sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
016358461fdb4c69f338636deb3d455a534f692c
An imitation learning environment for the door-open-v2 environment, sample for the policy door-open-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_door_open_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_door_open_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_door_open_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:36:01+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-10T16:35:27+00:00
efd7497395076cc46c7b52528c3e35925c0b4e39
An imitation learning environment for the door-unlock-v2 environment, sample for the policy door-unlock-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_door_unlock_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_door_unlock_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_door_unlock_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:36:10+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-10T16:36:58+00:00
35adfff7691ad5e5178f50c3f3b4236442d6898a
An imitation learning environment for the drawer-close-v2 environment, sample for the policy drawer-close-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_drawer_close_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_drawer_close_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_drawer_close_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:36:18+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-10T16:38:38+00:00
d906c95d8d42b46d47382af6fa34451c2f6b3d36
An imitation learning environment for the drawer-open-v2 environment, sample for the policy drawer-open-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_drawer_open_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_drawer_open_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_drawer_open_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:36:26+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-10T16:40:23+00:00
d8be4b4a81c4ec46194264eef815acdfcdc869b2
An imitation learning environment for the faucet-close-v2 environment, sample for the policy faucet-close-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_faucet_close_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_faucet_close_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_faucet_close_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:36:34+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-10T16:42:02+00:00
20214396cdbf2d57437f81ff9d76566d70f74aa1
An imitation learning environment for the faucet-open-v2 environment, sample for the policy faucet-open-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_faucet_open_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_faucet_open_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_faucet_open_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:36:43+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-10T16:43:36+00:00
04f6b2e8d5b66bf058d93eedb99fa634ffeebe72
An imitation learning environment for the hammer-v2 environment, sample for the policy hammer-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_hammer_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_hammer_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_hammer_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:36:51+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-10T16:45:25+00:00
ede12b39f93acd3d13d64206d3cc75c2b5a756ac
An imitation learning environment for the hand-insert-v2 environment, sample for the policy hand-insert-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_hand_insert_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_hand_insert_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_hand_insert_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:36:59+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T17:58:42+00:00
4bf3875b6e8cc5d9a26f8c1254cdbd2e3dfa4394
An imitation learning environment for the basketball-v2 environment, sample for the policy basketball-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_basketball_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_basketball_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_basketball_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:39:02+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:01:53+00:00
600a1f8c52eae9b65c2aafa46380a45b3ed3099c
An imitation learning environment for the bin-picking-v2 environment, sample for the policy bin-picking-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_bin_picking_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_bin_picking_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_bin_picking_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:39:12+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:04:13+00:00
875b2de6956d28a17b3c582b6f4133e070346ac5
An imitation learning environment for the box-close-v2 environment, sample for the policy box-close-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_box_close_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_box_close_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_box_close_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:39:23+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:06:46+00:00
6ab927c9363644ecfa9b6bf16f71424ca0076358
An imitation learning environment for the button-press-topdown-v2 environment, sample for the policy button-press-topdown-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_button_press_topdown_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_button_press_topdown_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_button_press_topdown_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:39:33+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:09:12+00:00
9cfe381abcdc6e5ae3411062c695e9012b215c56
An imitation learning environment for the button-press-topdown-wall-v2 environment, sample for the policy button-press-topdown-wall-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_button_press_topdown_wall_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_button_press_topdown_wall_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_button_press_topdown_wall_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T15:39:43+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:11:31+00:00
49382f46fd73fc9821bff06c9e9913893cfa3ba0
# Dataset Card for "perseuslatin_UD" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pnadel/perseuslatin_UD
[ "region:us" ]
2023-03-08T15:50:53+00:00
{"dataset_info": {"features": [{"name": "fname", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 920071, "num_examples": 4936}], "download_size": 342519, "dataset_size": 920071}}
2023-03-18T20:58:02+00:00
d9b3fb8f0227bf4a93e25036a8f7addca2d083b1
An imitation learning environment for the button-press-v2 environment, sample for the policy button-press-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_button_press_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_button_press_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_button_press_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T16:13:55+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:14:00+00:00
c909e4901e24716fa6f3164d5e0e202a839d399b
An imitation learning environment for the button-press-wall-v2 environment, sample for the policy button-press-wall-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_button_press_wall_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_button_press_wall_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_button_press_wall_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T16:16:35+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:16:39+00:00
b6cafb68d17ad71ea66351ee2ffbc53376d553a6
An imitation learning environment for the coffee-button-v2 environment, sample for the policy coffee-button-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_coffee_button_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_coffee_button_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_coffee_button_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T16:19:02+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:19:06+00:00
027757e76a5e3beaeffcc98f4f5aa08665f03840
An imitation learning environment for the coffee-pull-v2 environment, sample for the policy coffee-pull-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_coffee_pull_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_coffee_pull_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_coffee_pull_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T16:21:44+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:21:48+00:00
5fb84b937e99f15c8f4a4b606c1bac858a9de14e
An imitation learning environment for the coffee-push-v2 environment, sample for the policy coffee-push-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_coffee_push_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_coffee_push_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_coffee_push_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T16:24:19+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T16:24:23+00:00
de7ac846a1ad4843f036c8a38cbdbc16f2bf465b
mwirth-epo/epo-nmt-datasets
[ "task_categories:translation", "license:cc-by-sa-4.0", "legal", "region:us" ]
2023-03-08T17:10:44+00:00
{"license": "cc-by-sa-4.0", "task_categories": ["translation"], "tags": ["legal"]}
2023-03-17T10:06:40+00:00
1792be1ef3ece466f1cc7750baba302c16c93a47
# Dataset name: "modified_anthropic_convo_data" # Dataset Card for Conversational AI Bot ## Dataset Description - **Homepage:** https://huggingface.co/datasets/Anthropic/hh-rlhf ### Dataset Summary - This dataset is the augmented version of the same dataset found here https://huggingface.co/datasets/Anthropic/hh-rlhf - Two new columns have been added called ***human_speaker*** and ***assistant_speaker*** to make it easier to directly use the data for a causal langauage modeling task - Currently only one pair of conversations have been picked, the dataset will be updated soon ### Contributions Thanks to https://huggingface.co/datasets/Anthropic/hh-rlhf for adding this dataset.
