sha
stringlengths 40
40
| text
stringlengths 0
13.4M
| id
stringlengths 2
117
| tags
list | created_at
stringlengths 25
25
| metadata
stringlengths 2
31.7M
| last_modified
stringlengths 25
25
|
---|---|---|---|---|---|---|
2cba5e734ec9e1ebee2f1cb2c4df15d5b75bfbb4
|
sampath017/plants
|
[
"task_categories:image-classification",
"size_categories:n<1K",
"language:en",
"license:gpl-3.0",
"region:us"
] |
2023-03-30T02:59:13+00:00
|
{"language": ["en"], "license": "gpl-3.0", "size_categories": ["n<1K"], "task_categories": ["image-classification"], "pretty_name": "plants images "}
|
2023-03-30T03:03:57+00:00
|
|
68f99de54e08637b568a8ffdbe97cdc33a2327d4
|
# Dataset Card for "msp4"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
kiringodhwani/msp4
|
[
"region:us"
] |
2023-03-30T03:20:59+00:00
|
{"dataset_info": {"features": [{"name": "From", "sequence": "string"}, {"name": "Sent", "sequence": "string"}, {"name": "To", "sequence": "string"}, {"name": "Cc", "sequence": "string"}, {"name": "Subject", "sequence": "string"}, {"name": "Attachment", "sequence": "string"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4454603, "num_examples": 2577}], "download_size": 1953609, "dataset_size": 4454603}}
|
2023-03-30T03:21:01+00:00
|
3d3b9ae92a10544b84de45767d138d66f1c38635
|
# Dataset Card for "msp12"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
kiringodhwani/msp12
|
[
"region:us"
] |
2023-03-30T03:29:55+00:00
|
{"dataset_info": {"features": [{"name": "From", "sequence": "string"}, {"name": "Sent", "sequence": "string"}, {"name": "To", "sequence": "string"}, {"name": "Cc", "sequence": "string"}, {"name": "Subject", "sequence": "string"}, {"name": "Attachment", "sequence": "string"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4706548, "num_examples": 2260}], "download_size": 2172589, "dataset_size": 4706548}}
|
2023-03-30T03:29:58+00:00
|
5ad281bcb0218ef16e8beeee16693f212c2a3735
|
# Dataset Card for "msp10"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
kiringodhwani/msp10
|
[
"region:us"
] |
2023-03-30T03:37:35+00:00
|
{"dataset_info": {"features": [{"name": "From", "sequence": "string"}, {"name": "Sent", "sequence": "string"}, {"name": "To", "sequence": "string"}, {"name": "Cc", "sequence": "string"}, {"name": "Subject", "sequence": "string"}, {"name": "Attachment", "sequence": "string"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9444843, "num_examples": 7772}], "download_size": 3887624, "dataset_size": 9444843}}
|
2023-03-30T03:37:38+00:00
|
99531716abbc681394e1965ed7fd8dd07e5efdc1
|
# Dataset Card for "msp8"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
kiringodhwani/msp8
|
[
"region:us"
] |
2023-03-30T03:41:41+00:00
|
{"dataset_info": {"features": [{"name": "From", "sequence": "string"}, {"name": "Sent", "sequence": "string"}, {"name": "To", "sequence": "string"}, {"name": "Cc", "sequence": "string"}, {"name": "Subject", "sequence": "string"}, {"name": "Attachment", "sequence": "string"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5451396, "num_examples": 5348}], "download_size": 2135865, "dataset_size": 5451396}}
|
2023-03-30T03:41:43+00:00
|
2f76eeccc0e255361b555ed3d44ee8d8bd4815b8
|
# Dataset Card for "msp9"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
kiringodhwani/msp9
|
[
"region:us"
] |
2023-03-30T03:46:47+00:00
|
{"dataset_info": {"features": [{"name": "From", "sequence": "string"}, {"name": "Sent", "sequence": "string"}, {"name": "To", "sequence": "string"}, {"name": "Cc", "sequence": "string"}, {"name": "Subject", "sequence": "string"}, {"name": "Attachment", "sequence": "string"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8204305, "num_examples": 6859}], "download_size": 3436668, "dataset_size": 8204305}}
|
2023-03-30T03:46:49+00:00
|
1b97199d0a88545bf74dc69868656906c0921388
|
# Dataset Card for "msp6newmodel"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
kiringodhwani/msp6newmodel
|
[
"region:us"
] |
2023-03-30T03:53:41+00:00
|
{"dataset_info": {"features": [{"name": "From", "sequence": "string"}, {"name": "Sent", "sequence": "string"}, {"name": "To", "sequence": "string"}, {"name": "Cc", "sequence": "string"}, {"name": "Subject", "sequence": "string"}, {"name": "Attachment", "sequence": "string"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4381100, "num_examples": 3079}], "download_size": 1929565, "dataset_size": 4381100}}
|
2023-03-30T03:53:43+00:00
|
461011389de53a545206c38d1c5ec93194e81062
|
# Distillation for quantization on Textual Inversion models to personalize text2image with Intel® Neural Compressor
<p float="left">
<img src="https://huggingface.co/datasets/Intel/textual_inversion_dicoo_dfq/resolve/main/FP32.png" width = "300" height = "300" alt="FP32" align=center />
<img src="https://huggingface.co/datasets/Intel/textual_inversion_dicoo_dfq/resolve/main/INT8.png" width = "300" height = "300" alt="INT8" align=center />
</p>
Image on the top is generated from the FP32 finetuned stable diffusion model, bottom image is generated from the INT8 stable diffusion model which is quantized from the FP32 model by distillation for quantization approach.
<br>
Please refer to this <a href="https://github.com/intel/neural-compressor/tree/master/examples/pytorch/diffusion_model/diffusers/textual_inversion/distillation_for_quantization">example</a> of Intel® Neural Compressor for more detail.
|
Intel/textual_inversion_dicoo_dfq
|
[
"license:apache-2.0",
"region:us"
] |
2023-03-30T03:54:13+00:00
|
{"license": "apache-2.0"}
|
2023-03-30T04:19:52+00:00
|
a81a5d76a6f472c25a13a19cfb24773ada153b96
|
# Dataset Card for "msp11"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
kiringodhwani/msp11
|
[
"region:us"
] |
2023-03-30T04:02:58+00:00
|
{"dataset_info": {"features": [{"name": "From", "sequence": "string"}, {"name": "Sent", "sequence": "string"}, {"name": "To", "sequence": "string"}, {"name": "Cc", "sequence": "string"}, {"name": "Subject", "sequence": "string"}, {"name": "Attachment", "sequence": "string"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7371058, "num_examples": 2200}], "download_size": 3570495, "dataset_size": 7371058}}
|
2023-03-30T04:03:01+00:00
|
98543471d49c953af6cb7bdd96af39c1e0785731
|
# Dataset Card for "fewshot_multiwoz_restaurants"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
vidhikatkoria/fewshot_multiwoz_restaurants
|
[
"region:us"
] |
2023-03-30T04:07:22+00:00
|
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "string"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 17398, "num_examples": 56}, {"name": "validation", "num_bytes": 4503, "num_examples": 14}, {"name": "test", "num_bytes": 2336842, "num_examples": 7298}], "download_size": 893258, "dataset_size": 2358743}}
|
2023-03-30T04:07:33+00:00
|
c6a22eaebca4315f518b571c4fb44effecaa18d3
|
# Dataset Card for TransactPro FAQ!
This is a synthetic dataset made with GPT-4.
