sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
285da9460510d1eb3f1d3958c037162187b435fa
IndianServers/diseasessymptoms
[ "license:apache-2.0", "region:us" ]
2023-03-29T08:03:32+00:00
{"license": "apache-2.0"}
2023-03-29T08:04:18+00:00
69a03cf7f23dcf6de7924c83446d5a3c4914c6bd
# Dataset Card for "news" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
hayesyang/news
[ "region:us" ]
2023-03-29T08:17:12+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "content", "dtype": "string"}], "splits": [{"name": "zh", "num_bytes": 342700881, "num_examples": 2771}, {"name": "en", "num_bytes": 291917240, "num_examples": 2258}, {"name": "fr", "num_bytes": 154707197, "num_examples": 1201}, {"name": "es", "num_bytes": 221805819, "num_examples": 1695}, {"name": "ru", "num_bytes": 121776777, "num_examples": 926}, {"name": "ar", "num_bytes": 118422112, "num_examples": 883}], "download_size": 528278861, "dataset_size": 1251330026}}
2023-03-29T08:19:45+00:00
9e25f537545bdef1d03919ed101711ff810e6ecf
# Dataset Card for "stats" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
librarian-bot/stats
[ "region:us" ]
2023-03-29T08:21:47+00:00
{"dataset_info": {"features": [{"name": "createdAt", "dtype": "timestamp[us]"}, {"name": "pr_number", "dtype": "int64"}, {"name": "status", "dtype": "large_string"}, {"name": "repo_id", "dtype": "large_string"}, {"name": "type", "dtype": "large_string"}, {"name": "isPullRequest", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 235762, "num_examples": 2747}], "download_size": 95773, "dataset_size": 235762}}
2023-09-11T13:51:16+00:00
d3ebfe2a5689db5b387f5aa42258e38a9da4a70a
Dampish/3k-Instruction-Questions
[ "license:cc-by-nc-4.0", "region:us" ]
2023-03-29T08:51:32+00:00
{"license": "cc-by-nc-4.0"}
2023-03-29T08:51:32+00:00
76dad8f498bd9b12909ceda52e382d2e2e4230f2
BRAIN-TR/insult_external_data
[ "license:apache-2.0", "region:us" ]
2023-03-29T09:02:09+00:00
{"license": "apache-2.0"}
2023-03-29T09:02:58+00:00
7c92791dfd2ce5d900f9ec9e1c95274dfd022606
AyoubChLin/20NewsGroup-AgNews-CnnNews
[ "task_categories:text-classification", "size_categories:n<1K", "language:en", "license:apache-2.0", "region:us" ]
2023-03-29T09:11:34+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["n<1K"], "task_categories": ["text-classification"], "dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "labels", "dtype": {"class_label": {"names": {"0": "auto", "1": "business", "2": "entertainment", "3": "health", "4": "news", "5": "politics", "6": "sci/tech", "7": "sport", "8": "world"}}}}], "splits": [{"name": "train", "num_bytes": 227672680, "num_examples": 162076}], "download_size": 134277697, "dataset_size": 227672680}}
2023-04-08T10:33:23+00:00
4c46d9f038df9c64a84ebe03b051504b19a54d63
# Higgs The [Higgs dataset](https://www.nature.com/articles/ncomms5308/) from "[Searching for exotic particles in high-energy physics with deep learning](https://www.nature.com/articles/ncomms5308/)". Try to classify particles as Higgs bosons. # Configurations and tasks | **Configuration** | **Task** | **Description** | |-------------------|---------------------------|-----------------------------------------------------------------| | higgs | Binary classification | Is the particle a Higgs boson? | # Usage ```python from datasets import load_dataset dataset = load_dataset("mstz/higgs")["train"] ``` # Features |**Feature** |**Type** | |---------------------------|-----------| |`lepton_pT` |`[float64]`| |`lepton_eta` |`[float64]`| |`lepton_phi` |`[float64]`| |`missing_energy_magnitude` |`[float64]`| |`missing_energy_phi` |`[float64]`| |`jet1pt` |`[float64]`| |`jet1eta` |`[float64]`| |`jet1phi` |`[float64]`| |`jet1b` |`[float64]`| |`jet2pt` |`[float64]`| |`jet2eta` |`[float64]`| |`jet2phi` |`[float64]`| |`jet2b` |`[float64]`| |`jet3pt` |`[float64]`| |`jet3eta` |`[float64]`| |`jet3phi` |`[float64]`| |`jet3b` |`[float64]`| |`jet4pt` |`[float64]`| |`jet4eta` |`[float64]`| |`jet4phi` |`[float64]`| |`jet4b` |`[float64]`| |`m_jj` |`[float64]`| |`m_jjj` |`[float64]`| |`m_lv` |`[float64]`| |`m_jlv` |`[float64]`| |`m_bb` |`[float64]`| |`m_wbb` |`[float64]`| |`m_wwbb` |`[float64]`|
mstz/higgs
[ "task_categories:tabular-classification", "size_categories:10K<n<100K", "language:en", "license:cc", "higgs", "tabular_classification", "binary_classification", "UCI", "region:us" ]
2023-03-29T09:17:37+00:00
{"language": ["en"], "license": "cc", "size_categories": ["10K<n<100K"], "task_categories": ["tabular-classification"], "pretty_name": "Higgs", "tags": ["higgs", "tabular_classification", "binary_classification", "UCI"], "configs": ["higgs"]}
2023-04-16T16:31:30+00:00
6826e0eb7740b778e2da224a00d1a3bc6820e70c
Delphine is a monster trainer who was born and raised in the city of Acadie. She is a person of the Dracquin race, a race of dragon-form women. She is the daughter of a Dracquin mother and a Saurander father. These are her main physical properties: * At adulthood she is about 6 feet tall. * Her color pallette is shades of purple, particularly lavender. * Her skin is rough, with a subtropical tone and lavender freckles. * Her hair is a rich purple, with a slight and subtle curve. She usually lets it grow out only to her shoulders. * Her pupils are a healthy purple with no blemishes. * Her figure is full, round and thick, like that of a European dragon. Her hips are wide and her legs are thick. She has a large round belly, but she isn't fat. * Her ears are large, rubbery and each supported by a horn. The horn and ear skin are a shade of purple consistent with her skin and hair. (Note: In some of these images she has an extra smaller ear sticking out of her hair. These ears are artifacts of AI. They are *not* part of her actual anatomy.) * She has a tail. It is about 6 feet long, thick, and hairless. It is the same color as her skin. * Her nose is also like that of a dragon: large and broad, with wide, round nostrils. Despite this feature, her face is cute and charming. * Dracquins have wings, but Delphine's wings are small and undeveloped due to a lifetime of binding. (The society in which she lives has negative attitudes about wings and horns that have resulted in some unfortunate customs and assumptions.) Delphine dresses very modestly but she has a sense of style. She prefers clothing that fits her figure well (she has a very hard time finding any that actually do). She's not afraid of being sexy but doesn't want people to ape over her figure. She's actually very self-conscious about certain parts of her body. Notes on the included images: * Her horns and ears have been the hardest part to reproduce consistently with AI. * AI doesn't produce tails very well, so many of my renders of Delphine simply don't have a tail. * I will need several commissions of her to properly train an AI model to reproduce her accurately.
