sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
2c0ff370938b073a6e0e894789f0697c701e4f3d
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Multi-class Text Classification * Model: morenolq/distilbert-base-cased-emotion * Dataset: emotion * Config: default * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@morenolq](https://huggingface.co/morenolq) for evaluating this model.
autoevaluate/autoeval-eval-emotion-default-f266e6-1508354838
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T13:17:18+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["emotion"], "eval_info": {"task": "multi_class_classification", "model": "morenolq/distilbert-base-cased-emotion", "metrics": [], "dataset_name": "emotion", "dataset_config": "default", "dataset_split": "validation", "col_mapping": {"text": "text", "target": "label"}}}
2022-09-19T13:17:45+00:00
675263df9cdf386ecb16016c1434cf90108914d5
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Natural Language Inference * Model: JeremiahZ/bert-base-uncased-rte * Dataset: glue * Config: rte * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@JeremiahZ](https://huggingface.co/JeremiahZ) for evaluating this model.
autoevaluate/autoeval-eval-glue-rte-157f21-1508454839
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T13:17:23+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["glue"], "eval_info": {"task": "natural_language_inference", "model": "JeremiahZ/bert-base-uncased-rte", "metrics": [], "dataset_name": "glue", "dataset_config": "rte", "dataset_split": "validation", "col_mapping": {"text1": "sentence1", "text2": "sentence2", "target": "label"}}}
2022-09-19T13:17:54+00:00
a4302a5208a75bd5eafff39c433c0073cf7b649e
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Natural Language Inference * Model: JeremiahZ/bert-base-uncased-qqp * Dataset: glue * Config: qqp * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@JeremiahZ](https://huggingface.co/JeremiahZ) for evaluating this model.
autoevaluate/autoeval-eval-glue-qqp-b620ce-1508754840
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T13:17:29+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["glue"], "eval_info": {"task": "natural_language_inference", "model": "JeremiahZ/bert-base-uncased-qqp", "metrics": [], "dataset_name": "glue", "dataset_config": "qqp", "dataset_split": "validation", "col_mapping": {"text1": "question1", "text2": "question2", "target": "label"}}}
2022-09-19T13:20:34+00:00
e16f043921522ca6271d5174bfdc22889c7b446e
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Natural Language Inference * Model: JeremiahZ/bert-base-uncased-mnli * Dataset: glue * Config: mnli_matched * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@JeremiahZ](https://huggingface.co/JeremiahZ) for evaluating this model.
autoevaluate/autoeval-eval-glue-mnli_matched-c9e0cb-1508854842
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T13:17:41+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["glue"], "eval_info": {"task": "natural_language_inference", "model": "JeremiahZ/bert-base-uncased-mnli", "metrics": [], "dataset_name": "glue", "dataset_config": "mnli_matched", "dataset_split": "validation", "col_mapping": {"text1": "premise", "text2": "hypothesis", "target": "label"}}}
2022-09-19T13:18:46+00:00
400174f5e633d5a97f599969362628c5b028794f
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Multi-class Text Classification * Model: JeremiahZ/roberta-base-cola * Dataset: glue * Config: cola * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@JeremiahZ](https://huggingface.co/JeremiahZ) for evaluating this model.
autoevaluate/autoeval-eval-glue-cola-b911f0-1508954843
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T13:48:55+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["glue"], "eval_info": {"task": "multi_class_classification", "model": "JeremiahZ/roberta-base-cola", "metrics": ["matthews_correlation"], "dataset_name": "glue", "dataset_config": "cola", "dataset_split": "validation", "col_mapping": {"text": "sentence", "target": "label"}}}
2022-09-19T13:49:27+00:00
9509b6529ed2a785841e86bf1637353291e8ddab
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Multi-class Text Classification * Model: JeremiahZ/bert-base-uncased-cola * Dataset: glue * Config: cola * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@JeremiahZ](https://huggingface.co/JeremiahZ) for evaluating this model.
autoevaluate/autoeval-eval-glue-cola-b911f0-1508954844
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T13:48:58+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["glue"], "eval_info": {"task": "multi_class_classification", "model": "JeremiahZ/bert-base-uncased-cola", "metrics": ["matthews_correlation"], "dataset_name": "glue", "dataset_config": "cola", "dataset_split": "validation", "col_mapping": {"text": "sentence", "target": "label"}}}
2022-09-19T13:49:28+00:00
5b7b1e9a55331e18543b14c0ba25aaf38985337a
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Natural Language Inference * Model: JeremiahZ/roberta-base-mrpc * Dataset: glue * Config: mrpc * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@JeremiahZ](https://huggingface.co/JeremiahZ) for evaluating this model.
autoevaluate/autoeval-eval-glue-mrpc-9038ab-1509054845
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T13:49:04+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["glue"], "eval_info": {"task": "natural_language_inference", "model": "JeremiahZ/roberta-base-mrpc", "metrics": [], "dataset_name": "glue", "dataset_config": "mrpc", "dataset_split": "validation", "col_mapping": {"text1": "sentence1", "text2": "sentence2", "target": "label"}}}
2022-09-19T13:49:33+00:00
bf06c398b669a4cb58387c071e8e4bf84eefd64f
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Natural Language Inference * Model: JeremiahZ/bert-base-uncased-mrpc * Dataset: glue * Config: mrpc * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@JeremiahZ](https://huggingface.co/JeremiahZ) for evaluating this model.
