sha
stringlengths 40
40
| text
stringlengths 0
13.4M
| id
stringlengths 2
117
| tags
list | created_at
stringlengths 25
25
| metadata
stringlengths 2
31.7M
| last_modified
stringlengths 25
25
|
---|---|---|---|---|---|---|
ae4e12e5dcce4974dd943bca177db96698014edb
|
# Dataset Card for "sci_summ"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
0x70DA/sci_summ
|
[
"region:us"
] |
2023-03-05T13:56:55+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "summary", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 23361937.97759879, "num_examples": 4631}, {"name": "test", "num_bytes": 23487172.952651516, "num_examples": 4665}, {"name": "train", "num_bytes": 176474272.610434, "num_examples": 34083}], "download_size": 120216439, "dataset_size": 223323383.54068428}}
|
2023-03-05T18:12:54+00:00
|
0fda022559b4e821f3071948ec45bccd51374b1a
|
Nothing....
|
Ojimi/Hifu-Lora-Example
|
[
"license:creativeml-openrail-m",
"region:us"
] |
2023-03-05T14:22:33+00:00
|
{"license": "creativeml-openrail-m"}
|
2023-03-05T14:26:43+00:00
|
4b1c1ccf212702db4b68c10b8ecc1b68ea88ad7d
|
# Dataset Card for "dreambooth-hackathon-images"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Volodymyr/dreambooth-hackathon-images
|
[
"region:us"
] |
2023-03-05T14:38:11+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "pixel_values", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 62824895.0, "num_examples": 84}], "download_size": 62830151, "dataset_size": 62824895.0}}
|
2023-03-05T14:38:21+00:00
|
188e1346c7e106df573a8fa9d7fc3931db491435
|
# Dataset Card for "test_push_dataset_split_exists_main"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
polinaeterna/test_push_dataset_split_exists_main
|
[
"region:us"
] |
2023-03-05T14:48:01+00:00
|
{"dataset_info": {"features": [{"name": "x", "dtype": "int64"}, {"name": "y", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 320, "num_examples": 20}], "download_size": 1469, "dataset_size": 320}}
|
2023-03-05T14:48:51+00:00
|
a9f15ac8585d29a36d5b5d851e9556519cc33d33
|
# Dataset Card for "test_push_dataset_split_exists_main2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
polinaeterna/test_push_dataset_split_exists_main2
|
[
"region:us"
] |
2023-03-05T14:54:09+00:00
|
{"dataset_info": {"features": [{"name": "x", "dtype": "int64"}, {"name": "y", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 320, "num_examples": 20}, {"name": "random", "num_bytes": 640, "num_examples": 40}], "download_size": 3128, "dataset_size": 960}}
|
2023-03-05T14:55:09+00:00
|
8b321a5de4e5f254048838135a72aa588c8b32aa
|
OpenDILabCommunity/fake_browser_state_zoo
|
[
"license:apache-2.0",
"region:us"
] |
2023-03-05T15:19:24+00:00
|
{"license": "apache-2.0"}
|
2023-03-06T07:32:40+00:00
|
|
146ec91014c0b47957a2b158a042ab6d99cd3b29
|
# Dataset Card for "test_push_dataset_infos_json"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
polinaeterna/test_push_dataset_infos_json
|
[
"region:us"
] |
2023-03-05T15:29:38+00:00
|
{"dataset_info": [{"config_name": "default", "features": [{"name": "x", "dtype": "int64"}, {"name": "y", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1600, "num_examples": 100}, {"name": "random", "num_bytes": 3200, "num_examples": 200}], "download_size": 3299, "dataset_size": 4800}, {"config_name": "v2", "features": [{"name": "x", "dtype": "int64"}, {"name": "y", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3200, "num_examples": 200}], "download_size": 0, "dataset_size": 3200}], "configs_kwargs": [{"config_name": "default", "data_dir": "./"}, {"config_name": "v2", "data_dir": "v2"}]}
|
2023-03-05T16:10:16+00:00
|
95f9412e874a061da3f1b4ff9cf8ec74ccdf9e21
|
# Dataset Card for "TreeImageDataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Ru3ll/TreeImageDataset
|
[
"region:us"
] |
2023-03-05T15:44:59+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "test", "1": "train", "2": "val"}}}}], "splits": [{"name": "train", "num_bytes": 1882655120.0, "num_examples": 922}], "download_size": 1882708375, "dataset_size": 1882655120.0}}
|
2023-03-05T15:54:17+00:00
|
2d0e061031c3a701bf2418e347c94d7931287a80
|
# Bengali Abstractive News Summarization (BANS)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:** [BANS PAPER](https://doi.org/10.1007/978-981-33-4673-4_4)
- **Leaderboard:**
- **Point of Contact:** [Prithwiraj Bhattacharjee]([email protected])
### Dataset Summary
Nowadays news or text summarization becomes very popular in the NLP field. Both the extractive and abstractive approaches of summarization are implemented in different languages. A significant amount of data is a primary need for any summarization. For the Bengali language, there are only a few datasets are available. Our dataset is made for Bengali Abstractive News Summarization (BANS) purposes. As abstractive summarization is basically neural network-based it needs more and more data to perform well. So we made a standard Bengali abstractive summarization data crawling from online Bengali news portal bangla.bdnews24.com. We crawled more than 19k articles and summaries and standardized the data.
### Downloading the data
```
from datasets import load_dataset
train = load_dataset("sustcsenlp/bn_news_summarization",split="train")
```
### Dataset Description
| Description | Data Info. |
| ----------- | ----------- |
| Total no of articles | 19096 |
| Total no of summaries | 19096 |
| Maximum no of words in an article | 76 |
| Maximum no of words in a summary | 12 |
| Minimum no of words in an article | 5 |
| Minimum no of words in a summary | 3 |
### Languages
This dataset contains Bangla Text Data.
## Acknowledgement
We would like to thank Shahjalal University of Science and Technology (SUST) research center and SUST NLP research group for their support.
### Citation Information
```
@InProceedings{10.1007/978-981-33-4673-4_4,
author="Bhattacharjee, Prithwiraj
and Mallick, Avi
and Saiful Islam, Md.
and Marium-E-Jannat",
editor="Kaiser, M. Shamim
and Bandyopadhyay, Anirban
and Mahmud, Mufti
and Ray, Kanad",
title="Bengali Abstractive News Summarization (BANS): A Neural Attention Approach",
booktitle="Proceedings of International Conference on Trends in Computational and Cognitive Engineering",
year="2021",
publisher="Springer Singapore",
address="Singapore",
pages="41--51",
abstract="Bhattacharjee, PrithwirajMallick, AviSaiful Islam, Md.Marium-E-JannatAbstractive summarization is the process of generating novel sentences based on the information extracted from the original text document while retaining the context. Due to abstractive summarization's underlying complexities, most of the past research work has been done on the extractive summarization approach. Nevertheless, with the triumph of the sequence-to-sequence (seq2seq) model, abstractive summarization becomes more viable. Although a significant number of notable research has been done in the English language based on abstractive summarization, only a couple of works have been done on Bengali abstractive news summarization (BANS). In this article, we presented a seq2seq based Long Short-Term Memory (LSTM) network model with attention at encoder-decoder. Our proposed system deploys a local attention-based model that produces a long sequence of words with lucid and human-like generated sentences with noteworthy information of the original document. We also prepared a dataset of more than 19 k articles and corresponding human-written summaries collected from bangla.bdnews24.com (https://bangla.bdnews24.com/) which is till now the most extensive dataset for Bengali news document summarization and publicly published in Kaggle (https://www.kaggle.com/prithwirajsust/bengali-news-summarization-dataset) We evaluated our model qualitatively and quantitatively and compared it with other published results. It showed significant improvement in terms of human evaluation scores with state-of-the-art approaches for BANS.",
isbn="978-981-33-4673-4"
}
```
### Contributors
| Name | University |
| ----------- | ----------- |
| Prithwiraj Bhattacharjee | Shahjalal University of Science and Technology |
| Avi Mallick | Shahjalal University of Science and Technology |
| Md. Saiful Islam | Shahjalal University of Science and Technology |
| Marium-E-Jannat | Shahjalal University of Science and Technology |
|
sustcsenlp/bn_news_summarization
|
[
"task_categories:summarization",
"size_categories:1K<n<10K",
"language:bn",
"license:cc0-1.0",
"region:us"
] |
2023-03-05T15:47:29+00:00
|
{"language": ["bn"], "license": "cc0-1.0", "size_categories": ["1K<n<10K"], "task_categories": ["summarization"]}
|
2023-03-05T16:41:32+00:00
|
22d8bd29f65dd4589a646d2b8d2ce59f5ad1d063
|
# Dataset Card for "ema_en"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
bhpardo/ema_en
|
[
"region:us"
] |
2023-03-05T15:58:10+00:00
|
{"dataset_info": {"features": [{"name": "english", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 436742.4575850489, "num_examples": 5479}, {"name": "test", "num_bytes": 109205.5424149511, "num_examples": 1370}], "download_size": 340686, "dataset_size": 545948.0}}
|
2023-03-05T16:26:35+00:00
|
e02de05402edce1f37e0551b92432cb6f90aadf6
|
slumericanBx/x
|
[
"license:creativeml-openrail-m",
"region:us"
] |
2023-03-05T16:02:11+00:00
|
{"license": "creativeml-openrail-m"}
|
2023-03-05T16:02:11+00:00
|
|
f4c030a88bd1d54b0572db80a4709821a0159dfb
|
# Dataset Card for "test_push_dataset_dict_infos_json"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
polinaeterna/test_push_dataset_dict_infos_json
|
[
"region:us"
] |
2023-03-05T16:09:45+00:00
|
{"dataset_info": [{"config_name": "default", "features": [{"name": "x", "dtype": "int64"}, {"name": "y", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1600, "num_examples": 100}, {"name": "random", "num_bytes": 3200, "num_examples": 200}], "download_size": 5578, "dataset_size": 4800}, {"config_name": "v2", "features": [{"name": "x", "dtype": "int64"}, {"name": "y", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3200, "num_examples": 200}, {"name": "random", "num_bytes": 4800, "num_examples": 300}], "download_size": 0, "dataset_size": 8000}], "configs_kwargs": [{"config_name": "default", "data_dir": "./"}, {"config_name": "v2", "data_dir": "v2"}]}
|
2023-03-05T17:25:51+00:00
|
619b827ee4c0275c9eda1d65c751b6b62a33dc21
|
# Dataset Card for "satellite-512-alt"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Shavindra/satellite-512-alt
|
[
"region:us"
] |
2023-03-05T16:10:19+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": "image"}, {"name": "mask_rgb", "dtype": "image"}, {"name": "pixel_values", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 333395732.0, "num_examples": 304}], "download_size": 333272045, "dataset_size": 333395732.0}}
|
2023-03-05T17:08:12+00:00
|
7bebc0e2549b52dc839212245b9bcfac2ee85d7b
|
The COHeN dataset is designed for training and fine-tuning Biblical Hebrew classification models. It consists of 11968 verses from the Hebrew Bible along with labels indicating to which of the four chronological phases of the language each verse belongs. The following verses were chosen to represent each stage:
- Archaic Biblical Hebrew (ABH): Gen 49:2β27; Exod 15:1β18; Num 23:7β10, 18β24; 24:3β9; 15β24; Deut 32:1β43; Deut 33:2β39; Jud 5:2β31; 2 Sam 22:2β51; Psa 18:1β50; 68:2β35 (minus the prose introductions in Exod 15:1; Num 23:7, 18; Num 24:3, 15; Deut 33:2; 2 Sam 22:2; Ps 18:2)
- Classical Biblical Hebrew (CBH): 1 Sam 1:1β31:13; 2 Sam 1:1β22:1; 23:1β24:25; 1 Kgs 1:1β22:53; 2 Kgs 1:1β25:30
- Transitional Biblical Hebrew (TBH): Isa 40:1β54:17; Jer 1:1β10:10; 10:12β42:34; Ezel 1:1β48:35
- Late Biblical Hebrew (LBH): Eccl 1:1β12:14; Esth 1:1β10:3; Dan 1:1β2:4a; Dan 7:29β12:13, Ezra 1:1β4:6; 6:19β7:11; 7:26β10:44; Neh 1:1β13:31; 1 Chr 1:1β9:44; 12:1β40; 15:1β24; 16:7β43; 21:1β29:19; 2 Chr 7:1β3; 14:9β15:7; 17:1β19; 21:12β17; 24:25β22; 26:6β21; 29:3β31:21; 33:10β20; 34:3β7; 36:22β23
Class balance was achieved by oversampling from the three minority classes (ABH, TBH, and LBH).
The script used to generate the COHeN dataset can be found [here](https://github.com/gngpostalsrvc/COHeN/blob/main/input/generate_COHeN_dataset.py).
|
gngpostalsrvc/COHeN
|
[
"license:mit",
"region:us"
] |
2023-03-05T16:18:28+00:00
|
{"license": "mit"}
|
2023-04-09T18:53:08+00:00
|
14cddef0b2c1c0d91f63eebd557a2812a0bdf9fa
|
BrainStormersHakton/iq-wikis
|
[
"license:other",
"region:us"
] |
2023-03-05T18:10:46+00:00
|
{"license": "other"}
|
2023-03-05T18:15:16+00:00
|
|
9c118b80b7169719031a0589d3869615885e2749
|
# Dataset Card for "hh_human_eval"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Dahoas/hh_human_eval
|
[
"region:us"
] |
2023-03-05T18:19:08+00:00
|
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 50908, "num_examples": 100}], "download_size": 30961, "dataset_size": 50908}}
|
2023-03-06T00:10:19+00:00
|
3624189590972ee6154ecbd01cb0b71fddbee7f5
|
# Dataset Card for "babylm_childstories"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Sree1994/babylm_childstories
|
[
"region:us"
] |
2023-03-05T18:33:21+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1464755, "num_examples": 4800}, {"name": "test", "num_bytes": 369959, "num_examples": 1200}], "download_size": 1174215, "dataset_size": 1834714}}
|
2023-03-05T18:33:29+00:00
|
6d0ea3cfec0c556ed11e051e2e38f36d7c6f0e58
|
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
gungangigna/data_set
|
[
"region:us"
] |
2023-03-05T18:36:17+00:00
|
{}
|
2023-03-05T18:40:28+00:00
|
d182636c932e7628d53c74d48122b502b779ceec
|
# Dataset Card for "COMPS"
## Dataset Description
COMPS is a dataset of minimal pair sentences in English that enables the
testing knowledge of concepts and their properties in language models (LMs).
Specifically, it tests the ability of LMs to attribute properties to everyday
concepts, and demonstrate reasoning compatible with property inheritance, where
subordinate concepts inherit the properties of their superordinate (hypernyms).
