" ]
2023-01-19T03:13:13+00:00
{"annotations_creators": ["no-annotation"], "language_creators": ["crowdsourced"], "language": ["zh"], "license": ["cc-by-4.0"], "multilinguality": ["monolingual"], "size_categories": ["10M<n<100M"], "source_datasets": [], "task_categories": [], "task_ids": [], "pretty_name": "Book revies from DouBan Dushu.", "tags": []}
2023-01-19T03:14:57+00:00
9d4f21ac57d11ed4f9ea64854fdc9f5618e61acc
# Dataset Card for naamapadam ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [Needs More Information] - **Repository:** https://github.com/AI4Bharat/indicner - **Paper:** [Needs More Information] - **Leaderboard:** [Needs More Information] - **Point of Contact:** Anoop Kunchukuttan ### Dataset Summary Naamapadam is the largest publicly available Named Entity Annotated dataset for 11 Indic languages. This corpora was created by projecting named entities from English side to the Indic language side of the English-Indic languages parallel corpus. The dataset additionally contains manually labelled test set for 8 Indic languages containing 500-1000 sentences. ### Supported Tasks and Leaderboards **Tasks:** NER on Indian languages. **Leaderboards:** Currently there is no Leaderboard for this dataset. ### Languages - `Assamese (as)` - `Bengali (bn)` - `Gujarati (gu)` - `Kannada (kn)` - `Hindi (hi)` - `Malayalam (ml)` - `Marathi (mr)` - `Oriya (or)` - `Punjabi (pa)` - `Tamil (ta)` - `Telugu (te)` ## Dataset Structure ### Data Instances {'words': ['उन्हेनें', 'शिकांगों','में','बोरोडिन','की','पत्नी','को','तथा','वाशिंगटन','में','रूसी','व्यापार','संघ','को','पैसे','भेजे','।'], 'ner': [0, 3, 0, 1, 0, 0, 0, 0, 3, 0, 5, 6, 6, 0, 0, 0, 0], } ### Data Fields - `words`: Raw tokens in the dataset. - `ner`: the NER tags for this dataset. ### Data Splits (to be updated, see paper for correct numbers) | Language | Train | Validation | Test | |---:|---:|---:|---:| | as | 10266 | 52 | 51 | | bn | 961679 | 4859 | 607 | | gu | 472845 | 2389 | 50 | | hi | 985787 | 13460 | 437 | | kn | 471763 | 2381 | 1019 | | ml | 716652 | 3618 | 974 | | mr | 455248 | 2300 | 1080 | | or | 196793 | 993 | 994 | | pa | 463534 | 2340 | 2342 | | ta | 497882 | 2795 | 49 | | te | 507741 | 2700 | 53 | ## Usage You should have the 'datasets' packages installed to be able to use the :rocket: HuggingFace datasets repository. Please use the following command and install via pip: ```code pip install datasets ``` To use the dataset, please use:<br/> ```python from datasets import load_dataset hiner = load_dataset('ai4bharat/naamapadam') ``` ## Dataset Creation We use the parallel corpus from the Samanantar Dataset between English and the 11 major Indian languages to create the NER dataset. We annotate the English portion of the parallel corpus with existing state-of-the-art NER model. We use word-level alignments learned from the parallel corpus to project the entity labels from English to the Indian language. ### Curation Rationale naamapadam was built from [Samanantar dataset](https://indicnlp.ai4bharat.org/samanantar/). This dataset was built for the task of Named Entity Recognition in Indic languages. The dataset was introduced to introduce new resources to the Indic languages language that was under-served for Natural Language Processing. ### Source Data [Samanantar dataset](https://indicnlp.ai4bharat.org/samanantar/) #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process NER annotations were done following the CoNLL-2003 guidelines. #### Who are the annotators? The annotations for the testset have been done by volunteers who are proficient in the respective languages. We would like to thank all the volunteers: - Anil Mhaske - Anoop Kunchukuttan - Archana Mhaske - Arnav Mhaske - Gowtham Ramesh - Harshit Kedia - Nitin Kedia - Rudramurthy V - Sangeeta Rajagopal - Sumanth Doddapaneni - Vindhya DS - Yash Madhani - Kabir Ahuja - Shallu Rani - Armin Virk ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset The purpose of this dataset is to provide a large-scale Named Entity Recognition dataset for Indic languages. Since the information (data points) has been obtained from public resources, we do not think there is a negative social impact in releasing this data. ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information <!-- <a rel="license" float="left" href="http://creativecommons.org/publicdomain/zero/1.0/"> <img src="https://licensebuttons.net/p/zero/1.0/88x31.png" style="border-style: none;" alt="CC0" width="100" /> <img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by.png" style="border-style: none;" alt="CC-BY" width="100" href="http://creativecommons.org/publicdomain/zero/1.0/"/> </a> <br/> --> **CC0 License Statement** <a rel="license" float="left" href="https://creativecommons.org/about/cclicenses/"> <img src="https://licensebuttons.net/p/zero/1.0/88x31.png" style="border-style: none;" alt="CC0" width="100"/> </a> <br> <br> - We do not own any of the text from which this data has been extracted. - We license the actual packaging of the mined data under the [Creative Commons CC0 license (“no rights reserved”)](http://creativecommons.org/publicdomain/zero/1.0). - To the extent possible under law, <a rel="dct:publisher" href="https://ai4bharat.iitm.ac.in/"> <span property="dct:title">AI4Bharat</span></a> has waived all copyright and related or neighboring rights to <span property="dct:title">Naamapadam</span> manually collected data and existing sources. - This work is published from: India. ### Citation Information If you are using the Naampadam corpus, please cite the following article: ``` @misc{mhaske2022naamapadam, doi = {10.48550/ARXIV.2212.10168}, url = {https://arxiv.org/abs/2212.10168}, author = {Mhaske, Arnav and Kedia, Harshit and Doddapaneni, Sumanth and Khapra, Mitesh M. and Kumar, Pratyush and Murthy, Rudra and Kunchukuttan, Anoop}, title = {Naamapadam: A Large-Scale Named Entity Annotated Data for Indic Languages} publisher = {arXiv}, year = {2022}, } ``` <!-- Contributors --> ### Contributors - Arnav Mhaske <sub> ([AI4Bharat](https://ai4bharat.org), [IITM](https://www.iitm.ac.in)) </sub> - Harshit Kedia <sub> ([AI4Bharat](https://ai4bharat.org), [IITM](https://www.iitm.ac.in)) </sub> - Sumanth Doddapaneni <sub> ([AI4Bharat](https://ai4bharat.org), [IITM](https://www.iitm.ac.in)) </sub> - Mitesh M. Khapra <sub> ([AI4Bharat](https://ai4bharat.org), [IITM](https://www.iitm.ac.in)) </sub> - Pratyush Kumar <sub> ([AI4Bharat](https://ai4bharat.org), [Microsoft](https://www.microsoft.com/en-in/), [IITM](https://www.iitm.ac.in)) </sub> - Rudra Murthy <sub> ([AI4Bharat](https://ai4bharat.org), [IBM](https://www.ibm.com))</sub> - Anoop Kunchukuttan <sub> ([AI4Bharat](https://ai4bharat.org), [Microsoft](https://www.microsoft.com/en-in/), [IITM](https://www.iitm.ac.in)) </sub> This work is the outcome of a volunteer effort as part of the [AI4Bharat initiative](https://ai4bharat.iitm.ac.in). <!-- Contact --> ### Contact - Anoop Kunchukuttan ([[email protected]](mailto:[email protected])) - Rudra Murthy V ([[email protected]](mailto:[email protected]))
ai4bharat/naamapadam
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:machine-generated", "language_creators:machine-generated", "multilinguality:multilingual", "size_categories:1M<n<10M", "source_datasets:original", "language:as", "language:bn", "language:gu", "language:hi", "language:kn", "language:ml", "language:mr", "language:or", "language:pa", "language:ta", "language:te", "license:cc0-1.0", "arxiv:2212.10168", "region:us" ]
2023-01-19T03:17:10+00:00
{"annotations_creators": ["machine-generated"], "language_creators": ["machine-generated"], "language": ["as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te"], "license": ["cc0-1.0"], "multilinguality": ["multilingual"], "size_categories": ["1M<n<10M"], "source_datasets": ["original"], "task_categories": ["token-classification"], "task_ids": ["named-entity-recognition"], "pretty_name": "naamapadam"}
2023-05-24T16:09:03+00:00
0464588cd231df7fdda12d4f08dbcd53997a9f2d
# Dataset Card for "openwebtext-tokenized-9b" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
NeelNanda/openwebtext-tokenized-9b
[ "region:us" ]
2023-01-19T03:18:45+00:00
{"dataset_info": {"features": [{"name": "tokens", "sequence": "uint16"}], "splits": [{"name": "train", "num_bytes": 18125188776, "num_examples": 8832938}], "download_size": 17426592454, "dataset_size": 18125188776}}
2023-01-19T07:23:02+00:00
a9a51e65841e7c3ab02c5d6a808d319b145f6f9e
# Princess Jai Lee Embedding Fine-tuned textual inversion based on a character from [3ee Games](https://3ee.com), Princess Jai Lee. ![Detailed Samples](https://huggingface.co/datasets/zuleo/princess-jai-lee/resolve/main/princess.png) ## Embedding Usage Use the token ```jaileefunkprincess``` All sample images also use the bad prompt embedding: https://huggingface.co/datasets/Nerfgun3/bad_prompt#version-2 --- ☕ If you enjoy this model, buy me a coffee [![Buy a coffee](https://badgen.net/badge/icon/kofi?icon=kofi&amp;label=buy%20us%20a%20coffee)](https://ko-fi.com/3eegames) --- ## 🧾 Prompt example: **The queen has returned** ```Perfectly-centered close up portrait of a real life godly woman (jaileefunkprincess :1.1)with long purple hair and wearing shining armor descending from heaven, lifelike, super highly detailed, professional digital painting, artstation, concept art, Unreal Engine 5, Photorealism, HD quality, 8k resolution, cinema 4d, 3D, beautiful, cinematic, art by artgerm and greg rutkowski and alphonse mucha and loish and WLOP, dynamic pose``` Negative prompt: ```(bad_prompt_version2:0.8), lowres, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, ((ugly)), ((duplicate)), ((morbid)), ((mutilated)), out of frame, extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))``` _Steps: 80, Sampler: DPM adaptive, CFG scale: 10.5, Seed: 945244310, Size: 512x512, Model hash: d0b457ae_ (Model hash: protogen-x53-photorealism-official-release - https://civitai.com/models/3816/protogen-x53-photorealism-official-release) --- ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: - You can't use the model to deliberately produce nor share illegal or harmful outputs or content - The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license - You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
zuleo/princess-jai-lee
[ "license:creativeml-openrail-m", "stable-diffusion", "embedding", "text-to-image", "image-to-image", "art", "artistic", "region:us" ]
2023-01-19T03:27:07+00:00
{"license": "creativeml-openrail-m", "tags": ["stable-diffusion", "embedding", "text-to-image", "image-to-image", "art", "artistic"]}
2023-01-19T04:11:30+00:00
f953fdcae786181a33ebce6f988ca9b84f3caa6e
# Dataset Card for 1000 Website Screenshots with Metadata ## Dataset Description - **Homepage:** [silatus.com](https://silatus.com/datasets) - **Point of Contact:** [[email protected]](mailto:[email protected]) ### Dataset Summary Silatus is sharing, for free, a segment of a dataset that we are using to train a generative AI model for text-to-mockup conversions. This dataset was collected in December 2022 and early January 2023, so it contains very recent data from 1,000 of the world's most popular websites. You can get our larger 10,000 website dataset for free at: [https://silatus.com/datasets](https://silatus.com/datasets) This dataset includes: **High-res screenshots** - 1024x1024px - Loaded Javascript - Loaded Images **Text metadata** - Site title - Navbar content - Full page text data - Page description **Visual metadata** - Content (images, videos, inputs, buttons) absolute & relative positions - Color profile - Base font
silatus/1k_Website_Screenshots_and_Metadata
[ "task_categories:text-to-image", "task_categories:image-classification", "task_categories:image-segmentation", "size_categories:1K<n<10K", "language:en", "license:cc-by-nc-sa-4.0", "screenshots", "metadata", "websites", "webpages", "region:us" ]
2023-01-19T04:33:07+00:00
{"language": ["en"], "license": "cc-by-nc-sa-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-to-image", "image-classification", "image-segmentation"], "pretty_name": "1000 Website Screenshots with Metadata", "tags": ["screenshots", "metadata", "websites", "webpages"]}
2023-01-19T05:20:33+00:00
3f7c6633977d7f9e0711de216ae89d1c80240b0b
AnonymousSubmissionOnly/Pinyin
[ "license:mit", "region:us" ]
2023-01-19T04:49:27+00:00
{"license": "mit"}
2023-01-19T04:49:27+00:00
30bc1b5abd4169fc0dff9f460866bb1a8507659b
AnonymousSubmissionOnly/Abb_Pinyin
[ "license:mit", "region:us" ]
2023-01-19T04:50:27+00:00
{"license": "mit"}
2023-06-25T11:00:35+00:00
f10898f7b996128364bf6b35674c00e6553e9ccc
AnonymousSubmissionOnly/csc_sample
[ "license:mit", "region:us" ]
2023-01-19T04:51:17+00:00
{"license": "mit"}
2023-01-19T04:52:21+00:00
54b14ffd1c7a59ebee12d88b55753fe3b85598dc
AnonymousSubmissionOnly/Chaizi
[ "license:mit", "region:us" ]
2023-01-19T04:52:51+00:00
{"license": "mit"}
2023-01-19T04:53:17+00:00
53e709e1f2ea8c77d9ba727d4dd54e73e9f14b73
AnonymousSubmissionOnly/Hybrid
[ "license:mit", "region:us" ]
2023-01-19T04:53:37+00:00
{"license": "mit"}
2023-01-19T04:54:00+00:00
35caabd7685b451d5b872964683d202788950979
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** https://laion.ai/ - **Repository:** https://github.com/kayjay-is-here/changemyview-converter - **Paper:** - **Leaderboard:** - **Point of Contact:** [email protected] ### Dataset Summary This is a collection of subreddit data from r/changemyview that has been formatted for use within OpenAssistant's training models. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages English ## Dataset Structure [More Information Needed] ### Data Instances [More Information Needed] ### Data Fields `INSTRUCTION`: The title of the post and the accompanying body text. `RESPONSE`: A list of all the posts that contain text that argues against `INSTRUCTION` `SOURCE`: A permalink to the reddit post of `INSTRUCTION` `METADATA`: Metadata of the post, such as the ML scored toxicity score ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
kjl3080/OA_CMV_Arguments
[ "region:us" ]
2023-01-19T05:18:11+00:00
{}
2023-01-21T02:16:59+00:00
4c0b2776d46015c384a6b28b16014a6c82a65587
# Dataset Card for Dataset Name ## Dataset Description - **Repository:** https://github.com/americanas-tech/b2w-reviews01 - **Paper:** http://comissoes.sbc.org.br/ce-pln/stil2019/proceedings-stil-2019-Final-Publicacao.pdf - **Point of Contact:** Livy Real ### Dataset Summary B2W-Reviews01 is an open corpus of product reviews. It contains more than 130k e-commerce customer reviews, collected from the Americanas.com website between January and May, 2018. B2W-Reviews01 offers rich information about the reviewer profile, such as gender, age, and geographical location. The corpus also has two different review rates: * the usual 5-point scale rate, represented by stars in most e-commerce websites, * a "recommend to a friend" label, a "yes or no" question representing the willingness of the customer to recommend the product to someone else. ### Supported Tasks and Leaderboards * Sentiment Analysis * Topic Modeling ### Languages * Portuguese ## Dataset Structure ### Data Instances ``` {'submission_date': '2018-01-02 06:23:22', 'reviewer_id': '6adc7901926fc1697d34181fbd88895976b4f3f31f0102d90217d248a1fad156', 'product_id': '123911277', 'product_name': 'Triciclo Gangorra Belfix Cabeça Cachorro Rosa', 'product_brand': 'belfix', 'site_category_lv1': 'Brinquedos', 'site_category_lv2': 'Mini Veículos', 'review_title': 'O produto não foi entregue', 'overall_rating': 1, 'recommend_to_a_friend': 'Yes', 'review_text': 'Incrível o descaso com o consumidor. O produto não chegou, apesar de já ter sido pago. Não recebo qualquer informação sobre onde se encontra o produto, ou qualquer compensação do vendedor. Não recomendo.', 'reviewer_birth_year': 1981, 'reviewer_gender': 'M', 'reviewer_state': 'RJ'} ``` ### Data Fields * **submission_date**: the date and time when the review was submitted. `"%Y-%m-%d %H:%M:%S"`. * **reviewer_id**: a unique identifier for the reviewer. * **product_id**: a unique identifier for the product being reviewed. * **product_name**: the name of the product being reviewed. * **product_brand**: the brand of the product being reviewed. * **site_category_lv1**: the highest level category for the product on the site where the review is being submitted. * **site_category_lv2**: the second level category for the product on the site where the review is being submitted. * **review_title**: the title of the review. * **overall_rating**: the overall star rating given by the reviewer on a scale of 1 to 5. * **recommend_to_a_friend**: whether or not the reviewer would recommend the product to a friend (Yes/No). * **review_text**: the full text of the review. * **reviewer_birth_year**: the birth year of the reviewer. * **reviewer_gender**: the gender of the reviewer (F/M). * **reviewer_state**: the Brazilian state of the reviewer (e.g. RJ). ### Data Splits | name |train| |---------|----:| |b2w-reviews01|132373| ### Citation Information ``` @inproceedings{real2019b2w, title={B2W-reviews01: an open product reviews corpus}, author={Real, Livy and Oshiro, Marcio and Mafra, Alexandre}, booktitle={STIL-Symposium in Information and Human Language Technology}, year={2019} } ``` ### Contributions Thanks to [@ruanchaves](https://github.com/ruanchaves) for adding this dataset.
