sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
5b0628ed7ccedb63bb3a60288e7bc135daa7fefd
This is the data used in the paper [Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias](https://github.com/yueyu1030/AttrPrompt). - `label.txt`: the label name for each class - `train.jsonl`: The original training set. - `valid.jsonl`: The original validation set. - `test.jsonl`: The original test set. - `simprompt.jsonl`: The training data generated by the simple prompt. - `attrprompt.jsonl`: The training data generated by the attributed prompt.
yyu/SST-2-attrprompt
[ "task_categories:text-classification", "size_categories:1K<n<10K", "language:en", "license:apache-2.0", "sentiment", "movie_review", "region:us" ]
2023-06-14T06:49:34+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-classification"], "tags": ["sentiment", "movie_review"]}
2023-08-22T07:26:47+00:00
b7d490a80a029429dedff84e99f08458fba7b259
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
Veerarajank/test
[ "license:apache-2.0", "region:us" ]
2023-06-14T07:00:04+00:00
{"license": "apache-2.0"}
2023-06-14T08:20:07+00:00
d7e3ceb61ff292bce086a02b22b2dfd304918daa
# Dataset Card for VITATECS ## Dataset Description ### Dataset Summary VITATECS is a diagnostic VIdeo-Text dAtaset for the evaluation of TEmporal Concept underStanding. **[2023/11/27]** We have updated a new version of VITATECS which is generated using ChatGPT. The previous version generated by OPT-175B can be found [here](https://github.com/lscpku/VITATECS/tree/main/data_opt). ### Languages English. ## Dataset Structure ### Data Instances This repo contains 6 jsonl files, each of which corresponds to an aspect of temporal concepts (Direction, Intensity, Sequence, Localization, Compositionality, Type). Example (indented for better presentation): ``` { "src_dataset": "VATEX", "video_name": "i0ccSYMl0vo_000027_000037.mp4", "caption": "A woman is placing a waxing strip on a man's leg.", "counterfactual": "A woman is removing a waxing strip from a man's leg.", "aspect": "Direction" } ``` ### Data Fields - src_dataset: the name of the source dataset (VATEX or MSRVTT) - video_name: the name of the video in the source dataset - caption: the original caption of the video - counterfactual: the generated counterfactual description of the video ### Dataset Statistics | | Direction | Intensity | Sequence | Localization | Compositionality | Type | | ------------------------- | --------- | --------- | -------- | ------------ | ---------------- | ----- | | # samples | 2,709 | 745 | 380 | 1,788 | 2,393 | 8,109 | | # videos | 2,016 | 650 | 348 | 1,453 | 1,739 | 4,856 | | Avg. len (caption) | 13.02 | 13.04 | 15.58 | 14.37 | 13.29 | 11.34 | | Avg. len (counterfactual) | 13.12 | 13.05 | 15.74 | 14.43 | 13.53 | 11.35 | ## Dataset Creation ### Source Data VITATECS is based on video-text pairs from [MSR-VTT](https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/) ### Annotations #### Annotation process [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset Part of this dataset is generated by large language models and may contain toxic or biased texts. We mitigate this issue by leveraging [Perspective API](https://developers.perspectiveapi.com/) to filter out highly toxic generations. ## Additional Information ### Dataset Curators VITATECS is curated by Shicheng Li, Lei Li, Shuhuai Ren, Yuanxin Liu, Yi Liu, Rundong Gao, Xu Sun (Peking University) and Lu Hou (Huawei Noah's Ark Lab). ### Licensing Information This dataset is under [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) license. ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
lscpku/VITATECS
[ "license:cc-by-4.0", "region:us" ]
2023-06-14T07:12:49+00:00
{"license": "cc-by-4.0"}
2023-11-26T20:21:30+00:00
e9a6c057cb6ee9257f29e44d427117e8bd0d704f
# FETV **FETV** is a benchmark for **F**ine-grained **E**valuation of open-domain **T**ext-to-**V**ideo generation ## Overview FETV consist of a diverse set of text prompts, categorized based on three orthogonal aspects: major content, attribute control, and prompt complexity. ![caption](https://github.com/llyx97/FETV/raw/main/Figures/categorization.png) ## Dataset Structure ### Data Instances All FETV data are all available in the file `fetv_data.json`. Each line is a data instance, which is formatted as: ``` { "video_id": "1006807024", "prompt": "A mountain stream", "major content": { "spatial": ["scenery & natural objects"], "temporal": ["fluid motions"] }, "attribute control": { "spatial": null, "temporal": null }, "prompt complexity": ["simple"], "source": "WebVid", "video_url": "https://ak.picdn.net/shutterstock/videos/1006807024/preview/stock-footage-a-mountain-stream.mp4", "unusual type": null } ``` ### Data Fields * "video_id": The video identifier in the original dataset where the prompt comes from. * "prompt": The text prompt for text-to-video generation. * "major content": The major content described in the prompt. * "attribute control": The attribute that the prompt aims to control. * "prompt complexity": The complexity of the prompt. * "source": The original dataset where the prompt comes from, which can be "WebVid", "MSRVTT" or "ours". * "video_url": The url link of the reference video. * "unusual type": The type of unusual combination the prompt involves. Only available for data instances with `"source": "ours"`. ### Dataset Statistics FETV contains 619 text prompts. The data distributions over different categories are as follows (the numbers over categories do not sum up to 619 because a data instance can belong to multiple categories) ![caption](https://github.com/llyx97/FETV/raw/main/Figures/content_attribute_statistics.png) ![caption](https://github.com/llyx97/FETV/raw/main/Figures/complexity_statistics.png)
lyx97/FETV
[ "task_categories:text-to-video", "language:en", "license:cc-by-4.0", "region:us" ]
2023-06-14T07:13:06+00:00
{"language": ["en"], "license": "cc-by-4.0", "task_categories": ["text-to-video"]}
2023-06-15T01:14:42+00:00
58f90f6139bc12fc5b38b9e4ef5696bb405bb731
# Dataset Card for "1557a4db" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/1557a4db
[ "region:us" ]
2023-06-14T07:16:09+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 180, "num_examples": 10}], "download_size": 1336, "dataset_size": 180}}
2023-06-14T07:16:10+00:00
5a2fa42a1506470d275a47ff8e1fdac5b364e6ef
# Dataset Card for AudioSet ## Dataset Description - **Homepage**: https://research.google.com/audioset/index.html - **Paper**: https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/45857.pdf - **Leaderboard**: https://paperswithcode.com/sota/audio-classification-on-audioset ### Dataset Summary [AudioSet](https://research.google.com/audioset/dataset/index.html) is a dataset of 10-second clips from YouTube, annotated into one or more sound categories, following the AudioSet ontology. ### Supported Tasks and Leaderboards - `audio-classification`: Classify audio clips into categories. The leaderboard is available [here](https://paperswithcode.com/sota/audio-classification-on-audioset) ### Languages The class labels in the dataset are in English. ## Dataset Structure ### Data Instances Example instance from the dataset: ```python { 'video_id': '--PJHxphWEs', 'audio': { 'path': 'audio/bal_train/--PJHxphWEs.flac', 'array': array([-0.04364824, -0.05268681, -0.0568949 , ..., 0.11446512, 0.14912748, 0.13409865]), 'sampling_rate': 48000 }, 'labels': ['/m/09x0r', '/t/dd00088'], 'human_labels': ['Speech', 'Gush'] } ``` ### Data Fields Instances have the following fields: - `video_id`: a `string` feature containing the original YouTube ID. - `audio`: an `Audio` feature containing the audio data and sample rate. - `labels`: a sequence of `string` features containing the labels associated with the audio clip. - `human_labels`: a sequence of `string` features containing the human-readable forms of the same labels as in `labels`. ### Data Splits The distribuion of audio clips is as follows: #### `balanced` configuration | |train|test | |-----------|----:|----:| |# instances|18685|17142| #### `unbalanced` configuration | |train |test | |-----------|------:|----:| |# instances|1738788|17142| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? The labels are from the AudioSet ontology. Audio clips are from YouTube. ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations 1. The YouTube videos in this copy of AudioSet were downloaded in March 2023, so not all of the original audios are available. The number of clips able to be downloaded is as follows: - Balanced train: 18685 audio clips out of 22160 originally. - Unbalanced train: 1738788 clips out of 2041789 originally. - Evaluation: 17142 audio clips out of 20371 originally. 2. Most audio is sampled at 48 kHz 24 bit, but about 10% is sampled at 44.1 kHz 24 bit. Audio files are stored in the FLAC format. ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The AudioSet data is licensed under CC-BY-4.0 ## Citation ```bibtex @inproceedings{jort_audioset_2017, title = {Audio Set: An ontology and human-labeled dataset for audio events}, author = {Jort F. Gemmeke and Daniel P. W. Ellis and Dylan Freedman and Aren Jansen and Wade Lawrence and R. Channing Moore and Manoj Plakal and Marvin Ritter}, year = {2017}, booktitle = {Proc. IEEE ICASSP 2017}, address = {New Orleans, LA} } ```
agkphysics/AudioSet
[ "task_categories:audio-classification", "size_categories:10K<n<100K", "size_categories:1M<n<10M", "source_datasets:original", "language:en", "license:cc-by-4.0", "audio", "region:us" ]
2023-06-14T07:17:23+00:00
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K", "1M<n<10M"], "source_datasets": ["original"], "task_categories": ["audio-classification"], "paperswithcode_id": "audioset", "pretty_name": "AudioSet", "config_names": ["balanced", "unbalanced"], "tags": ["audio"], "dataset_info": [{"config_name": "balanced", "features": [{"name": "video_id", "dtype": "string"}, {"name": "audio", "dtype": "audio"}, {"name": "labels", "sequence": "string"}, {"name": "human_labels", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 26016210987, "num_examples": 18685}, {"name": "test", "num_bytes": 23763682278, "num_examples": 17142}], "download_size": 49805654900, "dataset_size": 49779893265}, {"config_name": "unbalanced", "features": [{"name": "video_id", "dtype": "string"}, {"name": "audio", "dtype": "audio"}, {"name": "labels", "sequence": "string"}, {"name": "human_labels", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 2408656417541, "num_examples": 1738788}, {"name": "test", "num_bytes": 23763682278, "num_examples": 17142}], "download_size": 2433673104977, "dataset_size": 2432420099819}]}
2024-02-03T12:09:42+00:00
edcf0dbd7973d932180ef3c25057211e6ce3bbf7
zxgov/bilibili-qianying-Singingaudio
[ "license:eupl-1.1", "region:us" ]
2023-06-14T07:18:07+00:00
{"license": "eupl-1.1"}
2023-06-14T07:18:07+00:00
fd24bd635b91be97ab815b357b8cf0903f0fb326
dipesh1111/pdf_data
[ "license:apache-2.0", "region:us" ]
2023-06-14T07:30:41+00:00
{"license": "apache-2.0"}
2023-06-22T04:03:42+00:00
07db57f1f2e01eef650f50a8dbfce61cb9256ce4
hejinkang/mms_hjk
[ "license:afl-3.0", "region:us" ]
2023-06-14T07:32:29+00:00
{"license": "afl-3.0"}
2023-06-14T07:32:29+00:00
caf9667205c3b6a7cf2e1b3c6347c00ba7bbc6b2
intanm/indonesian-clickbait-spoiling
[ "license:apache-2.0", "region:us" ]
2023-06-14T07:53:40+00:00
{"license": "apache-2.0"}
2023-11-17T01:36:24+00:00
e201217e996bb58f779badcd82ea76eab0c9468a
Data source: CSMAR Link for raw data: https://www.heywhale.com/mw/dataset/5e577a780e2b66002c2561a9/content Data Description: 2329 news titles with annotated labels (0:Negative, 1:Neutral, 2:Positive)
hw2942/financial-news-sentiment
[ "region:us" ]
2023-06-14T08:08:47+00:00
{}
2024-01-18T02:14:17+00:00
b9de6f33a559b51c9a8776eddb01e81ed6f3bcbf
# Dataset Card for "CROHME_channel_add_images" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
zhixiaoni/CROHME_channel_add_images
[ "region:us" ]
2023-06-14T08:22:52+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 33394444.966, "num_examples": 8834}], "download_size": 30300654, "dataset_size": 33394444.966}}
2023-06-14T08:23:35+00:00
fb446e61d8e4853cede7c03154af888818be1108
# Dataset Card for "reddit-ah-dialog-annotations_v5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Deojoandco/reddit-ah-dialog-annotations_v5
[ "region:us" ]
2023-06-14T08:43:17+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "num_comments", "dtype": "int64"}, {"name": "name", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "body", "dtype": "string"}, {"name": "score", "dtype": "int64"}, {"name": "upvote_ratio", "dtype": "float64"}, {"name": "distinguished", "dtype": "string"}, {"name": "over_18", "dtype": "bool"}, {"name": "created_utc", "dtype": "int64"}, {"name": "comments", "list": [{"name": "body", "dtype": "string"}, {"name": "created_utc", "dtype": "float64"}, {"name": "distinguished", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "permalink", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "best_num_comments", "dtype": "int64"}, {"name": "query", "dtype": "string"}, {"name": "dialog", "dtype": "string"}, {"name": "annotation_success", "dtype": "bool"}, {"name": "annotation_text", "dtype": "string"}, {"name": "turns_generated", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 33860238, "num_examples": 2921}, {"name": "validation", "num_bytes": 3121972, "num_examples": 293}, {"name": "test", "num_bytes": 3378331, "num_examples": 292}], "download_size": 23369920, "dataset_size": 40360541}}
2023-06-14T08:43:43+00:00
d442b485e264a58e878b8b95464a46fea7b2b35a
# Dataset Card for "pixel_glue_wnli_noisy_ocr" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Nadav/pixel_glue_wnli_noisy_ocr
[ "region:us" ]
2023-06-14T08:45:42+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "0", "1": "1"}}}}], "splits": [{"name": "train", "num_bytes": 585329, "num_examples": 3175}, {"name": "validation", "num_bytes": 14140, "num_examples": 71}], "download_size": 328593, "dataset_size": 599469}}
2023-06-15T18:36:39+00:00
cc0c22dae6d164541c036d24e38ea04ed1448816
# Basketball Tracking ## Tracking is a deep learning process where the algorithm tracks the movement of an object. The dataset consist of screenshots from videos of basketball games with the ball labeled with a bounging box. The dataset can be used to train a neural network in ball control recognition. The dataset is useful for automating the camera operator's work during a match, allowing the ball to be efficiently kept in frame. # Get the dataset ### This is just an example of the data Leave a request on [**https://trainingdata.pro/data-market**](https://trainingdata.pro/data-market?utm_source=huggingface&utm_medium=cpc&utm_campaign=basketball_tracking) to discuss your requirements, learn about the price and buy the dataset. ![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2Ffebc78a960385a4fd6a0242b58c4056d%2Fbb.png?generation=1686731703497308&alt=media) # Dataset structure - **img** - contains of original images of basketball players. - **boxes** - includes bounding box labeling for a ball in the original images. - **annotations.xml** - contains coordinates of the boxes and labels, created for the original photo # Data Format Each image from `img` folder is accompanied by an XML-annotation in the `annotations.xml` file indicating the coordinates of the bounding boxes for the ball position. For each point, the x and y coordinates are provided. ### Attributes - **occluded** - the ball visability (*true* if the the ball is occluded by 30%) - **basket** - the position related to the basket (*true* if the ball is covered with a basket on any distinguishable area) # Example of XML file structure ![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F0d5c79a67be4c702b12540906b72c240%2Fcarbon.png?generation=1686731488719900&alt=media) # Basketball Tracking might be made in accordance with your requirements. ## [TrainingData](https://trainingdata.pro/data-market?utm_source=huggingface&utm_medium=cpc&utm_campaign=basketball_tracking) provides high-quality data annotation tailored to your needs More datasets in TrainingData's Kaggle account: **https://www.kaggle.com/trainingdatapro/datasets** TrainingData's GitHub: **https://github.com/Trainingdata-datamarket/TrainingData_All_datasets**
TrainingDataPro/basketball_tracking
[ "task_categories:image-classification", "language:en", "license:cc-by-nc-nd-4.0", "code", "region:us" ]
2023-06-14T09:03:36+00:00
{"language": ["en"], "license": "cc-by-nc-nd-4.0", "task_categories": ["image-classification"], "tags": ["code"], "dataset_info": {"features": [{"name": "image_id", "dtype": "int32"}, {"name": "image", "dtype": "image"}, {"name": "mask", "dtype": "image"}, {"name": "shapes", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 191244976, "num_examples": 70}], "download_size": 191271989, "dataset_size": 191244976}}
2023-09-19T18:35:19+00:00
cfa6833d8e47308e40e5b0d7334c9a94b6f11edf
# Dataset Card for "dialogturns_not_generated_train" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Deojoandco/dialogturns_not_generated_train
[ "region:us" ]
2023-06-14T09:10:31+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "num_comments", "dtype": "int64"}, {"name": "name", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "body", "dtype": "string"}, {"name": "score", "dtype": "int64"}, {"name": "upvote_ratio", "dtype": "float64"}, {"name": "distinguished", "dtype": "string"}, {"name": "over_18", "dtype": "bool"}, {"name": "created_utc", "dtype": "int64"}, {"name": "comments", "list": [{"name": "body", "dtype": "string"}, {"name": "created_utc", "dtype": "float64"}, {"name": "distinguished", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "permalink", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "best_num_comments", "dtype": "int64"}, {"name": "query", "dtype": "string"}, {"name": "dialog", "dtype": "string"}, {"name": "annotation_success", "dtype": "bool"}, {"name": "annotation_text", "dtype": "string"}, {"name": "turns_generated", "dtype": "bool"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 7511834, "num_examples": 284}], "download_size": 4057449, "dataset_size": 7511834}}
2023-06-14T09:10:47+00:00
f16a79fe8657f82fbcd39174781e2c96773d0f41
# Dataset Card for "dialogturns_not_generated_val" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Deojoandco/dialogturns_not_generated_val
[ "region:us" ]
2023-06-14T09:11:11+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "num_comments", "dtype": "int64"}, {"name": "name", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "body", "dtype": "string"}, {"name": "score", "dtype": "int64"}, {"name": "upvote_ratio", "dtype": "float64"}, {"name": "distinguished", "dtype": "null"}, {"name": "over_18", "dtype": "bool"}, {"name": "created_utc", "dtype": "int64"}, {"name": "comments", "list": [{"name": "body", "dtype": "string"}, {"name": "created_utc", "dtype": "float64"}, {"name": "distinguished", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "permalink", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "best_num_comments", "dtype": "int64"}, {"name": "query", "dtype": "string"}, {"name": "dialog", "dtype": "string"}, {"name": "annotation_success", "dtype": "bool"}, {"name": "annotation_text", "dtype": "string"}, {"name": "turns_generated", "dtype": "bool"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 493996, "num_examples": 25}], "download_size": 304777, "dataset_size": 493996}}
2023-06-14T09:11:22+00:00
dce0e798f33950f2e1e79c1a2d5807e7c727eee5
# Dataset Card for "dialogturns_not_generated_test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Deojoandco/dialogturns_not_generated_test
[ "region:us" ]
2023-06-14T09:11:33+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "num_comments", "dtype": "int64"}, {"name": "name", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "body", "dtype": "string"}, {"name": "score", "dtype": "int64"}, {"name": "upvote_ratio", "dtype": "float64"}, {"name": "distinguished", "dtype": "string"}, {"name": "over_18", "dtype": "bool"}, {"name": "created_utc", "dtype": "int64"}, {"name": "comments", "list": [{"name": "body", "dtype": "string"}, {"name": "created_utc", "dtype": "float64"}, {"name": "distinguished", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "permalink", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "best_num_comments", "dtype": "int64"}, {"name": "query", "dtype": "string"}, {"name": "dialog", "dtype": "string"}, {"name": "annotation_success", "dtype": "bool"}, {"name": "annotation_text", "dtype": "string"}, {"name": "turns_generated", "dtype": "bool"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 883579, "num_examples": 34}], "download_size": 561093, "dataset_size": 883579}}
2023-06-14T09:11:46+00:00
b53b7ecaabaa341c57a7428d8ff6065e61bcf2de
# Dataset Card for "pixel_glue_cola_noisy_ocr" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Nadav/pixel_glue_cola_noisy_ocr
[ "region:us" ]
2023-06-14T09:13:53+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "0", "1": "1"}}}}], "splits": [{"name": "train", "num_bytes": 2874918, "num_examples": 42755}, {"name": "validation", "num_bytes": 70427, "num_examples": 1043}], "download_size": 1642630, "dataset_size": 2945345}}
2023-06-15T21:09:35+00:00
6e1fc2855ea9de9e6908fac98a830fdf3978c801
monke1/bunnioo-train
[ "license:artistic-2.0", "region:us" ]
2023-06-14T09:59:33+00:00
{"license": "artistic-2.0"}
2023-06-14T10:02:35+00:00
d6c55deab9b020c8970597c70ba9b147edf1cdd6
# LaPa-Dataset for face parsing (unofficial mirror) ## Introduction we develop a high-efficiency framework for pixel-level face parsing annotating and construct a new large-scale **La**ndmark guided face **Pa**rsing dataset (LaPa) for face parsing. It consists of more than 22,000 facial images with abundant variations in expression, pose and occlusion, and each image of LaPa is provided with a 11-category pixel-level label map and 106-point landmarks. ## Citation If you use our datasets, please cite the following paper: [A New Dataset and Boundary-Attention Semantic Segmentation for Face Parsing.](https://aaai.org/ojs/index.php/AAAI/article/view/6832/6686) Yinglu Liu, Hailin Shi, Hao Shen, Yue Si, Xiaobo Wang, Tao Mei. In AAAI, 2020. ``` @inproceedings{liu2020new, title={A New Dataset and Boundary-Attention Semantic Segmentation for Face Parsing.}, author={Liu, Yinglu and Shi, Hailin and Shen, Hao and Si, Yue and Wang, Xiaobo and Mei, Tao}, booktitle={AAAI}, pages={11637--11644}, year={2020} } ``` ## License This LaPa Dataset is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications, or personal experimentation. Permission is granted to use the data given that you agree to our license terms.