- **Homepage:** [https://github.com/kanishkamisra/comps/](https://github.com/kanishkamisra/comps/)
- **Repository:** [https://github.com/kanishkamisra/comps/](https://github.com/kanishkamisra/comps/)
- **Paper:** [arxiv](https://arxiv.org/abs/2210.01963)
- **Point of Contact:** [Kanishka Misra] (https://kanishka.website)
### Citation Information
```
@inproceedings{misra-etal-2023-comps,
title = "{COMPS}: Conceptual Minimal Pair Sentences for testing Robust Property Knowledge and its Inheritance in Pre-trained Language Models",
author = "Misra, Kanishka and
Rayz, Julia and
Ettinger, Allyson",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-main.213",
doi = "10.18653/v1/2023.eacl-main.213",
pages = "2928--2949",
abstract = "A characteristic feature of human semantic cognition is its ability to not only store and retrieve the properties of concepts observed through experience, but to also facilitate the inheritance of properties (can breathe) from superordinate concepts (animal) to their subordinates (dog){---}i.e. demonstrate property inheritance. In this paper, we present COMPS, a collection of minimal pair sentences that jointly tests pre-trained language models (PLMs) on their ability to attribute properties to concepts and their ability to demonstrate property inheritance behavior. Analyses of 22 different PLMs on COMPS reveal that they can easily distinguish between concepts on the basis of a property when they are trivially different, but find it relatively difficult when concepts are related on the basis of nuanced knowledge representations. Furthermore, we find that PLMs can show behaviors suggesting successful property inheritance in simple contexts, but fail in the presence of distracting information, which decreases the performance of many models sometimes even below chance. This lack of robustness in demonstrating simple reasoning raises important questions about PLMs{'} capacity to make correct inferences even when they appear to possess the prerequisite knowledge.",
}
```
|
kanishka/comps
|
[
"annotations_creators:expert-generated",
"language_creators:machine-generated",
"multilinguality:monolingual",
"size_categories:10K<n<100K",
"source_datasets:original",
"language:en",
"license:apache-2.0",
"arxiv:2210.01963",
"region:us"
] |
2023-03-05T18:47:23+00:00
|
{"annotations_creators": ["expert-generated"], "language_creators": ["machine-generated"], "language": ["en"], "license": "apache-2.0", "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "pretty_name": "COMPS"}
|
2023-09-16T14:09:24+00:00
|
d07388b056730058bb007cb3a0ad490cfd880c8b
|
Monty555/Anisbook
|
[
"license:openrail",
"region:us"
] |
2023-03-05T18:58:54+00:00
|
{"license": "openrail"}
|
2023-03-05T18:58:54+00:00
|
|
897883867b6cb1059b7a4b44fe2689e6a7944386
|
mohammadnajeeb/concrete_crack_images
|
[
"license:cc-by-4.0",
"region:us"
] |
2023-03-05T19:13:03+00:00
|
{"license": "cc-by-4.0"}
|
2023-03-05T19:14:43+00:00
|
|
57e6e3adf0aa8bfaab2ab5269db11c5fe2997502
|
SummerSigh/prostring
|
[
"license:apache-2.0",
"region:us"
] |
2023-03-05T19:19:54+00:00
|
{"license": "apache-2.0"}
|
2023-03-05T19:23:30+00:00
|
|
3a1d28ee56306a5a7496ffc222435cbc350ad813
|
daviddaubner/misinformation-detection
|
[
"license:unknown",
"region:us"
] |
2023-03-05T19:20:46+00:00
|
{"license": "unknown"}
|
2023-03-09T17:06:23+00:00
|
|
deeb52aca51f0637b56999130effb1cf84b9a7ad
|
Saikeiunn/nva-hinanawi_alpha
|
[
"license:other",
"region:us"
] |
2023-03-05T19:24:28+00:00
|
{"license": "other"}
|
2023-03-05T19:25:41+00:00
|
|
8ae97891ad22af1be38cad1a8a88997bfc8862bd
|
Hi folks,
Here is a collection of data I have scraped or aggregated for most of the stocks in the S&P 500, including popular ones like Apple (AAPL).
It has the following data:
- Daily news articles and sentiments on those articles collected over the last few years.
- All quarterly stock fundamentals (ratios) for 10-20 years.
- Stock price data (daily close) over the last 10-20 years.
Use it however you please for PERSONAL USAGE, but if you do leverage it to make some money; just remember me and thank me in your head :)
---
license: cc-by-nc-4.0
pretty_name: S&P 500 Data (news, ratios, price)
size_categories:
- 100K<n<1M
---
|
pmoe7/SP_500_Stocks_Data-ratios_news_price_10_yrs
|
[
"region:us"
] |
2023-03-05T19:57:04+00:00
|
{}
|
2023-03-05T20:09:32+00:00
|
94b608c9fe8055fb351d90100e578b17aceea61c
|
# Dataset Card for "test_tesis_dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jorgeortizfuentes/test_tesis_dataset
|
[
"region:us"
] |
2023-03-05T19:58:12+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "prediction", "dtype": "null"}, {"name": "prediction_agent", "dtype": "null"}, {"name": "annotation", "list": [{"name": "end", "dtype": "int64"}, {"name": "label", "dtype": "string"}, {"name": "start", "dtype": "int64"}]}, {"name": "annotation_agent", "dtype": "string"}, {"name": "vectors", "dtype": "null"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "dtype": "null"}, {"name": "status", "dtype": "string"}, {"name": "event_timestamp", "dtype": "timestamp[us]"}, {"name": "metrics", "struct": [{"name": "annotated", "struct": [{"name": "mentions", "list": [{"name": "capitalness", "dtype": "string"}, {"name": "chars_length", "dtype": "int64"}, {"name": "density", "dtype": "float64"}, {"name": "label", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "tokens_length", "dtype": "int64"}, {"name": "value", "dtype": "string"}]}, {"name": "tags", "list": [{"name": "tag", "dtype": "string"}, {"name": "value", "dtype": "string"}]}]}, {"name": "predicted", "struct": [{"name": "mentions", "sequence": "null"}, {"name": "tags", "sequence": "null"}]}, {"name": "text_length", "dtype": "int64"}, {"name": "tokens", "list": [{"name": "capitalness", "dtype": "string"}, {"name": "char_end", "dtype": "int64"}, {"name": "char_start", "dtype": "int64"}, {"name": "custom", "dtype": "null"}, {"name": "idx", "dtype": "int64"}, {"name": "length", "dtype": "int64"}, {"name": "score", "dtype": "null"}, {"name": "tag", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "tokens_length", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 139252.8, "num_examples": 44}, {"name": "test", "num_bytes": 34813.2, "num_examples": 11}], "download_size": 101846, "dataset_size": 174066.0}}
|
2023-03-06T03:09:41+00:00
|
bdd0e0c11d142bd5618dac337a994dcbc27cb2fe
|
# Dataset Card for "flores200_packing"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
bri25yu/flores200_packing
|
[
"region:us"
] |
2023-03-05T20:02:09+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int32"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 14963812804.0, "num_examples": 2560000}, {"name": "val", "num_bytes": 3827042, "num_examples": 5000}, {"name": "test", "num_bytes": 7670994, "num_examples": 10000}], "download_size": 5440061492, "dataset_size": 14975310840.0}}
|
2023-03-14T05:32:23+00:00
|
4cf9c7fe36acb958be9d42892d03c1390d6f1d5e
|
# Dataset Card for "clevr-with-depth-full-v2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
erkam/clevr-with-depth-full-v2
|
[
"region:us"
] |
2023-03-05T20:18:46+00:00
|
{"dataset_info": {"features": [{"name": "target_img", "dtype": "image"}, {"name": "source_img", "dtype": "image"}, {"name": "target_obj", "sequence": "int64"}, {"name": "source_obj", "sequence": "int64"}, {"name": "target_box", "sequence": {"sequence": "float32"}}, {"name": "source_box", "sequence": {"sequence": "float32"}}, {"name": "target_depth", "dtype": "image"}, {"name": "source_depth", "dtype": "image"}, {"name": "target_tri", "sequence": {"sequence": "int64"}}, {"name": "source_tri", "sequence": {"sequence": "int64"}}, {"name": "pos_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 43042513.0, "num_examples": 300}, {"name": "val", "num_bytes": 43023361.0, "num_examples": 300}, {"name": "train", "num_bytes": 200465105.0, "num_examples": 1400}], "download_size": 283955264, "dataset_size": 286530979.0}}
|
2023-03-05T20:18:58+00:00
|
668bc5a18254b2e835387bf3919d1cb70ddb5209
|
Dzeniks/fever_3way
|
[
"license:mit",
"region:us"
] |
2023-03-05T20:27:09+00:00
|
{"license": "mit"}
|
2023-03-14T13:01:47+00:00
|
|
c5bcfdb1808aef95004086a62ebe6a2d84fba449
|
Dzeniks/feverous_3way
|
[
"license:mit",
"region:us"
] |
2023-03-05T20:28:33+00:00
|
{"license": "mit"}
|
2023-03-05T20:29:51+00:00
|
|
8cacc890b6a6bb80e163bab3bdb67db147df58c9
|
# Hover Dataset
The Hover dataset is a collection of labeled examples for many-hop fact extraction and claim verification tasks. It contains claims, with each claim labeled as either "Supports" or "Refutes". The dataset was created by Yichen Jiang, Shikha Bordia, Zheng Zhong, Charles Dognin, Maneesh Singh, and Mohit Bansal, and was presented in their paper "HoVer: A Dataset for Many-Hop Fact Extraction and Claim Verification" at the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) [Hover page](https://hover-nlp.github.io/).
## Format
The Hover dataset is formatted as a TSV file, with each line containing the following fields:
- **Claim:** The text of the claim to be verified.
- **Label:** The label for the claim, either "0" for "Supports" or "1" for "Refutes".
- **Explanation:** A sentence or phrase explaining why the claim is labeled as such.
- **Evidence:** Evidence supporting or refuting the claim, if available. This may be a URL or a short text snippet.
|
Dzeniks/hover
|
[
"task_categories:text-classification",
"license:mit",
"region:us"
] |
2023-03-05T20:34:48+00:00
|
{"license": "mit", "task_categories": ["text-classification"]}
|
2023-05-04T15:59:13+00:00
|
a59d816c57fd1cbb1e8f40cfc2abcbf1464e25c4
|
# Dataset Card for "cnn_dailymail_ngrams_1_to_5"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
whu9/cnn_dailymail_ngrams_1_to_5
|
[
"region:us"
] |
2023-03-05T21:15:14+00:00
|
{"dataset_info": {"features": [{"name": "cnn_dailymail_ngrams_1_to_5", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10483993441, "num_examples": 379567626}], "download_size": 5675144305, "dataset_size": 10483993441}}
|
2023-03-05T21:18:41+00:00
|
312ef489ebd64f9bf66b75f6d6ae55a3cdd4a380
|
# Dataset Card for "baby_names"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jbrazzy/baby_names
|
[
"region:us"
] |
2023-03-06T00:45:34+00:00
|
{"dataset_info": {"features": [{"name": "Names", "dtype": "string"}, {"name": "Sex", "dtype": "string"}, {"name": "Count", "dtype": "int64"}, {"name": "Year", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 33860482, "num_examples": 1084385}, {"name": "test", "num_bytes": 8482889, "num_examples": 271663}], "download_size": 13301020, "dataset_size": 42343371}}
|
2023-03-06T00:45:44+00:00
|
9062568da9c6383c09193f3aa1f3c48dca925c5f
|
# Toxic Spans
TOXICSPANS contains the 11,035 posts we annotated for toxic spans. The unique posts are actually 11,006, since a few were duplicates and were removed in subsequent experiments. A few other posts were used as quiz questions to check the reliability of candidate annotators and were also discarded in subsequent experiments.
original data from https://github.com/ipavlopoulos/toxic_spans/tree/master/ACL2022
- 10006 train set
- 1000 test set
## Columns
- probability = a dict with the first and the last character offsets of each token (that was rated by at least one annotator as toxic) as a key, and the average toxicity as a value
- position = the character offsets of all the toxic spans(avg toxicity > 50%) found by the annotators (ground truth)
- text = the average toxicity of each token that was rated by at least one annotator as toxic
- type = the type of toxicity of each toxic span
- support = the number of annotators per post
- text_of_post = the text of the post
- position_probability = the average toxicity of each character offset that was found by at least one annotator as toxic
- toxic = (Not in original) If the probability of at least 1 token is greather than 0.5
### Sample
```
{
"probability": {
"(5, 11)": 1.0,
"(286, 294)": 0.6666666667,
"(120, 126)": 0.6666666667,
"(350, 356)": 0.6666666667
},
"position": [
5,
6,
7,
8,
9,
10,
120,
121,
122,
123,
124,
125,
286,
287,
288,
289,
290,
291,
292,
293,
350,
351,
352,
353,
354,
355
],
"text": {
"stupid": 1.0,
"ignorant": 0.6666666667,
"Stupid": 0.6666666667
},
"type": {
"profane\/obscene": 0.3333333333,
"insult": 0.6666666667
},
"support": 3,
"text_of_post": "Yes, stupid on steroids does afflict the nation. The biggest problem, of course, is they either don't see themselves as stupid, or are so proud of the fact they are they have no intention of remedying the situation. In fact, that's the definition of stupid in my book: You know you're ignorant, proud of it, and have no intention of alleviating it. Stupid. \n\nI wonder how they'd like their doctors to say to them \"Oh, I didn't go to medical school; that's for elites. The need for a formal education is fake news. I studied at home for a couple of years and got an alternative medical education. Trust me, I'm as good a doctor as any. Now, when did you want to schedule that surgery?\" I wonder how they'd like an unlicensed pilot in charge of getting them from point A to Point B? \n\nI think they're all just lazy. They want all the benefits of an education, but don't want to put in the time.",
"position_probability": {
"5": 1.0,
"6": 1.0,
"7": 1.0,
"8": 1.0,
"9": 1.0,
"10": 1.0,
"286": 0.6666666667,
"287": 0.6666666667,
"288": 0.6666666667,
"289": 0.6666666667,
"290": 0.6666666667,
"291": 0.6666666667,
"292": 0.6666666667,
"293": 0.6666666667,
"120": 0.6666666667,
"121": 0.6666666667,
"122": 0.6666666667,
"123": 0.6666666667,
"124": 0.6666666667,
"125": 0.6666666667,
"350": 0.6666666667,
"351": 0.6666666667,
"352": 0.6666666667,
"353": 0.6666666667,
"354": 0.6666666667,
"355": 0.6666666667
},
"toxic": true
}
```
|
heegyu/toxic-spans
|
[
"license:cc0-1.0",
"region:us"
] |
2023-03-06T00:53:50+00:00
|
{"license": "cc0-1.0"}
|
2023-03-06T02:01:17+00:00
|
915f1f82f3f10a07e88e5ad5c7604be976b871d9
|
# AutoTrain Dataset for project: cylonix_summarize
## Dataset Description
This dataset has been automatically processed by AutoTrain for project cylonix_summarize.