ruanchaves/b2w-reviews01
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-scoring", "task_ids:intent-classification", "task_ids:topic-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:100M<n<1B", "source_datasets:original", "language:pt", "license:cc-by-4.0", "reviews", "doi:10.57967/hf/0282", "region:us" ]
2023-01-19T07:55:43+00:00
{"annotations_creators": ["found"], "language_creators": ["found"], "language": ["pt"], "license": ["cc-by-4.0"], "multilinguality": ["monolingual"], "size_categories": ["100M<n<1B"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis", "sentiment-scoring", "intent-classification", "topic-classification"], "pretty_name": "B2W-Reviews01", "tags": ["reviews"]}
2023-01-20T18:22:37+00:00
cb482d3e7fb66d38f2684acad7cb96fc3fc88207
# Dataset Card for "pexel" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yuvalkirstain/pexel
[ "region:us" ]
2023-01-19T08:09:54+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 653318190.0, "num_examples": 1560}, {"name": "validation", "num_bytes": 7122908.0, "num_examples": 20}], "download_size": 653521442, "dataset_size": 660441098.0}}
2023-01-19T08:11:43+00:00
ea34fa84ef87766f2b34baf2909f80ce804671a8
# Dataset Card for "KnowledgeNet" ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [knowledge-net](https://github.com/diffbot/knowledge-net) - **Paper:** [KnowledgeNet: A Benchmark Dataset for Knowledge Base Population](https://aclanthology.org/D19-1069/) - **Size of downloaded dataset files:** 12.59 MB - **Size of the generated dataset:** 6.1 MB ### Dataset Summary KnowledgeNet is a benchmark dataset for the task of automatically populating a knowledge base (Wikidata) with facts expressed in natural language text on the web. KnowledgeNet provides text exhaustively annotated with facts, thus enabling the holistic end-to-end evaluation of knowledge base population systems as a whole, unlike previous benchmarks that are more suitable for the evaluation of individual subcomponents (e.g., entity linking, relation extraction). For instance, the dataset contains text expressing the fact (Gennaro Basile; RESIDENCE; Moravia), in the passage: "Gennaro Basile was an Italian painter, born in Naples but active in the German-speaking countries. He settled at Brünn, in Moravia, and lived about 1756..." For a description of the dataset and baseline systems, please refer to their [EMNLP paper](https://github.com/diffbot/knowledge-net/blob/master/knowledgenet-emnlp-cameraready.pdf). Note: This Datasetreader currently only supports the `train` split and does not contain negative examples. In addition to the original format this repository also provides two version (`knet_re`, `knet_tokenized`) that are easier to use for simple relation extraction. You can load them with `datasets.load_dataset("DFKI-SLT/knowledge_net", name="<config>")`. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages The language in the dataset is English. ## Dataset Structure ### Data Instances #### knet - **Size of downloaded dataset files:** 12.59 MB - **Size of the generated dataset:** 10.16 MB An example of 'train' looks as follows: ```json { "fold": 2, "documentId": "8313", "source": "DBpedia Abstract", "documentText": "Gennaro Basile\n\nGennaro Basile was an Italian painter, born in Naples but active in the German-speaking countries. He settled at Brünn, in Moravia, and lived about 1756. His best picture is the altar-piece in the chapel of the chateau at Seeberg, in Salzburg. Most of his works remained in Moravia.", "passages": [ { "passageId": "8313:16:114", "passageStart": 16, "passageEnd": 114, "passageText": "Gennaro Basile was an Italian painter, born in Naples but active in the German-speaking countries.", "exhaustivelyAnnotatedProperties": [ { "propertyId": "12", "propertyName": "PLACE_OF_BIRTH", "propertyDescription": "Describes the relationship between a person and the location where she/he was born." } ], "facts": [ { "factId": "8313:16:30:63:69:12", "propertyId": "12", "humanReadable": "<Gennaro Basile> <PLACE_OF_BIRTH> <Naples>", "annotatedPassage": "<Gennaro Basile> was an Italian painter, born in <Naples> but active in the German-speaking countries.", "subjectStart": 16, "subjectEnd": 30, "subjectText": "Gennaro Basile", "subjectUri": "http://www.wikidata.org/entity/Q19517888", "objectStart": 63, "objectEnd": 69, "objectText": "Naples", "objectUri": "http://www.wikidata.org/entity/Q2634" } ] }, { "passageId": "8313:115:169", "passageStart": 115, "passageEnd": 169, "passageText": "He settled at Brünn, in Moravia, and lived about 1756.", "exhaustivelyAnnotatedProperties": [ { "propertyId": "11", "propertyName": "PLACE_OF_RESIDENCE", "propertyDescription": "Describes the relationship between a person and the location where she/he lives/lived." }, { "propertyId": "12", "propertyName": "PLACE_OF_BIRTH", "propertyDescription": "Describes the relationship between a person and the location where she/he was born." } ], "facts": [ { "factId": "8313:115:117:129:134:11", "propertyId": "11", "humanReadable": "<He> <PLACE_OF_RESIDENCE> <Brünn>", "annotatedPassage": "<He> settled at <Brünn>, in Moravia, and lived about 1756.", "subjectStart": 115, "subjectEnd": 117, "subjectText": "He", "subjectUri": "http://www.wikidata.org/entity/Q19517888", "objectStart": 129, "objectEnd": 134, "objectText": "Brünn", "objectUri": "http://www.wikidata.org/entity/Q14960" }, { "factId": "8313:115:117:139:146:11", "propertyId": "11", "humanReadable": "<He> <PLACE_OF_RESIDENCE> <Moravia>", "annotatedPassage": "<He> settled at Brünn, in <Moravia>, and lived about 1756.", "subjectStart": 115, "subjectEnd": 117, "subjectText": "He", "subjectUri": "http://www.wikidata.org/entity/Q19517888", "objectStart": 139, "objectEnd": 146, "objectText": "Moravia", "objectUri": "http://www.wikidata.org/entity/Q43266" } ] } ] } ``` #### knet_re - **Size of downloaded dataset files:** 12.59 MB - **Size of the generated dataset:** 6.1 MB An example of 'train' looks as follows: ```json { "documentId": "7", "passageId": "7:23:206", "factId": "7:23:44:138:160:1", "passageText": "Tata Chemicals Europe (formerly Brunner Mond (UK) Limited) is a UK-based chemicals company that is a subsidiary of Tata Chemicals Limited, itself a part of the India-based Tata Group.", "humanReadable": "<Tata Chemicals Europe> <SUBSIDIARY_OF> <Tata Chemicals Limited>", "annotatedPassage": "<Tata Chemicals Europe> (formerly Brunner Mond (UK) Limited) is a UK-based chemicals company that is a subsidiary of <Tata Chemicals Limited>, itself a part of the India-based Tata Group.", "subjectStart": 0, "subjectEnd": 21, "subjectText": "Tata Chemicals Europe", "subjectType": 2, "subjectUri": "", "objectStart": 115, "objectEnd": 137, "objectText": "Tata Chemicals Limited", "objectType": 2, "objectUri": "http://www.wikidata.org/entity/Q2331365", "relation": 13 } ``` #### knet_tokenized - **Size of downloaded dataset files:** 12.59 MB - **Size of the generated dataset:** 4.5 MB An example of 'train' looks as follows: ```json { "doc_id": "7", "passage_id": "7:23:206", "fact_id": "7:162:168:183:205:1", "tokens": ["Tata", "Chemicals", "Europe", "(", "formerly", "Brunner", "Mond", "(", "UK", ")", "Limited", ")", "is", "a", "UK", "-", "based", "chemicals", "company", "that", "is", "a", "subsidiary", "of", "Tata", "Chemicals", "Limited", ",", "itself", "a", "part", "of", "the", "India", "-", "based", "Tata", "Group", "."], "subj_start": 28, "subj_end": 29, "subj_type": 2, "subj_uri": "http://www.wikidata.org/entity/Q2331365", "obj_start": 33, "obj_end": 38, "obj_type": 2, "obj_uri": "http://www.wikidata.org/entity/Q331715", "relation": 13 } ``` ### Data Fields #### knet - `fold`: the fold, a `int` feature. - `documentId`: the document id, a `string` feature. - `source`: the source, a `string` feature. - `documenText`: the document text, a `string` feature. - `passages`: the list of passages, a `list` of `dict`. - `passageId`: the passage id, a `string` feature. - `passageStart`: the passage start, a `int` feature. - `passageEnd`: the passage end, a `int` feature. - `passageText`: the passage text, a `string` feature. - `exhaustivelyAnnotatedProperties`: the list of exhaustively annotated properties, a `list` of `dict`. - `propertyId`: the property id, a `string` feature. - `propertyName`: the property name, a `string` feature. - `propertyDescription`: the property description, a `string` feature. - `facts`: the list of facts, a `list` of `dict`. - `factId`: the fact id, a `string` feature. - `propertyId`: the property id, a `string` feature. - `humanReadable`: the human readable annotation, a `string` feature. - `annotatedPassage`: the annotated passage, a `string` feature. - `subjectStart`: the subject start, a `int` feature. - `subjectEnd`: the subject end, a `int` feature. - `subjectText`: the subject text, a `string` feature. - `subjectUri`: the subject uri, a `string` feature. - `objectStart`: the object start, a `int` feature. - `objectEnd`: the object end, a `int` feature. - `objectText`: the object text, a `string` feature. - `objectUri`: the object uri, a `string` feature. #### knet_re - `documentId`: the document id, a `string` feature. - `passageId`: the passage id, a `string` feature. - `passageText`: the passage text, a `string` feature. - `factId`: the fact id, a `string` feature. - `humanReadable`: human-readable annotation, a `string` features. - `annotatedPassage`: annotated passage, a `string` feature. - `subjectStart`: the index of the start character of the relation subject mention, an `ìnt` feature. - `subjectEnd`: the index of the end character of the relation subject mention, exclusive, an `ìnt` feature. - `subjectText`: the text the subject mention, a `string` feature. - `subjectType`: the NER type of the subject mention, a `string` classification label. ```json {"O": 0, "PER": 1, "ORG": 2, "LOC": 3, "DATE": 4} ``` - `subjectUri`: the Wikidata URI of the subject mention, a `string` feature. - `objectStart`: the index of the start character of the relation object mention, an `ìnt` feature. - `objectEnd`: the index of the end character of the relation object mention, exclusive, an `ìnt` feature. - `objectText`: the text the object mention, a `string` feature. - `objectType`: the NER type of the object mention, a `string` classification label. ```json {"O": 0, "PER": 1, "ORG": 2, "LOC": 3, "DATE": 4} ``` - `objectUri`: the Wikidata URI of the object mention, a `string` feature. - `relation`: the relation label of this instance, a `string` classification label. ```json {"NO_RELATION": 0, "DATE_OF_BIRTH": 1, "DATE_OF_DEATH": 2, "PLACE_OF_RESIDENCE": 3, "PLACE_OF_BIRTH": 4, "NATIONALITY": 5, "EMPLOYEE_OR_MEMBER_OF": 6, "EDUCATED_AT": 7, "POLITICAL_AFFILIATION": 8, "CHILD_OF": 9, "SPOUSE": 10, "DATE_FOUNDED": 11, "HEADQUARTERS": 12, "SUBSIDIARY_OF": 13, "FOUNDED_BY": 14, "CEO": 15} ``` #### knet_tokenized - `doc_id`: the document id, a `string` feature. - `passage_id`: the passage id, a `string` feature. - `factId`: the fact id, a `string` feature. - `tokens`: the list of tokens of this passage, obtained with spaCy, a `list` of `string` features. - `subj_start`: the index of the start token of the relation subject mention, an `ìnt` feature. - `subj_end`: the index of the end token of the relation subject mention, exclusive, an `ìnt` feature. - `subj_type`: the NER type of the subject mention, a `string` classification label. ```json {"O": 0, "PER": 1, "ORG": 2, "LOC": 3, "DATE": 4} ``` - `subj_uri`: the Wikidata URI of the subject mention, a `string` feature. - `obj_start`: the index of the start token of the relation object mention, an `ìnt` feature. - `obj_end`: the index of the end token of the relation object mention, exclusive, an `ìnt` feature. - `obj_type`: the NER type of the object mention, a `string` classification label. ```json {"O": 0, "PER": 1, "ORG": 2, "LOC": 3, "DATE": 4} ``` - `obj_uri`: the Wikidata URI of the object mention, a `string` feature. - `relation`: the relation label of this instance, a `string` classification label. ```json {"NO_RELATION": 0, "DATE_OF_BIRTH": 1, "DATE_OF_DEATH": 2, "PLACE_OF_RESIDENCE": 3, "PLACE_OF_BIRTH": 4, "NATIONALITY": 5, "EMPLOYEE_OR_MEMBER_OF": 6, "EDUCATED_AT": 7, "POLITICAL_AFFILIATION": 8, "CHILD_OF": 9, "SPOUSE": 10, "DATE_FOUNDED": 11, "HEADQUARTERS": 12, "SUBSIDIARY_OF": 13, "FOUNDED_BY": 14, "CEO": 15} ``` ### Data Splits [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) are labeled as no_relation. [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{mesquita-etal-2019-knowledgenet, title = "{K}nowledge{N}et: A Benchmark Dataset for Knowledge Base Population", author = "Mesquita, Filipe and Cannaviccio, Matteo and Schmidek, Jordan and Mirza, Paramita and Barbosa, Denilson", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/D19-1069", doi = "10.18653/v1/D19-1069", pages = "749--758",} ``` ### Contributions Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.
DFKI-SLT/knowledge_net
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:entity-linking-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "language:en", "knowledgenet", "region:us" ]
2023-01-19T09:15:44+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["found"], "language": ["en"], "license": [], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": [], "task_categories": ["text-classification"], "task_ids": ["multi-class-classification", "entity-linking-classification"], "pretty_name": "KnowledgeNet is a dataset for automatically populating a knowledge base", "tags": ["knowledgenet"], "dataset_info": [{"config_name": "knet", "features": [{"name": "fold", "dtype": "int32"}, {"name": "documentId", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "documentText", "dtype": "string"}, {"name": "passages", "sequence": [{"name": "passageId", "dtype": "string"}, {"name": "passageStart", "dtype": "int32"}, {"name": "passageEnd", "dtype": "int32"}, {"name": "passageText", "dtype": "string"}, {"name": "exhaustivelyAnnotatedProperties", "sequence": [{"name": "propertyId", "dtype": "string"}, {"name": "propertyName", "dtype": "string"}, {"name": "propertyDescription", "dtype": "string"}]}, {"name": "facts", "sequence": [{"name": "factId", "dtype": "string"}, {"name": "propertyId", "dtype": "string"}, {"name": "humanReadable", "dtype": "string"}, {"name": "annotatedPassage", "dtype": "string"}, {"name": "subjectStart", "dtype": "int32"}, {"name": "subjectEnd", "dtype": "int32"}, {"name": "subjectText", "dtype": "string"}, {"name": "subjectUri", "dtype": "string"}, {"name": "objectStart", "dtype": "int32"}, {"name": "objectEnd", "dtype": "int32"}, {"name": "objectText", "dtype": "string"}, {"name": "objectUri", "dtype": "string"}]}]}], "splits": [{"name": "train", "num_bytes": 10161415, "num_examples": 3977}], "download_size": 14119313, "dataset_size": 10161415}, {"config_name": "knet_tokenized", "features": [{"name": "doc_id", "dtype": "string"}, {"name": "passage_id", "dtype": "string"}, {"name": "fact_id", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "subj_start", "dtype": "int32"}, {"name": "subj_end", "dtype": "int32"}, {"name": "subj_type", "dtype": {"class_label": {"names": {"0": "O", "1": "PER", "2": "ORG", "3": "LOC", "4": "DATE"}}}}, {"name": "subj_uri", "dtype": "string"}, {"name": "obj_start", "dtype": "int32"}, {"name": "obj_end", "dtype": "int32"}, {"name": "obj_type", "dtype": {"class_label": {"names": {"0": "O", "1": "PER", "2": "ORG", "3": "LOC", "4": "DATE"}}}}, {"name": "obj_uri", "dtype": "string"}, {"name": "relation", "dtype": {"class_label": {"names": {"0": "NO_RELATION", "1": "DATE_OF_BIRTH", "2": "DATE_OF_DEATH", "3": "PLACE_OF_RESIDENCE", "4": "PLACE_OF_BIRTH", "5": "NATIONALITY", "6": "EMPLOYEE_OR_MEMBER_OF", "7": "EDUCATED_AT", "8": "POLITICAL_AFFILIATION", "9": "CHILD_OF", "10": "SPOUSE", "11": "DATE_FOUNDED", "12": "HEADQUARTERS", "13": "SUBSIDIARY_OF", "14": "FOUNDED_BY", "15": "CEO"}}}}], "splits": [{"name": "train", "num_bytes": 4511963, "num_examples": 10895}], "download_size": 14119313, "dataset_size": 4511963}, {"config_name": "knet_re", "features": [{"name": "documentId", "dtype": "string"}, {"name": "passageId", "dtype": "string"}, {"name": "factId", "dtype": "string"}, {"name": "passageText", "dtype": "string"}, {"name": "humanReadable", "dtype": "string"}, {"name": "annotatedPassage", "dtype": "string"}, {"name": "subjectStart", "dtype": "int32"}, {"name": "subjectEnd", "dtype": "int32"}, {"name": "subjectText", "dtype": "string"}, {"name": "subjectType", "dtype": {"class_label": {"names": {"0": "O", "1": "PER", "2": "ORG", "3": "LOC", "4": "DATE"}}}}, {"name": "subjectUri", "dtype": "string"}, {"name": "objectStart", "dtype": "int32"}, {"name": "objectEnd", "dtype": "int32"}, {"name": "objectText", "dtype": "string"}, {"name": "objectType", "dtype": {"class_label": {"names": {"0": "O", "1": "PER", "2": "ORG", "3": "LOC", "4": "DATE"}}}}, {"name": "objectUri", "dtype": "string"}, {"name": "relation", "dtype": {"class_label": {"names": {"0": "NO_RELATION", "1": "DATE_OF_BIRTH", "2": "DATE_OF_DEATH", "3": "PLACE_OF_RESIDENCE", "4": "PLACE_OF_BIRTH", "5": "NATIONALITY", "6": "EMPLOYEE_OR_MEMBER_OF", "7": "EDUCATED_AT", "8": "POLITICAL_AFFILIATION", "9": "CHILD_OF", "10": "SPOUSE", "11": "DATE_FOUNDED", "12": "HEADQUARTERS", "13": "SUBSIDIARY_OF", "14": "FOUNDED_BY", "15": "CEO"}}}}], "splits": [{"name": "train", "num_bytes": 6098219, "num_examples": 10895}], "download_size": 14119313, "dataset_size": 6098219}]}
2023-01-19T09:16:32+00:00
f3c058abf7fc79723797d978e70bd3e1ffc79966
# Dataset Card for CrossRE ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [CrossNER](https://github.com/zliucr/CrossNER) - **Paper:** [CrossNER: Evaluating Cross-Domain Named Entity Recognition](https://arxiv.org/abs/2012.04373) ### Dataset Summary CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specialized entity categories for different domains. Additionally, CrossNER also includes unlabeled domain-related corpora for the corresponding five domains. For details, see the paper: [CrossNER: Evaluating Cross-Domain Named Entity Recognition](https://arxiv.org/abs/2012.04373) ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages The language data in CrossNER is in English (BCP-47 en) ## Dataset Structure ### Data Instances #### conll2003 - **Size of downloaded dataset files:** 2.69 MB - **Size of the generated dataset:** 5.26 MB An example of 'train' looks as follows: ```json { "id": "0", "tokens": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."], "ner_tags": [49, 0, 41, 0, 0, 0, 41, 0, 0] } ``` #### politics - **Size of downloaded dataset files:** 0.72 MB - **Size of the generated dataset:** 1.04 MB An example of 'train' looks as follows: ```json { "id": "0", "tokens": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."], "ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 55, 56, 0, 0, 0, 0, 0, 55, 56, 56, 56, 56, 56, 0, 55, 56, 56, 56, 56, 0] } ``` #### science - **Size of downloaded dataset files:** 0.49 MB - **Size of the generated dataset:** 0.73 MB An example of 'train' looks as follows: ```json { "id": "0", "tokens": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."], "ner_tags": [0, 0, 0, 0, 15, 16, 0, 15, 16, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] } ``` #### music - **Size of downloaded dataset files:** 0.41 MB - **Size of the generated dataset:** 0.65 MB An example of 'train' looks as follows: ```json { "id": "0", "tokens": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."], "ner_tags": [0, 0, 0, 0, 35, 36, 36, 0, 0, 0, 0, 0, 0, 29, 30, 30, 30, 30, 0] } ``` #### literature - **Size of downloaded dataset files:** 0.33 MB - **Size of the generated dataset:** 0.58 MB An example of 'train' looks as follows: ```json { "id": "0", "tokens": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."], "ner_tags": [0, 0, 0, 0, 0, 0, 0, 51, 52, 52, 0, 0, 21, 22, 0, 0, 0, 77, 78, 0, 77, 0, 0, 0, 0, 0, 77, 78, 0, 77, 0, 0, 0, 21, 0, 21, 0, 0, 41, 0, 0, 0, 0, 0, 0, 51, 52, 0, 0, 41, 0, 0, 0, 0, 0, 51, 0, 0] } ``` #### ai - **Size of downloaded dataset files:** 0.29 MB - **Size of the generated dataset:** 0.48 MB An example of 'train' looks as follows: ```json { "id": "0", "tokens": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."], "ner_tags": [0, 0, 0, 59, 60, 60, 0, 0, 0, 0, 31, 32, 0, 71, 72, 0, 71, 72, 0, 0, 0, 71, 72, 72, 0, 0, 31, 32, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] } ``` ### Data Fields The data fields are the same among all splits. - `id`: the instance id of this sentence, a `string` feature. - `tokens`: the list of tokens of this sentence, a `list` of `string` features. - `ner_tags`: the list of entity tags, a `list` of classification labels. ```json {"O": 0, "B-academicjournal": 1, "I-academicjournal": 2, "B-album": 3, "I-album": 4, "B-algorithm": 5, "I-algorithm": 6, "B-astronomicalobject": 7, "I-astronomicalobject": 8, "B-award": 9, "I-award": 10, "B-band": 11, "I-band": 12, "B-book": 13, "I-book": 14, "B-chemicalcompound": 15, "I-chemicalcompound": 16, "B-chemicalelement": 17, "I-chemicalelement": 18, "B-conference": 19, "I-conference": 20, "B-country": 21, "I-country": 22, "B-discipline": 23, "I-discipline": 24, "B-election": 25, "I-election": 26, "B-enzyme": 27, "I-enzyme": 28, "B-event": 29, "I-event": 30, "B-field": 31, "I-field": 32, "B-literarygenre": 33, "I-literarygenre": 34, "B-location": 35, "I-location": 36, "B-magazine": 37, "I-magazine": 38, "B-metrics": 39, "I-metrics": 40, "B-misc": 41, "I-misc": 42, "B-musicalartist": 43, "I-musicalartist": 44, "B-musicalinstrument": 45, "I-musicalinstrument": 46, "B-musicgenre": 47, "I-musicgenre": 48, "B-organisation": 49, "I-organisation": 50, "B-person": 51, "I-person": 52, "B-poem": 53, "I-poem": 54, "B-politicalparty": 55, "I-politicalparty": 56, "B-politician": 57, "I-politician": 58, "B-product": 59, "I-product": 60, "B-programlang": 61, "I-programlang": 62, "B-protein": 63, "I-protein": 64, "B-researcher": 65, "I-researcher": 66, "B-scientist": 67, "I-scientist": 68, "B-song": 69, "I-song": 70, "B-task": 71, "I-task": 72, "B-theory": 73, "I-theory": 74, "B-university": 75, "I-university": 76, "B-writer": 77, "I-writer": 78} ``` ### Data Splits | | Train | Dev | Test | |--------------|--------|-------|-------| | conll2003 | 14,987 | 3,466 | 3,684 | | politics | 200 | 541 | 651 | | science | 200 | 450 | 543 | | music | 100 | 380 | 456 | | literature | 100 | 400 | 416 | | ai | 100 | 350 | 431 | ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @article{liu2020crossner, title={CrossNER: Evaluating Cross-Domain Named Entity Recognition}, author={Zihan Liu and Yan Xu and Tiezheng Yu and Wenliang Dai and Ziwei Ji and Samuel Cahyawijaya and Andrea Madotto and Pascale Fung}, year={2020}, eprint={2012.04373}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.