|
c-s-ale/transactpro-dataset
|
[
"task_categories:table-question-answering",
"size_categories:n<1K",
"language:en",
"license:openrail",
"region:us"
] |
2023-03-30T04:22:43+00:00
|
{"language": ["en"], "license": "openrail", "size_categories": ["n<1K"], "task_categories": ["table-question-answering"], "pretty_name": "TransactPro FAQ Dataset", "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7808, "num_examples": 24}, {"name": "test", "num_bytes": 976, "num_examples": 3}, {"name": "valid", "num_bytes": 976, "num_examples": 3}], "download_size": 15787, "dataset_size": 9760}}
|
2023-03-30T17:10:04+00:00
|
3f7d383a058e6a3b57c686fa7506ef9ff52d0961
|
Shahnawaj/13MedicareFAQ
|
[
"license:mit",
"region:us"
] |
2023-03-30T04:44:03+00:00
|
{"license": "mit"}
|
2023-03-30T04:47:32+00:00
|
|
ac63c59a3f1f4d71f75df29bc74a4400ecc71afb
|
# Dataset Card for "clean-dataset-preview"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
AlekseyKorshuk/clean-dataset-preview
|
[
"region:us"
] |
2023-03-30T05:17:35+00:00
|
{"dataset_info": {"features": [{"name": "input_text", "dtype": "string"}, {"name": "output_text", "dtype": "string"}, {"name": "check_word_number_criteria", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 686595411, "num_examples": 337253}], "download_size": 283358430, "dataset_size": 686595411}}
|
2023-03-31T16:40:19+00:00
|
4dd5548e08ac639ef1833dc6814606689537add5
|
# Dataset Card for "diff_sitemap_and_direct"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
hayesyang/diff_sitemap_and_direct
|
[
"region:us"
] |
2023-03-30T05:36:04+00:00
|
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "sitemap", "dtype": "string"}, {"name": "local", "dtype": "string"}, {"name": "quick_ratio", "dtype": "float64"}], "splits": [{"name": "zh", "num_bytes": 74903836, "num_examples": 2771}, {"name": "en", "num_bytes": 69187224, "num_examples": 2258}, {"name": "fr", "num_bytes": 38867616, "num_examples": 1201}, {"name": "es", "num_bytes": 56906331, "num_examples": 1695}, {"name": "ru", "num_bytes": 35285827, "num_examples": 926}, {"name": "ar", "num_bytes": 34554954, "num_examples": 883}], "download_size": 84893570, "dataset_size": 309705788}}
|
2023-03-30T05:36:12+00:00
|
cbeba6d5958447b78046319f1b4c5a16086a72f3
|
# Dataset Card for "slurp_dataset_audio"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
yhfang/slurp_dataset_audio
|
[
"region:us"
] |
2023-03-30T05:55:41+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "slurp_id", "dtype": "int64"}, {"name": "intent", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2366367342.757, "num_examples": 50627}, {"name": "test", "num_bytes": 614902079.546, "num_examples": 13078}, {"name": "validation", "num_bytes": 436133520.91, "num_examples": 8690}], "download_size": 3912246041, "dataset_size": 3417402943.213}}
|
2023-03-30T06:11:58+00:00
|
26248fbb4959bfee2e6badf7db0d49128bde7cc4
|
pai2996/sd_celeb
|
[
"size_categories:n<1K",
"region:us"
] |
2023-03-30T06:05:10+00:00
|
{"size_categories": ["n<1K"]}
|
2023-03-30T06:14:17+00:00
|
|
f464ed57f15349a8211512bbfea122f56a367113
|
Porridge/Dataset_test
|
[
"license:unknown",
"region:us"
] |
2023-03-30T06:24:12+00:00
|
{"license": "unknown"}
|
2023-03-30T06:24:12+00:00
|
|
a46f98219e858c49500688be011861712b6d9f31
|
Thanks for [Guanaco Dataset](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset) and [Belle Dataset](https://huggingface.co/datasets/BelleGroup/generated_train_0.5M_CN)
This dataset was created by merging the above two datasets in a certain format so that they can be used for training our code [Chinese-Vicuna](https://github.com/Facico/Chinese-Vicuna)
|
Chinese-Vicuna/guanaco_belle_merge_v1.0
|
[
"language:zh",
"language:en",
"language:ja",
"license:gpl-3.0",
"region:us"
] |
2023-03-30T06:29:07+00:00
|
{"language": ["zh", "en", "ja"], "license": "gpl-3.0"}
|
2023-03-30T06:49:30+00:00
|
09b77e3275945c0e51d45c331b4c58c265c3cfd8
|
# Dataset Card for "Aug_DA_MultiWOZ_Restaurants"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
vidhikatkoria/Aug_DA_MultiWOZ_Restaurants
|
[
"region:us"
] |
2023-03-30T06:29:28+00:00
|
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "string"}, {"name": "speaker", "dtype": "int64"}, {"name": "generated", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2728537, "num_examples": 7298}], "download_size": 1075591, "dataset_size": 2728537}}
|
2023-03-30T06:29:29+00:00
|
669ddb08498afbd779c722056d56fedcb450ca8d
|
Miyamura80Ox/dlh_miniproject
|
[
"license:mit",
"region:us"
] |
2023-03-30T06:51:40+00:00
|
{"license": "mit"}
|
2023-03-30T06:58:12+00:00
|
|
75e49504963ec14b7ebf5d4597ea2e097b06efaa
|
# Dataset Card for Swiss Leading Decisions
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
Swiss Leading Decisions is a multilingual, diachronic dataset of 21K Swiss Federal Supreme Court (FSCS) cases. This dataset is part of a challenging text classification task. We also provide additional metadata as the publication year, the law area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
### Supported Tasks and Leaderboards
Swiss Leading Decisions hepled in a text classification task
### Languages
Switzerland has four official languages with three languages German, French and Italian being represenated. The decisions are written by the judges and clerks in the language of the proceedings.
| Language | Subset | Number of Documents |
|------------|------------|----------------------|
| German | **de** | 14K |
| French | **fr** | 6K |
| Italian | **it** | 1K |
## Dataset Structure
### Data Fields
```
decision_id: (str) a unique identifier of the for the document
language: (int64) one of (0,1,2)
chamber_id: (int64) id to identfy chamber
file_id: (int64) id to identify file
date: (int64)
topic: (string)
year: (float64)
language: (string)
facts: (string) text section of the full text
facts_num_tokens_bert: (int64)
facts_num_tokens_spacy: (int64)
considerations: (string) text section of the full text
considerations_num_tokens_bert: (int64)
considerations_num_tokens_spacy: (int64)
rulings: (string) text section of the full text
rulings_num_tokens_bert: (int64)
rulings_num_tokens_spacy: (int64)
chamber (string):
court: (string)
canton: (string)
region: (string)
file_name: (string)
html_url: (string)
pdf_url: (string)
file_number: (string)
```
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
## Dataset Creation
### Curation Rationale
The dataset was created by Stern (2023).
### Source Data
#### Initial Data Collection and Normalization
The original data are published from the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML.
#### Who are the source language producers?
The decisions are written by the judges and clerks in the language of the proceedings.
### Annotations
#### Annotation process
#### Who are the annotators?
Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch).
### Personal and Sensitive Information
The dataset contains publicly available court decisions from the Swiss Federal Supreme Court. Personal or sensitive information has been anonymized by the court before publication according to the following guidelines: https://www.bger.ch/home/juridiction/anonymisierungsregeln.html.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
We release the data under CC-BY-4.0 which complies with the court licensing (https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf)
© Swiss Federal Supreme Court, 2002-2022
The copyright for the editorial content of this website and the consolidated texts, which is owned by the Swiss Federal Supreme Court, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made.
Source: https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf
### Citation Information
Please cite our [ArXiv-Preprint](https://arxiv.org/abs/2306.09237)
```
@misc{rasiah2023scale,
title={SCALE: Scaling up the Complexity for Advanced Language Model Evaluation},
author={Vishvaksenan Rasiah and Ronja Stern and Veton Matoshi and Matthias Stürmer and Ilias Chalkidis and Daniel E. Ho and Joel Niklaus},
year={2023},
eprint={2306.09237},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@Stern5497](https://github.com/stern5497) for adding this dataset.
|
rcds/swiss_leading_decisions
|
[
"task_categories:text-classification",
"annotations_creators:machine-generated",
"language_creators:expert-generated",
"multilinguality:multilingual",
"size_categories:10K<n<100K",
"source_datasets:original",
"language:de",
"language:it",
"language:fr",
"license:cc-by-sa-4.0",
"arxiv:2306.09237",
"region:us"
] |
2023-03-30T07:38:35+00:00
|
{"annotations_creators": ["machine-generated"], "language_creators": ["expert-generated"], "language": ["de", "it", "fr"], "license": "cc-by-sa-4.0", "multilinguality": ["multilingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["text-classification"], "pretty_name": "Swiss Leading Decisions"}
|
2023-07-20T06:38:35+00:00
|
6b47376fa7f01cf2d220e4d3d2a7dd311c58caf6
|
# Dataset Card for "stackoverflow_question_types"
## NOTE: the dataset is still currently under annotation
## Dataset Description
Recent research has taken a look into leveraging data available from StackOverflow (SO) to train large language models for programming-related tasks.
However, users can ask a wide range of questions on stackoverflow; The "stackoverflow question types" is a dataset of manually annotated questions
posted on SO with an associated type. Following a previous [study](https://ieeexplore.ieee.org/document/6405249), each question was annotated with a type
capturing the main concern of the user who posted the question. The questions were annotated with the given types:
* *Need to know*: Questions regarding the possibility or availability of (doing) something. These questions normally show the lack of knowledge or uncertainty about some aspects of the technology (e.g. the presence of a feature in an API or a language).
* *How to do it*: Providing a scenario and asking how to implement it (sometimes with a given technology or API).
* *Debug/corrective*: Dealing with problems in the code under development, such as runtime errors and unexpected behaviour.
* *Seeking different solutions*: The questioner has a working code yet seeks a different approach to doing the job.
* *Conceptual*: The question seeks to understand some aspects of programming (with or without using code examples)
* *Other*: a question related to another aspect of programming, or even non-related to programming.
### Remarks
For this dataset, we are mainly interested in questions related to *programming*.
For instance, for [this question](https://stackoverflow.com/questions/51142399/no-acceptable-c-compiler-found-in-path-installing-python-and-gcc),
the user is "trying to install Python-3.6.5 on a machine that does not have any package manager installed" and is facing issues.
Because it's not related to the concept of programming, we would classify it as "other" and not "debugging".
Moreover, we note the following conceptual distinctions between the different categories:
- Need to know: the user asks "is it possible to do x"
- How to do it: the user wants to do "x", knows it's possible, but has no clear idea or solution/doesn't know how to do it -> wants any solution for solving "x".
- Debug: the user wants to do "x", and has a clear idea/solution "y" but it is not working, and is seeking a correction to "y".
- Seeking-different-solution: the user wants to do "x", and has found already a working solution "y", but is seeking an alternative "z".
Sometimes, it's hard to truly understand the users' true intentions;
the separating line between each category will be minor and might be subject to interpretation.
Naturally, some questions may have multiple concerns (i.e. could correspond to multiple categories).
However, this dataset contains mainly questions for which we could assign a clear single category to each question.
Currently, all questions annotated are a subset of the [stackoverflow_python](koutch/stackoverflow_python) dataset.
### Languages
The currently annotated questions concern posts with the *python* tag. The questions are written in *English*.
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- question_id: the unique id of the post
- question_body: the (HTML) content of the question
- question_type: the assigned category/type/label
- "needtoknow"
- "howto",
- "debug",
- "seeking",
- "conceptual",
- "other"
### Data Splits
[More Information Needed]
## Dataset Creation
### Annotations
#### Annotation process
Previous research looked into mining natural language-code pairs from stackoverflow.
Two notable works yielded the [StaQC](https://arxiv.org/abs/1803.09371) and [ConaLA](https://arxiv.org/abs/1803.09371) datasets.