### Languages
The BCP-47 code for the dataset's language is unk.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"text": "CAPE TOWN (Reuters) - Two men were injured in a drive-by shooting at South Africa s Cape Town International Airport, police said on Wednesday. Operations at the airport, the second busiest in the country and a tourism hub, were not affected, police spokesman Vish Naidoo said, adding the motive for the shooting was unknown. The airport is Africa s third busiest and handles around 10 million passengers a year, including tourists and businesspeople commuting to the economic hub Johannesburg. A man, about 50 years of age, was shot in a drive-by shooting and in the process a bystander, a 30-year-old man, was also hit, Naidoo said. The shooting took place in the early morning in a public area some distance from the airport s security gates, Naidoo said. Flights had not been affected, the airport s general manager Deon Cloete said in a statement. The shooting scene has been cordoned off while investigations continue, Cloete said. Local media reported that the shooting was gang-related, but Naidoo could not confirm that was the motive. ",
"target": "Two injured in shooting at South Africa's Cape Town airport"
},
{
"text": "WASHINGTON (Reuters) - The chairman of a U.S. Senate cyber security subcommittee said on Friday he planned to introduce sanctions legislation over \u201cRussia\u2019s cyber criminals\u201d after Washington accused Russia of political cyber attacks ahead of the Nov. 8 presidential election. Republican Senator Cory Gardner said his legislation would require the Obama administration to investigate those who have engaged in significant actions undermining cyber security and aggressively pursue sanctions when appropriate. Gardner is chairman of the Senate Foreign Relations Subcommittee on East Asia, the Pacific and International Cybersecurity. ",
"target": "U.S. lawmaker wants cyber sanctions on Russia after hacking charges"
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"text": "Value(dtype='string', id=None)",
"target": "Value(dtype='string', id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 37 |
| valid | 10 |
|
KoddaDuck/autotrain-data-cylonix_summarize
|
[
"task_categories:summarization",
"region:us"
] |
2023-03-06T01:51:20+00:00
|
{"task_categories": ["summarization"]}
|
2023-03-06T01:53:23+00:00
|
64d0b9ff8f63828d21b26c89daab16dafc129006
|
# Dataset Card for "hh_prompted_human_eval"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Dahoas/hh_prompted_human_eval
|
[
"region:us"
] |
2023-03-06T01:52:30+00:00
|
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 48004, "num_examples": 100}], "download_size": 30531, "dataset_size": 48004}}
|
2023-03-06T01:52:38+00:00
|
65642e4c736ba4a7afdbcdd0493c3995d53a8d5e
|
# AutoTrain Dataset for project: size
## Dataset Description
This dataset has been automatically processed by AutoTrain for project size.
### Languages
The BCP-47 code for the dataset's language is unk.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"image": "<990x990 RGB PIL image>",
"target": 0
},
{
"image": "<966x990 RGB PIL image>",
"target": 0
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"image": "Image(decode=True, id=None)",
"target": "ClassLabel(names=['Large', 'Medium', 'Mosaic', 'Small'], id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 212 |
| valid | 54 |
|
kkar0/autotrain-data-size
|
[
"task_categories:image-classification",
"region:us"
] |
2023-03-06T02:15:12+00:00
|
{"task_categories": ["image-classification"]}
|
2023-03-06T02:17:14+00:00
|
7dc70e44431b026015ece3e179e211157a211ecc
|
jarrydmartinx/recount3-RNA-seq
|
[
"license:gpl",
"region:us"
] |
2023-03-06T02:29:26+00:00
|
{"license": "gpl"}
|
2023-03-17T03:08:38+00:00
|
|
4792ceabd05b7098ee083a0dfb5380e9e9441b72
|
---
dataset_info:
- config_name: train
features:
- name: filename
dtype: string
- name: height
dtype: int64
- name: width
dtype: int64
- name: ann
struct:
- name: bboxes
sequence:
sequence: float64
- name: bboxes_ignore
sequence:
sequence: int64
- name: label_ignore
sequence: int64
- name: labels
sequence: int64
splits:
- name: train
num_bytes: 211748
num_examples: 500
download_size: 89624346
dataset_size: 211748
- config_name: val
features:
- name: filename
dtype: string
- name: height
dtype: int64
- name: width
dtype: int64
- name: ann
struct:
- name: bboxes
sequence:
sequence: float64
- name: bboxes_ignore
sequence:
sequence: int64
- name: label_ignore
sequence: int64
- name: labels
sequence: int64
splits:
- name: val
num_bytes: 209868
num_examples: 500
download_size: 82654443
dataset_size: 209868
---
|
WuWenc/tiny_coco
|
[
"license:apache-2.0",
"region:us"
] |
2023-03-06T03:13:30+00:00
|
{"license": "apache-2.0"}
|
2023-03-07T08:08:42+00:00
|
74a1a0fe49f309f10d319c26d97fdabda8787540
|
# Movie Review Data
* Original source: sentence polarity dataset v1.0 http://www.cs.cornell.edu/people/pabo/movie-review-data/
* Seems to same as https://huggingface.co/datasets/rotten_tomatoes, but different split.
## Original README
=======
Introduction
This README v1.0 (June, 2005) for the v1.0 sentence polarity dataset comes
from the URL
http://www.cs.cornell.edu/people/pabo/movie-review-data .
=======
Citation Info
This data was first used in Bo Pang and Lillian Lee,
``Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales.'', Proceedings of the ACL, 2005.
@InProceedings{Pang+Lee:05a,
author = {Bo Pang and Lillian Lee},
title = {Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales},
booktitle = {Proceedings of the ACL},
year = 2005
}
=======
Data Format Summary
- rt-polaritydata.tar.gz: contains this readme and two data files that
were used in the experiments described in Pang/Lee ACL 2005.
Specifically:
* rt-polarity.pos contains 5331 positive snippets
* rt-polarity.neg contains 5331 negative snippets
Each line in these two files corresponds to a single snippet (usually
containing roughly one single sentence); all snippets are down-cased.
The snippets were labeled automatically, as described below (see
section "Label Decision").
Note: The original source files from which the data in
rt-polaritydata.tar.gz was derived can be found in the subjective
part (Rotten Tomatoes pages) of subjectivity_html.tar.gz (released
with subjectivity dataset v1.0).
=======
Label Decision
We assumed snippets (from Rotten Tomatoes webpages) for reviews marked with
``fresh'' are positive, and those for reviews marked with ``rotten'' are
negative.
## Preprocessing
To make csv with text and label field, we use the following script.
```python3
import csv
import random
# NOTE: The encoding of original file is "latin_1". We will change it to "utf8".
with open("rt-polarity.pos", encoding="latin_1") as f:
texts_pos = [line.strip() for line in f]
with open("rt-polarity.neg", encoding="latin_1") as f:
texts_neg = [line.strip() for line in f]
rows_pos = [{"text": text, "label": 1} for text in texts_pos]
rows_neg = [{"text": text, "label": 0} for text in texts_pos]
# NOTE: For fair validation, we split it into train and test. Also, for the research who wants to use different setting, we provide whole setting.
# NOTE: We follow the split setting in LM-BFF paper.
rows_whole = rows_pos + rows_neg
random.Random(42).shuffle(rows_whole)
rows_test, rows_train = rows_whole[:2000], rows_whole[2000:]
with open("whole.csv", "w", encoding="utf8") as f:
writer = csv.DictWriter(f, fieldnames=["text", "label"])
writer.writerows(rows_train)
with open("train.csv", "w", encoding="utf8") as f:
writer = csv.DictWriter(f, fieldnames=["text", "label"])
writer.writerows(rows_train)
with open("test.csv", "w", encoding="utf8") as f:
writer = csv.DictWriter(f, fieldnames=["text", "label"])
writer.writerows(rows_test)
```
|
sh0416/mr
|
[
"task_categories:text-classification",
"language:en",
"region:us"
] |
2023-03-06T03:37:19+00:00
|
{"language": ["en"], "task_categories": ["text-classification"]}
|
2023-03-06T04:33:25+00:00
|
51a2c285267db66f70abcf157971e9e91f63b043
|
# Dataset Card for "arab-txt-2-img"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Ahmed007/arab-txt-2-img
|
[
"region:us"
] |
2023-03-06T03:43:36+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5513073754.525, "num_examples": 40455}], "download_size": 1121014430, "dataset_size": 5513073754.525}}
|
2023-03-06T03:44:24+00:00
|
0f9db9bc8ff13e6a0bb82a7e27dba27a6383c4ff
|
amla/EthiPic
|
[
"license:openrail++",
"region:us"
] |
2023-03-06T03:53:26+00:00
|
{"license": "openrail++"}
|
2023-03-06T03:53:26+00:00
|
|
e84f1643eae6fb681a1df7123a4919de79782db9
|
# UIT-ViQuAD v2
- Source:
- Num examples:
- 19,238 (train)
- 9,714 (validation)
- Language: Vietnamese
```python
from datasets import load_dataset
load_dataset("tdtunlp/uit_viquad_vi")
```
- Format for QA task
```python
def preprocess(sample):
question = sample['question']
answer = sample['answer']
return {'text': f'<|startoftext|><|question|>{question}<|answer|>{answer}<|endoftext|>'}
"""
<|startoftext|><|question|>TΓͺn gα»i nΓ o Δược PhαΊ‘m VΔn Δα»ng sα» dα»₯ng khi lΓ m PhΓ³ chα»§ nhiα»m cΖ‘ quan Biα»n sα»± xα»© tαΊ‘i QuαΊΏ LΓ’m?<|answer|>TΓͺn gα»i mΓ PhαΊ‘m VΔn Δα»ng sα» dα»₯ng khi lΓ m PhΓ³ chα»§ nhiα»m cΖ‘ quan Biα»n sα»± xα»© tαΊ‘i QuαΊΏ LΓ’m lΓ LΓ’m BΓ‘ Kiα»t.<|endoftext|>
"""
```
|
vietgpt-archive/uit_viquad_vi
|
[
"task_categories:question-answering",
"size_categories:10K<n<100K",
"language:vi",
"LM",
"region:us"
] |
2023-03-06T03:54:14+00:00
|
{"language": ["vi"], "size_categories": ["10K<n<100K"], "task_categories": ["question-answering"], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "short_answer", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11582141.90997921, "num_examples": 19238}, {"name": "validation", "num_bytes": 5762392, "num_examples": 9714}], "download_size": 5378187, "dataset_size": 17344533.90997921}, "tags": ["LM"]}
|
2023-05-31T10:56:03+00:00
|
5862e54e776fa588ed74f83665ffb856af72b64f
|
simple chinese
put in localizations
|
benzhuo/chinese
|
[
"region:us"
] |
2023-03-06T05:07:02+00:00
|
{}
|
2023-03-07T05:35:54+00:00
|
c6ba4f7cb50785b9333e59d0cfd8cb3b9dc2cb18
|
SKyu/2019_2020data
|
[
"size_categories:10K<n<100K",
"language:en",
"language:ko",
"license:cc-by-nc-sa-4.0",
"region:us"
] |
2023-03-06T05:36:57+00:00
|
{"language": ["en", "ko"], "license": "cc-by-nc-sa-4.0", "size_categories": ["10K<n<100K"], "pretty_name": "architecture data set 2019-2020"}
|
2023-03-06T05:37:53+00:00
|
|
b4f6d18bdca0af83ad5931c341acca6902d832af
|
# Dataset Card for "dys_train"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
LightFury9/dys_train
|
[
"region:us"
] |
2023-03-06T06:39:29+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "text_label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 480013795.2, "num_examples": 5600}], "download_size": 429982174, "dataset_size": 480013795.2}}
|
2023-03-06T06:40:27+00:00
|
e30d4e0cbd65d10b977f66185114533bc2a1a3a4
|
# Dataset Card for "reklamation24_haus-reinigung"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fathyshalab/reklamation24_haus-reinigung
|
[
"region:us"
] |
2023-03-06T08:15:31+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "label_name", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 233372, "num_examples": 466}, {"name": "test", "num_bytes": 63354, "num_examples": 117}], "download_size": 0, "dataset_size": 296726}}
|
2023-04-19T07:39:26+00:00
|
5cc2f66e60ec2304466766d37017798e80e0c86d
|
# Dataset Card for "hack5-rawIQ"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
dsupa/hack5-rawIQ
|
[
"region:us"
] |
2023-03-06T09:13:05+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "0", "1": "1", "2": "2", "3": "3", "4": "4", "5": "5", "6": "6"}}}}], "splits": [{"name": "train", "num_bytes": 2838470.0, "num_examples": 647}], "download_size": 30442, "dataset_size": 2838470.0}}
|
2023-03-06T09:13:07+00:00
|
17fb0b6648ba41e12ef94afb95b142b22f040c96
|
# Dataset Card for "cnn_daily_mail_nor_final"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
navjordj/cnn_daily_mail_nor_final
|
[
"region:us"
] |
2023-03-06T09:28:41+00:00
|
{"dataset_info": {"features": [{"name": "article", "dtype": "string"}, {"name": "highlights", "dtype": "string"}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 192449381.25865006, "num_examples": 47171}, {"name": "validation", "num_bytes": 14487455.276535718, "num_examples": 3551}, {"name": "test", "num_bytes": 22993888.464814223, "num_examples": 5636}], "download_size": 146363858, "dataset_size": 229930725.0}}
|
2023-03-06T09:29:13+00:00
|
0aaee90c6f21192643fd2a68fbe3de8e87bcf7d4
|
# Dataset Card for "cnn_daily_mail_nor_final"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jkorsvik/cnn_daily_mail_nor_final
|
[
"region:us"
] |
2023-03-06T09:34:10+00:00
|
{"dataset_info": {"features": [{"name": "article", "dtype": "string"}, {"name": "highlights", "dtype": "string"}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 192449381.25865006, "num_examples": 47171}, {"name": "validation", "num_bytes": 14487455.276535718, "num_examples": 3551}, {"name": "test", "num_bytes": 22993888.464814223, "num_examples": 5636}], "download_size": 146363858, "dataset_size": 229930725.0}}
|
2023-03-06T09:34:33+00:00
|
771aec3493a0a5d78ba98977ad0fec34436ece86
|
# Dataset Card for "math-qa-classification"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
rootacess/math-qa-classification
|
[
"region:us"
] |
2023-03-06T10:19:33+00:00
|