DFKI-SLT/cross_ner
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|conll2003", "language:en", "cross domain", "ai", "news", "music", "literature", "politics", "science", "arxiv:2012.04373", "region:us" ]
2023-01-19T09:17:08+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["found"], "language": ["en"], "license": [], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["extended|conll2003"], "task_categories": ["token-classification"], "task_ids": ["named-entity-recognition"], "pretty_name": "CrossNER is a cross-domain dataset for named entity recognition", "tags": ["cross domain", "ai", "news", "music", "literature", "politics", "science"], "dataset_info": [{"config_name": "ai", "features": [{"name": "id", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "ner_tags", "sequence": {"class_label": {"names": {"0": "O", "1": "B-academicjournal", "2": "I-academicjournal", "3": "B-album", "4": "I-album", "5": "B-algorithm", "6": "I-algorithm", "7": "B-astronomicalobject", "8": "I-astronomicalobject", "9": "B-award", "10": "I-award", "11": "B-band", "12": "I-band", "13": "B-book", "14": "I-book", "15": "B-chemicalcompound", "16": "I-chemicalcompound", "17": "B-chemicalelement", "18": "I-chemicalelement", "19": "B-conference", "20": "I-conference", "21": "B-country", "22": "I-country", "23": "B-discipline", "24": "I-discipline", "25": "B-election", "26": "I-election", "27": "B-enzyme", "28": "I-enzyme", "29": "B-event", "30": "I-event", "31": "B-field", "32": "I-field", "33": "B-literarygenre", "34": "I-literarygenre", "35": "B-location", "36": "I-location", "37": "B-magazine", "38": "I-magazine", "39": "B-metrics", "40": "I-metrics", "41": "B-misc", "42": "I-misc", "43": "B-musicalartist", "44": "I-musicalartist", "45": "B-musicalinstrument", "46": "I-musicalinstrument", "47": "B-musicgenre", "48": "I-musicgenre", "49": "B-organisation", "50": "I-organisation", "51": "B-person", "52": "I-person", "53": "B-poem", "54": "I-poem", "55": "B-politicalparty", "56": "I-politicalparty", "57": "B-politician", "58": "I-politician", "59": "B-product", "60": "I-product", "61": "B-programlang", "62": "I-programlang", "63": "B-protein", "64": "I-protein", "65": "B-researcher", "66": "I-researcher", "67": "B-scientist", "68": "I-scientist", "69": "B-song", "70": "I-song", "71": "B-task", "72": "I-task", "73": "B-theory", "74": "I-theory", "75": "B-university", "76": "I-university", "77": "B-writer", "78": "I-writer"}}}}], "splits": [{"name": "train", "num_bytes": 65080, "num_examples": 100}, {"name": "validation", "num_bytes": 189453, "num_examples": 350}, {"name": "test", "num_bytes": 225691, "num_examples": 431}], "download_size": 289173, "dataset_size": 480224}, {"config_name": "literature", "features": [{"name": "id", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "ner_tags", "sequence": {"class_label": {"names": {"0": "O", "1": "B-academicjournal", "2": "I-academicjournal", "3": "B-album", "4": "I-album", "5": "B-algorithm", "6": "I-algorithm", "7": "B-astronomicalobject", "8": "I-astronomicalobject", "9": "B-award", "10": "I-award", "11": "B-band", "12": "I-band", "13": "B-book", "14": "I-book", "15": "B-chemicalcompound", "16": "I-chemicalcompound", "17": "B-chemicalelement", "18": "I-chemicalelement", "19": "B-conference", "20": "I-conference", "21": "B-country", "22": "I-country", "23": "B-discipline", "24": "I-discipline", "25": "B-election", "26": "I-election", "27": "B-enzyme", "28": "I-enzyme", "29": "B-event", "30": "I-event", "31": "B-field", "32": "I-field", "33": "B-literarygenre", "34": "I-literarygenre", "35": "B-location", "36": "I-location", "37": "B-magazine", "38": "I-magazine", "39": "B-metrics", "40": "I-metrics", "41": "B-misc", "42": "I-misc", "43": "B-musicalartist", "44": "I-musicalartist", "45": "B-musicalinstrument", "46": "I-musicalinstrument", "47": "B-musicgenre", "48": "I-musicgenre", "49": "B-organisation", "50": "I-organisation", "51": "B-person", "52": "I-person", "53": "B-poem", "54": "I-poem", "55": "B-politicalparty", "56": "I-politicalparty", "57": "B-politician", "58": "I-politician", "59": "B-product", "60": "I-product", "61": "B-programlang", "62": "I-programlang", "63": "B-protein", "64": "I-protein", "65": "B-researcher", "66": "I-researcher", "67": "B-scientist", "68": "I-scientist", "69": "B-song", "70": "I-song", "71": "B-task", "72": "I-task", "73": "B-theory", "74": "I-theory", "75": "B-university", "76": "I-university", "77": "B-writer", "78": "I-writer"}}}}], "splits": [{"name": "train", "num_bytes": 63181, "num_examples": 100}, {"name": "validation", "num_bytes": 244076, "num_examples": 400}, {"name": "test", "num_bytes": 270092, "num_examples": 416}], "download_size": 334380, "dataset_size": 577349}, {"config_name": "music", "features": [{"name": "id", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "ner_tags", "sequence": {"class_label": {"names": {"0": "O", "1": "B-academicjournal", "2": "I-academicjournal", "3": "B-album", "4": "I-album", "5": "B-algorithm", "6": "I-algorithm", "7": "B-astronomicalobject", "8": "I-astronomicalobject", "9": "B-award", "10": "I-award", "11": "B-band", "12": "I-band", "13": "B-book", "14": "I-book", "15": "B-chemicalcompound", "16": "I-chemicalcompound", "17": "B-chemicalelement", "18": "I-chemicalelement", "19": "B-conference", "20": "I-conference", "21": "B-country", "22": "I-country", "23": "B-discipline", "24": "I-discipline", "25": "B-election", "26": "I-election", "27": "B-enzyme", "28": "I-enzyme", "29": "B-event", "30": "I-event", "31": "B-field", "32": "I-field", "33": "B-literarygenre", "34": "I-literarygenre", "35": "B-location", "36": "I-location", "37": "B-magazine", "38": "I-magazine", "39": "B-metrics", "40": "I-metrics", "41": "B-misc", "42": "I-misc", "43": "B-musicalartist", "44": "I-musicalartist", "45": "B-musicalinstrument", "46": "I-musicalinstrument", "47": "B-musicgenre", "48": "I-musicgenre", "49": "B-organisation", "50": "I-organisation", "51": "B-person", "52": "I-person", "53": "B-poem", "54": "I-poem", "55": "B-politicalparty", "56": "I-politicalparty", "57": "B-politician", "58": "I-politician", "59": "B-product", "60": "I-product", "61": "B-programlang", "62": "I-programlang", "63": "B-protein", "64": "I-protein", "65": "B-researcher", "66": "I-researcher", "67": "B-scientist", "68": "I-scientist", "69": "B-song", "70": "I-song", "71": "B-task", "72": "I-task", "73": "B-theory", "74": "I-theory", "75": "B-university", "76": "I-university", "77": "B-writer", "78": "I-writer"}}}}], "splits": [{"name": "train", "num_bytes": 65077, "num_examples": 100}, {"name": "validation", "num_bytes": 259702, "num_examples": 380}, {"name": "test", "num_bytes": 327195, "num_examples": 465}], "download_size": 414065, "dataset_size": 651974}, {"config_name": "conll2003", "features": [{"name": "id", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "ner_tags", "sequence": {"class_label": {"names": {"0": "O", "1": "B-academicjournal", "2": "I-academicjournal", "3": "B-album", "4": "I-album", "5": "B-algorithm", "6": "I-algorithm", "7": "B-astronomicalobject", "8": "I-astronomicalobject", "9": "B-award", "10": "I-award", "11": "B-band", "12": "I-band", "13": "B-book", "14": "I-book", "15": "B-chemicalcompound", "16": "I-chemicalcompound", "17": "B-chemicalelement", "18": "I-chemicalelement", "19": "B-conference", "20": "I-conference", "21": "B-country", "22": "I-country", "23": "B-discipline", "24": "I-discipline", "25": "B-election", "26": "I-election", "27": "B-enzyme", "28": "I-enzyme", "29": "B-event", "30": "I-event", "31": "B-field", "32": "I-field", "33": "B-literarygenre", "34": "I-literarygenre", "35": "B-location", "36": "I-location", "37": "B-magazine", "38": "I-magazine", "39": "B-metrics", "40": "I-metrics", "41": "B-misc", "42": "I-misc", "43": "B-musicalartist", "44": "I-musicalartist", "45": "B-musicalinstrument", "46": "I-musicalinstrument", "47": "B-musicgenre", "48": "I-musicgenre", "49": "B-organisation", "50": "I-organisation", "51": "B-person", "52": "I-person", "53": "B-poem", "54": "I-poem", "55": "B-politicalparty", "56": "I-politicalparty", "57": "B-politician", "58": "I-politician", "59": "B-product", "60": "I-product", "61": "B-programlang", "62": "I-programlang", "63": "B-protein", "64": "I-protein", "65": "B-researcher", "66": "I-researcher", "67": "B-scientist", "68": "I-scientist", "69": "B-song", "70": "I-song", "71": "B-task", "72": "I-task", "73": "B-theory", "74": "I-theory", "75": "B-university", "76": "I-university", "77": "B-writer", "78": "I-writer"}}}}], "splits": [{"name": "train", "num_bytes": 3561081, "num_examples": 14041}, {"name": "validation", "num_bytes": 891431, "num_examples": 3250}, {"name": "test", "num_bytes": 811470, "num_examples": 3453}], "download_size": 2694794, "dataset_size": 5263982}, {"config_name": "politics", "features": [{"name": "id", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "ner_tags", "sequence": {"class_label": {"names": {"0": "O", "1": "B-academicjournal", "2": "I-academicjournal", "3": "B-album", "4": "I-album", "5": "B-algorithm", "6": "I-algorithm", "7": "B-astronomicalobject", "8": "I-astronomicalobject", "9": "B-award", "10": "I-award", "11": "B-band", "12": "I-band", "13": "B-book", "14": "I-book", "15": "B-chemicalcompound", "16": "I-chemicalcompound", "17": "B-chemicalelement", "18": "I-chemicalelement", "19": "B-conference", "20": "I-conference", "21": "B-country", "22": "I-country", "23": "B-discipline", "24": "I-discipline", "25": "B-election", "26": "I-election", "27": "B-enzyme", "28": "I-enzyme", "29": "B-event", "30": "I-event", "31": "B-field", "32": "I-field", "33": "B-literarygenre", "34": "I-literarygenre", "35": "B-location", "36": "I-location", "37": "B-magazine", "38": "I-magazine", "39": "B-metrics", "40": "I-metrics", "41": "B-misc", "42": "I-misc", "43": "B-musicalartist", "44": "I-musicalartist", "45": "B-musicalinstrument", "46": "I-musicalinstrument", "47": "B-musicgenre", "48": "I-musicgenre", "49": "B-organisation", "50": "I-organisation", "51": "B-person", "52": "I-person", "53": "B-poem", "54": "I-poem", "55": "B-politicalparty", "56": "I-politicalparty", "57": "B-politician", "58": "I-politician", "59": "B-product", "60": "I-product", "61": "B-programlang", "62": "I-programlang", "63": "B-protein", "64": "I-protein", "65": "B-researcher", "66": "I-researcher", "67": "B-scientist", "68": "I-scientist", "69": "B-song", "70": "I-song", "71": "B-task", "72": "I-task", "73": "B-theory", "74": "I-theory", "75": "B-university", "76": "I-university", "77": "B-writer", "78": "I-writer"}}}}], "splits": [{"name": "train", "num_bytes": 143507, "num_examples": 200}, {"name": "validation", "num_bytes": 422760, "num_examples": 541}, {"name": "test", "num_bytes": 472690, "num_examples": 651}], "download_size": 724168, "dataset_size": 1038957}, {"config_name": "science", "features": [{"name": "id", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "ner_tags", "sequence": {"class_label": {"names": {"0": "O", "1": "B-academicjournal", "2": "I-academicjournal", "3": "B-album", "4": "I-album", "5": "B-algorithm", "6": "I-algorithm", "7": "B-astronomicalobject", "8": "I-astronomicalobject", "9": "B-award", "10": "I-award", "11": "B-band", "12": "I-band", "13": "B-book", "14": "I-book", "15": "B-chemicalcompound", "16": "I-chemicalcompound", "17": "B-chemicalelement", "18": "I-chemicalelement", "19": "B-conference", "20": "I-conference", "21": "B-country", "22": "I-country", "23": "B-discipline", "24": "I-discipline", "25": "B-election", "26": "I-election", "27": "B-enzyme", "28": "I-enzyme", "29": "B-event", "30": "I-event", "31": "B-field", "32": "I-field", "33": "B-literarygenre", "34": "I-literarygenre", "35": "B-location", "36": "I-location", "37": "B-magazine", "38": "I-magazine", "39": "B-metrics", "40": "I-metrics", "41": "B-misc", "42": "I-misc", "43": "B-musicalartist", "44": "I-musicalartist", "45": "B-musicalinstrument", "46": "I-musicalinstrument", "47": "B-musicgenre", "48": "I-musicgenre", "49": "B-organisation", "50": "I-organisation", "51": "B-person", "52": "I-person", "53": "B-poem", "54": "I-poem", "55": "B-politicalparty", "56": "I-politicalparty", "57": "B-politician", "58": "I-politician", "59": "B-product", "60": "I-product", "61": "B-programlang", "62": "I-programlang", "63": "B-protein", "64": "I-protein", "65": "B-researcher", "66": "I-researcher", "67": "B-scientist", "68": "I-scientist", "69": "B-song", "70": "I-song", "71": "B-task", "72": "I-task", "73": "B-theory", "74": "I-theory", "75": "B-university", "76": "I-university", "77": "B-writer", "78": "I-writer"}}}}], "splits": [{"name": "train", "num_bytes": 121928, "num_examples": 200}, {"name": "validation", "num_bytes": 276118, "num_examples": 450}, {"name": "test", "num_bytes": 334181, "num_examples": 543}], "download_size": 485191, "dataset_size": 732227}]}
2023-01-19T09:17:38+00:00
eb583481a1fba449b36686456c60afa80cf8c7c3
# Dataset Card for CrossRE ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [CrossRE](https://github.com/mainlp/CrossRE) - **Paper:** [CrossRE: A Cross-Domain Dataset for Relation Extraction](https://arxiv.org/abs/2210.09345) ### Dataset Summary CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain dataset for NER which contains domain-specific entity types. The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL, GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and RELATED-TO. For details, see the paper: https://arxiv.org/abs/2210.09345 ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages The language data in CrossRE is in English (BCP-47 en) ## Dataset Structure ### Data Instances #### news - **Size of downloaded dataset files:** 0.24 MB - **Size of the generated dataset:** 0.22 MB An example of 'train' looks as follows: ```python { "doc_key": "news-train-1", "sentence": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."], "ner": [ {"id-start": 0, "id-end": 0, "entity-type": "organisation"}, {"id-start": 2, "id-end": 3, "entity-type": "misc"}, {"id-start": 6, "id-end": 7, "entity-type": "misc"} ], "relations": [ {"id_1-start": 0, "id_1-end": 0, "id_2-start": 2, "id_2-end": 3, "relation-type": "opposite", "Exp": "rejects", "Un": False, "SA": False}, {"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "opposite", "Exp": "calls_for_boycot_of", "Un": False, "SA": False}, {"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "topic", "Exp": "", "Un": False, "SA": False} ] } ``` #### politics - **Size of downloaded dataset files:** 0.73 MB - **Size of the generated dataset:** 0.65 MB An example of 'train' looks as follows: ```python { "doc_key": "politics-train-1", "sentence": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."], "ner": [ {"id-start": 8, "id-end": 9, "entity-type": "politicalparty"}, {"id-start": 15, "id-end": 20, "entity-type": "politicalparty"}, {"id-start": 22, "id-end": 26, "entity-type": "politicalparty"} ], "relations": [ {"id_1-start": 8, "id_1-end": 9, "id_2-start": 15, "id_2-end": 20, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False}, {"id_1-start": 8, "id_1-end": 9, "id_2-start": 22, "id_2-end": 26, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False} ] } ``` #### science - **Size of downloaded dataset files:** 0.59 MB - **Size of the generated dataset:** 0.54 MB An example of 'train' looks as follows: ```python { "doc_key": "science-train-1", "sentence": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."], "ner": [ {"id-start": 4, "id-end": 5, "entity-type": "chemicalcompound"}, {"id-start": 7, "id-end": 8, "entity-type": "chemicalcompound"}, {"id-start": 11, "id-end": 11, "entity-type": "chemicalcompound"} ], "relations": [] } ``` #### music - **Size of downloaded dataset files:** 0.73 MB - **Size of the generated dataset:** 0.64 MB An example of 'train' looks as follows: ```python { "doc_key": "music-train-1", "sentence": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."], "ner": [ {"id-start": 4, "id-end": 6, "entity-type": "location"}, {"id-start": 13, "id-end": 17, "entity-type": "event"} ], "relations": [ {"id_1-start": 13, "id_1-end": 17, "id_2-start": 4, "id_2-end": 6, "relation-type": "physical", "Exp": "", "Un": False, "SA": False} ] } ``` #### literature - **Size of downloaded dataset files:** 0.64 MB - **Size of the generated dataset:** 0.57 MB An example of 'train' looks as follows: ```python { "doc_key": "literature-train-1", "sentence": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."], "ner": [ {"id-start": 7, "id-end": 9, "entity-type": "person"}, {"id-start": 12, "id-end": 13, "entity-type": "country"}, {"id-start": 17, "id-end": 18, "entity-type": "writer"}, {"id-start": 20, "id-end": 20, "entity-type": "writer"}, {"id-start": 26, "id-end": 27, "entity-type": "writer"}, {"id-start": 29, "id-end": 29, "entity-type": "writer"}, {"id-start": 33, "id-end": 33, "entity-type": "country"}, {"id-start": 35, "id-end": 35, "entity-type": "country"}, {"id-start": 38, "id-end": 38, "entity-type": "misc"}, {"id-start": 45, "id-end": 46, "entity-type": "person"}, {"id-start": 49, "id-end": 50, "entity-type": "misc"}, {"id-start": 55, "id-end": 55, "entity-type": "person"} ], "relations": [ {"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "role", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 17, "id_1-end": 18, "id_2-start": 26, "id_2-end": 27, "relation-type": "social", "Exp": "family", "Un": False, "SA": False}, {"id_1-start": 20, "id_1-end": 20, "id_2-start": 17, "id_2-end": 18, "relation-type": "named", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 26, "id_1-end": 27, "id_2-start": 33, "id_2-end": 33, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 26, "id_1-end": 27, "id_2-start": 35, "id_2-end": 35, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 26, "id_1-end": 27, "id_2-start": 38, "id_2-end": 38, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 26, "id_1-end": 27, "id_2-start": 45, "id_2-end": 46, "relation-type": "social", "Exp": "greeted_by", "Un": False, "SA": False}, {"id_1-start": 29, "id_1-end": 29, "id_2-start": 26, "id_2-end": 27, "relation-type": "named", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 45, "id_1-end": 46, "id_2-start": 55, "id_2-end": 55, "relation-type": "social", "Exp": "marriage", "Un": False, "SA": False}, {"id_1-start": 49, "id_1-end": 50, "id_2-start": 45, "id_2-end": 46, "relation-type": "named", "Exp": "", "Un": False, "SA": False} ] } ``` #### ai - **Size of downloaded dataset files:** 0.51 MB - **Size of the generated dataset:** 0.46 MB An example of 'train' looks as follows: ```python { "doc_key": "ai-train-1", "sentence": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."], "ner": [ {"id-start": 3, "id-end": 5, "entity-type": "product"}, {"id-start": 10, "id-end": 11, "entity-type": "field"}, {"id-start": 13, "id-end": 14, "entity-type": "task"}, {"id-start": 16, "id-end": 17, "entity-type": "task"}, {"id-start": 21, "id-end": 23, "entity-type": "task"}, {"id-start": 26, "id-end": 27, "entity-type": "field"}, {"id-start": 28, "id-end": 29, "entity-type": "researcher"}, {"id-start": 31, "id-end": 32, "entity-type": "researcher"}, {"id-start": 34, "id-end": 35, "entity-type": "researcher"}, {"id-start": 37, "id-end": 38, "entity-type": "researcher"}, {"id-start": 40, "id-end": 41, "entity-type": "researcher"}, {"id-start": 43, "id-end": 44, "entity-type": "researcher"}, {"id-start": 46, "id-end": 47, "entity-type": "researcher"}, {"id-start": 49, "id-end": 50, "entity-type": "researcher"} ], "relations": [ {"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "type-of", "Exp": "", "Un": False, "SA": False} ] } ``` ### Data Fields The data fields are the same among all splits. - `doc_key`: the instance id of this sentence, a `string` feature. - `sentence`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features. - `ner`: the list of named entities in this sentence, a `list` of `dict` features. - `id-start`: the start index of the entity, a `int` feature. - `id-end`: the end index of the entity, a `int` feature. - `entity-type`: the type of the entity, a `string` feature. - `relations`: the list of relations in this sentence, a `list` of `dict` features. - `id_1-start`: the start index of the first entity, a `int` feature. - `id_1-end`: the end index of the first entity, a `int` feature. - `id_2-start`: the start index of the second entity, a `int` feature. - `id_2-end`: the end index of the second entity, a `int` feature. - `relation-type`: the type of the relation, a `string` feature. - `Exp`: the explanation of the relation type assigned, a `string` feature. - `Un`: uncertainty of the annotator, a `bool` feature. - `SA`: existence of syntax ambiguity which poses a challenge for the annotator, a `bool` feature. ### Data Splits #### Sentences | | Train | Dev | Test | Total | |--------------|---------|---------|---------|---------| | news | 164 | 350 | 400 | 914 | | politics | 101 | 350 | 400 | 851 | | science | 103 | 351 | 400 | 854 | | music | 100 | 350 | 399 | 849 | | literature | 100 | 400 | 416 | 916 | | ai | 100 | 350 | 431 | 881 | | ------------ | ------- | ------- | ------- | ------- | | total | 668 | 2,151 | 2,46 | 5,265 | #### Relations | | Train | Dev | Test | Total | |--------------|---------|---------|---------|---------| | news | 175 | 300 | 396 | 871 | | politics | 502 | 1,616 | 1,831 | 3,949 | | science | 355 | 1,340 | 1,393 | 3,088 | | music | 496 | 1,861 | 2,333 | 4,690 | | literature | 397 | 1,539 | 1,591 | 3,527 | | ai | 350 | 1,006 | 1,127 | 2,483 | | ------------ | ------- | ------- | ------- | ------- | | total | 2,275 | 7,662 | 8,671 | 18,608 | ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{bassignana-plank-2022-crossre, title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction", author = "Bassignana, Elisa and Plank, Barbara", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022", year = "2022", publisher = "Association for Computational Linguistics" } ``` ### Contributions Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.