monmamo/delphine-fairheart
[ "size_categories:n<1K", "language:en", "license:cc", "region:us" ]
2023-03-29T09:34:37+00:00
{"language": ["en"], "license": "cc", "size_categories": ["n<1K"], "pretty_name": "Delphine Fairheart"}
2023-11-09T02:14:40+00:00
18597c4473ae030fb35278ae5d02d3a5089b0d61
prompt: one woman, straight shoulder-length orange-brown hair, eyeglasses with orange frames, cinnamon freckles, large breasts, large round belly, broad nose, orange pupils, smiling, pig ears
monmamo/april-workerbee
[ "task_categories:text-to-image", "size_categories:n<1K", "language:en", "license:cc", "anthrope", "female", "region:us" ]
2023-03-29T09:39:20+00:00
{"language": ["en"], "license": "cc", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "pretty_name": "April Workerbee", "tags": ["anthrope", "female"]}
2023-04-18T23:48:39+00:00
03e8ccbc84316aa748b9293dad6989255ed07bbe
Quake24/sumTwitter
[ "license:apache-2.0", "region:us" ]
2023-03-29T10:29:59+00:00
{"license": "apache-2.0"}
2023-03-29T11:18:54+00:00
b3a0f29471300ef31c73133dde5c54e1a0f29dd4
![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true) # Dataset Card for HumanEvalPack ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** https://github.com/bigcode-project/octopack - **Paper:** [OctoPack: Instruction Tuning Code Large Language Models](https://arxiv.org/abs/2308.07124) - **Point of Contact:** [Niklas Muennighoff](mailto:[email protected]) ### Dataset Summary > HumanEvalPack is an extension of OpenAI's HumanEval to cover 6 total languages across 3 tasks. The Python split is exactly the same as OpenAI's Python HumanEval. The other splits are translated by humans (similar to HumanEval-X but with additional cleaning, see [here](https://github.com/bigcode-project/octopack/tree/main/evaluation/create/humaneval-x#modifications-muennighoff)). Refer to the [OctoPack paper](https://arxiv.org/abs/2308.07124) for more details. > - **Languages:** Python, JavaScript, Java, Go, C++, Rust - **OctoPack🐙🎒:** <table> <tr> <th>Data</t> <td><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a></td> <td>4TB of GitHub commits across 350 programming languages</td> </tr> <tr> <th></t> <td><a href=https://huggingface.co/datasets/bigcode/commitpackft>CommitPackFT</a></td> <td>Filtered version of CommitPack for high-quality commit messages that resemble instructions</td> </tr> <tr> <th>Model</t> <td><a href=https://huggingface.co/bigcode/octocoder>OctoCoder</a></td> <td>StarCoder (16B parameters) instruction tuned on CommitPackFT + OASST</td> </tr> <tr> <th></t> <td><a href=https://huggingface.co/bigcode/octogeex>OctoGeeX</a></td> <td>CodeGeeX2 (6B parameters) instruction tuned on CommitPackFT + OASST</td> </tr> <tr> <th>Evaluation</t> <td><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></td> <td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td> </tr> </table> ## Usage ```python # pip install -q datasets from datasets import load_dataset ds = load_dataset("bigcode/humanevalpack", "python")["test"] ds[0] ``` ## Dataset Structure ### Data Instances An example looks as follows: ```json { "task_id": "Python/0", "prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "declaration": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n", "canonical_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n", "buggy_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False\n", "bug_type": "missing logic", "failure_symptoms": "incorrect output", "entry_point": "has_close_elements", "import": "" "test_setup": "" "test": "\n\n\n\n\ndef check(has_close_elements):\n assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\ncheck(has_close_elements)", "example_test": "def check(has_close_elements):\n assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False\n assert has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) == True\ncheck(has_close_elements)\n", "signature": "has_close_elements(numbers: List[float], threshold: float) -> bool", "docstring": "Check if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue", "instruction": "Write a Python function `has_close_elements(numbers: List[float], threshold: float) -> bool` to solve the following problem:\nCheck if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue" } ``` ### Data Fields The data fields are the same among all splits: - `task_id`: Indicates the language (Python/JavaScript/Java/Go/C++/Rust) and task id (from 0 to 163) of the problem - `prompt`: the prompt for models relying on code continuation - `declaration`: the declaration of the function (same as prompt but without the docstring) - `canonical_solution`: the correct solution passing all unit tests for the problem - `buggy_solution`: same as `canonical_solution` but with a subtle human-written bug causing the unit tests to fail - `bug_type`: the type of the bug in `buggy_solution` (one of [`missing logic`, `excess logic`, `value misuse`, `operator misuse`, `variable misuse`, `function misuse`]) - `failure_symptoms`: the problem the bug causes (one of [`incorrect output`, `stackoverflow`, `infinite loop`]) - `entry_point`: the name of the function - `import`: imports necessary for the solution (only present for Go) - `test_setup`: imports necessary for the test execution (only present for Go) - `test`: the unit tests for the problem - `example_test`: additional unit tests different from `test` that could be e.g. provided to the model (these are not used in the paper) - `signature`: the signature of the function - `docstring`: the docstring describing the problem - `instruction`: an instruction for HumanEvalSynthesize in the form `Write a {language_name} function {signature} to solve the following problem:\n{docstring}` ## Citation Information ```bibtex @article{muennighoff2023octopack, title={OctoPack: Instruction Tuning Code Large Language Models}, author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre}, journal={arXiv preprint arXiv:2308.07124}, year={2023} } ```
bigcode/humanevalpack
[ "language_creators:expert-generated", "multilinguality:multilingual", "language:code", "license:mit", "code", "arxiv:2308.07124", "region:us" ]
2023-03-29T11:00:16+00:00
{"language_creators": ["expert-generated"], "language": ["code"], "license": "mit", "multilinguality": ["multilingual"], "pretty_name": "HumanEvalPack", "tags": ["code"]}
2024-01-19T23:09:04+00:00
e2f3a88d48b4a7166f65e4a21dd7b163ae91fe43
kallaicsaba/dataset
[ "license:mit", "region:us" ]
2023-03-29T11:19:57+00:00
{"license": "mit"}
2023-03-29T11:21:46+00:00
c2bf66e5d0a137544d7f572e9e184cf145877296
# Dataset Card for "MusicCaps_spectrogram_aspect" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
rxk/MC_aspect
[ "region:us" ]
2023-03-29T11:28:50+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3440007731.837, "num_examples": 19731}], "download_size": 3421004235, "dataset_size": 3440007731.837}}
2023-03-29T11:57:29+00:00
5f355e9a64538b184edd05ef109ffe40a5be7487
huhlim/pdb.29k
[ "license:mit", "region:us" ]
2023-03-29T11:36:15+00:00
{"license": "mit"}
2023-03-29T11:36:15+00:00
3cd64bcb02fee4a5068e89b3c95fbe26a226a232
# Dataset Card for "MusicCaps_spectrogram_caption" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
rxk/MC_caption
[ "region:us" ]
2023-03-29T11:53:03+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3442217474.837, "num_examples": 19731}], "download_size": 3421342341, "dataset_size": 3442217474.837}}
2023-03-29T12:24:36+00:00
1f4cd6a427ea7599e3e23b1d8f3681e14b5da63d
# Distil Whisper: LibriSpeech ASR This is a variant of the [LibriSpeech ASR](https://huggingface.co/datasets/librispeech_asr) dataset, augmented to return the pseudo-labelled Whisper Transcriptions alongside the original dataset elements. The pseudo-labelled transcriptions were generated by labelling the input audio data with the Whisper [large-v2](https://huggingface.co/openai/whisper-large-v2) model with *greedy* sampling. For information on how the original dataset was curated, refer to the original [dataset card](https://huggingface.co/datasets/librispeech_asr). ## Standalone Usage First, install the latest version of the 🤗 Datasets package: ```bash pip install --upgrade pip pip install --upgrade datasets[audio] ``` The dataset can be downloaded and pre-processed on disk using the [`load_dataset`](https://huggingface.co/docs/datasets/v2.14.5/en/package_reference/loading_methods#datasets.load_dataset) function: ```python from datasets import load_dataset dataset = load_dataset("distil-whisper/librispeech_asr", "all") # take the first sample of the validation set sample = dataset["validation.clean"][0] ``` It can also be streamed directly from the Hub using Datasets' [streaming mode](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet). Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk: ```python from datasets import load_dataset dataset = load_dataset("distil-whisper/librispeech_asr", "all", streaming=True) # take the first sample of the validation set sample = next(iter(dataset["validation.clean"])) ``` ## Distil Whisper Usage To use this dataset to reproduce a Distil Whisper training run, refer to the instructions on the [Distil Whisper repository](https://github.com/huggingface/distil-whisper#training). ## License This dataset is licensed under cc-by-4.0.