autoevaluate/autoeval-eval-glue-mrpc-9038ab-1509054846
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T13:49:09+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["glue"], "eval_info": {"task": "natural_language_inference", "model": "JeremiahZ/bert-base-uncased-mrpc", "metrics": [], "dataset_name": "glue", "dataset_config": "mrpc", "dataset_split": "validation", "col_mapping": {"text1": "sentence1", "text2": "sentence2", "target": "label"}}}
2022-09-19T13:49:35+00:00
148a5dacde77aa5e337fdfaf0afbe75586dc86f9
j0hngou/ccmatrix_en-it
[ "language:en", "language:it", "region:us" ]
2022-09-19T15:33:17+00:00
{"language": ["en", "it"]}
2022-09-26T15:34:54+00:00
e992f84dd6d471143439e0a111e3b9d73ebc5f3a
GAMa (Ground-video to Aerial-image Matching) dataset Download at: https://www.crcv.ucf.edu/data1/GAMa/ # GAMa: Cross-view Video Geo-localization by [Shruti Vyas](https://scholar.google.com/citations?user=15YqUQUAAAAJ&hl=en); [Chen Chen](https://scholar.google.com/citations?user=TuEwcZ0AAAAJ&hl=en); [Mubarak Shah](https://scholar.google.com/citations?user=p8gsO3gAAAAJ&hl=en) code at: https://github.com/svyas23/GAMa/blob/main/README.md
svyas23/GAMa
[ "license:other", "region:us" ]
2022-09-19T16:17:00+00:00
{"license": "other"}
2022-09-19T16:34:14+00:00
7a7dd4cba7ff2944ded877a9b7064723698c2b6f
Impe/Stuff
[ "license:afl-3.0", "region:us" ]
2022-09-19T16:31:51+00:00
{"license": "afl-3.0"}
2022-09-19T16:31:51+00:00
7513b19b0b0283fcf2bf8e537f1fc6cba04250fe
# Dataset Card for G-KOMET ### Dataset Summary G-KOMET 1.0 is a corpus of metaphorical expressions in spoken Slovene language, covering around 50,000 lexical units across 5695 sentences. The corpus contains samples from the Gos corpus of spoken Slovene and includes a balanced set of transcriptions of informative, educational, entertaining, private, and public discourse. It is also annotated with idioms and metonymies. Note that these are both annotated as metaphor types. This is different from the annotations in [KOMET](https://huggingface.co/datasets/cjvt/komet), where these are both considered a type of frame. We keep the data as untouched as possible and let the user decide how they want to handle this. ### Supported Tasks and Leaderboards Metaphor detection, metonymy detection, metaphor type classification, metaphor frame classification. ### Languages Slovenian. ## Dataset Structure ### Data Instances A sample instance from the dataset: ``` { 'document_name': 'G-Komet001.xml', 'idx': 3, 'idx_paragraph': 0, 'idx_sentence': 3, 'sentence_words': ['no', 'zdaj', 'samo', 'še', 'za', 'eno', 'orientacijo'], 'met_type': [ {'type': 'MRWi', 'word_indices': [6]} ], 'met_frame': [ {'type': 'spatial_orientation', 'word_indices': [6]} ] } ``` The sentence comes from the document `G-Komet001.xml`, is the 3rd sentence in the document and is the 3rd sentence inside the 0th paragraph in the document. The word "orientacijo" is annotated as an indirect metaphor-related word (`MRWi`). It is also annotated with the frame "spatial_orientation". ### Data Fields - `document_name`: a string containing the name of the document in which the sentence appears; - `idx`: a uint32 containing the index of the sentence inside its document; - `idx_paragraph`: a uint32 containing the index of the paragraph in which the sentence appears; - `idx_sentence`: a uint32 containing the index of the sentence inside its paragraph; containing the consecutive number of the paragraph inside the current news article; - `sentence_words`: words in the sentence; - `met_type`: metaphors in the sentence, marked by their type and word indices; - `met_frame`: metaphor frames in the sentence, marked by their type (frame name) and word indices. ## Dataset Creation The corpus contains samples from the GOS corpus of spoken Slovene and includes a balanced set of transcriptions of informative, educational, entertaining, private, and public discourse. It contains hand-annotated metaphor-related words, i.e. linguistic expressions that have the potential for people to interpret them as metaphors, idioms, i.e. multi-word units in which at least one word has been used metaphorically, and metonymies, expressions that we use to express something else. For more information, please check out the paper (which is in Slovenian language) or contact the dataset author. ## Additional Information ### Dataset Curators Špela Antloga. ### Licensing Information CC BY-NC-SA 4.0 ### Citation Information ``` @InProceedings{antloga2022gkomet, title = {Korpusni pristopi za identifikacijo metafore in metonimije: primer metonimije v korpusu gKOMET}, author={Antloga, \v{S}pela}, booktitle={Proceedings of the Conference on Language Technologies and Digital Humanities (Student papers)}, year={2022}, pages={271-277} } ``` ### Contributions Thanks to [@matejklemen](https://github.com/matejklemen) for adding this dataset.
cjvt/gkomet
[ "task_categories:token-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "language:sl", "license:cc-by-nc-sa-4.0", "metaphor-classification", "metonymy-classification", "metaphor-frame-classification", "multiword-expression-detection", "region:us" ]
2022-09-19T17:00:53+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["found"], "language": ["sl"], "license": ["cc-by-nc-sa-4.0"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": [], "task_categories": ["token-classification"], "task_ids": [], "pretty_name": "G-KOMET", "tags": ["metaphor-classification", "metonymy-classification", "metaphor-frame-classification", "multiword-expression-detection"]}
2022-11-27T16:40:19+00:00
f2b534c65a64e8425f7aa01659af23493d84696e
hemangjoshi37a/token_classification_ratnakar_1300
[ "license:mit", "region:us" ]
2022-09-19T17:02:43+00:00
{"license": "mit"}
2022-09-19T17:03:46+00:00
67f7da031721a14cc391c7fa7c8d96411282d8a3
**(Jan. 8 2024) Test set labels are released** # Dataset Card for SLUE ## Table of Contents - [Dataset Card for SLUE](#dataset-card-for-slue) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Automatic Speech Recognition (ASR)](#automatic-speech-recognition-asr) - [Named Entity Recognition (NER)](#named-entity-recognition-ner) - [Sentiment Analysis (SA)](#sentiment-analysis-sa) - [How-to-submit for your test set evaluation](#how-to-submit-for-your-test-set-evaluation) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [voxpopuli](#voxpopuli) - [voxceleb](#voxceleb) - [Data Fields](#data-fields) - [voxpopuli](#voxpopuli-1) - [voxceleb](#voxceleb-1) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization) - [Who are the source language producers?](#who-are-the-source-language-producers) - [Annotations](#annotations) - [Annotation process](#annotation-process) - [Who are the annotators?](#who-are-the-annotators) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [SLUE-VoxPopuli Dataset](#slue-voxpopuli-dataset) - [SLUE-VoxCeleb Dataset](#slue-voxceleb-dataset) - [Original License of OXFORD VGG VoxCeleb