vyas21/modified_anthropic_convo_data
[ "task_categories:conversational", "conversation", "dialogue", "anthropic", "region:us" ]
2023-03-08T17:13:56+00:00
{"task_categories": ["conversational"], "pretty_name": "modified_anthropic_convo_data", "dataset_info": {"features": [{"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}, {"name": "human_speaker", "dtype": "string"}, {"name": "assistant_speaker", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 370789375, "num_examples": 160800}, {"name": "test", "num_bytes": 19894559, "num_examples": 8552}], "download_size": 223189497, "dataset_size": 390683934}, "tags": ["conversation", "dialogue", "anthropic"]}
2023-03-08T17:21:47+00:00
9d848ab703b14931c473253cc48f6dafecc3ab6b
An imitation learning environment for the disassemble-v2 environment, sample for the policy disassemble-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_disassemble_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_disassemble_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_disassemble_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-08T18:02:12+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-08T18:02:16+00:00
014891aa03f9d869c99be0072aa39f483d7a178f
kadirnar/deneme
[ "license:apache-2.0", "region:us" ]
2023-03-08T18:06:34+00:00
{"license": "apache-2.0"}
2023-03-08T18:07:01+00:00
053fed5e38f17d9560fc2bf1c0854ab8deabcda1
# Dataset Card for "ia_embedded" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
davanstrien/ia_embedded
[ "region:us" ]
2023-03-08T18:14:56+00:00
{"dataset_info": {"features": [{"name": "crawl_date", "dtype": "int64"}, {"name": "last_modified_date", "dtype": "float64"}, {"name": "url", "dtype": "string"}, {"name": "filename", "dtype": "string"}, {"name": "extension", "dtype": "string"}, {"name": "mime_type_web_server", "dtype": "string"}, {"name": "mime_type_tika", "dtype": "string"}, {"name": "width", "dtype": "int64"}, {"name": "height", "dtype": "int64"}, {"name": "md5", "dtype": "string"}, {"name": "sha1", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "train", "num_bytes": 1053063432.5, "num_examples": 6764}], "download_size": 1041773215, "dataset_size": 1053063432.5}}
2023-03-08T20:28:35+00:00
fb6a760df211962001d69fda7f3b42568ca938f8
bilgeyucel/seven-wonders
[ "size_categories:n<1K", "language:en", "region:us" ]
2023-03-08T18:44:17+00:00
{"language": ["en"], "size_categories": ["n<1K"]}
2023-03-09T14:25:43+00:00
80ee62302515d7eab20491a2ce3ff8fc423ebf5e
# Dataset Card for "stackxchange" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
voidful/stackxchange
[ "region:us" ]
2023-03-08T19:00:50+00:00
{"dataset_info": {"features": [{"name": "Name", "dtype": "string"}, {"name": "Tags", "sequence": "string"}, {"name": "Title", "dtype": "string"}, {"name": "Title_RAW", "dtype": "string"}, {"name": "Question", "dtype": "string"}, {"name": "Question_RAW", "dtype": "string"}, {"name": "AcceptedAnswers", "list": [{"name": "Body", "dtype": "string"}, {"name": "Body_RAW", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "Score", "dtype": "string"}]}, {"name": "OtherAnswers", "list": [{"name": "Body", "dtype": "string"}, {"name": "Body_RAW", "dtype": "string"}, {"name": "Id", "dtype": "string"}, {"name": "Score", "dtype": "string"}]}, {"name": "page", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 37087996849, "num_examples": 6378706}], "download_size": 20193071433, "dataset_size": 37087996849}}
2023-03-29T17:30:07+00:00
9e8925a0f87652f26912c3e8f34739182d890ff5
# Dataset Card for "sidewalk-imagery" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
coralexbadea/sidewalk-imagery
[ "region:us" ]
2023-03-08T19:02:59+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 86083036.0, "num_examples": 10}], "download_size": 3930138, "dataset_size": 86083036.0}}
2023-03-08T19:03:02+00:00
5802a0231552af839004effe29e7a62b2e5e76f2
# Dataset Card for "cms-icd10-categorical" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lowem1/cms-icd10-categorical
[ "region:us" ]
2023-03-08T19:12:49+00:00
{"dataset_info": {"features": [{"name": "group_no", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 11507555, "num_examples": 87474}], "download_size": 1989506, "dataset_size": 11507555}}
2023-03-08T19:12:55+00:00
fbdc97f5a2412e1dd03525efc43c7ddddbe0a518
# Dataset Card for "OK_VQA_google_flan_t5_xxl_mode_VQAv2_visclues_detection_caption_module_filter_ns_100_OE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/OK_VQA_google_flan_t5_xxl_mode_VQAv2_visclues_detection_caption_module_filter_ns_100_OE
[ "region:us" ]
2023-03-08T19:33:07+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "true_label", "sequence": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 18400, "num_examples": 100}], "download_size": 11086, "dataset_size": 18400}}
2023-03-08T20:01:20+00:00
f53b5805351e39a823e14d304b84fe44780942e2
# Dataset Card for "apps_partial_0_120" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
minimario/apps_partial_0_120
[ "region:us" ]
2023-03-08T19:33:45+00:00
{"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "code", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 634469951, "num_examples": 439648}], "download_size": 13803138, "dataset_size": 634469951}}
2023-03-08T19:37:46+00:00
d414892a2443539d9f03b93ed64787f147156f1d
unlabeledstudiosllc/client-messages
[ "license:unknown", "region:us" ]
2023-03-08T19:35:12+00:00
{"license": "unknown"}
2023-03-08T19:35:13+00:00
bdf4a70508ac7eafc002d8956cdaa3ed70e982c6
# Dataset Card for "apps_partial_120_200" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
minimario/apps_partial_120_200
[ "region:us" ]
2023-03-08T19:40:02+00:00
{"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "code", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 254632633, "num_examples": 181046}], "download_size": 4512497, "dataset_size": 254632633}}
2023-03-08T19:40:11+00:00
33597f348695efafb6cff6ed04cb59732739c789
# Dataset Card for "OK_VQA_google_flan_ul2_mode_VQAv2_visclues_detection_caption_module_filter_ns_100_OE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/OK_VQA_google_flan_ul2_mode_VQAv2_visclues_detection_caption_module_filter_ns_100_OE
[ "region:us" ]
2023-03-08T19:50:37+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "true_label", "sequence": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 18358, "num_examples": 100}], "download_size": 11109, "dataset_size": 18358}}
2023-03-08T20:14:53+00:00
fd793ef523145a94417c9659e0ab72f9e560ad9c
trondizzy/para_legal
[ "task_categories:translation", "size_categories:n<1K", "language:uk", "language:en", "license:cc", "region:us" ]
2023-03-08T19:58:47+00:00
{"language": ["uk", "en"], "license": "cc", "size_categories": ["n<1K"], "task_categories": ["translation"]}
2023-03-08T22:47:03+00:00
03a508f01d59b95f1ddd7da8d85ef4d091a7f9c6
# Dataset Card for "OcclusionSwissJudgmentPrediction": An implementation of an occlusion based explainability method for Swiss judgment prediction ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Summary](#dataset-summary) - [Documents](#documents) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset **str**ucture](#dataset-**str**ucture) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Summary This dataset contains an implementation of occlusion for the SwissJudgmentPrediction task. Note that this dataset only provides a test set and should be used in comination with the [Swiss-Judgment-Prediction](https://huggingface.co/datasets/swiss_judgment_prediction) dataset. ### Documents Occlusion-Swiss-Judgment-Prediction is a subset of the [Swiss-Judgment-Prediction](https://huggingface.co/datasets/swiss_judgment_prediction) dataset. The Swiss-Judgment-Prediction dataset is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), the publication year, the legal area and the canton of origin per case. Occlusion-Swiss-Judgment-Prediction extends this dataset by adding sentence splitting with explainability labels. ### Supported Tasks and Leaderboards OcclusionSwissJudgmentPrediction can be used for performing the occlusion in the legal judgment prediction task. ### Languages Switzerland has four official languages with 3 languages (German, French and Italian) being represented in more than 1000 Swiss Federal Supreme court decisions. The decisions are written by the judges and clerks in the language of the proceedings. ## Dataset structure ### Data Instances ## Data Instances **Multilingual use of the dataset** When the dataset is used in a multilingual setting selecting the the 'all_languages' flag: ```python from datasets import load_dataset dataset = load_dataset('rcds/occlusion_swiss_judgment_prediction', 'all') ``` **Monolingual use of the dataset** When the dataset is used in a monolingual setting selecting the ISO language code for one of the 3 supported