distil-whisper/librispeech_asr
[ "task_categories:automatic-speech-recognition", "language:en", "license:cc-by-4.0", "region:us" ]
2023-03-29T11:53:48+00:00
{"language": ["en"], "license": "cc-by-4.0", "task_categories": ["automatic-speech-recognition"], "-pretty_name": "LibriSpeech ASR"}
2023-09-25T09:30:13+00:00
9170aceb1d8ab749ee4f60f1ec84e60e4aeb163c
# Dataset Card for "pile-deduped-pythia-random-sampled" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
EleutherAI/pile-deduped-pythia-random-sampled
[ "region:us" ]
2023-03-29T12:15:01+00:00
{"dataset_info": {"features": [{"name": "Index", "dtype": "int64"}, {"name": "70M", "dtype": "float64"}, {"name": "160M", "dtype": "float64"}, {"name": "410M", "dtype": "float64"}, {"name": "1B", "dtype": "float64"}, {"name": "1.4B", "dtype": "float64"}, {"name": "2.8B", "dtype": "float64"}, {"name": "6.9B", "dtype": "float64"}, {"name": "12B", "dtype": "float64"}, {"name": "Tokens", "sequence": "uint16"}], "splits": [{"name": "train", "num_bytes": 1020000000, "num_examples": 5000000}], "download_size": 915854656, "dataset_size": 1020000000}}
2023-08-25T06:26:47+00:00
904f0fe00332d63d3149b8306b2c704e89231e26
## Introduction * We build a large-scale dataset called the Theme and Aesthetics Dataset with 66K images (TAD66K), which is specifically designed for IAA. Specifically, (1) it is a theme-oriented dataset containing 66K images covering 47 popular themes. All images were carefully selected by hand based on the theme. (2) In addition to common aesthetic criteria, we provide 47 criteria for the 47 themes. Images of each theme are annotated independently, and each image contains at least 1200 effective annotations (so far the richest annotations). These high-quality annotations could help to provide deeper insight into the performance of models. ![TAD66K](https://user-images.githubusercontent.com/15050507/164620789-2958fbd6-5e3b-4eba-9697-bcd28d5257f6.png) <div align="center"> ![example3](https://user-images.githubusercontent.com/15050507/164624400-acb365e0-05d9-4de9-bc16-f894904c6d33.png) </div> ## If you find our work is useful, pleaes cite our paper: ``` @article{herethinking, title={Rethinking Image Aesthetics Assessment: Models, Datasets and Benchmarks}, author={He, Shuai and Zhang, Yongchang and Xie, Rui and Jiang, Dongxiang and Ming, Anlong}, journal={IJCAI}, year={2022}, } ```
Shuai1995/TAD66K_for_Image_Aesthetics_Assessment
[ "task_categories:feature-extraction", "size_categories:10K<n<100K", "license:apache-2.0", "Image Aesthetics Assessment", "Image Quality Assessment", "region:us" ]
2023-03-29T12:16:07+00:00
{"license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["feature-extraction"], "tags": ["Image Aesthetics Assessment", "Image Quality Assessment"]}
2023-03-30T00:24:17+00:00
8f9e0bb097697b9ba200f12db0a833889c233df9
# Dataset Card for "trinary_c_elegans" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ebj/trinary_c_elegans
[ "region:us" ]
2023-03-29T13:32:13+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 480177378.0, "num_examples": 269}], "download_size": 51437925, "dataset_size": 480177378.0}}
2023-03-29T15:16:01+00:00
e0e57749e1d6e5c0b3390f82a8ac50092a5b9813
# Dataset Card for "DTD_parition1_test_google_flan_t5_xl_mode_C_T_A_T_SPECIFIC_ns_1880" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/DTD_parition1_test_google_flan_t5_xl_mode_C_T_A_T_SPECIFIC_ns_1880
[ "region:us" ]
2023-03-29T13:37:48+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 673355, "num_examples": 1880}], "download_size": 226073, "dataset_size": 673355}}
2023-03-29T13:37:51+00:00
a57120c35120f2e75d904898a8479dcf4990683f
# Dataset Card for "DTD_parition1_test_google_flan_t5_xl_mode_C_A_T_SPECIFIC_ns_1880" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/DTD_parition1_test_google_flan_t5_xl_mode_C_A_T_SPECIFIC_ns_1880
[ "region:us" ]
2023-03-29T13:40:31+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 546856, "num_examples": 1880}, {"name": "fewshot_1_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 1039535, "num_examples": 1880}, {"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_ensemble_specific_rices", "num_bytes": 546340, "num_examples": 1880}], "download_size": 576598, "dataset_size": 2132731}}
2023-03-29T14:46:11+00:00
7c735442e021a332bf11b4f91a0f6a7b9b241765
# Dataset Card for "DTD_parition1_test_google_flan_t5_xl_mode_T_SPECIFIC_ns_1880" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/DTD_parition1_test_google_flan_t5_xl_mode_T_SPECIFIC_ns_1880
[ "region:us" ]
2023-03-29T13:43:20+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 224447, "num_examples": 1880}], "download_size": 19238, "dataset_size": 224447}}
2023-03-29T13:47:17+00:00
37773d35ecd73bb0828bb827ea3eebc034d8a980
# Dataset Card for "DTD_parition1_test_google_flan_t5_xxl_mode_C_A_T_SPECIFIC_ns_1880" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/DTD_parition1_test_google_flan_t5_xxl_mode_C_A_T_SPECIFIC_ns_1880
[ "region:us" ]
2023-03-29T13:51:09+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 547013, "num_examples": 1880}, {"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_ensemble_specific_rices", "num_bytes": 546403, "num_examples": 1880}, {"name": "fewshot_1_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_ensemble_specific_rices", "num_bytes": 1038797, "num_examples": 1880}, {"name": "fewshot_0_clip_tags_ViT_L_14_Attributes_ViT_L_14_text_davinci_003_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 852716, "num_examples": 1880}, {"name": "fewshot_1_clip_tags_ViT_L_14_Attributes_ViT_L_14_text_davinci_003_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 1476439, "num_examples": 1880}], "download_size": 1174480, "dataset_size": 4461368}}
2023-04-04T02:17:40+00:00
7f0c6eef81786872a00938f1fb942aee930a1508
# DailyDialog - Source: https://huggingface.co/datasets/daily_dialog - Num examples: - 11,118 (train) - 1,000 (validation) - 1,000 (test) - Language: Vietnamese ```python from datasets import load_dataset load_dataset("vietgpt/daily_dialog_vi") ```
vietgpt/daily_dialog_vi
[ "task_categories:conversational", "size_categories:10K<n<100K", "language:vi", "SFT", "region:us" ]
2023-03-29T13:57:48+00:00
{"language": ["vi"], "size_categories": ["10K<n<100K"], "task_categories": ["conversational"], "dataset_info": {"features": [{"name": "dialog", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 7803227, "num_examples": 11118}, {"name": "validation", "num_bytes": 718575, "num_examples": 1000}, {"name": "test", "num_bytes": 698896, "num_examples": 1000}], "download_size": 4841457, "dataset_size": 9220698}, "tags": ["SFT"]}
2023-06-21T13:11:16+00:00
5809adc55d8a981311b6e33d930a31e16f8679b1
# Dataset Card for "DTD_parition1_test_google_flan_t5_xl_mode_C_A_T_T_SPECIFIC_ns_1880" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/DTD_parition1_test_google_flan_t5_xl_mode_C_A_T_T_SPECIFIC_ns_1880
[ "region:us" ]
2023-03-29T14:04:21+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 692485, "num_examples": 1880}], "download_size": 230862, "dataset_size": 692485}}
2023-03-29T14:04:24+00:00
c6c22dae24614224ae1f25a6c2fee18fd300b7ae
# Dataset Card for "oeis" Work in Progress. Data source: daily dump from March 28th, 2023. OEIS End-User License: http://oeis.org/LICENSE
cakiki/oeis
[ "size_categories:100K<n<1M", "license:cc-by-sa-4.0", "region:us" ]
2023-03-29T14:15:43+00:00
{"license": "cc-by-sa-4.0", "size_categories": ["100K<n<1M"], "pretty_name": "On-Line Encyclopedia of Integer Sequences Dataset", "dataset_info": {"features": [{"name": "a-number", "dtype": "string"}, {"name": "sequence", "sequence": "string"}, {"name": "description", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 155208770, "num_examples": 361596}], "download_size": 69958943, "dataset_size": 155208770}}
2023-03-29T14:43:56+00:00
154ac15e6ee74a9e04afa105a6e7595ab6b3bb15
YuanPJ/ami_summ
[ "license:cc-by-4.0", "region:us" ]
2023-03-29T14:23:57+00:00
{"license": "cc-by-4.0"}
2023-03-29T23:36:27+00:00
5e9ad453cb11d18f026eed66394d2c734fe5365c
# Dataset Card for "DTD_parition1_test_google_flan_t5_xxl_mode_C_T_A_T_SPECIFIC_ns_1880" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/DTD_parition1_test_google_flan_t5_xxl_mode_C_T_A_T_SPECIFIC_ns_1880
[ "region:us" ]
2023-03-29T14:25:04+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_ensemble_specific_rices", "num_bytes": 692068, "num_examples": 1880}, {"name": "fewshot_1_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_ensemble_specific_rices", "num_bytes": 1329559, "num_examples": 1880}, {"name": "fewshot_1_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 1330297, "num_examples": 1880}], "download_size": 997973, "dataset_size": 3351924}}
2023-03-29T14:37:31+00:00
6c8fb21189edfe433d92558236e767aef5f72413