{"dataset_info": {"features": [{"name": "Problem", "dtype": "string"}, {"name": "category", "dtype": {"class_label": {"names": {"0": "general", "1": "physics", "2": "gain", "3": "geometry", "4": "probability", "5": "other"}}}}], "splits": [{"name": "test", "num_bytes": 537186, "num_examples": 2985}, {"name": "train", "num_bytes": 5370736, "num_examples": 29837}, {"name": "validation", "num_bytes": 802226, "num_examples": 4475}], "download_size": 3557830, "dataset_size": 6710148}}
|
2023-03-06T12:25:04+00:00
|
1b6213ee94ece32ac458cf1ae5a34753466fd999
|
# Dataset Card for "reklambox2-cleaned"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fathyshalab/reklambox2-cleaned
|
[
"region:us"
] |
2023-03-06T10:36:56+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "filename", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "label_name", "dtype": "int64"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 635342.199146515, "num_examples": 1124}, {"name": "test", "num_bytes": 159400.80085348507, "num_examples": 282}], "download_size": 446755, "dataset_size": 794743.0}}
|
2023-03-10T15:19:03+00:00
|
62bee783b00574fce9587eeb8e82d227b8631489
|
# Dataset Card for "reklambox3-cleaned"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fathyshalab/reklambox3-cleaned
|
[
"region:us"
] |
2023-03-06T11:18:23+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 550071.8254750175, "num_examples": 1136}, {"name": "test", "num_bytes": 138002.1745249824, "num_examples": 285}], "download_size": 424497, "dataset_size": 688074.0}}
|
2023-03-06T11:18:34+00:00
|
b76362e3cd15e044d52286c3e41cd67784f6e404
|
# Dataset Card for "rk1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fathyshalab/rk1
|
[
"region:us"
] |
2023-03-06T11:20:52+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 544223.8520625889, "num_examples": 1124}, {"name": "test", "num_bytes": 136540.1479374111, "num_examples": 282}], "download_size": 420690, "dataset_size": 680764.0}}
|
2023-03-15T13:59:49+00:00
|
54fe31aa9aad8c800753611b503217a227bc4fd9
|
# Dataset Card for "PickaPic-rankings-6-3-2023"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
yuvalkirstain/PickaPic-rankings-6-3-2023
|
[
"region:us"
] |
2023-03-06T12:20:35+00:00
|
{"dataset_info": {"features": [{"name": "ranking_id", "dtype": "int64"}, {"name": "created_at", "dtype": "timestamp[ns]"}, {"name": "user_id", "dtype": "int64"}, {"name": "image_1_uid", "dtype": "string"}, {"name": "image_2_uid", "dtype": "string"}, {"name": "image_3_uid", "dtype": "null"}, {"name": "image_4_uid", "dtype": "null"}, {"name": "best_image_uid", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 16312020, "num_examples": 71457}], "download_size": 5911046, "dataset_size": 16312020}}
|
2023-03-07T08:43:52+00:00
|
0a1f89ac17122ed3d46846af32d094b21f7d8c77
|
# Dataset Card for "PickaPic-images-6-3-2023"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
yuvalkirstain/PickaPic-images-6-3-2023
|
[
"region:us"
] |
2023-03-06T12:21:02+00:00
|
{"dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "created_at", "dtype": "timestamp[ns]"}, {"name": "image_uid", "dtype": "string"}, {"name": "user_id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "negative_prompt", "dtype": "string"}, {"name": "seed", "dtype": "int64"}, {"name": "gs", "dtype": "float64"}, {"name": "steps", "dtype": "int64"}, {"name": "idx", "dtype": "int64"}, {"name": "num_generated", "dtype": "int64"}, {"name": "scheduler_cls", "dtype": "string"}, {"name": "model_id", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 53236259, "num_examples": 86985}], "download_size": 10063363, "dataset_size": 53236259}}
|
2023-03-07T08:44:44+00:00
|
241dee5894bab9d22448e38fa18bd7b5909011dc
|
ritik1234/embeddings
|
[
"license:openrail",
"region:us"
] |
2023-03-06T12:21:54+00:00
|
{"license": "openrail"}
|
2023-03-06T12:23:44+00:00
|
|
3284227f873d87288aac1d595bd66713711cab5c
|
shivi/sample_dataset
|
[
"license:creativeml-openrail-m",
"region:us"
] |
2023-03-06T12:28:54+00:00
|
{"license": "creativeml-openrail-m"}
|
2023-03-06T12:31:25+00:00
|
|
6d7ad963c3b196f11a08920ab0b040aae43ab5e5
|
# Dataset Card for "memo"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
yemen2016/memo
|
[
"region:us"
] |
2023-03-06T12:42:09+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 298952996, "num_examples": 3203876}], "download_size": 189354351, "dataset_size": 298952996}}
|
2023-04-25T09:53:14+00:00
|
e6f0b773ac5666451307564178c398a8c46064f6
|
# Dataset Card for "UA_Speech"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Akshay-Sai/UA_Speech
|
[
"region:us"
] |
2023-03-06T12:44:10+00:00
|
{"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 5378040000, "num_examples": 5600}], "download_size": 737238219, "dataset_size": 5378040000}}
|
2023-03-06T12:45:09+00:00
|
bf30c53bfa48042419a70b692593cc9d7d13fb83
|
# Dataset Card for "memo1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
yemen2016/memo1
|
[
"region:us"
] |
2023-03-06T12:44:59+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 269063328, "num_examples": 2883488}], "download_size": 186337044, "dataset_size": 269063328}}
|
2023-03-06T12:45:15+00:00
|
df7a07ca1ba3e96973d8d847e9a44dfb9fb79ea9
|
joefox/newstest-2017-2019-ru_zh
|
[
"license:apache-2.0",
"region:us"
] |
2023-03-06T12:45:44+00:00
|
{"license": "apache-2.0"}
|
2023-03-06T12:47:44+00:00
|
|
b961b7f9026ecc039860201b5ce68e13c7b376bd
|
# Dataset Card for "UA_Speech"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
AravindVadlapudi02/UA_Speech
|
[
"region:us"
] |
2023-03-06T12:52:29+00:00
|
{"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 4609752000, "num_examples": 4800}, {"name": "test", "num_bytes": 768288000, "num_examples": 800}], "download_size": 736678488, "dataset_size": 5378040000}}
|
2023-03-06T12:55:11+00:00
|
6fe3ce43b0f9402708887a94837d37046d601ae5
|
JackBAI/chatgpt-woi-finetune
|
[
"license:mit",
"region:us"
] |
2023-03-06T12:55:25+00:00
|
{"license": "mit"}
|
2023-03-07T02:43:26+00:00
|
|
1d4eea9eba1d886a99ebb8665e087f78e083f5ca
|
# Dataset Card for "reklamation24_wasser-strom-gas"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fathyshalab/reklamation24_wasser-strom-gas
|
[
"region:us"
] |
2023-03-06T13:29:11+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "label_name", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 221722, "num_examples": 433}, {"name": "test", "num_bytes": 54894, "num_examples": 109}], "download_size": 0, "dataset_size": 276616}}
|
2023-04-19T07:38:23+00:00
|
8d9d3fece6e3dfc61dd817f12d3c838fa503a25f
|
# Dataset Card for "push_default"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
polinaeterna/push_default
|
[
"region:us"
] |
2023-03-06T13:30:39+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "test", "1": "train"}}}}], "splits": [{"name": "train", "num_bytes": 645457.0, "num_examples": 2}, {"name": "test", "num_bytes": 281491.0, "num_examples": 1}], "download_size": 909476, "dataset_size": 926948.0}, "configs_kwargs": {"data_dir": "./"}}
|
2023-03-06T13:30:48+00:00
|
afd33fcd5db1b73dc1799ee72310a057e8c78f20
|
# Dataset Card for "reklamation24_haus-reinigung-full"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fathyshalab/reklamation24_haus-reinigung-full
|
[
"task_categories:text-classification",
"language:de",
"region:us"
] |
2023-03-06T13:33:34+00:00
|
{"language": ["de"], "task_categories": ["text-classification"], "dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "inputs", "struct": [{"name": "text", "dtype": "string"}]}, {"name": "prediction", "list": [{"name": "label", "dtype": "string"}, {"name": "score", "dtype": "float64"}]}, {"name": "prediction_agent", "dtype": "string"}, {"name": "annotation", "dtype": "string"}, {"name": "annotation_agent", "dtype": "string"}, {"name": "vectors", "struct": [{"name": "mini-lm-sentence-transformers", "sequence": "float64"}]}, {"name": "multi_label", "dtype": "bool"}, {"name": "explanation", "dtype": "null"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "dtype": "null"}, {"name": "status", "dtype": "string"}, {"name": "event_timestamp", "dtype": "timestamp[us]"}, {"name": "metrics", "struct": [{"name": "text_length", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 23403712, "num_examples": 4499}], "download_size": 0, "dataset_size": 23403712}}
|
2023-05-15T07:43:54+00:00
|
37184f46348a8fa84eaf66482fbbb94af54d52c9
|
# Dataset Card for "reklamation24_wasser-strom-gas-full"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fathyshalab/reklamation24_wasser-strom-gas-full
|
[
"region:us"
] |
2023-03-06T13:34:19+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "inputs", "struct": [{"name": "text", "dtype": "string"}]}, {"name": "prediction", "list": [{"name": "label", "dtype": "string"}, {"name": "score", "dtype": "float64"}]}, {"name": "prediction_agent", "dtype": "string"}, {"name": "annotation", "dtype": "string"}, {"name": "annotation_agent", "dtype": "string"}, {"name": "vectors", "struct": [{"name": "mini-lm-sentence-transformers", "sequence": "float64"}]}, {"name": "multi_label", "dtype": "bool"}, {"name": "explanation", "dtype": "null"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "dtype": "null"}, {"name": "status", "dtype": "string"}, {"name": "event_timestamp", "dtype": "timestamp[us]"}, {"name": "metrics", "struct": [{"name": "text_length", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 19400136, "num_examples": 3322}], "download_size": 0, "dataset_size": 19400136}}
|
2023-04-25T13:17:28+00:00
|
589b93f87b48c672d5f0d65aca1ea3d328181172
|
milkist/milky-set
|
[
"license:other",
"region:us"
] |
2023-03-06T13:58:37+00:00
|
{"license": "other"}
|
2023-03-06T16:17:19+00:00
|
|
6db8a847ab22db6c293f90ca414be9f6b8dabc69
|
# Dataset Card for "push"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
polinaeterna/push
|
[
"region:us"
] |
2023-03-06T14:05:16+00:00
|
{"dataset_info": [{"config_name": "custom", "features": [{"name": "x", "dtype": "int64"}, {"name": "y", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3200, "num_examples": 200}, {"name": "test", "num_bytes": 4800, "num_examples": 300}], "download_size": 7682, "dataset_size": 8000}, {"config_name": "default", "features": [{"name": "x", "dtype": "int64"}, {"name": "y", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1600, "num_examples": 100}, {"name": "test", "num_bytes": 3200, "num_examples": 200}], "download_size": 5578, "dataset_size": 4800}], "configs_kwargs": [{"config_name": "custom", "data_dir": "custom"}, {"config_name": "default", "data_dir": "./"}]}
|
2023-03-06T14:06:30+00:00
|
daea1a6c5a830d135e3bd8335f591e4edd473dee
|
# Dataset Card for "programming-languages-keywords"
Structured version of https://github.com/e3b0c442/keywords
Generated using:
```python
r = requests.get("https://raw.githubusercontent.com/e3b0c442/keywords/main/README.md")
keywords = r.text.split("### ")[1:]
keywords = [i for i in keywords if not i.startswith("Sources")]
keywords = {i.split("\n")[0]:[j for j in re.findall("[a-zA-Z]*", i.split("\n",1)[1]) if j] for i in keywords}
keywords = pd.DataFrame(pd.Series(keywords)).reset_index().rename(columns={"index":"language", 0:"keywords"})
keywords['language'] = keywords['language'].str.split("\) ").str[0]
keywords['keywords'] = keywords['keywords'].apply(lambda x: sorted(list(set(x))))
ds = Dataset.from_pandas(keywords)
```
|
bigcode/programming-languages-keywords
|
[
"region:us"
] |
2023-03-06T14:13:23+00:00
|
{"dataset_info": {"features": [{"name": "language", "dtype": "string"}, {"name": "keywords", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 20307, "num_examples": 36}], "download_size": 8838, "dataset_size": 20307}}
|
2023-03-06T14:17:24+00:00
|
fbd6e2f5c559e67090b13c0eefbb7dd191918fe9
|
lsr42/msmarco-passage-doct5query
|
[
"license:unknown",
"region:us"
] |
2023-03-06T14:26:04+00:00
|
{"license": "unknown", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "passage", "num_bytes": 16870476814, "num_examples": 8841823}], "download_size": 5773175789, "dataset_size": 16870476814}}
|
2023-03-06T16:51:24+00:00
|
|
565cbc8ab8400a4e797268dabf3e179832fdc38f
|
# xlsum
- Source: https://huggingface.co/datasets/GEM/xlsum
- Num examples:
- 32,108 (train)
- 4,013 (validation)
- 4,013 (test)
- Language: Vietnamese
```python
from datasets import load_dataset
load_dataset("tdtunlp/xlsum_vi")
```
- Format for Summarization task
```python
def preprocess(sample):
title = sample['title']
summary = sample['target']
article = sample['text']
return {'text': f'<|startoftext|><|title|>{title}<|article|>{article}<|summary|>{summary}<|endoftext|>'}
"""
<|startoftext|><|title|>Viα»t Nam ΔΓ£ sαΊ΅n sΓ ng nΓ’ng tαΊ§m Δα»i tΓ‘c chiαΊΏn lược vα»i Mα»Ή?<|article|>Γng Donald Trump vΓ Γ΄ng Nguyα»
n PhΓΊ Trα»ng bαΊ―t tay trΖ°α»c thα»m Thượng Δα»nh Trump-Kim α» HΓ Nα»i hΓ΄m 27/2/2019
VΓ i thΓ‘ng qua ΔΓ£ cΓ³ nhiα»u thαΊ£o luαΊn vα» khαΊ£ nΔng Hoa Kα»³-Viα»t Nam nΓ’ng tαΊ§m mα»i quan hα» tα»« "Δα»i tΓ‘c toΓ n diα»n" lΓͺn thΓ nh "Δα»i tΓ‘c chiαΊΏn lược". DΖ°α»i ΔΓ’y lΓ mα»t sα» nhαΊn Δα»nh tiΓͺu biα»u.
Mα»t sα» quan ngαΊ‘i
Theo Γ΄ng Prashanth Parameswaran, tΓ‘c giαΊ£ bΓ i viαΊΏt hΓ΄m 12/9 trΓͺn The Diplomat, mα»i quan hα» Viα»t Nam - Hoa Kα»³ ΔΓ£ tα»t hΖ‘n nhiα»u so vα»i thα»i chiαΊΏn tranh Viα»t Nam. Hai nΖ°α»c bΓ¬nh thΖ°α»ng hΓ³a quan hα» dΖ°α»i thα»i cα»±u Tα»ng thα»ng Mα»Ή Bill Clinton vΓ tiαΊΏp tα»₯c duy trΓ¬ tα»t dΖ°α»i thα»i Obama. Viα»c nΓ’ng tαΊ§m quan hα» Mα»Ή-Viα»t cΓ³ Γ½ nghΔ©a lα»n vα»i cΓ‘c nhΓ hoαΊ‘ch Δα»nh chΓnh sΓ‘ch cαΊ£ hai nΖ°α»c. NΓ³ phαΊ£n Γ‘nh nα» lα»±c cα»§a Washington trong viα»c mα» rα»ng mαΊ‘ng lΖ°α»i cΓ‘c Δα»ng minh vΓ Δα»i tΓ‘c tαΊ‘i chΓ’u Γ - ThΓ‘i BΓ¬nh DΖ°Ζ‘ng vΓ tαΊ§m quan trα»ng cα»§a Viα»t Nam trong mαΊ‘ng lΖ°α»i nΓ y, Δα»ng thα»i nhαΊ₯n mαΊ‘nh cΖ‘ hα»i vΓ thΓ‘ch thα»©c mΓ HΓ Nα»i phαΊ£i cΓ’n nhαΊ―c.