DFKI-SLT/cross_re
[ "task_categories:text-classification", "task_ids:multi-class-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|cross_ner", "language:en", "cross domain", "ai", "news", "music", "literature", "politics", "science", "arxiv:2210.09345", "region:us" ]
2023-01-19T09:18:42+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["found"], "language": ["en"], "license": [], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["extended|cross_ner"], "task_categories": ["text-classification"], "task_ids": ["multi-class-classification"], "pretty_name": "CrossRE is a cross-domain dataset for relation extraction", "tags": ["cross domain", "ai", "news", "music", "literature", "politics", "science"], "dataset_info": [{"config_name": "ai", "features": [{"name": "doc_key", "dtype": "string"}, {"name": "sentence", "sequence": "string"}, {"name": "ner", "sequence": [{"name": "id-start", "dtype": "int32"}, {"name": "id-end", "dtype": "int32"}, {"name": "entity-type", "dtype": "string"}]}, {"name": "relations", "sequence": [{"name": "id_1-start", "dtype": "int32"}, {"name": "id_1-end", "dtype": "int32"}, {"name": "id_2-start", "dtype": "int32"}, {"name": "id_2-end", "dtype": "int32"}, {"name": "relation-type", "dtype": "string"}, {"name": "Exp", "dtype": "string"}, {"name": "Un", "dtype": "bool"}, {"name": "SA", "dtype": "bool"}]}], "splits": [{"name": "train", "num_bytes": 62411, "num_examples": 100}, {"name": "validation", "num_bytes": 183717, "num_examples": 350}, {"name": "test", "num_bytes": 217353, "num_examples": 431}], "download_size": 508107, "dataset_size": 463481}, {"config_name": "literature", "features": [{"name": "doc_key", "dtype": "string"}, {"name": "sentence", "sequence": "string"}, {"name": "ner", "sequence": [{"name": "id-start", "dtype": "int32"}, {"name": "id-end", "dtype": "int32"}, {"name": "entity-type", "dtype": "string"}]}, {"name": "relations", "sequence": [{"name": "id_1-start", "dtype": "int32"}, {"name": "id_1-end", "dtype": "int32"}, {"name": "id_2-start", "dtype": "int32"}, {"name": "id_2-end", "dtype": "int32"}, {"name": "relation-type", "dtype": "string"}, {"name": "Exp", "dtype": "string"}, {"name": "Un", "dtype": "bool"}, {"name": "SA", "dtype": "bool"}]}], "splits": [{"name": "train", "num_bytes": 62699, "num_examples": 100}, {"name": "validation", "num_bytes": 246214, "num_examples": 400}, {"name": "test", "num_bytes": 264450, "num_examples": 416}], "download_size": 635130, "dataset_size": 573363}, {"config_name": "music", "features": [{"name": "doc_key", "dtype": "string"}, {"name": "sentence", "sequence": "string"}, {"name": "ner", "sequence": [{"name": "id-start", "dtype": "int32"}, {"name": "id-end", "dtype": "int32"}, {"name": "entity-type", "dtype": "string"}]}, {"name": "relations", "sequence": [{"name": "id_1-start", "dtype": "int32"}, {"name": "id_1-end", "dtype": "int32"}, {"name": "id_2-start", "dtype": "int32"}, {"name": "id_2-end", "dtype": "int32"}, {"name": "relation-type", "dtype": "string"}, {"name": "Exp", "dtype": "string"}, {"name": "Un", "dtype": "bool"}, {"name": "SA", "dtype": "bool"}]}], "splits": [{"name": "train", "num_bytes": 69846, "num_examples": 100}, {"name": "validation", "num_bytes": 261497, "num_examples": 350}, {"name": "test", "num_bytes": 312165, "num_examples": 399}], "download_size": 726956, "dataset_size": 643508}, {"config_name": "news", "features": [{"name": "doc_key", "dtype": "string"}, {"name": "sentence", "sequence": "string"}, {"name": "ner", "sequence": [{"name": "id-start", "dtype": "int32"}, {"name": "id-end", "dtype": "int32"}, {"name": "entity-type", "dtype": "string"}]}, {"name": "relations", "sequence": [{"name": "id_1-start", "dtype": "int32"}, {"name": "id_1-end", "dtype": "int32"}, {"name": "id_2-start", "dtype": "int32"}, {"name": "id_2-end", "dtype": "int32"}, {"name": "relation-type", "dtype": "string"}, {"name": "Exp", "dtype": "string"}, {"name": "Un", "dtype": "bool"}, {"name": "SA", "dtype": "bool"}]}], "splits": [{"name": "train", "num_bytes": 49102, "num_examples": 164}, {"name": "validation", "num_bytes": 77952, "num_examples": 350}, {"name": "test", "num_bytes": 96301, "num_examples": 400}], "download_size": 239763, "dataset_size": 223355}, {"config_name": "politics", "features": [{"name": "doc_key", "dtype": "string"}, {"name": "sentence", "sequence": "string"}, {"name": "ner", "sequence": [{"name": "id-start", "dtype": "int32"}, {"name": "id-end", "dtype": "int32"}, {"name": "entity-type", "dtype": "string"}]}, {"name": "relations", "sequence": [{"name": "id_1-start", "dtype": "int32"}, {"name": "id_1-end", "dtype": "int32"}, {"name": "id_2-start", "dtype": "int32"}, {"name": "id_2-end", "dtype": "int32"}, {"name": "relation-type", "dtype": "string"}, {"name": "Exp", "dtype": "string"}, {"name": "Un", "dtype": "bool"}, {"name": "SA", "dtype": "bool"}]}], "splits": [{"name": "train", "num_bytes": 76004, "num_examples": 101}, {"name": "validation", "num_bytes": 277633, "num_examples": 350}, {"name": "test", "num_bytes": 295294, "num_examples": 400}], "download_size": 726427, "dataset_size": 648931}, {"config_name": "science", "features": [{"name": "doc_key", "dtype": "string"}, {"name": "sentence", "sequence": "string"}, {"name": "ner", "sequence": [{"name": "id-start", "dtype": "int32"}, {"name": "id-end", "dtype": "int32"}, {"name": "entity-type", "dtype": "string"}]}, {"name": "relations", "sequence": [{"name": "id_1-start", "dtype": "int32"}, {"name": "id_1-end", "dtype": "int32"}, {"name": "id_2-start", "dtype": "int32"}, {"name": "id_2-end", "dtype": "int32"}, {"name": "relation-type", "dtype": "string"}, {"name": "Exp", "dtype": "string"}, {"name": "Un", "dtype": "bool"}, {"name": "SA", "dtype": "bool"}]}], "splits": [{"name": "train", "num_bytes": 63876, "num_examples": 103}, {"name": "validation", "num_bytes": 224402, "num_examples": 351}, {"name": "test", "num_bytes": 249075, "num_examples": 400}], "download_size": 594058, "dataset_size": 537353}]}
2023-01-19T09:19:12+00:00
2384dc23f2c9f694a60cd73c93f7f16042c729c8
# Dataset Card for E3C ## Dataset Description - **Public:** True - **Tasks:** NER This dataset is an annotated corpus of clinical texts from E3C using Large Language Models (LLM).
bio-datasets/e3c-llm
[ "region:us" ]
2023-01-19T10:16:10+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "tokens_offsets", "sequence": {"sequence": "int32"}}, {"name": "clinical_entity_tags", "sequence": {"class_label": {"names": {"0": "O", "1": "B-CLINENTITY", "2": "I-CLINENTITY"}}}}], "config_name": "e3c-llm", "splits": [{"name": "en_layer1", "num_bytes": 768555, "num_examples": 1520}, {"name": "en_layer2_validation", "num_bytes": 175089, "num_examples": 334}, {"name": "fr_layer1", "num_bytes": 758368, "num_examples": 1109}, {"name": "eu_layer2", "num_bytes": 503182, "num_examples": 1594}, {"name": "eu_layer2_validation", "num_bytes": 131870, "num_examples": 468}, {"name": "it_layer2", "num_bytes": 1590730, "num_examples": 2436}, {"name": "es_layer2_validation", "num_bytes": 166201, "num_examples": 261}, {"name": "fr_layer2_validation", "num_bytes": 170233, "num_examples": 293}, {"name": "es_layer2", "num_bytes": 1506040, "num_examples": 2347}, {"name": "en_layer2", "num_bytes": 1539228, "num_examples": 2873}, {"name": "fr_layer2", "num_bytes": 1583560, "num_examples": 2389}, {"name": "eu_layer1", "num_bytes": 910983, "num_examples": 3126}, {"name": "it_layer1", "num_bytes": 768769, "num_examples": 1145}, {"name": "es_layer1", "num_bytes": 754628, "num_examples": 1134}, {"name": "it_layer2_validation", "num_bytes": 172651, "num_examples": 275}], "download_size": 0, "dataset_size": 11500087}}
2023-04-13T13:18:31+00:00
d1d6639940c26de0034ab46343c31e430e466b16
# Dataset Card for "research-paper-tokenized-dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
dipudl/research-paper-tokenized-dataset
[ "region:us" ]
2023-01-19T10:48:13+00:00
{"dataset_info": {"features": [{"name": "labels", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}], "splits": [{"name": "train", "num_bytes": 1087419951, "num_examples": 861228}], "download_size": 376657164, "dataset_size": 1087419951}}
2023-01-19T19:55:52+00:00
9c19883835e644f8e7e204ef4d1b96f446c9dc03
# Dataset Card for "Canadian_Cropland_Dataset" ## Dataset Description - **Paper** [Towards the Creation of a Canadian Land-Use Dataset for Agricultural Land Classification](https://openreview.net/pdf/3b9f82b0ce8f1e195c4c20df9637afd8ed9ea339.pdf) - **Split** 2017, RGB - **GitHub** [Canadian-cropland-dataset](https://github.com/bioinfoUQAM/Canadian-cropland-dataset) ## Split Information This HuggingFace dataset repository contains just the 2017, RGB split. ### Licensing Information [Montreal Data License](https://github.com/bioinfoUQAM/Canadian-cropland-dataset/blob/main/DATA_LICENSE) ## Citation Information [Towards the Creation of a Canadian Land-Use Dataset for Agricultural Land Classification](https://openreview.net/pdf/3b9f82b0ce8f1e195c4c20df9637afd8ed9ea339.pdf) ``` @inproceedings{jacques2021towards, title = {Towards the Creation of a Canadian Land-Use Dataset for Agricultural Land Classification}, author = {Jacques, Amanda A Boatswain and Diallo, Abdoulaye Banir{\'e} and Lord, Etienne}, year = 2021, booktitle = {42nd Canadian Symposium on Remote Sensing: Understanding Our World: Remote Sensing for a Sustainable Future} } ```
jonathan-roberts1/Canadian_Cropland
[ "region:us" ]
2023-01-19T11:18:15+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "BARLEY", "1": "CANOLA", "2": "CORN", "3": "MIXEDWOOD", "4": "OAT", "5": "ORCHARD", "6": "PASTURE", "7": "POTATO", "8": "SOYBEAN", "9": "SPRING_WHEAT"}}}}], "splits": [{"name": "train", "num_bytes": 68287123.977, "num_examples": 14111}], "download_size": 66338711, "dataset_size": 68287123.977}, "viewer": true}
2023-03-31T13:45:40+00:00
2b239befc81b6e3f035ce6bd52f5f4d60f5625f7
# Flickr30k Original paper: [From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions](https://aclanthology.org/Q14-1006) Homepage: https://shannon.cs.illinois.edu/DenotationGraph/ Bibtex: ``` @article{young2014image, title={From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions}, author={Young, Peter and Lai, Alice and Hodosh, Micah and Hockenmaier, Julia}, journal={Transactions of the Association for Computational Linguistics}, volume={2}, pages={67--78}, year={2014}, publisher={MIT Press} } ```
nlphuji/flickr30k
[ "region:us" ]
2023-01-19T12:00:06+00:00
{}
2023-01-19T17:40:41+00:00
6953f48444104119a04092a33114977f06b82afc
# Dataset Card for "Taiwan-mandarin" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ryL/Taiwan-mandarin
[ "region:us" ]
2023-01-19T12:49:07+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "transcription", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 332633731.0, "num_examples": 846}, {"name": "test", "num_bytes": 82886161.0, "num_examples": 228}, {"name": "validation", "num_bytes": 98951893.0, "num_examples": 230}], "download_size": 513794624, "dataset_size": 514471785.0}}
2023-01-19T12:53:52+00:00
f531f693b09e751d2b0676c3e3364cc7dd86dbc6
adirik/FASSEG
[ "task_categories:image-segmentation", "size_categories:n<1K", "license:cc-by-sa-4.0", "region:us" ]
2023-01-19T12:55:26+00:00
{"license": "cc-by-sa-4.0", "size_categories": ["n<1K"], "task_categories": ["image-segmentation"]}
2023-01-20T13:26:01+00:00
8d1c564ad3e67365b0ab35db507f667dac33d95d
# AutoTrain Dataset for project: enchondroma-vs-low-grade-chondrosarcoma-histology ## Dataset Description This dataset has been automatically processed by AutoTrain for project enchondroma-vs-low-grade-chondrosarcoma-histology. ### Languages The BCP-47 code for the dataset's language is unk. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "image": "<1024x1024 RGB PIL image>", "target": 0 }, { "image": "<1024x1024 RGB PIL image>", "target": 1 } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "image": "Image(decode=True, id=None)", "target": "ClassLabel(names=['Enchondroma', 'Low-grade Chondrosarcoma'], id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 458 | | valid | 115 |
itslogannye/autotrain-data-enchondroma-vs-low-grade-chondrosarcoma-histology
[ "task_categories:image-classification", "region:us" ]
2023-01-19T13:18:59+00:00
{"task_categories": ["image-classification"]}
2023-01-19T13:20:53+00:00
806b513a1530a9f8d333c80f6f0a669dcb62cc3e
# Dataset Card for "relbert/semeval2012_relational_similarity" ## Dataset Description - **Repository:** [RelBERT](https://github.com/asahi417/relbert) - **Paper:** [https://aclanthology.org/S12-1047/](https://aclanthology.org/S12-1047/) - **Dataset:** SemEval2012 relational similarity dataset ### Dataset Summary Relational similarity dataset from [SemEval2012 task 2](https://aclanthology.org/S12-1047/), compiled to fine-tune [RelBERT](https://github.com/asahi417/relbert) model. The dataset contains a list of positive and negative word pair from 89 pre-defined relations. The relation types are constructed on top of following 10 parent relation types. ```shell { 1: "Class Inclusion", # Hypernym 2: "Part-Whole", # Meronym, Substance Meronym 3: "Similar", # Synonym, Co-hypornym 4: "Contrast", # Antonym 5: "Attribute", # Attribute, Event 6: "Non Attribute", 7: "Case Relation", 8: "Cause-Purpose", 9: "Space-Time", 10: "Representation" } ``` Each of the parent relation is further grouped into child relation types where the definition can be found [here](https://drive.google.com/file/d/0BzcZKTSeYL8VenY0QkVpZVpxYnc/view?resourcekey=0-ZP-UARfJj39PcLroibHPHw). ## Dataset Structure ### Data Instances An example of `train` looks as follows. ```shell { 'relation_type': '8d', 'positives': [ [ "breathe", "live" ], [ "study", "learn" ], [ "speak", "communicate" ], ... ] 'negatives': [ [ "starving", "hungry" ], [ "clean", "bathe" ], [ "hungry", "starving" ], ... ] } ``` ### Data Splits |train|validation| |----:|---------:| | 79 | 79 | ## Citation Information ``` @inproceedings{jurgens-etal-2012-semeval, title = "{S}em{E}val-2012 Task 2: Measuring Degrees of Relational Similarity", author = "Jurgens, David and Mohammad, Saif and Turney, Peter and Holyoak, Keith", booktitle = "*{SEM} 2012: The First Joint Conference on Lexical and Computational Semantics {--} Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation ({S}em{E}val 2012)", month = "7-8 " # jun, year = "2012", address = "Montr{\'e}al, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/S12-1047", pages = "356--364", } ```
relbert/semeval2012_relational_similarity
[ "multilinguality:monolingual", "size_categories:n<1K", "language:en", "license:other", "region:us" ]
2023-01-19T14:19:11+00:00
{"language": ["en"], "license": ["other"], "multilinguality": ["monolingual"], "size_categories": ["n<1K"], "pretty_name": "SemEval2012 relational similarity dataset"}
2023-02-02T15:38:26+00:00
b8dc14cad20ebc9ab92d65482a47c282f2644664
# Dataset Card for "Uniref90_temp" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Oshan/Uniref90_temp
[ "region:us" ]
2023-01-19T14:47:03+00:00
{"dataset_info": {"features": [{"name": "cluster_id", "dtype": "string"}, {"name": "cluster_size", "dtype": "int64"}, {"name": "org_id", "sequence": "int64"}, {"name": "clust_memb", "sequence": "string"}, {"name": "aa_seq", "dtype": "string"}, {"name": "taxon_id", "dtype": "int64"}, {"name": "aa_len", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 693591, "num_examples": 1500}], "download_size": 561305, "dataset_size": 693591}}
2023-01-19T14:47:14+00:00
e1432f8328428a7f506a7ab7d76aac94e4302173
EATHARD/denoise
[ "region:us" ]
2023-01-19T14:56:37+00:00
{}
2023-01-19T14:57:14+00:00
a120deecad6a6538fd804a462b16ff80a2539015
# Dataset Card for "financial-text-combo-classification" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nickmuchi/financial-text-combo-classification
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:sentiment-classification", "size_categories:10K<n<100K", "language:en", "finance", "region:us" ]
2023-01-19T15:12:10+00:00
{"language": ["en"], "size_categories": ["10K<n<100K"], "task_categories": ["text-classification"], "task_ids": ["multi-class-classification", "sentiment-classification"], "pretty_name": "FinTextComboClassification", "dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1989291, "num_examples": 17971}, {"name": "validation", "num_bytes": 414441, "num_examples": 3863}], "download_size": 1463828, "dataset_size": 2403732}, "tags": ["finance"]}
2023-01-27T23:21:24+00:00
ba1fd5ec6e3defb78de8c83ee57a21091e6ff4e5
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
bando168/Himnusz
[ "region:us" ]
2023-01-19T15:23:58+00:00
{}
2023-01-19T15:38:55+00:00
8649b09350949e08a7d7872730ff2617fda0a0d6
# Dataset Card for "pexel_images_lots_with_generated_captions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yuvalkirstain/pexel_images_lots_with_generated_captions
[ "region:us" ]
2023-01-19T15:56:11+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "generated_caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2467169489.125, "num_examples": 7999}], "download_size": 2418777187, "dataset_size": 2467169489.125}}
2023-01-19T22:47:12+00:00
4f9df57cf6bde70d17372fed165d3331b23e7c68
includeno/movielens-100k
[ "size_categories:10K<n<100K", "license:apache-2.0", "region:us" ]
2023-01-19T15:56:56+00:00
{"license": "apache-2.0", "size_categories": ["10K<n<100K"]}
2023-01-19T16:13:51+00:00
81c757b6f16d2a61af0412c1fef3732c270d1a89
# Dataset Card for "textual-explanations" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
james-burton/textual-explanations
[ "region:us" ]
2023-01-19T16:05:45+00:00
{"dataset_info": {"features": [{"name": "model_name", "dtype": "string"}, {"name": "predicted_class", "dtype": "string"}, {"name": "task_name", "dtype": "string"}, {"name": "narration", "dtype": "string"}, {"name": "values", "sequence": "string"}, {"name": "sign", "sequence": "string"}, {"name": "narrative_id", "dtype": "int32"}, {"name": "unique_id", "dtype": "int32"}, {"name": "classes_dict", "dtype": "string"}, {"name": "narrative_questions", "sequence": "string"}, {"name": "feature_nums", "sequence": "string"}, {"name": "ft_num2name", "dtype": "string"}, {"name": "old2new_ft_nums", "dtype": "string"}, {"name": "old2new_classes", "dtype": "string"}, {"name": "predicted_class_label", "dtype": "string"}, {"name": "class2name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 994784, "num_examples": 375}, {"name": "validation", "num_bytes": 121591, "num_examples": 47}, {"name": "test", "num_bytes": 122830, "num_examples": 47}], "download_size": 0, "dataset_size": 1239205}}
2023-01-19T16:09:31+00:00
591204edce1d3756a63aee4779e7570bbcbff08a
wolinski/skladnica_demo
[ "license:cc-by-4.0", "region:us" ]
2023-01-19T16:06:41+00:00
{"license": "cc-by-4.0"}
2023-01-19T16:07:57+00:00
a23b1d69b4f93c97ddee8f7bad0dc0812976e254
# Dataset Card for "text-exp-qa-hard" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
james-burton/text-exp-qa-hard
[ "region:us" ]
2023-01-19T16:12:10+00:00
{"dataset_info": {"features": [{"name": "predicted_class", "dtype": "string"}, {"name": "classes_dict", "dtype": "string"}, {"name": "feature_nums", "sequence": "string"}, {"name": "sign", "sequence": "string"}, {"name": "values", "sequence": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "id", "dtype": "int32"}, {"name": "question_id", "dtype": "int32"}], "splits": [{"name": "train", "num_bytes": 13000973, "num_examples": 27000}, {"name": "validation", "num_bytes": 1445534, "num_examples": 3000}, {"name": "test", "num_bytes": 297588, "num_examples": 469}], "download_size": 1800431, "dataset_size": 14744095}}
2023-01-30T17:54:38+00:00
661efd6637e81e212c5a9618f234b8ee43092750
Miaosen/CCCleanerDataset8G
[ "task_categories:text-classification", "language:en", "region:us" ]
2023-01-19T16:24:14+00:00
{"language": ["en"], "task_categories": ["text-classification"]}
2023-01-19T17:14:51+00:00
1a8861a7b1aac821524e5488997e40a20225e64d
Chendi/NYC_TAXI_FARE_CLEANED
[ "license:apache-2.0", "region:us" ]
2023-01-19T16:59:21+00:00
{"license": "apache-2.0"}
2023-01-19T18:12:43+00:00
31539d6c16533829a8ec7d3ded9a5d8e2fc53dcb
# nameToStdName for Minecraft plugins from SpigotMC and Bukkit From Spigot/Bukkit plugin titles and description, extract plugin names. Main repository: https://github.com/pluget/services ## License (SPDX) GPL-3.0 for code ODbL-1.0 for data/models ## Creators Maciej Błędkowski - Founder, Lead Developer
mble/nameToStdName
[ "size_categories:n<1K", "language:en", "license:gpl-3.0", "code", "ner", "named entity recognition", "minecraft", "minecraft plugins", "product name", "region:us" ]
2023-01-19T18:46:56+00:00
{"language": ["en"], "license": "gpl-3.0", "size_categories": ["n<1K"], "tags": ["code", "ner", "named entity recognition", "minecraft", "minecraft plugins", "product name"]}
2023-01-23T18:30:55+00:00
d49d74bd2b196d032705b5881cc4da4296741004
AlexWortega/FicBook
[ "language:ru", "license:mit", "region:us" ]
2023-01-19T19:21:34+00:00
{"language": ["ru"], "license": "mit"}
2023-12-14T14:22:19+00:00
15815164efd7fa649f59cd49e3c9d9e9f810e3f6
# Dataset Card for "rico_sca_refexp_synthetic_saved" This is a saved snapshot of the dynamically generated [Rico SCA RefExp dataset](https://huggingface.co/datasets/ivelin/rico_sca_refexp_synthetic)
ivelin/rico_sca_refexp_synthetic_saved
[ "region:us" ]
2023-01-19T20:00:26+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "image_id", "dtype": "string"}, {"name": "labels", "list": [{"name": "prompt", "dtype": "string"}, {"name": "target_bounding_box", "struct": [{"name": "xmin", "dtype": "float32"}, {"name": "ymin", "dtype": "float32"}, {"name": "xmax", "dtype": "float32"}, {"name": "ymax", "dtype": "float32"}]}]}], "splits": [{"name": "train", "num_bytes": 2604982403.694, "num_examples": 24063}, {"name": "validation", "num_bytes": 21192787.0, "num_examples": 160}, {"name": "test", "num_bytes": 22057836.0, "num_examples": 185}], "download_size": 2096931333, "dataset_size": 2648233026.694}}
2023-01-19T20:10:48+00:00
fe75207f7656cf2085458df8bdf3405a4f1b0b4a
photonsquid/coins-euro
[ "license:mit", "region:us" ]
2023-01-19T20:00:39+00:00
{"license": "mit", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "labels", "struct": [{"name": "value", "dtype": "string"}, {"name": "country", "dtype": "string"}, {"name": "edition", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 95268893.212, "num_examples": 1932}, {"name": "test", "num_bytes": 13536096.0, "num_examples": 276}, {"name": "validation", "num_bytes": 27151551.0, "num_examples": 552}], "download_size": 135683237, "dataset_size": 135956540.212}}
2023-01-20T14:54:38+00:00
11890d5a8ef9ee69887456021e8c80c437767fd5
Unzip data in the scorer to get the architecture data/grants...