# PyCoder This repository contains the dataset for the paper [Syntax-Aware On-the-Fly Code Completion](https://arxiv.org/abs/2211.04673) The sample code to run the model can be found in directory: "`assets/notebooks/inference.ipynb`" in our GitHub: https://github.com/awsm-research/pycoder. PyCoder is an auto code completion model which leverages a Multi-Task Training technique (MTT) to cooperatively learn the code prediction task and the type prediction task. For the type prediction task, we propose to leverage the standard Python token type information (e.g., String, Number, Name, Keyword), which is readily available and lightweight, instead of using the AST information which requires source code to be parsable for an extraction, limiting its ability to perform on-the-fly code completion (see Section 2.3 in our paper). More information can be found in our paper. If you use our code or PyCoder, please cite our paper. <pre><code>@article{takerngsaksiri2022syntax, title={Syntax-Aware On-the-Fly Code Completion}, author={Takerngsaksiri, Wannita and Tantithamthavorn, Chakkrit and Li, Yuan-Fang}, journal={arXiv preprint arXiv:2211.04673}, year={2022} }</code></pre>
Wannita/PyCoder-Type
[ "task_categories:text-generation", "license:mit", "code", "arxiv:2211.04673", "region:us" ]
2023-03-29T14:26:00+00:00
{"license": "mit", "task_categories": ["text-generation"], "pretty_name": "pycoder-type", "tags": ["code"]}
2023-03-29T14:51:09+00:00
5218f33557b4e96fb203c3103a4a130bb2bca3e3
# Dataset Card for "balanced_augmented_dataset_2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Jsevisal/balanced_augmented_dataset_2
[ "region:us" ]
2023-03-29T14:28:58+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "tokens", "sequence": "string"}, {"name": "gestures", "sequence": "string"}, {"name": "label", "sequence": {"class_label": {"names": {"0": "B-BUT", "1": "I-BUT", "2": "B-CALM_DOWN", "3": "I-CALM_DOWN", "4": "B-COME_ON", "5": "I-COME_ON", "6": "B-EMPHATIC", "7": "I-EMPHATIC", "8": "B-ENTHUSIASTIC", "9": "I-ENTHUSIASTIC", "10": "B-EXPLAIN", "11": "I-EXPLAIN", "12": "B-FRONT", "13": "I-FRONT", "14": "B-GREET", "15": "I-GREET", "16": "B-ITERATE", "17": "I-ITERATE", "18": "B-NEUTRAL", "19": "I-NEUTRAL", "20": "B-NO", "21": "I-NO", "22": "B-NO_GESTURE", "23": "I-NO_GESTURE", "24": "B-OTHER_PEER", "25": "I-OTHER_PEER", "26": "B-PLEASE", "27": "I-PLEASE", "28": "B-QUESTION", "29": "I-QUESTION", "30": "B-SELF", "31": "I-SELF", "32": "B-SORRY", "33": "I-SORRY", "34": "B-THANKS", "35": "I-THANKS", "36": "B-THINKING", "37": "I-THINKING", "38": "B-THIRD_PERSON", "39": "I-THIRD_PERSON", "40": "B-YES", "41": "I-YES"}}}}], "splits": [{"name": "train", "num_bytes": 272426.0, "num_examples": 831}, {"name": "test", "num_bytes": 55785.0, "num_examples": 126}], "download_size": 58436, "dataset_size": 328211.0}}
2023-09-14T10:32:21+00:00
c6116ee5a7311713edca7e3e339510637cdc941e
vietgpt/alpaca_en
[ "task_categories:text-generation", "size_categories:10K<n<100K", "language:en", "SFT", "region:us" ]
2023-03-29T14:52:38+00:00
{"language": ["en"], "size_categories": ["10K<n<100K"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 20207911, "num_examples": 51848}], "download_size": 11466948, "dataset_size": 20207911}, "tags": ["SFT"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-11-03T21:23:19+00:00
7f8f16cd7c452792a1fcff6d45b9ad22888083c4
# Dataset Card for "OxfordPets_test_google_flan_t5_xl_mode_C_A_T_SPECIFIC_ns_3669" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/OxfordPets_test_google_flan_t5_xl_mode_C_A_T_SPECIFIC_ns_3669
[ "region:us" ]
2023-03-29T15:03:03+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 984100, "num_examples": 3669}], "download_size": 217354, "dataset_size": 984100}}
2023-03-29T15:03:05+00:00
64c9d305fcec98ef04f1172e9f949151d6774b6f
# Dataset Card for "OxfordPets_test_google_flan_t5_xxl_mode_C_A_T_SPECIFIC_ns_3669" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/OxfordPets_test_google_flan_t5_xxl_mode_C_A_T_SPECIFIC_ns_3669
[ "region:us" ]
2023-03-29T15:08:58+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 987114, "num_examples": 3669}, {"name": "fewshot_0_clip_tags_ViT_L_14_Attributes_ViT_L_14_text_davinci_003_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 1553605, "num_examples": 3669}], "download_size": 235457, "dataset_size": 2540719}}
2023-04-03T21:10:32+00:00
6f5ff0d6652f5b7da93b36a1bf68ec318cbecef4
hasorez/finnish_lakefish_dataset
[ "license:mit", "region:us" ]
2023-03-29T15:14:31+00:00
{"license": "mit"}
2023-03-29T15:17:44+00:00
1132072e6b499e5d496dbb7207e4bdc4a903b98a
# NBFI The [NBFI dataset](https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset) from the [Kaggle](https://www.kaggle.com/datasets). Client default prediction. | **Configuration** | **Task** | **Description** | |-------------------|---------------------------|-----------------------------------------------------------------| | default | Binary classification | Has the client defaulted? | # Usage ```python from datasets import load_dataset dataset = load_dataset("mstz/nbfi")["train"] ``` # Features |**Feature** |**Type** | |-----------------------------------------------|---------------| |`income` | `float32` | |`owns_a_car` | `bool` | |`owns_a_bike` | `bool` | |`has_an_active_loan` | `bool` | |`owns_a_house` | `bool` | |`nr_children` | `int8` | |`credit` | `float32` | |`loan_annuity` | `float32` | |`accompanied_by` | `string` | |`income_type` | `string` | |`education_level` | `float32` | |`marital_status` | `float32` | |`is_male` | `bool` | |`type_of_contract` | `string` | |`type_of_housing` | `string` | |`residence_density` | `float32` | |`age_in_days` | `int32` | |`consecutive_days_of_employment` | `int16` | |`nr_days_since_last_registration_change` | `int32` | |`nr_days_since_last_document_change` | `int32` | |`owned_a_house_for_nr_days` | `int32` | |`has_provided_a_mobile_number` | `bool` | |`has_provided_a_home_number` | `bool` | |`was_reachable_at_work` | `bool` | |`job` | `string` | |`nr_family_members` | `int8` | |`city_rating` | `int8` | |`weekday_of_application` | `int8` | |`hour_of_application` | `float32` | |`same_residence_and_home` | `bool` | |`same_work_and_home` | `bool` | |`score_1` | `float32` | |`score_2` | `float32` | |`score_3` | `float32` | |`nr_defaults_in_social_circle` | `int8` | |`inquiries_in_last_year` | `float32` |
mstz/nbfi
[ "task_categories:tabular-classification", "size_categories:1K<n<10K", "language:en", "license:cc", "nbfi", "tabular_classification", "binary_classification", "region:us" ]
2023-03-29T15:21:38+00:00
{"language": ["en"], "license": "cc", "size_categories": ["1K<n<10K"], "task_categories": ["tabular-classification"], "pretty_name": "NBFI", "tags": ["nbfi", "tabular_classification", "binary_classification"], "configs": ["default"]}
2024-01-19T16:12:30+00:00
865180372fc40249b38c962c2dfc462fd66c9b4b
# scientific_lay_summarisation - PLOS - normalized This dataset is a modified version of [tomasg25/scientific_lay_summarization](https://huggingface.co/datasets/tomasg25/scientific_lay_summarisation) and contains scientific lay summaries that have been preprocessed [with this code](https://gist.github.com/pszemraj/bd344637af7c0c10ecf4ab62c4d0ce91). The preprocessing includes fixing punctuation and whitespace problems, and calculating the token length of each text sample using a tokenizer from the T5 model. Original dataset details: - **Repository:** https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation - **Paper:** [Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature](https://arxiv.org/abs/2210.09932) ## Data Cleaning The text in both the "article" and "summary" columns was processed to ensure that punctuation and whitespace were consistent. The `fix_punct_whitespace` function was applied to each text sample to: - Remove spaces before punctuation marks (except for parentheses) - Add a space after punctuation marks (except for parentheses) if missing - Handle spaces around parentheses - Add a space after a closing parenthesis if followed by a word or opening parenthesis - Handle spaces around quotation marks - Handle spaces around single quotes - Handle comma in numbers ## Tokenization The length of each text sample was calculated in terms of tokens using the T5 tokenizer. The `calculate_token_length` function was used to encode each text sample using the tokenizer and return the number of resulting tokens. The resulting token lengths were added as new columns to the dataframes. ## Data Format The resulting processed data files are stored in Apache parquet and can be loaded using the `pandas' library or the `datasets' library from the Hugging Face transformers package. The relevant column names and data types for summarization are ```python DatasetDict({ train: Dataset({ features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'], num_rows: 24773 }) test: Dataset({ features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'], num_rows: 1376 }) validation: Dataset({ features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'], num_rows: 1376 }) }) ``` ## Usage Load the desired parquet file(s) using `pandas` or `datasets`. Here is an example using `pandas`: ```python # download the dataset files by clicking on 'use in datasets' and cloning import pandas as pd # Load train set df = pd.read_parquet("scientific_lay_summarisation-plos-norm/train.parquet") print(df.info()) ``` And here is an example using `datasets`: ```python from datasets import load_dataset dataset = load_dataset("pszemraj/scientific_lay_summarisation-plos-norm") train_set = dataset['train'] # Print the first few samples for i in range(5): print(train_set[i]) ``` ## Token Lengths For train split: ![train-lengths](https://i.imgur.com/EXfC9kz.png) ---
pszemraj/scientific_lay_summarisation-plos-norm