Dataset](#original-license-of-oxford-vgg-voxceleb-dataset) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://asappresearch.github.io/slue-toolkit](https://asappresearch.github.io/slue-toolkit) - **Repository:** [https://github.com/asappresearch/slue-toolkit/](https://github.com/asappresearch/slue-toolkit/) - **Paper:** [https://arxiv.org/pdf/2111.10367.pdf](https://arxiv.org/pdf/2111.10367.pdf) - **Leaderboard:** [https://asappresearch.github.io/slue-toolkit/leaderboard_v0.2.html](https://asappresearch.github.io/slue-toolkit/leaderboard_v0.2.html) - **Size of downloaded dataset files:** 1.95 GB - **Size of the generated dataset:** 9.59 MB - **Total amount of disk used:** 1.95 GB ### Dataset Summary We introduce the Spoken Language Understanding Evaluation (SLUE) benchmark. The goals of our work are to - Track research progress on multiple SLU tasks - Facilitate the development of pre-trained representations by providing fine-tuning and eval sets for a variety of SLU tasks - Foster the open exchange of research by focusing on freely available datasets that all academic and industrial groups can easily use. For this benchmark, we provide new annotation of publicly available, natural speech data for training and evaluation. We also provide a benchmark suite including code to download and pre-process the SLUE datasets, train the baseline models, and evaluate performance on SLUE tasks. Refer to [Toolkit](https://github.com/asappresearch/slue-toolkit) and [Paper](https://arxiv.org/pdf/2111.10367.pdf) for more details. ### Supported Tasks and Leaderboards #### Automatic Speech Recognition (ASR) Although this is not a SLU task, ASR can help analyze the performance of downstream SLU tasks on the same domain. Additionally, pipeline approaches depend on ASR outputs, making ASR relevant to SLU. ASR is evaluated using word error rate (WER). #### Named Entity Recognition (NER) Named entity recognition involves detecting the named entities and their tags (types) in a given sentence. We evaluate performance using micro-averaged F1 and label-F1 scores. The F1 score evaluates an unordered list of named entity phrase and tag pairs predicted for each sentence. Only the tag predictions are considered for label-F1. #### Sentiment Analysis (SA) Sentiment analysis refers to classifying a given speech segment as having negative, neutral, or positive sentiment. We evaluate SA using macro-averaged (unweighted) recall and F1 scores.[More Information Needed] #### How-to-submit for your test set evaluation See here https://asappresearch.github.io/slue-toolkit/how-to-submit.html ### Languages The language data in SLUE is in English. ## Dataset Structure ### Data Instances #### voxpopuli - **Size of downloaded dataset files:** 398.45 MB - **Size of the generated dataset:** 5.81 MB - **Total amount of disk used:** 404.26 MB An example of 'train' looks as follows. ``` {'id': '20131007-0900-PLENARY-19-en_20131007-21:26:04_3', 'audio': {'path': '/Users/username/.cache/huggingface/datasets/downloads/extracted/e35757b0971ac7ff5e2fcdc301bba0364857044be55481656e2ade6f7e1fd372/slue-voxpopuli/fine-tune/20131007-0900-PLENARY-19-en_20131007-21:26:04_3.ogg', 'array': array([ 0.00132601, 0.00058881, -0.00052187, ..., 0.06857217, 0.07835515, 0.07845446], dtype=float32), 'sampling_rate': 16000}, 'speaker_id': 'None', 'normalized_text': 'two thousand and twelve for instance the new brussels i regulation provides for the right for employees to sue several employers together and the right for employees to have access to courts in europe even if the employer is domiciled outside europe. the commission will', 'raw_text': '2012. For instance, the new Brussels I Regulation provides for the right for employees to sue several employers together and the right for employees to have access to courts in Europe, even if the employer is domiciled outside Europe. The Commission will', 'raw_ner': {'type': ['LOC', 'LOC', 'LAW', 'DATE'], 'start': [227, 177, 28, 0], 'length': [6, 6, 21, 4]}, 'normalized_ner': {'type': ['LOC', 'LOC', 'LAW', 'DATE'], 'start': [243, 194, 45, 0], 'length': [6, 6, 21, 23]}, 'raw_combined_ner': {'type': ['PLACE', 'PLACE', 'LAW', 'WHEN'], 'start': [227, 177, 28, 0], 'length': [6, 6, 21, 4]}, 'normalized_combined_ner': {'type': ['PLACE', 'PLACE', 'LAW', 'WHEN'], 'start': [243, 194, 45, 0], 'length': [6, 6, 21, 23]}} ``` #### voxceleb - **Size of downloaded dataset files:** 1.55 GB - **Size of the generated dataset:** 3.78 MB - **Total amount of disk used:** 1.55 GB An example of 'train' looks as follows. ``` {'id': 'id10059_229vKIGbxrI_00004', 'audio': {'path': '/Users/felixwu/.cache/huggingface/datasets/downloads/extracted/400facb6d2f2496ebcd58a5ffe5fbf2798f363d1b719b888d28a29b872751626/slue-voxceleb/fine-tune_raw/id10059_229vKIGbxrI_00004.flac', 'array': array([-0.00442505, -0.00204468, 0.00628662, ..., 0.00158691, 0.00100708, 0.00033569], dtype=float32), 'sampling_rate': 16000}, 'speaker_id': 'id10059', 'normalized_text': 'of god what is a creator the almighty that uh', 'sentiment': 'Neutral', 'start_second': 0.45, 'end_second': 4.52} ``` ### Data Fields #### voxpopuli - `id`: a `string` id of an instance. - `audio`: audio feature of the raw audio. It is a dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - `speaker_id`: a `string` of the speaker id. - `raw_text`: a `string` feature that contains the raw transcription of the audio. - `normalized_text`: a `string` feature that contains the normalized transcription of the audio which is **used in the standard evaluation**. - `raw_ner`: the NER annotation of the `raw_text` using the same 18 NER classes as OntoNotes. - `normalized_ner`: the NER annotation of the `normalized_text` using the same 18 NER classes as OntoNotes. - `raw_combined_ner`: the NER annotation of the `raw_text` using our 7 NER classes (`WHEN`, `QUANT`, `PLACE`, `NORP`, `ORG`, `LAW`, `PERSON`). - `normalized_combined_ner`: the NER annotation of the `normalized_text` using our 7 NER classes (`WHEN`, `QUANT`, `PLACE`, `NORP`, `ORG`, `LAW`, `PERSON`) which is **used in the standard evaluation**. Each NER annotation is a dictionary containing three lists: `type`, `start`, and `length`. `type` is a list of the NER tag types. `start` is a list of the start character position of each named entity in the corresponding text. `length` is a list of the number of characters of each named entity. #### voxceleb - `id`: a `string` id of an instance. - `audio`: audio feature of the raw audio. Please use `start_second` and `end_second` to crop the transcribed segment. For example, `dataset[0]["audio"]["array"][int(dataset[0]["start_second"] * dataset[0]["audio"]["sample_rate"]):int(dataset[0]["end_second"] * dataset[0]["audio"]["sample_rate"])]`. It is a dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - `speaker_id`: a `string` of the speaker id. - `normalized_text`: a `string` feature that contains the transcription of the audio segment. - `sentiment`: a `string` feature which can be `Negative`, `Neutral`, or `Positive`. - `start_second`: a `float` feature that specifies the start second of the audio segment. - `end_second`: a `float` feature that specifies the end second of the audio segment. ### Data Splits | |train|validation|test| |---------|----:|---------:|---:| |voxpopuli| 5000| 1753|1842| |voxceleb | 5777| 1454|3553| Here we use the standard split names in Huggingface's datasets, so the `train` and `validation` splits are the original `fine-tune` and `dev` splits of SLUE datasets, respectively. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information #### SLUE-VoxPopuli Dataset SLUE-VoxPopuli dataset contains a subset of VoxPopuli dataset and the copyright of this subset remains the same with the original license, CC0. See also European Parliament's legal notice (https://www.europarl.europa.eu/legal-notice/en/) Additionally, we provide named entity annotation (normalized_ner and raw_ner column in .tsv files) and it is covered with the same license as CC0. #### SLUE-VoxCeleb Dataset SLUE-VoxCeleb Dataset contains a subset of OXFORD VoxCeleb dataset and the copyright of this subset remains the same Creative Commons Attribution 4.0 International license as below. Additionally, we provide transcription, sentiment annotation and timestamp (start, end) that follows the same license to OXFORD VoxCeleb dataset. ##### Original License of OXFORD VGG VoxCeleb Dataset VoxCeleb1 contains over 100,000 utterances for 1,251 celebrities, extracted from videos uploaded to YouTube. VoxCeleb2 contains over a million utterances for 6,112 celebrities, extracted from videos uploaded to YouTube. The speakers span a wide range of different ethnicities, accents, professions and ages. We provide Youtube URLs, associated face detections, and timestamps, as well as cropped audio segments and cropped face videos from the dataset. The copyright of both the original and cropped versions of the videos remains with the original owners. The data is covered under a Creative Commons Attribution 4.0 International license (Please read the license terms here. https://creativecommons.org/licenses/by/4.0/). Downloading this dataset implies agreement to follow the same conditions for any modification and/or re-distribution of the dataset in any form. Additionally any entity using this dataset agrees to the following conditions: THIS DATASET IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Please cite [1,2] below if you make use of the dataset. [1] J. S. Chung, A. Nagrani, A. Zisserman VoxCeleb2: Deep Speaker Recognition INTERSPEECH, 2018. [2] A. Nagrani, J. S. Chung, A. Zisserman VoxCeleb: a large-scale speaker identification dataset INTERSPEECH, 2017 ### Citation Information ``` @inproceedings{shon2022slue, title={Slue: New benchmark tasks for spoken language understanding evaluation on natural speech}, author={Shon, Suwon and Pasad, Ankita and Wu, Felix and Brusco, Pablo and Artzi, Yoav and Livescu, Karen and Han, Kyu J}, booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7927--7931}, year={2022}, organization={IEEE} } ``` ### Contributions Thanks to [@fwu-asapp](https://github.com/fwu-asapp) for adding this dataset.
asapp/slue
[ "task_categories:automatic-speech-recognition", "task_categories:audio-classification", "task_categories:text-classification", "task_categories:token-classification", "task_ids:sentiment-analysis", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:cc0-1.0", "license:cc-by-4.0", "arxiv:2111.10367", "region:us" ]
2022-09-19T17:07:59+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["found"], "language": ["en"], "license": ["cc0-1.0", "cc-by-4.0"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["automatic-speech-recognition", "audio-classification", "text-classification", "token-classification"], "task_ids": ["sentiment-analysis", "named-entity-recognition"], "paperswithcode_id": "slue", "pretty_name": "SLUE (Spoken Language Understanding Evaluation benchmark)", "tags": [], "configs": [{"config_name": "voxceleb", "data_files": [{"split": "train", "path": "voxceleb/train-*"}, {"split": "validation", "path": "voxceleb/validation-*"}, {"split": "test", "path": "voxceleb/test-*"}]}, {"config_name": "voxpopuli", "data_files": [{"split": "train", "path": "voxpopuli/train-*"}, {"split": "validation", "path": "voxpopuli/validation-*"}, {"split": "test", "path": "voxpopuli/test-*"}]}], "dataset_info": [{"config_name": "voxceleb", "features": [{"name": "index", "dtype": "int32"}, {"name": "id", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "speaker_id", "dtype": "string"}, {"name": "normalized_text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}, {"name": "start_second", "dtype": "float64"}, {"name": "end_second", "dtype": "float64"}, {"name": "local_path", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 875444694.0, "num_examples": 5777}, {"name": "validation", "num_bytes": 213065127.0, "num_examples": 1454}, {"name": "test", "num_bytes": 545473843.0, "num_examples": 3553}], "download_size": 1563299519, "dataset_size": 1633983664.0}, {"config_name": "voxpopuli", "features": [{"name": "index", "dtype": "int32"}, {"name": "id", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "speaker_id", "dtype": "string"}, {"name": "normalized_text", "dtype": "string"}, {"name": "raw_text", "dtype": "string"}, {"name": "raw_ner", "sequence": [{"name": "type", "dtype": "string"}, {"name": "start", "dtype": "int32"}, {"name": "length", "dtype": "int32"}]}, {"name": "normalized_ner", "sequence": [{"name": "type", "dtype": "string"}, {"name": "start", "dtype": "int32"}, {"name": "length", "dtype": "int32"}]}, {"name": "raw_combined_ner", "sequence": [{"name": "type", "dtype": "string"}, {"name": "start", "dtype": "int32"}, {"name": "length", "dtype": "int32"}]}, {"name": "normalized_combined_ner", "sequence": [{"name": "type", "dtype": "string"}, {"name": "start", "dtype": "int32"}, {"name": "length", "dtype": "int32"}]}, {"name": "local_path", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 240725040.0, "num_examples": 5000}, {"name": "validation", "num_bytes": 83155577.099, "num_examples": 1753}, {"name": "test", "num_bytes": 83518039.328, "num_examples": 1842}], "download_size": 404062275, "dataset_size": 407398656.427}]}
2024-01-12T05:15:39+00:00
ff88393aa85808a6172b21e19e27a40ab882a734
Initial annotated dataset derived from `ImageIN/IA_unlabelled`
ImageIN/ImageIn_annotations
[ "task_categories:image-classification", "region:us" ]
2022-09-19T17:16:25+00:00
{"annotations_creators": [], "language_creators": [], "language": [], "license": [], "multilinguality": [], "size_categories": [], "source_datasets": [], "task_categories": ["image-classification"], "task_ids": [], "pretty_name": "ImageIn hand labelled", "tags": []}
2022-09-26T11:20:03+00:00
c76f26430961c9cb3dd896809d3b303225bd6003
A piece of Federico García Lorca's body of work.