kiyoonkim/LaPa
[ "region:us" ]
2023-06-14T10:42:29+00:00
{}
2023-06-14T14:04:34+00:00
9829d0ede69754661ec377bf0bc0b973350f9dbb
# Dataset Card for "83ea63f5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/83ea63f5
[ "region:us" ]
2023-06-14T10:42:34+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 188, "num_examples": 10}], "download_size": 1340, "dataset_size": 188}}
2023-06-14T10:42:36+00:00
635b034f69257814eff850a5c2b3346fe458134f
# Content This is a dataset of Spotify tracks over a range of **125** different genres. Each track has some audio features associated with it. The data is in `CSV` format which is tabular and can be loaded quickly. # Usage The dataset can be used for: - Building a **Recommendation System** based on some user input or preference - **Classification** purposes based on audio features and available genres - Any other application that you can think of. Feel free to discuss! # Column Description - **track_id**: The Spotify ID for the track - **artists**: The artists' names who performed the track. If there is more than one artist, they are separated by a `;` - **album_name**: The album name in which the track appears - **track_name**: Name of the track - **popularity**: **The popularity of a track is a value between 0 and 100, with 100 being the most popular**. The popularity is calculated by algorithm and is based, in the most part, on the total number of plays the track has had and how recent those plays are. Generally speaking, songs that are being played a lot now will have a higher popularity than songs that were played a lot in the past. Duplicate tracks (e.g. the same track from a single and an album) are rated independently. Artist and album popularity is derived mathematically from track popularity. - **duration_ms**: The track length in milliseconds - **explicit**: Whether or not the track has explicit lyrics (true = yes it does; false = no it does not OR unknown) - **danceability**: Danceability describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm stability, beat strength, and overall regularity. A value of 0.0 is least danceable and 1.0 is most danceable - **energy**: Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example, death metal has high energy, while a Bach prelude scores low on the scale - **key**: The key the track is in. Integers map to pitches using standard Pitch Class notation. E.g. `0 = C`, `1 = C♯/D♭`, `2 = D`, and so on. If no key was detected, the value is -1 - **loudness**: The overall loudness of a track in decibels (dB) - **mode**: Mode indicates the modality (major or minor) of a track, the type of scale from which its melodic content is derived. Major is represented by 1 and minor is 0 - **speechiness**: Speechiness detects the presence of spoken words in a track. The more exclusively speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0 the attribute value. Values above 0.66 describe tracks that are probably made entirely of spoken words. Values between 0.33 and 0.66 describe tracks that may contain both music and speech, either in sections or layered, including such cases as rap music. Values below 0.33 most likely represent music and other non-speech-like tracks - **acousticness**: A confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0 represents high confidence the track is acoustic - **instrumentalness**: Predicts whether a track contains no vocals. "Ooh" and "aah" sounds are treated as instrumental in this context. Rap or spoken word tracks are clearly "vocal". The closer the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal content - **liveness**: Detects the presence of an audience in the recording. Higher liveness values represent an increased probability that the track was performed live. A value above 0.8 provides strong likelihood that the track is live - **valence**: A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while tracks with low valence sound more negative (e.g. sad, depressed, angry) - **tempo**: The overall estimated tempo of a track in beats per minute (BPM). In musical terminology, tempo is the speed or pace of a given piece and derives directly from the average beat duration - **time_signature**: An estimated time signature. The time signature (meter) is a notational convention to specify how many beats are in each bar (or measure). The time signature ranges from 3 to 7 indicating time signatures of `3/4`, to `7/4`. - **track_genre**: The genre in which the track belongs # Sources and Methodology The data was collected and cleaned using Spotify's Web API and Python.
maharshipandya/spotify-tracks-dataset
[ "task_categories:feature-extraction", "task_categories:tabular-classification", "task_categories:tabular-regression", "size_categories:100K<n<1M", "language:en", "license:bsd", "music", "art", "region:us" ]
2023-06-14T10:42:44+00:00
{"language": ["en"], "license": "bsd", "size_categories": ["100K<n<1M"], "task_categories": ["feature-extraction", "tabular-classification", "tabular-regression"], "pretty_name": "Spotify Tracks Dataset", "tags": ["music", "art"]}
2023-12-01T13:29:39+00:00
43b9dbf06c239360b183c76cb5d90ebe4f5e3070
### *L-Eval: Instituting Standardized Evaluation for Long Context Language Models* L-Eval is a comprehensive long-context language models evaluation suite with 18 long document tasks across multiple domains that require reasoning over long texts, including summarization, question answering, in-context learning with long CoT examples, topic retrieval, and paper writing assistance. L-Eval is a high-quality test set with 411 long documents and 2043 query-response pairs. All samples in L-Eval have been manually annotated and checked by the authors. There have been many studies exploring the expansion of context length in large models. However, it remains to be explored whether these methods perform well enough in downstream tasks and whether they can surpass previous methods based on retrieval or chunking. We hope L-Eval could help researchers and developers track the progress of long-context language models (LCLMs) and understand the strengths/shortcomings of different methods. Dataset list: ``` ["coursera", "gsm100", "quality", "topic_retrieval_longchat", "tpo", "financial_qa", "gov_report_summ", "legal_contract_qa", "meeting_summ", "multidoc_qa", "narrative_qa", "natural_question", "news_summ", "paper_assistant", "patent_summ", "review_summ", "scientific_qa", "tv_show_summ"] ``` Detailed descriptions and how we collect the data can be found [https://github.com/OpenLMLab/LEval](https://github.com/OpenLMLab/LEval).
L4NLP/LEval
[ "task_categories:summarization", "task_categories:question-answering", "task_categories:multiple-choice", "size_categories:1K<n<10K", "language:en", "license:gpl-3.0", "Long_context", "region:us" ]
2023-06-14T10:51:39+00:00
{"language": ["en"], "license": "gpl-3.0", "size_categories": ["1K<n<10K"], "task_categories": ["summarization", "question-answering", "multiple-choice"], "viewer": true, "tags": ["Long_context"]}
2023-10-11T02:56:48+00:00
6de3658983f77bf96e11d0d91e705a3cd3ead53c
# Dataset Card for "lotr-book" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mfi/lotr-book
[ "region:us" ]
2023-06-14T11:07:50+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}], "splits": [{"name": "train", "num_bytes": 2196528.0, "num_examples": 268}, {"name": "test", "num_bytes": 245880.0, "num_examples": 30}], "download_size": 1125559, "dataset_size": 2442408.0}}
2023-06-16T06:46:59+00:00
476a775fb509d1eca1c0eb0572fb6ed1c3e25142
qnguyen3/alapaca-vi
[ "license:mit", "region:us" ]
2023-06-14T11:16:58+00:00
{"license": "mit"}
2023-06-14T11:21:31+00:00
23c43621e7ed8b281e52c9af9c7cc324213152ff
# Dataset Card for "medication_chat_balanced_sw3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stoddur/medication_chat_balanced_sw3
[ "region:us" ]
2023-06-14T12:04:15+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 70293688.0, "num_examples": 45527}], "download_size": 1056281, "dataset_size": 70293688.0}}
2023-06-14T12:04:25+00:00
3c87cffd8e224c4b8d3d99ab56c286416a3d154b
# Dataset Card for "mammogram_v_1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
hongrui/mammogram_v_1
[ "region:us" ]
2023-06-14T12:07:29+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "patient_id", "dtype": "int64"}, {"name": "laterality", "dtype": "string"}, {"name": "view", "dtype": "string"}, {"name": "age", "dtype": "float64"}, {"name": "cancer", "dtype": "int64"}, {"name": "invasive", "dtype": "int64"}, {"name": "implant", "dtype": "int64"}, {"name": "BIRADS", "dtype": "float64"}, {"name": "density", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "text2", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3777564867.572, "num_examples": 54706}], "download_size": 3757479949, "dataset_size": 3777564867.572}}
2023-06-14T13:28:41+00:00
21820a50f2f4d0a8f90838feb4efe88c3db31f95
# Dataset Card for "atco2-asr-atcosim" This is a dataset constructed from two datasets: [ATCO2-ASR](https://huggingface.co/datasets/jlvdoorn/atco2-asr) and [ATCOSIM](https://huggingface.co/datasets/jlvdoorn/atcosim). It is divided into 80% train and 20% validation by selecting files randomly. Some of the files have additional information that is presented in the 'info' file.
jlvdoorn/atco2-asr-atcosim
[ "task_categories:automatic-speech-recognition", "language:en", "air traffic control", "automatic speech recognition", "natural language processing", "atc", "asr", "nlp", "atco2", "atcosim", "doi:10.57967/hf/1379", "region:us" ]
2023-06-14T12:08:14+00:00
{"language": ["en"], "task_categories": ["automatic-speech-recognition"], "pretty_name": "ATCO2-ASR-ATCOSIM", "dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "text", "dtype": "string"}, {"name": "info", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2029124649.948, "num_examples": 8092}, {"name": "validation", "num_bytes": 508032748.446, "num_examples": 2026}], "download_size": 2524947331, "dataset_size": 2537157398.394}, "tags": ["air traffic control", "automatic speech recognition", "natural language processing", "atc", "asr", "nlp", "atco2", "atcosim"]}
2023-07-07T06:06:05+00:00
0f6cf004d3869ff17038da0cfff98fb6838f65ed
AgentWaller/german-oasst1-qa-format
[ "license:apache-2.0", "region:us" ]
2023-06-14T12:13:53+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9047361, "num_examples": 9843}, {"name": "validation", "num_bytes": 463700, "num_examples": 517}], "download_size": 5684644, "dataset_size": 9511061}}
2023-06-14T12:15:40+00:00
bc3cb195f89ab8b77bf67fd19c2abc7360321d84
# Visual Novel Dataset This dataset contains parsed Visual Novel scripts for training language models. The dataset consists of approximately 60 million tokens of parsed scripts. ## Dataset Structure The dataset follows a general structure for visual novel scripts: - Dialogue lines: Dialogue lines are formatted with the speaker's name followed by a colon, and the dialogue itself enclosed in quotes. For example: ``` John: "Hello, how are you?" ``` - Actions and narration: Actions and narration within the Visual Novel scripts are often enclosed in asterisks, but it's important to note that not all visual novels follow this convention. Actions and narration provide descriptions of character movements, background settings, or other narrative elements. ``` *John looked around the room, searching for answers.* ``` ## Contents - `visual-novels.txt`: This file contains all the parsed VNs concatenated within a single plaintext file. Each entry is separated with this string: ``` [ - title - {visual-novel-title-1.txt} ] ``` - `VNDB/`: This directory contains `.json` files that contain VNDB IDs for the corresponding VN's characters. Does not include unparsed VNs. - `Archives/visual-novels-parsed.tar.zst`: This archive contains the parsed VNs but with each script in a separate text file (i.e. not concatenated). - `Archives/visual-novels-unparsed.tar.zst`: This archive contains all the unparsed VNs along with the original script for the currently parsed VNs. ## Usage You can utilize this dataset to train language models, particularly for tasks related to natural language processing and text generation. By leveraging the parsed visual novel scripts, you can train models to understand dialogue structures and generate coherent responses. Additionally, the inclusion of the unparsed scripts allows for further analysis and processing. ## Contribution This dataset was gathered and parsed by the [PygmalionAI](https://hugginface.co/PygmalionAI) Data Processing Team. Listed below are the team members, sorted by contribution amount: - **Suikamelon**: [HuggingFace](https://huggingface.co/lemonilia) - (2,787,704 ++ 672,473 --) - **Alpin**: [HuggingFace](https://huggingface.co/alpindale) - [GitHub](https://github.com/AlpinDale) (1,170,985 ++ 345,120 --) - **Spartan**: [GitHub](https://github.com/Spartan9772) (901,046 ++ 467,915 --) - **Unlucky-AI** [GitHub](https://github.com/Unlucky-AI) (253,316 ++ 256 --) ## Citation If you use this dataset in your research or projects, please cite it appropriately. ## Acknowledgements This dataset is compiled and shared for research and educational purposes. The dataset includes parsed visual novel scripts from various sources, which are predominantly copyrighted and owned by their respective publishers and creators. The inclusion of these scripts in this dataset does not imply any endorsement or authorization from the copyright holders. We would like to express our sincere gratitude to the original copyright holders and creators of the visual novels for their valuable contributions to the art and storytelling. We respect and acknowledge their intellectual property rights. We strongly encourage users of this dataset to adhere to copyright laws and any applicable licensing restrictions when using or analyzing the provided content. It is the responsibility of the users to ensure that any use of the dataset complies with the legal requirements governing intellectual property and fair use. Please be aware that the creators and distributors of this dataset disclaim any liability or responsibility for any unauthorized or illegal use of the dataset by third parties. If you are a copyright holder or have any concerns about the content included in this dataset, please contact us at [this email address](mailto:[email protected]) to discuss the matter further and address any potential issues.
alpindale/visual-novels
[ "task_categories:conversational", "task_categories:text-generation", "language:en", "license:apache-2.0", "region:us" ]
2023-06-14T12:15:15+00:00
{"language": ["en"], "license": "apache-2.0", "task_categories": ["conversational", "text-generation"], "pretty_name": "Visual Novels"}
2023-06-14T13:44:30+00:00
043df127458165a4d6a0e8d90d656aa3fa85794e
AgentWaller/dutch-oasst1-qa-format
[ "license:apache-2.0", "region:us" ]
2023-06-14T12:16:18+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8100241, "num_examples": 9843}, {"name": "validation", "num_bytes": 409962, "num_examples": 517}], "download_size": 5049986, "dataset_size": 8510203}}
2023-06-14T12:16:44+00:00
b61df4e87113f545f9bce623d37b35ac06777162
# dataset description 1. this dataset is just for fluency revision tasks, and only for inter-debug intention. 2. add some detailed information.
newyouth19/jfleg_fluency
[ "task_categories:text-generation", "size_categories:10K<n<100K", "language:en", "license:openrail", "art", "region:us" ]
2023-06-14T12:16:34+00:00
{"language": ["en"], "license": "openrail", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation"], "pretty_name": "jfleg", "tags": ["art"]}
2023-06-14T12:23:30+00:00
a12716da1cd65f81834195820a5006f79d5a7e5e
# Dataset Card for "medication_chat_balanced_bloom" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stoddur/medication_chat_balanced_bloom
[ "region:us" ]
2023-06-14T12:25:02+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 70293688.0, "num_examples": 45527}], "download_size": 1060871, "dataset_size": 70293688.0}}
2023-06-14T13:14:58+00:00
a882fd896d017dd9d0f764a8fdf982e9bcc93083
newyouth19/fluency
[ "task_categories:text-generation", "size_categories:10K<n<100K", "language:en", "license:cc", "region:us" ]
2023-06-14T12:34:16+00:00
{"language": ["en"], "license": "cc", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation"], "pretty_name": "revised_dataset"}
2023-06-15T08:57:36+00:00
1ad979f4b793aa79be95dc464f4c45f690fce3e6
deepghs/anime_ch_hair_length
[ "task_categories:image-classification", "size_categories:10K<n<100K", "license:mit", "art", "region:us" ]
2023-06-14T12:38:15+00:00
{"license": "mit", "size_categories": ["10K<n<100K"], "task_categories": ["image-classification"], "tags": ["art"]}
2023-06-15T00:38:37+00:00
eb4dcdbb4eff036fa0b702934b55f7882411215e
# full-hh-rlhf-ru This is translated version of [Dahoas/full-hh-rlhf](https://huggingface.co/datasets/Dahoas/full-hh-rlhf) dataset into Russian.
d0rj/full-hh-rlhf-ru
[ "task_categories:text-classification", "language_creators:translated", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:Dahoas/full-hh-rlhf", "language:ru", "reward", "ChatGPT", "human-feedback", "region:us" ]
2023-06-14T12:40:04+00:00
{"language_creators": ["translated"], "language": ["ru"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": ["Dahoas/full-hh-rlhf"], "task_categories": ["text-classification"], "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 315825386, "num_examples": 112052}, {"name": "test", "num_bytes": 22606646, "num_examples": 12451}], "download_size": 176330770, "dataset_size": 338432032}, "tags": ["reward", "ChatGPT", "human-feedback"]}
2023-06-16T07:04:18+00:00
a757bdc470f0f427a95e64be6e662467ef4640c6
# Dataset Card for "books_paragraph_test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ranWang/books_paragraph_test
[ "region:us" ]
2023-06-14T12:43:35+00:00
{"dataset_info": {"features": [{"name": "raw_text", "dtype": "string"}, {"name": "output_text", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "is_hard_linebreak", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 1750600, "num_examples": 18}], "download_size": 922916, "dataset_size": 1750600}}
2023-06-15T00:46:16+00:00
c334e0e33b85e7258083a68b7fde1c260b76be4f
# Dataset Card for "celeba_with_llava_captions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
irodkin/celeba_with_llava_captions
[ "language:en", "region:us" ]
2023-06-14T12:44:54+00:00
{"language": "en", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "conditioning_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 576196360.392, "num_examples": 36646}], "download_size": 257039500, "dataset_size": 576196360.392}}
2023-07-12T14:14:57+00:00
d36abca5fa3f54b39031d313ff4aaed7fb2b16de
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
Yiran0924/TryFelm
[ "language:en", "doi:10.57967/hf/0771", "region:us" ]
2023-06-14T12:51:27+00:00
{"language": ["en"]}
2023-06-14T13:31:11+00:00
41274dd249bef16b2133a91a728e5869ef617f09
# Dataset Card for "1e0bfadc" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/1e0bfadc
[ "region:us" ]
2023-06-14T12:55:01+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 178, "num_examples": 10}], "download_size": 1331, "dataset_size": 178}}
2023-06-14T12:55:02+00:00
b4396707e690ec5413a8140247d51bf064b8bf69
# Educational named entity recognition dataset 1. EduNER is a Chinese named entity recognition dataset for education research. 2. More details about this dataset can be found at https://github.com/anonymous-xl/eduner, or read our paper. ### Reference Li, X., Wei, C., Jiang, Z. et al. EduNER: a Chinese named entity recognition dataset for education research. Neural Comput & Applic (2023). https://doi.org/10.1007/s00521-023-08635-5
NLP-ED/EduNER
[ "license:cc-by-4.0", "region:us" ]
2023-06-14T12:56:45+00:00
{"license": "cc-by-4.0"}
2023-06-14T13:02:58+00:00
752584573aefdd6bd22665d728b830688f494e82
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
mayestro/cat_mask
[ "region:us" ]
2023-06-14T12:59:22+00:00
{}
2023-06-14T13:01:21+00:00
8ba2b402a7c50a07f7fb2b36619e8bf29b19c5a8
# Dataset Card for Never Ending Language Learning (NELL) ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** http://rtw.ml.cmu.edu/rtw/ - **Repository:** http://rtw.ml.cmu.edu/rtw/ - **Paper:** Never-Ending Learning. T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, J. Welling. In Proceedings of the Conference on Artificial Intelligence (AAAI), 2015 ### Dataset Summary This dataset provides version 1115 of the belief extracted by CMU's Never Ending Language Learner (NELL) and version 1110 of the candidate belief extracted by NELL. See http://rtw.ml.cmu.edu/rtw/overview. NELL is an open information extraction system that attempts to read the Clueweb09 of 500 million web pages (http://boston.lti.cs.cmu.edu/Data/clueweb09/) and general web searches. The dataset has 4 configurations: nell_belief, nell_candidate, nell_belief_sentences, and nell_candidate_sentences. nell_belief is certainties of belief are lower. The two sentences config extracts the CPL sentence patterns filled with the applicable 'best' literal string for the entities filled into the sentence patterns. And also provides sentences found using web searches containing the entities and relationships. There are roughly 21M entries for nell_belief_sentences, and 100M sentences for nell_candidate_sentences. From the NELL website: - **Research Goal** To build a never-ending machine learning system that acquires the ability to extract structured information from unstructured web pages. If successful, this will result in a knowledge base (i.e., a relational database) of structured information that mirrors the content of the Web. We call this system NELL (Never-Ending Language Learner). - **Approach** The inputs to NELL include (1) an initial ontology defining hundreds of categories (e.g., person, sportsTeam, fruit, emotion) and relations (e.g., playsOnTeam(athlete,sportsTeam), playsInstrument(musician,instrument)) that NELL is expected to read about, and (2) 10 to 15 seed examples of each category and relation. Given these inputs, plus a collection of 500 million web pages and access to the remainder of the web through search engine APIs, NELL runs 24 hours per day, continuously, to perform two ongoing tasks: Extract new instances of categories and relations. In other words, find noun phrases that represent new examples of the input categories (e.g., "Barack Obama" is a person and politician), and find pairs of noun phrases that correspond to instances of the input relations (e.g., the pair "Jason Giambi" and "Yankees" is an instance of the playsOnTeam relation). These new instances are added to the growing knowledge base of structured beliefs. Learn to read better than yesterday. NELL uses a variety of methods to extract beliefs from the web. These are retrained, using the growing knowledge base as a self-supervised collection of training examples. The result is a semi-supervised learning method that couples the training of hundreds of different extraction methods for a wide range of categories and relations. Much of NELL’s current success is due to its algorithm for coupling the simultaneous training of many extraction methods. For more information, see: http://rtw.ml.cmu.edu/rtw/resources ### Supported Tasks and Leaderboards [More Information Needed] ### Languages en, and perhaps some others ## Dataset Structure ### Data Instances There are four configurations for the dataset: nell_belief, nell_candidate, nell_belief_sentences, nell_candidate_sentences. nell_belief and nell_candidate defines: `` {'best_entity_literal_string': 'Aspect Medical Systems', 'best_value_literal_string': '', 'candidate_source': '%5BSEAL-Iter%3A215-2011%2F02%2F26-04%3A27%3A09-%3Ctoken%3Daspect_medical_systems%2Cbiotechcompany%3E-From%3ACategory%3Abiotechcompany-using-KB+http%3A%2F%2Fwww.unionegroup.com%2Fhealthcare%2Fmfg_info.htm+http%3A%2F%2Fwww.conventionspc.com%2Fcompanies.html%2C+CPL-Iter%3A1103-2018%2F03%2F08-15%3A32%3A34-%3Ctoken%3Daspect_medical_systems%2Cbiotechcompany%3E-grant+support+from+_%092%09research+support+from+_%094%09unrestricted+educational+grant+from+_%092%09educational+grant+from+_%092%09research+grant+support+from+_%091%09various+financial+management+positions+at+_%091%5D', 'categories_for_entity': 'concept:biotechcompany', 'categories_for_value': 'concept:company', 'entity': 'concept:biotechcompany:aspect_medical_systems', 'entity_literal_strings': '"Aspect Medical Systems" "aspect medical systems"', 'iteration_of_promotion': '1103', 'relation': 'generalizations', 'score': '0.9244426550775064', 'source': 'MBL-Iter%3A1103-2018%2F03%2F18-01%3A35%3A42-From+ErrorBasedIntegrator+%28SEAL%28aspect_medical_systems%2Cbiotechcompany%29%2C+CPL%28aspect_medical_systems%2Cbiotechcompany%29%29', 'value': 'concept:biotechcompany', 'value_literal_strings': ''} `` nell_belief_sentences, nell_candidate_sentences defines: `` {'count': 4, 'entity': 'biotechcompany:aspect_medical_systems', 'relation': 'generalizations', 'score': '0.9244426550775064', 'sentence': 'research support from [[ Aspect Medical Systems ]]', 'sentence_type': 'CPL', 'url': '', 'value': 'biotechcompany'} `` ### Data Fields For nell_belief and nell_canddiate configurations. From http://rtw.ml.cmu.edu/rtw/faq: * entity: The Entity part of the (Entity, Relation, Value) tripple. Note that this will be the name of a concept and is not the literal string of characters seen by NELL from some text source, nor does it indicate the category membership of that concept * relation: The Relation part of the (Entity, Relation, Value) tripple. In the case of a category instance, this will be "generalizations". In the case of a relation instance, this will be the name of the relation. * value: The Value part of the (Entity, Relation, Value) tripple. In the case of a category instance, this will be the name of the category. In the case of a relation instance, this will be another concept (like Entity). * iteration_of_promotion: The point in NELL's life at which this category or relation instance was promoted to one that NELL beleives to be true. This is a non-negative integer indicating the number of iterations of bootstrapping NELL had gone through. * score: A confidence score for the belief. Note that NELL's scores are not actually probabilistic at this time. * source: A summary of the provenance for the belief indicating the set of learning subcomponents (CPL, SEAL, etc.) that had submitted this belief as being potentially true. * entity_literal_strings: The set of actual textual strings that NELL has read that it believes can refer to the concept indicated in the Entity column. * value_literal_strings: For relations, the set of actual textual strings that NELL has read that it believes can refer to the concept indicated in the Value column. For categories, this should be empty but may contain something spurious. * best_entity_literal_string: Of the set of strings in the Entity literalStrings, column, which one string can best be used to describe the concept. * best_value_literal_string: Same thing, but for Value literalStrings. * categories_for_entity: The full set of categories (which may be empty) to which NELL belives the concept indicated in the Entity column to belong. * categories_for_value: For relations, the full set of categories (which may be empty) to which NELL believes the concept indicated in the Value column to belong. For categories, this should be empty but may contain something spurious. * candidate_source: A free-form amalgamation of more specific provenance information describing the justification(s) NELL has for possibly believing this category or relation instance. For the nell_belief_sentences and nell_candidate_sentences, we have extracted the underlying sentences, sentence count and URLs and provided a shortened version of the entity, relation and value field by removing the string "concept:" and "candidate:". There are two types of sentences, 'CPL' and 'OE', which are generated by two of the modules of NELL, pattern matching and open web searching, respectively. There may be duplicates. The configuration is as follows: * entity: The Entity part of the (Entity, Relation, Value) tripple. Note that this will be the name of a concept and is not the literal string of characters seen by NELL from some text source, nor does it indicate the category membership of that concept * relation: The Relation part of the (Entity, Relation, Value) tripple. In the case of a category instance, this will be "generalizations". In the case of a relation instance, this will be the name of the relation. * value: The Value part of the (Entity, Relation, Value) tripple. In the case of a category instance, this will be the name of the category. In the case of a relation instance, this will be another concept (like Entity). * score: A confidence score for the belief. Note that NELL's scores are not actually probabilistic at this time. * sentence: the raw sentence. For 'CPL' type sentences, there are "[[" "]]" arounds the entity and value. For 'OE' type sentences, there are no "[[" and "]]". * url: the url if there is one from which this sentence was extracted * count: the count for this sentence * sentence_type: either 'CPL' or 'OE' ### Data Splits There are no splits. ## Dataset Creation ### Curation Rationale This dataset was gathered and created over many years of running the NELL system on web data. ### Source Data #### Initial Data Collection and Normalization See the research paper on NELL. NELL searches a subset of the web (Clueweb09) and the open web using various open information extraction algorithms, including pattern matching. #### Who are the source language producers? The NELL authors at Carnegie Mellon Univiersty and data from Cluebweb09 and the open web. ### Annotations #### Annotation process The various open information extraction modules of NELL. #### Who are the annotators? Machine annotated. ### Personal and Sensitive Information Unkown, but likely there are names of famous individuals. ## Considerations for Using the Data ### Social Impact of Dataset The goal for the work is to help machines learn to read and understand the web. ### Discussion of Biases Since the data is gathered from the web, there is likely to be biased text and relationships. [More Information Needed] ### Other Known Limitations The relationships and concepts gathered from NELL are not 100% accurate, and there could be errors (maybe as high as 30% error). See https://en.wikipedia.org/wiki/Never-Ending_Language_Learning We did not 'tag' the entity and value in the 'OE' sentences, and this might be an extension in the future. ## Additional Information ### Dataset Curators The authors of NELL at Carnegie Mellon Univeristy ### Licensing Information There does not appear to be a license on http://rtw.ml.cmu.edu/rtw/resources. The data is made available by CMU on the web. ### Citation Information @inproceedings{mitchell2015, added-at = {2015-01-27T15:35:24.000+0100}, author = {Mitchell, T. and Cohen, W. and Hruscha, E. and Talukdar, P. and Betteridge, J. and Carlson, A. and Dalvi, B. and Gardner, M. and Kisiel, B. and Krishnamurthy, J. and Lao, N. and Mazaitis, K. and Mohammad, T. and Nakashole, N. and Platanios, E. and Ritter, A. and Samadi, M. and Settles, B. and Wang, R. and Wijaya, D. and Gupta, A. and Chen, X. and Saparov, A. and Greaves, M. and Welling, J.}, biburl = {https://www.bibsonomy.org/bibtex/263070703e6bb812852cca56574aed093/hotho}, booktitle = {AAAI}, description = {Papers by William W. Cohen}, interhash = {52d0d71f6f5b332dabc1412f18e3a93d}, intrahash = {63070703e6bb812852cca56574aed093}, keywords = {learning nell ontology semantic toread}, note = {: Never-Ending Learning in AAAI-2015}, timestamp = {2015-01-27T15:35:24.000+0100}, title = {Never-Ending Learning}, url = {http://www.cs.cmu.edu/~wcohen/pubs.html}, year = 2015 } ### Contributions Thanks to [@ontocord](https://github.com/ontocord) for adding this dataset.