Parts of the dataset used a subset of the manual annotations provided by the authors of the papers (available at [staqc](https://huggingface.co/datasets/koutch/staqc),
and [conala](https://huggingface.co/datasets/neulab/conala])). The questions were annotated as belonging to the "how to do it" category.
To ease the annotation procedure, we used the [argilla platform](https://docs.argilla.io/en/latest/index.html)
and multiple iterations of [few-shot training with a SetFit model](https://docs.argilla.io/en/latest/tutorials/notebooks/labelling-textclassification-setfit-zeroshot.html#%F0%9F%A6%BE-Train-a-few-shot-SetFit-model).
## Considerations for Using the Data
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
|
koutch/stackoverflow_question_types
|
[
"task_categories:text-classification",
"size_categories:1K<n<10K",
"language:en",
"license:cc",
"code",
"arxiv:1803.09371",
"region:us"
] |
2023-03-30T07:44:05+00:00
|
{"language": ["en"], "license": "cc", "size_categories": ["1K<n<10K"], "task_categories": ["text-classification"], "pretty_name": "staqt", "dataset_info": {"features": [{"name": "question_id", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "question_body", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "question_date", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3433758, "num_examples": 3449}, {"name": "test", "num_bytes": 12055, "num_examples": 14}], "download_size": 0, "dataset_size": 3445813}, "tags": ["code"]}
|
2023-04-10T13:45:23+00:00
|
efc4c1bc4951a93ecceb062038bed8b8ddac5e5a
|
dinesht/sample_dataset
|
[
"license:unknown",
"region:us"
] |
2023-03-30T08:06:38+00:00
|
{"license": "unknown"}
|
2023-03-30T08:19:01+00:00
|
|
ec1591c4dd8fd3f93a2060a5a5a2a181c8d4e190
|
# Dataset Card for coins-1apki
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/coins-1apki
- **Point of Contact:** [email protected]
### Dataset Summary
coins-1apki
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/coins-1apki
### Citation Information
```
@misc{ coins-1apki,
title = { coins 1apki Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/coins-1apki } },
url = { https://universe.roboflow.com/object-detection/coins-1apki },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/coins-1apki
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:08:48+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "coins-1apki", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "coins", "1": "coin", "2": "nail", "3": "nut", "4": "screw"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:10:17+00:00
|
a95f6f82ac0402eaf7303f5b20a029b2754185ce
|
# Dataset Card for circuit-elements
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/circuit-elements
- **Point of Contact:** [email protected]
### Dataset Summary
circuit-elements
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/circuit-elements
### Citation Information
```
@misc{ circuit-elements,
title = { circuit elements Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/circuit-elements } },
url = { https://universe.roboflow.com/object-detection/circuit-elements },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/circuit-elements
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:08:51+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "circuit-elements", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "circuit", "1": "Button", "2": "Buzzer", "3": "Capacitor", "4": "Capacitor Jumper", "5": "Capacitor Network", "6": "Clock", "7": "Connector", "8": "Diode", "9": "EM", "10": "Electrolytic Capacitor", "11": "Electrolytic capacitor", "12": "Ferrite Bead", "13": "Flex Cable", "14": "Fuse", "15": "IC", "16": "Inductor", "17": "Jumper", "18": "Led", "19": "Pads", "20": "Pins", "21": "Potentiometer", "22": "RP", "23": "Resistor", "24": "Resistor Jumper", "25": "Resistor Network", "26": "Switch", "27": "Test Point", "28": "Transducer", "29": "Transformer", "30": "Transistor", "31": "Unknown Unlabeled"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:09:26+00:00
|
1bbdaa7077c2c49d8c30718d676738c575daac44
|
# Dataset Card for soda-bottles
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/soda-bottles
- **Point of Contact:** [email protected]
### Dataset Summary
soda-bottles
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/soda-bottles
### Citation Information
```
@misc{ soda-bottles,
title = { soda bottles Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/soda-bottles } },
url = { https://universe.roboflow.com/object-detection/soda-bottles },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/soda-bottles
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:09:00+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "soda-bottles", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "soda-bottles", "1": "coca-cola", "2": "fanta", "3": "sprite"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:10:00+00:00
|
77db0a73fc986d9619382d424c1aac6ece7d52bb
|
# Dataset Card for apex-videogame
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/apex-videogame
- **Point of Contact:** [email protected]
### Dataset Summary
apex-videogame
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/apex-videogame
### Citation Information
```
@misc{ apex-videogame,
title = { apex videogame Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/apex-videogame } },
url = { https://universe.roboflow.com/object-detection/apex-videogame },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/apex-videogame
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:09:02+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "apex-videogame", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "apex-game", "1": "avatar", "2": "object"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:10:05+00:00
|
4b88e2c64beca7f6cb67ff8e5d96aa22b9bfe33c
|
# Dataset Card for radio-signal
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/radio-signal
- **Point of Contact:** [email protected]
### Dataset Summary
radio-signal
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/radio-signal
### Citation Information
```
@misc{ radio-signal,
title = { radio signal Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/radio-signal } },
url = { https://universe.roboflow.com/object-detection/radio-signal },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/radio-signal
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:09:26+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "radio-signal", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "radio-signal", "1": "stray", "2": "target"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:10:00+00:00
|
120407039f4ea390a3a8e9bd310300b656c611ae
|
# Dataset Card for brain-tumor-m2pbp
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/brain-tumor-m2pbp
- **Point of Contact:** [email protected]
### Dataset Summary
brain-tumor-m2pbp
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/brain-tumor-m2pbp
### Citation Information
```
@misc{ brain-tumor-m2pbp,
title = { brain tumor m2pbp Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/brain-tumor-m2pbp } },
url = { https://universe.roboflow.com/object-detection/brain-tumor-m2pbp },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/brain-tumor-m2pbp
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:10:00+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "brain-tumor-m2pbp", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "brain-tumor", "1": "label0", "2": "label1", "3": "label2"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:11:06+00:00
|
a28d425f82ba36f702572e0a6f2116494e13b81d
|
# Dataset Card for liver-disease
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/liver-disease
- **Point of Contact:** [email protected]
### Dataset Summary
liver-disease
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/liver-disease
### Citation Information
```
@misc{ liver-disease,
title = { liver disease Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/liver-disease } },
url = { https://universe.roboflow.com/object-detection/liver-disease },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/liver-disease
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:10:00+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "liver-disease", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "diseases", "1": "ballooning", "2": "fibrosis", "3": "inflammation", "4": "steatosis"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:11:15+00:00
|
410dedecfb43ff44e7f52f10864198fe2d343d49
|
# Dataset Card for lettuce-pallets
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/lettuce-pallets
- **Point of Contact:** [email protected]
### Dataset Summary
lettuce-pallets
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/lettuce-pallets
### Citation Information
```
@misc{ lettuce-pallets,
title = { lettuce pallets Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/lettuce-pallets } },
url = { https://universe.roboflow.com/object-detection/lettuce-pallets },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/lettuce-pallets
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:10:05+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "lettuce-pallets", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "lettuce", "1": "Ready", "2": "empty_pod", "3": "germination", "4": "pod", "5": "young"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:10:45+00:00
|
6e10c727db27d24f42b075f41c3c2928f339d844
|
# Dataset Card for solar-panels-taxvb
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/solar-panels-taxvb
- **Point of Contact:** [email protected]
### Dataset Summary
solar-panels-taxvb
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/solar-panels-taxvb
### Citation Information
```
@misc{ solar-panels-taxvb,
title = { solar panels taxvb Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/solar-panels-taxvb } },
url = { https://universe.roboflow.com/object-detection/solar-panels-taxvb },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/solar-panels-taxvb
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:10:18+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "solar-panels-taxvb", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "solar-panels", "1": "Cell", "2": "Cell-Multi", "3": "No-Anomaly", "4": "Shadowing", "5": "Unclassified"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:10:36+00:00
|
f599e8469b24e0474723fed566bca04c59c477f0
|
# Dataset Card for pills-sxdht
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/pills-sxdht
- **Point of Contact:** [email protected]
### Dataset Summary
pills-sxdht
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/pills-sxdht
### Citation Information
```
@misc{ pills-sxdht,
title = { pills sxdht Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/pills-sxdht } },
url = { https://universe.roboflow.com/object-detection/pills-sxdht },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/pills-sxdht
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:10:37+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "pills-sxdht", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "pills", "1": "Cipro 500", "2": "Ibuphil 600 mg", "3": "Ibuphil Cold 400-60", "4": "Xyzall 5mg", "5": "blue", "6": "pink", "7": "red", "8": "white"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:10:58+00:00
|
264246eb60857e6908588032b66464a8ca2a9c59
|
# Dataset Card for trail-camera
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/trail-camera
- **Point of Contact:** [email protected]
### Dataset Summary
trail-camera
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/trail-camera
### Citation Information
```
@misc{ trail-camera,
title = { trail camera Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/trail-camera } },
url = { https://universe.roboflow.com/object-detection/trail-camera },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/trail-camera
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:10:45+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "trail-camera", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "game", "1": "Deer", "2": "Hog"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:11:17+00:00
|
84d6a2506ce7524e3315d8e399e21642b187101d
|
# Dataset Card for flir-camera-objects
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/flir-camera-objects
- **Point of Contact:** [email protected]
### Dataset Summary
flir-camera-objects
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/flir-camera-objects
### Citation Information
```
@misc{ flir-camera-objects,
title = { flir camera objects Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/flir-camera-objects } },
url = { https://universe.roboflow.com/object-detection/flir-camera-objects },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/flir-camera-objects
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:10:59+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "flir-camera-objects", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "flir-camera-objects", "1": "bicycle", "2": "car", "3": "dog", "4": "person"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:13:30+00:00
|
ee4c79f9d376e0fc7ceb6c6bd34f80b7f00c9725