[ "task_categories:summarization", "task_categories:text2text-generation", "size_categories:10K<n<100K", "source_datasets:tomasg25/scientific_lay_summarisation", "language:en", "license:mit", "arxiv:2210.09932", "region:us" ]
2023-03-29T15:24:26+00:00
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"], "source_datasets": "tomasg25/scientific_lay_summarisation", "task_categories": ["summarization", "text2text-generation"]}
2023-06-20T00:06:39+00:00
40dd102d8f4e53439b81a71728cd3c64764dc94c
# scientific_lay_summarisation - elife - normalized This is the "_elife_" split. For more words, refer to the [PLOS split README](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) ## Contents load with datasets: ```python from datasets import load_dataset # If the dataset is gated/private, make sure you have run huggingface-cli login dataset = load_dataset("pszemraj/scientific_lay_summarisation-elife-norm") dataset ``` Output: ```python DatasetDict({ train: Dataset({ features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'], num_rows: 4346 }) test: Dataset({ features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'], num_rows: 241 }) validation: Dataset({ features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'], num_rows: 241 }) }) ``` ## Lengths Train set: ![t5-tokens](https://i.imgur.com/8BQrbgs.png)
pszemraj/scientific_lay_summarisation-elife-norm
[ "task_categories:summarization", "task_categories:text2text-generation", "size_categories:10K<n<100K", "source_datasets:tomasg25/scientific_lay_summarisation", "language:en", "license:mit", "region:us" ]
2023-03-29T15:26:37+00:00
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"], "source_datasets": "tomasg25/scientific_lay_summarisation", "task_categories": ["summarization", "text2text-generation"]}
2023-04-06T22:34:11+00:00
43de0f71ba24c93c64d82452e93ea7f2f293143c
# Dataset Card for "OxfordPets_test_google_flan_t5_xxl_mode_T_SPECIFIC_ns_3669" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/OxfordPets_test_google_flan_t5_xxl_mode_T_SPECIFIC_ns_3669
[ "region:us" ]
2023-03-29T15:36:19+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 466723, "num_examples": 3669}, {"name": "fewshot_0_clip_tags_ViT_L_14_Attributes_ViT_L_14_text_davinci_003_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 248812, "num_examples": 3669}], "download_size": 61769, "dataset_size": 715535}}
2023-04-03T19:57:06+00:00
1ab52e117f33cfd7d78b6a3448537e61d1a1377c
# Dataset Card for "OxfordPets_test_google_flan_t5_xxl_mode_T_SPECIFIC_A_ns_3669" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/OxfordPets_test_google_flan_t5_xxl_mode_T_SPECIFIC_A_ns_3669
[ "region:us" ]
2023-03-29T15:49:53+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 1065554, "num_examples": 3669}, {"name": "fewshot_0_clip_tags_ViT_L_14_Attributes_ViT_L_14_text_davinci_003_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 1535372, "num_examples": 3669}, {"name": "fewshot_1_clip_tags_ViT_L_14_Attributes_ViT_L_14_text_davinci_003_full_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 2956478, "num_examples": 3669}, {"name": "fewshot_3_clip_tags_ViT_L_14_Attributes_ViT_L_14_text_davinci_003_full_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 5797536, "num_examples": 3669}, {"name": "fewshot_0__Attributes_ViT_B_16_descriptors_text_davinci_003_full_clip_tags_ViT_B_16_simple_specific_rices", "num_bytes": 1526722, "num_examples": 3669}, {"name": "fewshot_1__Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full_clip_tags_LAION_ViT_H_14_2B_simple_specific_rices", "num_bytes": 2808638, "num_examples": 3669}, {"name": "fewshot_1__Attributes_ViT_B_16_descriptors_text_davinci_003_full_clip_tags_ViT_B_16_simple_specific_rices", "num_bytes": 2936255, "num_examples": 3669}, {"name": "fewshot_3__Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full_clip_tags_LAION_ViT_H_14_2B_simple_specific_rices", "num_bytes": 5508214, "num_examples": 3669}, {"name": "fewshot_0__Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full_clip_tags_LAION_ViT_H_14_2B_simple_specific_rices", "num_bytes": 1469085, "num_examples": 3669}], "download_size": 3384830, "dataset_size": 25603854}, "configs": [{"config_name": "default", "data_files": [{"split": "fewshot_0__Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full_clip_tags_LAION_ViT_H_14_2B_simple_specific_rices", "path": "data/fewshot_0__Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full_clip_tags_LAION_ViT_H_14_2B_simple_specific_rices-*"}]}]}
2024-01-30T03:49:38+00:00
2c7a56f6fd8654a367c916e61c0fa3ef390824ec
# Dataset Card for "OxfordPets_test_google_flan_t5_xxl_mode_A_T_SPECIFIC_ns_3669" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/OxfordPets_test_google_flan_t5_xxl_mode_A_T_SPECIFIC_ns_3669
[ "region:us" ]
2023-03-29T15:54:58+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_ViT_L_14_LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14_clip_tags_ViT_L_14_simple_specific_rices", "num_bytes": 1065643, "num_examples": 3669}], "download_size": 193852, "dataset_size": 1065643}}
2023-03-29T15:55:01+00:00
7a5e5838d4620cb59e1e5f45de6c7418e6cf6e76
andersonbcdefg/gpt4all
[ "license:other", "region:us" ]
2023-03-29T16:06:24+00:00
{"license": "other"}
2023-03-29T18:50:03+00:00
48fedd9b3db57f7d3d0ae0cd05084ca37210248f
# Dataset Card for "somos-alpaca-es" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
monicaeme/somos-alpaca-es
[ "region:us" ]
2023-03-29T16:24:49+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "null"}, {"name": "inputs", "struct": [{"name": "1-instruction", "dtype": "string"}, {"name": "2-input", "dtype": "string"}, {"name": "3-output", "dtype": "string"}]}, {"name": "prediction", "dtype": "null"}, {"name": "prediction_agent", "dtype": "null"}, {"name": "annotation", "dtype": "string"}, {"name": "annotation_agent", "dtype": "string"}, {"name": "vectors", "struct": [{"name": "input", "sequence": "float64"}, {"name": "instruction", "sequence": "float64"}, {"name": "output", "sequence": "float64"}]}, {"name": "multi_label", "dtype": "bool"}, {"name": "explanation", "dtype": "null"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "dtype": "null"}, {"name": "status", "dtype": "string"}, {"name": "event_timestamp", "dtype": "timestamp[us]"}, {"name": "metrics", "struct": [{"name": "text_length", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 1920697, "num_examples": 102}], "download_size": 0, "dataset_size": 1920697}}
2023-04-04T11:07:10+00:00
4920d6c924eda9058071deba952910f560529a62
# Dataset Card for "tomatoesTest2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mattyhatch/tomatoesTest2
[ "region:us" ]
2023-03-29T16:37:36+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 174243.0, "num_examples": 1}], "download_size": 23284, "dataset_size": 174243.0}}
2023-03-29T16:37:38+00:00
c357d758e79fe9e21f188f71ad6171854e504850
# Dataset Card for "tomatoesTest3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mattyhatch/tomatoesTest3
[ "region:us" ]
2023-03-29T16:40:13+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "test", "1": "test_labels", "2": "train", "3": "train_labels", "4": "val", "5": "val_labels"}}}}], "splits": [{"name": "train", "num_bytes": 41561872.854, "num_examples": 1114}, {"name": "test", "num_bytes": 4715509.0, "num_examples": 136}, {"name": "validation", "num_bytes": 12654111.0, "num_examples": 366}], "download_size": 51718608, "dataset_size": 58931492.854}}
2023-03-29T16:40:20+00:00
7b44158a39c9968eee25de59780cb0bdc3474193
# NASA Earth Instagram This dataset is a moderately curated subset of the posts shown on [NASA Earth's Instagram](https://www.instagram.com/nasaearth/), with an emphasis on finding image-text pairs where the text associated is as close as possible to being a direct caption of the image in question. This dataset has a variety of use cases, but the one which it is originally intended for is to provide a fine-tuning dataset for image captioning models, to be better equipped for describing the exact pheonomena in satellite imagery. The owner of all images and text in this data is NASA.