asoria/nell
[ "task_categories:text-retrieval", "task_ids:entity-linking-retrieval", "task_ids:fact-checking-retrieval", "annotations_creators:machine-generated", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:100M<n<1B", "size_categories:10M<n<100M", "size_categories:1M<n<10M", "source_datasets:original", "language:en", "license:unknown", "relation-extraction", "text-to-structured", "text-to-tabular", "region:us" ]
2023-06-14T13:41:01+00:00
{"annotations_creators": ["machine-generated"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "size_categories": ["100M<n<1B", "10M<n<100M", "1M<n<10M"], "source_datasets": ["original"], "task_categories": ["text-retrieval"], "task_ids": ["entity-linking-retrieval", "fact-checking-retrieval"], "paperswithcode_id": "nell", "pretty_name": "Never Ending Language Learning (NELL)", "config_names": ["nell_belief", "nell_belief_sentences", "nell_candidate", "nell_candidate_sentences"], "tags": ["relation-extraction", "text-to-structured", "text-to-tabular"], "dataset_info": [{"config_name": "nell_belief", "features": [{"name": "entity", "dtype": "string"}, {"name": "relation", "dtype": "string"}, {"name": "value", "dtype": "string"}, {"name": "iteration_of_promotion", "dtype": "string"}, {"name": "score", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "entity_literal_strings", "dtype": "string"}, {"name": "value_literal_strings", "dtype": "string"}, {"name": "best_entity_literal_string", "dtype": "string"}, {"name": "best_value_literal_string", "dtype": "string"}, {"name": "categories_for_entity", "dtype": "string"}, {"name": "categories_for_value", "dtype": "string"}, {"name": "candidate_source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4592559704, "num_examples": 2766079}], "download_size": 929107246, "dataset_size": 4592559704}, {"config_name": "nell_candidate", "features": [{"name": "entity", "dtype": "string"}, {"name": "relation", "dtype": "string"}, {"name": "value", "dtype": "string"}, {"name": "iteration_of_promotion", "dtype": "string"}, {"name": "score", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "entity_literal_strings", "dtype": "string"}, {"name": "value_literal_strings", "dtype": "string"}, {"name": "best_entity_literal_string", "dtype": "string"}, {"name": "best_value_literal_string", "dtype": "string"}, {"name": "categories_for_entity", "dtype": "string"}, {"name": "categories_for_value", "dtype": "string"}, {"name": "candidate_source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 23497433060, "num_examples": 32687353}], "download_size": 2687057812, "dataset_size": 23497433060}, {"config_name": "nell_belief_sentences", "features": [{"name": "entity", "dtype": "string"}, {"name": "relation", "dtype": "string"}, {"name": "value", "dtype": "string"}, {"name": "score", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "count", "dtype": "int32"}, {"name": "url", "dtype": "string"}, {"name": "sentence_type", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4459368426, "num_examples": 21031531}], "download_size": 929107246, "dataset_size": 4459368426}, {"config_name": "nell_candidate_sentences", "features": [{"name": "entity", "dtype": "string"}, {"name": "relation", "dtype": "string"}, {"name": "value", "dtype": "string"}, {"name": "score", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "count", "dtype": "int32"}, {"name": "url", "dtype": "string"}, {"name": "sentence_type", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20058197787, "num_examples": 100866414}], "download_size": 2687057812, "dataset_size": 20058197787}]}
2023-06-14T13:41:25+00:00
35daa7b96d342b50db1b02d26df1e8551ddac601
sruly/lamed-data
[ "license:apache-2.0", "region:us" ]
2023-06-14T13:57:18+00:00
{"license": "apache-2.0"}
2023-06-14T13:57:42+00:00
6e63d01259c5dbcdeade384dc92d43b192385ab8
# Dataset Card for "processed_dwi_cropped" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
deetsadi/processed_dwi_cropped
[ "region:us" ]
2023-06-14T14:16:49+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "conditioning_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 12023715.0, "num_examples": 200}], "download_size": 11594705, "dataset_size": 12023715.0}}
2023-06-14T14:16:50+00:00
3d806e50de3ed8856ac47ff7ce95141dc64b1202
breadlicker45/musenet-chunk
[ "task_categories:text-generation", "size_categories:100K<n<1M", "Music", "region:us" ]
2023-06-14T14:20:49+00:00
{"size_categories": ["100K<n<1M"], "task_categories": ["text-generation"], "tags": ["Music"]}
2023-06-27T20:22:07+00:00
3b339605e8d2f930d30798b3ce34f9be6369182c
# Dataset Card for Pipeline2Code ## Dataset origin [Code4ML: a Large-scale Dataset of annotated Machine Learning Code](https://zenodo.org/record/7733823) ## Dataset Summary This dataset is designed for the iterative generation of Machine Learning (ML) code based on high-level ML pipeline descriptions. It consists of code snippets extracted from Kaggle kernels, organized as Jupyter Notebook snippets. Each kernel includes a set of prompts and completions. The initial prompt contains an <SOS> token, meta-information about the task the notebook aims to solve, and the semantic type of the code snippet. The final prompt of each kernel consists of the semantic type of the code snippet followed by an <EOS> token. Each prompt is associated with a code snippet completion. Subsequent prompts include previously generated completions and the semantic type of the snippet.
katenil/pipeline2code
[ "license:cc-by-4.0", "code", "region:us" ]
2023-06-14T14:24:19+00:00
{"license": "cc-by-4.0", "tags": ["code"]}
2023-06-16T05:42:15+00:00
2576180d18279b1d453dec42f1559f31352bd795
# Dataset Card for "testitest" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
enelpe/testitest
[ "region:us" ]
2023-06-14T14:31:43+00:00
{"dataset_info": {"features": [{"name": "Sentences", "sequence": "string"}, {"name": "Labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 7587838, "num_examples": 23196}], "download_size": 0, "dataset_size": 7587838}}
2023-06-14T14:41:24+00:00
db7d7f8d18894e40ef017cc5c2ba286f37f7d592
# Information This is a demo dataset contains images from the Swedish National Archives, Riksarkivet. To find the images at Riksarkivet: 30002030_00003.jpg = https://sok.riksarkivet.se/bildvisning/30002030_00003 | Image_name | Description | |---|---| | R0001213_00003 | Kommissorialrätt i Bohus län ang trolldomsväsendet, 1671 | | A0065848_00037 | Regementsvis ordnade handlingar 1685 | | 40004028_00007 | Bergskollegium, Relationer och skrivelser anggående utländska bergverk, 1698 | | 40005343_00071 | Göta hovrätt, Brottsmålsprotokoll, 1717 | | A0060200_00003 | Trolldom och annan vidskepelse, Rättegångshandlingar samt skrivelser till Göta Hovrätt, 1720 | | A0068662_00092 | Svea hovrätt, protokoll, 1729 | | A0068702_00065 | Svea hovrätt, protokoll, 1750 | | 40004051_00009 | Bergskollegium, Relationer och skrivelser angående utländska bergverk, 1784 | | U0000236_00609 | Hammartingsprotokoll, 1803 | | R0000277_00005 | Beskrivning över provinsen Gästrikland, 1861 | | 30003038_00003 | Göteborgs poliskammare, 1865 | | 30002030_00003 | Göteborgs poliskammare, 1877 | | 30002039_00003 | Göteborgs poliskammare, 1886 | | ... | ... |
Riksarkivet/test_images_demo
[ "task_categories:image-to-text", "language:sv", "HTR", "region:us" ]
2023-06-14T14:33:25+00:00
{"language": ["sv"], "task_categories": ["image-to-text"], "tags": ["HTR"]}
2023-08-31T12:58:13+00:00
a07ebd04a9f1986cba0578adc49274876e4f54f1
# Dataset Card for "roi_donut" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Chaymaa/roi_donut
[ "region:us" ]
2023-06-14T14:37:45+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 81407507.7, "num_examples": 560}, {"name": "test", "num_bytes": 18098346.65, "num_examples": 120}, {"name": "valid", "num_bytes": 17695991.65, "num_examples": 120}], "download_size": 117206254, "dataset_size": 117201846.0}}
2023-06-19T09:11:52+00:00
c31d2fa27097327a2f988f451e6df717661e055c
Kosasih/Micro_Biologi
[ "license:mit", "region:us" ]
2023-06-14T14:42:43+00:00
{"license": "mit"}
2023-06-14T14:42:43+00:00
72b01b200cc391d7ce421a4d07ec36bc62eec321
marcusy/nlp_ah_dataset
[ "task_categories:translation", "size_categories:1K<n<10K", "language:en", "license:mit", "region:us" ]
2023-06-14T14:46:25+00:00
{"language": ["en"], "license": "mit", "size_categories": ["1K<n<10K"], "task_categories": ["translation"], "dataset_info": {"features": [{"name": "translation", "dtype": {"translation": {"languages": ["query", "output"]}}}], "splits": [{"name": "train", "num_bytes": 374237, "num_examples": 4800}, {"name": "validation", "num_bytes": 93553, "num_examples": 1200}], "download_size": 666113, "dataset_size": 467790}}
2023-06-15T08:04:38+00:00
b33c819b56b63dddf98a4b15c80ec039c82b849d
lachine/melson7
[ "license:gpl-3.0", "region:us" ]
2023-06-14T14:48:08+00:00
{"license": "gpl-3.0"}
2023-06-14T14:48:08+00:00
28fb10f1f583125f9cf90bf62e4c0e256c4e7015
This is the data used in the paper [Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias](https://github.com/yueyu1030/AttrPrompt). See the paper: https://arxiv.org/abs/2306.15895 for details. - `label.txt`: the label name for each class - `train.jsonl`: The original training set. - `valid.jsonl`: The original validation set. - `test.jsonl`: The original test set. - `simprompt.jsonl`: The training data generated by the simple prompt. - `attrprompt.jsonl`: The training data generated by the attributed prompt. **Note**: Different than the other datasets, the `labels` for training/validation/test data are all a *list* instead of an integer as it is a multi-label classification dataset.
yyu/arxiv-attrprompt
[ "task_categories:text-classification", "size_categories:10K<n<100K", "language:en", "license:apache-2.0", "multilabel_classification", "arxiv", "scientific_papers", "arxiv:2306.15895", "region:us" ]
2023-06-14T14:55:17+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-classification"], "tags": ["multilabel_classification", "arxiv", "scientific_papers"], "version": ["V1"]}
2023-09-13T19:57:33+00:00
9e88d8c5911ed910dd862d228aa5f2c2c233102a
# Dataset Card for "MorSpra_all" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
enelpe/MorSpra_all
[ "region:us" ]
2023-06-14T14:58:11+00:00
{"dataset_info": {"features": [{"name": "Sentences", "sequence": "string"}, {"name": "Labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 7587838, "num_examples": 23196}], "download_size": 0, "dataset_size": 7587838}}
2023-06-14T15:00:21+00:00
7b43baa03d6179424dfbb2a53e62af7fb6abe248
# Dataset Card for "stable-bias_grounding-images_multimodel_3_12_22" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stable-bias/stable-bias_grounding-images_multimodel_3_12_22
[ "region:us" ]
2023-06-14T15:00:08+00:00
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "gender_phrase", "dtype": "string"}, {"name": "ethnicity_phrase", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "source_type", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 70960514.0, "num_examples": 2040}], "download_size": 70651732, "dataset_size": 70960514.0}}
2023-06-14T15:01:52+00:00
ff7ba91063016c78a225b0f74e1c0860bb18230f
# Dataset Card for PKU-SafeRLHF <span style="color: red;">Warning: this dataset contains data that may be offensive or harmful. The data are intended for research purposes, especially research that can make models less harmful. The views expressed in the data do not reflect the views of PKU-Alignment Team or any of its members. </span> ## Dataset Summary The preference dataset consists of 30k+ expert comparison data. Each entry in this dataset includes two responses to a question, along with safety meta-labels and preferences for both responses, taking into consideration their helpfulness and harmlessness. The annotation pipeline for this dataset is depicted in the following image: ![Annotation Pipeline](annotation-pipeline.png) ## Human-Preference on Harmlessness and Helpfulness ### Harmlessness of a QA Pair The harmlessness of a QA pair is evaluated based on ethical considerations and safety implications inherent in the interaction. A QA pair is deemed harmless when it is classified as risk-neutral across all 14 harm categories outlined in our paper. By risk-neutral, we mean that the QA pair does not engender or promote any harmful consequences or risks as per the definitions in these categories. Thus, a risk-neutral QA pair neither incite harm nor leads to unsafe outcomes, effectively aligning with our safety and ethical guidelines. ### Helpfulness of a Response The helpfulness of a response pertains to how effectively it addresses a given prompt. This measure is independent of the harmlessness of the response, as it focuses solely on the quality, clarity, and relevance of the provided information. Consequently, the helpfulness judgment can be distinctly different from the harmlessness judgment. For instance, consider a situation where a user asks about the procedure to synthesize methamphetamine. In such a case, a detailed, step-by-step response would be considered helpful due to its accuracy and thoroughness. However, due to the harmful implications of manufacturing illicit substances, this QA pair would be classified as extremely harmful. ### Ranking of Responses Once the helpfulness and harmlessness of responses are evaluated, they are ranked accordingly. It is important to note that this is a two-dimensional ranking: responses are ranked separately for helpfulness and harmlessness. This is due to the distinctive and independent nature of these two attributes. The resulting rankings provide a nuanced perspective on the responses, allowing us to balance information quality with safety and ethical considerations. These separate rankings of helpfulness and harmlessness contribute to a more comprehensive understanding of LLM outputs, particularly in the context of safety alignment. We have enforced a logical order to ensure the correctness of the harmlessness ranking: harmless responses (i.e. all 14 harm categories risk-neutral) are always ranked higher than harmful ones (i.e., at least 1 category risky). ## Usage To load our dataset, use the `load_dataset()` function as follows: ```python from datasets import load_dataset dataset = load_dataset("PKU-Alignment/PKU-SafeRLHF") ``` ## Paper You can find more information in our paper - **Dataset Paper:** <https://arxiv.org/abs/2307.04657> ## Contact The original authors host this dataset on GitHub here: https://github.com/PKU-Alignment/beavertails.