Poupou/Gitcoin-Grant-DataBuilder
[ "license:mit", "region:us" ]
2023-01-19T20:05:25+00:00
{"license": "mit"}
2023-01-26T21:10:11+00:00
0a87570753165f427cfa530fc5e2aeb5737b7e73
# Dataset Card for "2048_has_code_filtered_base_code_review_python" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reshinthadith/2048_has_code_filtered_base_code_review_python
[ "region:us" ]
2023-01-19T20:10:34+00:00
{"dataset_info": {"features": [{"name": "body", "dtype": "string"}, {"name": "comments", "list": [{"name": "ContentLicense", "dtype": "string"}, {"name": "CreationDate", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "Score", "dtype": "string"}, {"name": "body", "dtype": "string"}]}, {"name": "answers", "list": [{"name": "body", "dtype": "string"}, {"name": "comments", "list": [{"name": "ContentLicense", "dtype": "string"}, {"name": "CreationDate", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "Score", "dtype": "string"}, {"name": "body", "dtype": "string"}]}, {"name": "meta_data", "struct": [{"name": "CommentCount", "dtype": "string"}, {"name": "ContentLicense", "dtype": "string"}, {"name": "CreationDate", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "ParentId", "dtype": "string"}, {"name": "Score", "dtype": "string"}]}]}, {"name": "meta_data", "struct": [{"name": "AcceptedAnswerId", "dtype": "string"}, {"name": "CommentCount", "dtype": "string"}, {"name": "ContentLicense", "dtype": "string"}, {"name": "CreationDate", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "Score", "dtype": "string"}, {"name": "Tags", "sequence": "string"}, {"name": "Title", "dtype": "string"}]}, {"name": "question_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 34984009.92705029, "num_examples": 6398}], "download_size": 18050163, "dataset_size": 34984009.92705029}}
2023-01-19T20:11:02+00:00
a0f40bf036af3ed5a037137c356f60317be71a17
# fake_railroad_company This is toy data I created about an imaginary railroad company. # V1 This is the first version of the data that I generated. # V2 I tweaked some of the weights I used to calculate the satisfaction score. # V3 Some customers are now power users who ride more often than other users. # V4 Customers with children are more likely to be members
davidwisdom/fake_railroad_company
[ "task_categories:time-series-forecasting", "annotations_creators:machine-generated", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc-by-4.0", "trains", "railroads", "train", "railroad", "toy", "region:us" ]
2023-01-19T21:15:43+00:00
{"annotations_creators": ["machine-generated"], "language_creators": ["machine-generated"], "language": ["en"], "license": ["cc-by-4.0"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["time-series-forecasting"], "task_ids": [], "pretty_name": "Fake Railroad Company", "tags": ["trains", "railroads", "train", "railroad", "toy"]}
2023-06-21T03:23:33+00:00
ccbdde04393f9c9004cf2da3cb323c085c87a729
# Dataset Card for "2048_has_code_filtered_base_code_review_python_based_on_property" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reshinthadith/2048_has_code_filtered_base_code_review_python_based_on_property
[ "region:us" ]
2023-01-19T21:26:07+00:00
{"dataset_info": {"features": [{"name": "body", "dtype": "string"}, {"name": "comments", "list": [{"name": "ContentLicense", "dtype": "string"}, {"name": "CreationDate", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "Score", "dtype": "string"}, {"name": "body", "dtype": "string"}]}, {"name": "meta_data", "struct": [{"name": "AcceptedAnswerId", "dtype": "string"}, {"name": "CommentCount", "dtype": "string"}, {"name": "ContentLicense", "dtype": "string"}, {"name": "CreationDate", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "Score", "dtype": "string"}, {"name": "Tags", "sequence": "string"}, {"name": "Title", "dtype": "string"}]}, {"name": "question_id", "dtype": "string"}, {"name": "yield", "dtype": "string"}, {"name": "answers", "list": [{"name": "body", "dtype": "string"}, {"name": "comments", "list": [{"name": "ContentLicense", "dtype": "string"}, {"name": "CreationDate", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "Score", "dtype": "string"}, {"name": "body", "dtype": "string"}]}, {"name": "meta_data", "struct": [{"name": "CommentCount", "dtype": "string"}, {"name": "ContentLicense", "dtype": "string"}, {"name": "CreationDate", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "ParentId", "dtype": "string"}, {"name": "Score", "dtype": "string"}]}]}], "splits": [{"name": "train", "num_bytes": 28462610, "num_examples": 6398}], "download_size": 0, "dataset_size": 28462610}}
2023-01-19T21:36:54+00:00
46a779304d9d7955c4dda1c00ae9e9b86709fe2e
# Dataset Card for MiningLegalArguments ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [GitHub](https://github.com/eliasjacob/paper_brcad5/) - **Repository:** [Kaggle](https://www.kaggle.com/datasets/eliasjacob/brcad5) - **Paper:** [PLOS ONE](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272287) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@JoelNiklaus](https://github.com/JoelNiklaus) for adding this dataset.
joelniklaus/BrCAD-5
[ "license:cc-by-nc-sa-4.0", "region:us" ]
2023-01-20T00:45:55+00:00
{"license": "cc-by-nc-sa-4.0"}
2023-01-20T00:47:27+00:00
82b700b85b84c21a3fcbf4485c367a155c83291a
Kokoboy/YaoYao
[ "license:openrail", "region:us" ]
2023-01-20T01:53:42+00:00
{"license": "openrail"}
2023-01-20T02:13:30+00:00
6a12f025da4ce45858844b4cb68a47654aa24120
# Dataset Card for "test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
camenduru/test
[ "region:us" ]
2023-01-20T02:20:07+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1147232.0, "num_examples": 8}], "download_size": 1148603, "dataset_size": 1147232.0}}
2023-01-20T02:20:10+00:00
0c000f79c5b437d97ad9a7815448a58966e01ef8
zpn/GRCh38
[ "license:mit", "region:us" ]
2023-01-20T04:46:48+00:00
{"license": "mit", "dataset_info": {"features": [{"name": "chr", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "seq", "dtype": "string"}, {"name": "split", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3158692879, "num_examples": 510445}], "download_size": 3166859999, "dataset_size": 3158692879}}
2023-01-22T00:32:15+00:00
c67864622cb78a554118958f806cf97d50992001
# Introduction There are four folders: **./pink original** 30 images from videoes and dynamics, and they are all cut into squares **./pink_cleaned** **./pink_cleaned_processed** clean the background and fill it with white colour, I recommend use this folder **./style_new** cute small girl style, I do not use them but just collect for storage
ecccho/lumi-pink-2022
[ "size_categories:n<1K", "region:us" ]
2023-01-20T05:36:33+00:00
{"size_categories": ["n<1K"]}
2023-01-20T05:50:22+00:00
11fac81362d7bcc017710e09bd3465a22ca887f7
407 images and captions taken from danbooru, picked and cropped by hand, 768x768 size.
cosc/cutesexyrobutts
[ "license:creativeml-openrail-m", "region:us" ]
2023-01-20T06:34:48+00:00
{"license": "creativeml-openrail-m"}
2023-02-16T08:28:43+00:00
55bf906bdab5cd2849c339f17ef4404e8ddb0822
# defamation_japanese_twitter # Twitter日本語誹謗中傷検出データセット <!-- ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** --> ## Dataset Summary SNSにおける誹謗中傷検出のためのデータセットです. 5,000件の日本語のツイートに,それぞれ以下で定義している誹謗中傷の対象者と内容をアノテーションしています.アノテーションは,3人のクラウドワーカーにより行われています.2022年2月15日から2022年6月30日までのツイートです. 元のツイートは含まれていないため,Twitter APIを用いてデータセットを収集してください. 中傷対象(target)と中傷内容(label)の2項目がアノテーションされています. - target :テキストが話題にしている対象者の分類 - label : targetで選択された対象者に対する誹謗中傷の種類の分類 文として成立しておらず意味の取れないものはラベルC(0)としています. | target | 対象 | 例| | ---- | ---- | ---- | | A1(1) | (人種・性別・職業・思想などを共通とする)グループ | (人種・性別・職業・思想などを共通とする)グループ | A2(2) | 個人(著名人や知人など) | 〇〇大統領,芸能人の〇〇さん,おまえ | A3(3) | 対象がはっきりしないもの |  | C(0) | 文として成立しておらず意味が取れない |   | label | 誹謗中傷の種類 | 侵害されるもの | 例 | ---- | ---- | ---- | ---- | | B1(1) | 生命を脅かす,精神的・身体的な危害を加える | 私生活の平穏 | • 殺害予告などの脅迫発言<br>• ◯◯なんていなくなればいいのにな | B2(2) | 容姿,人格などをけなしている | 名誉感情| • 太っているくせにカッコいいと勘違いしている<br>• 田舎育ちだからファッション感覚がない | B3(3) | 社会から客観的に受ける価値を低下させる | 名誉権| • ◯◯さんは過去に事件を起こして逮捕されたことがある<br>• ◯◯さんは会社の同僚と不倫をしている | B4(4) | B1-B3のどれにも当てはまらず中傷性がない | | | C(0) | 文として成立しておらず意味が取れない | ## Data Fields - `id` Twitter ID - `target`: 3名のアノテータのカテゴリAの回答 values: C(0), A1(1), A2(2), A3(3) - `label`: 3名のアノテータのカテゴリBの回答 values: C(0), B1(1), B2(2), B3(3), B4(4) - `user_id_list`: 匿名化された回答者のID ## Example Using Twitter API [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kubotaissei/defamation_japanese_twitter/blob/master/notebooks/get_dataset_example.ipynb) ```python # sample code from https://github.com/twitterdev/Twitter-API-v2-sample-code/blob/main/Tweet-Lookup/get_tweets_with_bearer_token.py import requests import os import json from datasets import load_dataset # To set your enviornment variables in your terminal run the following line: # export 'BEARER_TOKEN'='<your_bearer_token>' bearer_token = os.environ.get("BEARER_TOKEN") def create_url(ids: list): tweet_fields = "tweet.fields=created_at" ids = f"ids={','.join(ids)}" url = "https://api.twitter.com/2/tweets?{}&{}".format(ids, tweet_fields) return url def bearer_oauth(r): """ Method required by bearer token authentication. """ r.headers["Authorization"] = f"Bearer {bearer_token}" r.headers["User-Agent"] = "v2TweetLookupPython" return r def connect_to_endpoint(url): response = requests.request("GET", url, auth=bearer_oauth) if response.status_code != 200: raise Exception( "Request returned an error: {} {}".format( response.status_code, response.text ) ) return response.json() def get_text_data(examples): url = create_url(examples["id"]) json_response = connect_to_endpoint(url) # print(json_response["data"]) text_dict = {data["id"]: data["text"] for data in json_response["data"]} time_dict = {data["id"]: data["created_at"] for data in json_response["data"]} return { "text": [text_dict.get(id) for id in examples["id"]], "created_at": [time_dict.get(id) for id in examples["id"]], } dataset = load_dataset("kubota/defamation-japanese-twitter") dataset = dataset.map(get_text_data, batched=True, batch_size=100) dataset["train"].to_pandas().head() ``` <!-- ## Data Splits [More Information Needed] ## Dataset Creation ## Curation Rationale [More Information Needed] ## Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] --> ## Contributions Thanks to [@kubotaissei](https://github.com/kubotaissei) for adding this dataset.
kubota/defamation-japanese-twitter
[ "task_categories:text-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:ja", "license:cc-by-4.0", "region:us" ]
2023-01-20T06:50:46+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["ja"], "license": ["cc-by-4.0"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": [], "pretty_name": "defamation_japanese_twitter", "tags": [], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "target", "sequence": "string"}, {"name": "label", "sequence": "string"}, {"name": "user_id_list", "sequence": "int32"}]}}
2023-02-06T18:26:10+00:00
d020c8636ea3634b614786543747bba081e865ec
# Paraphrase Dataset (Urdu) This dataset contains paraphrases in Urdu. It is provided in the Parquet format and is split into a training set with 393,000 rows. ## Dataset Details - Columns: - `sentence1`: The first sentence in a pair of paraphrases (string). - `sentence2`: The second sentence in a pair of paraphrases (string). ## Usage You can use this dataset for various natural language processing tasks such as text similarity, paraphrase identification, and language generation.
mwz/ur_para
[ "task_categories:text2text-generation", "task_categories:summarization", "task_categories:text-generation", "size_categories:100K<n<1M", "language:ur", "license:mit", "region:us" ]
2023-01-20T07:11:27+00:00
{"language": ["ur"], "license": "mit", "size_categories": ["100K<n<1M"], "task_categories": ["text2text-generation", "summarization", "text-generation"], "pretty_name": "ur_para"}
2023-06-24T12:06:04+00:00
b1849b573c20e9d2ea9b4ba7e79ceb4f6c2b559f
## Required installation ```bash pip3 install pypdf2 pdf2image sudo apt-get install poppler-utils ```
jordyvl/rvl_cdip_multi
[ "license:cc-by-nc-4.0", "region:us" ]
2023-01-20T08:23:10+00:00
{"license": "cc-by-nc-4.0"}
2023-01-23T20:09:46+00:00
2184945d9850dba635199a5166c3a082846429de
anismhaddouche/test
[ "license:mit", "region:us" ]
2023-01-20T10:17:12+00:00
{"license": "mit"}
2023-01-20T10:19:06+00:00
9d86e4924bc2d935bf6eb0081b1b95eb817bae38
# Dataset Card for re-medical-annotations ## Dataset Description ### Dataset Summary HuggingFace Dataset from the Inception Medical Annotations project. This dataset can be used locally with any archive downloaded from Inception that contains relation annotations. Loading this dataset requires `dkpro-cassis>=0.7.2`. **Example**: load the dataset from the "RE Temporality POC" ``` import datasets ds = datasets.load_dataset( "bio-datasets/re-medical-annotations", data_dir=<Inception Archive path>, labels = ["bound"], ) ``` ## Dataset Structure ### Data Fields - `text (str)`: text of the sentence - `subj_start (int)`: start char of the relation subject mention - `subj_end (int)`: end char of the relation subject mention, exclusive - `subj_type (str)`: NER label of the relation subject - `obj_start (int)`: start char of the relation object mention - `obj_end (int)`: end char of the relation object mention, exclusive - `obj_type (str)`: NER label of the relation object - `relation (str)`: the relation label of this instance
bio-datasets/re-medical-annotations
[ "region:us" ]
2023-01-20T10:50:56+00:00
{}
2023-01-20T11:59:07+00:00
5bc4a5c387ebf97cfe2fbb44f2db611bca5c5d1b
# Dataset Card for "patched_1000_test_p_100_m2_predictions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_1000_test_p_100_m2_predictions
[ "region:us" ]
2023-01-20T12:17:21+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "features", "sequence": "float64"}, {"name": "m2_preds", "dtype": "float32"}], "splits": [{"name": "train", "num_bytes": 5874386840, "num_examples": 659861}], "download_size": 5594068699, "dataset_size": 5874386840}}
2023-01-20T12:21:35+00:00
190471b4ec3387b61fe020f58834a3bf450e3121
# Dataset Card for "input-dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
huggingface-projects/auto-retrain-input-dataset
[ "region:us" ]
2023-01-20T13:35:38+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "ADONIS", "1": "AFRICAN GIANT SWALLOWTAIL", "2": "AMERICAN SNOOT"}}}}], "splits": [{"name": "train", "num_bytes": 8825732.0, "num_examples": 338}], "download_size": 8823395, "dataset_size": 8825732.0}}
2023-01-23T11:02:27+00:00
d4621b82f778e6d98dfc63819db248a5778adcfc
# Dataset Card for "rico_sca_refexp_synthetic_flat" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ivelin/rico_sca_refexp_synthetic_flat
[ "region:us" ]
2023-01-20T14:33:37+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "image_id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "target_bounding_box", "struct": [{"name": "xmax", "dtype": "float64"}, {"name": "xmin", "dtype": "float64"}, {"name": "ymax", "dtype": "float64"}, {"name": "ymin", "dtype": "float64"}]}], "splits": [{"name": "train", "num_bytes": 40217006718.2, "num_examples": 374460}, {"name": "validation", "num_bytes": 348658434.4, "num_examples": 2720}, {"name": "test", "num_bytes": 387295818.89, "num_examples": 3347}], "download_size": 25615165078, "dataset_size": 40952960971.49}}
2023-01-20T14:46:07+00:00
e7aa449a0cee5851d28b450830737ae5e5d53345
# AutoTrain Dataset for project: rottentomato ## Dataset Description This dataset has been automatically processed by AutoTrain for project rottentomato. ### Languages The BCP-47 code for the dataset's language is unk. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "text": "too much of storytelling moves away from solondz's social critique , casting its audience as that of intellectual lector in contemplation of the auteur's professional injuries .", "target": 1 }, { "text": "what the audience feels is exhaustion , from watching a movie that is dark ( dark green , to be exact ) , sour , bloody and mean .", "target": 0 } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "text": "Value(dtype='string', id=None)", "target": "ClassLabel(names=['neg', 'pos'], id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 852 | | valid | 214 |
tolgadev/autotrain-data-rottentomato
[ "task_categories:text-classification", "region:us" ]
2023-01-20T14:42:00+00:00
{"task_categories": ["text-classification"]}
2023-01-20T14:43:13+00:00
32e8eb6edf8b9d506ec328ae9aabae7846c7c3d0
# Dataset Card for "emotion" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/dair-ai/emotion_dataset](https://github.com/dair-ai/emotion_dataset) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 3.95 MB - **Size of the generated dataset:** 4.16 MB - **Total amount of disk used:** 8.11 MB ### Dataset Summary Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances An example looks as follows. ``` { "text": "im feeling quite sad and sorry for myself but ill snap out of it soon", "label": 0 } ``` ### Data Fields The data fields are: - `text`: a `string` feature. - `label`: a classification label, with possible values including `sadness` (0), `joy` (1), `love` (2), `anger` (3), `fear` (4), `surprise` (5). ### Data Splits The dataset has 2 configurations: - split: with a total of 20_000 examples split into train, validation and split - unsplit: with a total of 416_809 examples in a single train split | name | train | validation | test | |---------|-------:|-----------:|-----:| | split | 16000 | 2000 | 2000 | | unsplit | 416809 | n/a | n/a | ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The dataset should be used for educational and research purposes only. ### Citation Information If you use this dataset, please cite: ``` @inproceedings{saravia-etal-2018-carer, title = "{CARER}: Contextualized Affect Representations for Emotion Recognition", author = "Saravia, Elvis and Liu, Hsien-Chi Toby and Huang, Yen-Hao and Wu, Junlin and Chen, Yi-Shin", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", month = oct # "-" # nov, year = "2018", address = "Brussels, Belgium", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D18-1404", doi = "10.18653/v1/D18-1404", pages = "3687--3697", abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.", } ``` ### Contributions Thanks to [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun) for adding this dataset.