nkasmanoff/nasa_earth_instagram
[ "task_categories:image-to-text", "task_categories:text-to-image", "size_categories:n<1K", "region:us" ]
2023-03-29T16:45:06+00:00
{"size_categories": ["n<1K"], "task_categories": ["image-to-text", "text-to-image"]}
2023-03-30T10:04:45+00:00
5e026a5d7859bb599f9b2b90342777358dfeab8d
# Dataset Card for "msp5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
kiringodhwani/msp5
[ "region:us" ]
2023-03-29T16:46:41+00:00
{"dataset_info": {"features": [{"name": "From", "sequence": "string"}, {"name": "Sent", "sequence": "string"}, {"name": "To", "sequence": "string"}, {"name": "Cc", "sequence": "string"}, {"name": "Subject", "sequence": "string"}, {"name": "Attachment", "sequence": "string"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6274340, "num_examples": 3295}], "download_size": 2765581, "dataset_size": 6274340}}
2023-03-29T16:46:44+00:00
b9b6f64bdc2dae029fb0eb46f270e3fa88f6ffcd
# Dataset Card for "flores200_packed2_mix_mt5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
bri25yu/flores200_packed2_mix_mt5
[ "region:us" ]
2023-03-29T16:48:21+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int32"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 13594840169, "num_examples": 10240000}, {"name": "val", "num_bytes": 3827042, "num_examples": 5000}, {"name": "test", "num_bytes": 7670994, "num_examples": 10000}], "download_size": 6189830203, "dataset_size": 13606338205}}
2023-03-29T17:13:56+00:00
b0d31f1a294e6a828b72b888ecbea3453b5731a7
# Canny DiffusionDB This dataset is the [DiffusionDB dataset](https://huggingface.co/datasets/poloclub/diffusiondb) that is transformed using Canny transformation. You can see samples below 👇 **Sample:** Original Image: ![image](https://datasets-server.huggingface.co/assets/merve/canny_diffusiondb/--/merve--canny_diffusiondb/train/0/original_image/image.jpg) Transformed Image: ![image](https://datasets-server.huggingface.co/assets/merve/canny_diffusiondb/--/merve--canny_diffusiondb/train/0/transformed_image/image.jpg) Caption: "a small wheat field beside a forest, studio lighting, golden ratio, details, masterpiece, fine art, intricate, decadent, ornate, highly detailed, digital painting, octane render, ray tracing reflections, 8 k, featured, by claude monet and vincent van gogh " Below you can find a small script used to create this dataset: ```python def canny_convert(image): image_array = np.array(image) gray_image = cv2.cvtColor(image_array, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray_image, 100, 200) edge_image = Image.fromarray(edges) return edge_image dataset = load_dataset("poloclub/diffusiondb", split = "train") dataset_list = [] for data in dataset: image_path = data["image"] prompt = data["prompt"] transformed_image_path = canny_convert(image_path) new_data = { "original_image": image, "prompt": prompt, "transformed_image": transformed_image, } dataset_list.append(new_data) ```
jax-diffusers-event/canny_diffusiondb
[ "region:us" ]
2023-03-29T17:27:15+00:00
{"dataset_info": {"features": [{"name": "original_image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "transformed_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 604990210.0, "num_examples": 994}], "download_size": 604849707, "dataset_size": 604990210.0}}
2023-03-29T18:36:28+00:00
3a7f5b8e0b0e42aef89fdee1257d534e252a7765
# Dataset Card for "markpoulierart" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ossaili/markpoulierart
[ "region:us" ]
2023-03-29T18:00:20+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 273071208.65, "num_examples": 1285}], "download_size": 282892921, "dataset_size": 273071208.65}}
2023-09-24T19:58:25+00:00
2623232238645d35e5ed91e319c3643411aecd0c
# Dataset Card for "chatdoctor200k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mrm8488/chatdoctor200k
[ "region:us" ]
2023-03-29T18:57:01+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 207526604, "num_examples": 207407}], "download_size": 115879622, "dataset_size": 207526604}}
2023-03-29T18:57:18+00:00
3c1a26d43d75bd5398aca8a371fce2f2e1d04db6
# Dataset Card for "tomatoesTest4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mattyhatch/tomatoesTest4
[ "region:us" ]
2023-03-29T18:58:02+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "labels", "struct": [{"name": "bytes", "dtype": "binary"}, {"name": "path", "dtype": "null"}]}], "splits": [{"name": "train", "num_bytes": 352830773.0, "num_examples": 557}], "download_size": 51228407, "dataset_size": 352830773.0}}
2023-03-29T18:58:08+00:00
6200574205231562746a3b60d4da3355fd60675a
# Dataset Card for "tomatoesTest5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mattyhatch/tomatoesTest5
[ "region:us" ]
2023-03-29T18:59:58+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "struct": [{"name": "bytes", "dtype": "binary"}, {"name": "path", "dtype": "null"}]}], "splits": [{"name": "train", "num_bytes": 352830773.0, "num_examples": 557}], "download_size": 51228401, "dataset_size": 352830773.0}}
2023-03-29T19:00:05+00:00
b96baf4883cd1f461d9a2f3355afd91a7a9d7570
# Dataset Card for "swedish-catalog-data" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Djarnis/swedish-catalog-data
[ "region:us" ]
2023-03-29T19:02:32+00:00
{"dataset_info": {"features": [{"name": "layout", "dtype": "string"}, {"name": "catalog_id", "dtype": "string"}, {"name": "page", "dtype": "int64"}, {"name": "font_name", "dtype": "string"}, {"name": "size", "dtype": "float64"}, {"name": "text", "dtype": "string"}, {"name": "category", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 65421344, "num_examples": 585721}], "download_size": 5137853, "dataset_size": 65421344}}
2023-03-29T19:03:24+00:00
8715dc45262bfa7b746cb3005abf07cf47296110
## Dataset Multi30k: English-Ukrainian variation Multi30K dataset is designed to develop multilingual multimodal researches. Initially this dataset extends the Flickr30K dataset by adding German translations. The descriptions were collected from a crowdsourcing platform, while the translations were collected from professionally contracted translators. We present a variation of this dataset manually translated for Ukrainian language. Paper: ```python @inproceedings{saichyshyna-etal-2023-extension, title = "Extension {M}ulti30{K}: Multimodal Dataset for Integrated Vision and Language Research in {U}krainian", author = "Saichyshyna, Nataliia and Maksymenko, Daniil and Turuta, Oleksii and Yerokhin, Andriy and Babii, Andrii and Turuta, Olena", booktitle = "Proceedings of the Second Ukrainian Natural Language Processing Workshop (UNLP)", month = may, year = "2023", address = "Dubrovnik, Croatia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.unlp-1.7", pages = "54--61", abstract = "We share the results of the project within the well-known Multi30k dataset dedicated to improving machine translation of text from English into Ukrainian. The main task was to manually prepare the dataset and improve the translation of texts. The importance of collecting such datasets for low-resource languages for improving the quality of machine translation has been discussed. We also studied the features of translations of words and sentences with ambiguous meanings.The collection of multimodal datasets is essential for natural language processing tasks because it allows the development of more complex and comprehensive machine learning models that can understand and analyze different types of data. These models can learn from a variety of data types, including images, text, and audio, for more accurate and meaningful results.", } ```
turuta/Multi30k-uk
[ "task_categories:translation", "task_categories:text-generation", "size_categories:10K<n<100K", "language:uk", "language:en", "license:unknown", "common", "multi30k", "ukrainian", "region:us" ]
2023-03-29T19:26:58+00:00
{"language": ["uk", "en"], "license": "unknown", "size_categories": ["10K<n<100K"], "task_categories": ["translation", "text-generation"], "pretty_name": "ukr-multi30k", "tags": ["common", "multi30k", "ukrainian"]}
2023-05-04T18:11:45+00:00
18f0eac7a573ca920d7829999171302599e11788
# Dataset Card for "teste" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Thiagofer/teste
[ "region:us" ]
2023-03-29T19:31:41+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1398770, "num_examples": 2659}, {"name": "validation", "num_bytes": 429875, "num_examples": 665}], "download_size": 995956, "dataset_size": 1828645}}
2023-03-29T20:08:35+00:00
2d2b4ee5252f88ae7ef9c256b3f89c070abc1df5
rgricardo/Takubgroup
[ "license:openrail", "region:us" ]
2023-03-29T19:44:05+00:00
{"license": "openrail"}
2023-03-29T19:44:05+00:00
afb8395a583dd58e7080c2492cf71ef6734bb017
#pragma once #include "Board.h" #include "GameObjects.h" #include "Point.h" #include <Windows.h> #include <conio.h> class TetrisGame { Board boardGame; public: void resetGame(){ boardGame.setBoard(); } // <<<RUN>>> void run(); bool checkGameOver(int typeShapea); void updateStartBoard(int typeShape); void hideCursor(); GameObjects * createNewObject(int & type);
bruce69/54534654
[ "region:us" ]
2023-03-29T20:00:21+00:00
{}
2023-03-29T20:03:54+00:00
9ae70b9dec5e9873946b104111a0a0ce101b8002
# Dataset Card for "segundo_harem_conll_2003_style" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
arubenruben/segundo_harem_conll_2003_style
[ "region:us" ]
2023-03-29T21:18:41+00:00
{"dataset_info": {"features": [{"name": "tokens", "sequence": "string"}, {"name": "ner_tags", "sequence": {"class_label": {"names": {"0": "O", "1": "B-PER", "2": "I-PER", "3": "B-ORG", "4": "I-ORG", "5": "B-LOC", "6": "I-LOC", "7": "B-MISC", "8": "I-MISC"}}}}], "splits": [{"name": "train", "num_bytes": 1047476, "num_examples": 93}, {"name": "validation", "num_bytes": 249755, "num_examples": 23}], "download_size": 295815, "dataset_size": 1297231}}