|
# Dataset Card for soccer-players-5fuqs
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/soccer-players-5fuqs
- **Point of Contact:** [email protected]
### Dataset Summary
soccer-players-5fuqs
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/soccer-players-5fuqs
### Citation Information
```
@misc{ soccer-players-5fuqs,
title = { soccer players 5fuqs Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/soccer-players-5fuqs } },
url = { https://universe.roboflow.com/object-detection/soccer-players-5fuqs },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/soccer-players-5fuqs
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:11:06+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "soccer-players-5fuqs", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "soccer-players", "1": "football", "2": "player", "3": "referee"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:11:24+00:00
|
ed151089e49a93907acd48173393f9a9c72b14d2
|
# Dataset Card for printed-circuit-board
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/printed-circuit-board
- **Point of Contact:** [email protected]
### Dataset Summary
printed-circuit-board
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/printed-circuit-board
### Citation Information
```
@misc{ printed-circuit-board,
title = { printed circuit board Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/printed-circuit-board } },
url = { https://universe.roboflow.com/object-detection/printed-circuit-board },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/printed-circuit-board
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:11:16+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "printed-circuit-board", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "printed-circuit-board", "1": "Button", "2": "Capacitor", "3": "Capacitor Jumper", "4": "Clock", "5": "Connector", "6": "Diode", "7": "EM", "8": "Electrolytic Capacitor", "9": "Ferrite Bead", "10": "IC", "11": "Inductor", "12": "Jumper", "13": "Led", "14": "Pads", "15": "Pins", "16": "Resistor", "17": "Resistor Jumper", "18": "Resistor Network", "19": "Switch", "20": "Test Point", "21": "Transistor", "22": "Unknown Unlabeled", "23": "iC"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:11:49+00:00
|
cd92c83884cc7c0ba1a3fda584784f550321e16f
|
# Dataset Card for construction-safety-gsnvb
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/construction-safety-gsnvb
- **Point of Contact:** [email protected]
### Dataset Summary
construction-safety-gsnvb
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/construction-safety-gsnvb
### Citation Information
```
@misc{ construction-safety-gsnvb,
title = { construction safety gsnvb Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/construction-safety-gsnvb } },
url = { https://universe.roboflow.com/object-detection/construction-safety-gsnvb },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/construction-safety-gsnvb
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:11:17+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "construction-safety-gsnvb", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "construction-safety", "1": "helmet", "2": "no-helmet", "3": "no-vest", "4": "person", "5": "vest"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:11:51+00:00
|
c91f4148103355ee247fd0a9577f491940688d06
|
# Dataset Card for aerial-pool
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/aerial-pool
- **Point of Contact:** [email protected]
### Dataset Summary
aerial-pool
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/aerial-pool
### Citation Information
```
@misc{ aerial-pool,
title = { aerial pool Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/aerial-pool } },
url = { https://universe.roboflow.com/object-detection/aerial-pool },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/aerial-pool
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:11:24+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "aerial-pool", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "aerial-pool", "1": "black-hat", "2": "bodysurface", "3": "bodyunder", "4": "umpire", "5": "white-hat"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:11:53+00:00
|
8eded16b4bca218dc0e5939cce56103ed3800a6a
|
# Dataset Card for road-traffic
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/road-traffic
- **Point of Contact:** [email protected]
### Dataset Summary
road-traffic
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/road-traffic
### Citation Information
```
@misc{ road-traffic,
title = { road traffic Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/road-traffic } },
url = { https://universe.roboflow.com/object-detection/road-traffic },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/road-traffic
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:11:50+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "road-traffic", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "road-traffic", "1": "bicycles", "2": "buses", "3": "crosswalks", "4": "fire hydrants", "5": "motorcycles", "6": "traffic lights", "7": "vehicles"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:12:18+00:00
|
989f5749f40823b3865aa4185f8d44ce69371784
|
# Dataset Card for bees-jt5in
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/bees-jt5in
- **Point of Contact:** [email protected]
### Dataset Summary
bees-jt5in
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/bees-jt5in
### Citation Information
```
@misc{ bees-jt5in,
title = { bees jt5in Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/bees-jt5in } },
url = { https://universe.roboflow.com/object-detection/bees-jt5in },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/bees-jt5in
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:11:51+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "bees-jt5in", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "bees-0", "1": "bees"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:14:39+00:00
|
5f996521a6bfdd65fb2a0fc5fe1ffcbb4207f70e
|
# Dataset Card for aerial-cows
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/aerial-cows
- **Point of Contact:** [email protected]
### Dataset Summary
aerial-cows
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/aerial-cows
### Citation Information
```
@misc{ aerial-cows,
title = { aerial cows Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/aerial-cows } },
url = { https://universe.roboflow.com/object-detection/aerial-cows },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/aerial-cows
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:11:54+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "aerial-cows", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "aerial-cows", "1": "cow"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:12:41+00:00
|
5c0e1d3d0f5a95bb916995c8ad34778cd2ca6c7c
|
# Dataset Card for furniture-ngpea
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/furniture-ngpea
- **Point of Contact:** [email protected]
### Dataset Summary
furniture-ngpea
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/furniture-ngpea
### Citation Information
```
@misc{ furniture-ngpea,
title = { furniture ngpea Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/furniture-ngpea } },
url = { https://universe.roboflow.com/object-detection/furniture-ngpea },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/furniture-ngpea
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:12:19+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "furniture-ngpea", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "furniture", "1": "Chair", "2": "Sofa", "3": "Table"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:12:40+00:00
|
558e96d0119d2833f55ad7113021e1df511745ed
|
# Dataset Card for thermal-cheetah-my4dp
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/thermal-cheetah-my4dp
- **Point of Contact:** [email protected]
### Dataset Summary
thermal-cheetah-my4dp
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/thermal-cheetah-my4dp
### Citation Information
```
@misc{ thermal-cheetah-my4dp,
title = { thermal cheetah my4dp Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/thermal-cheetah-my4dp } },
url = { https://universe.roboflow.com/object-detection/thermal-cheetah-my4dp },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/thermal-cheetah-my4dp
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:12:40+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "thermal-cheetah-my4dp", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "thermal-cheetah", "1": "cheetah", "2": "human"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:12:58+00:00
|
29888d7b0512bd7f60645f5fdddf9501673fc797
|
# Dataset Card for fish-market-ggjso
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/fish-market-ggjso
- **Point of Contact:** [email protected]
### Dataset Summary
fish-market-ggjso
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/fish-market-ggjso
### Citation Information
```
@misc{ fish-market-ggjso,
title = { fish market ggjso Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/fish-market-ggjso } },
url = { https://universe.roboflow.com/object-detection/fish-market-ggjso },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/fish-market-ggjso
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:12:41+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "fish-market-ggjso", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "fish", "1": "aair", "2": "boal", "3": "chapila", "4": "deshi puti", "5": "foli", "6": "ilish", "7": "kal baush", "8": "katla", "9": "koi", "10": "magur", "11": "mrigel", "12": "pabda", "13": "pangas", "14": "puti", "15": "rui", "16": "shol", "17": "taki", "18": "tara baim", "19": "telapiya"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:16:34+00:00
|
02a0263ac6694c917c374fa112c4863a0cc0939b
|
# Dataset Card for parasites-1s07h
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/parasites-1s07h
- **Point of Contact:** [email protected]
### Dataset Summary
parasites-1s07h
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/parasites-1s07h
### Citation Information
```
@misc{ parasites-1s07h,
title = { parasites 1s07h Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/parasites-1s07h } },
url = { https://universe.roboflow.com/object-detection/parasites-1s07h },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/parasites-1s07h
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:12:59+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "parasites-1s07h", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "parasites", "1": "Ancylostoma Spp", "2": "Ascaris Lumbricoides", "3": "Enterobius Vermicularis", "4": "Fasciola Hepatica", "5": "Hymenolepis", "6": "Schistosoma", "7": "Taenia Sp", "8": "Trichuris Trichiura"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:13:36+00:00
|
afc7570ad69acd1ec488302a219f03de586f3a95
|
# Dataset Card for cells-uyemf
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/cells-uyemf
- **Point of Contact:** [email protected]
### Dataset Summary
cells-uyemf
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/cells-uyemf
### Citation Information
```
@misc{ cells-uyemf,
title = { cells uyemf Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/cells-uyemf } },
url = { https://universe.roboflow.com/object-detection/cells-uyemf },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/cells-uyemf
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:13:30+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cells-uyemf", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cells", "1": "celula"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:13:46+00:00
|
07181d7d834b4c6063cdcc3ef7dbbf682cc14c92
|
# Dataset Card for acl-x-ray
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/acl-x-ray
- **Point of Contact:** [email protected]
### Dataset Summary
acl-x-ray
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/acl-x-ray
### Citation Information
```
@misc{ acl-x-ray,
title = { acl x ray Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/acl-x-ray } },
url = { https://universe.roboflow.com/object-detection/acl-x-ray },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/acl-x-ray
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:13:36+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "acl-x-ray", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "acl-x-ray", "1": "acl"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:14:08+00:00
|
2fe1c8ae95d2a46d8c9568846fedb04b16ab3790
|
# Dataset Card for bccd-ouzjz
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/bccd-ouzjz
- **Point of Contact:** [email protected]
### Dataset Summary
bccd-ouzjz
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/bccd-ouzjz
### Citation Information
```
@misc{ bccd-ouzjz,
title = { bccd ouzjz Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/bccd-ouzjz } },
url = { https://universe.roboflow.com/object-detection/bccd-ouzjz },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/bccd-ouzjz