smkerr/lorca
[ "region:us" ]
2022-09-19T19:00:37+00:00
{}
2022-09-19T19:02:06+00:00
3958a8cdbd470eff2573faad9d0ff7eeac90e6c3
darcksky/All-Rings
[ "license:afl-3.0", "region:us" ]
2022-09-19T19:05:00+00:00
{"license": "afl-3.0"}
2022-09-19T19:13:29+00:00
da12b1d9362a363f50e046dd887987142fee4ff8
wgarstka/test
[ "license:other", "region:us" ]
2022-09-19T19:10:45+00:00
{"license": "other"}
2022-09-19T19:10:45+00:00
9fbd8304e81d1eadc8eda9738dec458621f25f79
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Zero-Shot Text Classification * Model: Tristan/opt-30b-copy * Dataset: autoevaluate/zero-shot-classification-sample * Config: autoevaluate--zero-shot-classification-sample * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@mathemakitten](https://huggingface.co/mathemakitten) for evaluating this model.
autoevaluate/autoeval-eval-autoevaluate__zero-shot-classification-sample-autoevalu-1f3143-1511754885
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T19:30:18+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["autoevaluate/zero-shot-classification-sample"], "eval_info": {"task": "text_zero_shot_classification", "model": "Tristan/opt-30b-copy", "metrics": [], "dataset_name": "autoevaluate/zero-shot-classification-sample", "dataset_config": "autoevaluate--zero-shot-classification-sample", "dataset_split": "test", "col_mapping": {"text": "text", "classes": "classes", "target": "target"}}}
2022-09-19T20:08:28+00:00
7b69020abbf7a32f15059b9d57dc576ad84006c5
spacemanidol/rewrite-noisy-queries
[ "license:mit", "region:us" ]
2022-09-19T19:37:46+00:00
{"license": "mit"}
2022-09-19T19:55:24+00:00
f3d381966197dcc430263fbd80b5aa01fedadfb6
mertcobanov/mozart-diff-small-256
[ "task_categories:image-to-image", "size_categories:100K<n<1M", "region:us" ]
2022-09-19T20:46:03+00:00
{"size_categories": ["100K<n<1M"], "task_categories": ["image-to-image"], "pretty_name": "Mozart Operas"}
2023-01-05T21:33:43+00:00
084060f16b46f3165318f760b2339208b19a0bde
# Dataset Card for ASQA ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Additional Information](#additional-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** https://github.com/google-research/language/tree/master/language/asqa - **Paper:** https://arxiv.org/abs/2204.06092 - **Leaderboard:** https://ambigqa.github.io/asqa_leaderboard.html ### Dataset Summary ASQA is the first long-form question answering dataset that focuses on ambiguous factoid questions. Different from previous long-form answers datasets, each question is annotated with both long-form answers and extractive question-answer pairs, which should be answerable by the generated passage. A generated long-form answer will be evaluated using both ROUGE and QA accuracy. In the paper, we show that these evaluation metrics are well-correlated with human judgments. ### Supported Tasks and Leaderboards Long-form Question Answering. [Leaderboard](https://ambigqa.github.io/asqa_leaderboard.html) ### Languages - English ## Dataset Structure ### Data Instances ```py { "ambiguous_question": "Where does the civil liberties act place the blame for the internment of u.s. citizens?", "qa_pairs": [ { "context": "No context provided", "question": "Where does the civil liberties act place the blame for the internment of u.s. citizens by apologizing on behalf of them?", "short_answers": [ "the people of the United States" ], "wikipage": None }, { "context": "No context provided", "question": "Where does the civil liberties act place the blame for the internment of u.s. citizens by making them pay reparations?", "short_answers": [ "United States government" ], "wikipage": None } ], "wikipages": [ { "title": "Civil Liberties Act of 1988", "url": "https://en.wikipedia.org/wiki/Civil%20Liberties%20Act%20of%201988" } ], "annotations": [ { "knowledge": [ { "content": "The Civil Liberties Act of 1988 (Pub.L. 100–383, title I, August 10, 1988, 102 Stat. 904, 50a U.S.C. § 1989b et seq.) is a United States federal law that granted reparations to Japanese Americans who had been interned by the United States government during World War II.", "wikipage": "Civil Liberties Act of 1988" } ], "long_answer": "The Civil Liberties Act of 1988 is a United States federal law that granted reparations to Japanese Americans who had been interned by the United States government during World War II. In the act, the blame for the internment of U.S. citizens was placed on the people of the United States, by apologizing on behalf of them. Furthermore, the blame for the internment was placed on the United States government, by making them pay reparations." } ], "sample_id": -4557617869928758000 } ``` ### Data Fields - `ambiguous_question`: ambiguous question from AmbigQA. - `annotations`: long-form answers to the ambiguous question constructed by ASQA annotators. - `annotations/knowledge`: list of additional knowledge pieces. - `annotations/knowledge/content`: a passage from Wikipedia. - `annotations/knowledge/wikipage`: title of the Wikipedia page the passage was taken from. - `annotations/long_answer`: annotation. - `qa_pairs`: Q&A pairs from AmbigQA which are used for disambiguation. - `qa_pairs/context`: additional context provided. - `qa_pairs/question`: disambiguated question from AmbigQA. - `qa_pairs/short_answers`: list of short answers from AmbigQA. - `qa_pairs/wikipage`: title of the Wikipedia page the additional context was taken from. - `sample_id`: the unique id of the sample - `wikipages`: list of Wikipedia pages visited by AmbigQA annotators. - `wikipages/title`: title of the Wikipedia page. - `wikipages/url`: link to the Wikipedia page. ### Data Splits | **Split** | **Instances** | |-----------|---------------| | Train | 4353 | | Dev | 948 | ## Additional Information ### Contributions Thanks to [@din0s](https://github.com/din0s) for adding this dataset.