2023-04-12T07:12:31+00:00
79a538252342ba18cb7dd01d9f4804e767f2ae49
AbramPrz/faq-dataset
[ "license:mit", "region:us" ]
2023-03-29T21:47:10+00:00
{"license": "mit"}
2023-03-29T21:48:27+00:00
61f3d559eb6b9284c9b20b79a297e0fd277defd6
# Dataset Card for "DA_SGD_Restaurants" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Restaurants
[ "region:us" ]
2023-03-29T21:48:55+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 895010.6571663469, "num_examples": 3648}, {"name": "test", "num_bytes": 233, "num_examples": 1}], "download_size": 360352, "dataset_size": 895243.6571663469}}
2023-03-29T21:49:00+00:00
bc32eeac2eadbdb590fa0f7752f994f287cb213e
# Dataset Card for "DA_SGD_Media" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Media
[ "region:us" ]
2023-03-29T21:49:01+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 538641.80312262, "num_examples": 2625}, {"name": "test", "num_bytes": 199, "num_examples": 1}], "download_size": 207091, "dataset_size": 538840.80312262}}
2023-03-29T21:49:05+00:00
94d64c0215314f5cdb0d701aab1d8402c09d3c17
# Dataset Card for "DA_SGD_Events" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Events
[ "region:us" ]
2023-03-29T21:49:06+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1660456.0603351956, "num_examples": 7159}, {"name": "test", "num_bytes": 327, "num_examples": 1}], "download_size": 673850, "dataset_size": 1660783.0603351956}}
2023-03-29T21:49:11+00:00
cb65aa77fd03ddbdad7447d625707745d0c0a7fc
# Dataset Card for "DA_SGD_Music" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Music
[ "region:us" ]
2023-03-29T21:49:11+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 628520.2361015786, "num_examples": 2913}, {"name": "test", "num_bytes": 149, "num_examples": 1}], "download_size": 241847, "dataset_size": 628669.2361015786}}
2023-03-29T21:49:16+00:00
aebb9a14d9e193733900c86239f5bfc9a17f1529
# Dataset Card for "DA_SGD_Movies" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Movies
[ "region:us" ]
2023-03-29T21:49:16+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 724582.4324491055, "num_examples": 3241}, {"name": "test", "num_bytes": 241, "num_examples": 1}], "download_size": 297231, "dataset_size": 724823.4324491055}}
2023-03-29T21:49:21+00:00
f62c0fe8aab865278fcf117238b4a176521e717a
# Dataset Card for "DA_SGD_Flights" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Flights
[ "region:us" ]
2023-03-29T21:49:21+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2067906.6395008278, "num_examples": 7852}, {"name": "test", "num_bytes": 326, "num_examples": 1}], "download_size": 791257, "dataset_size": 2068232.6395008278}}
2023-03-29T21:49:27+00:00
3bcfa11507c2267a6fa23a3d9ef7095723355794
# Dataset Card for "DA_SGD_RideSharing" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_RideSharing
[ "region:us" ]
2023-03-29T21:49:27+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 235897.7504854369, "num_examples": 1029}, {"name": "test", "num_bytes": 196, "num_examples": 1}], "download_size": 94252, "dataset_size": 236093.7504854369}}
2023-03-29T21:49:32+00:00
92fd5bed52fa83528094422baa414ba196d1795a
# Dataset Card for "DA_SGD_RentalCars" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_RentalCars
[ "region:us" ]
2023-03-29T21:49:32+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 694211.3296910324, "num_examples": 2653}, {"name": "test", "num_bytes": 404, "num_examples": 1}], "download_size": 268297, "dataset_size": 694615.3296910324}}
2023-03-29T21:49:37+00:00
b5105da57dda1f2fd2da55173b453be6528dbdd9
# Dataset Card for "DA_SGD_Buses" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Buses
[ "region:us" ]
2023-03-29T21:49:37+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 710108.4859689666, "num_examples": 3028}, {"name": "test", "num_bytes": 221, "num_examples": 1}], "download_size": 273885, "dataset_size": 710329.4859689666}}
2023-03-29T21:49:42+00:00
0984c1f2fc9a6b96861c92d180959ec050b03015
# Dataset Card for "DA_SGD_Hotels" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Hotels
[ "region:us" ]
2023-03-29T21:49:42+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1137138.1547469678, "num_examples": 4781}, {"name": "test", "num_bytes": 354, "num_examples": 1}], "download_size": 477647, "dataset_size": 1137492.1547469678}}
2023-03-29T21:49:48+00:00
fdc46bb9fbe5122b24b84bc997b877e34cd3b80a
# Dataset Card for "DA_SGD_Services" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Services
[ "region:us" ]
2023-03-29T21:49:48+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1113419.0002074258, "num_examples": 4820}, {"name": "test", "num_bytes": 293, "num_examples": 1}], "download_size": 460731, "dataset_size": 1113712.0002074258}}
2023-03-29T21:49:53+00:00
842e92501b59aaf8597256845b4db360fffb0975
# Dataset Card for "DA_SGD_Homes" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Homes
[ "region:us" ]
2023-03-29T21:49:53+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 782436.7041420118, "num_examples": 3041}, {"name": "test", "num_bytes": 418, "num_examples": 1}], "download_size": 311067, "dataset_size": 782854.7041420118}}
2023-03-29T21:49:58+00:00
d4069cfe906b00132a9c5bab716d638f5b375f22
# Dataset Card for "DA_SGD_Banks" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Banks
[ "region:us" ]
2023-03-29T21:49:58+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 429700.14992503746, "num_examples": 2000}, {"name": "test", "num_bytes": 228, "num_examples": 1}], "download_size": 147054, "dataset_size": 429928.14992503746}}
2023-03-29T21:50:03+00:00
4524cdbcbcdfd26c4f2b1888d8d5e503e4bc12d2
# Dataset Card for "DA_SGD_Calendar" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_SGD_Calendar
[ "region:us" ]
2023-03-29T21:50:04+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 237228.4572815534, "num_examples": 1029}, {"name": "test", "num_bytes": 130, "num_examples": 1}], "download_size": 90115, "dataset_size": 237358.4572815534}}
2023-03-29T21:50:08+00:00
ceee66b545de4366590386127e7005a24fb8a54e
# Dataset Card for "tomatoesSpoof1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mattyhatch/tomatoesSpoof1
[ "region:us" ]
2023-03-29T21:53:06+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "sequence": {"sequence": "int64"}}], "splits": [{"name": "train", "num_bytes": 673124095.0, "num_examples": 557}], "download_size": 34937459, "dataset_size": 673124095.0}}
2023-03-29T21:57:48+00:00
96693d13afd1e79679e5d06414782b78e102ec09
# Dataset Card for "analisis-sentimeinto-textos-turisitcos-mx-polaridad" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
alexcom/analisis-sentimientos-textos-turisitcos-mx-polaridad
[ "region:us" ]
2023-03-29T22:14:41+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 71496873, "num_examples": 176192}, {"name": "test", "num_bytes": 30856228, "num_examples": 75510}], "download_size": 62497427, "dataset_size": 102353101}}
2023-04-01T19:12:37+00:00
5a64ccb93a9e27948c91dd6ba41d85f1bd64f280
# Dataset Card for "analisis-sentimeinto-textos-turisitcos-mx-tipo" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
alexcom/analisis-sentimeinto-textos-turisitcos-mx-tipo
[ "region:us" ]
2023-03-29T22:14:57+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 72330945, "num_examples": 176192}, {"name": "test", "num_bytes": 31152158, "num_examples": 75510}], "download_size": 62479649, "dataset_size": 103483103}}
2023-03-29T22:18:27+00:00
dfbf980e1e0dee973bb7825c6507262b4689442b
# Dataset Card for "analisis-sentimeinto-textos-turisitcos-mx-pais" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
alexcom/analisis-sentimeinto-textos-turisitcos-mx-pais
[ "region:us" ]
2023-03-29T22:16:52+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 72164531, "num_examples": 176192}, {"name": "test", "num_bytes": 30692934, "num_examples": 75510}], "download_size": 62463153, "dataset_size": 102857465}}
2023-03-29T22:17:17+00:00
618b1378fea15e06d52d7919d328a52d4b6b8cfd
# Dataset Card for "flores200_baseline_all_mt5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
bri25yu/flores200_baseline_all_mt5
[ "region:us" ]
2023-03-29T22:24:09+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int32"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 30474393243, "num_examples": 41287764}, {"name": "val", "num_bytes": 3791994, "num_examples": 5000}, {"name": "test", "num_bytes": 7604613, "num_examples": 10000}], "download_size": 15127185362, "dataset_size": 30485789850}}
2023-03-29T22:50:23+00:00
61a9690126faa8839fff46958dbe404b11891425
# Dataset Card for "sft_language_submix" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
andersonbcdefg/sft_language_submix
[ "region:us" ]
2023-03-29T22:53:52+00:00
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3360236870.066389, "num_examples": 2339239}], "download_size": 1943869500, "dataset_size": 3360236870.066389}}
2023-03-29T22:56:41+00:00
e74e2a178161a385ecd26c5825f19e64a219e4ad
# Dataset Card for "tomatoesSpoof2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mattyhatch/tomatoesSpoof2
[ "region:us" ]
2023-03-29T23:14:39+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "sequence": {"sequence": "int64"}}], "splits": [{"name": "train", "num_bytes": 673124095.0, "num_examples": 557}], "download_size": 35510907, "dataset_size": 673124095.0}}
2023-03-29T23:17:35+00:00
0ebc32dbb6f12467f5fb4cb32d3c71395840bd37
# Dataset Card for "procedural_gen_2operands" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sethapun/procedural_gen_2operands
[ "region:us" ]