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:13:46+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "bccd-ouzjz", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "bccd", "1": "Platelets", "2": "RBC", "3": "WBC"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:14:05+00:00
|
678ef951ad5a7d96fc7a057344e879a97a9f90cd
|
# Dataset Card for poker-cards-cxcvz
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/poker-cards-cxcvz
- **Point of Contact:** [email protected]
### Dataset Summary
poker-cards-cxcvz
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/poker-cards-cxcvz
### Citation Information
```
@misc{ poker-cards-cxcvz,
title = { poker cards cxcvz Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/poker-cards-cxcvz } },
url = { https://universe.roboflow.com/object-detection/poker-cards-cxcvz },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/poker-cards-cxcvz
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:14:05+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "poker-cards-cxcvz", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "poker-cards", "1": 59, "2": "10 Diamonds", "3": "10 Hearts", "4": "10 Spades", "5": "10 Trefoils", "6": "2 Diamonds", "7": "2 Hearts", "8": "2 Spades", "9": "2 Trefoils", "10": "3 Diamonds", "11": "3 Hearts", "12": "3 Spades", "13": "3 Trefoils", "14": "4 Diamonds", "15": "4 Hearts", "16": "4 Spades", "17": "4 Trefoils", "18": "5 Diamonds", "19": "5 Hearts", "20": "5 Spades", "21": "5 Trefoils", "22": "6 Diamonds", "23": "6 Hearts", "24": "6 Spades", "25": "6 Trefoils", "26": "7 Diamonds", "27": "7 Hearts", "28": "7 Spades", "29": "7 Trefoils", "30": "8 Diamonds", "31": "8 Hearts", "32": "8 Spades", "33": "8 Trefoils", "34": "9 Diamonds", "35": "9 Hearts", "36": "9 Spades", "37": "9 Trefoils", "38": "A Diamonds", "39": "A Hearts", "40": "A Spades", "41": "A Trefoils", "42": "J Diamonds", "43": "J Hearts", "44": "J Spades", "45": "J Trefoils", "46": "K Diamonds", "47": "K Hearts", "48": "K Spades", "49": "K Trefoils", "50": "Q Diamonds", "51": "Q Hearts", "52": "Q Spades", "53": "Q Trefoils"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:14:35+00:00
|
a06a3254448172ded7e295ee21d3cf87d04b8a49
|
# Dataset Card for truck-movement
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/truck-movement
- **Point of Contact:** [email protected]
### Dataset Summary
truck-movement
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/truck-movement
### Citation Information
```
@misc{ truck-movement,
title = { truck movement Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/truck-movement } },
url = { https://universe.roboflow.com/object-detection/truck-movement },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/truck-movement
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:14:08+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "truck-movement", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "truck-movement", "1": "otr_chassis_loaded", "2": "otr_chassis_unloaded", "3": "otr_chassis_working", "4": "person", "5": "stacker"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:14:40+00:00
|
c59b6cd19a84115766acfcf79ed6d313165b44aa
|
# Dataset Card for digits-t2eg6
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/digits-t2eg6
- **Point of Contact:** [email protected]
### Dataset Summary
digits-t2eg6
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/digits-t2eg6
### Citation Information
```
@misc{ digits-t2eg6,
title = { digits t2eg6 Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/digits-t2eg6 } },
url = { https://universe.roboflow.com/object-detection/digits-t2eg6 },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/digits-t2eg6
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:14:35+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "digits-t2eg6", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "digits", "1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5, "7": 6, "8": 7, "9": 8, "10": 9}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:15:27+00:00
|
77e7baefd1ef98310414a260abe13e5706354915
|
# Dataset Card for phages
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/phages
- **Point of Contact:** [email protected]
### Dataset Summary
phages
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/phages
### Citation Information
```
@misc{ phages,
title = { phages Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/phages } },
url = { https://universe.roboflow.com/object-detection/phages },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/phages
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:14:40+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "phages", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "phages", "1": "activated", "2": "non-activated"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:15:16+00:00
|
e2d54ecf2ab815773efcdb06ea3bb009d6035dd7
|
# Dataset Card for bone-fracture-7fylg
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/bone-fracture-7fylg
- **Point of Contact:** [email protected]
### Dataset Summary
bone-fracture-7fylg
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/bone-fracture-7fylg
### Citation Information
```
@misc{ bone-fracture-7fylg,
title = { bone fracture 7fylg Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/bone-fracture-7fylg } },
url = { https://universe.roboflow.com/object-detection/bone-fracture-7fylg },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/bone-fracture-7fylg
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:14:40+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "bone-fracture-7fylg", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "bone-fracture", "1": "angle", "2": "fracture", "3": "line", "4": "messed_up_angle"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:14:59+00:00
|
13c1c1432cdb65d0c1eb1ee49629fcbb6e2f5269
|
# Dataset Card for csgo-videogame
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/csgo-videogame
- **Point of Contact:** [email protected]
### Dataset Summary
csgo-videogame
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/csgo-videogame
### Citation Information
```
@misc{ csgo-videogame,
title = { csgo videogame Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/csgo-videogame } },
url = { https://universe.roboflow.com/object-detection/csgo-videogame },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/csgo-videogame
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:15:12+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "csgo-videogame", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "CSGO", "1": "CT", "2": "T"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:15:55+00:00
|
1cedf75b9406833ef6ff00bdee3561fdb0fe841b
|
# Dataset Card for team-fight-tactics
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/team-fight-tactics
- **Point of Contact:** [email protected]
### Dataset Summary
team-fight-tactics
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/team-fight-tactics
### Citation Information
```
@misc{ team-fight-tactics,
title = { team fight tactics Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/team-fight-tactics } },
url = { https://universe.roboflow.com/object-detection/team-fight-tactics },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/team-fight-tactics
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:15:16+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "team-fight-tactics", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "characters", "1": "Akali", "2": "Blitzcrank", "3": "Braum", "4": "Caitlyn", "5": "Camille", "6": "Cho-Gath", "7": "Darius", "8": "Dr- Mundo", "9": "Ekko", "10": "Ezreal", "11": "Fiora", "12": "Galio", "13": "Gankplank", "14": "Garen", "15": "Graves", "16": "Heimerdinger", "17": "Illaoi", "18": "Janna", "19": "Jayce", "20": "Jhin", "21": "Jinx", "22": "Kai-Sa", "23": "Kassadin", "24": "Katarina", "25": "Kog-Maw", "26": "Leona", "27": "Lissandra", "28": "Lulu", "29": "Lux", "30": "Malzahar", "31": "Miss Fortune", "32": "Orianna", "33": "Poppy", "34": "Quinn", "35": "Samira", "36": "Seraphine", "37": "Shaco", "38": "Singed", "39": "Sion", "40": "Swain", "41": "Tahm Kench", "42": "Talon", "43": "Taric", "44": "Tristana", "45": "Trundle", "46": "Twisted Fate", "47": "Twitch", "48": "Urgot", "49": "Veigar", "50": "Vex", "51": "Vi", "52": "Viktor", "53": "Warwick", "54": "Yone", "55": "Yuumi", "56": "Zac", "57": "Ziggs", "58": "Zilean", "59": "Zyra"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:16:12+00:00
|
89bb824ede8af3d8df4319ba191ad6f21b15f211
|
# Dataset Card for valentines-chocolate
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/valentines-chocolate
- **Point of Contact:** [email protected]
### Dataset Summary
valentines-chocolate
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/valentines-chocolate
### Citation Information
```
@misc{ valentines-chocolate,
title = { valentines chocolate Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/valentines-chocolate } },
url = { https://universe.roboflow.com/object-detection/valentines-chocolate },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/valentines-chocolate
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:15:30+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "valentines-chocolate", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "valentines-chocolate", "1": "sees-dark-almond-nougat", "2": "sees-dark-almonds", "3": "sees-dark-bordeaux", "4": "sees-dark-caramel-patties", "5": "sees-dark-chocolate-buttercream", "6": "sees-dark-marzipan", "7": "sees-dark-normandie", "8": "sees-dark-scotchmallow", "9": "sees-dark-walnut-square", "10": "sees-milk-almond-caramel", "11": "sees-milk-almonds", "12": "sees-milk-beverly", "13": "sees-milk-bordeaux", "14": "sees-milk-butterscotch-square", "15": "sees-milk-california-brittle", "16": "sees-milk-chelsea", "17": "sees-milk-chocolate-buttercream", "18": "sees-milk-coconut-cream", "19": "sees-milk-mayfair", "20": "sees-milk-mocha", "21": "sees-milk-molasses-chips", "22": "sees-milk-rum-nougat"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:15:50+00:00
|
ce7718b3ba2d133188282d42683f142b5eab0c95
|
# Dataset Card for asbestos
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/asbestos
- **Point of Contact:** [email protected]
### Dataset Summary
asbestos
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/asbestos
### Citation Information
```
@misc{ asbestos,
title = { asbestos Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/asbestos } },
url = { https://universe.roboflow.com/object-detection/asbestos },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/asbestos
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:15:51+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "asbestos", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "asbestos", "1": "thick-dark-mark", "2": "thick-light-mark", "3": "thin-dark-mark", "4": "thin-light-mark"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:16:17+00:00
|
0d3447a9b46b4f591a0a2b3aa92878bb282c6f11
|
# Dataset Card for shark-teeth-5atku
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/shark-teeth-5atku
- **Point of Contact:** [email protected]
### Dataset Summary
shark-teeth-5atku
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/shark-teeth-5atku
### Citation Information
```
@misc{ shark-teeth-5atku,
title = { shark teeth 5atku Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/shark-teeth-5atku } },
url = { https://universe.roboflow.com/object-detection/shark-teeth-5atku },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/shark-teeth-5atku
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:15:55+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "shark-teeth-5atku", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "teeth", "1": "Lower", "2": "Sand Tiger Shark", "3": "Snaggletooth Shark", "4": "Upper"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:16:15+00:00
|
c24e632e7181f02a09eba25aefd1a6c4ad8cbf73
|
# Dataset Card for peixos-fish
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/peixos-fish
- **Point of Contact:** [email protected]
### Dataset Summary
peixos-fish
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/peixos-fish
### Citation Information
```
@misc{ peixos-fish,
title = { peixos fish Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/peixos-fish } },
url = { https://universe.roboflow.com/object-detection/peixos-fish },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/peixos-fish
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:16:13+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "peixos-fish", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "peixos", "1": "peix", "2": "taca"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:16:57+00:00
|
040828dedabe342b06fbddba93ca0d8400358472
|
# Dataset Card for aquarium-qlnqy
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/aquarium-qlnqy
- **Point of Contact:** [email protected]
### Dataset Summary
aquarium-qlnqy
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/aquarium-qlnqy
### Citation Information
```
@misc{ aquarium-qlnqy,
title = { aquarium qlnqy Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/aquarium-qlnqy } },