din0s/asqa
[ "task_categories:question-answering", "task_ids:open-domain-qa", "annotations_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:extended|ambig_qa", "language:en", "license:apache-2.0", "factoid questions", "long-form answers", "arxiv:2204.06092", "region:us" ]
2022-09-19T21:25:51+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["extended|ambig_qa"], "task_categories": ["question-answering"], "task_ids": ["open-domain-qa"], "pretty_name": "ASQA", "tags": ["factoid questions", "long-form answers"]}
2022-09-20T15:14:54+00:00
c5a4721b5d4ff814a1af2020df60566a313ea67b
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Zero-Shot Text Classification * Model: Tristan/opt-30b-copy * Dataset: Tristan/zero-shot-classification-large-test * Config: Tristan--zero-shot-classification-large-test * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@Tristan](https://huggingface.co/Tristan) for evaluating this model.
autoevaluate/autoeval-eval-Tristan__zero-shot-classification-large-test-Tristan__z-8b146c-1511954902
[ "autotrain", "evaluation", "region:us" ]
2022-09-19T21:26:19+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["Tristan/zero-shot-classification-large-test"], "eval_info": {"task": "text_zero_shot_classification", "model": "Tristan/opt-30b-copy", "metrics": [], "dataset_name": "Tristan/zero-shot-classification-large-test", "dataset_config": "Tristan--zero-shot-classification-large-test", "dataset_split": "test", "col_mapping": {"text": "text", "classes": "classes", "target": "target"}}}
2022-09-21T04:08:06+00:00
53485f36c96f2307855b50421da83f27bfff2397
vincentchai/b52092000
[ "license:apache-2.0", "region:us" ]
2022-09-20T02:16:34+00:00
{"license": "apache-2.0"}
2022-09-20T02:16:34+00:00
922289449f1fd355224c344759378c53532a2189
Natmat/Test
[ "license:other", "region:us" ]
2022-09-20T02:52:04+00:00
{"license": "other"}
2022-10-19T05:59:35+00:00
baa096440c81620325d5c6f774eacb668dbd1db8
- 사회과학-en-ko 번역 말뭉치
bongsoo/social_science_en_ko
[ "language:ko", "license:apache-2.0", "region:us" ]
2022-09-20T03:45:54+00:00
{"language": ["ko"], "license": "apache-2.0"}
2022-10-04T23:09:30+00:00
8ffecf6e6c61389f9c02f13f3875d810ff506fa3
- 뉴스&일상대화 en-ko 번역 말뭉치
bongsoo/news_talk_en_ko
[ "language:ko", "license:apache-2.0", "region:us" ]
2022-09-20T04:10:56+00:00
{"language": ["ko"], "license": "apache-2.0"}
2022-10-04T23:09:50+00:00
d356ef19a4eb287e88a51d07a56b73ba88c7f188
# Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
ai4bharat/IndicCOPA
[ "task_categories:multiple-choice", "task_ids:multiple-choice-qa", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:multilingual", "size_categories:1K<n<10K", "source_datasets:extended|xcopa", "language:as", "language:bn", "language:en", "language:gom", "language:gu", "language:hi", "language:kn", "language:mai", "language:ml", "language:mr", "language:ne", "language:or", "language:pa", "language:sa", "language:sat", "language:sd", "language:ta", "language:te", "language:ur", "license:cc-by-4.0", "region:us" ]
2022-09-20T07:18:35+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["as", "bn", "en", "gom", "gu", "hi", "kn", "mai", "ml", "mr", "ne", "or", "pa", "sa", "sat", "sd", "ta", "te", "ur"], "license": ["cc-by-4.0"], "multilinguality": ["multilingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["extended|xcopa"], "task_categories": ["multiple-choice"], "task_ids": ["multiple-choice-qa"], "pretty_name": "IndicXCOPA", "tags": []}
2022-12-15T11:34:32+00:00
e58cab3ab22391abadb7397dcc938c07ec1e91a5
NaturalTeam/KoBART_TEST
[ "license:unknown", "region:us" ]
2022-09-20T07:41:33+00:00
{"license": "unknown"}
2022-09-20T07:41:33+00:00
f8da6feede333581902766efa79a7701e0287b44
Shushant/NepaliCovidTweets
[ "license:other", "region:us" ]
2022-09-20T07:54:59+00:00
{"license": "other"}
2022-09-20T07:59:06+00:00
fcbf84785bd5d498892cf01a322a92bb1a17f9bb
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP14 * Dataset: kmfoda/booksum * Config: kmfoda--booksum * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-kmfoda__booksum-kmfoda__booksum-373400-1514054915
[ "autotrain", "evaluation", "region:us" ]
2022-09-20T08:57:23+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["kmfoda/booksum"], "eval_info": {"task": "summarization", "model": "pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP14", "metrics": [], "dataset_name": "kmfoda/booksum", "dataset_config": "kmfoda--booksum", "dataset_split": "test", "col_mapping": {"text": "chapter", "target": "summary_text"}}}
2022-09-21T14:33:56+00:00
bec9eb5363a82c6de35a6426842e86f55db7e9c1
vuksan314/Lavko
[ "license:cc", "region:us" ]
2022-09-20T10:47:53+00:00
{"license": "cc"}
2022-09-20T10:51:55+00:00
773b86a2ed4dee382df30a17ea4e00c490e5d2d1
varun-d/demo-data
[ "license:apache-2.0", "region:us" ]
2022-09-20T11:28:55+00:00
{"license": "apache-2.0"}
2022-09-20T12:58:21+00:00
3aaacdae72ffce33d77189f33dab28e9e4f7007a
ksang/TwitchStreams
[ "region:us" ]
2022-09-20T11:35:10+00:00
{}
2022-09-20T13:20:36+00:00
a3d4cb163d1cbad84af92ed4f6e9b4ada4cb0d69
niallashley/regenerate
[ "license:cc", "region:us" ]
2022-09-20T13:50:05+00:00
{"license": "cc"}
2022-09-20T14:00:01+00:00
97139a9fbab6912b3fd89604427d4304d20847e6
# Dataset Card for RSDO4 en-sl parallel corpus ### Dataset Summary The RSDO4 parallel corpus of English-Slovene and Slovene-English translation pairs was collected as part of work package 4 of the Slovene in the Digital Environment project. It contains texts collected from public institutions and texts submitted by individual donors through the text collection portal created within the project. The corpus consists of 964433 translation pairs (extracted from standard translation formats (TMX, XLIFF) or manually aligned) in randomized order which can be used for machine translation training. ### Supported Tasks and Leaderboards Machine translation. ### Languages English, Slovenian. ## Dataset Structure ### Data Instances A sample instance from the dataset: ``` { 'en_seq': 'the total value of its assets exceeds EUR 30000000000;', 'sl_seq': 'skupna vrednost njenih sredstev presega 30000000000 EUR' } ``` ### Data Fields - `en_seq`: a string containing the English sequence; - `sl_seq`: a string containing the Slovene sequence. ## Additional Information ### Dataset Curators Andraž Repar and Iztok Lebar Bajec. ### Licensing Information CC BY-SA 4.0. ### Citation Information ``` @misc{rsdo4_en_sl, title = {Parallel corpus {EN}-{SL} {RSDO4} 1.0}, author = {Repar, Andra{\v z} and Lebar Bajec, Iztok}, url = {http://hdl.handle.net/11356/1457}, year = {2021} } ``` ### Contributions Thanks to [@matejklemen](https://github.com/matejklemen) for adding this dataset.