TQ 'khΓ΄ng vui' vα»i chuyαΊΏn thΔm VN cα»§a USS Carl Vinson?
David Hutt: 'Mα»₯c tiΓͺu thΖ°Ζ‘ng chiαΊΏn kαΊΏ tiαΊΏp cα»§a Trump lΓ VN'
USS Carl Vinson tα»i ΔΓ NαΊ΅ng: 'BΖ°α»c Δi chiαΊΏn lược'
Viα»c Mα»Ή-Viα»t nΓ’ng tαΊ§m quan hα» cΓ³ thα» cΓ³ Γ½ nghΔ©a lα»n hΖ‘n lΓ bαΊ£n thΓ’n mα»i quan hα» nΓ y, ΔαΊ·c biα»t trong bα»i cαΊ£nh Mα»Ή - Trung Quα»c tΔng cΖ°α»ng cαΊ‘nh tranh vα» quyα»n lα»±c trong khu vα»±c chΓ’u Γ-ThΓ‘i BΓ¬nh DΖ°Ζ‘ng vΓ vai trΓ² cα»§a Viα»t Nam trong cΓ‘c vαΊ₯n Δα» nhΖ° Biα»n ΔΓ΄ng - nΖ‘i mΓ Trung Quα»c ngΓ y cΓ ng lαΊ₯n lΖ°α»t vΓ HΓ Nα»i chα»u Γ‘p lα»±c ngΓ y cΓ ng lα»n.
Mα»Ή gαΊ§n ΔΓ’y ΔΓ£ tΔng cΖ°α»ng cΓ‘c hoαΊ‘t Δα»ng hợp tΓ‘c vα»i Viα»t Nam. NΔm 2018, Mα»Ή mang hΓ ng khΓ΄ng mαΊ«u hαΊ‘m USS Carl Vinson tα»i Viα»t Nam. NΔm nay, Chα»§ tα»ch nΖ°α»c, Tα»ng bΓ thΖ° Nguyα»
n PhΓΊ Trα»ng cΕ©ng dα»± kiαΊΏn cΓ³ chuyαΊΏn cΓ΄ng du Mα»Ή vΓ o thΓ‘ng 10/2019. Tuy nhiΓͺn, thα»±c tαΊΏ lΓ Viα»t Nam vΓ Mα»Ή vαΊ«n cΓ³ nhiα»u khΓ‘c biα»t trong nhiα»u lΔ©nh vα»±c, tα»« thα» chαΊΏ tα»i quan Δiα»m vα» nhΓ’n quyα»n. Viα»t Nam vΓ Mα»Ή cΕ©ng cΓ³ khΓ‘c biα»t trong quan Δiα»m Δα»i vα»i vαΊ₯n Δα» thΖ°Ζ‘ng mαΊ‘i hoαΊ·c vαΊ₯n Δα» BαΊ―c HΓ n - Δiα»u khiαΊΏn quan hα» hai nΖ°α»c tα»«ng cΓ³ vαΊ» khΓ³ 'toΓ n diα»n', chα»© chΖ°a nΓ³i ΔαΊΏn 'chiαΊΏn lược'. ChΓnh vΓ¬ thαΊΏ, cΓ‘c cuα»c thαΊ£o luαΊn Δα» nΓ’ng tαΊ§m mα»i quan hα» Mα»Ή - Viα»t cΕ©ng bao gα»m cαΊ£ cΓ‘c quan ngαΊ‘i, Γ΄ng Prashanth Parameswaran bΓ¬nh luαΊn.
CΓ‘c nhΓ hoαΊ‘ch Δα»nh chΓnh sΓ‘ch sαΊ½ cαΊ§n cΓ’n nhαΊ―c cΓ‘c yαΊΏu tα» quan trα»ng nΓ y Δα» tΓnh toΓ‘n Δược mαΊ₯t khi nΓ’ng tαΊ§m mα»i quan hα». ChαΊ³ng hαΊ‘n, khΓ΄ng phαΊ£i ngαΊ«u nhiΓͺn mΓ chΓΊng ta ΔΓ£ thαΊ₯y Viα»t Nam trΓ¬ hoΓ£n mα»t sα» hoαΊ‘t Δα»ng liΓͺn quan ΔαΊΏn quα»c phΓ²ng vα»i Hoa Kα»³ bαΊ₯t chαΊ₯p nhα»―ng lợi Γch cΓ³ thα» thαΊ₯y rΓ΅, vαΊ«n theo tΓ‘c giαΊ£ Prashanth Parameswaran.
CΓ‘c quan ngαΊ‘i nΓ³i trΓͺn khΓ΄ng cΓ³ nghΔ©a Viα»t Nam - Hoa Kα»³ khΓ΄ng mong muα»n hoαΊ·c khΓ΄ng thα» nΓ’ng tαΊ§ng hợp tΓ‘c. NhΖ°ng nΓ³ cΓ³ nghΔ©a rαΊ±ng cαΊ£ Mα»Ή vΓ Viα»t Nam cαΊ§n ΔαΊ£m bαΊ£o rαΊ±ng cΓ‘c vαΊ₯n Δα» thα»±c tαΊΏ giα»―a hai nΖ°α»c phΓΉ hợp vα»i bαΊ₯t cα»© tαΊ§m mα»©c quan hα» nΓ o mΓ hα» lα»±a chα»n. Quan trα»ng nα»―a lΓ , viα»c Δiα»u chα»nh tΓͺn gα»i cα»§a mα»i quan hα» chα» cΓ³ giΓ‘ trα» khi cαΊ£ hai bΓͺn cΓΉng cam kαΊΏt nα» lα»±c Δα» biαΊΏn tiα»m nΔng hợp tΓ‘c thΓ nh sα»± hợp tΓ‘c trΓͺn thα»±c tαΊΏ.
Mα»Ή gα»i tΓn hiα»u 'hα»n hợp'
NhΓ bΓ‘o David Hutt, cΕ©ng vα» Δα» tΓ i nΓ y, trΓͺn Asia Times lαΊ‘i cho rαΊ±ng Mα»Ή gα»i nhα»―ng tΓn hiα»u khΓ΄ng thα»ng nhαΊ₯t ΔαΊΏn Viα»t Nam, nΓ³i nΔm nay, Mα»Ή lΓͺn tiαΊΏng cΓ‘o buα»c Trung Quα»c cΓ³ hΓ nh Δα»ng 'bαΊ―t nαΊ‘t' nΖ°α»c lΓ‘ng giα»ng Viα»t Nam. Mα»Ή cΕ©ng ngα» Γ½ "muα»n cα»§ng cα» mα»i quan hα» quΓ’n sα»± chαΊ·t chαΊ½ hΖ‘n vα»i HΓ Nα»i, mαΊ·c dΓΉ Viα»t Nam vαΊ«n tα» ra thαΊn trα»ng vΓ vαΊ«n duy trΓ¬ cΓ‘c chΓnh sΓ‘ch ngoαΊ‘i giao khΓ΄ng cam kαΊΏt,"
David Hutt cΕ©ng nhαΊ―c tα»i tin Δα»n gαΊ§n ΔΓ’y rαΊ±ng cΓ΄ng ty dαΊ§u khΓ Mα»Ή ExxonMobil Δang tΓ¬m cΓ‘ch rΓΊt dα»± Γ‘n CΓ‘ Voi Xanh trα» giΓ‘ hΓ ng tα»· ΔΓ΄ la khα»i Viα»t Nam, vΓ bΓ¬nh luαΊn rαΊ±ng: NαΊΏu thα»±c sα»± ExxonMobil rΓΊt - cα»© cho lΓ vΓ¬ lΓ½ do tΓ i chΓnh chα»© khΓ΄ng phαΊ£i Δα»a chΓnh trα» - thΓ¬ ΔΓ’y cΕ©ng lΓ mα»t cΓΊ nα»c ao vΓ o mα»i quan hα» Mα»Ή-Viα»t α» giai ΔoαΊ‘n mang tΓnh bΖ°α»c ngoαΊ·t. HΖ‘n bao giα» hαΊΏt, HΓ Nα»i hiα»n Δang tΓ¬m kiαΊΏm cΓ‘c cam kαΊΏt tα»« Washington rαΊ±ng hα» sαΊ½ Δα»©ng vα» phΓa mΓ¬nh trong bαΊ₯t kα»³ cuα»c xung Δα»t cΓ³ vΕ© trang nΓ o vα»i Trung Quα»c trΓͺn Biα»n ΔΓ΄ng.
ThΖ°Ζ‘ng mαΊ‘i: Γng Donald Trump Δe dα»a Viα»t Nam
Kα»³ vα»ng gΓ¬ nαΊΏu chα»§ tα»ch Trα»ng thΔm Hoa Kα»³?
TαΊp trαΊn Mα»Ή-ASEAN: 'Mα»Ή sαΊ½ khΓ΄ng Δα»©ng yΓͺn nαΊΏu TQ tiαΊΏp tα»₯c Γ©p VN'
Mα»Ή, tuy thαΊΏ, Δang gα»i tΓn hiα»u 'hα»n hợp'. Quan hα» Viα»t Nam - Hoa Kα»³ nαΊ£y nα» dΖ°α»i thα»i Tα»ng thα»ng Mα»Ή Donald Trump. Γng Trump ΔΓ£ hai lαΊ§n ΔαΊΏn thΔm Viα»t Nam vΓ hiαΊΏm khi chα» trΓch Δiα»u gΓ¬ vα» ΔαΊ₯t nΖ°α»c Δược coi lΓ vi phαΊ‘m nhΓ’n quyα»n tα»i tα» nhαΊ₯t ΔΓ΄ng Nam Γ nΓ y, vαΊ«n theo David Hutt. NhΖ°ng Γ΄ng Trump, bΓͺn cαΊ‘nh ΔΓ³, lαΊ‘i cΕ©ng rαΊ₯t phiα»n lΓ²ng vα»i viα»c Viα»t Nam trα» thΓ nh nΖ‘i sαΊ£n xuαΊ₯t, xuαΊ₯t khαΊ©u cΓ‘c mαΊ·t hΓ ng Trung Quα»c nαΊ±m trong diα»n bα» Mα»Ή ΔΓ‘nh thuαΊΏ, Δα» trα»n thuαΊΏ. Γng Trump, hα»i thΓ‘ng SΓ‘u ΔΓ£ gα»i Viα»t Nam lΓ nΖ°α»c 'lαΊ‘m dα»₯ng tα»i tα» nhαΊ₯t' trong mα»t cuα»c phα»ng vαΊ₯n truyα»n hΓ¬nh.
Tuy nhiΓͺn, chΓnh quyα»n cα»§a Γ΄ng Trung cΕ©ng lαΊ‘i phαΊ£n α»©ng quyαΊΏt liα»t khi Trung Quα»c mang tΓ u vΓ o khu ΔαΊ·c quyα»n kinh tαΊΏ cα»§a Viα»t Nam tαΊ‘i BΓ£i TΖ° ChΓnh trΓͺn Biα»n ΔΓ΄ng. NgΖ°α»i phΓ‘t ngΓ΄n Bα» NgoαΊ‘i giao Mα»Ή Morgan Ortagus nΓ³i Trung Quα»c ΔΓ£ thα»±c hiα»n mα»t loαΊ‘t cΓ‘c Δα»ng thΓ‘i hung hΔng Δα» can thiα»p cΓ‘c hoαΊ‘t Δα»ng kinh tαΊΏ lΓ’u Δα»i cα»§a Viα»t Nam.
"Viα»t-Mα»Ή ΔΓ£ hợp tΓ‘c chiαΊΏn lược nhiα»u mαΊ·t, trα»« tΓͺn gα»i"
Trong khi ΔΓ³, tΓ‘c giαΊ£ ΔoΓ n XuΓ’n Lα»c viαΊΏt trΓͺn Asia Times, mα»t yαΊΏu tα» quan trα»ng cα»§a chΓnh sΓ‘ch Δα»i ngoαΊ‘i cα»§a HΓ Nα»i lΓ khΓ΄ng liΓͺn minh. Δα» giΓΊp ΔαΊ₯t nΖ°α»c tΔng cΖ°α»ng quan hα» ngoαΊ‘i giao, kinh tαΊΏ vΓ an ninh vα»i cΓ‘c Δα»i tΓ‘c liΓͺn quan, chΓnh phα»§ Viα»t Nam, do ΔΓ³, ΔΓ£ tΓ¬m cΓ‘ch xΓ’y dα»±ng mα»t mαΊ‘ng lΖ°α»i quan hα» Δα»i tΓ‘c. "Quan hα» Δα»i tΓ‘c toΓ n diα»n" lΓ nαΊ₯c thαΊ₯p nhαΊ₯t trong mαΊ‘ng lΖ°α»i nΓ y.
Viα»t Nam vΓ Hoa Kα»³ thiαΊΏt lαΊp "quan hα» Δα»i tΓ‘c toΓ n diα»n" thΓ‘ng 7/2013. NhΖ° vαΊy, Viα»t Nam Δα»©ng sau Philippines, ThΓ‘i Lan, Indonesia vΓ Singapore - cΓ‘c Δα»i tΓ‘c chiαΊΏn lược cα»§a Hoa Kα»³ trong khu vα»±c - vα» tαΊ§m quan trα»ng Δα»i vα»i Washington.
Trong khi ΔΓ³, Viα»t Nam ΔΓ£ nΓ’ng tαΊ§m "quan hα» chiαΊΏn lược" vα»i 16 nΖ°α»c gα»m Nga (2001), NhαΊt BαΊ£n (2006), αΊ€n Δα» (2007), Trung Quα»c (2008), HΓ n Quα»c vΓ TΓ’y Ban Nha (2009), VΖ°Ζ‘ng quα»c Anh (2010), Δα»©c (2011), PhΓ‘p, Indonesia, Γ, Singapore vΓ ThΓ‘i Lan ( 2013), Malaysia vΓ Philippines (2015) vΓ Γc (2017).
Trong ngΓ΄n ngα»― ngoαΊ‘i giao cα»§a HΓ Nα»i, tαΊ₯t nhiΓͺn, Trung Quα»c lΓ Δα»i tΓ‘c quan trα»ng nhαΊ₯t cα»§a Viα»t Nam, trong khi Mα»Ή lΓ mα»t trong nhα»―ng quα»c gia Γt quan trα»ng nhαΊ₯t. TrΓͺn giαΊ₯y tα», mα»i "quan hα» Δα»i tΓ‘c toΓ n diα»n" cα»§a Viα»t Nam vα»i Mα»Ή - nα»n kinh tαΊΏ vΓ quΓ’n sα»± lα»n nhαΊ₯t thαΊΏ giα»i - thαΊm chΓ cΓ²n xαΊΏp sau quan hα» "Δα»i tΓ‘c toΓ n diα»n" cα»§a Viα»t Nam vα»i Myanmar - Δược thiαΊΏt lαΊp nΔm 2017.