url = { https://universe.roboflow.com/object-detection/aquarium-qlnqy },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/aquarium-qlnqy
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:16:16+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "aquarium-qlnqy", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "aquarium", "1": "fish", "2": "jellyfish", "3": "penguin", "4": "puffin", "5": "shark", "6": "starfish", "7": "stingray"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:16:41+00:00
|
c8685b5cdb5d505fe9e79286a8c532729bcac470
|
# Dataset Card for vehicles-q0x2v
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/vehicles-q0x2v
- **Point of Contact:** [email protected]
### Dataset Summary
vehicles-q0x2v
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/vehicles-q0x2v
### Citation Information
```
@misc{ vehicles-q0x2v,
title = { vehicles q0x2v Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/vehicles-q0x2v } },
url = { https://universe.roboflow.com/object-detection/vehicles-q0x2v },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/vehicles-q0x2v
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:16:17+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "vehicles-q0x2v", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "vehicles", "1": "big bus", "2": "big truck", "3": "bus-l-", "4": "bus-s-", "5": "car", "6": "mid truck", "7": "small bus", "8": "small truck", "9": "truck-l-", "10": "truck-m-", "11": "truck-s-", "12": "truck-xl-"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:17:19+00:00
|
dd97f75cd7b06473b857af722230b7e530607b19
|
# Dataset Card for secondary-chains
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/secondary-chains
- **Point of Contact:** [email protected]
### Dataset Summary
secondary-chains
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/secondary-chains
### Citation Information
```
@misc{ secondary-chains,
title = { secondary chains Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/secondary-chains } },
url = { https://universe.roboflow.com/object-detection/secondary-chains },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/secondary-chains
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:16:34+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "secondary-chains", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "secondary-chains", "1": "chain"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:16:54+00:00
|
db4bda29e30d7f56fa7648dd13784ac7acdaf69c
|
# Dataset Card for underwater-pipes-4ng4t
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/underwater-pipes-4ng4t
- **Point of Contact:** [email protected]
### Dataset Summary
underwater-pipes-4ng4t
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/underwater-pipes-4ng4t
### Citation Information
```
@misc{ underwater-pipes-4ng4t,
title = { underwater pipes 4ng4t Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/underwater-pipes-4ng4t } },
url = { https://universe.roboflow.com/object-detection/underwater-pipes-4ng4t },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/underwater-pipes-4ng4t
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:16:54+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "underwater-pipes-4ng4t", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "underwater-pipes", "1": "pipe"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:18:16+00:00
|
b5f525d30ee0b55113e6a23ca75cd292f4fbd150
|
# Dataset Card for activity-diagrams-qdobr
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/activity-diagrams-qdobr
- **Point of Contact:** [email protected]
### Dataset Summary
activity-diagrams-qdobr
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/activity-diagrams-qdobr
### Citation Information
```
@misc{ activity-diagrams-qdobr,
title = { activity diagrams qdobr Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/activity-diagrams-qdobr } },
url = { https://universe.roboflow.com/object-detection/activity-diagrams-qdobr },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/activity-diagrams-qdobr
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:17:19+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "activity-diagrams-qdobr", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "activity-diagrams", "1": "action", "2": "activity", "3": "commeent", "4": "control_flow", "5": "control_flowcontrol_flow", "6": "decision_node", "7": "exit_node", "8": "final_flow_node", "9": "final_node", "10": "fork", "11": "merge", "12": "merge_noode", "14": "object", "15": "object_flow", "16": "signal_recept", "17": "signal_send", "18": "start_node", "19": "text"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:17:38+00:00
|
0f63b9c16e63cef3ffc263b21793f93523d58877
|
# Dataset Card for tweeter-profile
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/tweeter-profile
- **Point of Contact:** [email protected]
### Dataset Summary
tweeter-profile
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/tweeter-profile
### Citation Information
```
@misc{ tweeter-profile,
title = { tweeter profile Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/tweeter-profile } },
url = { https://universe.roboflow.com/object-detection/tweeter-profile },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/tweeter-profile
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:17:39+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "tweeter-profile", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "tweeter-profile", "1": "profile_info"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:18:01+00:00
|
63ecbe06216eb6e37bd6e714f917db3be3267414
|
# Dataset Card for circuit-voltages
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/circuit-voltages
- **Point of Contact:** [email protected]
### Dataset Summary
circuit-voltages
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/circuit-voltages
### Citation Information
```
@misc{ circuit-voltages,
title = { circuit voltages Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/circuit-voltages } },
url = { https://universe.roboflow.com/object-detection/circuit-voltages },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/circuit-voltages
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:18:01+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "circuit-voltages", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "circuit-voltages", "1": "GND", "2": "IDC", "3": "IDC_I", "4": "R", "5": "VDC", "6": "VDC_I"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:18:18+00:00
|
34188fb46437ad7f926c2c213ab8ee4aa776d658
|
# Dataset Card for hand-gestures-jps7z
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/hand-gestures-jps7z
- **Point of Contact:** [email protected]
### Dataset Summary
hand-gestures-jps7z
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/hand-gestures-jps7z
### Citation Information
```
@misc{ hand-gestures-jps7z,
title = { hand gestures jps7z Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/hand-gestures-jps7z } },
url = { https://universe.roboflow.com/object-detection/hand-gestures-jps7z },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/hand-gestures-jps7z
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:18:16+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "hand-gestures-jps7z", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "hand-gestures", "1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5, "7": 6, "8": 7, "9": 8, "10": 9, "11": 10, "12": 11, "13": 12, "14": 13}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:18:38+00:00
|
4abd6b78f94e949b53922c5cb7fd0934ff5500c6
|
# Dataset Card for paper-parts
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/paper-parts
- **Point of Contact:** [email protected]
### Dataset Summary
paper-parts
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/paper-parts
### Citation Information
```
@misc{ paper-parts,
title = { paper parts Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/paper-parts } },
url = { https://universe.roboflow.com/object-detection/paper-parts },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/paper-parts
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:18:19+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "paper-parts", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "paper-parts", "1": "author", "2": "chapter", "3": "equation", "4": "equation number", "5": "figure", "6": "figure caption", "7": "footnote", "8": "list of content heading", "9": "list of content text", "10": "page number", "11": "paragraph", "12": "reference text", "13": "section", "14": "subsection", "15": "subsubsection", "16": "table", "17": "table caption", "18": "table of contents text", "19": "title"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:20:46+00:00
|
e375556ab6cb6dfb8ea46030ee19625449c9fb13
|
# Dataset Card for bacteria-ptywi
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/bacteria-ptywi
- **Point of Contact:** [email protected]
### Dataset Summary
bacteria-ptywi
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/bacteria-ptywi
### Citation Information
```
@misc{ bacteria-ptywi,
title = { bacteria ptywi Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/bacteria-ptywi } },
url = { https://universe.roboflow.com/object-detection/bacteria-ptywi },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/bacteria-ptywi
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:18:38+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "bacteria-ptywi", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "bacteria", "1": "Str_pne"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:18:56+00:00
|
86f8f00ceec516618a280eef24ff9bb2d9c7a2a5
|
# Dataset Card for thermal-dogs-and-people-x6ejw
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/thermal-dogs-and-people-x6ejw
- **Point of Contact:** [email protected]
### Dataset Summary
thermal-dogs-and-people-x6ejw
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/thermal-dogs-and-people-x6ejw
### Citation Information
```
@misc{ thermal-dogs-and-people-x6ejw,
title = { thermal dogs and people x6ejw Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/thermal-dogs-and-people-x6ejw } },
url = { https://universe.roboflow.com/object-detection/thermal-dogs-and-people-x6ejw },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/thermal-dogs-and-people-x6ejw
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:18:56+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "thermal-dogs-and-people-x6ejw", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "thermal-dogs-n-people", "1": "dog", "2": "person"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:19:15+00:00
|
93e8ccea7a18f0d0173be9d04da24fea9f607ead
|
# Dataset Card for road-signs-6ih4y
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/road-signs-6ih4y
- **Point of Contact:** [email protected]
### Dataset Summary
road-signs-6ih4y
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/road-signs-6ih4y
### Citation Information
```
@misc{ road-signs-6ih4y,
title = { road signs 6ih4y Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/road-signs-6ih4y } },
url = { https://universe.roboflow.com/object-detection/road-signs-6ih4y },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/road-signs-6ih4y
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:19:15+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "road-signs-6ih4y", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "road-signs", "1": "bus_stop", "2": "do_not_enter", "3": "do_not_stop", "4": "do_not_turn_l", "5": "do_not_turn_r", "6": "do_not_u_turn", "7": "enter_left_lane", "8": "green_light", "9": "left_right_lane", "10": "no_parking", "11": "parking", "12": "ped_crossing", "13": "ped_zebra_cross", "14": "railway_crossing", "15": "red_light", "16": "stop", "17": "t_intersection_l", "18": "traffic_light", "19": "u_turn", "20": "warning", "21": "yellow_light"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:19:50+00:00
|
8322549c0463710ad2f78ec10c2f712ff38dab6a
|
# Dataset Card for cotton-20xz5
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/cotton-20xz5
- **Point of Contact:** [email protected]
### Dataset Summary
cotton-20xz5
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/cotton-20xz5
### Citation Information
```
@misc{ cotton-20xz5,
title = { cotton 20xz5 Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/cotton-20xz5 } },
url = { https://universe.roboflow.com/object-detection/cotton-20xz5 },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/cotton-20xz5
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:19:50+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cotton-20xz5", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cotton", "1": "G-arboreum", "2": "G-barbadense", "3": "G-herbaceum", "4": "G-hirsitum"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:20:12+00:00
|
41d65614ee3809b686b66bb57c1dc9ed2ce354aa
|
# Dataset Card for cloud-types
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/cloud-types
- **Point of Contact:** [email protected]
### Dataset Summary
cloud-types
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/cloud-types
### Citation Information
```