PKU-Alignment/PKU-SafeRLHF
[ "task_categories:text-generation", "size_categories:100K<n<1M", "language:en", "license:cc-by-nc-4.0", "safe", "safety", "ai-safety", "llm", "lm", "human-feedback", "rlhf", "safe-rlhf", "arxiv:2307.04657", "region:us" ]
2023-06-14T15:03:29+00:00
{"language": ["en"], "license": "cc-by-nc-4.0", "size_categories": ["100K<n<1M"], "task_categories": ["text-generation"], "tags": ["safe", "safety", "ai-safety", "llm", "lm", "human-feedback", "rlhf", "safe-rlhf"]}
2023-11-20T10:26:57+00:00
7f25d472910f581dbf29abef4807ae846eea53a1
# Dataset Card for "prof_report__dalle-2__multi__24" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stable-bias/prof_report__dalle-2__multi__24
[ "region:us" ]
2023-06-14T15:04:58+00:00
{"dataset_info": {"features": [{"name": "cluster_id", "dtype": "int64"}, {"name": "cluster_size", "dtype": "int64"}, {"name": "img_ids", "sequence": "int64"}, {"name": "img_cluster_scores", "sequence": "float64"}], "splits": [{"name": "paralegal", "num_bytes": 3672, "num_examples": 13}, {"name": "bartender", "num_bytes": 3576, "num_examples": 9}, {"name": "facilities_manager", "num_bytes": 3552, "num_examples": 8}, {"name": "accountant", "num_bytes": 3504, "num_examples": 6}, {"name": "graphic_designer", "num_bytes": 3600, "num_examples": 10}, {"name": "network_administrator", "num_bytes": 3624, "num_examples": 11}, {"name": "financial_manager", "num_bytes": 3528, "num_examples": 7}, {"name": "baker", "num_bytes": 3624, "num_examples": 11}, {"name": "security_guard", "num_bytes": 3528, "num_examples": 7}, {"name": "artist", "num_bytes": 3720, "num_examples": 15}, {"name": "author", "num_bytes": 3600, "num_examples": 10}, {"name": "printing_press_operator", "num_bytes": 3552, "num_examples": 8}, {"name": "public_relations_specialist", "num_bytes": 3600, "num_examples": 10}, {"name": "sheet_metal_worker", "num_bytes": 3504, "num_examples": 6}, {"name": "clergy", "num_bytes": 3552, "num_examples": 8}, {"name": "payroll_clerk", "num_bytes": 3648, "num_examples": 12}, {"name": "teller", "num_bytes": 3672, "num_examples": 13}, {"name": "real_estate_broker", "num_bytes": 3528, "num_examples": 7}, {"name": "customer_service_representative", "num_bytes": 3720, "num_examples": 15}, {"name": "painter", "num_bytes": 3648, "num_examples": 12}, {"name": "tractor_operator", "num_bytes": 3504, "num_examples": 6}, {"name": "dental_hygienist", "num_bytes": 3576, "num_examples": 9}, {"name": "industrial_engineer", "num_bytes": 3552, "num_examples": 8}, {"name": "electrician", "num_bytes": 3576, "num_examples": 9}, {"name": "head_cook", "num_bytes": 3576, "num_examples": 9}, {"name": "health_technician", "num_bytes": 3648, "num_examples": 12}, {"name": "carpet_installer", "num_bytes": 3576, "num_examples": 9}, {"name": "purchasing_agent", "num_bytes": 3624, "num_examples": 11}, {"name": "supervisor", "num_bytes": 3576, "num_examples": 9}, {"name": "civil_engineer", "num_bytes": 3504, "num_examples": 6}, {"name": "lawyer", "num_bytes": 3600, "num_examples": 10}, {"name": "language_pathologist", "num_bytes": 3552, "num_examples": 8}, {"name": "ceo", "num_bytes": 3456, "num_examples": 4}, {"name": "computer_support_specialist", "num_bytes": 3528, "num_examples": 7}, {"name": "postal_worker", "num_bytes": 3552, "num_examples": 8}, {"name": "mechanical_engineer", "num_bytes": 3552, "num_examples": 8}, {"name": "nursing_assistant", "num_bytes": 3552, "num_examples": 8}, {"name": "dentist", "num_bytes": 3624, "num_examples": 11}, {"name": "tutor", "num_bytes": 3600, "num_examples": 10}, {"name": "butcher", "num_bytes": 3528, "num_examples": 7}, {"name": "insurance_agent", "num_bytes": 3648, "num_examples": 12}, {"name": "courier", "num_bytes": 3552, "num_examples": 8}, {"name": "computer_programmer", "num_bytes": 3552, "num_examples": 8}, {"name": "truck_driver", "num_bytes": 3432, "num_examples": 3}, {"name": "mechanic", "num_bytes": 3528, "num_examples": 7}, {"name": "marketing_manager", "num_bytes": 3504, "num_examples": 6}, {"name": "sales_manager", "num_bytes": 3528, "num_examples": 7}, {"name": "correctional_officer", "num_bytes": 3576, "num_examples": 9}, {"name": "manager", "num_bytes": 3480, "num_examples": 5}, {"name": "underwriter", "num_bytes": 3504, "num_examples": 6}, {"name": "executive_assistant", "num_bytes": 3600, "num_examples": 10}, {"name": "designer", "num_bytes": 3624, "num_examples": 11}, {"name": "groundskeeper", "num_bytes": 3600, "num_examples": 10}, {"name": "mental_health_counselor", "num_bytes": 3648, "num_examples": 12}, {"name": "aerospace_engineer", "num_bytes": 3576, "num_examples": 9}, {"name": "taxi_driver", "num_bytes": 3576, "num_examples": 9}, {"name": "nurse", "num_bytes": 3552, "num_examples": 8}, {"name": "data_entry_keyer", "num_bytes": 3648, "num_examples": 12}, {"name": "musician", "num_bytes": 3672, "num_examples": 13}, {"name": "event_planner", "num_bytes": 3720, "num_examples": 15}, {"name": "writer", "num_bytes": 3600, "num_examples": 10}, {"name": "cook", "num_bytes": 3576, "num_examples": 9}, {"name": "welder", "num_bytes": 3504, "num_examples": 6}, {"name": "producer", "num_bytes": 3576, "num_examples": 9}, {"name": "hairdresser", "num_bytes": 3672, "num_examples": 13}, {"name": "farmer", "num_bytes": 3552, "num_examples": 8}, {"name": "construction_worker", "num_bytes": 3552, "num_examples": 8}, {"name": "air_conditioning_installer", "num_bytes": 3504, "num_examples": 6}, {"name": "electrical_engineer", "num_bytes": 3552, "num_examples": 8}, {"name": "occupational_therapist", "num_bytes": 3600, "num_examples": 10}, {"name": "career_counselor", "num_bytes": 3600, "num_examples": 10}, {"name": "interior_designer", "num_bytes": 3648, "num_examples": 12}, {"name": "jailer", "num_bytes": 3552, "num_examples": 8}, {"name": "office_clerk", "num_bytes": 3528, "num_examples": 7}, {"name": "market_research_analyst", "num_bytes": 3648, "num_examples": 12}, {"name": "laboratory_technician", "num_bytes": 3624, "num_examples": 11}, {"name": "social_assistant", "num_bytes": 3648, "num_examples": 12}, {"name": "medical_records_specialist", "num_bytes": 3648, "num_examples": 12}, {"name": "machinery_mechanic", "num_bytes": 3528, "num_examples": 7}, {"name": "police_officer", "num_bytes": 3528, "num_examples": 7}, {"name": "software_developer", "num_bytes": 3528, "num_examples": 7}, {"name": "clerk", "num_bytes": 3552, "num_examples": 8}, {"name": "salesperson", "num_bytes": 3552, "num_examples": 8}, {"name": "social_worker", "num_bytes": 3696, "num_examples": 14}, {"name": "director", "num_bytes": 3552, "num_examples": 8}, {"name": "fast_food_worker", "num_bytes": 3720, "num_examples": 15}, {"name": "singer", "num_bytes": 3768, "num_examples": 17}, {"name": "metal_worker", "num_bytes": 3552, "num_examples": 8}, {"name": "cleaner", "num_bytes": 3720, "num_examples": 15}, {"name": "computer_systems_analyst", "num_bytes": 3648, "num_examples": 12}, {"name": "dental_assistant", "num_bytes": 3600, "num_examples": 10}, {"name": "psychologist", "num_bytes": 3600, "num_examples": 10}, {"name": "machinist", "num_bytes": 3528, "num_examples": 7}, {"name": "therapist", "num_bytes": 3600, "num_examples": 10}, {"name": "veterinarian", "num_bytes": 3552, "num_examples": 8}, {"name": "teacher", "num_bytes": 3552, "num_examples": 8}, {"name": "architect", "num_bytes": 3552, "num_examples": 8}, {"name": "office_worker", "num_bytes": 3600, "num_examples": 10}, {"name": "drywall_installer", "num_bytes": 3504, "num_examples": 6}, {"name": "nutritionist", "num_bytes": 3624, "num_examples": 11}, {"name": "librarian", "num_bytes": 3576, "num_examples": 9}, {"name": "childcare_worker", "num_bytes": 3600, "num_examples": 10}, {"name": "school_bus_driver", "num_bytes": 3528, "num_examples": 7}, {"name": "file_clerk", "num_bytes": 3624, "num_examples": 11}, {"name": "logistician", "num_bytes": 3528, "num_examples": 7}, {"name": "scientist", "num_bytes": 3576, "num_examples": 9}, {"name": "teaching_assistant", "num_bytes": 3528, "num_examples": 7}, {"name": "radiologic_technician", "num_bytes": 3600, "num_examples": 10}, {"name": "manicurist", "num_bytes": 3624, "num_examples": 11}, {"name": "community_manager", "num_bytes": 3600, "num_examples": 10}, {"name": "carpenter", "num_bytes": 3600, "num_examples": 10}, {"name": "claims_appraiser", "num_bytes": 3624, "num_examples": 11}, {"name": "dispatcher", "num_bytes": 3624, "num_examples": 11}, {"name": "cashier", "num_bytes": 3672, "num_examples": 13}, {"name": "roofer", "num_bytes": 3480, "num_examples": 5}, {"name": "photographer", "num_bytes": 3624, "num_examples": 11}, {"name": "detective", "num_bytes": 3528, "num_examples": 7}, {"name": "financial_advisor", "num_bytes": 3480, "num_examples": 5}, {"name": "wholesale_buyer", "num_bytes": 3600, "num_examples": 10}, {"name": "it_specialist", "num_bytes": 3480, "num_examples": 5}, {"name": "pharmacy_technician", "num_bytes": 3576, "num_examples": 9}, {"name": "engineer", "num_bytes": 3456, "num_examples": 4}, {"name": "mover", "num_bytes": 3696, "num_examples": 14}, {"name": "plane_mechanic", "num_bytes": 3552, "num_examples": 8}, {"name": "interviewer", "num_bytes": 3624, "num_examples": 11}, {"name": "massage_therapist", "num_bytes": 3624, "num_examples": 11}, {"name": "dishwasher", "num_bytes": 3672, "num_examples": 13}, {"name": "fitness_instructor", "num_bytes": 3624, "num_examples": 11}, {"name": "credit_counselor", "num_bytes": 3600, "num_examples": 10}, {"name": "stocker", "num_bytes": 3696, "num_examples": 14}, {"name": "pharmacist", "num_bytes": 3600, "num_examples": 10}, {"name": "doctor", "num_bytes": 3552, "num_examples": 8}, {"name": "compliance_officer", "num_bytes": 3648, "num_examples": 12}, {"name": "aide", "num_bytes": 3672, "num_examples": 13}, {"name": "bus_driver", "num_bytes": 3552, "num_examples": 8}, {"name": "financial_analyst", "num_bytes": 3504, "num_examples": 6}, {"name": "receptionist", "num_bytes": 3552, "num_examples": 8}, {"name": "janitor", "num_bytes": 3552, "num_examples": 8}, {"name": "plumber", "num_bytes": 3480, "num_examples": 5}, {"name": "physical_therapist", "num_bytes": 3552, "num_examples": 8}, {"name": "inventory_clerk", "num_bytes": 3648, "num_examples": 12}, {"name": "firefighter", "num_bytes": 3480, "num_examples": 5}, {"name": "coach", "num_bytes": 3528, "num_examples": 7}, {"name": "maid", "num_bytes": 3552, "num_examples": 8}, {"name": "pilot", "num_bytes": 3528, "num_examples": 7}, {"name": "repair_worker", "num_bytes": 3576, "num_examples": 9}], "download_size": 867779, "dataset_size": 522960}}
2023-06-14T15:05:31+00:00
0a3e12fe77e0e66da1a52f0897ab008855e673ce
# Dataset Card for "prof_report__SD_v2_random_seeds__multi__24" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stable-bias/prof_report__SD_v2_random_seeds__multi__24
[ "region:us" ]
2023-06-14T15:08:12+00:00
{"dataset_info": {"features": [{"name": "cluster_id", "dtype": "int64"}, {"name": "cluster_size", "dtype": "int64"}, {"name": "img_ids", "sequence": "int64"}, {"name": "img_cluster_scores", "sequence": "float64"}], "splits": [{"name": "paralegal", "num_bytes": 3600, "num_examples": 10}, {"name": "bartender", "num_bytes": 3576, "num_examples": 9}, {"name": "facilities_manager", "num_bytes": 3696, "num_examples": 14}, {"name": "accountant", "num_bytes": 3648, "num_examples": 12}, {"name": "graphic_designer", "num_bytes": 3576, "num_examples": 9}, {"name": "network_administrator", "num_bytes": 3600, "num_examples": 10}, {"name": "financial_manager", "num_bytes": 3576, "num_examples": 9}, {"name": "baker", "num_bytes": 3720, "num_examples": 15}, {"name": "security_guard", "num_bytes": 3528, "num_examples": 7}, {"name": "artist", "num_bytes": 3720, "num_examples": 15}, {"name": "author", "num_bytes": 3576, "num_examples": 9}, {"name": "printing_press_operator", "num_bytes": 3744, "num_examples": 16}, {"name": "public_relations_specialist", "num_bytes": 3624, "num_examples": 11}, {"name": "sheet_metal_worker", "num_bytes": 3528, "num_examples": 7}, {"name": "clergy", "num_bytes": 3600, "num_examples": 10}, {"name": "payroll_clerk", "num_bytes": 3648, "num_examples": 12}, {"name": "teller", "num_bytes": 3768, "num_examples": 17}, {"name": "real_estate_broker", "num_bytes": 3528, "num_examples": 7}, {"name": "customer_service_representative", "num_bytes": 3624, "num_examples": 11}, {"name": "painter", "num_bytes": 3696, "num_examples": 14}, {"name": "tractor_operator", "num_bytes": 3480, "num_examples": 5}, {"name": "dental_hygienist", "num_bytes": 3480, "num_examples": 5}, {"name": "industrial_engineer", "num_bytes": 3504, "num_examples": 6}, {"name": "electrician", "num_bytes": 3456, "num_examples": 4}, {"name": "head_cook", "num_bytes": 3624, "num_examples": 11}, {"name": "health_technician", "num_bytes": 3672, "num_examples": 13}, {"name": "carpet_installer", "num_bytes": 3456, "num_examples": 4}, {"name": "purchasing_agent", "num_bytes": 3576, "num_examples": 9}, {"name": "supervisor", "num_bytes": 3672, "num_examples": 13}, {"name": "civil_engineer", "num_bytes": 3528, "num_examples": 7}, {"name": "lawyer", "num_bytes": 3648, "num_examples": 12}, {"name": "language_pathologist", "num_bytes": 3744, "num_examples": 16}, {"name": "ceo", "num_bytes": 3576, "num_examples": 9}, {"name": "computer_support_specialist", "num_bytes": 3672, "num_examples": 13}, {"name": "postal_worker", "num_bytes": 3696, "num_examples": 14}, {"name": "mechanical_engineer", "num_bytes": 3528, "num_examples": 7}, {"name": "nursing_assistant", "num_bytes": 3600, "num_examples": 10}, {"name": "dentist", "num_bytes": 3576, "num_examples": 9}, {"name": "tutor", "num_bytes": 3696, "num_examples": 14}, {"name": "butcher", "num_bytes": 3528, "num_examples": 7}, {"name": "insurance_agent", "num_bytes": 3600, "num_examples": 10}, {"name": "courier", "num_bytes": 3600, "num_examples": 10}, {"name": "computer_programmer", "num_bytes": 3504, "num_examples": 6}, {"name": "truck_driver", "num_bytes": 3552, "num_examples": 8}, {"name": "mechanic", "num_bytes": 3528, "num_examples": 7}, {"name": "marketing_manager", "num_bytes": 3576, "num_examples": 9}, {"name": "sales_manager", "num_bytes": 3600, "num_examples": 10}, {"name": "correctional_officer", "num_bytes": 3600, "num_examples": 10}, {"name": "manager", "num_bytes": 3600, "num_examples": 10}, {"name": "underwriter", "num_bytes": 3600, "num_examples": 10}, {"name": "executive_assistant", "num_bytes": 3576, "num_examples": 9}, {"name": "designer", "num_bytes": 3576, "num_examples": 9}, {"name": "groundskeeper", "num_bytes": 3528, "num_examples": 7}, {"name": "mental_health_counselor", "num_bytes": 3600, "num_examples": 10}, {"name": "aerospace_engineer", "num_bytes": 3528, "num_examples": 7}, {"name": "taxi_driver", "num_bytes": 3576, "num_examples": 9}, {"name": "nurse", "num_bytes": 3648, "num_examples": 12}, {"name": "data_entry_keyer", "num_bytes": 3504, "num_examples": 6}, {"name": "musician", "num_bytes": 3744, "num_examples": 16}, {"name": "event_planner", "num_bytes": 3696, "num_examples": 14}, {"name": "writer", "num_bytes": 3648, "num_examples": 12}, {"name": "cook", "num_bytes": 3648, "num_examples": 12}, {"name": "welder", "num_bytes": 3528, "num_examples": 7}, {"name": "producer", "num_bytes": 3552, "num_examples": 8}, {"name": "hairdresser", "num_bytes": 3672, "num_examples": 13}, {"name": "farmer", "num_bytes": 3504, "num_examples": 6}, {"name": "construction_worker", "num_bytes": 3480, "num_examples": 5}, {"name": "air_conditioning_installer", "num_bytes": 3480, "num_examples": 5}, {"name": "electrical_engineer", "num_bytes": 3528, "num_examples": 7}, {"name": "occupational_therapist", "num_bytes": 3648, "num_examples": 12}, {"name": "career_counselor", "num_bytes": 3648, "num_examples": 12}, {"name": "interior_designer", "num_bytes": 3600, "num_examples": 10}, {"name": "jailer", "num_bytes": 3672, "num_examples": 13}, {"name": "office_clerk", "num_bytes": 3600, "num_examples": 10}, {"name": "market_research_analyst", "num_bytes": 3648, "num_examples": 12}, {"name": "laboratory_technician", "num_bytes": 3696, "num_examples": 14}, {"name": "social_assistant", "num_bytes": 3696, "num_examples": 14}, {"name": "medical_records_specialist", "num_bytes": 3576, "num_examples": 9}, {"name": "machinery_mechanic", "num_bytes": 3480, "num_examples": 5}, {"name": "police_officer", "num_bytes": 3648, "num_examples": 12}, {"name": "software_developer", "num_bytes": 3552, "num_examples": 8}, {"name": "clerk", "num_bytes": 3696, "num_examples": 14}, {"name": "salesperson", "num_bytes": 3648, "num_examples": 12}, {"name": "social_worker", "num_bytes": 3624, "num_examples": 11}, {"name": "director", "num_bytes": 3600, "num_examples": 10}, {"name": "fast_food_worker", "num_bytes": 3696, "num_examples": 14}, {"name": "singer", "num_bytes": 3720, "num_examples": 15}, {"name": "metal_worker", "num_bytes": 3528, "num_examples": 7}, {"name": "cleaner", "num_bytes": 3744, "num_examples": 16}, {"name": "computer_systems_analyst", "num_bytes": 3696, "num_examples": 14}, {"name": "dental_assistant", "num_bytes": 3552, "num_examples": 8}, {"name": "psychologist", "num_bytes": 3624, "num_examples": 11}, {"name": "machinist", "num_bytes": 3456, "num_examples": 4}, {"name": "therapist", "num_bytes": 3672, "num_examples": 13}, {"name": "veterinarian", "num_bytes": 3576, "num_examples": 9}, {"name": "teacher", "num_bytes": 3744, "num_examples": 16}, {"name": "architect", "num_bytes": 3552, "num_examples": 8}, {"name": "office_worker", "num_bytes": 3600, "num_examples": 10}, {"name": "drywall_installer", "num_bytes": 3456, "num_examples": 4}, {"name": "nutritionist", "num_bytes": 3600, "num_examples": 10}, {"name": "librarian", "num_bytes": 3552, "num_examples": 8}, {"name": "childcare_worker", "num_bytes": 3648, "num_examples": 12}, {"name": "school_bus_driver", "num_bytes": 3768, "num_examples": 17}, {"name": "file_clerk", "num_bytes": 3672, "num_examples": 13}, {"name": "logistician", "num_bytes": 3528, "num_examples": 7}, {"name": "scientist", "num_bytes": 3624, "num_examples": 11}, {"name": "teaching_assistant", "num_bytes": 3600, "num_examples": 10}, {"name": "radiologic_technician", "num_bytes": 3624, "num_examples": 11}, {"name": "manicurist", "num_bytes": 3600, "num_examples": 10}, {"name": "community_manager", "num_bytes": 3672, "num_examples": 13}, {"name": "carpenter", "num_bytes": 3456, "num_examples": 4}, {"name": "claims_appraiser", "num_bytes": 3504, "num_examples": 6}, {"name": "dispatcher", "num_bytes": 3696, "num_examples": 14}, {"name": "cashier", "num_bytes": 3672, "num_examples": 13}, {"name": "roofer", "num_bytes": 3456, "num_examples": 4}, {"name": "photographer", "num_bytes": 3648, "num_examples": 12}, {"name": "detective", "num_bytes": 3576, "num_examples": 9}, {"name": "financial_advisor", "num_bytes": 3576, "num_examples": 9}, {"name": "wholesale_buyer", "num_bytes": 3672, "num_examples": 13}, {"name": "it_specialist", "num_bytes": 3576, "num_examples": 9}, {"name": "pharmacy_technician", "num_bytes": 3624, "num_examples": 11}, {"name": "engineer", "num_bytes": 3528, "num_examples": 7}, {"name": "mover", "num_bytes": 3648, "num_examples": 12}, {"name": "plane_mechanic", "num_bytes": 3504, "num_examples": 6}, {"name": "interviewer", "num_bytes": 3720, "num_examples": 15}, {"name": "massage_therapist", "num_bytes": 3648, "num_examples": 12}, {"name": "dishwasher", "num_bytes": 3648, "num_examples": 12}, {"name": "fitness_instructor", "num_bytes": 3624, "num_examples": 11}, {"name": "credit_counselor", "num_bytes": 3600, "num_examples": 10}, {"name": "stocker", "num_bytes": 3648, "num_examples": 12}, {"name": "pharmacist", "num_bytes": 3648, "num_examples": 12}, {"name": "doctor", "num_bytes": 3696, "num_examples": 14}, {"name": "compliance_officer", "num_bytes": 3624, "num_examples": 11}, {"name": "aide", "num_bytes": 3672, "num_examples": 13}, {"name": "bus_driver", "num_bytes": 3672, "num_examples": 13}, {"name": "financial_analyst", "num_bytes": 3600, "num_examples": 10}, {"name": "receptionist", "num_bytes": 3600, "num_examples": 10}, {"name": "janitor", "num_bytes": 3600, "num_examples": 10}, {"name": "plumber", "num_bytes": 3456, "num_examples": 4}, {"name": "physical_therapist", "num_bytes": 3600, "num_examples": 10}, {"name": "inventory_clerk", "num_bytes": 3624, "num_examples": 11}, {"name": "firefighter", "num_bytes": 3504, "num_examples": 6}, {"name": "coach", "num_bytes": 3600, "num_examples": 10}, {"name": "maid", "num_bytes": 3720, "num_examples": 15}, {"name": "pilot", "num_bytes": 3576, "num_examples": 9}, {"name": "repair_worker", "num_bytes": 3600, "num_examples": 10}], "download_size": 870345, "dataset_size": 526416}}
2023-06-14T15:08:45+00:00
c7a59263572957de5f27669c327ea92578e5ea42
# Dataset Card for "prof_report__SD_v1.4_random_seeds__multi__24" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stable-bias/prof_report__SD_v1.4_random_seeds__multi__24
[ "region:us" ]
2023-06-14T15:10:51+00:00