languages. For example: ```python from datasets import load_dataset dataset = load_dataset('rcds/occlusion_swiss_judgment_prediction', 'de') ``` ### Data Fields The following data fields are provided for documents (Test_1/Test_2/Test_3/Test_4): id: (**int**) a unique identifier of the for the document <br/> year: (**int**) the publication year<br/> label: (**str**) the judgment outcome: dismissal or approval<br/> language: (**str**) one of (de, fr, it)<br/> region: (**str**) the region of the lower court<br/> canton: (**str**) the canton of the lower court<br/> legal area: (**str**) the legal area of the case<br/> explainability_label (**str**): the explainability label assigned to the occluded text: Supports judgment, Opposes judgment, Neutral, Baseline<br/> occluded_text (**str**): the occluded text<br/> text: (**str**) the facts of the case w/o the occluded text except for cases w/ explainability label "Baseline" (contain entire facts)<br/> Note that Baseline cases are only contained in version 1 of the occlusion test set, since they do not change from experiment to experiment. ### Data Splits (Including Swiss Judgment Prediction) Language | Subset | Number of Rows (Test_1/Test_2/Test_3/Test_4) | ----------- | ----------- | ----------- | German| de | __427__ / __1366__ / __3567__ / __7235__ French | fr | __307__ / __854__ / __1926__ / __3279__ Italian | it | __299__ /__919__ / __2493__ / __5733__ All | all | __1033__ / __3139__ / __7986__/ __16247__ Language | Subset | Number of Documents (is the same for Test_1/Test_2/Test_3/Test_4) | ----------- | ----------- | ----------- | German| de | __38__ French | fr | __36__ Italian | it | __34__ All | all | __108__ ## Dataset Creation ### Curation Rationale The dataset was curated by Niklaus et al. (2021) and Nina Baumgartner. ### Source Data #### Initial Data Collection and Normalization The original data are available at the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML. #### Who are the source language producers? Switzerland has four official languages with 3 languages (German, French and Italian) being represented in more than 1000 Swiss Federal Supreme court decisions. The decisions are written by the judges and clerks in the language of the proceedings. ### Annotations #### Annotation process The decisions have been annotated with the binarized judgment outcome using parsers and regular expressions. In addition a subset of the test set (27 cases in German, 24 in French and 23 in Italian spanning over the years 2017 an 20200) was annotated by legal experts, splitting sentences/group of sentences and annotated with one of the following explainability label: Supports judgment, Opposes Judgment and Neutral. The test sets have each sentence/ group of sentence once occluded, enabling an analysis of the changes in the model's performance. The legal expert annotation were conducted from April 2020 to August 2020. #### Who are the annotators? Joel Niklaus and Adrian Jörg annotated the binarized judgment outcomes. Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch). The group of legal experts consists of Thomas Lüthi (lawyer), Lynn Grau (law student at master's level) and Angela Stefanelli (law student at master's level). ### Personal and Sensitive Information The dataset contains publicly available court decisions from the Swiss Federal Supreme Court. Personal or sensitive information has been anonymized by the court before publication according to the following guidelines: https://www.bger.ch/home/juridiction/anonymisierungsregeln.html. ## Additional Information ### Dataset Curators Niklaus et al. (2021) and Nina Baumgartner ### Licensing Information We release the data under CC-BY-4.0 which complies with the court licensing (https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf) © Swiss Federal Supreme Court, 2000-2020 The copyright for the editorial content of this website and the consolidated texts, which is owned by the Swiss Federal Supreme Court, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made. Source: https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf ### Citation Information ``` @misc{baumgartner_nina_occlusion_2022, title = {From Occlusion to Transparancy – An Occlusion-Based Explainability Approach for Legal Judgment Prediction in Switzerland}, shorttitle = {From Occlusion to Transparancy}, abstract = {Natural Language Processing ({NLP}) models have been used for more and more complex tasks such as Legal Judgment Prediction ({LJP}). A {LJP} model predicts the outcome of a legal case by utilizing its facts. This increasing deployment of Artificial Intelligence ({AI}) in high-stakes domains such as law and the involvement of sensitive data has increased the need for understanding such systems. We propose a multilingual occlusion-based explainability approach for {LJP} in Switzerland and conduct a study on the bias using Lower Court Insertion ({LCI}). We evaluate our results using different explainability metrics introduced in this thesis and by comparing them to high-quality Legal Expert Annotations using Inter Annotator Agreement. Our findings show that the model has a varying understanding of the semantic meaning and context of the facts section, and struggles to distinguish between legally relevant and irrelevant sentences. We also found that the insertion of a different lower court can have an effect on the prediction, but observed no distinct effects based on legal areas, cantons, or regions. However, we did identify a language disparity with Italian performing worse than the other languages due to representation inequality in the training data, which could lead to potential biases in the prediction in multilingual regions of Switzerland. Our results highlight the challenges and limitations of using {NLP} in the judicial field and the importance of addressing concerns about fairness, transparency, and potential bias in the development and use of {NLP} systems. The use of explainable artificial intelligence ({XAI}) techniques, such as occlusion and {LCI}, can help provide insight into the decision-making processes of {NLP} systems and identify areas for improvement. Finally, we identify areas for future research and development in this field in order to address the remaining limitations and challenges.}, author = {{Baumgartner, Nina}}, year = {2022}, langid = {english} } ``` ### Contributions Thanks to [@ninabaumgartner](https://github.com/ninabaumgartner) for adding this dataset.
rcds/occlusion_swiss_judgment_prediction
[ "task_categories:text-classification", "task_categories:other", "annotations_creators:expert-generated", "language_creators:expert-generated", "language_creators:found", "multilinguality:multilingual", "size_categories:1K<n<10K", "source_datasets:extended|swiss_judgment_prediction", "language:de", "language:fr", "language:it", "language:en", "license:cc-by-sa-4.0", "explainability-judgment-prediction", "occlusion", "region:us" ]
2023-03-08T20:14:10+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated", "found"], "language": ["de", "fr", "it", "en"], "license": "cc-by-sa-4.0", "multilinguality": ["multilingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["extended|swiss_judgment_prediction"], "task_categories": ["text-classification", "other"], "task_ids": [], "pretty_name": "OcclusionSwissJudgmentPrediction", "tags": ["explainability-judgment-prediction", "occlusion"]}
2023-03-28T07:19:29+00:00
d2cde298e79c94fb05bc320999deb4b7889b0464
# Dataset Card for Invoices (Sparrow) This dataset contains 500 invoice documents annotated and processed to be ready for Donut ML model fine-tuning. Annotation and data preparation task was done by [Katana ML](https://www.katanaml.io) team. [Sparrow](https://github.com/katanaml/sparrow/tree/main) - open-source data extraction solution by Katana ML. Original dataset [info](https://data.mendeley.com/datasets/tnj49gpmtz): Kozłowski, Marek; Weichbroth, Paweł (2021), “Samples of electronic invoices”, Mendeley Data, V2, doi: 10.17632/tnj49gpmtz.2
katanaml-org/invoices-donut-data-v1
[ "task_categories:feature-extraction", "size_categories:n<1K", "language:en", "license:mit", "region:us" ]
2023-03-08T20:44:29+00:00
{"language": ["en"], "license": "mit", "size_categories": ["n<1K"], "task_categories": ["feature-extraction"], "pretty_name": "Sparrow Invoice Dataset", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "ground_truth", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 234024421, "num_examples": 425}, {"name": "test", "num_bytes": 14512665, "num_examples": 26}, {"name": "validation", "num_bytes": 27661738, "num_examples": 50}], "download_size": 197512750, "dataset_size": 276198824}}
2023-05-09T06:05:11+00:00
fb3da03f110264cd891d81eb6f69545904de38f6