@misc{ cloud-types,
title = { cloud types Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/cloud-types } },
url = { https://universe.roboflow.com/object-detection/cloud-types },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/cloud-types
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:29:23+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cloud-types", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cloud-types", "1": "Fish", "2": "Flower", "3": "Gravel", "4": "Sugar"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:30:56+00:00
|
b598e4ecc1e6492450ca86af9f85867d395ecd95
|
# Dataset Card for cable-damage
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/cable-damage
- **Point of Contact:** [email protected]
### Dataset Summary
cable-damage
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/cable-damage
### Citation Information
```
@misc{ cable-damage,
title = { cable damage Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/cable-damage } },
url = { https://universe.roboflow.com/object-detection/cable-damage },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/cable-damage
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:29:23+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cable-damage", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cable-damage", "1": "break", "2": "thunderbolt"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:29:47+00:00
|
a6c08f77c87f0f518a5768f41d9949ef96da5bf8
|
# Dataset Card for sign-language-sokdr
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/sign-language-sokdr
- **Point of Contact:** [email protected]
### Dataset Summary
sign-language-sokdr
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/sign-language-sokdr
### Citation Information
```
@misc{ sign-language-sokdr,
title = { sign language sokdr Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/sign-language-sokdr } },
url = { https://universe.roboflow.com/object-detection/sign-language-sokdr },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/sign-language-sokdr
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:29:23+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "sign-language-sokdr", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "sign-language", "1": "A", "2": "B", "3": "C", "4": "D", "5": "E", "6": "F", "7": "G", "8": "H", "9": "I", "10": "J", "11": "K", "12": "L", "13": "M", "14": "N", "15": "O", "16": "P", "17": "Q", "18": "R", "19": "S", "20": "T", "21": "U", "22": "V", "23": "W", "24": "X", "25": "Y", "26": "Z"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:29:42+00:00
|
14f318be607371ffa7c3366e09e6298af1bc683c
|
# Dataset Card for weed-crop-aerial
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/weed-crop-aerial
- **Point of Contact:** [email protected]
### Dataset Summary
weed-crop-aerial
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/weed-crop-aerial
### Citation Information
```
@misc{ weed-crop-aerial,
title = { weed crop aerial Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/weed-crop-aerial } },
url = { https://universe.roboflow.com/object-detection/weed-crop-aerial },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/weed-crop-aerial
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:29:23+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "weed-crop-aerial", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "weed-crop-aerial", "1": "crop", "2": "weed"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:29:52+00:00
|
d807d10f8a8ce4aa40ad662924e5d5c52239c51e
|
# Dataset Card for wall-damage
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/wall-damage
- **Point of Contact:** [email protected]
### Dataset Summary
wall-damage
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/wall-damage
### Citation Information
```
@misc{ wall-damage,
title = { wall damage Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/wall-damage } },
url = { https://universe.roboflow.com/object-detection/wall-damage },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/wall-damage
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:29:43+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "wall-damage", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "wall-damage", "1": "Minorrotation", "2": "Moderaterotation", "3": "Severerotation"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:29:58+00:00
|
b1490a11c0bed13ed720730e3666625400f31c85
|
# Dataset Card for animals-ij5d2
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/animals-ij5d2
- **Point of Contact:** [email protected]
### Dataset Summary
animals-ij5d2
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/animals-ij5d2
### Citation Information
```
@misc{ animals-ij5d2,
title = { animals ij5d2 Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/animals-ij5d2 } },
url = { https://universe.roboflow.com/object-detection/animals-ij5d2 },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/animals-ij5d2
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:29:48+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "animals-ij5d2", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "animals", "1": "cat", "2": "chicken", "3": "cow", "4": "dog", "5": "fox", "6": "goat", "7": "horse", "8": "person", "9": "racoon", "10": "skunk"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:30:09+00:00
|
e286c1630cff62a248c1507016b84db4324a5fa5
|
# Dataset Card for uno-deck
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/uno-deck
- **Point of Contact:** [email protected]
### Dataset Summary
uno-deck
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/uno-deck
### Citation Information
```
@misc{ uno-deck,
title = { uno deck Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/uno-deck } },
url = { https://universe.roboflow.com/object-detection/uno-deck },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/uno-deck
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:29:53+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "uno-deck", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "uno-deck", "1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5, "7": 6, "8": 7, "9": 8, "10": 9, "11": 10, "12": 11, "13": 12, "14": 13, "15": 14}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:31:53+00:00
|
9801096c1b38433131b3d425b67b2a75945deaf9
|
# Dataset Card for avatar-recognition-nuexe
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/avatar-recognition-nuexe
- **Point of Contact:** [email protected]
### Dataset Summary
avatar-recognition-nuexe
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/avatar-recognition-nuexe
### Citation Information
```
@misc{ avatar-recognition-nuexe,
title = { avatar recognition nuexe Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/avatar-recognition-nuexe } },
url = { https://universe.roboflow.com/object-detection/avatar-recognition-nuexe },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/avatar-recognition-nuexe
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:29:59+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "avatar-recognition-nuexe", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "avatar", "1": "Character"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:30:13+00:00
|
a6cdb168089363c701a537c9b94c8358f609df98
|
# Dataset Card for cotton-plant-disease
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/cotton-plant-disease
- **Point of Contact:** [email protected]
### Dataset Summary
cotton-plant-disease
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/cotton-plant-disease
### Citation Information
```
@misc{ cotton-plant-disease,
title = { cotton plant disease Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/cotton-plant-disease } },
url = { https://universe.roboflow.com/object-detection/cotton-plant-disease },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/cotton-plant-disease
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:30:10+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cotton-plant-disease", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cotton-plant-disease", "1": "dc"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:30:39+00:00
|
51765b0d63b11ab6c980e1574a5dc9010f34b280
|
# Dataset Card for x-ray-rheumatology
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/x-ray-rheumatology
- **Point of Contact:** [email protected]
### Dataset Summary
x-ray-rheumatology
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/x-ray-rheumatology
### Citation Information
```
@misc{ x-ray-rheumatology,
title = { x ray rheumatology Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/x-ray-rheumatology } },
url = { https://universe.roboflow.com/object-detection/x-ray-rheumatology },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/x-ray-rheumatology
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:30:14+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "x-ray-rheumatology", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "x-ray-rheumatology", "1": "artefact", "2": "distal phalanges", "3": "fifth metacarpal bone", "4": "first metacarpal bone", "5": "fourth metacarpal bone", "6": "intermediate phalanges", "7": "proximal phalanges", "8": "radius", "9": "second metacarpal bone", "10": "soft tissue calcination", "11": "third metacarpal bone", "12": "ulna"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:30:27+00:00
|
59b6b8327e6b93e544d26f988f86cda0bf896336
|
# Dataset Card for cavity-rs0uf
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/cavity-rs0uf
- **Point of Contact:** [email protected]
### Dataset Summary
cavity-rs0uf
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/cavity-rs0uf
### Citation Information
```
@misc{ cavity-rs0uf,
title = { cavity rs0uf Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/cavity-rs0uf } },
url = { https://universe.roboflow.com/object-detection/cavity-rs0uf },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/cavity-rs0uf
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:30:28+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cavity-rs0uf", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cavity-0", "1": "cavity", "2": "normal"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:30:44+00:00
|
1d82b015cea3a7ff9859167e1d0f8971291bf0b4
|
# Dataset Card for peanuts-sd4kf
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/peanuts-sd4kf
- **Point of Contact:** [email protected]
### Dataset Summary
peanuts-sd4kf
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/peanuts-sd4kf
### Citation Information
```
@misc{ peanuts-sd4kf,
title = { peanuts sd4kf Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/peanuts-sd4kf } },
url = { https://universe.roboflow.com/object-detection/peanuts-sd4kf },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/peanuts-sd4kf
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:30:40+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "peanuts-sd4kf", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "peanuts", "1": "with mold", "2": "without mold"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:30:58+00:00
|
7e399dd1508105f9885f6fe3c7789cd605b9fa43
|
# Dataset Card for marbles
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/marbles
- **Point of Contact:** [email protected]
### Dataset Summary
marbles
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/marbles
### Citation Information
```
@misc{ marbles,
title = { marbles Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/marbles } },
url = { https://universe.roboflow.com/object-detection/marbles },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/marbles
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:30:45+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "marbles", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "marbles", "1": "red", "2": "white"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:30:58+00:00
|
99b4a366289e1314fa9a3571e18cb389dd2f5efc
|
# Dataset Card for apples-fvpl5
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/apples-fvpl5
- **Point of Contact:** [email protected]
### Dataset Summary
apples-fvpl5
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/apples-fvpl5
### Citation Information
```
@misc{ apples-fvpl5,
title = { apples fvpl5 Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/apples-fvpl5 } },
url = { https://universe.roboflow.com/object-detection/apples-fvpl5 },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/apples-fvpl5
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:30:57+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "apples-fvpl5", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "apples", "1": "apple", "2": "damaged_apple"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:31:15+00:00
|
6f511210ac718b282a0c7506567b61cfc2720d2c
|
# Dataset Card for leaf-disease-nsdsr
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/leaf-disease-nsdsr
- **Point of Contact:** [email protected]
### Dataset Summary
leaf-disease-nsdsr
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/leaf-disease-nsdsr
### Citation Information
```
@misc{ leaf-disease-nsdsr,