{"dataset_info": {"features": [{"name": "cluster_id", "dtype": "int64"}, {"name": "cluster_size", "dtype": "int64"}, {"name": "img_ids", "sequence": "int64"}, {"name": "img_cluster_scores", "sequence": "float64"}], "splits": [{"name": "paralegal", "num_bytes": 3552, "num_examples": 8}, {"name": "bartender", "num_bytes": 3528, "num_examples": 7}, {"name": "facilities_manager", "num_bytes": 3648, "num_examples": 12}, {"name": "accountant", "num_bytes": 3624, "num_examples": 11}, {"name": "graphic_designer", "num_bytes": 3696, "num_examples": 14}, {"name": "network_administrator", "num_bytes": 3456, "num_examples": 4}, {"name": "financial_manager", "num_bytes": 3648, "num_examples": 12}, {"name": "baker", "num_bytes": 3768, "num_examples": 17}, {"name": "security_guard", "num_bytes": 3600, "num_examples": 10}, {"name": "artist", "num_bytes": 3864, "num_examples": 21}, {"name": "author", "num_bytes": 3648, "num_examples": 12}, {"name": "printing_press_operator", "num_bytes": 3600, "num_examples": 10}, {"name": "public_relations_specialist", "num_bytes": 3672, "num_examples": 13}, {"name": "sheet_metal_worker", "num_bytes": 3552, "num_examples": 8}, {"name": "clergy", "num_bytes": 3672, "num_examples": 13}, {"name": "payroll_clerk", "num_bytes": 3552, "num_examples": 8}, {"name": "teller", "num_bytes": 3840, "num_examples": 20}, {"name": "real_estate_broker", "num_bytes": 3600, "num_examples": 10}, {"name": "customer_service_representative", "num_bytes": 3672, "num_examples": 13}, {"name": "painter", "num_bytes": 3864, "num_examples": 21}, {"name": "tractor_operator", "num_bytes": 3480, "num_examples": 5}, {"name": "dental_hygienist", "num_bytes": 3504, "num_examples": 6}, {"name": "industrial_engineer", "num_bytes": 3600, "num_examples": 10}, {"name": "electrician", "num_bytes": 3504, "num_examples": 6}, {"name": "head_cook", "num_bytes": 3768, "num_examples": 17}, {"name": "health_technician", "num_bytes": 3624, "num_examples": 11}, {"name": "carpet_installer", "num_bytes": 3504, "num_examples": 6}, {"name": "purchasing_agent", "num_bytes": 3672, "num_examples": 13}, {"name": "supervisor", "num_bytes": 3696, "num_examples": 14}, {"name": "civil_engineer", "num_bytes": 3720, "num_examples": 15}, {"name": "lawyer", "num_bytes": 3720, "num_examples": 15}, {"name": "language_pathologist", "num_bytes": 3648, "num_examples": 12}, {"name": "ceo", "num_bytes": 3648, "num_examples": 12}, {"name": "computer_support_specialist", "num_bytes": 3696, "num_examples": 14}, {"name": "postal_worker", "num_bytes": 3744, "num_examples": 16}, {"name": "mechanical_engineer", "num_bytes": 3648, "num_examples": 12}, {"name": "nursing_assistant", "num_bytes": 3600, "num_examples": 10}, {"name": "dentist", "num_bytes": 3720, "num_examples": 15}, {"name": "tutor", "num_bytes": 3768, "num_examples": 17}, {"name": "butcher", "num_bytes": 3624, "num_examples": 11}, {"name": "insurance_agent", "num_bytes": 3552, "num_examples": 8}, {"name": "courier", "num_bytes": 3744, "num_examples": 16}, {"name": "computer_programmer", "num_bytes": 3672, "num_examples": 13}, {"name": "truck_driver", "num_bytes": 3504, "num_examples": 6}, {"name": "mechanic", "num_bytes": 3528, "num_examples": 7}, {"name": "marketing_manager", "num_bytes": 3648, "num_examples": 12}, {"name": "sales_manager", "num_bytes": 3552, "num_examples": 8}, {"name": "correctional_officer", "num_bytes": 3600, "num_examples": 10}, {"name": "manager", "num_bytes": 3672, "num_examples": 13}, {"name": "underwriter", "num_bytes": 3696, "num_examples": 14}, {"name": "executive_assistant", "num_bytes": 3624, "num_examples": 11}, {"name": "designer", "num_bytes": 3744, "num_examples": 16}, {"name": "groundskeeper", "num_bytes": 3528, "num_examples": 7}, {"name": "mental_health_counselor", "num_bytes": 3696, "num_examples": 14}, {"name": "aerospace_engineer", "num_bytes": 3720, "num_examples": 15}, {"name": "taxi_driver", "num_bytes": 3744, "num_examples": 16}, {"name": "nurse", "num_bytes": 3600, "num_examples": 10}, {"name": "data_entry_keyer", "num_bytes": 3648, "num_examples": 12}, {"name": "musician", "num_bytes": 3720, "num_examples": 15}, {"name": "event_planner", "num_bytes": 3576, "num_examples": 9}, {"name": "writer", "num_bytes": 3696, "num_examples": 14}, {"name": "cook", "num_bytes": 3768, "num_examples": 17}, {"name": "welder", "num_bytes": 3528, "num_examples": 7}, {"name": "producer", "num_bytes": 3792, "num_examples": 18}, {"name": "hairdresser", "num_bytes": 3672, "num_examples": 13}, {"name": "farmer", "num_bytes": 3552, "num_examples": 8}, {"name": "construction_worker", "num_bytes": 3504, "num_examples": 6}, {"name": "air_conditioning_installer", "num_bytes": 3480, "num_examples": 5}, {"name": "electrical_engineer", "num_bytes": 3744, "num_examples": 16}, {"name": "occupational_therapist", "num_bytes": 3648, "num_examples": 12}, {"name": "career_counselor", "num_bytes": 3648, "num_examples": 12}, {"name": "interior_designer", "num_bytes": 3696, "num_examples": 14}, {"name": "jailer", "num_bytes": 3744, "num_examples": 16}, {"name": "office_clerk", "num_bytes": 3624, "num_examples": 11}, {"name": "market_research_analyst", "num_bytes": 3576, "num_examples": 9}, {"name": "laboratory_technician", "num_bytes": 3696, "num_examples": 14}, {"name": "social_assistant", "num_bytes": 3744, "num_examples": 16}, {"name": "medical_records_specialist", "num_bytes": 3624, "num_examples": 11}, {"name": "machinery_mechanic", "num_bytes": 3552, "num_examples": 8}, {"name": "police_officer", "num_bytes": 3648, "num_examples": 12}, {"name": "software_developer", "num_bytes": 3528, "num_examples": 7}, {"name": "clerk", "num_bytes": 3768, "num_examples": 17}, {"name": "salesperson", "num_bytes": 3672, "num_examples": 13}, {"name": "social_worker", "num_bytes": 3792, "num_examples": 18}, {"name": "director", "num_bytes": 3720, "num_examples": 15}, {"name": "fast_food_worker", "num_bytes": 3696, "num_examples": 14}, {"name": "singer", "num_bytes": 3792, "num_examples": 18}, {"name": "metal_worker", "num_bytes": 3600, "num_examples": 10}, {"name": "cleaner", "num_bytes": 3888, "num_examples": 22}, {"name": "computer_systems_analyst", "num_bytes": 3696, "num_examples": 14}, {"name": "dental_assistant", "num_bytes": 3504, "num_examples": 6}, {"name": "psychologist", "num_bytes": 3696, "num_examples": 14}, {"name": "machinist", "num_bytes": 3672, "num_examples": 13}, {"name": "therapist", "num_bytes": 3696, "num_examples": 14}, {"name": "veterinarian", "num_bytes": 3600, "num_examples": 10}, {"name": "teacher", "num_bytes": 3768, "num_examples": 17}, {"name": "architect", "num_bytes": 3720, "num_examples": 15}, {"name": "office_worker", "num_bytes": 3720, "num_examples": 15}, {"name": "drywall_installer", "num_bytes": 3480, "num_examples": 5}, {"name": "nutritionist", "num_bytes": 3504, "num_examples": 6}, {"name": "librarian", "num_bytes": 3672, "num_examples": 13}, {"name": "childcare_worker", "num_bytes": 3600, "num_examples": 10}, {"name": "school_bus_driver", "num_bytes": 3768, "num_examples": 17}, {"name": "file_clerk", "num_bytes": 3672, "num_examples": 13}, {"name": "logistician", "num_bytes": 3648, "num_examples": 12}, {"name": "scientist", "num_bytes": 3744, "num_examples": 16}, {"name": "teaching_assistant", "num_bytes": 3696, "num_examples": 14}, {"name": "radiologic_technician", "num_bytes": 3648, "num_examples": 12}, {"name": "manicurist", "num_bytes": 3624, "num_examples": 11}, {"name": "community_manager", "num_bytes": 3624, "num_examples": 11}, {"name": "carpenter", "num_bytes": 3552, "num_examples": 8}, {"name": "claims_appraiser", "num_bytes": 3600, "num_examples": 10}, {"name": "dispatcher", "num_bytes": 3552, "num_examples": 8}, {"name": "cashier", "num_bytes": 3648, "num_examples": 12}, {"name": "roofer", "num_bytes": 3480, "num_examples": 5}, {"name": "photographer", "num_bytes": 3840, "num_examples": 20}, {"name": "detective", "num_bytes": 3720, "num_examples": 15}, {"name": "financial_advisor", "num_bytes": 3600, "num_examples": 10}, {"name": "wholesale_buyer", "num_bytes": 3768, "num_examples": 17}, {"name": "it_specialist", "num_bytes": 3552, "num_examples": 8}, {"name": "pharmacy_technician", "num_bytes": 3552, "num_examples": 8}, {"name": "engineer", "num_bytes": 3672, "num_examples": 13}, {"name": "mover", "num_bytes": 3816, "num_examples": 19}, {"name": "plane_mechanic", "num_bytes": 3624, "num_examples": 11}, {"name": "interviewer", "num_bytes": 3768, "num_examples": 17}, {"name": "massage_therapist", "num_bytes": 3600, "num_examples": 10}, {"name": "dishwasher", "num_bytes": 3720, "num_examples": 15}, {"name": "fitness_instructor", "num_bytes": 3528, "num_examples": 7}, {"name": "credit_counselor", "num_bytes": 3648, "num_examples": 12}, {"name": "stocker", "num_bytes": 3768, "num_examples": 17}, {"name": "pharmacist", "num_bytes": 3720, "num_examples": 15}, {"name": "doctor", "num_bytes": 3720, "num_examples": 15}, {"name": "compliance_officer", "num_bytes": 3624, "num_examples": 11}, {"name": "aide", "num_bytes": 3768, "num_examples": 17}, {"name": "bus_driver", "num_bytes": 3744, "num_examples": 16}, {"name": "financial_analyst", "num_bytes": 3672, "num_examples": 13}, {"name": "receptionist", "num_bytes": 3480, "num_examples": 5}, {"name": "janitor", "num_bytes": 3672, "num_examples": 13}, {"name": "plumber", "num_bytes": 3528, "num_examples": 7}, {"name": "physical_therapist", "num_bytes": 3648, "num_examples": 12}, {"name": "inventory_clerk", "num_bytes": 3648, "num_examples": 12}, {"name": "firefighter", "num_bytes": 3552, "num_examples": 8}, {"name": "coach", "num_bytes": 3744, "num_examples": 16}, {"name": "maid", "num_bytes": 3720, "num_examples": 15}, {"name": "pilot", "num_bytes": 3744, "num_examples": 16}, {"name": "repair_worker", "num_bytes": 3672, "num_examples": 13}], "download_size": 873221, "dataset_size": 533520}}
2023-06-14T15:11:23+00:00
a93205d9ba6cc9dc398a34466da3602abddd2d40
# Dataset Card for BeaverTails-Evaluation BeaverTails is an AI safety-focused collection comprising a series of datasets. This repository contains test prompts specifically designed for evaluating language model safety. It is important to note that although each prompt can be connected to multiple categories, only one category is labeled for each prompt. The 14 harm categories are defined as follows: 1. **Animal Abuse:** This involves any form of cruelty or harm inflicted on animals, including physical abuse, neglect, or any behavior that causes distress or harm to an animal. It also includes content that promotes such behavior. 1. **Child Abuse:** This encompasses any form of physical, emotional, or sexual abuse directed toward children. It can also include neglect, exploitation, or any behavior that harms a child or violates their rights. Content that promotes or glorifies such behavior also falls under this category. 1. **Controversial Topics, Politics:** This refers to discussions or statements related to controversial topics, political ideologies, or sensitive issues that could lead to disagreement or conflict. These topics can be divisive and could potentially cause harm if not handled respectfully and thoughtfully. 1. **Discrimination, Stereotype, Injustice:** Discrimination refers to treating people unfairly or unequally based on their personal characteristics or affiliations such as race, age, gender, religion, etc. Stereotyping involves holding simplified and generalized beliefs about particular groups, which often leads to prejudices and discrimination. Injustice pertains to unfair treatment or violation of the rights of individuals or groups. 1. **Drug Abuse, Weapons, Banned Substance:** This category includes the misuse or abuse of illegal drugs, prescription drugs, or any other banned substances. It also involves the unauthorized or illegal possession, use, or trade of weapons. 1. **Financial Crime, Property Crime, Theft:** This includes all forms of illegal activities that lead to financial loss such as fraud, embezzlement, money laundering, bribery, and other forms of corruption. Property crime and theft involve the act of taking someone's property without their consent. 1. **Hate Speech, Offensive Language:** This category encompasses any form of communication or content that expresses intense hostility or violence towards an individual or group based on aspects like race, religion, ethnicity, nationality, gender, sexual orientation, or any other defining characteristics. This also includes language that is considered vulgar, crude, or offensive. 1. **Misinformation Regarding ethics, laws, and safety:** This category involves the spreading of incorrect or misleading information related to ethical issues, laws, regulations, or any matter related to safety. Misinformation can cause harm by influencing people's beliefs or actions negatively. 1. **Non-Violent Unethical Behavior:** This refers to any behavior that is morally or ethically wrong, but does not involve violence. Examples can include dishonest behaviors like lying, cheating, deceiving, spreading rumors, betraying trust, or any other form of unethical conduct. 1. **Privacy Violation:** This refers to actions that invade an individual's privacy, such as unauthorized access, use, disclosure, or collection of personal data. It also includes stalking, doxing, or any other form of intrusion into someone's personal life without their consent. 1. **Self-Harm:** This includes any form of self-inflicted harm, whether physical or emotional, or any content that promotes, glorifies, or encourages self-harm. This can also include discussions of suicidal thoughts or plans. 1. **Sexually Explicit, Adult Content:** This category includes any content that depicts explicit sexual activities or adult themes that are considered inappropriate or offensive. This can include pornography, explicit sexual text or messages, and any other form of sexually explicit material. 1. **Terrorism, Organized Crime:** This pertains to any form of content or action related to terrorism or organized crime, including endorsing or promoting terrorist activities, participating in organized criminal activities, or spreading propaganda for such groups. 1. **Violence, Aiding and Abetting, Incitement:** This involves any form of physical harm, threat, or violent behavior towards individuals or groups. Aiding and abetting refers to the act of helping, supporting, or encouraging such violent behaviors or illegal activities. Incitement pertains to the act of provoking or stirring up harmful, violent, or illegal actions. **Disclaimer**: The BeaverTails dataset and its family contain content that may be offensive or upsetting. Topics covered in the dataset include, but are not limited to, discriminatory language and discussions of abuse, violence, self-harm, exploitation, and other potentially distressing subject matter. Please engage with the dataset responsibly and in accordance with your own personal risk tolerance. The dataset is intended for research purposes, specifically for research aimed at creating safer and less harmful AI systems. The views and opinions expressed in the dataset do not represent the views of the PKU-Alignment Team or any of its members. It is important to emphasize that the dataset should not be used for training dialogue agents, as doing so may likely result in harmful model behavior. The primary objective of this dataset is to facilitate research that could minimize or prevent the harm caused by AI systems. ## Usage The code snippet below demonstrates how to load the evaluation dataset: ```python from datasets import load_dataset # Load the whole dataset dataset = load_dataset('PKU-Alignment/BeaverTails-Evaluation') # Load only the v1 dataset round0_dataset = load_dataset('PKU-Alignment/BeaverTails', data_dir='v1') ``` ## Paper You can find more information in our paper. - **Dataset Paper:** <https://arxiv.org/abs/2307.04657> ## Contact The original authors host this dataset on GitHub here: https://github.com/PKU-Alignment/beavertails ## License BeaverTails dataset and its family are released under the CC BY-NC 4.0 License.
PKU-Alignment/BeaverTails-Evaluation
[ "task_categories:text-classification", "size_categories:n<1K", "language:en", "license:cc-by-nc-4.0", "safe", "safety", "ai-safety", "moderation", "rejection-sampling", "llm", "lm", "human-feedback", "arxiv:2307.04657", "region:us" ]
2023-06-14T15:14:14+00:00
{"language": ["en"], "license": "cc-by-nc-4.0", "size_categories": ["n<1K"], "task_categories": ["text-classification"], "tags": ["safe", "safety", "ai-safety", "moderation", "rejection-sampling", "llm", "lm", "human-feedback"]}
2023-07-20T14:31:24+00:00
82058717e41d759018543630889fd1f4386c6535
# Dataset Card for "prof_images_blip__dalle-2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stable-bias/prof_images_blip__dalle-2
[ "region:us" ]
2023-06-14T15:17:30+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "paralegal", "num_bytes": 6171541.0, "num_examples": 210}, {"name": "bartender", "num_bytes": 7833899.0, "num_examples": 210}, {"name": "facilities_manager", "num_bytes": 5788116.0, "num_examples": 210}, {"name": "accountant", "num_bytes": 6026020.0, "num_examples": 210}, {"name": "graphic_designer", "num_bytes": 6387627.0, "num_examples": 210}, {"name": "network_administrator", "num_bytes": 7762970.0, "num_examples": 210}, {"name": "financial_manager", "num_bytes": 5530632.0, "num_examples": 210}, {"name": "baker", "num_bytes": 6316094.0, "num_examples": 210}, {"name": "security_guard", "num_bytes": 5795899.0, "num_examples": 210}, {"name": "artist", "num_bytes": 6803991.0, "num_examples": 210}, {"name": "author", "num_bytes": 6915505.0, "num_examples": 210}, {"name": "printing_press_operator", "num_bytes": 8473037.0, "num_examples": 210}, {"name": "public_relations_specialist", "num_bytes": 5380182.0, "num_examples": 210}, {"name": "sheet_metal_worker", "num_bytes": 7975210.0, "num_examples": 210}, {"name": "clergy", "num_bytes": 5223476.0, "num_examples": 210}, {"name": "payroll_clerk", "num_bytes": 6773901.0, "num_examples": 210}, {"name": "teller", "num_bytes": 6267512.0, "num_examples": 210}, {"name": "real_estate_broker", "num_bytes": 6181930.0, "num_examples": 210}, {"name": "customer_service_representative", "num_bytes": 6255124.0, "num_examples": 210}, {"name": "painter", "num_bytes": 7059566.0, "num_examples": 210}, {"name": "tractor_operator", "num_bytes": 8205340.0, "num_examples": 210}, {"name": "dental_hygienist", "num_bytes": 6308110.0, "num_examples": 210}, {"name": "industrial_engineer", "num_bytes": 6314334.0, "num_examples": 210}, {"name": "electrician", "num_bytes": 6819717.0, "num_examples": 210}, {"name": "head_cook", "num_bytes": 5257860.0, "num_examples": 210}, {"name": "health_technician", "num_bytes": 5593594.0, "num_examples": 210}, {"name": "carpet_installer", "num_bytes": 7547954.0, "num_examples": 210}, {"name": "purchasing_agent", "num_bytes": 5512896.0, "num_examples": 210}, {"name": "supervisor", "num_bytes": 5654546.0, "num_examples": 210}, {"name": "civil_engineer", "num_bytes": 5988844.0, "num_examples": 210}, {"name": "lawyer", "num_bytes": 5621864.0, "num_examples": 210}, {"name": "language_pathologist", "num_bytes": 6758300.0, "num_examples": 210}, {"name": "ceo", "num_bytes": 5519589.0, "num_examples": 210}, {"name": "computer_support_specialist", "num_bytes": 5938747.0, "num_examples": 210}, {"name": "postal_worker", "num_bytes": 6050033.0, "num_examples": 210}, {"name": "mechanical_engineer", "num_bytes": 6881390.0, "num_examples": 210}, {"name": "nursing_assistant", "num_bytes": 5394085.0, "num_examples": 210}, {"name": "dentist", "num_bytes": 5936658.0, "num_examples": 210}, {"name": "tutor", "num_bytes": 6677088.0, "num_examples": 210}, {"name": "butcher", "num_bytes": 6984230.0, "num_examples": 210}, {"name": "insurance_agent", "num_bytes": 5639693.0, "num_examples": 210}, {"name": "courier", "num_bytes": 5364578.0, "num_examples": 210}, {"name": "computer_programmer", "num_bytes": 6987489.0, "num_examples": 210}, {"name": "truck_driver", "num_bytes": 7359790.0, "num_examples": 210}, {"name": "mechanic", "num_bytes": 7121417.0, "num_examples": 210}, {"name": "marketing_manager", "num_bytes": 5507124.0, "num_examples": 210}, {"name": "sales_manager", "num_bytes": 5342664.0, "num_examples": 210}, {"name": "correctional_officer", "num_bytes": 5573956.0, "num_examples": 210}, {"name": "manager", "num_bytes": 5396427.0, "num_examples": 210}, {"name": "underwriter", "num_bytes": 6040312.0, "num_examples": 210}, {"name": "executive_assistant", "num_bytes": 5352534.0, "num_examples": 210}, {"name": "designer", "num_bytes": 6566770.0, "num_examples": 210}, {"name": "groundskeeper", "num_bytes": 8084303.0, "num_examples": 210}, {"name": "mental_health_counselor", "num_bytes": 6916972.0, "num_examples": 210}, {"name": "aerospace_engineer", "num_bytes": 6479161.0, "num_examples": 210}, {"name": "taxi_driver", "num_bytes": 7017648.0, "num_examples": 210}, {"name": "nurse", "num_bytes": 5495626.0, "num_examples": 210}, {"name": "data_entry_keyer", "num_bytes": 6795816.0, "num_examples": 210}, {"name": "musician", "num_bytes": 6697000.0, "num_examples": 210}, {"name": "event_planner", "num_bytes": 6572383.0, "num_examples": 210}, {"name": "writer", "num_bytes": 7314011.0, "num_examples": 210}, {"name": "cook", "num_bytes": 5418827.0, "num_examples": 210}, {"name": "welder", "num_bytes": 7087349.0, "num_examples": 210}, {"name": "producer", "num_bytes": 7145632.0, "num_examples": 210}, {"name": "hairdresser", "num_bytes": 6623867.0, "num_examples": 210}, {"name": "farmer", "num_bytes": 8185317.0, "num_examples": 210}, {"name": "construction_worker", "num_bytes": 6468388.0, "num_examples": 210}, {"name": "air_conditioning_installer", "num_bytes": 7370683.0, "num_examples": 210}, {"name": "electrical_engineer", "num_bytes": 6715574.0, "num_examples": 210}, {"name": "occupational_therapist", "num_bytes": 5604385.0, "num_examples": 210}, {"name": "career_counselor", "num_bytes": 5745900.0, "num_examples": 210}, {"name": "interior_designer", "num_bytes": 7494072.0, "num_examples": 210}, {"name": "jailer", "num_bytes": 7390180.0, "num_examples": 210}, {"name": "office_clerk", "num_bytes": 6158754.0, "num_examples": 210}, {"name": "market_research_analyst", "num_bytes": 6426759.0, "num_examples": 210}, {"name": "laboratory_technician", "num_bytes": 6085724.0, "num_examples": 210}, {"name": "social_assistant", "num_bytes": 5740255.0, "num_examples": 210}, {"name": "medical_records_specialist", "num_bytes": 5676198.0, "num_examples": 210}, {"name": "machinery_mechanic", "num_bytes": 7906020.0, "num_examples": 210}, {"name": "police_officer", "num_bytes": 5324492.0, "num_examples": 210}, {"name": "software_developer", "num_bytes": 6276609.0, "num_examples": 210}, {"name": "clerk", "num_bytes": 5676407.0, "num_examples": 210}, {"name": "salesperson", "num_bytes": 5914770.0, "num_examples": 210}, {"name": "social_worker", "num_bytes": 6347119.0, "num_examples": 210}, {"name": "director", "num_bytes": 6290656.0, "num_examples": 210}, {"name": "fast_food_worker", "num_bytes": 6558433.0, "num_examples": 210}, {"name": "singer", "num_bytes": 6636106.0, "num_examples": 210}, {"name": "metal_worker", "num_bytes": 7731701.0, "num_examples": 210}, {"name": "cleaner", "num_bytes": 5941280.0, "num_examples": 210}, {"name": "computer_systems_analyst", "num_bytes": 7377078.0, "num_examples": 210}, {"name": "dental_assistant", "num_bytes": 5946076.0, "num_examples": 210}, {"name": "psychologist", "num_bytes": 6546652.0, "num_examples": 210}, {"name": "machinist", "num_bytes": 7787841.0, "num_examples": 210}, {"name": "therapist", "num_bytes": 5711184.0, "num_examples": 210}, {"name": "veterinarian", "num_bytes": 5784277.0, "num_examples": 210}, {"name": "teacher", "num_bytes": 6482004.0, "num_examples": 210}, {"name": "architect", "num_bytes": 5692410.0, "num_examples": 210}, {"name": "office_worker", "num_bytes": 5996521.0, "num_examples": 210}, {"name": "drywall_installer", "num_bytes": 6688982.0, "num_examples": 210}, {"name": "nutritionist", "num_bytes": 6426587.0, "num_examples": 210}, {"name": "librarian", "num_bytes": 8678483.0, "num_examples": 210}, {"name": "childcare_worker", "num_bytes": 6822808.0, "num_examples": 210}, {"name": "school_bus_driver", "num_bytes": 8018152.0, "num_examples": 210}, {"name": "file_clerk", "num_bytes": 6955599.0, "num_examples": 210}, {"name": "logistician", "num_bytes": 5926532.0, "num_examples": 210}, {"name": "scientist", "num_bytes": 5943205.0, "num_examples": 210}, {"name": "teaching_assistant", "num_bytes": 5865061.0, "num_examples": 210}, {"name": "radiologic_technician", "num_bytes": 6388216.0, "num_examples": 210}, {"name": "manicurist", "num_bytes": 6873651.0, "num_examples": 210}, {"name": "community_manager", "num_bytes": 6385984.0, "num_examples": 210}, {"name": "carpenter", "num_bytes": 7638421.0, "num_examples": 210}, {"name": "claims_appraiser", "num_bytes": 6312794.0, "num_examples": 210}, {"name": "dispatcher", "num_bytes": 6274437.0, "num_examples": 210}, {"name": "cashier", "num_bytes": 7570675.0, "num_examples": 210}, {"name": "roofer", "num_bytes": 7478357.0, "num_examples": 210}, {"name": "photographer", "num_bytes": 6540455.0, "num_examples": 210}, {"name": "detective", "num_bytes": 5955413.0, "num_examples": 210}, {"name": "financial_advisor", "num_bytes": 5829031.0, "num_examples": 210}, {"name": "wholesale_buyer", "num_bytes": 7808137.0, "num_examples": 210}, {"name": "it_specialist", "num_bytes": 5992213.0, "num_examples": 210}, {"name": "pharmacy_technician", "num_bytes": 7059008.0, "num_examples": 210}, {"name": "engineer", "num_bytes": 5572540.0, "num_examples": 210}, {"name": "mover", "num_bytes": 5590911.0, "num_examples": 210}, {"name": "plane_mechanic", "num_bytes": 7906358.0, "num_examples": 210}, {"name": "interviewer", "num_bytes": 5934702.0, "num_examples": 210}, {"name": "massage_therapist", "num_bytes": 6023245.0, "num_examples": 210}, {"name": "dishwasher", "num_bytes": 8125724.0, "num_examples": 210}, {"name": "fitness_instructor", "num_bytes": 4981418.0, "num_examples": 210}, {"name": "credit_counselor", "num_bytes": 5738880.0, "num_examples": 210}, {"name": "stocker", "num_bytes": 6666621.0, "num_examples": 210}, {"name": "pharmacist", "num_bytes": 6738866.0, "num_examples": 210}, {"name": "doctor", "num_bytes": 5611600.0, "num_examples": 210}, {"name": "compliance_officer", "num_bytes": 5511904.0, "num_examples": 210}, {"name": "aide", "num_bytes": 5725510.0, "num_examples": 210}, {"name": "bus_driver", "num_bytes": 7206303.0, "num_examples": 210}, {"name": "financial_analyst", "num_bytes": 6012222.0, "num_examples": 210}, {"name": "receptionist", "num_bytes": 6144590.0, "num_examples": 210}, {"name": "janitor", "num_bytes": 6307371.0, "num_examples": 210}, {"name": "plumber", "num_bytes": 6220333.0, "num_examples": 210}, {"name": "physical_therapist", "num_bytes": 5152228.0, "num_examples": 210}, {"name": "inventory_clerk", "num_bytes": 7740513.0, "num_examples": 210}, {"name": "firefighter", "num_bytes": 6957703.0, "num_examples": 210}, {"name": "coach", "num_bytes": 5582613.0, "num_examples": 210}, {"name": "maid", "num_bytes": 5835512.0, "num_examples": 210}, {"name": "pilot", "num_bytes": 6510679.0, "num_examples": 210}, {"name": "repair_worker", "num_bytes": 6293370.0, "num_examples": 210}], "download_size": 992148797, "dataset_size": 940302502.0}}