philschmid/emotion
[ "task_categories:text-classification", "task_ids:multi-class-classification", "annotations_creators:machine-generated", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:other", "emotion-classification", "region:us" ]
2023-01-20T14:56:20+00:00
{"annotations_creators": ["machine-generated"], "language_creators": ["machine-generated"], "language": ["en"], "license": ["other"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": ["multi-class-classification"], "paperswithcode_id": "emotion", "pretty_name": "Emotion", "tags": ["emotion-classification"], "dataset_info": [{"config_name": "split", "features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "sadness", "1": "joy", "2": "love", "3": "anger", "4": "fear", "5": "surprise"}}}}], "splits": [{"name": "train", "num_bytes": 1741597, "num_examples": 16000}, {"name": "validation", "num_bytes": 214703, "num_examples": 2000}, {"name": "test", "num_bytes": 217181, "num_examples": 2000}], "download_size": 740883, "dataset_size": 2173481}, {"config_name": "unsplit", "features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "sadness", "1": "joy", "2": "love", "3": "anger", "4": "fear", "5": "surprise"}}}}], "splits": [{"name": "train", "num_bytes": 45445685, "num_examples": 416809}], "download_size": 15388281, "dataset_size": 45445685}], "duplicated_from": "emotion", "train-eval-index": [{"config": "default", "task": "text-classification", "task_id": "multi_class_classification", "splits": {"train_split": "train", "eval_split": "test"}, "col_mapping": {"text": "text", "label": "target"}, "metrics": [{"type": "accuracy", "name": "Accuracy"}, {"type": "f1", "name": "F1 macro", "args": {"average": "macro"}}, {"type": "f1", "name": "F1 micro", "args": {"average": "micro"}}, {"type": "f1", "name": "F1 weighted", "args": {"average": "weighted"}}, {"type": "precision", "name": "Precision macro", "args": {"average": "macro"}}, {"type": "precision", "name": "Precision micro", "args": {"average": "micro"}}, {"type": "precision", "name": "Precision weighted", "args": {"average": "weighted"}}, {"type": "recall", "name": "Recall macro", "args": {"average": "macro"}}, {"type": "recall", "name": "Recall micro", "args": {"average": "micro"}}, {"type": "recall", "name": "Recall weighted", "args": {"average": "weighted"}}]}]}
2023-01-20T14:56:20+00:00
7d915d6049944f6bf0b906d2b58e4725c49d822e
# Dataset Card for "NWPU-RESISC45" ## Dataset Description - **Paper** [Remote sensing image scene classification: Benchmark and state of the art](https://ieeexplore.ieee.org/iel7/5/8045830/07891544.pdf) ### Licensing Information [CC-BY-SA] ## Citation Information [Remote sensing image scene classification: Benchmark and state of the art](https://ieeexplore.ieee.org/iel7/5/8045830/07891544.pdf) ``` @article{cheng2017remote, title = {Remote sensing image scene classification: Benchmark and state of the art}, author = {Cheng, Gong and Han, Junwei and Lu, Xiaoqiang}, year = 2017, journal = {Proceedings of the IEEE}, publisher = {IEEE}, volume = 105, number = 10, pages = {1865--1883} } ```
jonathan-roberts1/NWPU-RESISC45
[ "task_categories:image-classification", "task_categories:zero-shot-image-classification", "license:other", "region:us" ]
2023-01-20T15:46:31+00:00
{"license": "other", "task_categories": ["image-classification", "zero-shot-image-classification"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "airplane", "1": "airport", "2": "baseball diamond", "3": "basketball court", "4": "beach", "5": "bridge", "6": "chaparral", "7": "church", "8": "circular farmland", "9": "cloud", "10": "commercial area", "11": "dense residential", "12": "desert", "13": "forest", "14": "freeway", "15": "golf course", "16": "ground track field", "17": "harbor", "18": "industrial area", "19": "intersection", "20": "island", "21": "lake", "22": "meadow", "23": "medium residential", "24": "mobile home park", "25": "mountain", "26": "overpass", "27": "palace", "28": "parking lot", "29": "railway", "30": "railway station", "31": "rectangular farmland", "32": "river", "33": "roundabout", "34": "runway", "35": "sea ice", "36": "ship", "37": "snowberg", "38": "sparse residential", "39": "stadium", "40": "storage tank", "41": "tennis court", "42": "terrace", "43": "thermal power station", "44": "wetland"}}}}], "splits": [{"name": "train", "num_bytes": 381151705, "num_examples": 31500}], "download_size": 424827902, "dataset_size": 381151705}}
2023-03-31T15:57:43+00:00
79fbb09aa4dc9e4221379dffe151efd8759b59c3
# Dataset Card for "SIRI-WHU" ## Dataset Description - **Paper** [Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery](https://ieeexplore.ieee.org/iel7/36/4358825/07329997.pdf) - **Paper** [The Fisher kernel coding framework for high spatial resolution scene classification](https://www.mdpi.com/2072-4292/8/2/157/pdf) - **Paper** [Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery](https://ieeexplore.ieee.org/iel7/8859/7473942/07466064.pdf) ### Licensing Information CC BY-NC-ND ## Citation Information [Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery](https://ieeexplore.ieee.org/iel7/36/4358825/07329997.pdf) [The Fisher kernel coding framework for high spatial resolution scene classification](https://www.mdpi.com/2072-4292/8/2/157/pdf) [Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery](https://ieeexplore.ieee.org/iel7/8859/7473942/07466064.pdf) ``` @article{zhao2015dirichlet, title={Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery}, author={Zhao, Bei and Zhong, Yanfei and Xia, Gui-Song and Zhang, Liangpei}, journal={IEEE Transactions on Geoscience and Remote Sensing}, volume={54}, number={4}, pages={2108--2123}, year={2015}, publisher={IEEE} } @article{zhao2016fisher, title={The Fisher kernel coding framework for high spatial resolution scene classification}, author={Zhao, Bei and Zhong, Yanfei and Zhang, Liangpei and Huang, Bo}, journal={Remote Sensing}, volume={8}, number={2}, pages={157}, year={2016}, publisher={MDPI} } @article{zhu2016bag, title={Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery}, author={Zhu, Qiqi and Zhong, Yanfei and Zhao, Bei and Xia, Gui-Song and Zhang, Liangpei}, journal={IEEE Geoscience and Remote Sensing Letters}, volume={13}, number={6}, pages={747--751}, year={2016}, publisher={IEEE} } ```
jonathan-roberts1/SIRI-WHU
[ "task_categories:image-classification", "task_categories:zero-shot-image-classification", "license:other", "region:us" ]
2023-01-20T15:46:58+00:00
{"license": "other", "task_categories": ["image-classification", "zero-shot-image-classification"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "agriculture", "1": "commercial", "2": "harbor", "3": "idle_land", "4": "industrial", "5": "meadow", "6": "overpass", "7": "park", "8": "pond", "9": "residential", "10": "river", "11": "water"}}}}], "splits": [{"name": "train", "num_bytes": 158215614.4, "num_examples": 2400}], "download_size": 147702566, "dataset_size": 158215614.4}}
2023-03-31T16:18:08+00:00
89a10374941b0e80d75ae00ad6ca81d7b67e33ac
# Dataset Card for "rico_refexp_combined" This dataset combines the crowdsourced RICO RefExp prompts from the [UIBert dataset](https://huggingface.co/datasets/ivelin/rico_sca_refexp_synthetic) and the synthetically generated prompts from the [seq2act dataset](https://huggingface.co/datasets/ivelin/rico_sca_refexp_synthetic).
ivelin/rico_refexp_combined
[ "task_categories:question-answering", "size_categories:100K<n<1M", "language:en", "license:cc", "ui refexp", "region:us" ]
2023-01-20T16:29:52+00:00
{"language": ["en"], "license": "cc", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering"], "pretty_name": "UI RefExp Combined", "tags": ["ui refexp"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "image_id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "target_bounding_box", "struct": [{"name": "xmax", "dtype": "float64"}, {"name": "xmin", "dtype": "float64"}, {"name": "ymax", "dtype": "float64"}, {"name": "ymin", "dtype": "float64"}]}], "splits": [{"name": "train", "num_bytes": 42127199077.08, "num_examples": 390084}, {"name": "validation", "num_bytes": 409042403.17, "num_examples": 3191}, {"name": "test", "num_bytes": 456349755.528, "num_examples": 3912}], "download_size": 27184189035, "dataset_size": 42992591235.778}}
2023-01-20T16:46:06+00:00
f11d63929abb91d630dbf6afc91f56b200979c2a
# Dataset Card for "jojo-stone-ocean-blip-captions-512" ## JoJo's Bizarre Adventure: Stone Ocean with Blip captions. ## Dataset contains 512x512 cropped images whose source is [jojowiki](https://jojowiki.com/Stone_Ocean_(Anime))
Norod78/jojo-stone-ocean-blip-captions-512
[ "size_categories:1K<n<10K", "language:en", "license:cc-by-nc-sa-4.0", "text-to-image", "region:us" ]
2023-01-20T17:00:05+00:00
{"language": "en", "license": "cc-by-nc-sa-4.0", "size_categories": ["1K<n<10K"], "pretty_name": "JoJo's Bizarre Adventure: Stone Ocean - Blip captions", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 94744425.832, "num_examples": 1376}], "download_size": 94450521, "dataset_size": 94744425.832}, "tags": ["text-to-image"]}
2023-07-13T10:27:31+00:00
d1a7ad247dbe0383048311bdeb452c028517c155
# Beyond web-scraping Original paper: [Beyond web-scraping: Crowd-sourcing a geographically diverse image dataset ](https://arxiv.org/abs/2301.02560) Homepage: https://geodiverse-data-collection.cs.princeton.edu/ Test split obtained from the paper authors. Bibtex: ``` @inproceedings{ramaswamy2022geode, author = {Vikram V. Ramaswamy and Sing Yu Lin and Dora Zhao and Aaron B. Adcock and Laurens van der Maaten and Deepti Ghadiyaram and Olga Russakovsky}, title = {Beyond web-scraping: {C}rowd-sourcing a geodiverse dataset}, booktitle = {arXiv preprint}, year = {2023} } ```
nlphuji/beyond_web_scraping
[ "arxiv:2301.02560", "region:us" ]
2023-01-20T17:00:09+00:00
{}
2023-01-20T17:12:36+00:00
a93005f73bc5d36f115098ca792cf6169a344740
# Dataset Card for "wallbed_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
dadosdq/wallbed_dataset
[ "region:us" ]
2023-01-20T17:42:18+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 16160402.0, "num_examples": 39}], "download_size": 16162324, "dataset_size": 16160402.0}}
2023-01-20T17:42:32+00:00
be08ebc27ffe97b270ae03b6a75a1ce9cb418644
antolin/modelset
[ "license:apache-2.0", "region:us" ]
2023-01-20T17:50:52+00:00
{"license": "apache-2.0"}
2023-01-22T09:54:04+00:00
668b2cabee807d5350a72bedc0e33d7433a6be33
# Dataset Card for "pii-pile-chunk3-0-50000-tagged" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
j-chim/pii-pile-chunk3-0-50000-tagged
[ "region:us" ]
2023-01-20T18:34:35+00:00
{"dataset_info": {"features": [{"name": "texts", "sequence": "string"}, {"name": "meta", "struct": [{"name": "pile_set_name", "dtype": "string"}]}, {"name": "scores", "sequence": "float64"}, {"name": "avg_score", "dtype": "float64"}, {"name": "num_sents", "dtype": "int64"}, {"name": "tagged_pii_results", "list": [{"name": "analysis_explanation", "dtype": "null"}, {"name": "end", "dtype": "int64"}, {"name": "entity_type", "dtype": "string"}, {"name": "recognition_metadata", "struct": [{"name": "recognizer_identifier", "dtype": "string"}, {"name": "recognizer_name", "dtype": "string"}]}, {"name": "score", "dtype": "float64"}, {"name": "start", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 505187810, "num_examples": 50000}], "download_size": 192707833, "dataset_size": 505187810}}
2023-01-21T02:03:02+00:00
82540efee3d778168f560b6a94b40f3532c774f4
# Architecture Regularization Images A collection of regularization & class instance datasets of architecture for the Stable Diffusion 1.5 to use for DreamBooth prior preservation loss training.
3ee/regularization-architecture
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "architecture", "region:us" ]
2023-01-20T18:44:31+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "architecture"]}
2023-01-20T19:12:23+00:00
d11aaa3e488925af824db86d176a340a9b052e48
# Castle Regularization Images A collection of regularization & class instance datasets of castles for the Stable Diffusion 1.5 to use for DreamBooth prior preservation loss training.
3ee/regularization-castle
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "region:us" ]
2023-01-20T18:44:53+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training"]}
2023-01-20T19:25:41+00:00
300b8d8167d7d274ac17f71a5b8073d06681e74f
# Horse Regularization Images A collection of regularization & class instance datasets of horses for the Stable Diffusion 1.5 to use for DreamBooth prior preservation loss training.
3ee/regularization-horse
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "region:us" ]
2023-01-20T18:46:07+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training"]}
2023-01-20T19:21:02+00:00
523f93cc65de4046ec445793607481a5c03e40b5
# Creature Regularization Images A collection of regularization & class instance datasets of creatures for the Stable Diffusion 1.5 to use for DreamBooth prior preservation loss training.
3ee/regularization-creature
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "region:us" ]
2023-01-20T18:47:30+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training"]}
2023-01-20T19:20:28+00:00
26eae2964447518e7671dca7cfac0d1ba9130881
# Forest Regularization Images A collection of regularization & class instance datasets of forests for the Stable Diffusion 1.5 model to use for DreamBooth prior preservation loss training.
3ee/regularization-forest
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "forest", "region:us" ]
2023-01-20T18:47:57+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "forest"]}
2023-01-20T19:09:47+00:00
7829914720649837fa2bbe0a2340661963171e04
# Space Regularization Images A collection of regularization & class instance datasets of space for the Stable Diffusion 1.5 to use for DreamBooth prior preservation loss training.
3ee/regularization-space
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "region:us" ]
2023-01-20T19:26:19+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training"]}
2023-01-20T19:30:22+00:00
086607dc0921967db7972f418722dbbe61466fb1
# Tiger Regularization Images A collection of regularization & class instance datasets of tigers for the Stable Diffusion 1.5 to use for DreamBooth prior preservation loss training.
3ee/regularization-tiger
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "region:us" ]
2023-01-20T19:33:41+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training"]}
2023-01-20T19:36:58+00:00
c08583489ad46b3ffa6fcbc0c460a1d7ebf5a35a
# Landscape Regularization Images A collection of regularization & class instance datasets of landscapes for the Stable Diffusion 1.5 to use for DreamBooth prior preservation loss training.
3ee/regularization-landscape
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "region:us" ]
2023-01-20T19:40:14+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training"]}
2023-01-20T19:48:58+00:00
d3c72394c8d5997837c169b567dd4d87d56a19eb
# Man Regularization Images A collection of regularization & class instance datasets of men for the Stable Diffusion 1.5 to use for DreamBooth prior preservation loss training.
3ee/regularization-man
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "region:us" ]
2023-01-20T19:45:22+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training"]}
2023-01-20T19:48:20+00:00
7cdefd5bb0e34f067aa578fbd8aa324d36d6cbc2
# Woman Regularization Images A collection of regularization & class instance datasets of women for the Stable Diffusion 1.5 to use for DreamBooth prior preservation loss training.