title = { leaf disease nsdsr Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/leaf-disease-nsdsr } },
url = { https://universe.roboflow.com/object-detection/leaf-disease-nsdsr },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/leaf-disease-nsdsr
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:30:59+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "leaf-disease-nsdsr", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "leaf-disease", "1": "mildew", "2": "rose_P01", "3": "rose_R02"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:31:29+00:00
|
92460814e77f2874b3514da063b6caa39e8a9abb
|
# Dataset Card for document-parts
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/document-parts
- **Point of Contact:** [email protected]
### Dataset Summary
document-parts
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/document-parts
### Citation Information
```
@misc{ document-parts,
title = { document parts Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/document-parts } },
url = { https://universe.roboflow.com/object-detection/document-parts },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/document-parts
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:30:59+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "document-parts", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "document-parts", "1": "table", "2": "title"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:31:28+00:00
|
b5861bc164a75f265e2b2711c66525612a472cdc
|
# Dataset Card for gynecology-mri
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/gynecology-mri
- **Point of Contact:** [email protected]
### Dataset Summary
gynecology-mri
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/gynecology-mri
### Citation Information
```
@misc{ gynecology-mri,
title = { gynecology mri Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/gynecology-mri } },
url = { https://universe.roboflow.com/object-detection/gynecology-mri },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/gynecology-mri
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:31:16+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "gynecology-mri", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "gynecology-MRI", "1": "6W", "2": "7W", "3": "EH"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:31:43+00:00
|
5eeeb6796fa3cf668e7c1eda2ee19845c21d8d2c
|
# Dataset Card for mask-wearing-608pr
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/mask-wearing-608pr
- **Point of Contact:** [email protected]
### Dataset Summary
mask-wearing-608pr
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/mask-wearing-608pr
### Citation Information
```
@misc{ mask-wearing-608pr,
title = { mask wearing 608pr Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/mask-wearing-608pr } },
url = { https://universe.roboflow.com/object-detection/mask-wearing-608pr },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/mask-wearing-608pr
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:31:28+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "mask-wearing-608pr", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "mask-wearing", "1": "mask", "2": "no-mask"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:31:42+00:00
|
abc5420a7d6b12fa426f5a2b6fb114f92f01cbda
|
# Dataset Card for coral-lwptl
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/coral-lwptl
- **Point of Contact:** [email protected]
### Dataset Summary
coral-lwptl
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/coral-lwptl
### Citation Information
```
@misc{ coral-lwptl,
title = { coral lwptl Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/coral-lwptl } },
url = { https://universe.roboflow.com/object-detection/coral-lwptl },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/coral-lwptl
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:31:30+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "coral-lwptl", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "coral", "1": "Arborescent", "2": "Caespitose-a", "3": "Caespitose-b", "4": "Columnar", "5": "Corymbose", "6": "Digitate", "7": "Encrusting", "8": "Foliose", "9": "Massive-Faviidae", "10": "Massive-Merulinidae", "11": "Massive-Mussidae", "12": "Massive-Poritidae", "13": "Solitary", "14": "Tabular"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:31:51+00:00
|
7635d0594066f3b6372197a986f256c25373498e
|
# Dataset Card for sedimentary-features-9eosf
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/sedimentary-features-9eosf
- **Point of Contact:** [email protected]
### Dataset Summary
sedimentary-features-9eosf
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/sedimentary-features-9eosf
### Citation Information
```
@misc{ sedimentary-features-9eosf,
title = { sedimentary features 9eosf Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/sedimentary-features-9eosf } },
url = { https://universe.roboflow.com/object-detection/sedimentary-features-9eosf },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/sedimentary-features-9eosf
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:31:43+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "sedimentary-features-9eosf", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "sediment", "1": "Cross bedding", "2": "Low angle", "3": "Massive", "4": "Parallel lamination", "5": "mud drape"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:31:58+00:00
|
f9dfc9f71ce1151ab14f059eb4ed337a8bc993fb
|
# Dataset Card for chess-pieces-mjzgj
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/chess-pieces-mjzgj
- **Point of Contact:** [email protected]
### Dataset Summary
chess-pieces-mjzgj
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/chess-pieces-mjzgj
### Citation Information
```
@misc{ chess-pieces-mjzgj,
title = { chess pieces mjzgj Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/chess-pieces-mjzgj } },
url = { https://universe.roboflow.com/object-detection/chess-pieces-mjzgj },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/chess-pieces-mjzgj
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:31:44+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "chess-pieces-mjzgj", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "chess-pieces", "1": "bishop", "2": "black-bishop", "3": "black-king", "4": "black-knight", "5": "black-pawn", "6": "black-queen", "7": "black-rook", "8": "white-bishop", "9": "white-king", "10": "white-knight", "11": "white-pawn", "12": "white-queen", "13": "white-rook"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:31:59+00:00
|
a523fc386ec3121909f1994b5259515ee2e1913a
|
# Dataset Card for robomasters-285km
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/robomasters-285km
- **Point of Contact:** [email protected]
### Dataset Summary
robomasters-285km
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/robomasters-285km
### Citation Information
```
@misc{ robomasters-285km,
title = { robomasters 285km Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/robomasters-285km } },
url = { https://universe.roboflow.com/object-detection/robomasters-285km },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/robomasters-285km
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:31:52+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "robomasters-285km", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "robots", "1": "armor", "2": "base", "3": "car", "4": "rune", "5": "rune-blue", "6": "rune-gray", "7": "rune-grey", "8": "rune-red", "9": "watcher"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:32:37+00:00
|
f9c047d91513beccd5072c5e8f2e48340693a576
|
# Dataset Card for number-ops
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/number-ops
- **Point of Contact:** [email protected]
### Dataset Summary
number-ops
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/number-ops
### Citation Information
```
@misc{ number-ops,
title = { number ops Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/number-ops } },
url = { https://universe.roboflow.com/object-detection/number-ops },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/number-ops
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:31:54+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "number-ops", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "number-ops", "1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5, "7": 6, "8": 7, "9": 8, "10": 9, "11": "div", "12": "eqv", "13": "minus", "14": "mult", "15": "plus"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:32:20+00:00
|
5d98f8ebc2437e51f3e1adcadc6a725c9cb02699
|
# Dataset Card for stomata-cells
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/stomata-cells
- **Point of Contact:** [email protected]
### Dataset Summary
stomata-cells
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/stomata-cells
### Citation Information
```
@misc{ stomata-cells,
title = { stomata cells Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/stomata-cells } },
url = { https://universe.roboflow.com/object-detection/stomata-cells },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/stomata-cells
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:31:59+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "stomata-cells", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "stomata-cells", "1": "close", "2": "open"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:32:34+00:00
|
1f4416ad8ff21fec12ae8742d9c79d43781c7fae
|
# Dataset Card for mitosis-gjs3g
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/mitosis-gjs3g
- **Point of Contact:** [email protected]
### Dataset Summary
mitosis-gjs3g
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/mitosis-gjs3g
### Citation Information
```
@misc{ mitosis-gjs3g,
title = { mitosis gjs3g Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/mitosis-gjs3g } },
url = { https://universe.roboflow.com/object-detection/mitosis-gjs3g },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/mitosis-gjs3g
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:32:00+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "mitosis-gjs3g", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "mitosis", "1": "Mitosis"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:32:18+00:00
|
0e304ea035f5ac7f3c724d073534668274d680d7
|
# Dataset Card for smoke-uvylj
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/smoke-uvylj
- **Point of Contact:** [email protected]
### Dataset Summary
smoke-uvylj
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/smoke-uvylj
### Citation Information
```
@misc{ smoke-uvylj,
title = { smoke uvylj Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/smoke-uvylj } },
url = { https://universe.roboflow.com/object-detection/smoke-uvylj },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/smoke-uvylj
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:32:19+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "smoke-uvylj", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "smoke-0", "1": "smoke"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:32:38+00:00
|
c6611cc56c054fee1083089edb71614866ac8f96
|
# Dataset Card for aerial-spheres
** The original COCO dataset is stored at `dataset.tar.gz`**
## Dataset Description
- **Homepage:** https://universe.roboflow.com/object-detection/aerial-spheres
- **Point of Contact:** [email protected]
### Dataset Summary
aerial-spheres
### Supported Tasks and Leaderboards
- `object-detection`: The dataset can be used to train a model for Object Detection.
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 15,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
'width': 964043,
'height': 640,
'objects': {
'id': [114, 115, 116, 117],
'area': [3796, 1596, 152768, 81002],
'bbox': [
[302.0, 109.0, 73.0, 52.0],
[810.0, 100.0, 57.0, 28.0],
[160.0, 31.0, 248.0, 616.0],
[741.0, 68.0, 202.0, 401.0]
],
'category': [4, 4, 0, 0]
}
}
```
### Data Fields
- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category.
#### Who are the annotators?
Annotators are Roboflow users
## Additional Information
### Licensing Information
See original homepage https://universe.roboflow.com/object-detection/aerial-spheres
### Citation Information
```
@misc{ aerial-spheres,
title = { aerial spheres Dataset },
type = { Open Source Dataset },
author = { Roboflow 100 },
howpublished = { \url{ https://universe.roboflow.com/object-detection/aerial-spheres } },
url = { https://universe.roboflow.com/object-detection/aerial-spheres },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { nov },
note = { visited on 2023-03-29 },
}"
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
Francesco/aerial-spheres
|
[
"task_categories:object-detection",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:cc",
"rf100",
"region:us"
] |
2023-03-30T08:32:21+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "aerial-spheres", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "aerial-spheres", "1": "green_sphero", "2": "orange-sphero", "3": "orange_sphero", "4": "purple_sphero", "5": "red_sphero", "6": "yellow_sphero"}}}}]}]}, "tags": ["rf100"]}
|
2023-03-30T08:32:36+00:00
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.