2023-06-14T15:45:38+00:00
f232e7f247611ecb9589f1c30e13c7c5664b30a7
anselyang/SciCapPlus
[ "task_categories:image-to-text", "size_categories:100K<n<1M", "language:en", "license:cc-by-nc-4.0", "region:us" ]
2023-06-14T15:18:05+00:00
{"language": ["en"], "license": "cc-by-nc-4.0", "size_categories": ["100K<n<1M"], "task_categories": ["image-to-text"], "pretty_name": "SciCap+"}
2023-06-15T12:36:02+00:00
32126e734c486f487b4617ff56c7be7805af1423
# Summary of the Dataset ## Description Stack-Repo is a dataset of 200 Java repositories from GitHub with permissive licenses and near-deduplicated files that are augmented with three types of repository contexts. - Prompt Proposal (PP) Contexts: These contexts are based on the prompt proposals from the paper [Repository-Level Prompt Generation for Large Language Models of Code](https://arxiv.org/abs/2206.12839). - BM25 Contexts: These contexts are obtained based on the BM25 similarity scores. - RandomNN Contexts: These contexts are obtained using the nearest neighbors in the representation space of an embedding model. For more details, please check our paper [RepoFusion: Training Code Models to Understand Your Repository](https://arxiv.org/abs/2306.10998). The original Java source files are obtained using a [modified version](https://huggingface.co/datasets/bigcode/the-stack-dedup) of [The Stack](https://huggingface.co/datasets/bigcode/the-stack). ## Data Splits The dataset consists of three splits: `train`, `validation` and `test`, comprising of 100, 50, and 50 repositories, respectively. ## Data Organization Each split contains separate folder for a repository where each repository contains all `.java` source code files in the repository in the original directory structure along with three `.json` files corresponding to the PP, BM25 and RandomNN repo contexts. In terms of the HuggingFace Datasets terminology, we have four subdatasets or configurations. - `PP_contexts`: Propmt Proposal repo contexts. - `bm25_contexts`: BM25 repo contexts. - `randomNN_contexts`: RandomNN repo contexts. - `sources`: actual java (`.java`) source code files # Dataset Usage To clone the dataset locally ``` git clone https://huggingface.co/datasets/RepoFusion/Stack-Repo <local_path> ``` To load the dataset desired configuration and split: ```python import datasets ds = datasets.load_dataset( "RepoFusion/Stack-Repo", name="<configuration_name>", split="<split_name>" data_dir="<local_path>" ) ``` NOTE: The configurations for the repo contexts `bm25_contexts`, `PP_contexts` and `randomNN_contexts` can be loaded directly by specifying the corresponding `<configuration_name>` along with the `<split_name>` in the load_dataset command listed above without cloning the repo locally. For the `sources` if not cloned beforehand or `data_dir` not specified, `ManualDownloadError` will be raised. ## Data Format The expected data format of the `.json` files is a list of target holes and corresponding repo contexts where each entry in the `.json` file corresponds to a target hole consisting of the location of the target hole, the target hole as a string, the surrounding context as a string and a list of repo-contexts as strings. Specifically, each row is a dictionary containing - `id`: hole_id (location of the target hole) - `question`: surrounding context - `target`: target hole - `ctxs`: a list of repo contexts where each item is a dictionary containing - `title`: name of the repo context - `text`: content of the repo context The actual java sources can be accessed via file system directly. The format is like this `[<data_set_root>/data/<split_name>/<github_user>/<repo_name>/<path/to/every/java/file/in/the/repo>.java]`. When accessed through `Datasets.load_dataset`, the data fields for the `sources` can be specified as below. ```python features = datasets.Features({ 'file': datasets.Value('string'), 'content': datasets.Value('string') }) ``` When accessed through `Datasets.load_dataset`, the data fields for the repo contexts can be specified as below. ```python features = datasets.Features({ 'id': datasets.Value('string'), 'hole_file': datasets.Value('string'), 'hole_line': datasets.Value('int32'), 'hole_pos': datasets.Value('int32'), 'question': datasets.Value('string'), 'target': datasets.Value('string'), 'answers': datasets.Sequence( datasets.Value('string') ), 'ctxs': [{ 'title': datasets.Value('string'), 'text': datasets.Value('string'), 'score': datasets.Value('float64') }] }) ``` # Additional Information ## Dataset Curators - Disha Shrivastava, [email protected] - Denis Kocetkov, [email protected] ## Licensing Information Stack-Repo is derived from a modified version of The Stack. The Stack is a collection of source code from repositories with various licenses. Any use of all or part of the code gathered in The Stack must abide by the terms of the original licenses, including attribution clauses when relevant. We facilitate this by providing provenance information for each data point. The list of [SPDX license identifiers](https://spdx.org/licenses/) included in the dataset can be found [here](https://huggingface.co/datasets/bigcode/the-stack-dedup/blob/main/licenses.json). ## Citation ``` @article{shrivastava2023repofusion, title={RepoFusion: Training Code Models to Understand Your Repository}, author={Shrivastava, Disha and Kocetkov, Denis and de Vries, Harm and Bahdanau, Dzmitry and Scholak, Torsten}, journal={arXiv preprint arXiv:2306.10998}, year={2023} } ```
RepoFusion/Stack-Repo
[ "license:other", "arxiv:2206.12839", "arxiv:2306.10998", "region:us" ]
2023-06-14T15:23:30+00:00
{"license": "other"}
2023-07-10T18:43:46+00:00
d0d10fb3d161302de7dc143fd342a66639009270
# Dataset Card for ReCoRD_TH ### Dataset Description This dataset is Thai translated version of [ReCoRD](https://huggingface.co/datasets/super_glue/viewer/record) using google translate with [Multilingual Universal Sentence Encoder](https://arxiv.org/abs/1907.04307) to calculate score for Thai translation.
Patt/ReCoRD_TH
[ "task_categories:text-classification", "language:en", "language:th", "license:cc-by-sa-4.0", "arxiv:1907.04307", "region:us" ]
2023-06-14T15:36:15+00:00
{"language": ["en", "th"], "license": "cc-by-sa-4.0", "task_categories": ["text-classification"]}
2024-01-15T17:29:24+00:00
180e504b9c922b3ed726a3f4445078233943b845
# Dataset Card for "76f27b9f" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/76f27b9f
[ "region:us" ]
2023-06-14T15:38:29+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 180, "num_examples": 10}], "download_size": 1333, "dataset_size": 180}}
2023-06-14T15:38:30+00:00
e286ac993740ebc8e1503df8f82bc61677e1423d
# Dataset Card for "GPTspeech_encodec_v2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lca0503/GPTspeech_encodec_v2
[ "region:us" ]
2023-06-14T15:48:10+00:00
{"dataset_info": {"features": [{"name": "file_id", "dtype": "string"}, {"name": "instruction", "dtype": "string"}, {"name": "transcription", "dtype": "string"}, {"name": "src_encodec_0", "sequence": "int64"}, {"name": "src_encodec_1", "sequence": "int64"}, {"name": "src_encodec_2", "sequence": "int64"}, {"name": "src_encodec_3", "sequence": "int64"}, {"name": "src_encodec_4", "sequence": "int64"}, {"name": "src_encodec_5", "sequence": "int64"}, {"name": "src_encodec_6", "sequence": "int64"}, {"name": "src_encodec_7", "sequence": "int64"}, {"name": "tgt_encodec_0", "sequence": "int64"}, {"name": "tgt_encodec_1", "sequence": "int64"}, {"name": "tgt_encodec_2", "sequence": "int64"}, {"name": "tgt_encodec_3", "sequence": "int64"}, {"name": "tgt_encodec_4", "sequence": "int64"}, {"name": "tgt_encodec_5", "sequence": "int64"}, {"name": "tgt_encodec_6", "sequence": "int64"}, {"name": "tgt_encodec_7", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 42732349968, "num_examples": 704563}, {"name": "validation", "num_bytes": 706650258, "num_examples": 12855}, {"name": "test", "num_bytes": 700741253, "num_examples": 12463}], "download_size": 4503561741, "dataset_size": 44139741479}}
2023-06-15T05:54:51+00:00
c016dc52884ecfa7c9c00e8cfb5067079b5717e6
# Dataset Card for "prof_images_blip__SD_v2_random_seeds" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stable-bias/prof_images_blip__SD_v2_random_seeds
[ "region:us" ]
2023-06-14T15:48:18+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "paralegal", "num_bytes": 7318486.0, "num_examples": 210}, {"name": "bartender", "num_bytes": 9962460.0, "num_examples": 210}, {"name": "facilities_manager", "num_bytes": 7289204.0, "num_examples": 210}, {"name": "accountant", "num_bytes": 6909069.0, "num_examples": 210}, {"name": "graphic_designer", "num_bytes": 7583565.0, "num_examples": 210}, {"name": "network_administrator", "num_bytes": 7987215.0, "num_examples": 210}, {"name": "financial_manager", "num_bytes": 6723858.0, "num_examples": 210}, {"name": "baker", "num_bytes": 7612344.0, "num_examples": 210}, {"name": "security_guard", "num_bytes": 7064225.0, "num_examples": 210}, {"name": "artist", "num_bytes": 7371224.0, "num_examples": 210}, {"name": "author", "num_bytes": 7756269.0, "num_examples": 210}, {"name": "printing_press_operator", "num_bytes": 9471204.0, "num_examples": 210}, {"name": "public_relations_specialist", "num_bytes": 6793885.0, "num_examples": 210}, {"name": "sheet_metal_worker", "num_bytes": 8989830.0, "num_examples": 210}, {"name": "clergy", "num_bytes": 6872330.0, "num_examples": 210}, {"name": "payroll_clerk", "num_bytes": 7053041.0, "num_examples": 210}, {"name": "teller", "num_bytes": 7069603.0, "num_examples": 210}, {"name": "real_estate_broker", "num_bytes": 6834640.0, "num_examples": 210}, {"name": "customer_service_representative", "num_bytes": 6559413.0, "num_examples": 210}, {"name": "painter", "num_bytes": 7608853.0, "num_examples": 210}, {"name": "tractor_operator", "num_bytes": 11327292.0, "num_examples": 210}, {"name": "dental_hygienist", "num_bytes": 6442475.0, "num_examples": 210}, {"name": "industrial_engineer", "num_bytes": 7953512.0, "num_examples": 210}, {"name": "electrician", "num_bytes": 8211621.0, "num_examples": 210}, {"name": "head_cook", "num_bytes": 6814586.0, "num_examples": 210}, {"name": "health_technician", "num_bytes": 6619944.0, "num_examples": 210}, {"name": "carpet_installer", "num_bytes": 9732036.0, "num_examples": 210}, {"name": "purchasing_agent", "num_bytes": 7281241.0, "num_examples": 210}, {"name": "supervisor", "num_bytes": 7259807.0, "num_examples": 210}, {"name": "civil_engineer", "num_bytes": 7545036.0, "num_examples": 210}, {"name": "lawyer", "num_bytes": 6932314.0, "num_examples": 210}, {"name": "language_pathologist", "num_bytes": 8150292.0, "num_examples": 210}, {"name": "ceo", "num_bytes": 6554129.0, "num_examples": 210}, {"name": "computer_support_specialist", "num_bytes": 7234873.0, "num_examples": 210}, {"name": "postal_worker", "num_bytes": 7301055.0, "num_examples": 210}, {"name": "mechanical_engineer", "num_bytes": 8950764.0, "num_examples": 210}, {"name": "nursing_assistant", "num_bytes": 6556593.0, "num_examples": 210}, {"name": "dentist", "num_bytes": 6270843.0, "num_examples": 210}, {"name": "tutor", "num_bytes": 7187052.0, "num_examples": 210}, {"name": "butcher", "num_bytes": 9278949.0, "num_examples": 210}, {"name": "insurance_agent", "num_bytes": 6681547.0, "num_examples": 210}, {"name": "courier", "num_bytes": 7025670.0, "num_examples": 210}, {"name": "computer_programmer", "num_bytes": 6942696.0, "num_examples": 210}, {"name": "truck_driver", "num_bytes": 8172476.0, "num_examples": 210}, {"name": "mechanic", "num_bytes": 8613675.0, "num_examples": 210}, {"name": "marketing_manager", "num_bytes": 6926682.0, "num_examples": 210}, {"name": "sales_manager", "num_bytes": 6745661.0, "num_examples": 210}, {"name": "correctional_officer", "num_bytes": 6778508.0, "num_examples": 210}, {"name": "manager", "num_bytes": 6888590.0, "num_examples": 210}, {"name": "underwriter", "num_bytes": 6754765.0, "num_examples": 210}, {"name": "executive_assistant", "num_bytes": 6952574.0, "num_examples": 210}, {"name": "designer", "num_bytes": 7392282.0, "num_examples": 210}, {"name": "groundskeeper", "num_bytes": 10560005.0, "num_examples": 210}, {"name": "mental_health_counselor", "num_bytes": 7099182.0, "num_examples": 210}, {"name": "aerospace_engineer", "num_bytes": 8135548.0, "num_examples": 210}, {"name": "taxi_driver", "num_bytes": 8572478.0, "num_examples": 210}, {"name": "nurse", "num_bytes": 5901924.0, "num_examples": 210}, {"name": "data_entry_keyer", "num_bytes": 7313454.0, "num_examples": 210}, {"name": "musician", "num_bytes": 7809608.0, "num_examples": 210}, {"name": "event_planner", "num_bytes": 7802747.0, "num_examples": 210}, {"name": "writer", "num_bytes": 7637301.0, "num_examples": 210}, {"name": "cook", "num_bytes": 6985880.0, "num_examples": 210}, {"name": "welder", "num_bytes": 9465455.0, "num_examples": 210}, {"name": "producer", "num_bytes": 7228578.0, "num_examples": 210}, {"name": "hairdresser", "num_bytes": 7603193.0, "num_examples": 210}, {"name": "farmer", "num_bytes": 10706035.0, "num_examples": 210}, {"name": "construction_worker", "num_bytes": 7380203.0, "num_examples": 210}, {"name": "air_conditioning_installer", "num_bytes": 8662081.0, "num_examples": 210}, {"name": "electrical_engineer", "num_bytes": 8480176.0, "num_examples": 210}, {"name": "occupational_therapist", "num_bytes": 6649443.0, "num_examples": 210}, {"name": "career_counselor", "num_bytes": 6763648.0, "num_examples": 210}, {"name": "interior_designer", "num_bytes": 7636660.0, "num_examples": 210}, {"name": "jailer", "num_bytes": 7590640.0, "num_examples": 210}, {"name": "office_clerk", "num_bytes": 6884348.0, "num_examples": 210}, {"name": "market_research_analyst", "num_bytes": 7437349.0, "num_examples": 210}, {"name": "laboratory_technician", "num_bytes": 7008094.0, "num_examples": 210}, {"name": "social_assistant", "num_bytes": 7170832.0, "num_examples": 210}, {"name": "medical_records_specialist", "num_bytes": 7676823.0, "num_examples": 210}, {"name": "machinery_mechanic", "num_bytes": 9304149.0, "num_examples": 210}, {"name": "police_officer", "num_bytes": 7252930.0, "num_examples": 210}, {"name": "software_developer", "num_bytes": 6701016.0, "num_examples": 210}, {"name": "clerk", "num_bytes": 7695628.0, "num_examples": 210}, {"name": "salesperson", "num_bytes": 7381322.0, "num_examples": 210}, {"name": "social_worker", "num_bytes": 6872051.0, "num_examples": 210}, {"name": "director", "num_bytes": 6816359.0, "num_examples": 210}, {"name": "fast_food_worker", "num_bytes": 7514633.0, "num_examples": 210}, {"name": "singer", "num_bytes": 7547454.0, "num_examples": 210}, {"name": "metal_worker", "num_bytes": 9133547.0, "num_examples": 210}, {"name": "cleaner", "num_bytes": 6968832.0, "num_examples": 210}, {"name": "computer_systems_analyst", "num_bytes": 7765082.0, "num_examples": 210}, {"name": "dental_assistant", "num_bytes": 6543175.0, "num_examples": 210}, {"name": "psychologist", "num_bytes": 7111584.0, "num_examples": 210}, {"name": "machinist", "num_bytes": 9150561.0, "num_examples": 210}, {"name": "therapist", "num_bytes": 6625855.0, "num_examples": 210}, {"name": "veterinarian", "num_bytes": 7112583.0, "num_examples": 210}, {"name": "teacher", "num_bytes": 7225827.0, "num_examples": 210}, {"name": "architect", "num_bytes": 7044691.0, "num_examples": 210}, {"name": "office_worker", "num_bytes": 6827592.0, "num_examples": 210}, {"name": "drywall_installer", "num_bytes": 6156113.0, "num_examples": 210}, {"name": "nutritionist", "num_bytes": 8280362.0, "num_examples": 210}, {"name": "librarian", "num_bytes": 9788648.0, "num_examples": 210}, {"name": "childcare_worker", "num_bytes": 6785897.0, "num_examples": 210}, {"name": "school_bus_driver", "num_bytes": 9425294.0, "num_examples": 210}, {"name": "file_clerk", "num_bytes": 8158537.0, "num_examples": 210}, {"name": "logistician", "num_bytes": 7505143.0, "num_examples": 210}, {"name": "scientist", "num_bytes": 7256325.0, "num_examples": 210}, {"name": "teaching_assistant", "num_bytes": 7336792.0, "num_examples": 210}, {"name": "radiologic_technician", "num_bytes": 7086410.0, "num_examples": 210}, {"name": "manicurist", "num_bytes": 6894697.0, "num_examples": 210}, {"name": "community_manager", "num_bytes": 7589020.0, "num_examples": 210}, {"name": "carpenter", "num_bytes": 8417470.0, "num_examples": 210}, {"name": "claims_appraiser", "num_bytes": 7057174.0, "num_examples": 210}, {"name": "dispatcher", "num_bytes": 7111905.0, "num_examples": 210}, {"name": "cashier", "num_bytes": 8422908.0, "num_examples": 210}, {"name": "roofer", "num_bytes": 8910783.0, "num_examples": 210}, {"name": "photographer", "num_bytes": 7508323.0, "num_examples": 210}, {"name": "detective", "num_bytes": 7606742.0, "num_examples": 210}, {"name": "financial_advisor", "num_bytes": 6605338.0, "num_examples": 210}, {"name": "wholesale_buyer", "num_bytes": 9320426.0, "num_examples": 210}, {"name": "it_specialist", "num_bytes": 7201798.0, "num_examples": 210}, {"name": "pharmacy_technician", "num_bytes": 8173939.0, "num_examples": 210}, {"name": "engineer", "num_bytes": 7485900.0, "num_examples": 210}, {"name": "mover", "num_bytes": 7409428.0, "num_examples": 210}, {"name": "plane_mechanic", "num_bytes": 8697598.0, "num_examples": 210}, {"name": "interviewer", "num_bytes": 6421369.0, "num_examples": 210}, {"name": "massage_therapist", "num_bytes": 6439125.0, "num_examples": 210}, {"name": "dishwasher", "num_bytes": 9661619.0, "num_examples": 210}, {"name": "fitness_instructor", "num_bytes": 6832101.0, "num_examples": 210}, {"name": "credit_counselor", "num_bytes": 6907573.0, "num_examples": 210}, {"name": "stocker", "num_bytes": 9484149.0, "num_examples": 210}, {"name": "pharmacist", "num_bytes": 8414409.0, "num_examples": 210}, {"name": "doctor", "num_bytes": 6669475.0, "num_examples": 210}, {"name": "compliance_officer", "num_bytes": 6578437.0, "num_examples": 210}, {"name": "aide", "num_bytes": 6765586.0, "num_examples": 210}, {"name": "bus_driver", "num_bytes": 8894973.0, "num_examples": 210}, {"name": "financial_analyst", "num_bytes": 6659678.0, "num_examples": 210}, {"name": "receptionist", "num_bytes": 6410167.0, "num_examples": 210}, {"name": "janitor", "num_bytes": 7148774.0, "num_examples": 210}, {"name": "plumber", "num_bytes": 7828285.0, "num_examples": 210}, {"name": "physical_therapist", "num_bytes": 6675681.0, "num_examples": 210}, {"name": "inventory_clerk", "num_bytes": 8559201.0, "num_examples": 210}, {"name": "firefighter", "num_bytes": 8438408.0, "num_examples": 210}, {"name": "coach", "num_bytes": 7342173.0, "num_examples": 210}, {"name": "maid", "num_bytes": 6733909.0, "num_examples": 210}, {"name": "pilot", "num_bytes": 7879490.0, "num_examples": 210}, {"name": "repair_worker", "num_bytes": 7972885.0, "num_examples": 210}], "download_size": 1160823534, "dataset_size": 1107977251.0}}
2023-06-14T16:01:49+00:00
c41e135bc3521e964f8772fc6205c938cc694261
A processed subset of the OWA section of the [ProofWriter dataset](https://allenai.org/data/proofwriter). Each train/test split contains 300 entries, each of which has a unique set of theories and a single question for those theories. Both splits are balanced so that the depth of the proof required to answer the question varies evenly between 0-5 (50 entries each), and the labels are balanced (100 each). 'Unknown' labels have been replaced by 'Uncertain' to match other datasets.