# Dataset Card for "nyt_headlines" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pnadel/nyt_headlines
[ "region:us" ]
2023-03-08T21:15:37+00:00
{"dataset_info": {"features": [{"name": "headline", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7115360, "num_examples": 92285}], "download_size": 4519003, "dataset_size": 7115360}}
2023-03-08T21:15:46+00:00
d960fe328b0eeaa461928e856d1935e642475aa2
Eternalenv/aaaaaa
[ "license:openrail", "region:us" ]
2023-03-08T21:28:39+00:00
{"license": "openrail"}
2023-03-08T21:28:39+00:00
594dee62efbadabf0ca69d5f45098d1d3dfbc298
# Dataset Card for "back_translation_fr_on_small_persian_QA" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jalalnb/back_translation_fr_on_small_persian_QA
[ "region:us" ]
2023-03-08T21:32:57+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int32"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "text", "dtype": "string"}, {"name": "answer_start", "dtype": "int32"}]}], "splits": [{"name": "validation", "num_bytes": 262697, "num_examples": 130}, {"name": "train", "num_bytes": 2553488, "num_examples": 1261}], "download_size": 88831, "dataset_size": 2816185}}
2023-03-10T16:57:42+00:00
42933e7d3129501465825a610b5d14615612c824
# Dataset Card for "back_translation_en_on_small_persian_QA" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jalalnb/back_translation_en_on_small_persian_QA
[ "region:us" ]
2023-03-08T21:33:13+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int32"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "text", "dtype": "string"}, {"name": "answer_start", "dtype": "int32"}]}], "splits": [{"name": "validation", "num_bytes": 262797, "num_examples": 130}, {"name": "train", "num_bytes": 2553868, "num_examples": 1261}], "download_size": 1043078, "dataset_size": 2816665}}
2023-03-08T21:33:28+00:00
d4af8a28c0857059ea85f00a8a2f69a7d7b949fa
# Dataset Card for "back_translation_hy_on_small_persian_QA" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jalalnb/back_translation_hy_on_small_persian_QA
[ "region:us" ]
2023-03-08T21:33:29+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int32"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "text", "dtype": "string"}, {"name": "answer_start", "dtype": "int32"}]}], "splits": [{"name": "validation", "num_bytes": 262683, "num_examples": 130}, {"name": "train", "num_bytes": 2552922, "num_examples": 1261}], "download_size": 1042907, "dataset_size": 2815605}}
2023-03-08T21:33:44+00:00
d4af833b41e79e82e0fcadeb99f55a62bc7b20c7
jonathanscruz/amcruzmn
[ "license:creativeml-openrail-m", "region:us" ]
2023-03-08T21:58:45+00:00
{"license": "creativeml-openrail-m"}
2023-03-08T21:58:45+00:00
c4bb665268b07bb33c3fc70475c9eb2047cfe9e2
# Dataset Card for "self-instruct-eval" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
argilla/self-instruct-eval
[ "region:us" ]
2023-03-08T23:00:35+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "null"}, {"name": "inputs", "struct": [{"name": "input", "dtype": "string"}, {"name": "response", "dtype": "string"}]}, {"name": "prediction", "dtype": "null"}, {"name": "prediction_agent", "dtype": "null"}, {"name": "annotation", "dtype": "null"}, {"name": "annotation_agent", "dtype": "null"}, {"name": "vectors", "struct": [{"name": "completion", "sequence": "float64"}, {"name": "prompt", "sequence": "float64"}]}, {"name": "multi_label", "dtype": "bool"}, {"name": "explanation", "dtype": "null"}, {"name": "id", "dtype": "null"}, {"name": "metadata", "dtype": "null"}, {"name": "status", "dtype": "string"}, {"name": "event_timestamp", "dtype": "timestamp[us]"}, {"name": "metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 1037904569, "num_examples": 82612}], "download_size": 834389885, "dataset_size": 1037904569}}
2023-03-09T00:02:04+00:00
933ef3a8ec0b20158197f3f41d4f5ae49fc1d990
# Dataset Card for "vira-intents-live" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
codesj/vira-intents-live
[ "region:us" ]
2023-03-08T23:14:52+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 536982, "num_examples": 7434}, {"name": "validation", "num_bytes": 227106, "num_examples": 3140}], "download_size": 348952, "dataset_size": 764088}}
2023-03-08T23:14:55+00:00
01974f95a4c8ff221ac97374a25a53e1ac6527af
# Dataset Card for "miniwob_T5_balanced" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LucasThil/miniwob_T5_balanced
[ "region:us" ]
2023-03-08T23:31:34+00:00
{"dataset_info": {"features": [{"name": "episodes", "dtype": "string"}, {"name": "target_actions", "dtype": "string"}, {"name": "target_refs", "dtype": "int64"}, {"name": "target_text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7287315, "num_examples": 14211}], "download_size": 1208349, "dataset_size": 7287315}}
2023-03-08T23:54:01+00:00
871857b06d74bd5d1f9609f516d3c1b9ffadf8a9
# Dataset Card for "random-walk-reddit-corpus-small" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
dmayhem93/random-walk-reddit-corpus-small
[ "region:us" ]
2023-03-09T00:20:52+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15525948, "num_examples": 8286}], "download_size": 8990634, "dataset_size": 15525948}}
2023-03-09T00:25:14+00:00
df214f1c3974ebd88e485390ced7ab64017bfca5
# Dataset Card for "top-2-reddit-corpus-small" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
dmayhem93/top-2-reddit-corpus-small
[ "region:us" ]
2023-03-09T00:25:14+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16545775, "num_examples": 8286}], "download_size": 9560714, "dataset_size": 16545775}}
2023-03-09T00:25:20+00:00
4a147e36c24e7afc4a4858afd3f6e3128870a929
# Dataset Card for "lld-onlyicon-ko" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Babypotatotang/lld-onlyicon-ko
[ "region:us" ]
2023-03-09T00:42:04+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 196434759.578, "num_examples": 14959}, {"name": "test", "num_bytes": 49110770.04, "num_examples": 3740}], "download_size": 156811914, "dataset_size": 245545529.618}}
2023-03-17T04:27:40+00:00
899de144a47a4409f71eee61ae591a0e1e838ba6
wdsaaaa/asas
[ "license:unknown", "region:us" ]
2023-03-09T01:06:31+00:00
{"license": "unknown"}
2023-03-09T01:06:31+00:00
c3eebba63d68f7f4c4a8010425725abde721a913
Enzaz/Arktoriaz
[ "license:unknown", "region:us" ]
2023-03-09T01:59:03+00:00
{"license": "unknown"}
2023-03-09T01:59:03+00:00
888f2ffeb2398ae737ccc6e64cc7215e129436e7
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** : https://explainthejoke.com/ ### Dataset Summary Corpus for testing whether your LLM can explain the joke well. But this is a rather small dataset, if someone can point to a larger ones would be very nice. ### Languages English ## Dataset Structure ### Data Fields * url : link to the explaination * joke : the original joke * explaination : the explaination of the joke ### Data Splits Since its so small, there's no splits just like gsm8k
theblackcat102/joke_explaination
[ "task_categories:text-generation", "task_categories:text2text-generation", "size_categories:n<1K", "language:en", "license:mit", "joke", "high quality", "region:us" ]
2023-03-09T02:29:11+00:00
{"language": ["en"], "license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-generation", "text2text-generation"], "tags": ["joke", "high quality"]}
2023-03-09T02:35:40+00:00
c9aadd98a23acfe92856dc645ab6d69d72ae5063
wenjiewu/dataset_f
[ "license:mit", "region:us" ]
2023-03-09T02:30:17+00:00
{"license": "mit"}
2023-03-09T02:30:17+00:00
870df28d7855e18c6354ef1a4e803df6e6e34ae7
smileyes/ssDataSet
[ "region:us" ]
2023-03-09T02:32:36+00:00
{}
2023-03-09T02:34:00+00:00
8f2485fff341fefe8061318c695961f65248ae8a
# Dataset Card for "aihub_food" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MarkJeong/aihub_food
[ "region:us" ]