NhΖ°ng trΓͺn thα»±c tαΊΏ, Mα»Ή lΓ Δα»i tΓ‘c quan trα»ng thα»© hai cα»§a Viα»t Nam. α» nhiα»u khΓa cαΊ‘nh, Mα»Ή cΕ©ng quan trα»ng khΓ΄ng kΓ©m Trung Quα»c. VΓ HΓ Nα»i hiα»u rαΊ±ng cΓ³ mα»t mα»i quan hα» khα»e mαΊ‘nh vα»i Mα»Ή mang tΓnh sα»ng cΓ²n vα»i ΔαΊ₯t nΖ°α»c, giΓΊp α»n Δα»nh sα»± phΓ‘t triα»n vΓ trΓ‘nh quΓ‘ phα»₯ thuα»c vΓ o Trung Quα»c vα» kinh tαΊΏ, Γ΄ng ΔoΓ n XuΓ’n Lα»c nhαΊn Δα»nh.
Hiα»n nay, sα»± hung hΔng cα»§a Trung Quα»c α» Biα»n ΔΓ΄ng lΓ mα»t trong cΓ‘c yαΊΏu tα» chΓnh Δα» Viα»t Nam tΓ¬m cΓ‘ch thαΊ―t chαΊ·t quan hα» vα»i Mα»Ή, ΔαΊ·c biα»t trong an ninh quα»c phΓ²ng.
NhΓ¬n chung, mαΊ·c dΓΉ vαΊ«n cΓ³ nhα»―ng khΓ‘c biα»t nhαΊ₯t Δα»nh, ΔαΊ·c biα»t lΓ vα» cΓ‘c quyα»n tα»± do chΓnh trα» vΓ nhΓ’n quyα»n, lợi Γch chiαΊΏn lược cα»§a Hoa Kα»³ vΓ Viα»t Nam ngΓ y cΓ ng phΓΉ hợp vα»i nhau. Δα»i Viα»t Nam, mα»i quan hα» vα»i Mα»Ή hiα»n tαΊ‘i vα» cΖ‘ bαΊ£n lΓ chiαΊΏn lược trong nhiα»u lΔ©nh vα»±c quan trα»ng, nhΖ° an ninh vΓ quα»c phΓ²ng, mαΊ·c dΓΉ vα» tΓͺn gα»i nΓ³ mα»i chα» lΓ "quan hα» Δα»i tΓ‘c toΓ n diα»n", vαΊ«n theo tΓ‘c giαΊ£ ΔoΓ n XuΓ’n Lα»c.
<|summary|>Γ kiαΊΏn vα» khαΊ£ nΔng Viα»t-Mα»Ή trα» thΓ nh Δα»i tΓ‘c chiαΊΏn lược khi hai nΖ°α»c cΓ³ nhiα»u khΓ‘c biα»t vα» thα» chαΊΏ chΓnh trα» vΓ nhΓ’n quyα»n.<|endoftext|>
"""
```
|
vietgpt-archive/xlsum_vi
|
[
"task_categories:summarization",
"size_categories:10K<n<100K",
"language:vi",
"LM",
"region:us"
] |
2023-03-06T14:52:23+00:00
|
{"language": ["vi"], "size_categories": ["10K<n<100K"], "task_categories": ["summarization"], "dataset_info": {"features": [{"name": "gem_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "target", "dtype": "string"}, {"name": "references", "list": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 219542787, "num_examples": 32108}, {"name": "test", "num_bytes": 15891883, "num_examples": 4013}, {"name": "validation", "num_bytes": 15896905, "num_examples": 4013}], "download_size": 134434688, "dataset_size": 251331575}, "tags": ["LM"]}
|
2023-05-31T11:06:28+00:00
|
f98c1fbee7c1fe1e30abda459a30421c32b4da06
|
# xlsum
- Source: https://huggingface.co/datasets/GEM/xlsum
- Num examples:
- 306,521 (train)
- 11,535 (validation)
- 11,535 (test)
- Language: English
```python
from datasets import load_dataset
load_dataset("tdtunlp/xlsum_en")
```
- Format for Summarization task
```python
def preprocess(sample):
title = sample['title']
article = sample['text']
summary = sample['target']
return {'text': f'<|startoftext|><|title|>{title}<|article|>{article}<|summary|>{summary}<|endoftext|>'}
"""
<|startoftext|><|title|>Weather alert issued for gale force winds in Wales<|article|>The Met Office has issued a yellow weather warning for wind covering Wales and England, starting from 21:00 GMT on Wednesday evening.
Travel and power are both likely to be disrupted, with the warning to remain in place until 15:00 on Thursday.
Gusts of 55mph (88kmh) are likely and could hit up to 70mph on coasts and hills, with heavy and blustery showers.
<|summary|>Winds could reach gale force in Wales with stormy weather set to hit the whole of the country this week.<|endoftext|>
"""
```
|
vietgpt-archive/xlsum_en
|
[
"task_categories:summarization",
"size_categories:100K<n<1M",
"language:en",
"region:us"
] |
2023-03-06T15:01:15+00:00
|
{"language": ["en"], "size_categories": ["100K<n<1M"], "task_categories": ["summarization"], "dataset_info": {"features": [{"name": "gem_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "target", "dtype": "string"}, {"name": "references", "list": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 975957381, "num_examples": 306521}, {"name": "test", "num_bytes": 34940457, "num_examples": 11535}, {"name": "validation", "num_bytes": 35201391, "num_examples": 11535}], "download_size": 655141522, "dataset_size": 1046099229}}
|
2023-05-31T10:41:54+00:00
|
d06b7e88eccaa78644f3a877461640cb7d0b1535
|
[SQuAD V2.0](https://rajpurkar.github.io/SQuAD-explorer/).
It contains the following:
* Train and Validation sets.
* The end position of each answer.
|
hazemessam/squad_v2
|
[
"license:cc-by-4.0",
"region:us"
] |
2023-03-06T15:03:51+00:00
|
{"license": "cc-by-4.0"}
|
2023-03-06T15:18:07+00:00
|
b8b47c589f8bee77175b8648e5497278b68da48a
|
# Dataset Card for ETHICS
This is the data from [Aligning AI With Shared Human Values](https://arxiv.org/pdf/2008.02275) by Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob Steinhardt, published at ICLR 2021.
For more information, see the [Github Repo](https://github.com/hendrycks/ethics).
## Dataset Summary
This dataset provides ethics-based tasks for evaluating language models for AI alignment.
## Loading Data
To load this data, you can use HuggingFace datasets and the dataloader script.
```
from datasets import load_dataset
load_dataset("hendrycks/ethics", "commonsense")
```
Where `commonsense` is one of the following sections: commonsense, deontology, justice, utilitarianism, and virtue.
### Citation Information
```
@article{hendrycks2021ethics,
title={Aligning AI With Shared Human Values},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andrew Critch and Jerry Li and Dawn Song and Jacob Steinhardt},
journal={Proceedings of the International Conference on Learning Representations (ICLR)},
year={2021}
}
```
|
hendrycks/ethics
|
[
"language:en",
"license:mit",
"AI Alignment",
"arxiv:2008.02275",
"region:us"
] |
2023-03-06T15:25:03+00:00
|
{"language": "en", "license": "mit", "dataset_info": [{"config_name": "default", "features": [{"name": "label", "dtype": "int64"}, {"name": "input", "dtype": "string"}]}, {"config_name": "commonsense", "features": [{"name": "label", "dtype": "int32"}, {"name": "input", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14429921, "num_examples": 13910}, {"name": "validation", "num_bytes": 3148616, "num_examples": 3885}, {"name": "test", "num_bytes": 3863068, "num_examples": 3964}], "download_size": 21625153, "dataset_size": 21441605}, {"config_name": "deontology", "features": [{"name": "label", "dtype": "int32"}, {"name": "scenario", "dtype": "string"}, {"name": "excuse", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1854277, "num_examples": 18164}, {"name": "validation", "num_bytes": 369318, "num_examples": 3596}, {"name": "test", "num_bytes": 359268, "num_examples": 3536}], "download_size": 2384007, "dataset_size": 2582863}, {"config_name": "justice", "features": [{"name": "label", "dtype": "int32"}, {"name": "scenario", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2423889, "num_examples": 21791}, {"name": "validation", "num_bytes": 297935, "num_examples": 2704}, {"name": "test", "num_bytes": 228008, "num_examples": 2052}], "download_size": 2837375, "dataset_size": 2949832}, {"config_name": "utilitarianism", "features": [{"name": "baseline", "dtype": "string"}, {"name": "less_pleasant", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2186713, "num_examples": 13737}, {"name": "validation", "num_bytes": 730391, "num_examples": 4807}, {"name": "test", "num_bytes": 668429, "num_examples": 4271}], "download_size": 3466564, "dataset_size": 3585533}, {"config_name": "virtue", "features": [{"name": "label", "dtype": "int32"}, {"name": "scenario", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2605021, "num_examples": 28245}, {"name": "validation", "num_bytes": 467254, "num_examples": 4975}, {"name": "test", "num_bytes": 452491, "num_examples": 4780}], "download_size": 3364070, "dataset_size": 3524766}], "tags": ["AI Alignment"]}
|
2023-04-19T17:55:00+00:00
|
401c712095bf02eefcf88e30e3aaff514dff265b
|
BuroIdentidadDigital/recibos_telmex
|
[
"license:c-uda",
"region:us"
] |
2023-03-06T15:50:26+00:00
|
{"license": "c-uda"}
|
2024-01-12T23:02:31+00:00
|
|
262ddc85688bfc06527bcf099f87deef62977ac1
|
# Dataset Card for "merged-wiki-cnn"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
braindao/cnn-100k
|
[
"region:us"
] |
2023-03-06T16:03:03+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "summary", "dtype": "string"}, {"name": "content", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 437866886, "num_examples": 100000}, {"name": "test", "num_bytes": 49735992, "num_examples": 11490}, {"name": "validation", "num_bytes": 57519439, "num_examples": 13368}], "download_size": 332900122, "dataset_size": 545122317}}
|
2023-03-08T10:38:08+00:00
|
5f29d1501ab85ceec5aa84d59f4ad2865107cf99
|
# πΊπ¦ Open Source Ukrainian Text-to-Speech dataset named MYKYTA
Join Ukrainian community - https://t.me/speech_synthesis_uk
More details about this dataset - https://github.com/egorsmkv/ukrainian-tts-datasets/tree/main/mykyta
# Voice MYKYTA (male)
License: [Apache 2.0](https://github.com/egorsmkv/ukrainian-tts-datasets/blob/main/LICENSE)
Listen to [DEMO](https://huggingface.co/spaces/theodotus/ukrainian-voices) (choose "mykyta" in the Voice field)
## Features
- Quality: high
- Duration: 8h10m
- Audio formats: OPUS/WAV
- Text format: JSONL (a `metadata.jsonl` file)
- Frequency: 16000/22050/48000 Hz
## Original version
### In the `OPUS` format
- 48000 Hz: https://huggingface.co/datasets/Yehor/ukrainian-tts-mykyta/resolve/main/dataset_mykyta_ogg.zip
## Trimmed version (removed silence)
Silence is removed by https://github.com/proger/uk#align-text-to-audio-and-trim-silence
### In the `WAV` format
- 48000 Hz: https://huggingface.co/datasets/Yehor/ukrainian-tts-mykyta/resolve/main/dataset_mykyta_trimmed_48khz.zip
- 22050 Hz: https://huggingface.co/datasets/Yehor/ukrainian-tts-mykyta/resolve/main/dataset_mykyta_trimmed_22khz.zip
- 16000 Hz: https://huggingface.co/datasets/Yehor/ukrainian-tts-mykyta/resolve/main/dataset_mykyta_trimmed_16khz.zip
|
Yehor/ukrainian-tts-mykyta
|
[
"task_categories:text-to-speech",
"language:uk",
"license:apache-2.0",
"region:us"
] |
2023-03-06T16:22:17+00:00
|
{"language": ["uk"], "license": "apache-2.0", "task_categories": ["text-to-speech"]}
|
2023-12-16T16:26:33+00:00
|
2b8480e5f80abebb6a6c4926666ef67345a68312
|
# πΊπ¦ Open Source Ukrainian Text-to-Speech dataset named TETIANA
Join Ukrainian community - https://t.me/speech_synthesis_uk
More details about this dataset - https://github.com/egorsmkv/ukrainian-tts-datasets/tree/main/tetiana
# Voice TETIANA (female)
License: [Apache 2.0](https://github.com/egorsmkv/ukrainian-tts-datasets/blob/main/LICENSE)
## Features
- Quality: high
- Duration: 8h
- Audio formats: OPUS/WAV
- Text format: JSONL (a `metadata.jsonl` file)
- Frequency: 16000/22050/48000 Hz
## Original version
### In the `OPUS` format
- 48000 Hz: https://huggingface.co/datasets/Yehor/ukrainian-tts-tetiana/resolve/main/dataset_tetiana_ogg.zip
## Trimmed version (removed silence)
Silence is removed by https://github.com/proger/uk#align-text-to-audio-and-trim-silence
### In the `WAV` format
- 48000 Hz: https://huggingface.co/datasets/Yehor/ukrainian-tts-tetiana/resolve/main/dataset_tetiana_trimmed_48khz.zip
- 22050 Hz: https://huggingface.co/datasets/Yehor/ukrainian-tts-tetiana/resolve/main/dataset_tetiana_trimmed_22khz.zip
- 16000 Hz: https://huggingface.co/datasets/Yehor/ukrainian-tts-tetiana/resolve/main/dataset_tetiana_trimmed_16khz.zip
|
Yehor/ukrainian-tts-tetiana
|
[
"task_categories:text-to-speech",
"language:uk",
"license:apache-2.0",
"region:us"
] |
2023-03-06T16:47:50+00:00
|
{"language": ["uk"], "license": "apache-2.0", "task_categories": ["text-to-speech"]}
|
2023-12-16T16:25:09+00:00
|
05be76043886b06e25c52d40458f56e3bc7fe186
|
# Dataset Card for "deart"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
davanstrien/deart
|
[
"region:us"
] |
2023-03-06T16:56:16+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "source", "dtype": "string"}, {"name": "width", "dtype": "int16"}, {"name": "height", "dtype": "int16"}, {"name": "dept", "dtype": "int8"}, {"name": "segmented", "dtype": "int8"}, {"name": "image_id", "dtype": "string"}, {"name": "annotations", "list": [{"name": "category_id", "dtype": {"class_label": {"names": {"0": "zebra", "1": "tree", "2": "nude", "3": "crucifixion", "4": "scroll", "5": "head", "6": "swan", "7": "shield", "8": "lily", "9": "mouse", "10": "knight", "11": "dragon", "12": "horn", "13": "dog", "14": "palm", "15": "tiara", "16": "helmet", "17": "sheep", "18": "deer", "19": "person", "20": "sword", "21": "rooster", "22": "bear", "23": "halo", "24": "lion", "25": "monkey", "26": "prayer", "27": "crown of thorns", "28": "elephant", "29": "zucchetto", "30": "unicorn", "31": "holy shroud", "32": "cat", "33": "apple", "34": "banana", "35": "chalice", "36": "bird", "37": "eagle", "38": "pegasus", "39": "crown", "40": "camauro", "41": "saturno", "42": "arrow", "43": "dove", "44": "centaur", "45": "horse", "46": "hands", "47": "skull", "48": "orange", "49": "monk", "50": "trumpet", "51": "key of heaven", "52": "fish", "53": "cow", "54": "angel", "55": "devil", "56": "book", "57": "stole", "58": "butterfly", "59": "serpent", "60": "judith", "61": "mitre", "62": "banner", "63": "donkey", "64": "shepherd", "65": "boat", "66": "god the father", "67": "crozier", "68": "jug", "69": "lance"}}}}, {"name": "image_id", "dtype": "string"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "segmentation", "list": {"list": "float32"}}, {"name": "iscrowd", "dtype": "bool"}]}], "splits": [{"name": "train", "num_bytes": 8991340765.256, "num_examples": 15156}], "download_size": 18150029661, "dataset_size": 8991340765.256}}
|
2023-03-06T17:12:03+00:00
|
2cace2314e8d42389cdb4ef392392fa859504cba
|
# Dataset Card for "msmarco-passage-tilde"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
lsr42/msmarco-passage-tilde
|
[
"region:us"
] |
2023-03-06T16:56:25+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "passage", "num_bytes": 6376936859, "num_examples": 8841823}], "download_size": 3609070765, "dataset_size": 6376936859}}
|
2023-03-06T17:07:32+00:00
|
8a42f9a8b614a247ce0aed2272d226a09fe25cd1
|
ΠΠΎΠ²Π°Ρ Π²Π΅ΡΡΠΈΡ: https://huggingface.co/datasets/Den4ikAI/russian_instructions_2
Π ΡΡΡΠΊΠΈΠΉ Π΄Π°ΡΠ°ΡΠ΅Ρ ΠΈΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΠΈ QA.