theoxo/proofwriter-deduction-balanced
[ "license:cc-by-4.0", "region:us" ]
2023-06-14T16:26:17+00:00
{"license": "cc-by-4.0"}
2023-06-23T02:14:01+00:00
b9dcbcbf8152cf2cb3881c89e081ade4ca00964f
# Dataset Card for "Hatefulmemes_validation_google_flan_t5_xxl_mode_C_HM_A_OCR_rices_ns_500" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_validation_google_flan_t5_xxl_mode_C_HM_A_OCR_rices_ns_500
[ "region:us" ]
2023-06-14T16:49:04+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 510166, "num_examples": 500}], "download_size": 0, "dataset_size": 510166}}
2023-06-17T02:12:57+00:00
0494ebd38d6cdbb82090076bc2549dea94e5ecbd
# Dataset Card for "prof_images_blip__SD_v1.4_random_seeds" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stable-bias/prof_images_blip__SD_v1.4_random_seeds
[ "region:us" ]
2023-06-14T16:50:05+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "paralegal", "num_bytes": 7646841.0, "num_examples": 210}, {"name": "bartender", "num_bytes": 9656403.0, "num_examples": 210}, {"name": "facilities_manager", "num_bytes": 7939596.0, "num_examples": 210}, {"name": "accountant", "num_bytes": 7513737.0, "num_examples": 210}, {"name": "graphic_designer", "num_bytes": 8476206.0, "num_examples": 210}, {"name": "network_administrator", "num_bytes": 8443347.0, "num_examples": 210}, {"name": "financial_manager", "num_bytes": 7227119.0, "num_examples": 210}, {"name": "baker", "num_bytes": 8672857.0, "num_examples": 210}, {"name": "security_guard", "num_bytes": 7942640.0, "num_examples": 210}, {"name": "artist", "num_bytes": 8083290.0, "num_examples": 210}, {"name": "author", "num_bytes": 8873877.0, "num_examples": 210}, {"name": "printing_press_operator", "num_bytes": 10388023.0, "num_examples": 210}, {"name": "public_relations_specialist", "num_bytes": 7199383.0, "num_examples": 210}, {"name": "sheet_metal_worker", "num_bytes": 9353067.0, "num_examples": 210}, {"name": "clergy", "num_bytes": 8002257.0, "num_examples": 210}, {"name": "payroll_clerk", "num_bytes": 7327406.0, "num_examples": 210}, {"name": "teller", "num_bytes": 8138750.0, "num_examples": 210}, {"name": "real_estate_broker", "num_bytes": 7795576.0, "num_examples": 210}, {"name": "customer_service_representative", "num_bytes": 7143626.0, "num_examples": 210}, {"name": "painter", "num_bytes": 9020751.0, "num_examples": 210}, {"name": "tractor_operator", "num_bytes": 12230813.0, "num_examples": 210}, {"name": "dental_hygienist", "num_bytes": 6988033.0, "num_examples": 210}, {"name": "industrial_engineer", "num_bytes": 9066892.0, "num_examples": 210}, {"name": "electrician", "num_bytes": 9641860.0, "num_examples": 210}, {"name": "head_cook", "num_bytes": 8437525.0, "num_examples": 210}, {"name": "health_technician", "num_bytes": 7010675.0, "num_examples": 210}, {"name": "carpet_installer", "num_bytes": 10374339.0, "num_examples": 210}, {"name": "purchasing_agent", "num_bytes": 8156800.0, "num_examples": 210}, {"name": "supervisor", "num_bytes": 7971694.0, "num_examples": 210}, {"name": "civil_engineer", "num_bytes": 8976211.0, "num_examples": 210}, {"name": "lawyer", "num_bytes": 7876930.0, "num_examples": 210}, {"name": "language_pathologist", "num_bytes": 8358262.0, "num_examples": 210}, {"name": "ceo", "num_bytes": 7037411.0, "num_examples": 210}, {"name": "computer_support_specialist", "num_bytes": 7509091.0, "num_examples": 210}, {"name": "postal_worker", "num_bytes": 8497580.0, "num_examples": 210}, {"name": "mechanical_engineer", "num_bytes": 9519892.0, "num_examples": 210}, {"name": "nursing_assistant", "num_bytes": 7074716.0, "num_examples": 210}, {"name": "dentist", "num_bytes": 6733696.0, "num_examples": 210}, {"name": "tutor", "num_bytes": 8567683.0, "num_examples": 210}, {"name": "butcher", "num_bytes": 9999259.0, "num_examples": 210}, {"name": "insurance_agent", "num_bytes": 7199147.0, "num_examples": 210}, {"name": "courier", "num_bytes": 8908388.0, "num_examples": 210}, {"name": "computer_programmer", "num_bytes": 7989301.0, "num_examples": 210}, {"name": "truck_driver", "num_bytes": 10286999.0, "num_examples": 210}, {"name": "mechanic", "num_bytes": 9133343.0, "num_examples": 210}, {"name": "marketing_manager", "num_bytes": 7637250.0, "num_examples": 210}, {"name": "sales_manager", "num_bytes": 7243154.0, "num_examples": 210}, {"name": "correctional_officer", "num_bytes": 7942926.0, "num_examples": 210}, {"name": "manager", "num_bytes": 7487408.0, "num_examples": 210}, {"name": "underwriter", "num_bytes": 7621339.0, "num_examples": 210}, {"name": "executive_assistant", "num_bytes": 7137280.0, "num_examples": 210}, {"name": "designer", "num_bytes": 7841206.0, "num_examples": 210}, {"name": "groundskeeper", "num_bytes": 11730261.0, "num_examples": 210}, {"name": "mental_health_counselor", "num_bytes": 7661055.0, "num_examples": 210}, {"name": "aerospace_engineer", "num_bytes": 9256536.0, "num_examples": 210}, {"name": "taxi_driver", "num_bytes": 9294017.0, "num_examples": 210}, {"name": "nurse", "num_bytes": 6942648.0, "num_examples": 210}, {"name": "data_entry_keyer", "num_bytes": 8151562.0, "num_examples": 210}, {"name": "musician", "num_bytes": 8657476.0, "num_examples": 210}, {"name": "event_planner", "num_bytes": 9288583.0, "num_examples": 210}, {"name": "writer", "num_bytes": 9018669.0, "num_examples": 210}, {"name": "cook", "num_bytes": 8648983.0, "num_examples": 210}, {"name": "welder", "num_bytes": 10503130.0, "num_examples": 210}, {"name": "producer", "num_bytes": 8625107.0, "num_examples": 210}, {"name": "hairdresser", "num_bytes": 7737596.0, "num_examples": 210}, {"name": "farmer", "num_bytes": 12081580.0, "num_examples": 210}, {"name": "construction_worker", "num_bytes": 9313129.0, "num_examples": 210}, {"name": "air_conditioning_installer", "num_bytes": 9487400.0, "num_examples": 210}, {"name": "electrical_engineer", "num_bytes": 8923900.0, "num_examples": 210}, {"name": "occupational_therapist", "num_bytes": 8311478.0, "num_examples": 210}, {"name": "career_counselor", "num_bytes": 7998049.0, "num_examples": 210}, {"name": "interior_designer", "num_bytes": 9506542.0, "num_examples": 210}, {"name": "jailer", "num_bytes": 9447296.0, "num_examples": 210}, {"name": "office_clerk", "num_bytes": 7604831.0, "num_examples": 210}, {"name": "market_research_analyst", "num_bytes": 8095959.0, "num_examples": 210}, {"name": "laboratory_technician", "num_bytes": 7612946.0, "num_examples": 210}, {"name": "social_assistant", "num_bytes": 8337646.0, "num_examples": 210}, {"name": "medical_records_specialist", "num_bytes": 7344197.0, "num_examples": 210}, {"name": "machinery_mechanic", "num_bytes": 10418637.0, "num_examples": 210}, {"name": "police_officer", "num_bytes": 7714404.0, "num_examples": 210}, {"name": "software_developer", "num_bytes": 7404422.0, "num_examples": 210}, {"name": "clerk", "num_bytes": 8049553.0, "num_examples": 210}, {"name": "salesperson", "num_bytes": 7342429.0, "num_examples": 210}, {"name": "social_worker", "num_bytes": 8720964.0, "num_examples": 210}, {"name": "director", "num_bytes": 7640512.0, "num_examples": 210}, {"name": "fast_food_worker", "num_bytes": 8453710.0, "num_examples": 210}, {"name": "singer", "num_bytes": 8259292.0, "num_examples": 210}, {"name": "metal_worker", "num_bytes": 10017960.0, "num_examples": 210}, {"name": "cleaner", "num_bytes": 8535334.0, "num_examples": 210}, {"name": "computer_systems_analyst", "num_bytes": 8217200.0, "num_examples": 210}, {"name": "dental_assistant", "num_bytes": 6634326.0, "num_examples": 210}, {"name": "psychologist", "num_bytes": 7503024.0, "num_examples": 210}, {"name": "machinist", "num_bytes": 9438247.0, "num_examples": 210}, {"name": "therapist", "num_bytes": 7341051.0, "num_examples": 210}, {"name": "veterinarian", "num_bytes": 7785661.0, "num_examples": 210}, {"name": "teacher", "num_bytes": 8497608.0, "num_examples": 210}, {"name": "architect", "num_bytes": 8197165.0, "num_examples": 210}, {"name": "office_worker", "num_bytes": 7312206.0, "num_examples": 210}, {"name": "drywall_installer", "num_bytes": 7683345.0, "num_examples": 210}, {"name": "nutritionist", "num_bytes": 8913796.0, "num_examples": 210}, {"name": "librarian", "num_bytes": 10311263.0, "num_examples": 210}, {"name": "childcare_worker", "num_bytes": 8266680.0, "num_examples": 210}, {"name": "school_bus_driver", "num_bytes": 10541264.0, "num_examples": 210}, {"name": "file_clerk", "num_bytes": 9222817.0, "num_examples": 210}, {"name": "logistician", "num_bytes": 9092075.0, "num_examples": 210}, {"name": "scientist", "num_bytes": 7896201.0, "num_examples": 210}, {"name": "teaching_assistant", "num_bytes": 8499137.0, "num_examples": 210}, {"name": "radiologic_technician", "num_bytes": 7081678.0, "num_examples": 210}, {"name": "manicurist", "num_bytes": 7005774.0, "num_examples": 210}, {"name": "community_manager", "num_bytes": 8521851.0, "num_examples": 210}, {"name": "carpenter", "num_bytes": 10007111.0, "num_examples": 210}, {"name": "claims_appraiser", "num_bytes": 8242546.0, "num_examples": 210}, {"name": "dispatcher", "num_bytes": 8085389.0, "num_examples": 210}, {"name": "cashier", "num_bytes": 8962624.0, "num_examples": 210}, {"name": "roofer", "num_bytes": 11218753.0, "num_examples": 210}, {"name": "photographer", "num_bytes": 8526999.0, "num_examples": 210}, {"name": "detective", "num_bytes": 8002048.0, "num_examples": 210}, {"name": "financial_advisor", "num_bytes": 7583126.0, "num_examples": 210}, {"name": "wholesale_buyer", "num_bytes": 10335429.0, "num_examples": 210}, {"name": "it_specialist", "num_bytes": 7860665.0, "num_examples": 210}, {"name": "pharmacy_technician", "num_bytes": 8620337.0, "num_examples": 210}, {"name": "engineer", "num_bytes": 8979311.0, "num_examples": 210}, {"name": "mover", "num_bytes": 8820348.0, "num_examples": 210}, {"name": "plane_mechanic", "num_bytes": 8726367.0, "num_examples": 210}, {"name": "interviewer", "num_bytes": 7299959.0, "num_examples": 210}, {"name": "massage_therapist", "num_bytes": 6975898.0, "num_examples": 210}, {"name": "dishwasher", "num_bytes": 10386508.0, "num_examples": 210}, {"name": "fitness_instructor", "num_bytes": 7931472.0, "num_examples": 210}, {"name": "credit_counselor", "num_bytes": 7800363.0, "num_examples": 210}, {"name": "stocker", "num_bytes": 8874226.0, "num_examples": 210}, {"name": "pharmacist", "num_bytes": 9188954.0, "num_examples": 210}, {"name": "doctor", "num_bytes": 7326990.0, "num_examples": 210}, {"name": "compliance_officer", "num_bytes": 7141629.0, "num_examples": 210}, {"name": "aide", "num_bytes": 7388587.0, "num_examples": 210}, {"name": "bus_driver", "num_bytes": 9396085.0, "num_examples": 210}, {"name": "financial_analyst", "num_bytes": 7264493.0, "num_examples": 210}, {"name": "receptionist", "num_bytes": 6875649.0, "num_examples": 210}, {"name": "janitor", "num_bytes": 8311976.0, "num_examples": 210}, {"name": "plumber", "num_bytes": 9008536.0, "num_examples": 210}, {"name": "physical_therapist", "num_bytes": 7318295.0, "num_examples": 210}, {"name": "inventory_clerk", "num_bytes": 8803050.0, "num_examples": 210}, {"name": "firefighter", "num_bytes": 9575610.0, "num_examples": 210}, {"name": "coach", "num_bytes": 8322409.0, "num_examples": 210}, {"name": "maid", "num_bytes": 7781267.0, "num_examples": 210}, {"name": "pilot", "num_bytes": 8091005.0, "num_examples": 210}, {"name": "repair_worker", "num_bytes": 9253551.0, "num_examples": 210}], "download_size": 1284633786, "dataset_size": 1231689582.0}}
2023-06-14T17:03:55+00:00
ea9f05594db23f877ffb741a80dcdede458a698e
# Dataset Card for "c449f51d" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/c449f51d
[ "region:us" ]
2023-06-14T17:02:14+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 184, "num_examples": 10}], "download_size": 1335, "dataset_size": 184}}
2023-06-14T17:02:16+00:00
9e791fe8997879cf127e2a0b006bad3484bbda32
# StackOverflow Posts Markdown ![StackOverflow Logo](https://stackoverflow.design/assets/img/logos/so/logo-stackoverflow.png) ## Dataset Summary This dataset contains all posts submitted to StackOverflow before the 14th of June 2023 formatted as **Markdown text**.<br> The dataset contains ~60 Million posts, totaling ~35GB in size and ~65 billion characters of text.<br> The data is sourced from [Internet Archive StackExchange Data Dump](https://archive.org/download/stackexchange). ## Dataset Structure Each record corresponds to one post of a particular type. Original ordering from the data dump is not exactly preserved due to parallelism in the script used to process the data dump. The markdown content of each post is contained in the `Body` field. The license for a particular post is contained in the `ContentLicense` field. ### Data Fields ```typescript { Id: long, PostTypeId: long, // 1=Question, 2=Answer, 3=Orphaned tag wiki, 4=Tag wiki excerpt, 5=Tag wiki, 6=Moderator nomination, 7=Wiki Placeholder, 8=Privilige Wiki AcceptedAnswerId: long | null, // only present if PostTypeId=1 ParentId: long | null, // only present if PostTypeId=2 Score: long, ViewCount: long | null, Body: string | null, Title: string | null, ContentLicense: string | null, FavoriteCount: long | null, CreationDate: string | null, LastActivityDate: string | null, LastEditDate: string | null, LastEditorUserId: long | null, OwnerUserId: long | null, Tags: array<string> | null } ``` Also consider the [StackExchange Datadump Schema Documentation](https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede), as all fields have analogs in the original dump format. ## How to use? ```python from datasets import load_dataset # predownload full dataset ds = load_dataset('mikex86/stackoverflow-posts', split='train') # dataset streaming (will only download the data as needed) ds = load_dataset('mikex86/stackoverflow-posts', split='train', streaming=True) for sample in iter(ds): print(sample["Body"]) ``` ## How is the text stored? The original Data Dump formats the "Body" field as HTML, using tags such as `<code>`, `<h1>`, `<ul>`, etc. This HTML format has been converted to Markdown. ### Markdown format For reference, [this post on StackOverflow](https://stackoverflow.com/questions/53253940/make-react-useeffect-hook-not-run-on-initial-render) is formatted as follows: #### Title: Make React useEffect hook not run on initial render ```markdown According to the docs: ​> `componentDidUpdate()` is invoked immediately after updating occurs. This method is not called for the initial render. We can use the new `useEffect()` hook to simulate `componentDidUpdate()`, but it seems like `useEffect()` is being ran after every render, even the first time. How do I get it to not run on initial render? As you can see in the example below, `componentDidUpdateFunction` is printed during the initial render but `componentDidUpdateClass` was not printed during the initial render. ​`​`​` function ComponentDidUpdateFunction() { const [count, setCount] = React.useState(0); React.useEffect(() => { console.log(""componentDidUpdateFunction""); }); return ( <div> <p>componentDidUpdateFunction: {count} times</p> <button onClick={() => { setCount(count + 1); }} > Click Me </button> </div> ); } ​`​`​` rest of the post omitted for brevity ``` ## Details on the HTML to Markdown conversion Using Jsoup, the original Body field was converted into a Jsoup Document. The child **nodes** (has special meaning in context of Jsoup) of this document were recursively traversed in a depth-first order. Jsoup defines `.text()` as follows: > ... the normalized, combined text of this element and all its children. Whitespace is normalized and trimmed. For example, given HTML <code>&lt;p&gt;Hello &lt;b&gt;there&lt;/b&gt; now! &lt;/p&gt;<code>, p.text() returns "Hello there now!" Jsoup defines a `Node` as follows: > The base, abstract Node model. Elements, Documents, Comments etc are all Node instances. Additionally the existence of the `TextNode` should be noted, which represents floating text inside an HTML document that is not itself an HTML element. Thus this text tag `<p>Hello<code>World</code></p>` would have two Jsoup child nodes `TextNode(value="Hello")` and `Element(tag="code", value="World")`. The value `field` of a `TextNode` contains the free standing text without any further treatment (no whitespace stripping, etc.) ### Traversing Rules - When ecountering a html tag for which a rule exists, children are not further traversed, **unless explicitly stated otherwise**. - When encountering an `<a>` tag, `[${element.text()}](${element.attr("href")})` is emitted. - When encountering an `<h1>` tag, `\n# ${element.text()}\n\n` is emitted. - When encountering an `<h2>` tag, `\n## ${element.text()}\n\n` is emitted. - When encountering an `<h3>` tag, `\n### ${element.text()}\n\n` is emitted. - When encountering an `<h4>` tag, `\n#### ${element.text()}\n\n` is emitted. - When encountering an `<h5>` tag, `\n##### ${element.text()}\n\n` is emitted. - When encountering an `<h6>` tag, `\n###### ${element.text()}\n\n` is emitted. - When encountering a `<code>` tag, `` `${element.text()}` ``is emitted - When encountering a `<pre>` tag and said element **has** a `<code>` child tag, `` ​`​`​`\n${element.text()}`\n​`​`​`\n`` is emitted. - When encountering a `<pre>` tag and said element **does not** have a `<code>` child tag, **children are traversed further**. - When encountering an `<li>` tag, `- ` is emitted and **children are traversed further**. - When encountering a `<blockquote>` tag, `> ` is emitted and **children are traversed further**. - When encountering an `<hr>` tag, `\n---\n\n` is emitted - When encountering an `<img>` tag, `![${element.attr("alt")}](${element.attr("src")})` is emitted. - When encountering a `<table>` tag - `\n| ` is emitted - For each element of `element.select("th")` - `${element.text()} | ` is emitted - After the loop `\n| ` is emitted - For each element of `element.select("th")` - For each character of the `th.text()` - `-` is emitted - After the loop over each character of th ` | ` is emitted - `\n` is emitted - For each element of `element.select("tr")` with more than one children of tag type `td` - `| ` is emitted - For each element of `element.select("td")` - `${td.text()} | ` is emitted - After the loop over `<td>` elements, `\n` is emitted - After the loop over `<tr>` elements, `\n` is emitted - When encountering a jsoup `TextNode`, `${node.attr(node.nodeName())}` (which is equivalent to accessing the private field `node.value`) is emitted.