2023-03-09T02:39:58+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "01011001", "1": "01012001", "2": "01012002", "3": "01012003", "4": "01012004", "5": "01012005", "6": "01012006", "7": "01013001", "8": "01014008", "9": "01014009", "10": "01014010", "11": "01014011", "12": "01014012", "13": "01014013", "14": "01015002", "15": "01015003", "16": "01015012", "17": "01015013", "18": "01015014", "19": "01015015", "20": "01015016", "21": "01015017", "22": "01015018", "23": "01015019", "24": "01016001", "25": "01016002", "26": "01016003", "27": "01016004", "28": "01016005", "29": "01016006", "30": "01016007", "31": "01016008", "32": "02011006", "33": "02011007", "34": "02011008", "35": "02011009", "36": "02011010", "37": "02011011", "38": "02011012", "39": "02011013", "40": "02011014", "41": "02011015", "42": "02011016", "43": "02011017", "44": "02011018", "45": "02011019", "46": "02011020", "47": "02011021", "48": "02011023", "49": "02011024", "50": "02011025", "51": "02011027", "52": "02011028", "53": "02011029", "54": "02011030", "55": "02011031", "56": "02011032", "57": "02011033", "58": "02011034", "59": "02011035", "60": "02011036", "61": "02011037", "62": "02011038", "63": "02011039", "64": "02011040", "65": "02012001", "66": "02012002", "67": "02012003", "68": "02012004", "69": "02012005", "70": "03011001", "71": "03011002", "72": "03011003", "73": "03011004", "74": "03011005", "75": "03011006", "76": "03011007", "77": "03011008", "78": "03011009", "79": "03011010", "80": "03011011", "81": "03012001", "82": "03012002", "83": "04011001", "84": "04011002", "85": "04011003", "86": "04011004", "87": "04011005", "88": "04011006", "89": "04011007", "90": "04011008", "91": "04011010", "92": "04011011", "93": "04011012", "94": "04011013", "95": "04011014", "96": "04011015", "97": "04011016", "98": "04012001", "99": "04012002", "100": "04012003", "101": "04012004", "102": "04012005", "103": "04012006", "104": "04012007", "105": "04012008", "106": "04012009", "107": "04012010", "108": "04012011", "109": "04012012", "110": "04012013", "111": "04013002", "112": "04013003", "113": "04013004", "114": "04013005", "115": "04013006", "116": "04013007", "117": "04013008", "118": "04013009", "119": "04013010", "120": "04013011", "121": "04013012", "122": "04013013", "123": "04013014", "124": "04013015", "125": "04013017", "126": "04013018", "127": "04013019", "128": "04015003", "129": "04016001", "130": "04017001", "131": "04017002", "132": "04018001", "133": "04018002", "134": "04018003", "135": "04018004", "136": "04019001", "137": "04019002", "138": "04019003", "139": "04019004", "140": "04019005", "141": "04019006", "142": "04019007", "143": "04019008", "144": "05011001", "145": "05011002", "146": "05011004", "147": "05011008", "148": "05011010", "149": "05011011", "150": "05011012", "151": "05012001", "152": "05012002", "153": "05012003", "154": "05012004", "155": "05012005", "156": "05013001", "157": "06012001", "158": "06012002", "159": "06012003", "160": "06012011", "161": "07011003", "162": "07011004", "163": "07012001", "164": "07012002", "165": "07012003", "166": "07013001", "167": "07013002", "168": "07013003", "169": "07013004", "170": "07013005", "171": "07013006", "172": "07013007", "173": "07013008", "174": "07013009", "175": "07013010", "176": "07013011", "177": "08011004", "178": "08011005", "179": "08011006", "180": "08011007", "181": "08011008", "182": "08012001", "183": "08012002", "184": "08012003", "185": "08012004", "186": "08012005", "187": "08012006", "188": "08012007", "189": "08012008", "190": "08012009", "191": "08012010", "192": "08013001", "193": "08013002", "194": "08013003", "195": "08013004", "196": "08013005", "197": "08013006", "198": "08014001", "199": "08014002", "200": "08014003", "201": "09012001", "202": "09012002", "203": "09013001", "204": "09013002", "205": "09014001", "206": "09014002", "207": "09014003", "208": "09014004", "209": "09015001", "210": "09015002", "211": "09015003", "212": "09016001", "213": "10011001", "214": "10011002", "215": "10011003", "216": "10011004", "217": "11011001", "218": "11011002", "219": "11011003", "220": "11011004", "221": "11011005", "222": "11011006", "223": "11011007", "224": "11011008", "225": "11011009", "226": "11011010", "227": "11011011", "228": "11012001", "229": "11012002", "230": "11012003", "231": "11012004", "232": "11013001", "233": "11013002", "234": "11013003", "235": "11013004", "236": "11013005", "237": "11013006", "238": "11013007", "239": "11013009", "240": "11013010", "241": "11013011", "242": "11013012", "243": "11014001", "244": "11014002", "245": "11014003", "246": "11014004", "247": "11014005", "248": "11014006", "249": "11014007", "250": "11014008", "251": "11014009", "252": "11014010", "253": "11015001", "254": "11015002", "255": "12011001", "256": "12011002", "257": "12011003", "258": "12011004", "259": "12011005", "260": "12011006", "261": "12011007", "262": "12011008", "263": "12011009", "264": "12011010", "265": "12011011", "266": "12011012", "267": "12011013", "268": "12011014", "269": "12011015", "270": "13011001", "271": "13011002", "272": "13011003", "273": "13011011", "274": "13011012", "275": "13012001", "276": "13012002", "277": "14011001", "278": "14011002", "279": "14011004", "280": "14011005", "281": "14012001", "282": "14012002", "283": "15011001", "284": "15011002", "285": "15011003", "286": "15011004", "287": "15011005", "288": "15011006", "289": "15011007", "290": "15011008", "291": "15011009", "292": "15011010", "293": "15011011", "294": "15011012", "295": "15011013", "296": "15011014", "297": "15011015", "298": "15011016", "299": "15011017", "300": "16011001", "301": "16011002", "302": "16011003", "303": "16011004", "304": "16011005", "305": "16011006"}}}}], "splits": [{"name": "train", "num_bytes": 14812723538.728, "num_examples": 486839}, {"name": "test", "num_bytes": 33069619665.134, "num_examples": 21178}, {"name": "validation", "num_bytes": 33770989851.48, "num_examples": 21180}], "download_size": 82692432131, "dataset_size": 81653333055.342}}
2023-03-09T17:13:22+00:00
07af1a55204a38125c8b8aed7ab48c4620625dd0
trondizzy/acts_laws
[ "task_categories:translation", "size_categories:100K<n<1M", "language:uk", "language:en", "license:cc", "region:us" ]
2023-03-09T03:00:54+00:00
{"language": ["uk", "en"], "license": "cc", "size_categories": ["100K<n<1M"], "task_categories": ["translation"]}
2023-03-09T03:03:04+00:00
62625bd1cd59a89e1d76a00a921671a68791087d
Falcon2006VN/pascal-code-generation-2mb
[ "license:mit", "region:us" ]
2023-03-09T04:25:39+00:00
{"license": "mit"}
2023-03-09T08:16:59+00:00
41029fad23089e21c84d897dd621c4b5bb5f3ed2
indiehacker/Test
[ "region:us" ]
2023-03-09T04:50:58+00:00
{}
2023-03-09T04:53:47+00:00
9ced8931752f9cf5e2a1411539bf4fed0110e639
Ales21/Workss
[ "size_categories:1K<n<10K", "license:openrail", "region:us" ]
2023-03-09T05:05:43+00:00
{"license": "openrail", "size_categories": ["1K<n<10K"], "pretty_name": "model_for_all_44"}
2023-03-09T05:08:34+00:00
72566a11ba24611f41bbbd314284b17b42dcb1ad
# Dataset Card for "spectrogram_data_Upbeat-4s" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
deepak-newzera/spectrogram_data_Upbeat-4s
[ "region:us" ]
2023-03-09T05:34:56+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "audio_file", "dtype": "string"}, {"name": "slice", "dtype": "int16"}], "splits": [{"name": "train", "num_bytes": 105472108.125, "num_examples": 3495}], "download_size": 104843147, "dataset_size": 105472108.125}}
2023-03-09T05:36:06+00:00
0c0d32d57da9c2335a868f2d6a2ff87a6982028f
# Dataset Card for "trainofasys" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Hantao/trainofasys
[ "region:us" ]
2023-03-09T05:46:33+00:00
{"dataset_info": {"features": [{"name": "0", "dtype": "int64"}, {"name": "ocr", "dtype": "string"}, {"name": "caption", "dtype": "string"}, {"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 204855956.375, "num_examples": 1325}], "download_size": 200935734, "dataset_size": 204855956.375}}
2023-03-09T06:04:49+00:00
736ed539e9da2b2779ddb92b7d5cf0ab8b087843
# Dataset Card for "boolq_pt_r" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reaganjlee/boolq_pt_r
[ "region:us" ]
2023-03-09T05:46:40+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "label (class label)", "dtype": "bool"}, {"name": "passage", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6258250, "num_examples": 9427}], "download_size": 3947154, "dataset_size": 6258250}}
2023-03-09T05:49:08+00:00
0ad5607dce2d604aceb428f769b4e22cfa210b86
**Label Description** 0 : Fake, 1 : Real
pushpdeep/fake_news_combined
[ "license:apache-2.0", "region:us" ]
2023-03-09T06:04:04+00:00
{"license": "apache-2.0"}
2023-04-10T17:59:26+00:00
38282981ce7e57d081395c6771b625e58f20cabc
# Dataset Card for "boolq_pt" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reaganjlee/boolq_pt
[ "region:us" ]
2023-03-09T06:15:08+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "passage", "dtype": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "False", "1": "True"}}}}], "splits": [{"name": "validation", "num_bytes": 1604091, "num_examples": 3270}, {"name": "train", "num_bytes": 4624752, "num_examples": 9427}], "download_size": 3843346, "dataset_size": 6228843}}
2023-05-04T03:38:45+00:00
145ff5e53cd4b5e3fbf3d0a2a74c3618ec7e30ec
These recording and transcripts have been copied from the Russian President's website at kremlin.ru. All content on this site is licensed under Creative Commons Attribution 4.0 International. http://en.kremlin.ru/about/copyrights
spdenisov/prezident_ru
[ "license:cc-by-4.0", "region:us" ]
2023-03-09T07:06:19+00:00
{"license": "cc-by-4.0"}
2023-03-10T18:16:28+00:00
9bf59ccccdbe271abb898b4466ad6f6469ddda10
# Dataset Card for "github-code-scala" This contains just the scala data in [github-code-clean](https://huggingface.co/datasets/codeparrot/github-code). There are 817k samples with a total download size of 1.52GB.