Π‘ΡΡΡΠΊΡΡΡΠ° Π΄Π°ΡΠ°ΡΠ΅ΡΠ°:
```
{
"dialogue":[
"ΠΠ°ΠΊ Ρ ΠΌΠΎΠ³Ρ ΡΠ»ΡΡΡΠΈΡΡ ΡΠ²ΠΎΡ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅Π»ΠΎΠΌ ΠΈ ΡΠ°Π·ΡΠΌΠΎΠΌ?",
"ΠΠ°ΡΠ½ΠΈΡΠ΅ Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΈ ΠΎΡΠΎΠ·Π½Π°Π½Π½ΠΎΡΡΠΈ. 2. ΠΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠ°ΠΊΡΠΈΠΊΡΠΉΡΠ΅ Π±Π°Π»Π°Π½Ρ Π½Π° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΡΡΠΎΠ²Π½ΡΡ
: ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΌ, ΡΠΌΠΎΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌ, ΡΠΌΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΠΈ Π΄ΡΡ
ΠΎΠ²Π½ΠΎΠΌ. 3. Π‘Π²ΡΠΆΠΈΡΠ΅ΡΡ Ρ ΠΏΡΠΈΡΠΎΠ΄ΠΎΠΉ, ΠΊΠΎΠ³Π΄Π° ΡΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ - ΠΈΠ΄ΠΈΡΠ΅ Π½Π° ΠΏΡΠΎΠ³ΡΠ»ΠΊΠΈ ΠΈΠ»ΠΈ Π±Π΅Π³Π°ΠΉΡΠ΅ Π½Π° ΡΠ»ΠΈΡΠ΅, ΠΈΠ»ΠΈ ΠΏΡΠΎΡΡΠΎ ΡΠΈΠ΄ΠΈΡΠ΅ Π² ΠΏΠ°ΡΠΊΠ΅ ΠΈ Π½Π°Π±Π»ΡΠ΄Π°ΠΉΡΠ΅ ΠΏΡΠΈΡΠΎΠ΄Ρ Π²ΠΎΠΊΡΡΠ³ Π²Π°Ρ. 4. Π Π°Π·Π²ΠΈΠ²Π°ΠΉΡΠ΅ ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΡΠ΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠΌΠΎΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΠΎΠΏΡΠΈΠΌΠΈΠ·ΠΌ ΠΈ ΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Ρ Π²Π°ΡΠΈΠΌ ΡΠ΅Π»ΠΎΠΌ.",
"ΠΠΎΠ»ΡΡΠ΅ ΠΏΠΎΠΆΠ°Π»ΡΠΉΡΡΠ°",
"ΠΠΎΠ½Π΅ΡΠ½ΠΎ, Π²ΠΎΡ Π΅ΡΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ: 5. ΠΠΊΠ»ΡΡΠΈΡΠ΅ Π·Π΄ΠΎΡΠΎΠ²ΡΡ Π΄ΠΈΠ΅ΡΡ ΡΠ΅Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΠΈ ΠΌΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ΄Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΈΡΠ°Π΅Ρ Π²Π°Ρ ΡΠΌ ΠΈ ΡΠ΅Π»ΠΎ. 6. ΠΠ°ΡΡΠΈΡΠ΅ΡΡ Π±ΡΡΡ Π² Π³Π°ΡΠΌΠΎΠ½ΠΈΠΈ Ρ Π²Π°ΡΠΈΠΌ ΡΠ΅Π»ΠΎΠΌ, Π·Π°ΠΌΠ΅ΡΠ°Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΡΠΎΠΌ, ΠΊΠ°ΠΊ Π²Ρ ΡΠ΅Π±Ρ ΡΡΠ²ΡΡΠ²ΡΠ΅ΡΠ΅, ΠΈ ΡΠ΄Π΅Π»ΠΈΡΠ΅ Π²ΡΠ΅ΠΌΡ, ΡΡΠΎΠ±Ρ ΠΎΡΠ΅Π½ΠΈΡΡ ΠΈ ΡΠ΅ΡΠΈΡΡ Π»ΡΠ±ΡΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΠ΅ ΠΏΠΎΡΡΠ΅Π±Π½ΠΎΡΡΠΈ."
],
"rounds":[
1,
2
],
"uuid":"53e8d08b-1f45-4ef4-b6d8-3a04758cafd8"
}
```
### Citation:
```
@MISC{russian_instructions,
author = {Denis Petrov},
title = {Russian instructions dataset for conversational agents},
url = {https://huggingface.co/datasets/Den4ikAI/russian_instructions},
year = 2023
}
```
|
Den4ikAI/russian_instructions
|
[
"task_categories:conversational",
"size_categories:10K<n<100K",
"language:ru",
"license:mit",
"region:us"
] |
2023-03-06T17:06:32+00:00
|
{"language": ["ru"], "license": "mit", "size_categories": ["10K<n<100K"], "task_categories": ["conversational"]}
|
2023-03-12T04:59:14+00:00
|
0ee2c7665fe97b6890d80b47d8290a7fb9aac292
|
Based on https://huggingface.co/datasets/its5Q/yandex-q, parsed full.jsonl.gz
|
IlyaGusev/yandex_q_full
|
[
"region:us"
] |
2023-03-06T18:17:41+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "id2", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "text_plain", "dtype": "string"}, {"name": "text_html", "dtype": "string"}, {"name": "author", "dtype": "string"}, {"name": "negative_votes", "dtype": "int32"}, {"name": "positive_votes", "dtype": "int32"}, {"name": "quality", "dtype": "int8"}, {"name": "views", "dtype": "uint64"}, {"name": "votes", "dtype": "int32"}, {"name": "approved_answer", "dtype": "string"}, {"name": "timestamp", "dtype": "uint64"}, {"name": "tags", "sequence": "string"}, {"name": "answers", "sequence": [{"name": "id", "dtype": "string"}, {"name": "id2", "dtype": "int64"}, {"name": "text_plain", "dtype": "string"}, {"name": "text_html", "dtype": "string"}, {"name": "author", "dtype": "string"}, {"name": "negative_votes", "dtype": "int32"}, {"name": "positive_votes", "dtype": "int32"}, {"name": "votes", "dtype": "int32"}, {"name": "quality", "dtype": "int8"}, {"name": "views", "dtype": "uint64"}, {"name": "reposts", "dtype": "int32"}, {"name": "timestamp", "dtype": "uint64"}]}], "splits": [{"name": "train", "num_bytes": 5468460217, "num_examples": 1297670}], "download_size": 1130317937, "dataset_size": 5468460217}}
|
2023-03-07T20:30:24+00:00
|
171eb271eb03ff37a8417e01392097fa5729551a
|
# AutoTrain Dataset for project: sentiment_analysis
## Dataset Description
This dataset has been automatically processed by AutoTrain for project sentiment_analysis.
### Languages
The BCP-47 code for the dataset's language is en.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"text": "I grew up (b. 1965) watching and loving the Thunderbirds. All my mates at school watched. We played \"Thunderbirds\" before school, during lunch and after school. We all wanted to be Virgil or Scott. No one wanted to be Alan. Counting down from 5 became an art form. I took my children to see the movie hoping they would get a glimpse of what I loved as a child. How bitterly disappointing. The only high point was the snappy theme tune. Not that it could compare with the original score of the Thunderbirds. Thankfully early Saturday mornings one television channel still plays reruns of the series Gerry Anderson and his wife created. Jonatha Frakes should hand in his directors chair, his version was completely hopeless. A waste of film. Utter rubbish. A CGI remake may be acceptable but replacing marionettes with Homo sapiens subsp. sapiens was a huge error of judgment.",
"target": 0
},
{
"text": "When I put this movie in my DVD player, and sat down with a coke and some chips, I had some expectations. I was hoping that this movie would contain some of the strong-points of the first movie: Awsome animation, good flowing story, excellent voice cast, funny comedy and a kick-ass soundtrack. But, to my disappointment, not any of this is to be found in Atlantis: Milo's Return. Had I read some reviews first, I might not have been so let down. The following paragraph will be directed to those who have seen the first movie, and who enjoyed it primarily for the points mentioned.<br /><br />When the first scene appears, your in for a shock if you just picked Atlantis: Milo's Return from the display-case at your local videoshop (or whatever), and had the expectations I had. The music feels as a bad imitation of the first movie, and the voice cast has been replaced by a not so fitting one. (With the exception of a few characters, like the voice of Sweet). The actual drawings isnt that bad, but the animation in particular is a sad sight. The storyline is also pretty weak, as its more like three episodes of Schooby-Doo than the single adventurous story we got the last time. But dont misunderstand, it's not very good Schooby-Doo episodes. I didnt laugh a single time, although I might have sniggered once or twice.<br /><br />To the audience who haven't seen the first movie, or don't especially care for a similar sequel, here is a fast review of this movie as a stand-alone product: If you liked schooby-doo, you might like this movie. If you didn't, you could still enjoy this movie if you have nothing else to do. And I suspect it might be a good kids movie, but I wouldn't know. It might have been better if Milo's Return had been a three-episode series on a cartoon channel, or on breakfast TV.",
"target": 0
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"text": "Value(dtype='string', id=None)",
"target": "ClassLabel(names=['0', '1'], id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 1497 |
| valid | 1497 |
|
raghuram13/autotrain-data-sentiment_analysis
|
[
"task_categories:text-classification",
"language:en",
"region:us"
] |
2023-03-06T20:18:31+00:00
|
{"language": ["en"], "task_categories": ["text-classification"]}
|
2023-03-06T20:23:54+00:00
|
06b337fe0d82d5f29f075fca5c435ee02bd9f92c
|
# Dataset Card for "rlhf-qa-conditional-generation-v2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
kastan/rlhf-qa-conditional-generation-v2
|
[
"region:us"
] |
2023-03-06T20:41:34+00:00
|
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "completion", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 34403.31192660551, "num_examples": 87}, {"name": "valid", "num_bytes": 8699.688073394496, "num_examples": 22}], "download_size": 31360, "dataset_size": 43103.0}}
|
2023-04-14T21:35:34+00:00
|
46587daedc55f5dbfd44799275464cb547cfeeed
|
# Dataset Card for "Duaaii_5"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Hundred9/Duaaii_5
|
[
"region:us"
] |
2023-03-06T20:45:57+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "0", "1": "1", "2": "2", "3": "3", "4": "4", "5": "5", "6": "6"}}}}], "splits": [{"name": "train", "num_bytes": 43153426.0, "num_examples": 647}], "download_size": 43177352, "dataset_size": 43153426.0}}
|
2023-03-06T20:49:30+00:00
|
fbf42b7e03d6433669eb2fa2ecc407d5bdeaf677
|
Yes67843/eys
|
[
"license:other",
"region:us"
] |
2023-03-06T20:46:57+00:00
|
{"license": "other"}
|
2023-03-06T20:50:27+00:00
|
|
34198d9751dfccd2cd6a380f6f431e6b75c6ad44
|
# Dataset Card for "test-huggingface-datasets"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Djarnis/test-huggingface-datasets
|
[
"region:us"
] |
2023-03-06T21:39:25+00:00
|
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "repository_url", "dtype": "string"}, {"name": "labels_url", "dtype": "string"}, {"name": "comments_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "number", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "user", "struct": [{"name": "login", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "avatar_url", "dtype": "string"}, {"name": "gravatar_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "followers_url", "dtype": "string"}, {"name": "following_url", "dtype": "string"}, {"name": "gists_url", "dtype": "string"}, {"name": "starred_url", "dtype": "string"}, {"name": "subscriptions_url", "dtype": "string"}, {"name": "organizations_url", "dtype": "string"}, {"name": "repos_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "received_events_url", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "site_admin", "dtype": "bool"}]}, {"name": "labels", "list": [{"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "color", "dtype": "string"}, {"name": "default", "dtype": "bool"}, {"name": "description", "dtype": "string"}]}, {"name": "state", "dtype": "string"}, {"name": "locked", "dtype": "bool"}, {"name": "assignee", "struct": [{"name": "login", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "avatar_url", "dtype": "string"}, {"name": "gravatar_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "followers_url", "dtype": "string"}, {"name": "following_url", "dtype": "string"}, {"name": "gists_url", "dtype": "string"}, {"name": "starred_url", "dtype": "string"}, {"name": "subscriptions_url", "dtype": "string"}, {"name": "organizations_url", "dtype": "string"}, {"name": "repos_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "received_events_url", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "site_admin", "dtype": "bool"}]}, {"name": "assignees", "list": [{"name": "login", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "avatar_url", "dtype": "string"}, {"name": "gravatar_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "followers_url", "dtype": "string"}, {"name": "following_url", "dtype": "string"}, {"name": "gists_url", "dtype": "string"}, {"name": "starred_url", "dtype": "string"}, {"name": "subscriptions_url", "dtype": "string"}, {"name": "organizations_url", "dtype": "string"}, {"name": "repos_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "received_events_url", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "site_admin", "dtype": "bool"}]}, {"name": "milestone", "struct": [{"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "labels_url", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "number", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "creator", "struct": [{"name": "login", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "avatar_url", "dtype": "string"}, {"name": "gravatar_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "followers_url", "dtype": "string"}, {"name": "following_url", "dtype": "string"}, {"name": "gists_url", "dtype": "string"}, {"name": "starred_url", "dtype": "string"}, {"name": "subscriptions_url", "dtype": "string"}, {"name": "organizations_url", "dtype": "string"}, {"name": "repos_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "received_events_url", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "site_admin", "dtype": "bool"}]}, {"name": "open_issues", "dtype": "int64"}, {"name": "closed_issues", "dtype": "int64"}, {"name": "state", "dtype": "string"}, {"name": "created_at", "dtype": "timestamp[s]"}, {"name": "updated_at", "dtype": "timestamp[s]"}, {"name": "due_on", "dtype": "null"}, {"name": "closed_at", "dtype": "null"}]}, {"name": "comments", "sequence": "string"}, {"name": "created_at", "dtype": "timestamp[s]"}, {"name": "updated_at", "dtype": "timestamp[s]"}, {"name": "closed_at", "dtype": "timestamp[s]"}, {"name": "author_association", "dtype": "string"}, {"name": "active_lock_reason", "dtype": "null"}, {"name": "draft", "dtype": "bool"}, {"name": "pull_request", "struct": [{"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "diff_url", "dtype": "string"}, {"name": "patch_url", "dtype": "string"}, {"name": "merged_at", "dtype": "timestamp[s]"}]}, {"name": "body", "dtype": "string"}, {"name": "reactions", "struct": [{"name": "url", "dtype": "string"}, {"name": "total_count", "dtype": "int64"}, {"name": "+1", "dtype": "int64"}, {"name": "-1", "dtype": "int64"}, {"name": "laugh", "dtype": "int64"}, {"name": "hooray", "dtype": "int64"}, {"name": "confused", "dtype": "int64"}, {"name": "heart", "dtype": "int64"}, {"name": "rocket", "dtype": "int64"}, {"name": "eyes", "dtype": "int64"}]}, {"name": "timeline_url", "dtype": "string"}, {"name": "performed_via_github_app", "dtype": "null"}, {"name": "state_reason", "dtype": "string"}, {"name": "is_pull_request", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 10702183, "num_examples": 2000}], "download_size": 2891006, "dataset_size": 10702183}}
|
2023-03-06T21:40:27+00:00
|
442c526c494d69888a77b0e1ca8eb2e08e768215
|
# Dataset Card for "test-dataset-via-streamlit"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MoritzLaurer/test-dataset-via-streamlit
|
[
"region:us"
] |
2023-03-06T22:05:48+00:00
|
{"dataset_info": {"features": [{"name": "english", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "label1", "1": "label2"}}}}], "splits": [{"name": "train", "num_bytes": 1218.0, "num_examples": 3}, {"name": "test", "num_bytes": 159, "num_examples": 1}], "download_size": 7754, "dataset_size": 1377.0}}
|
2023-03-06T22:05:49+00:00
|
12f2e05c5f7e216dc476abe5f5cfa3a80c957903
|
# Dataset Card for "TIMIT_v2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
patlee0208/TIMIT_v2
|
[
"region:us"
] |
2023-03-06T22:09:18+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "DR1", "1": "DR2", "2": "DR3", "3": "DR4", "4": "DR5", "5": "DR6", "6": "DR7"}}}}], "splits": [{"name": "train", "num_bytes": 119307077.0, "num_examples": 597}], "download_size": 113914231, "dataset_size": 119307077.0}}
|
2023-03-06T22:10:07+00:00
|
f3ac95eaa17bf25fc091fe5274083cc5a7e30080
|
Join my discord here : https://discord.gg/PdYFs7qmSW
|
SyntheticVoices/AlexJones
|
[
"license:openrail",
"region:us"
] |
2023-03-06T23:11:33+00:00
|
{"license": "openrail"}
|
2023-03-06T23:54:43+00:00
|
96befac625ae44862842fd0b47536ebe64614ec4
|
This data set contains StockTwits posts from 01.11.2021 to 30.06.2022 for Bitcoin (BTC.X), Ethereum (ETH.X) and Shiba Inu (SHIB.X).