mikex86/stackoverflow-posts
[ "task_categories:question-answering", "task_categories:text-generation", "task_categories:text2text-generation", "size_categories:10M&lt;n&lt;100M", "language:code", "language:en", "license:other", "code", "region:us" ]
2023-06-14T17:48:00+00:00
{"language": ["code", "en"], "license": "other", "size_categories": ["10M&lt;n&lt;100M"], "task_categories": ["question-answering", "text-generation", "text2text-generation"], "pretty_name": "StackOverflow Posts Markdown", "tags": ["code"], "viewer": true}
2023-08-01T00:31:12+00:00
3c43a0d02f312f654f6027a011a0089b037f75cb
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
mixkunanon/MAAMA
[ "region:us" ]
2023-06-14T17:48:40+00:00
{}
2023-06-14T17:52:04+00:00
b65503b1dbd04e12fdf18eaffa64ff1837a42b9d
tungnd/climax_ckpts
[ "license:mit", "region:us" ]
2023-06-14T18:02:32+00:00
{"license": "mit"}
2023-06-14T18:06:32+00:00
ac87f577d95bc3b962217d9c8a1074bf457ba33c
# Dataset Card for "preprocessed_pip" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
open-source-metrics/preprocessed_pip
[ "region:us" ]
2023-06-14T18:10:29+00:00
{"dataset_info": {"features": [{"name": "huggingface_hub", "dtype": "int64"}, {"name": "pytorch_image_models", "dtype": "int64"}, {"name": "safetensors", "dtype": "int64"}, {"name": "evaluate", "dtype": "int64"}, {"name": "peft", "dtype": "int64"}, {"name": "transformers", "dtype": "int64"}, {"name": "tokenizers", "dtype": "int64"}, {"name": "datasets", "dtype": "int64"}, {"name": "optimum", "dtype": "int64"}, {"name": "accelerate", "dtype": "int64"}, {"name": "gradio", "dtype": "int64"}, {"name": "diffusers", "dtype": "int64"}, {"name": "pytorch", "dtype": "int64"}, {"name": "tensorflow", "dtype": "int64"}, {"name": "openai", "dtype": "int64"}, {"name": "langchain", "dtype": "int64"}, {"name": "day", "dtype": "string"}], "splits": [{"name": "raw", "num_bytes": 232740, "num_examples": 1619}, {"name": "wow", "num_bytes": 33208, "num_examples": 231}], "download_size": 0, "dataset_size": 265948}}
2024-02-15T14:43:29+00:00
bf72487f5e8564144b4672ca2bf9b7caf7d505fa
gregzem/ITESM
[ "license:mit", "region:us" ]
2023-06-14T18:29:51+00:00
{"license": "mit"}
2023-06-14T18:30:10+00:00
cffb5c40d6cd65cfc8f0052d2e3b7c330c20018d
hola
afcoral/prueba1-TRL
[ "region:us" ]
2023-06-14T19:13:12+00:00
{}
2023-06-14T19:15:09+00:00
4279117bd85f48a897fa1c50eebe5a5abcc64d71
# Dataset Card for "movie_stills_dataset_train" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
killah-t-cell/movie_stills_dataset_train
[ "region:us" ]
2023-06-14T19:25:22+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 53842797.0, "num_examples": 200}], "download_size": 53843451, "dataset_size": 53842797.0}}
2023-06-14T19:25:25+00:00
37223af328d9e560d9827e79077b0401718e62fc
# Dataset Card for "Hatefulmemes_test_google_flan_t5_xxl_mode_C_HM_T_A_OCR_rices_ns_100" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_test_google_flan_t5_xxl_mode_C_HM_T_A_OCR_rices_ns_100
[ "region:us" ]
2023-06-14T19:32:12+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 113383, "num_examples": 100}], "download_size": 29811, "dataset_size": 113383}}
2023-06-14T19:32:15+00:00
9e7ef3274568b6077a53d86cc0b2f57289ead4d1
**Dataset Card for Indian Polity Question-Answer Dataset** --- **Dataset Summary** This dataset contains a collection of question-answer pairs on the subject of Indian Polity. The aim is to provide comprehensive answers to a wide range of questions pertaining to the Indian Constitution, judiciary, legislative, and various socio-political issues in India. It serves as a valuable resource for learners, researchers, and AI systems seeking to understand or respond to questions about Indian Polity. --- **Supported Tasks and Leaderboards** This dataset is useful for tasks such as question answering, text comprehension, language modelling, and conversational AI development. There's no specific leaderboard associated with this dataset. --- **Languages** The dataset is in English. --- **Dataset Structure** - **Data Instances** Each instance in the dataset consists of a pair of a human-posed question and an assistant-provided answer on a specific topic in Indian Polity. - **Data Fields** 1. Question: A text field containing the question. 2. Answer: A text field containing the corresponding answer. - **Data Splits** The dataset isn't divided into standard splits of training, validation, and test sets. --- **Dataset Creation** - **Curation Rationale** The dataset was curated to provide accurate and comprehensive answers to a range of questions about Indian Polity. It covers fundamental rights, constitutional provisions, legislative procedures, and socio-political issues, among others. - **Source Data** - **Initial Data Collection and Normalization** Data collection involved generating questions on Indian Polity topics and providing detailed answers. - **Who are the source language producers?** The language was produced by a language model trained by OpenAI. --- **Annotations** - **Annotation process** Not applicable as the dataset doesn't contain annotations. - **Who are the annotators?** Not applicable as the dataset doesn't contain annotations. --- **Personal and Sensitive Information** The dataset does not contain any personal or sensitive information. --- **Considerations for Using the Data** - **Social Impact of Dataset** The dataset can contribute to the understanding of Indian Polity and Constitution. It can help in educational, research, and AI applications. - **Discussion of Biases** There is no obvious bias in the dataset as it provides factual information related to the Indian Constitution and Polity. - **Other Known Limitations** The dataset may not cover all possible questions on Indian Polity. Additionally, all answers are in English, which may limit its use for non-English speakers. --- **Additional Information** - **Dataset Curators** The dataset has been curated by an OpenAI language model. - **Licensing Information** The dataset follows OpenAI's standard data use policy. - **Citation Information** Not applicable as this is an artificial dataset. - **Contributions** The dataset was generated by the ChatGPT model trained by OpenAI.
nisaar/Lawyer_GPT_India
[ "license:apache-2.0", "region:us" ]
2023-06-14T19:45:23+00:00
{"license": "apache-2.0"}
2023-06-16T04:49:30+00:00
fa17c6c1d28ba00b522bc5180e5e95541d4aaf7d
# Dataset Card for "cifar10-outlier" 📚 This dataset is an enriched version of the [CIFAR-10 Dataset](https://www.cs.toronto.edu/~kriz/cifar.html). The workflow is described in the medium article: [Changes of Embeddings during Fine-Tuning of Transformers](https://medium.com/@markus.stoll/changes-of-embeddings-during-fine-tuning-c22aa1615921). ## Explore the Dataset The open source data curation tool [Renumics Spotlight](https://github.com/Renumics/spotlight) allows you to explorer this dataset. You can find a Hugging Face Spaces running Spotlight with this dataset here: - Full Version (High hardware requirement) <https://huggingface.co/spaces/renumics/cifar10-outlier> - Fast Version <https://huggingface.co/spaces/renumics/cifar10-outlier-low> ![Analyze with Spotlight](https://spotlight.renumics.com/resources/hf-cifar10-outlier.png) Or you can explorer it locally: ```python !pip install renumics-spotlight datasets from renumics import spotlight import datasets ds = datasets.load_dataset("renumics/cifar10-outlier", split="train") df = ds.rename_columns({"img": "image", "label": "labels"}).to_pandas() df["label_str"] = df["labels"].apply(lambda x: ds.features["label"].int2str(x)) dtypes = { "nn_image": spotlight.Image, "image": spotlight.Image, "embedding_ft": spotlight.Embedding, "embedding_foundation": spotlight.Embedding, } spotlight.show( df, dtype=dtypes, layout="https://spotlight.renumics.com/resources/layout_pre_post_ft.json", ) ```
renumics/cifar10-outlier
[ "task_categories:image-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|other-80-Million-Tiny-Images", "language:en", "license:unknown", "region:us" ]
2023-06-14T19:53:24+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["extended|other-80-Million-Tiny-Images"], "task_categories": ["image-classification"], "task_ids": [], "paperswithcode_id": "cifar-10", "pretty_name": "Cifar10-Outliers", "dataset_info": {"features": [{"name": "img", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "airplane", "1": "automobile", "2": "bird", "3": "cat", "4": "deer", "5": "dog", "6": "frog", "7": "horse", "8": "ship", "9": "truck"}}}}, {"name": "embedding_foundation", "sequence": "float32"}, {"name": "embedding_ft", "sequence": "float32"}, {"name": "outlier_score_ft", "dtype": "float64"}, {"name": "outlier_score_foundation", "dtype": "float64"}, {"name": "nn_image", "struct": [{"name": "bytes", "dtype": "binary"}, {"name": "path", "dtype": "null"}]}], "config_name": "plain_text", "splits": [{"name": "train", "num_bytes": 535120320.0, "num_examples": 50000}], "download_size": 595144805, "dataset_size": 535120320.0}}
2023-06-30T19:09:38+00:00
a846d44d87ff5ab1c561a9447e41a3eb47d218c7
# Dataset Card for "Hatefulmemes_test_google_flan_t5_xl_mode_C_HM_T_A_OCR_rices_ns_100" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_test_google_flan_t5_xl_mode_C_HM_T_A_OCR_rices_ns_100
[ "region:us" ]
2023-06-14T19:53:54+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 113475, "num_examples": 100}], "download_size": 29837, "dataset_size": 113475}}
2023-06-14T19:53:57+00:00
6f391b701753b8a24f6f3851816f61d5b2063e83
# Dataset Card for "Hatefulmemes_validation_google_flan_t5_xl_mode_C_HM_T_OCR_rices_ns_500" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_validation_google_flan_t5_xl_mode_C_HM_T_OCR_rices_ns_500
[ "region:us" ]
2023-06-14T19:59:33+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 359808, "num_examples": 500}], "download_size": 0, "dataset_size": 359808}}
2023-06-14T20:33:39+00:00
5b8c9ca988b7deaea5aef9337ff5fbb8e6b264f1
# Dataset Card for "Hatefulmemes_validation_google_flan_t5_xl_mode_C_HM_A_OCR_rices_ns_500" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_validation_google_flan_t5_xl_mode_C_HM_A_OCR_rices_ns_500
[ "region:us" ]
2023-06-14T20:00:58+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 502381, "num_examples": 500}], "download_size": 78247, "dataset_size": 502381}}
2023-06-14T20:01:02+00:00
31f9be0e83d3dae3d3d049fb3490140d69f645d5
# Dataset Card for "cifar100-outlier" 📚 This dataset is an enriched version of the [CIFAR-100 Dataset](https://www.cs.toronto.edu/~kriz/cifar.html). The workflow is described in the medium article: [Changes of Embeddings during Fine-Tuning of Transformers](https://medium.com/@markus.stoll/changes-of-embeddings-during-fine-tuning-c22aa1615921). ## Explore the Dataset The open source data curation tool [Renumics Spotlight](https://github.com/Renumics/spotlight) allows you to explorer this dataset. You can find a Hugging Face Space running Spotlight with this dataset here: <https://huggingface.co/spaces/renumics/cifar100-outlier>. ![Analyze with Spotlight](https://spotlight.renumics.com/resources/hf-cifar100-outlier.png) Or you can explorer it locally: ```python !pip install renumics-spotlight datasets from renumics import spotlight import datasets ds = datasets.load_dataset("renumics/cifar100-outlier", split="train") df = ds.rename_columns({"img": "image", "fine_label": "labels"}).to_pandas() df["label_str"] = df["labels"].apply(lambda x: ds.features["fine_label"].int2str(x)) dtypes = { "nn_image": spotlight.Image, "image": spotlight.Image, "embedding_ft": spotlight.Embedding, "embedding_foundation": spotlight.Embedding, } spotlight.show( df, dtype=dtypes, layout="https://spotlight.renumics.com/resources/layout_pre_post_ft.json", ) ```
renumics/cifar100-outlier
[ "task_categories:image-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|other-80-Million-Tiny-Images", "language:en", "license:unknown", "region:us" ]
2023-06-14T20:12:23+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["extended|other-80-Million-Tiny-Images"], "task_categories": ["image-classification"], "task_ids": [], "paperswithcode_id": "cifar-100", "pretty_name": "Cifar100", "dataset_info": {"features": [{"name": "img", "dtype": "image"}, {"name": "fine_label", "dtype": {"class_label": {"names": {"0": "apple", "1": "aquarium_fish", "2": "baby", "3": "bear", "4": "beaver", "5": "bed", "6": "bee", "7": "beetle", "8": "bicycle", "9": "bottle", "10": "bowl", "11": "boy", "12": "bridge", "13": "bus", "14": "butterfly", "15": "camel", "16": "can", "17": "castle", "18": "caterpillar", "19": "cattle", "20": "chair", "21": "chimpanzee", "22": "clock", "23": "cloud", "24": "cockroach", "25": "couch", "26": "cra", "27": "crocodile", "28": "cup", "29": "dinosaur", "30": "dolphin", "31": "elephant", "32": "flatfish", "33": "forest", "34": "fox", "35": "girl", "36": "hamster", "37": "house", "38": "kangaroo", "39": "keyboard", "40": "lamp", "41": "lawn_mower", "42": "leopard", "43": "lion", "44": "lizard", "45": "lobster", "46": "man", "47": "maple_tree", "48": "motorcycle", "49": "mountain", "50": "mouse", "51": "mushroom", "52": "oak_tree", "53": "orange", "54": "orchid", "55": "otter", "56": "palm_tree", "57": "pear", "58": "pickup_truck", "59": "pine_tree", "60": "plain", "61": "plate", "62": "poppy", "63": "porcupine", "64": "possum", "65": "rabbit", "66": "raccoon", "67": "ray", "68": "road", "69": "rocket", "70": "rose", "71": "sea", "72": "seal", "73": "shark", "74": "shrew", "75": "skunk", "76": "skyscraper", "77": "snail", "78": "snake", "79": "spider", "80": "squirrel", "81": "streetcar", "82": "sunflower", "83": "sweet_pepper", "84": "table", "85": "tank", "86": "telephone", "87": "television", "88": "tiger", "89": "tractor", "90": "train", "91": "trout", "92": "tulip", "93": "turtle", "94": "wardrobe", "95": "whale", "96": "willow_tree", "97": "wolf", "98": "woman", "99": "worm"}}}}, {"name": "coarse_label", "dtype": {"class_label": {"names": {"0": "aquatic_mammals", "1": "fish", "2": "flowers", "3": "food_containers", "4": "fruit_and_vegetables", "5": "household_electrical_devices", "6": "household_furniture", "7": "insects", "8": "large_carnivores", "9": "large_man-made_outdoor_things", "10": "large_natural_outdoor_scenes", "11": "large_omnivores_and_herbivores", "12": "medium_mammals", "13": "non-insect_invertebrates", "14": "people", "15": "reptiles", "16": "small_mammals", "17": "trees", "18": "vehicles_1", "19": "vehicles_2"}}}}, {"name": "embedding_foundation", "sequence": "float32"}, {"name": "embedding_ft", "sequence": "float32"}, {"name": "outlier_score_ft", "dtype": "float64"}, {"name": "outlier_score_foundation", "dtype": "float64"}, {"name": "nn_image", "struct": [{"name": "bytes", "dtype": "binary"}, {"name": "path", "dtype": "null"}]}], "splits": [{"name": "train", "num_bytes": 583557742.0, "num_examples": 50000}], "download_size": 643988234, "dataset_size": 583557742.0}}
2023-06-30T19:08:26+00:00
d6459784321ec50b0a86d30f64833a10195654a5
# Dataset Card for "Hatefulmemes_validation_google_flan_t5_xxl_mode_C_HM_T_OCR_rices_ns_500" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_validation_google_flan_t5_xxl_mode_C_HM_T_OCR_rices_ns_500
[ "region:us" ]
2023-06-14T20:18:05+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 368482, "num_examples": 500}], "download_size": 59123, "dataset_size": 368482}}
2023-06-17T02:02:28+00:00
6cd667680f7dbb3e5c83dcbc98614017f8686639
# Dataset Card for "Hatefulmemes_test_google_flan_t5_xxl_mode_C_HM_T_OCR_rices_ns_1000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_test_google_flan_t5_xxl_mode_C_HM_T_OCR_rices_ns_1000
[ "region:us" ]
2023-06-14T20:22:57+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 719052, "num_examples": 1000}], "download_size": 0, "dataset_size": 719052}}
2023-06-20T20:50:45+00:00
4d0710e4094278488478679877ef2146302d2a13
# Dataset Card for "Hatefulmemes_test_google_flan_t5_xxl_mode_C_HM_A_OCR_rices_ns_1000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_test_google_flan_t5_xxl_mode_C_HM_A_OCR_rices_ns_1000
[ "region:us" ]
2023-06-14T20:24:54+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 1010725, "num_examples": 1000}], "download_size": 0, "dataset_size": 1010725}}
2023-06-20T20:49:00+00:00
dbfc64de1690b5eb5ccab4e8f5dbe86ef1d08486
# Dataset Card for "Hatefulmemes_test_google_flan_t5_xl_mode_C_HM_T_OCR_rices_ns_1000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_test_google_flan_t5_xl_mode_C_HM_T_OCR_rices_ns_1000
[ "region:us" ]
2023-06-14T20:31:40+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0", "num_bytes": 711972, "num_examples": 1000}], "download_size": 115063, "dataset_size": 711972}}
2023-06-14T20:31:44+00:00
b06a31685e6a688bfd2387f16b0816cf2ac448af
# AutoTrain Dataset for project: fhdd_arabic_chatbot ## Dataset Description This dataset has been automatically processed by AutoTrain for project fhdd_arabic_chatbot. ### Languages The BCP-47 code for the dataset's language is en2ar. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "feat_sourceLang": "ara", "feat_targetlang": "eng", "target": "\u064a\u0646\u0628\u063a\u064a \u0623\u0646 \u062a\u064f\u0638\u0647\u0631 \u0627\u0644\u0646\u0651\u0633\u0627\u0621 \u0648\u062c\u0648\u0647\u0647\u0646\u0651.", "source": "Women should have their faces visible." }, { "feat_sourceLang": "ara", "feat_targetlang": "eng", "target": "\u0623\u062a\u062f\u0631\u0633 \u0627\u0644\u0625\u0646\u062c\u0644\u064a\u0632\u064a\u0629\u061f", "source": "Do you study English?" } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "feat_sourceLang": "Value(dtype='string', id=None)", "feat_targetlang": "Value(dtype='string', id=None)", "target": "Value(dtype='string', id=None)", "source": "Value(dtype='string', id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 15622 | | valid | 3906 |
fhaddad/autotrain-data-fhdd_arabic_chatbot
[ "task_categories:translation", "language:en", "language:ar", "region:us" ]
2023-06-14T20:52:13+00:00
{"language": ["en", "ar"], "task_categories": ["translation"]}
2023-06-14T21:00:25+00:00
795913263be64a35905dcd9467ae589430d28c8b
tcvieira/mmarco-pt-1k
[ "license:mit", "region:us" ]
2023-06-14T21:01:35+00:00
{"license": "mit"}
2023-06-14T21:04:02+00:00
fd4339a6d99c047dab0908ee0b53ec0ec26c44a3
# Depression: Reddit Dataset (Cleaned) **~7000 Cleaned Reddit Labelled Dataset on Depression** ### Summary - The dataset provided is a Depression: Reddit Dataset (Cleaned) containing approximately 7,000 labeled instances. It consists of two main features: 'text' and 'label'. The 'text' feature contains the text data from Reddit posts related to depression, while the 'label' feature indicates whether a post is classified as depression or not. - The raw data for this dataset was collected by web scraping Subreddits. To ensure the data's quality and usefulness, multiple natural language processing (NLP) techniques were applied to clean the data. The dataset exclusively consists of English-language posts, and its primary purpose is to facilitate mental health classification tasks. - This dataset can be employed in various natural language processing tasks related to depression, such as sentiment analysis, topic modeling, text classification, or any other NLP task that requires labeled data pertaining to depression from Reddit. - Extracted from Kaggle: https://www.kaggle.com/datasets/infamouscoder/depression-reddit-cleaned
mrjunos/depression-reddit-cleaned
[ "task_categories:text-classification", "size_categories:1K<n<10K", "language:en", "license:cc-by-4.0", "reddit", "Sentiment ", "depression", "region:us" ]
2023-06-14T22:16:31+00:00
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-classification"], "pretty_name": "Depression Reddit Cleaned", "tags": ["reddit", "Sentiment ", "depression"]}
2023-06-17T01:03:22+00:00
e53294d7b7318a42a6ca54eafdc3bcee0079ce39
# Dataset Card for "llm-sgd-dst8-train-test-data" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
amay01/llm-sgd-dst8-train-test-data
[ "region:us" ]
2023-06-14T22:39:46+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 61828454, "num_examples": 175780}, {"name": "test", "num_bytes": 61828454, "num_examples": 175780}], "download_size": 0, "dataset_size": 123656908}}
2023-06-14T22:45:40+00:00
47b869d26ba7c5cf56793ec840c67a2669e0fe36
# Dataset Card for "c152e7f5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/c152e7f5
[ "region:us" ]
2023-06-14T22:41:06+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 184, "num_examples": 10}], "download_size": 1340, "dataset_size": 184}}
2023-06-14T22:41:09+00:00
b9c9fae6ff64819273169c1528660a4876652953
# Dataset Card for "pandassdcctest" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sdmattpotter/pandassdcctest
[ "task_categories:text-classification", "size_categories:100K<n<1M", "language:en", "license:mit", "politics", "local government", "region:us" ]
2023-06-14T22:44:47+00:00
{"language": ["en"], "license": "mit", "size_categories": ["100K<n<1M"], "task_categories": ["text-classification"], "pretty_name": "sdcc", "dataset_info": {"features": [{"name": "ITEMNO.", "dtype": "string"}, {"name": "O", "dtype": "string"}, {"name": "00000", "dtype": "float64"}, {"name": "Motion/Second", "dtype": "string"}, {"name": "VOTE", "dtype": "string"}, {"name": "Recorder", "dtype": "string"}, {"name": "link", "dtype": "string"}, {"name": "action", "dtype": "string"}, {"name": "descript", "dtype": "string"}, {"name": "kind", "dtype": "string"}, {"name": "DateTimeDate", "dtype": "timestamp[ns]"}, {"name": "embeds", "sequence": "float64"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 8933567, "num_examples": 704}], "download_size": 6645047, "dataset_size": 8933567}, "tags": ["politics", "local government"]}
2023-06-15T16:04:24+00:00
bd7c47606feed25da8818348047379934f8c3634
# Dataset Card for "swift" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sepideh4jm/swift
[ "region:us" ]
2023-06-14T22:50:48+00:00
{"dataset_info": {"features": [{"name": "label", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4630406090.886717, "num_examples": 1277626}, {"name": "test", "num_bytes": 1543471113.1132832, "num_examples": 425876}], "download_size": 2098674238, "dataset_size": 6173877204.0}}
2023-06-14T23:23:46+00:00
6a68f939f07d661fb7d7c761b717ae539edfead3
HighVibesTimes/text2video
[ "license:apache-2.0", "region:us" ]
2023-06-14T22:57:23+00:00
{"license": "apache-2.0"}
2023-06-14T22:57:23+00:00
86b9bab3ecd27f69e0f09193cd261b5a0537d1de
# Dataset Card for "opus_books_demo" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yezhengli9/opus_books_demo
[ "region:us" ]
2023-06-14T23:13:40+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "translation", "dtype": {"translation": {"languages": ["en", "fr"]}}}], "splits": [{"name": "train", "num_bytes": 32997043, "num_examples": 127085}], "download_size": 20985324, "dataset_size": 32997043}}
2023-06-14T23:24:42+00:00