blastwind/github-code-scala
[ "task_categories:text-generation", "size_categories:100K<n<1M", "region:us" ]
2023-03-09T07:24:09+00:00
{"size_categories": ["100K<n<1M"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "code", "dtype": "string"}, {"name": "repo_name", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "size", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3330521484.4803743, "num_examples": 654001}, {"name": "valid", "num_bytes": 416314548.9934581, "num_examples": 81750}, {"name": "test", "num_bytes": 416319641.5261675, "num_examples": 81751}], "download_size": 1534670727, "dataset_size": 4163155675.0}}
2023-03-21T19:19:22+00:00
4491123f2558a04da05ed1e6ba433f83069388d5
yanyc/SciGraph
[ "license:mit", "region:us" ]
2023-03-09T07:39:07+00:00
{"license": "mit"}
2023-03-10T18:01:21+00:00
577f652b57fffa3a03abf748251496d9edcabf14
pushpdeep/fake_news_test
[ "license:apache-2.0", "region:us" ]
2023-03-09T07:44:08+00:00
{"license": "apache-2.0"}
2023-03-09T13:42:43+00:00
e11c39cd2de9fd1e2063e84e08bfbe1d6ea657da
# Dataset Card for "temp1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Oshan/temp1
[ "region:us" ]
2023-03-09T07:53:05+00:00
{"dataset_info": {"features": [{"name": "bnd_idcs", "sequence": {"sequence": "int64"}}, {"name": "atm_type", "sequence": "int64"}, {"name": "bnd_type", "sequence": "int64"}, {"name": "y", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 1869800, "num_examples": 2000}], "download_size": 130309, "dataset_size": 1869800}}
2023-03-09T07:53:15+00:00
783bd6ba635f64039dbfb36707273a7403da0e43
# Dataset Card for "boolq_pt" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
christykoh/boolq_pt
[ "region:us" ]
2023-03-09T07:57:12+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "passage", "dtype": "string"}, {"name": "answer", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 4550515, "num_examples": 9427}, {"name": "validation", "num_bytes": 1578340, "num_examples": 3270}], "download_size": 3842223, "dataset_size": 6128855}}
2023-05-02T22:43:01+00:00
f5bb6204e1b09e2e56c86e9416dd30e6f07d08a8
# Dataset Card for "reklamation24_reisen-tourismus-full" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/reklamation24_reisen-tourismus-full
[ "region:us" ]
2023-03-09T08:14:35+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "inputs", "struct": [{"name": "text", "dtype": "string"}]}, {"name": "prediction", "list": [{"name": "label", "dtype": "string"}, {"name": "score", "dtype": "float64"}]}, {"name": "prediction_agent", "dtype": "string"}, {"name": "annotation", "dtype": "string"}, {"name": "annotation_agent", "dtype": "string"}, {"name": "vectors", "struct": [{"name": "mini-lm-sentence-transformers", "sequence": "float64"}]}, {"name": "multi_label", "dtype": "bool"}, {"name": "explanation", "dtype": "null"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "dtype": "null"}, {"name": "status", "dtype": "string"}, {"name": "event_timestamp", "dtype": "timestamp[us]"}, {"name": "metrics", "struct": [{"name": "text_length", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 139906308, "num_examples": 23759}], "download_size": 0, "dataset_size": 139906308}}
2023-04-25T13:09:00+00:00
2048171505f3065d2b46f518ba316daa6460e68d
# Dataset Card for "reklamation24_schoenheit-wellness-full" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/reklamation24_schoenheit-wellness-full
[ "region:us" ]
2023-03-09T08:15:53+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "inputs", "struct": [{"name": "text", "dtype": "string"}]}, {"name": "prediction", "list": [{"name": "label", "dtype": "string"}, {"name": "score", "dtype": "float64"}]}, {"name": "prediction_agent", "dtype": "string"}, {"name": "annotation", "dtype": "string"}, {"name": "annotation_agent", "dtype": "string"}, {"name": "vectors", "struct": [{"name": "mini-lm-sentence-transformers", "sequence": "float64"}]}, {"name": "multi_label", "dtype": "bool"}, {"name": "explanation", "dtype": "null"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "dtype": "null"}, {"name": "status", "dtype": "string"}, {"name": "event_timestamp", "dtype": "timestamp[us]"}, {"name": "metrics", "struct": [{"name": "text_length", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 21984670, "num_examples": 4158}], "download_size": 0, "dataset_size": 21984670}}
2023-04-25T13:10:02+00:00
f85a78260a7b0abebf8231960b3e06348a5a6867
# Dataset Card for "reklamation24_reisen-tourismus" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/reklamation24_reisen-tourismus
[ "region:us" ]
2023-03-09T08:22:19+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "label_name", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 247525, "num_examples": 444}, {"name": "test", "num_bytes": 59699, "num_examples": 111}], "download_size": 0, "dataset_size": 307224}}
2023-04-19T07:28:55+00:00
53b9a88c2d9181b9667dec5bc3c2f247c02563ed
# Dataset Card for "reklamation24_schoenheit-wellness" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/reklamation24_schoenheit-wellness
[ "region:us" ]
2023-03-09T08:23:03+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "label_name", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 215900, "num_examples": 464}, {"name": "test", "num_bytes": 56138, "num_examples": 117}], "download_size": 0, "dataset_size": 272038}}
2023-04-19T07:29:58+00:00
a317387bb96c724d4c8956a92f6d3f61bd0b2b17
RollRoys/OkCu
[ "license:unknown", "region:us" ]
2023-03-09T08:29:44+00:00
{"license": "unknown"}
2023-03-09T08:32:55+00:00
41ef425e5945714fccdad32c23c78880b2369db0
An imitation learning environment for the handle-press-side-v2 environment, sample for the policy handle-press-side-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_handle_press_side_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_handle_press_side_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_handle_press_side_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-09T09:08:02+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-09T09:08:06+00:00
0e77121d3776dd4a3fb1112b10259b86eb4e78a1
An imitation learning environment for the handle-press-v2 environment, sample for the policy handle-press-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_handle_press_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_handle_press_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_handle_press_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-09T09:09:28+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-09T09:09:33+00:00
b4a949430732bba48b3aa2500fdfa95f52f3b015
# Dataset Card for "issues_content_500k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
loubnabnl/issues_content_500k
[ "region:us" ]
2023-03-09T09:14:04+00:00
{"dataset_info": {"features": [{"name": "content", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 973521579, "num_examples": 500000}], "download_size": 489652577, "dataset_size": 973521579}}
2023-03-09T09:14:35+00:00
d1e1a78a5e0f5eb79dcaf46d92c453e68f67538d
An imitation learning environment for the handle-pull-side-v2 environment, sample for the policy handle-pull-side-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_handle_pull_side_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_handle_pull_side_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_handle_pull_side_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-09T09:25:09+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-09T09:25:14+00:00
67176dfe7ccb77de7a9549ee5ecb09bb20cf46b8
An imitation learning environment for the handle-pull-v2 environment, sample for the policy handle-pull-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_handle_pull_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_handle_pull_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_handle_pull_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-09T09:26:46+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-09T09:26:51+00:00
d3dfcc9f4fabb0bfeb80ed80ae5c6d0002637030
An imitation learning environment for the lever-pull-v2 environment, sample for the policy lever-pull-v2 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia ## Load dataset First, clone it with ```sh git clone https://huggingface.co/datasets/qgallouedec/prj_gia_dataset_metaworld_lever_pull_v2_1111 ``` Then, load it with ```python import numpy as np dataset = np.load("prj_gia_dataset_metaworld_lever_pull_v2_1111/dataset.npy", allow_pickle=True).item() print(dataset.keys()) # dict_keys(['observations', 'actions', 'dones', 'rewards']) ```
qgallouedec/prj_gia_dataset_metaworld_lever_pull_v2_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-03-09T09:28:20+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-03-09T09:28:24+00:00
2019c80d837eb390b0b4b74ec2948b05e10fb68b
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: 0ys/mt5-small-finetuned-amazon-en-es * Dataset: samsum * Config: samsum * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@raviteja2](https://huggingface.co/raviteja2) for evaluating this model.