3ee/regularization-woman
[ "license:mit", "stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training", "region:us" ]
2023-01-20T19:49:37+00:00
{"license": "mit", "tags": ["stable-diffusion", "regularization-images", "text-to-image", "image-to-image", "dreambooth", "class-instance", "preservation-loss-training"]}
2023-01-20T19:52:45+00:00
e28d288b2a186cc88cb24b49533e54121b6802e9
hdotta/henry
[ "license:openrail", "region:us" ]
2023-01-20T20:33:25+00:00
{"license": "openrail"}
2023-01-20T20:37:32+00:00
c93c190d98ed8d7b100c4060d79c2fcc4d0bcd06
gcdoore/pacificAtolls
[ "license:afl-3.0", "region:us" ]
2023-01-20T20:35:39+00:00
{"license": "afl-3.0"}
2023-01-20T20:35:39+00:00
dd87cd421bee6a80552ac154be9b9737ad9ac23f
# German Municipal Coat of Arms Dataset This dataset contains 13104 samples for German municipal coat of arms. Each sample consists of the following features: 'img', 'acceptance', 'municipality', 'description', 'id', historicalJustification', 'municipalityName', 'uri', 'figure', 'cancellation', 'cancellationReason', 'author'
johko/german_municipal_coat_of_arms
[ "size_categories:10K<n<100K", "language:de", "license:cc-by-4.0", "region:us" ]
2023-01-20T20:50:31+00:00
{"language": ["de"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"]}
2023-01-22T19:41:39+00:00
d2337a07734fed19482342cd7b5a911472c4c007
# Dataset Card for "processed_light_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
andrewnoel/processed_light_dataset
[ "region:us" ]
2023-01-20T22:52:19+00:00
{"dataset_info": {"features": [{"name": "scene", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 18625958.401499182, "num_examples": 7684}, {"name": "test", "num_bytes": 2070089.5985008199, "num_examples": 854}], "download_size": 11530553, "dataset_size": 20696048.0}}
2023-01-23T04:54:55+00:00
d3e04a867e565b4dfc69b2c3749586dc776a6660
Kokoboy/ShonenJump_Cover_Magazine
[ "license:openrail", "region:us" ]
2023-01-21T01:14:30+00:00
{"license": "openrail"}
2023-01-21T01:14:48+00:00
e055e9f2de692a3d35c1495a7c153472b46ca7ca
# Dataset Card for "bookcorpus_compact_256_shard0_of_10" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
saibo/bookcorpus_compact_256_shard0_of_10
[ "region:us" ]
2023-01-21T01:39:30+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "concept_with_offset", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 784542200, "num_examples": 238935}], "download_size": 393350476, "dataset_size": 784542200}}
2023-01-21T01:39:59+00:00
2fd777f220307d63db62610e51820a630107faa2
# AutoTrain Dataset for project: 230121_t5_lcw99 ## Dataset Description This dataset has been automatically processed by AutoTrain for project 230121_t5_lcw99. ### Languages The BCP-47 code for the dataset's language is unk. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "text": "\u5510\uc774 \uc815\ubc8c\uc744 \ud1b5\ud574 \u908a\u5916\uc5d0 \u7f88?\u5e9c\u5dde\u9ad4\u5236\ub97c \uc2dc\ud589\ud558\uae30 \uc2dc\uc791\ud55c \uac83\uc740 \ud0dc\uc885\ub9d0\uc758 \uc77c\uc774\uc9c0\ub9cc, \uace0\uc885\ub300\uc5d0\ub294 \uc774\ub97c \uc11c\ub3cc\uad90\uacfc \uace0\uad6c\ub824\uae4c\uc9c0 \ud655\ub300\uc2dc\ud0a4\uba74\uc11c \ucd5c\ub300 \ud310\ub3c4\uc758 \uc601\ud1a0\ub97c \ud655\ubcf4\ud558\uc600\ub2e4. \uace0\uc885\ub300 \u5510\u4f7f \ud30c\uacac\uc740 \uace0\uc885\uc989\uc704(650)\ub85c\ubd80\ud130 661\ub144\uae4c\uc9c0\ub294 \uc11c\ub3cc\uad90\uc5d0, 670\ub144\ubd80\ud130 \uace0\uc885\ub9d0\uae4c\uc9c0\ub294 \ud1a0\ubc88\uc5d0 \uc9d1\uc911\ub418\uc5c8\uace0, \ud30c\uacac \ud69f\uc218\ub3c4 \ub144 0.53\ud68c\ub85c \ubb34\ucc99 \uc801\ub2e4. \ubfd0\ub9cc \uc544\ub2c8\ub77c \uace0\uc885\ub300\uc758 \uc870\uacf5 \ud69f\uc218\ub3c4 \ud0dc\uc885\ub300\uc5d0 \ube44\ud574 \ud604\uaca9\ud788 \uc801\ub2e4. \uc774\ub294 \ub2f9\uc758 \uc8fc\ub41c \uc0ac\uc2e0 \uad50\ub958\uad6d(\ub3cc\uad90\uc744 \ube44\ub86f\ud55c \ucca0\ub975, \uc11c\ub3cc\uad90, \uace0\uad6c\ub824, \ubc31\uc81c \ub4f1)\uc774 \uc815\ubc8c\ub418\uc5c8\ub358 \uae4c\ub2ed\uc774\uae30\ub3c4 \ud558\uc9c0\ub9cc, \uc2e0\ub77c\ub098 \ud1a0\ubc88\uacfc\uc758 \uad00\uacc4\ub97c \ud1b5\ud574 \ubcfc \ub54c, \uc815\ubc8c\uacfc \uc9c0\ubc30\ub97c \ubaa9\ud45c\ub85c \ud55c \uace0\uc885\ub300 \ub300\uc678 \uc815\ucc45\uc758 \uc131\uaca9\uc5d0 \uae30\uc778\ud55c \uce21\uba74\uc774 \uac15\ud558\ub2e4\uace0 \ud558\uaca0\ub2e4. \uace0\uc885\ub300 \ub2f9\uc758 \uc0ac\uc2e0 \uc678\uad50\ub294 \uc8fc\ub85c \uc815\ubc8c \uc804 \u62db\u6170\uc640 \uc815\ubc8c \ud6c4 \u518a\u5c01\uc774\ub2e4. \ubc18\uba74\uc5d0 \ub2f9\uc758 \uf96f\u8aed\uac00 \uc720\ud6a8\ud558\uc9c0 \uc54a\uc558\ub358 \ud1a0\ubc88\uc5d0\ub294 \uc8fc\ub85c \uad70\uc0ac\uc801\uc73c\ub85c \ub300\uc751\ud558\uc600\uace0, \uc774\ub9c8\uc800\ub3c4 \uc5ec\uc758\uce58 \uc54a\uc740 \uc0c1\ud669\uc5d0\uc11c \ud1a0\ubc88\uc758 \uc694\uad6c\ub97c \uc218\uc6a9\u00b7\ud654\uce5c\ud558\uc600\ub2e4. \ub610\ud55c \ub2f9\uc758 \uc9c0\ubc30\ub97c \uac70\ubd80\ud55c \uc2e0\ub77c\uc640\uc758 \uc0ac\uc2e0 \uc655\ub798\ub294 \uac70\uc758 \ub2e8\uc808\ub41c \uc0c1\ud669\uc774\uc5c8\uc73c\uba70, \uc77c\ubcf8\uc5d0 \ud30c\uacac\ub41c \ub450 \ucc28\ub840\uc758 \uc0ac\uc2e0 \uc5ed\uc2dc \uc77c\ubcf8\uacfc\uc758 \uad6d\uad50\uac00 \ubaa9\uc801\uc774 \uc544\ub2c8\ub77c \uc2e0\ub77c\ub97c \uacac\uc81c\ud558\ub294 \uce21\uba74\uc774 \uac15\ud558\ub2e4. \uc989 \uace0\uc885\ub300 \ub300\uc678\uc815\ucc45\uc740 \uc8fc\ub85c \uad70\uc0ac \uc815\ubc8c\uacfc \uae30\ubbf8\ubd80\uc8fc\uccb4\uc81c\uc758 \ud655\ub300\uc600\uace0, \uc774 \uacfc\uc815\uc5d0\uc11c \uc0ac\uc2e0\uc678\uad50\uc758 \ube44\uc911\uc740 \uadf8\ub2e4\uc9c0 \ud06c\uc9c0 \uc54a\uc558\ub2e4. \uadf8\ub807\ub2e4\uba74 \uc65c \uace0\uc885\ub300\uc5d0\ub294 \uc0ac\uc2e0 \uc678\uad50\uc758 \ube44\uc911\uc774 \ub0ae\uc558\uace0 \ub610 \ud1a0\ubc88\uacfc \uac19\uc740 \uac15\ub825\ud55c \uad6d\uac00\uc5d0 \ub300\ud574\uc11c\ub294 \ud6a8\uacfc\uac00 \uc5c6\uc5c8\uc744\uae4c. \uc5ec\uae30\uc5d0\uc11c \ud55c\uac00\uc9c0 \uc8fc\ubaa9\ud560 \uac83\uc740 \uace0\uc885\ub300 \ub300\uc678\uc815\ucc45\uc740 \ud0dc\uc885\ub300\uc5d0 \uad6c\ucd95\ub41c \uad6d\uc81c\uc801 \uc9c0\uc704\uc640 \ub300\uc678\uc801 \uc5ed\ub7c9\uc774 \uc0c1\uc2b9\uace1\uc120\uc744 \uadf8\ub9ac\ub294 \uc2dc\uc810\uc5d0 \ucd94\uc9c4\ub418\uc5c8\ub2e4\ub294 \uc810\uc774\ub2e4. \ub2e4\uc2dc \ub9d0\ud574 \ub2f9\uc740 \uad6d\uc81c \uc9c8\uc11c\uc758 \uc911\uc2ec\uc5d0\uc11c \uac01\uad6d\uc758 \uad70\uc8fc\ub97c \ucc45\ubd09\ud558\uba70 \uc804\ud1b5\uc801\uc778 \uc911\ud654\uc774\ub150\uc744 \uc2e4\ud604\uc2dc\ud0a4\uace0, \ub098\uc544\uac00 \uae30\ubbf8\uc9c0\ubc30\uccb4\uc81c\uc758 \uc2e4\uc2dc\ub85c \ucc45\ubd09 \ubcf4\ub2e4 \uac15\ub825\ud55c \ud1b5\uc81c\uac00 \uac00\ub2a5\ud574\uc84c\ub2e4. \uc774\ub807\uac8c \ub2f9\uc758 \uad6d\uc81c\uc801 \uc704\ub825\uc774 \ucee4\uc9c0\uba74\uc11c \ub354\ubd88\uc5b4 \ub300\uc678\uad00\uacc4\uc5d0\uc11c \uc911\ud654\uc801 \uc774\ub150 \uc5ed\uc2dc \ud06c\uac8c \uace0\uc870\ub418\uc5c8\uc74c\uc744 \uc9d0\uc791\ud560 \uc218 \uc788\ub2e4. \ub54c\ubb38\uc5d0 \uace0\uc885\ub300\uc5d0\ub294 \uac15\uc131\ud55c \ud1a0\ubc88\uc758 \uacf5\uc138\uc640 \uc694\uad6c\uc5d0 \uc5ec\uc804\ud788 \ud6a8\uacfc \uc5c6\ub294 \u2018\ucc9c\uc790\uc758 \uf96f\u8aed\u2019\ub97c \ubc18\ubcf5\ud55c \uac83\uc774\ub2e4. \ub354 \ub098\uc544\uac00 \uc774\ubbf8 \uad11\ubc94\uc704\ud55c \uc774\ubbfc\uc871 \uc9c0\uc5ed\uc5d0 \ub2f9\uc758 \uc9c0\ubc30\uccb4\uc81c\ub97c \uc2e4\ud604\ud55c \uace0\uc885\ub300\uc5d0 \ucc45\ubd09-\uc870\uacf5\uc758 \uad00\uacc4\ub97c \uc804\uc81c\ub85c \ud558\ub294 \uc0ac\uc2e0 \uc678\uad50\ub294 \uadf8 \ube44\uc911\uc774 \ub0ae\uc544\uc9c0\uace0 \uacbd\uc9c1\ub418\uc5c8\ub2e4\uace0 \ubcf4\uc778\ub2e4. \uadf8\ub807\uae30\uc5d0 \ud1a0\ubc88\uc5d0 \ub300\ud574 \uc804\uc7c1 \uc774\uc678\uc758 \uc720\ud6a8\ud55c \uc678\uad50 \ub300\ucc45\uc744 \ub9c8\ub828\ud558\uc9c0 \ubabb\ud55c \uac83\uc73c\ub85c \ubcf4\uc778\ub2e4. \uc774\ub7ec\ud55c \uace0\uc885\ub300\uc758 \ub300\uc678 \uc815\ucc45\uc740 \ud1a0\ubc88\uc758 \uacf5\uc138\uc640 \uc11c\ub3cc\uad90\uc758 \u53cd\u5510\uc73c\ub85c \ub3d9\uc694\ud558\uae30 \uc2dc\uc791\ud558\uc600\ub2e4. \uc774\ubbf8 \uc2e0\ub77c\ub294 \ub2f9\uc758 \uc9c0\ubc30\ub97c \uac70\ubd80\ud55c \uc0c1\ud669\uc774\uc5c8\uace0, \uace0\uc885\ub9d0\uc5d0 \ubd81\ubc29 \ub3cc\uad90 \uc5ed\uc2dc \ub2f9\uc758 \uc9c0\ubc30\uccb4\uc81c\uc5d0 \uaca9\ub82c\ud558\uac8c \uc800\ud56d\ud558\uc600\ub2e4. \uc774\ub294 \ub2f9\uc758 \uad70\uc0ac\ub825\uc774 \uad11\ubc94\uc704\ud558\uac8c \ud655\uc7a5\ub41c \uae30\ubbf8\ubd80\uc8fc\ub97c \uac10\ub2f9\ud558\uae30\uc5d0 \uc5ed\ubd80\uc871\uc774\uba70 \uae30\ubbf8\ubd80\uc8fc\uccb4\uc81c\ub97c \ud1b5\ud55c \uc9c0\ubc30\ub77c\ub294 \ub300\uc678 \uc815\ucc45\uc5d0 \ud55c\uacc4\uac00 \ub4dc\ub7ec\ub0ac\uc74c\uc744 \ubcf4\uc5ec\uc900\ub2e4. \uadf8\ub7fc\uc5d0\ub3c4 \ubd88\uad6c\ud558\uace0 \ub2f9\uc740 678\ub144(\u5100\u9cf3 3)\uc5d0 \ud669\uc81c \uace0\uc885\uc758 \uc8fc\ub3c4\ud558\uc5d0 \uc2e0\ub77c\ub97c \ud1a0\ubc8c\ud558\ub824 \ud558\uace0, 679\ub144(\u8abf\u9732\u5143\u5e74) 2\uc6d4\uc5d0 \u8d0a\u666e\uc758 \uc8fd\uc74c\uc744 \uae30\ud68c\ub85c \ud1a0\ubc88\uc744 \ub3c4\ubaa8\ud558\uace0\uc790 \ud558\uc600\ub2e4. \uc774 \ubc16\uc5d0\ub3c4 \ub2f9\uc740 \ub3d9\uc694\ud558\ub294 \ub300\uc678\uc9c8\uc11c\uc5d0 \ubd84\uc8fc\ud558\uac8c \ud1a0\ubc8c\uad70\uc744 \ud30c\uacac\ud558\uc5ec \ub2f9\uc758 \uc9c0\ubc30\uc9c8\uc11c\ub97c \uc9c0\uc18d\uc2dc\ud0a4\uace0\uc790 \ud558\uc600\ub2e4. \uc774\ub85c\uc368 \ubcfc \ub54c, \uace0\uc885\ub300 \ub2f9\uc758 \ub300\uc678\uc815\ucc45\uc740 \ub2e4\uc591\ud558\uace0 \uc735\ud1b5\uc131 \uc788\ub294 \uc0ac\uc2e0\uc678\uad50\uc5d0 \ubb34\ucc99 \uc18c\uadf9\uc801\uc778 \ubc18\uba74, \uc815\ubc8c\uacfc \uc9c0\ubc30\uc758 \ud33d\ucc3d \uc815\ucc45\uc774 \uadf8 \ud55c\uacc4\uc5d0\ub3c4 \ubd88\uad6c\ud558\uace0 \uace0\uc885\ub9d0\uae4c\uc9c0 \uc77c\uad00\ub418\uac8c \ucd94\uc9c4\ub418\uc5c8\uc74c\uc744 \uc54c \uc218 \uc788\ub2e4.", "target": "\u5510\uc774 \uc815\ubc8c\uc744 \ud1b5\ud574 \u908a\u5916\uc5d0 \u7f88?\u5e9c\u5dde\u9ad4\u5236\ub97c \uc2dc\ud589\ud558\uae30 \uc2dc\uc791\ud55c \uac83\uc740 \ud0dc\uc885\ub9d0\uc758 \uc77c\uc774\uc9c0\ub9cc, \uace0\uc885\ub300\uc5d0\ub294 \uc774\ub97c \uc11c\ub3cc\uad90\uacfc \uace0\uad6c\ub824\uae4c\uc9c0 \ud655\ub300\uc2dc\ud0a4\uba74\uc11c \ucd5c\ub300 \ud310\ub3c4\uc758 \uc601\ud1a0\ub97c \ud655\ubcf4\ud588\ub2e4. \uace0\uc885\ub300 \u5510\u4f7f \ud30c\uacac\uc740 \uace0\uc885\uc989\uc704\ub85c\ubd80\ud130 661\ub144\uae4c\uc9c0\ub294 \uc11c\ub3cc\uad90\uc5d0, 670\ub144\ubd80\ud130 \uace0\uc885\ub9d0\uae4c\uc9c0\ub294 \ud1a0\ubc88\uc5d0 \uc9d1\uc911\ub418\uc5c8\uace0, \ud30c\uacac \ud69f\uc218\ub3c4 \ub144 0.53\ud68c\ub85c \ubb34\ucc99 \uc801\ub2e4.", "feat_section_original": "630\ub144(\uc815\uad00 4)\uc5d0 \ub2f9 \ud0dc\uc885\uc774 \ub3cc\uad90\uc744 \uc815\ubc8c\ud558\uba74\uc11c \ub2f9\uc758 \uad6d\uc81c\uc801 \uc704\ub9dd\uc740 \uae09\uc18d\ud788 \ub192\uc544\uc84c\ub2e4. \uc774\ud6c4\ub85c \ub2f9\uc740 \ubd84\uc5f4\ub41c \uc11c\ub3cc\uad90\uc5d0 \ucc45\ubd09\uc744 \ud1b5\ud574 \uce5c\ub2f9 \uc815\uad8c\uc744 \uad6c\ucd95\ud558\uace0, \uc774\uac83\uc774 \uc5ec\uc758\uce58 \uc54a\uc740 \ud1a0\uc695\ud63c\uc5d0\ub294 \uad70\uc0ac\ub97c \ub3d9\uc6d0\ud55c \uc704\ubb34\ub85c \uce5c\ub2f9\uc801 \ucc45\ubd09\uc744 \uc2e4\ud604\uc2dc\ucf30\ub2e4. \uadf8\ub7ec\ub098 \ub2f9\uc740 640\ub144(\u8c9e\u89c0 14)\uc5d0 \uace0\ucc3d\uc744 \uc815\ubc8c\ud558\uc5ec \u897f\u5dde\ub85c \ud3b8\uc81c\ud558\uc600\uace0, 646\ub144(\u8c9e\u89c0 20)\uc5d0 \uc124\uc5f0\ud0c0\ub97c \uc815\ubc8c\ud558\uc5ec \ucca0\ub975\uc744 6\ubd807\uc8fc\ub85c \ud3b8\uc81c\ud558\uc600\ub2e4. \uc989 \ub2f9\uc758 \ub300\uc678\uc815\ucc45\uc740 \ubcf4\ub2e4 \uc801\uadf9\uc801\uc774\uace0 \uc9c1\uc811\uc801\uc778\uc9c0\ubc30\ub85c \uc804\ud658\ub418\uace0 \uc788\uc5c8\ub2e4. \ud0dc\uc885\uc744 \uacc4\uc704\ud55c \uace0\uc885(650-683)\ub300\uc5d0, \ub2f9\uc740 \ucc9c\uc0b0\ubd81\ub85c\uc758 \uc11c\ub3cc\uad90\ub85c\ubd80\ud130 \uc694\ub3d9\uc758 \uace0\uad6c\ub824\uae4c\uc9c0 \ucd5c\ub300 \ud310\ub3c4\uc758 \uc601\ud1a0\ub97c \ud655\ubcf4\ud558\uc600\uc73c\uba70, \uc774\ub97c \uae30\ubbf8\ubd80\uc8fc\ub85c \ud3b8\uc81c\ud558\uace0 \ub3c4\ud638\ubd80\ub97c \ub450\uc5b4 \ucd1d\uad04\ud558\uc600\ub2e4. \uc774\ub7ec\ud55c \ub300\uc678 \uc815\ubc8c\uacfc \ud655\uc7a5, \ud3b8\uc81c\uc640 \uc9c0\ubc30\ub97c \ubaa9\ud45c\ub85c \ud55c \ub300\uc678\uc815\ucc45\uc740 \ud0dc\uc885 \ub9d0 \ub300\uc678 \uc815\ucc45\uc758 \uc5f0\uc7a5\uc774\ub77c \ud560 \uc218 \uc788\ub2e4. \ud558\uc9c0\ub9cc \ub300\uc678\uc815\ucc45\uc740 \uad70\uc0ac\ub825\uc744 \uc55e\uc138\uc6b4 \uc804\uc7c1\ub9cc\uc774 \uc544\ub2c8\ub77c \uc0ac\uc2e0\uc678\uad50\ub97c \ud1b5\ud574\uc11c\ub3c4 \uc0b4\ud3b4\ubcfc \uc218 \uc788\ub2e4. \u4f7f\u81e3\uc740 \uc678\uad50\uc758 \uc2e4\uc9c8\uc801 \uc218\ud589\uc790\ub85c, \uc774\ub97c \ub458\ub7ec\uc2fc \ub2e4\uc591\ud55c \uc694\uc18c\ub4e4(\ud30c\uacac \ud69f\uc218, \ud30c\uacac\ub300\uc0c1\uad6d, \ud30c\uacac\uc2dc\uae30, \ud30c\uacac \ubaa9\uc801\uacfc \uc784\ubb34 \ub4f1)\uc740 \uad6d\uc81c\uc801 \uc5ed\ud559\uad00\uacc4 \uc18d\uc5d0\uc11c \uac01 \uc2dc\uae30 \ub2f9\uc758 \ub300\uc678 \uad00\uacc4\uc640 \uc815\ucc45\uc774 \uc5b4\ub5bb\uac8c \ucd94\uc9c4\ub418\uace0 \uc5b4\ub290 \uc815\ub3c4 \uc2e4\ud604\ub418\uc5c8\ub294\uac00\ub97c \ubcf4\uc5ec\uc8fc\ub294 \uc911\uc694\ud55c \ub2e8\uc11c\uc774\ub2e4. \ubfd0\ub9cc \uc544\ub2c8\ub77c \uc774\ub294 \ub2f9\uc758 \uc774\ub150\uc801\uc774\uace0 \ud604\uc2e4\uc801\uc778 \uc785\uc7a5\uacfc \uc694\uad6c\ub97c \ud30c\uc545\ud560 \uc218 \uc788\ub294 \uc694\uc18c\uc774\uae30\ub3c4 \ud558\ub2e4.", "feat_section_summary": "630\ub144\uc5d0 \ub2f9 \ud0dc\uc885\uc774 \ub3cc\uad90\uc744 \uc815\ubc8c\ud558\uba74\uc11c \ub2f9\uc758 \uad6d\uc81c\uc801 \uc704\ub9dd\uc740 \uae09\uc18d\ud788 \ub192\uc544\uc84c\ub2e4. \uc774\ud6c4\ub85c \ub2f9\uc740 \ubd84\uc5f4\ub41c \uc11c\ub3cc\uad90\uc5d0 \ucc45\ubd09\uc744 \ud1b5\ud574 \uce5c\ub2f9 \uc815\uad8c\uc744 \uad6c\ucd95\ud558\uace0, \uc774\uac83\uc774 \uc5ec\uc758\uce58 \uc54a\uc740 \ud1a0\uc695\ud63c\uc5d0\ub294 \uad70\uc0ac\ub97c \ub3d9\uc6d0\ud55c \uc704\ubb34\ub85c \uce5c\ub2f9\uc801 \ucc45\ubd09\uc744 \uc2e4\ud604\uc2dc\ucf30\ub2e4. \ub2f9\uc758 \ub300\uc678\uc815\ucc45\uc740 \ubcf4\ub2e4 \uc801\uadf9\uc801\uc774\uace0 \uc9c1\uc811\uc801\uc778 \uc9c0\ubc30\ub85c \uc804\ud658\ub418\uace0 \uc788\uc5c8\ub2e4." }, { "text": "\u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc5d0\uc11c \ub3c4\ub355 \ubc95\uce59\uc5d0 \ub300\ud55c \uc874\uacbd\uc774 \uc720\uc77c\ud55c \ub3c4\ub355\uc801 \ub3d9\uae30\uc774\ub77c\uba74, \u300e\ub17c\uc5b4\u300f\uc5d0\uc11c\ub294 \uc778(\u4ec1)\uc758 \ub3c4\ub355 \ubc95\uce59\uc5d0 \ub300\ud55c \uacbd(\u656c)\uc774 \uadf8\ub7ec\ud558\ub2e4. \ub3c4\ub355\uc801\uc778 \ub3d9\uae30\uc640 \uad00\uc2ec \uadf8\ub9ac\uace0 \uc900\uce59 \uac1c\ub150\uc774 \u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc5d0\uc11c \uc120\uc758\uc9c0\uac00 \uc870\ud0c1\ub418\ub294 \uacfc\uc815\uc744 \ubc1d\ud788\uace0 \uc788\ub2e4\uba74, \uc801\ubc95\uc131\uacfc \ub3c4\ub355\uc131 \uac1c\ub150\uc740 \uc120\uc758\uc9c0\uac00 \ud589\uc704\ub97c \ud1b5\ud574 \uc62c\ubc14\ub85c \ud589\ud574\uc84c\ub294\uc9c0\ub97c \uac80\uc99d\ud558\ub294 \uacfc\uc815\uc744 \ubc1d\ud788\uace0 \uc788\ub2e4. \uc774\uac83\uc740 \ud589\uc704\uc5d0 \ub300\ud55c \ub3c4\ub355\uc801 \uac00\uce58\ub97c \uac80\uc99d\ud558\ub294 \uac83\uc774\uae30\ub3c4 \ud558\ub2e4. \uc774 \uac80\uc99d \uacfc\uc815\uc5d0\uc11c \uc120\uc758\uc9c0\uc758 \uc870\ud0c1 \uacfc\uc815\uc5d0\uc11c \uadfc\ubcf8\uc801\uc73c\ub85c \uacb0\uc815\uc801\uc774\uc5c8\ub358 \u201c\ub3c4\ub355 \ubc95\uce59\uc774 \uc758\uc9c0\ub97c \uc9c1\uc811\uc801\uc73c\ub85c \uaddc\uc815\u201d\ud558\ub294 \uac83\uc740 \ub9c8\ucc2c\uac00\uc9c0\ub85c \u201c\ud589\uc704\ub4e4\uc758 \ubaa8\ub4e0 \ub3c4\ub355\uc801 \uac00\uce58\uc758 \ubcf8\uc9c8\u201d\uc744 \uc774\ub8ec\ub2e4. \ubcf8 \ub17c\ubb38\uc758 \uc758\ub3c4\ub294\u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc758 \uc801\ubc95\uc131\uacfc \ub3c4\ub355\uc131 \uac1c\ub150 \ubc0f \uad6c\uc870\ub97c\u300e\ub17c\uc5b4\u300f\uc5d0 \ud22c\uc601\ud558\uc5ec\u300e\ub17c\uc5b4\u300f\uc5d0\uc11c \uc790\uccb4\uc758 \ub17c\ub9ac\ub97c \uac00\uc9c0\uace0 \uc791\ub3d9\ud558\uace0 \uc788\ub294 \uc801\ubc95\uc131\uacfc \ub3c4\ub355\uc131\uc758 \uac80\uc99d \uc2dc\uc2a4\ud15c\uc744 \ubc1d\ud600\ub0b4\ub294 \ub370 \uc788\ub2e4.", "target": "\uc774 \ub17c\ubb38\uc758 \uc758\ub3c4\ub294\u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc758 \uc801\ubc95\uc131\uacfc \ub3c4\ub355\uc131 \uac1c\ub150 \ubc0f \uad6c\uc870\ub97c\u300e\ub17c\uc5b4\u300f\uc5d0 \ud22c\uc601\ud558\uc5ec\u300e\ub17c\uc5b4\u300f\uc5d0\uc11c \uc790\uccb4\uc758 \ub17c\ub9ac\ub97c \uac00\uc9c0\uace0 \uc791\ub3d9\ud558\uace0 \uc788\ub294 \uc801\ubc95\uc131\uacfc \ub3c4\ub355\uc131\uc758 \uac80\uc99d \uc2dc\uc2a4\ud15c\uc744 \ubc1d\ud600\ub0b4\ub294 \ub370 \uc788\ub2e4.", "feat_section_original": "\ubcf8 \uc5f0\uad6c\uc758 \uad81\uadf9\uc801\uc778 \ubaa9\uc801\uc740 \u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc758 \uc120\uc758\uc9c0 \uac1c\ub150\uacfc \uad6c\uc870\ub97c \u300e\ub17c\uc5b4\u300f\uc758 \uc778(\u4ec1)\uc758\uc9c0 \uac1c\ub150\uacfc \uad6c\uc870 \ubd84\uc11d\uc5d0 \ud22c\uc601\ud558\uc5ec, \u300e\ub17c\uc5b4\u300f\uc5d0\uc11c \uc778(\u4ec1)\uc758\uc9c0\uac00 \uc870\ud0c1(\u5f6b\u596a)\ub418\ub294 \uacfc\uc815\uc744 \uc5c4\uaca9\ud558\uac8c \ubd84\uc11d\ud568\uc73c\ub85c\uc368 \u300e\ub17c\uc5b4\u300f\uc5d0\uc11c \u201c\uadfc\uc6d0\uc801\uc73c\ub85c \ubc95\uce59 \uc218\ub9bd\uc801\u201d\uc778 \ub3c4\ub355 \ubc95\uce59\uc758 \uc8fc\uccb4\uc758 \uadfc\uac70\ub97c \ub17c\uc99d\uc801\uc73c\ub85c \ub4dc\ub7ec\ub0b4\ub294 \ub370 \uc788\ub2e4. \uc774\ub97c \uc704\ud574\uc11c\ub294 \ubb34\uc5c7\ubcf4\ub2e4\ub3c4 \u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc758 \uc120\uc758\uc9c0 \uac1c\ub150\uacfc \uad6c\uc870\ub97c \u300e\ub17c\uc5b4\u300f\uc758 \uc778(\u4ec1)\uc758\uc9c0 \uac1c\ub150\uc744 \ubd84\uc11d\ud558\ub294 \ub370\uc5d0 \uc798 \ud22c\uc601\ud558\ub294 \uc5f0\uad6c \ubc29\ubc95\uc774 \uccab \ubc88\uc9f8\ub85c \uc911\uc694 \ud560 \uac83\uc774\uace0, \u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc758 \ub17c\ub9ac\ub85c \u300e\ub17c\uc5b4\u300f\uc758 \ub0b4\uc6a9\uc744 \ub2e8\uc21c\ud788 \ud574\ubd80\ud558\ub294 \uac83 \uc774 \uc544\ub2c8\ub77c, \u300e\ub17c\uc5b4\u300f\uc5d0 \uc790\uccb4\uc801\uc73c\ub85c \uac16\ucdb0\uc9c4 \ucda9\ubd84\ud55c \uadfc\uac70\ub97c \u300e\ub17c\uc5b4\u300f\uc758 \uc790\uccb4\uc801\uc778 \ub17c\ub9ac\uc5d0 \ub9de\uac8c \uc798 \ubc1d\ud600\ub0b4\uc5b4\uc11c \uc5c4\uaca9\ud558\uac8c \ub17c\uc99d\uc801\uc73c\ub85c \uc81c\uc2dc\ud560 \uc218 \uc788\ub294 \uc5f0\uad6c\ubc29\ubc95\uc774 \uccab \ubc88\uc9f8 \ubabb\uc9c0\uc54a\uac8c \ub450 \ubc88\uc9f8\ub85c \uc911\uc694\ud560 \uac83\uc774\ub2e4. \uadf8\ub798\uc11c \u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc758 \uccb4\uacc4\uc640 \u300e\ub17c\uc5b4\u300f\uc758 \uccb4\uacc4\ub97c \uc11c\ub85c \uc11e\uc9c0 \uc54a\uc73c\uba74\uc11c\ub3c4 \uc758\ubbf8\uc801\uc73c\ub85c \uadf8\ub9ac\uace0 \uad6c\uc870\uc801\uc73c\ub85c \uc11c\ub85c \uc0c1\uad00\ub41c \uac1c\ub150\ub4e4\uc744 \ud22c\uc601\ud574\ubcfc \uc218 \uc788\ub3c4\ub85d \uadfc\uc811\uc2dc\ucf1c \uc11c\ub85c \uc5ee\uc5b4\uc11c \uc5f0\uad6c\ud558\ub294 \ubc29\ubc95\uc744 \uc2dc\ub3c4\ud558\ub824 \ud55c\ub2e4. \u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc5d0\uc11c \uc120(\u5584)\uc758\uc9c0\uc5d0 \ub300\ud574\uc11c\ub294 \u300e\ub17c\uc5b4\u300f\uc5d0\uc11c \uc778(\u4ec1)\uc758\uc9c0\ub97c \uc0c1\uad00 \uac1c\ub150\uc73c\ub85c \ud558\uc600\uace0, \uc790\uae30 \uc0ac\ub791\uc758 \uc6d0\ub9ac\ub97c \uc887\uc74c\uc5d0 \ub300\ud574\uc11c\ub294 \u201c\uff3b\uc790\uc2e0\uc5d0\uac8c\uff3d\ud3b8\uc548\ud568(\u5b89\uff3b\u5df1\uff3d)\u201d\uc744, \u201c\uc720\uc77c\ud55c \uadf8\ub9ac\uace0 \ub3d9\uc2dc\uc5d0 \uc758\uc2ec\ud560 \ubc14 \uc5c6\ub294 \ub3c4\ub355\uc801 \ub3d9\uae30\u201d \ub85c\uc11c \u201c\ub3c4\ub355\ubc95\uce59\uc5d0 \ub300\ud55c \uc874\uacbd\u201d\uc5d0 \ub300\ud574\uc11c\ub294 \uc778 (\u4ec1)\uc758 \ub3c4\ub355 \ubc95\uce59\uc5d0 \ub300\ud55c \u201c\uacbd(\u656c)\u201d\uc744 \uc0c1\uad00 \uac1c\ub150\uc73c\ub85c \ud30c\uc545\ud55c\ub2e4.", "feat_section_summary": "\ubcf8 \uc5f0\uad6c\uc758 \uad81\uadf9\uc801\uc778 \ubaa9\uc801\uc740 \u300e\uc2e4\ucc9c\uc774\uc131\ube44\ud310\u300f\uc758 \uc120\uc758\uc9c0 \uac1c\ub150\uacfc \uad6c\uc870\ub97c \u300e\ub17c\uc5b4\u300f\uc758 \uc778\uc758\uc9c0 \uac1c\ub150\uacfc \uad6c\uc870 \ubd84\uc11d\uc5d0 \ud22c\uc601\ud558\uc5ec, \u300e\ub17c\uc5b4\u300f\uc5d0\uc11c \uc778\uc758\uc9c0\uac00 \uc870\ud0c1\ub418\ub294 \uacfc\uc815\uc744 \uc5c4\uaca9\ud558\uac8c \ubd84\uc11d\ud568\uc73c\ub85c\uc368 \u300e\ub17c\uc5b4\u300f\uc5d0\uc11c \u201c\uadfc\uc6d0\uc801\uc73c\ub85c \ubc95\uce59 \uc218\ub9bd\uc801\u201d\uc778 \ub3c4\ub355 \ubc95\uce59\uc758 \uc8fc\uccb4\uc758 \uadfc\uac70\ub97c \ub17c\uc99d\uc801\uc73c\ub85c \ub4dc\ub7ec\ub0b4\ub294 \ub370 \uc788\ub2e4." } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "text": "Value(dtype='string', id=None)", "target": "Value(dtype='string', id=None)", "feat_section_original": "Value(dtype='string', id=None)", "feat_section_summary": "Value(dtype='string', id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 2399 | | valid | 600 |
Maeji/autotrain-data-230121_t5_lcw99
[ "task_categories:summarization", "region:us" ]
2023-01-21T03:33:54+00:00
{"task_categories": ["summarization"]}
2023-01-21T04:19:10+00:00
798ff3701b2574eba29594454835fea14cf589da
georgereyna/omni
[ "license:cc", "region:us" ]
2023-01-21T03:37:06+00:00
{"license": "cc"}
2023-01-21T03:37:54+00:00
1e2ff02e081cfe163423f36ede3b6192882d9a9f
VASVASVAS/models
[ "license:openrail", "region:us" ]
2023-01-21T07:26:40+00:00
{"license": "openrail"}
2023-02-11T06:49:13+00:00
2a9c8c2c560bac31e7d65e81f584d2280ce7593d
# Dataset Card for "patched_1000_test_p_150_m2_embeddings" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_1000_test_p_150_m2_embeddings
[ "region:us" ]
2023-01-21T07:29:33+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "features", "sequence": "float64"}], "splits": [{"name": "train", "num_bytes": 9275601628, "num_examples": 1035692}], "download_size": 8812286870, "dataset_size": 9275601628}}
2023-01-21T07:36:03+00:00
1040277c7831711568a88aeb09ab09a198d30929
# Dataset Card for "pii-pile-chunk3-50000-100000-tagged" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
j-chim/pii-pile-chunk3-50000-100000-tagged
[ "region:us" ]
2023-01-21T08:09:21+00:00
{"dataset_info": {"features": [{"name": "texts", "sequence": "string"}, {"name": "meta", "struct": [{"name": "pile_set_name", "dtype": "string"}]}, {"name": "scores", "sequence": "float64"}, {"name": "avg_score", "dtype": "float64"}, {"name": "num_sents", "dtype": "int64"}, {"name": "tagged_pii_results", "list": [{"name": "analysis_explanation", "dtype": "null"}, {"name": "end", "dtype": "int64"}, {"name": "entity_type", "dtype": "string"}, {"name": "recognition_metadata", "struct": [{"name": "recognizer_identifier", "dtype": "string"}, {"name": "recognizer_name", "dtype": "string"}]}, {"name": "score", "dtype": "float64"}, {"name": "start", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 519392635, "num_examples": 50000}], "download_size": 200427885, "dataset_size": 519392635}}
2023-01-21T08:09:40+00:00
c09454bf8295b3887ec8f6d51fa6df0cce38a91c
b-yukky/multi-qad-200k
[ "license:mit", "region:us" ]
2023-01-21T08:24:40+00:00
{"license": "mit"}
2023-01-21T08:25:25+00:00
7564def708f898ee607c78005fb4e67fd1c198c0
# Dataset Card for "private_common_voice" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/private_common_voice
[ "region:us" ]
2023-01-21T09:14:06+00:00
{"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "input_length", "dtype": "float64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 36964365264.0, "num_examples": 38481}, {"name": "test", "num_bytes": 10027864480, "num_examples": 10440}], "download_size": 6680862479, "dataset_size": 46992229744.0}}
2023-01-21T09:21:59+00:00
db6e5361ae49622190a73e1a5bf32ec48360a2da
# Dataset Card for "imdb_dutch" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [http://ai.stanford.edu/~amaas/data/sentiment/](http://ai.stanford.edu/~amaas/data/sentiment/) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Dataset Summary Large Movie Review Dataset translated to Dutch. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 24,992 highly polar movie reviews for training, and 24,992 for testing. There is additional unlabeled data for use as well. ### Translation to Dutch The dataset was translated with [yhavinga/ul2-large-en-nl](https://huggingface.co/yhavinga/ul2-large-en-nl). The translation code is available in the src directory. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages This dataset contains Dutch and English data. ## Dataset Structure ### Data Instances #### plain_text - **Size of downloaded dataset files:** 108 MiB - **Size of the generated dataset:** 277 MiB An example of 'train' looks as follows. ``` { "label": 0, "text": "Holy shit. Dit was de slechtste film die ik in lange tijd heb gezien." "text_en": "Holy crap. This was the worst film I have seen in a long time." } ``` ### Data Fields The data fields are the same among all splits. #### plain_text - `text`: a `string` feature. - `text_en`: a `string` feature. - `label`: a classification label, with possible values including `neg` (0), `pos` (1). ### Data Splits | name |train|unsupervised|test | |----------|----:|-----------:|----:| |plain_text|24992| 49984|24992| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{maas-EtAl:2011:ACL-HLT2011, author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher}, title = {Learning Word Vectors for Sentiment Analysis}, booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies}, month = {June}, year = {2011}, address = {Portland, Oregon, USA}, publisher = {Association for Computational Linguistics}, pages = {142--150}, url = {http://www.aclweb.org/anthology/P11-1015} } ``` ### Contributions Thanks to [@ghazi-f](https://github.com/ghazi-f), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf) for adding the English `imdb` dataset. This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
yhavinga/imdb_dutch
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:multilingual", "size_categories:10K<n<100K", "source_datasets:original", "language:nl", "language:en", "license:other", "region:us" ]
2023-01-21T09:37:16+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["nl", "en"], "license": ["other"], "multilinguality": ["multilingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": ["sentiment-classification"], "paperswithcode_id": "imdb-movie-reviews", "pretty_name": "IMDB", "dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "text_en", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "neg", "1": "pos"}}}}], "config_name": "plain_text", "splits": [{"name": "train", "num_bytes": 69589646, "num_examples": 24992}, {"name": "test", "num_bytes": 67958995, "num_examples": 24992}, {"name": "unsupervised", "num_bytes": 139649169, "num_examples": 49984}], "download_size": 108170940, "dataset_size": 277197810}, "train-eval-index": [{"config": "plain_text", "task": "text-classification", "task_id": "binary_classification", "splits": {"train_split": "train", "eval_split": "test"}, "col_mapping": {"text": "text", "label": "target"}, "metrics": [{"type": "accuracy"}, {"name": "Accuracy"}, {"type": "f1", "name": "F1 macro", "args": {"average": "macro"}}, {"type": "f1", "name": "F1 micro", "args": {"average": "micro"}}, {"type": "f1", "name": "F1 weighted", "args": {"average": "weighted"}}, {"type": "precision", "name": "Precision macro", "args": {"average": "macro"}}, {"type": "precision", "name": "Precision micro", "args": {"average": "micro"}}, {"type": "precision", "name": "Precision weighted", "args": {"average": "weighted"}}, {"type": "recall", "name": "Recall macro", "args": {"average": "macro"}}, {"type": "recall", "name": "Recall micro", "args": {"average": "micro"}}, {"type": "recall", "name": "Recall weighted", "args": {"average": "weighted"}}]}]}
2023-01-21T10:57:39+00:00
9153a394ed5a5b4d3a9b8ec4e1a4322b8e47ddd4
# Dataset Card for "bookcorpus_compact_1024_test" 6160 samples randomly sampled from the shard9 of Bookcorpus_compact_1024 ```python from datasets import load_dataset from datasets import Dataset corpus_name="xxx" ds = load_dataset(corpus_name, split="train") shuffled_ds = ds.shuffle(seed=42) test_ds = Dataset.from_dict{shuffled_ds[:6160]} # len(ds)//10 ``` [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
saibo/bookcorpus_compact_1024_test
[ "region:us" ]
2023-01-21T10:51:30+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "concept_with_offset", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 75334225, "num_examples": 6160}], "download_size": 38920916, "dataset_size": 75334225}}
2023-01-22T23:37:25+00:00
887026827822dfa3fe7258c414e6b04c5618fd09
# Dataset Card for CSS10 Hungarian: Single Speaker Speech Dataset ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Hungarian Single Speaker Speech Dataset](https://www.kaggle.com/datasets/bryanpark/hungarian-single-speaker-speech-dataset) - **Repository:** [CSS10](https://github.com/kyubyong/css10) - **Paper:** [CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages](https://arxiv.org/abs/1903.11269) ### Dataset Summary The corpus consists of a single speaker, with 4515 segments extracted from a single LibriVox audiobook. ### Supported Tasks and Leaderboards [Needs More Information] ### Languages The audio is in Hungarian. ## Dataset Structure [Needs More Information] ### Data Instances [Needs More Information] ### Data Fields [Needs More Information] ### Data Splits [Needs More Information] ## Dataset Creation ### Curation Rationale CSS10 is a collection of single speaker speech datasets for 10 languages. Each of them consists of audio files recorded by a single volunteer and their aligned text sourced from LibriVox. ### Source Data #### Initial Data Collection and Normalization [Egri csillagok](https://librivox.org/egri-csillagok-by-geza-gardonyi/), read by Diana Majlinger. #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators Kyubyong Park & Tommy Mulc ### Licensing Information [CC0: Public Domain](https://creativecommons.org/publicdomain/zero/1.0/) ### Citation Information ``` @article{park2019css10, title={CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages}, author={Park, Kyubyong and Mulc, Thomas}, journal={Interspeech}, year={2019} } ``` ### Contributions [Needs More Information]
KTH/hungarian-single-speaker-tts
[ "task_categories:text-to-speech", "task_categories:other", "annotations_creators:expert-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:hu", "license:cc0-1.0", "arxiv:1903.11269", "region:us" ]
2023-01-21T12:03:09+00:00
{"annotations_creators": ["expert-generated"], "language": ["hu"], "license": "cc0-1.0", "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text-to-speech", "other"], "task_ids": [], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 22050}}}, {"name": "original_text", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "duration", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 3173032948.2, "num_examples": 4515}], "download_size": 0, "dataset_size": 3173032948.2}}
2023-01-22T13:11:38+00:00
fd28fdcc46ca1bdad8e16325cca653d3fb586906
# Dataset Card for "patched_1000_test_p_150_m2_predictions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_1000_test_p_150_m2_predictions
[ "region:us" ]
2023-01-21T12:13:40+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "features", "sequence": "float64"}, {"name": "m2_preds", "dtype": "float32"}], "splits": [{"name": "train", "num_bytes": 9279744396, "num_examples": 1035692}], "download_size": 8814051480, "dataset_size": 9279744396}}
2023-01-21T12:20:32+00:00
265eed140f9ab806bf1f7449e19648ee6897f2ff
veereshd/Dreambooth_food_dataset
[ "license:unknown", "region:us" ]
2023-01-21T12:54:38+00:00
{"license": "unknown"}
2023-01-21T12:56:13+00:00
ba1ece2c445f6ba6106eaad61108272e4e93b3ce
Regularization images of several types. CFG Scale: 7 Sampler: DDIM Steps: 50 Size: see file name Prompt: see file name Neg. Prompt: none #images: see file name VAE: none Lora: none Model for 512x512: SD V1.5 Model for 768x768: SD V2.1
dragonink/StableDiffusion-Regularization-Images
[ "license:mit", "region:us" ]
2023-01-21T13:29:54+00:00
{"license": "mit"}
2023-01-22T13:43:56+00:00
98946f840588c333e5d3a1f028c4d7eb4da74beb
## Dataset audio info - 16000 Hz 16 bit - wav - mono - Russian speech ## Dataset instance structure {'audio': {'path': '/path/to/wav.wav', 'array': array([wav numpy array]), dtype=float32), 'sampling_rate': 16000}, 'transcription': 'транскрипция'} ## Citation @Misc{Voxforge.org, author = {Voxforge.org}, title = {Free Speech... Recognition (Linux, Windows and Mac) - voxforge.org}, howpublished = {\url{[http://www.voxforge.org/]}}, note = {accessed 01/21/2023} } ## Source http://www.voxforge.org/ru/downloads
dangrebenkin/voxforge-ru-dataset
[ "license:apache-2.0", "region:us" ]
2023-01-21T14:34:23+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "transcription", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}], "splits": [{"name": "train", "num_bytes": 1947609729.4653895, "num_examples": 6169}, {"name": "test", "num_bytes": 864278563.4406104, "num_examples": 2645}], "download_size": 2705520657, "dataset_size": 2811888292.906}}
2023-02-06T19:23:29+00:00
90243c00259e684300f4f03ef057848a8ee68f17
Датасет ассоциаций к русским существительным
solkogan/russian_nouns_associations
[ "task_categories:conversational", "size_categories:100K<n<1M", "language:ru", "region:us" ]
2023-01-21T14:59:46+00:00
{"language": ["ru"], "size_categories": ["100K<n<1M"], "task_categories": ["conversational"]}
2023-01-21T15:12:42+00:00
18d9f1c1395ae061a34be544253d763b5fa39b71
Датасет для классификации существительных русского языка
solkogan/nouns_classes
[ "task_categories:text-classification", "size_categories:100K<n<1M", "language:ru", "region:us" ]
2023-01-21T15:17:48+00:00
{"language": ["ru"], "size_categories": ["100K<n<1M"], "task_categories": ["text-classification"]}
2023-01-21T15:23:11+00:00