The full set contains 124,503 posts, including 72,247 bullish, 38,249 neutral and 14,007 bearish posts.
The training set ranges from 01.11.2021 to 30.04.2022, consists of 91,758 observations, including 57,932 bullish, 26,516 neutral, and 7310 bearish posts.
The validation set ranges from 01.05.2022 to 15.06.2022 and contains 4084 bearish, 7534 neutral, and 9143 bullish posts, amounting to 20,761 examples.
The test set ranges from 16.06.2022 to 30.06.2022 and consists of 5172 bullish, 4199 neutral, and 2613 bearish posts, having 11,984 observations in total.
The validation and test sets contain all StockTwits posts, with at least one emoji, from their respective periods, while the training set is further limited by only including posts that have possibly influential bullish or bearish emojis.
The training SVM dataset contains balanced samples used for training an SVM sentiment classifier.
The bearish sets have 20K observations per class (pos is bearish, while neg is not bearish, so bullish and neutral). The bullish sets have 40K observations per class (pos is bullish, while neg is not bullish, so bearish and neutral).
|
ElKulako/stocktwits-emoji
|
[
"license:afl-3.0",
"region:us"
] |
2023-03-07T00:35:53+00:00
|
{"license": "afl-3.0"}
|
2023-03-07T01:12:48+00:00
|
680cd6266c2d0b4b18dba98013205f703ee62349
|
# AutoTrain Dataset for project: text2itinerary-exp-26-1000
## Dataset Description
This dataset has been automatically processed by AutoTrain for project text2itinerary-exp-26-1000.
### Languages
The BCP-47 code for the dataset's language is unk.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"text": "\ud589\uc0ac \uc81c\ubaa9\n[\ud50c\uce5c/\uc655\uc758\uadc0\ud658\uc2e4\uc18d/\ubc29\ucf55\ud30c\ud0c0\uc57c5\uc77c]\uc54c\ucc2c\uad00\uad11+$170\uc0c1\ub2f9\ud2b9\uc804(\ub7ed\uc154\ub9ac\uc694\ud2b8\ud06c\ub8e8\uc988,\uc2a4\ub178\ud074\ub9c1,\uc804\uc2e0\ub9c8\uc0ac\uc9c0\ud3ec\ud568)\n\uc5ec\ud589\uc9c0\n\ubc29\ucf55|\ud30c\ud0c0\uc57c\n\ube10\ub958\nACCOMMODATION\n\uc77c\ucc28\n2\n\uc21c\uc11c\n5\n\uc81c\ubaa9\n\ud574\ub2f9 \uc77c\uc758 \uc219\ubc15\uc2dc\uc124\uc740 \ud604\uc7ac \ubbf8\uc815\uc785\ub2c8\ub2e4. \ucd9c\ubc1c 1\uc77c\uc804\uae4c\uc9c0 \ud648\ud398\uc774\uc9c0\ub97c \ud1b5\ud574 \uc54c\ub824\ub4dc\ub9ac\uaca0\uc2b5\ub2c8\ub2e4.\n\uc0c1\uc138\n* TITLE: [\uc219\ubc15] \uc544\uc774\uc57c\ub77c \uadf8\ub79c\ub4dc \ud30c\ud0c0\uc57c \ud638\ud154* PLACE_IDX: 44359* APPROVAL: 0* ADDRESS: 338/118 Moo. 12 Pratamnak Rd. $%T. Nongpure A. Banglamung Chonburi Thailand 20150* URL: http://www.aiyaragrand.com/\n* TITLE: [\uc219\ubc15] LK \uc140\ub808\ud0c0\uc774 \ud638\ud154* PLACE_IDX: 56825* APPROVAL: 0* ADDRESS: 45/97-99 ??????? 10 Bang Lamung District Chon Buri 20150 \ud0dc\uad6d* URL: https://lkpattaya.com/rs/package.php?c=1&hotel_session=LK%20Celestite\n* TITLE: [\uc219\ubc15] \uc5e0\ud30c\ud0c0\uc57c\ud638\ud154* PLACE_IDX: 65714* APPROVAL: 0* ADDRESS: 571/112 Moo 5 Naklua Road Banglamung Chonburi 20150* URL: http://www.mhotel.co.th/\n* TITLE: [\uc219\ubc15] \uc5d0\uc774\uc6d0\ub274\uc719 \ud30c\ud0c0\uc57c* PLACE_IDX: 56698* APPROVAL: 0* ADDRESS: 500-501 North Pattaya Banglamung Chonburi 20150* URL: http://www.a-onenewwingpattaya.com/\n* TITLE: [\uc219\ubc15] \uc13c\ud130\ud3ec\uc778\ud2b8\ud638\ud154 \ud30c\ud0c0\uc57c* PLACE_IDX: 65498* APPROVAL: 0* ADDRESS: 275 Moo 6 Sukhumvit Road Naklua Bang Lamung District Chon Buri 20150 \ud0dc\uad6d* URL: http://www.centrepoint.com/pattaya\n",
"target": "\uc544\uc774\uc57c\ub77c \uadf8\ub79c\ub4dc \ud638\ud154\ud83c\udff7344\ud83c\udff7ACCOMMODATION\ud83d\udd0dNULL\nLK \uc140\ub808\uc2a4\ud0c0\uc774\ud2b8\ud83c\udff71370\ud83c\udff7ACCOMMODATION\ud83d\udd0dNULL\n\uc5e0 \ud30c\ud0c0\uc57c \ud638\ud154\ud83c\udff71371\ud83c\udff7ACCOMMODATION\ud83d\udd0dNULL\n\uc5d0\uc774-\uc6d0 \ub354 \ub85c\uc584 \ud06c\ub8e8\uc988 \ud638\ud154\ud83c\udff7592\ud83c\udff7ACCOMMODATION\ud83d\udd0dNULL\n\uc13c\ud130 \ud3ec\uc778\ud2b8 \ud504\ub77c\uc784 \ud638\ud154 \ud30c\ud0c0\uc57c\ud83c\udff71430\ud83c\udff7ACCOMMODATION\ud83d\udd0dNULL"
},
{
"text": "\ud589\uc0ac \uc81c\ubaa9\n\u2665 \ubca0\uc2a4\ud2b8\uc140\ub7ec \u2665 \ub7ed\uc154\ub9ac \ud2b8\ub7fc\ud504 \uc640\uc774\ud0a4\ud0a4 [\uc288\ud398\ub9ac\uc5b4\uc624\uc158\ubdf0] \ud558\uc640\uc774 \ud5c8\ub2c8\ubb38 6\uc77c\n\uc5ec\ud589\uc9c0\n\ud558\uc640\uc774\n\ube10\ub958\nOTHERS\n\uc77c\ucc28\n6\n\uc21c\uc11c\n16\n\uc81c\ubaa9\n\uc778\ucc9c\uacf5\ud56d \ub3c4\ucc29 Mahalo \u2661 \ud589\ubcf5\ud55c \uacb0\ud63c \uc0dd\ud65c \ub418\uc138\uc694 \u2661\n\uc0c1\uc138\n\uc778\ucc9c\uacf5\ud56d \ub3c4\ucc29 Mahalo \u2661 \ud589\ubcf5\ud55c \uacb0\ud63c \uc0dd\ud65c \ub418\uc138\uc694 \u2661\n",
"target": "\uc778\ucc9c\ud83c\udff7971\ud83c\udff7AIRPORT\ud83d\udd0d\ub3c4\ucc29"
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"text": "Value(dtype='string', id=None)",
"target": "Value(dtype='string', id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 6512 |
| valid | 814 |
|
eubinecto/autotrain-data-text2itinerary-exp-26-1000
|
[
"task_categories:summarization",
"region:us"
] |
2023-03-07T00:39:42+00:00
|
{"task_categories": ["summarization"]}
|
2023-03-07T00:40:16+00:00
|
96d6c66dd8b184c08c059d9d0b2881e4b1d28306
|
mushroomsolutions/imdb_sentiment_3000_Test
|
[
"license:mit",
"region:us"
] |
2023-03-07T00:44:17+00:00
|
{"license": "mit"}
|
2023-03-07T00:47:41+00:00
|
|
f7f6475df0e14cabe81ca91d0c181d538bc2fe39
|
# Dataset Card for "jsbachmmmbar"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
juancopi81/jsbachmmmbar
|
[
"region:us"
] |
2023-03-07T01:26:09+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21569479, "num_examples": 27000}, {"name": "test", "num_bytes": 601308, "num_examples": 310}], "download_size": 3155226, "dataset_size": 22170787}}
|
2023-03-07T01:26:18+00:00
|
94348fd0b05baa25375dd2029e43e1a8fa604b8d
|
# Dataset Card for "jsbachmmmtrack"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
juancopi81/jsbachmmmtrack
|
[
"region:us"
] |
2023-03-07T01:27:22+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 43706425, "num_examples": 27000}, {"name": "test", "num_bytes": 592628, "num_examples": 310}], "download_size": 7553812, "dataset_size": 44299053}}
|
2023-03-07T01:27:31+00:00
|
63602e8303644883bd4869567bbf23dee1b6ca8f
|
Duskfallcrew/Star_Marvel_Final
|
[
"task_categories:text-to-image",
"language:en",
"license:creativeml-openrail-m",
"stable diffusion",
"region:us"
] |
2023-03-07T01:47:09+00:00
|
{"language": ["en"], "license": "creativeml-openrail-m", "task_categories": ["text-to-image"], "pretty_name": "Star Marvel Data Final", "tags": ["stable diffusion"]}
|
2023-03-07T02:56:14+00:00
|
|
7a746459f480cc939969f39ff6bfa4424fd84519
|
# Dataset Card for "summarization-sft-heirarchical-split1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
dmayhem93/summarization-sft-heirarchical-split1
|
[
"region:us"
] |
2023-03-07T03:19:35+00:00
|
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "125M", "dtype": "string"}, {"name": "1B", "dtype": "string"}, {"name": "6B", "dtype": "string"}, {"name": "20B", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 121267953, "num_examples": 47241}, {"name": "test", "num_bytes": 217854405, "num_examples": 83632}, {"name": "valid", "num_bytes": 86573178, "num_examples": 33088}], "download_size": 124221198, "dataset_size": 425695536}}
|
2023-03-07T03:20:57+00:00
|
5b92c63d0f5336cd340dc248ae0c637f5e2ef81f
|
# Dataset Card for "summarization-sft-heirarchical-split2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
dmayhem93/summarization-sft-heirarchical-split2
|
[
"region:us"
] |
2023-03-07T03:21:00+00:00
|
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "125M", "dtype": "string"}, {"name": "1B", "dtype": "string"}, {"name": "6B", "dtype": "string"}, {"name": "20B", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 117627495, "num_examples": 45303}, {"name": "test", "num_bytes": 217854405, "num_examples": 83632}, {"name": "valid", "num_bytes": 131656080, "num_examples": 50720}], "download_size": 137276787, "dataset_size": 467137980}}
|
2023-03-07T03:22:54+00:00
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.