autoevaluate/autoeval-eval-samsum-samsum-8c5714-39885103812
[ "autotrain", "evaluation", "region:us" ]
2023-03-09T09:42:17+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "0ys/mt5-small-finetuned-amazon-en-es", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "test", "col_mapping": {"text": "dialogue", "target": "summary"}}}
2023-03-09T09:43:08+00:00
a59366e1b8eb6d6f3d014ae3dd7041a0835d42c8
# Dataset Card for "prj_gia_dataset_metaworld_assembly_v2_1111_demo" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
qgallouedec/prj_gia_dataset_metaworld_assembly_v2_1111_demo
[ "region:us" ]
2023-03-09T10:19:54+00:00
{"dataset_info": {"features": [{"name": "observations", "sequence": "float32"}, {"name": "actions", "sequence": "float32"}, {"name": "dones", "dtype": "bool"}, {"name": "rewards", "dtype": "float32"}], "splits": [{"name": "train", "num_bytes": 18412500, "num_examples": 100000}], "download_size": 8875331, "dataset_size": 18412500}}
2023-03-10T16:23:12+00:00
77896f938062293560304eee77676f001d41c4b3
tarta-ai/jobs-in-california-february-2023
[ "task_categories:text-classification", "size_categories:1M<n<10M", "language:en", "license:other", "job", "jobs", "california jobs", "region:us" ]
2023-03-09T10:57:14+00:00
{"language": ["en"], "license": "other", "size_categories": ["1M<n<10M"], "task_categories": ["text-classification"], "pretty_name": "Comprehensive Job Count Information by Company in California", "tags": ["job", "jobs", "california jobs"]}
2023-03-09T11:08:25+00:00
b45984ffbef8596a8b6ac2ac8959f2f8998049bb
# Dataset Card for "flowers-blip-captions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pranked03/flowers-blip-captions
[ "region:us" ]
2023-03-09T11:02:26+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 270279282.848, "num_examples": 6552}], "download_size": 277165211, "dataset_size": 270279282.848}}
2023-03-09T11:29:27+00:00
a7d8afe06177bea23b412cc025066c60bba9079c
# Dataset Card for "maps_parquet" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
davanstrien/maps_parquet
[ "region:us" ]
2023-03-09T11:03:56+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "no building or railspace", "1": "railspace", "2": "building", "3": "railspace and non railspace building"}}}}, {"name": "map_sheet", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 957911247.448, "num_examples": 37212}, {"name": "validation", "num_bytes": 316304202.708, "num_examples": 12404}, {"name": "test", "num_bytes": 323743326.376, "num_examples": 12404}], "download_size": 1600455354, "dataset_size": 1597958776.5319998}}
2023-03-09T11:05:08+00:00
845c49cc3b3bce553a78b07c25c7aca51722ea68
test
yunosuken/sentiment-train
[ "region:us" ]
2023-03-09T11:28:42+00:00
{"viewer": true, "dataset_info": {"homepage": "httsp://www.yahoo.co.jp", "features": [{"name": "id", "dtype": "int64"}, {"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 897816, "num_examples": 8476}, {"name": "validation", "num_bytes": 52805, "num_examples": 497}, {"name": "test", "num_bytes": 109825, "num_examples": 1002}], "download_size": 601239, "dataset_size": 1060446, "description": "hoge"}}
2023-03-15T13:48:44+00:00
5e492c24fec9fee51a80a3945ab60260fdb01ed3
# Dataset Card for "reklambox3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/reklambox3
[ "region:us" ]
2023-03-09T12:58:50+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "filename", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "label_name", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 645273.5305832148, "num_examples": 1124}, {"name": "test", "num_bytes": 161892.4694167852, "num_examples": 282}], "download_size": 446344, "dataset_size": 807166.0}}
2023-03-09T12:59:51+00:00
755f26834ed9be29f64fee9b38941f9f3db146e9
# Dataset Card for "to_label_samples" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
active-learning/to_label_samples
[ "region:us" ]
2023-03-09T13:01:14+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 1391.0870983935743, "num_examples": 5}], "download_size": 3878, "dataset_size": 1391.0870983935743}}
2023-09-04T20:47:10+00:00
cab57870780d884a7240928d7a01b60baa899e5a
saitsharipov/ddpm-butterflies-128
[ "license:unknown", "region:us" ]
2023-03-09T13:22:21+00:00
{"license": "unknown"}
2023-03-09T13:22:21+00:00
dd0d6a1537093e3f4304a7469603c1ce388fb07a
# Dataset Card for "symptom_text_to_disease_mk2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
venetis/symptom_text_to_disease_mk2
[ "region:us" ]
2023-03-09T13:23:32+00:00
{"dataset_info": {"features": [{"name": "audio_clipping", "dtype": "string"}, {"name": "audio_clipping:confidence", "dtype": "float64"}, {"name": "background_noise_audible", "dtype": "string"}, {"name": "background_noise_audible:confidence", "dtype": "float64"}, {"name": "overall_quality_of_the_audio", "dtype": "float64"}, {"name": "quiet_speaker", "dtype": "string"}, {"name": "quiet_speaker:confidence", "dtype": "float64"}, {"name": "speaker_id", "dtype": "int64"}, {"name": "file_download", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "phrase", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "writer_id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2016289, "num_examples": 6661}], "download_size": 409095, "dataset_size": 2016289}}
2023-03-09T13:23:37+00:00
2e477f41b0d05aa8041913e4c1ffe4ee58efe0dd
# Dataset Card for "symptom_text_to_disease_mk3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
venetis/symptom_text_to_disease_mk3
[ "region:us" ]
2023-03-09T13:24:15+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "labels", "dtype": {"class_label": {"names": {"0": "emotional pain", "1": "hair falling out", "2": "heart hurts", "3": "infected wound", "4": "foot ache", "5": "shoulder pain", "6": "injury from sports", "7": "skin issue", "8": "stomach ache", "9": "knee pain", "10": "joint pain", "11": "hard to breath", "12": "head ache", "13": "body feels weak", "14": "feeling dizzy", "15": "back pain", "16": "open wound", "17": "internal pain", "18": "blurry vision", "19": "acne", "20": "muscle pain", "21": "neck pain", "22": "cough", "23": "ear ache", "24": "feeling cold"}}}}], "splits": [{"name": "train", "num_bytes": 330494.3762197868, "num_examples": 5328}, {"name": "test", "num_bytes": 41373.82675273983, "num_examples": 667}, {"name": "valid", "num_bytes": 41311.79702747335, "num_examples": 666}], "download_size": 146385, "dataset_size": 413180.0}}
2023-03-09T13:24:21+00:00
8da059c6b31546ec0bbeb46d531c2be3a4f6cc18
# Machine translation dataset for NLU (Virual Assistant) with slot transfer between languages version: 0.5.1 ## Dataset Summary Disclaimer: This is for research purposes only. Please have a look at the license section below. Some of the datasets used to construct IVA_MT have an unknown license. IVA_MT is a machine translation dataset that can be used to train, adapt and evaluate MT models used in Virtual Assistant NLU context (e.g. to translate trainig corpus of NLU). ## Dataset Composition ### en-pl | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 11514 | 2033 | 2974 | | [Leyzer 0.2.0](https://github.com/cartesinus/leyzer/tree/0.2.0) | 3974 | 701 | 1380 | | [OpenSubtitles from OPUS](https://opus.nlpl.eu/OpenSubtitles-v1.php) | 2329 | 411 | 500 | | [KDE from OPUS](https://opus.nlpl.eu/KDE4.php) | 1154 | 241 | 241 | | [CCMatrix from Opus](https://opus.nlpl.eu/CCMatrix.php) | 1096 | 232 | 237 | | [Ubuntu from OPUS](https://opus.nlpl.eu/Ubuntu.php) | 281 | 60 | 59 | | [Gnome from OPUS](https://opus.nlpl.eu/GNOME.php) | 14 | 3 | 3 | | *total* | 20362 | 3681 | 5394 | ### en-de | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 7536 | 1346 | 1955 | ### en-es | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 8415 | 1526 | 2202 | ### en-sv | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 7540 | 1360 | 1921 | ### en-fr | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 6800 | 1203 | 1757 | ### en-pt | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 7368 | 1296 | 1885 | ### en-hi | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 6702 | 1175 | 1747 | ### en-tr | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 8269 | 1474 | 2170 | ### en-ja | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 8066 | 1434 | 2085 | ### en-zh | Corpus | Train | Dev | Test | |----------------------------------------------------------------------|--------|-------|-------| | [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 8433 | 1513 | 2179 | | ChatGPT | 1312 | 200 | 200 | ## Tools Scripts used to generate this dataset can be found on [github](https://github.com/cartesinus/iva_mt). ## Citation If you use this models please cite: ``` @article{Sowanski2023SlotLI, title={Slot Lost in Translation? Not Anymore: A Machine Translation Model for Virtual Assistants with Type-Independent Slot Transfer}, author={Marcin Sowanski and Artur Janicki}, journal={2023 30th International Conference on Systems, Signals and Image Processing (IWSSIP)}, year={2023}, pages={1-5} } ``` ## License This is a composition of 7 datasets, and the license is as defined in original release: - MASSIVE: [CC-BY 4.0](https://huggingface.co/datasets/AmazonScience/massive/blob/main/LICENSE) - Leyzer: [CC BY-NC 4.0](https://github.com/cartesinus/leyzer/blob/master/LICENSE) - OpenSubtitles: unknown - KDE: [GNU Public License](https://l10n.kde.org/about.php) - CCMatrix: no license given, therefore assuming it is LASER project license [BSD](https://github.com/facebookresearch/LASER/blob/main/LICENSE) - Ubuntu: [GNU Public License](https://help.launchpad.net/Legal) - Gnome: unknown
cartesinus/iva_mt_wslot