cjvt/rsdo4_en_sl
[ "task_categories:translation", "task_categories:text2text-generation", "task_categories:text-generation", "annotations_creators:expert-generated", "annotations_creators:found", "language_creators:crowdsourced", "multilinguality:translation", "size_categories:100K<n<1M", "language:en", "language:sl", "license:cc-by-sa-4.0", "parallel data", "rsdo", "region:us" ]
2022-09-20T14:23:40+00:00
{"annotations_creators": ["expert-generated", "found"], "language_creators": ["crowdsourced"], "language": ["en", "sl"], "license": ["cc-by-sa-4.0"], "multilinguality": ["translation"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["translation", "text2text-generation", "text-generation"], "task_ids": [], "pretty_name": "RSDO4 en-sl parallel corpus", "tags": ["parallel data", "rsdo"]}
2022-09-20T16:38:33+00:00
9ee9719a3ff0a5ef8d5e31eff4f5dd81a08fe47b
nonnon/test
[ "license:other", "region:us" ]
2022-09-20T14:37:10+00:00
{"license": "other"}
2022-09-25T12:59:28+00:00
62c78627f3072a1454fa0cb0184737cafe5e4198
# HumanEval-X ## Dataset Description [HumanEval-X](https://github.com/THUDM/CodeGeeX) is a benchmark for evaluating the multilingual ability of code generative models. It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks, such as code generation and translation. ## Languages The dataset contains coding problems in 5 programming languages: Python, C++, Java, JavaScript, and Go. ## Dataset Structure To load the dataset you need to specify a subset among the 5 exiting languages `[python, cpp, go, java, js]`. By default `python` is loaded. ```python from datasets import load_dataset load_dataset("THUDM/humaneval-x", "js") DatasetDict({ test: Dataset({ features: ['task_id', 'prompt', 'declaration', 'canonical_solution', 'test', 'example_test'], num_rows: 164 }) }) ``` ```python next(iter(data["test"])) {'task_id': 'JavaScript/0', 'prompt': '/* Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> hasCloseElements([1.0, 2.0, 3.0], 0.5)\n false\n >>> hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n true\n */\nconst hasCloseElements = (numbers, threshold) => {\n', 'declaration': '\nconst hasCloseElements = (numbers, threshold) => {\n', 'canonical_solution': ' for (let i = 0; i < numbers.length; i++) {\n for (let j = 0; j < numbers.length; j++) {\n if (i != j) {\n let distance = Math.abs(numbers[i] - numbers[j]);\n if (distance < threshold) {\n return true;\n }\n }\n }\n }\n return false;\n}\n\n', 'test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) === true)\n console.assert(\n hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) === false\n )\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) === true)\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) === false)\n console.assert(hasCloseElements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) === false)\n}\n\ntestHasCloseElements()\n', 'example_test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.0], 0.5) === false)\n console.assert(\n hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) === true\n )\n}\ntestHasCloseElements()\n'} ``` ## Data Fields * ``task_id``: indicates the target language and ID of the problem. Language is one of ["Python", "Java", "JavaScript", "CPP", "Go"]. * ``prompt``: the function declaration and docstring, used for code generation. * ``declaration``: only the function declaration, used for code translation. * ``canonical_solution``: human-crafted example solutions. * ``test``: hidden test samples, used for evaluation. * ``example_test``: public test samples (appeared in prompt), used for evaluation. ## Data Splits Each subset has one split: test. ## Citation Information Refer to https://github.com/THUDM/CodeGeeX.