2023-03-29T23:50:56+00:00
{"dataset_info": {"features": [{"name": "expression", "dtype": "string"}, {"name": "answer", "dtype": "float64"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "false", "1": "true"}}}}], "splits": [{"name": "train", "num_bytes": 57720, "num_examples": 2000}, {"name": "validation", "num_bytes": 11574, "num_examples": 400}], "download_size": 26153, "dataset_size": 69294}}
2023-03-29T23:50:59+00:00
b0842720e3478f4de061b8e4e83d5c382624d0ee
# Dataset Card for "DA_MultiWOZ_hotel" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_MultiWOZ_hotel
[ "region:us" ]
2023-03-29T23:56:11+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "string"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1627308.4499394428, "num_examples": 4953}, {"name": "test", "num_bytes": 366, "num_examples": 1}], "download_size": 653642, "dataset_size": 1627674.4499394428}}
2023-03-29T23:56:15+00:00
1283a2564d3df27b7c737aeaab4f39aaf97bbef4
# Dataset Card for "DA_MultiWOZ_train" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_MultiWOZ_train
[ "region:us" ]
2023-03-29T23:56:15+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "string"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 759964.6905864198, "num_examples": 2591}, {"name": "test", "num_bytes": 321, "num_examples": 1}], "download_size": 299705, "dataset_size": 760285.6905864198}}
2023-03-29T23:56:18+00:00
744b019bdfa68ac2b1272c665e2b27a8fc9fba96
# Dataset Card for "DA_MultiWOZ_restaurant" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_MultiWOZ_restaurant
[ "region:us" ]
2023-03-29T23:56:18+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "string"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2358714.8704030397, "num_examples": 7368}, {"name": "test", "num_bytes": 292, "num_examples": 1}], "download_size": 888220, "dataset_size": 2359006.8704030397}}
2023-03-29T23:56:22+00:00
607b18a7746ff95d439cab5a7e3088795618ca54
# Dataset Card for "DA_MultiWOZ_taxi" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_MultiWOZ_taxi
[ "region:us" ]
2023-03-29T23:56:22+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "string"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 636448.1401906274, "num_examples": 2517}, {"name": "test", "num_bytes": 360, "num_examples": 1}], "download_size": 248789, "dataset_size": 636808.1401906274}}
2023-03-29T23:56:26+00:00
a1fab03930a80b38e4d69d51e5051b51eeebc9e3
# Dataset Card for "DA_MultiWOZ_attraction" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_MultiWOZ_attraction
[ "region:us" ]
2023-03-29T23:56:26+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "string"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 256994.14303638643, "num_examples": 796}, {"name": "test", "num_bytes": 390, "num_examples": 1}], "download_size": 100060, "dataset_size": 257384.14303638643}}
2023-03-29T23:56:29+00:00
2a375160e6547c26cd81eb7759b875dc0ca802b8
# Dataset Card for "DA_MultiWOZ_hospital" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/DA_MultiWOZ_hospital
[ "region:us" ]
2023-03-29T23:56:30+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "string"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 162349.6563071298, "num_examples": 546}, {"name": "test", "num_bytes": 309, "num_examples": 1}], "download_size": 54666, "dataset_size": 162658.6563071298}}
2023-03-29T23:56:33+00:00
5d2720499ea96d109ad4c0c1f3a8e92f4fbaa630
# Dataset Card for "tomatoesSpoof3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mattyhatch/tomatoesSpoof3
[ "region:us" ]
2023-03-30T00:09:25+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 37099461.0, "num_examples": 557}], "download_size": 33524817, "dataset_size": 37099461.0}}
2023-03-30T00:12:29+00:00
8673d06f078e867610595b74b56a78712ae684df
# Dataset Card for "tomatoesSpoof4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mattyhatch/tomatoesSpoof4
[ "region:us" ]
2023-03-30T00:20:14+00:00
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 37049913.0, "num_examples": 557}], "download_size": 33476189, "dataset_size": 37049913.0}}
2023-03-30T00:21:31+00:00
5c004d83f3a78036a706f3d47dbce9c176248f32
YuanPJ/icsi_summ
[ "license:cc-by-4.0", "region:us" ]
2023-03-30T00:27:19+00:00
{"license": "cc-by-4.0"}
2023-03-30T00:31:29+00:00
7540a209f49d8cbae9cbae03c5c0263962a78a2e
# Dataset Card for "cv_svamp_augmented_fold0_ver2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sethapun/cv_svamp_augmented_fold0_ver2
[ "region:us" ]
2023-03-30T00:30:14+00:00
{"dataset_info": {"features": [{"name": "body", "dtype": "string"}, {"name": "ques", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "equation", "dtype": "string"}, {"name": "answer", "dtype": "float64"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "false", "1": "true"}}}}], "splits": [{"name": "train", "num_bytes": 2713139, "num_examples": 7864}, {"name": "validation", "num_bytes": 162466, "num_examples": 412}], "download_size": 721267, "dataset_size": 2875605}}
2023-03-30T02:06:06+00:00
b3b6cb56cd8241b7f755c5e2139772046c54f10b
# Dataset Card for "cv_svamp_augmented_fold1_ver2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sethapun/cv_svamp_augmented_fold1_ver2
[ "region:us" ]
2023-03-30T00:30:18+00:00
{"dataset_info": {"features": [{"name": "body", "dtype": "string"}, {"name": "ques", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "equation", "dtype": "string"}, {"name": "answer", "dtype": "float64"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "false", "1": "true"}}}}], "splits": [{"name": "train", "num_bytes": 2716697, "num_examples": 7840}, {"name": "validation", "num_bytes": 158908, "num_examples": 436}], "download_size": 720144, "dataset_size": 2875605}}
2023-03-30T02:06:11+00:00
5d41b708c00594052be0ddd67e06793ee493ad69
# Dataset Card for "cv_svamp_augmented_fold2_ver2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sethapun/cv_svamp_augmented_fold2_ver2
[ "region:us" ]
2023-03-30T00:30:22+00:00
{"dataset_info": {"features": [{"name": "body", "dtype": "string"}, {"name": "ques", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "equation", "dtype": "string"}, {"name": "answer", "dtype": "float64"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "false", "1": "true"}}}}], "splits": [{"name": "train", "num_bytes": 2712727, "num_examples": 7822}, {"name": "validation", "num_bytes": 162878, "num_examples": 454}], "download_size": 721078, "dataset_size": 2875605}}
2023-03-30T02:06:16+00:00
ff0464569ab4447a62d434acc4be190497df8f95
# Dataset Card for "cv_svamp_augmented_fold3_ver2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sethapun/cv_svamp_augmented_fold3_ver2
[ "region:us" ]
2023-03-30T00:30:26+00:00
{"dataset_info": {"features": [{"name": "body", "dtype": "string"}, {"name": "ques", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "equation", "dtype": "string"}, {"name": "answer", "dtype": "float64"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "false", "1": "true"}}}}], "splits": [{"name": "train", "num_bytes": 2745859, "num_examples": 7946}, {"name": "validation", "num_bytes": 129746, "num_examples": 330}], "download_size": 720562, "dataset_size": 2875605}}
2023-03-30T02:06:21+00:00
fa441db4a571fbce9dbbad59a4828db785c580fd
# Dataset Card for "cv_svamp_augmented_fold4_ver2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sethapun/cv_svamp_augmented_fold4_ver2
[ "region:us" ]
2023-03-30T00:30:29+00:00
{"dataset_info": {"features": [{"name": "body", "dtype": "string"}, {"name": "ques", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "equation", "dtype": "string"}, {"name": "answer", "dtype": "float64"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "false", "1": "true"}}}}], "splits": [{"name": "train", "num_bytes": 2745369, "num_examples": 7908}, {"name": "validation", "num_bytes": 130236, "num_examples": 368}], "download_size": 720249, "dataset_size": 2875605}}
2023-03-30T02:06:25+00:00
8dc0d93d62457aed48e110dccc0938aa44c7b036
# Dataset Card for "yiyi_test_ds" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
YiYiXu/yiyi_test_ds
[ "region:us" ]
2023-03-30T01:07:22+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "condtioning_image", "dtype": "image"}, {"name": "caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 22659003.0, "num_examples": 15}], "download_size": 22663578, "dataset_size": 22659003.0}}
2023-03-30T01:07:25+00:00
14d9a9dd2eaf56b972e1652045fbd8a12961afbc
nikcane/slack
[ "license:apache-2.0", "region:us" ]
2023-03-30T01:41:15+00:00
{"license": "apache-2.0"}
2023-03-30T01:48:38+00:00
03766b09aede2926257bb90eabe63fbda3f241e7
# Dataset Card for "sft_code_submix" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
andersonbcdefg/sft_code_submix
[ "region:us" ]
2023-03-30T01:43:23+00:00
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1399630171.2578096, "num_examples": 1146098}], "download_size": 501178967, "dataset_size": 1399630171.2578096}}
2023-03-30T01:44:13+00:00
d9b304cd64edadcb2958d708f91fea3fb0151938
# Dataset Card for "sft_language_and_code" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
andersonbcdefg/sft_language_and_code
[ "region:us" ]
2023-03-30T01:55:29+00:00
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4754005271.891349, "num_examples": 3471810}], "download_size": 2503296527, "dataset_size": 4754005271.891349}}
2023-03-30T01:59:27+00:00
70349493830a9dad469fafe2710fe1147d13be98
Pruned gpt4all dataset meant to reduce annoying behvaiors and nonsensical prompts
Nebulous/gpt4all_pruned
[ "license:cc", "region:us" ]
2023-03-30T02:16:53+00:00
{"license": "cc"}
2023-04-03T22:29:29+00:00