[ "task_categories:translation", "size_categories:10K<n<100K", "language:en", "language:pl", "language:de", "language:es", "language:sv", "language:fr", "language:pt", "license:cc-by-4.0", "machine translation", "nlu", "natural-language-understanding", "virtual assistant", "region:us" ]
2023-03-09T14:02:00+00:00
{"language": ["en", "pl", "de", "es", "sv", "fr", "pt"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["translation"], "pretty_name": "Machine translation for NLU with slot transfer", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "origin", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "translation_utt", "dtype": {"translation": {"languages": ["en", "pl"]}}}, {"name": "translation_xml", "dtype": {"translation": {"languages": ["en", "pl"]}}}, {"name": "src_bio", "dtype": "string"}, {"name": "tgt_bio", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6187206, "num_examples": 20362}, {"name": "validation", "num_bytes": 1115480, "num_examples": 3681}, {"name": "test", "num_bytes": 1587613, "num_examples": 5394}], "download_size": 3851892, "dataset_size": 8890299}, "tags": ["machine translation", "nlu", "natural-language-understanding", "virtual assistant"]}
2024-02-08T14:33:40+00:00
b0875a6944533b8011fccfc0a712df06959ad055
# Dataset Card for Habr QnA ## Table of Contents - [Dataset Card for Habr QnA](#dataset-card-for-habr-qna) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) ## Dataset Description - **Repository:** https://github.com/its5Q/habr-qna-parser ### Dataset Summary This is a dataset of questions and answers scraped from [Habr QnA](https://qna.habr.com/). There are 723430 asked questions with answers, comments and other metadata. ### Languages The dataset is mostly Russian with source code in different languages. ## Dataset Structure ### Data Fields Data fields can be previewed on the dataset card page. ### Data Splits All 723430 examples are in the train split, there is no validation split. ## Dataset Creation The data was scraped with a script, located in [my GitHub repository](https://github.com/its5Q/habr-qna-parser) ## Additional Information ### Dataset Curators - https://github.com/its5Q
its5Q/habr_qna
[ "task_categories:text-generation", "task_categories:question-answering", "task_ids:language-modeling", "task_ids:open-domain-qa", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:ru", "license:cc0-1.0", "region:us" ]
2023-03-09T14:02:50+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["ru"], "license": ["cc0-1.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": ["original"], "task_categories": ["text-generation", "question-answering"], "task_ids": ["language-modeling", "open-domain-qa"], "pretty_name": "Habr QnA", "tags": []}
2023-03-11T04:43:35+00:00
048e9a835bf265c5292cd3c8f4128d04bd41c84f
# Dataset Card for "avatar-lite_captioned-augmented" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jlbaker361/avatar-lite_captioned-augmented
[ "region:us" ]
2023-03-09T14:04:10+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "src", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 441803035.75, "num_examples": 1890}], "download_size": 441599217, "dataset_size": 441803035.75}}
2023-03-18T19:06:06+00:00
776c9f763c6c3874e44360505aef3ab275a3c63e
# Dataset Card for "cherry_picked_compleetions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lewtun/cherry_picked_completions
[ "region:us" ]
2023-03-09T14:12:19+00:00
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "completions", "list": [{"name": "completions", "sequence": "string"}, {"name": "creation_date", "dtype": "string"}, {"name": "policy", "dtype": "string"}]}, {"name": "meta", "struct": [{"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 72786, "num_examples": 16}], "download_size": 25787, "dataset_size": 72786}}
2023-03-09T15:05:19+00:00
5a39018156af9b3515b17a3f73cd16752b0ddc7a
# Dataset Card for "OK_VQA_google_flan_t5_xxl_mode_VQAv2_visclues_detection_caption_module_filter_ns_5046_OE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/OK_VQA_google_flan_t5_xxl_mode_VQAv2_visclues_detection_caption_module_filter_ns_5046_OE
[ "region:us" ]
2023-03-09T14:23:14+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "true_label", "sequence": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 920304, "num_examples": 5046}], "download_size": 356829, "dataset_size": 920304}}
2023-03-09T17:32:38+00:00
e22fb0ce2c73d603ff182183fbfc1476d0032d1d
# MODIS Water Lake Powell Toy Dataset ### Dataset Summary Tabular dataset comprised of MODIS surface reflectance bands along with calculated indices and a label (water/not-water) ## Dataset Structure ### Data Fields - `water`: Label, water or not-water (binary) - `sur_refl_b01_1`: MODIS surface reflection band 1 (-100, 16000) - `sur_refl_b02_1`: MODIS surface reflection band 2 (-100, 16000) - `sur_refl_b03_1`: MODIS surface reflection band 3 (-100, 16000) - `sur_refl_b04_1`: MODIS surface reflection band 4 (-100, 16000) - `sur_refl_b05_1`: MODIS surface reflection band 5 (-100, 16000) - `sur_refl_b06_1`: MODIS surface reflection band 6 (-100, 16000) - `sur_refl_b07_1`: MODIS surface reflection band 7 (-100, 16000) - `ndvi`: Normalized differential vegetation index (-20000, 20000) - `ndwi1`: Normalized differential water index 1 (-20000, 20000) - `ndwi2`: Normalized differential water index 2 (-20000, 20000) ### Data Splits Train and test split. Test is 200 rows, train is 800. ## Dataset Creation ## Source Data [MODIS MOD44W](https://lpdaac.usgs.gov/products/mod44wv006/) [MODIS MOD09GA](https://lpdaac.usgs.gov/products/mod09gav006/) [MODIS MOD09GQ](https://lpdaac.usgs.gov/products/mod09gqv006/) ## Annotation process Labels were created by using the MOD44W C6 product to designate pixels in MODIS surface reflectance products as land or water.
nasa-cisto-data-science-group/modis-lake-powell-toy-dataset
[ "size_categories:n<1K", "license:apache-2.0", "region:us" ]
2023-03-09T14:45:40+00:00
{"license": "apache-2.0", "size_categories": ["n<1K"]}
2023-05-04T00:39:33+00:00
dea58326a42f399b6c22b00e89c2cfd7c4c92db8
# Dataset Card for "MedQuAD_47441_Question_Answer_Pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
AnonymousSub/MedQuAD_47441_Question_Answer_Pairs
[ "region:us" ]
2023-03-09T15:02:27+00:00
{"dataset_info": {"features": [{"name": "Questions", "dtype": "string"}, {"name": "Answers", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 24216623, "num_examples": 47441}], "download_size": 9258859, "dataset_size": 24216623}}
2023-03-09T15:02:29+00:00
c9490aa39c878e2353c357407880795aed55b77d
# Dataset Card for "OK_VQA_google_flan_t5_xxl_mode_VQAv2_visclues_detection_caption_module_ns_5046_OE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/OK_VQA_google_flan_t5_xxl_mode_VQAv2_visclues_detection_caption_module_ns_5046_OE
[ "region:us" ]
2023-03-09T15:04:13+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "true_label", "sequence": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 919899, "num_examples": 5046}], "download_size": 356578, "dataset_size": 919899}}
2023-03-09T17:56:24+00:00
cb0dab9f8b6c0e9ccf6801079699b5a2beaa2047
# Dataset Card for "tib_wip" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
gigant/tib_wip
[ "region:us" ]
2023-03-09T15:05:59+00:00
{"dataset_info": {"features": [{"name": "doi", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "video_url", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "genre", "dtype": "string"}, {"name": "release_year", "dtype": "string"}, {"name": "author", "dtype": "string"}, {"name": "contributors", "dtype": "string"}, {"name": "abstract", "dtype": "string"}, {"name": "transcript", "dtype": "string"}, {"name": "transcript_segments", "sequence": [{"name": "id", "dtype": "int32"}, {"name": "seek", "dtype": "int32"}, {"name": "start", "dtype": "float32"}, {"name": "end", "dtype": "float32"}, {"name": "text", "dtype": "string"}, {"name": "tokens", "sequence": "int32"}, {"name": "temperature", "dtype": "float32"}, {"name": "avg_logprob", "dtype": "float32"}, {"name": "compression_ratio", "dtype": "float32"}, {"name": "no_speech_prob", "dtype": "float32"}]}, {"name": "keyframes", "sequence": [{"name": "slide", "dtype": "string"}, {"name": "frames", "sequence": "int32"}, {"name": "timestamp", "sequence": "float32"}]}, {"name": "language", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1262918268, "num_examples": 11043}], "download_size": 607894050, "dataset_size": 1262918268}}
2023-03-23T00:50:47+00:00