THUDM/humaneval-x
[ "task_categories:text-generation", "task_ids:language-modeling", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "size_categories:unknown", "language:code", "license:apache-2.0", "region:us" ]
2022-09-20T15:23:53+00:00
{"annotations_creators": [], "language_creators": ["crowdsourced", "expert-generated"], "language": ["code"], "license": ["apache-2.0"], "multilinguality": ["multilingual"], "size_categories": ["unknown"], "source_datasets": [], "task_categories": ["text-generation"], "task_ids": ["language-modeling"], "pretty_name": "HumanEval-X"}
2022-10-25T05:08:38+00:00
884ea34ad5711abf4fa430a58eed5fcaf6bebaea
nlp-guild/medical-data
[ "license:mit", "region:us" ]
2022-09-20T15:46:48+00:00
{"license": "mit"}
2022-09-20T15:47:13+00:00
09a7ed9517756e50b961dd44c17d91b2a9292bb0
# pytorch-image-models metrics This dataset contains metrics about the huggingface/pytorch-image-models package. Number of repositories in the dataset: 3615 Number of packages in the dataset: 89 ## Package dependents This contains the data available in the [used-by](https://github.com/huggingface/pytorch-image-models/network/dependents) tab on GitHub. ### Package & Repository star count This section shows the package and repository star count, individually. Package | Repository :-------------------------:|:-------------------------: ![pytorch-image-models-dependent package star count](./pytorch-image-models-dependents/resolve/main/pytorch-image-models-dependent_package_star_count.png) | ![pytorch-image-models-dependent repository star count](./pytorch-image-models-dependents/resolve/main/pytorch-image-models-dependent_repository_star_count.png) There are 18 packages that have more than 1000 stars. There are 39 repositories that have more than 1000 stars. The top 10 in each category are the following: *Package* [huggingface/transformers](https://github.com/huggingface/transformers): 70536 [fastai/fastai](https://github.com/fastai/fastai): 22776 [open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection): 21390 [MVIG-SJTU/AlphaPose](https://github.com/MVIG-SJTU/AlphaPose): 6424 [qubvel/segmentation_models.pytorch](https://github.com/qubvel/segmentation_models.pytorch): 6115 [awslabs/autogluon](https://github.com/awslabs/autogluon): 4818 [neuml/txtai](https://github.com/neuml/txtai): 2531 [open-mmlab/mmaction2](https://github.com/open-mmlab/mmaction2): 2357 [open-mmlab/mmselfsup](https://github.com/open-mmlab/mmselfsup): 2271 [lukas-blecher/LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR): 1999 *Repository* [huggingface/transformers](https://github.com/huggingface/transformers): 70536 [commaai/openpilot](https://github.com/commaai/openpilot): 35919 [facebookresearch/detectron2](https://github.com/facebookresearch/detectron2): 22287 [ray-project/ray](https://github.com/ray-project/ray): 22057 [open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection): 21390 [NVIDIA/DeepLearningExamples](https://github.com/NVIDIA/DeepLearningExamples): 9260 [microsoft/unilm](https://github.com/microsoft/unilm): 6664 [pytorch/tutorials](https://github.com/pytorch/tutorials): 6331 [qubvel/segmentation_models.pytorch](https://github.com/qubvel/segmentation_models.pytorch): 6115 [hpcaitech/ColossalAI](https://github.com/hpcaitech/ColossalAI): 4944 ### Package & Repository fork count This section shows the package and repository fork count, individually. Package | Repository :-------------------------:|:-------------------------: ![pytorch-image-models-dependent package forks count](./pytorch-image-models-dependents/resolve/main/pytorch-image-models-dependent_package_forks_count.png) | ![pytorch-image-models-dependent repository forks count](./pytorch-image-models-dependents/resolve/main/pytorch-image-models-dependent_repository_forks_count.png) There are 12 packages that have more than 200 forks. There are 28 repositories that have more than 200 forks. The top 10 in each category are the following: *Package* [huggingface/transformers](https://github.com/huggingface/transformers): 16175 [open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection): 7791 [fastai/fastai](https://github.com/fastai/fastai): 7296 [MVIG-SJTU/AlphaPose](https://github.com/MVIG-SJTU/AlphaPose): 1765 [qubvel/segmentation_models.pytorch](https://github.com/qubvel/segmentation_models.pytorch): 1217 [open-mmlab/mmaction2](https://github.com/open-mmlab/mmaction2): 787 [awslabs/autogluon](https://github.com/awslabs/autogluon): 638 [open-mmlab/mmselfsup](https://github.com/open-mmlab/mmselfsup): 321 [rwightman/efficientdet-pytorch](https://github.com/rwightman/efficientdet-pytorch): 265 [lukas-blecher/LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR): 247 *Repository* [huggingface/transformers](https://github.com/huggingface/transformers): 16175 [open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection): 7791 [commaai/openpilot](https://github.com/commaai/openpilot): 6603 [facebookresearch/detectron2](https://github.com/facebookresearch/detectron2): 6033 [ray-project/ray](https://github.com/ray-project/ray): 3879 [pytorch/tutorials](https://github.com/pytorch/tutorials): 3478 [NVIDIA/DeepLearningExamples](https://github.com/NVIDIA/DeepLearningExamples): 2499 [microsoft/unilm](https://github.com/microsoft/unilm): 1223 [qubvel/segmentation_models.pytorch](https://github.com/qubvel/segmentation_models.pytorch): 1217 [layumi/Person_reID_baseline_pytorch](https://github.com/layumi/Person_reID_baseline_pytorch): 928
open-source-metrics/pytorch-image-models-dependents
[ "license:apache-2.0", "github-stars", "region:us" ]
2022-09-20T17:47:36+00:00
{"license": "apache-2.0", "pretty_name": "pytorch-image-models metrics", "tags": ["github-stars"], "dataset_info": {"features": [{"name": "name", "dtype": "null"}, {"name": "stars", "dtype": "null"}, {"name": "forks", "dtype": "null"}], "splits": [{"name": "package"}, {"name": "repository"}], "download_size": 1798, "dataset_size": 0}}
2024-02-16T20:19:14+00:00
6f09b80cc6924269b90040678851440eb7fca9b6
huggingface-projects/color-palettes-sd
[ "license:cc-by-4.0", "region:us" ]
2022-09-20T19:44:07+00:00
{"license": "cc-by-4.0"}
2023-06-21T08:48:10+00:00
deed3ddd239c882afb8c65feebe82015ba82bcb5
gexai/inquisitiveqg
[ "license:unknown", "region:us" ]
2022-09-20T20:13:53+00:00
{"license": "unknown"}
2022-09-20T20:22:53+00:00
4a8f8026a4dc86f31a7576da3a12b48008a6565a
j0hngou/ccmatrix_en-fr
[ "language:en", "language:fr", "region:us" ]
2022-09-20T21:39:51+00:00
{"language": ["en", "fr"]}
2022-09-26T15:35:19+00:00
f0f93f25d29f82efdd73689b88b36c8fc85d4e41
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP15 * Dataset: samsum * Config: samsum * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-samsum-samsum-431a89-1518654983
[ "autotrain", "evaluation", "region:us" ]
2022-09-20T21:48:28+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP15", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "test", "col_mapping": {"text": "dialogue", "target": "summary"}}}
2022-09-20T22:13:17+00:00
5a6a80994c21d0d9b4f87e828633e9aa549a4a8c
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP14 * Dataset: samsum * Config: samsum * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-samsum-samsum-7e8d42-1518754984
[ "autotrain", "evaluation", "region:us" ]
2022-09-20T21:48:34+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP14", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "test", "col_mapping": {"text": "dialogue", "target": "summary"}}}
2022-09-20T22:20:18+00:00
850f60cb653353971f22827cf61e6b1d1a2a53a5
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP15 * Dataset: kmfoda/booksum * Config: kmfoda--booksum * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-kmfoda__booksum-kmfoda__booksum-61a81c-1518854985
[ "autotrain", "evaluation", "region:us" ]
2022-09-20T21:48:37+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["kmfoda/booksum"], "eval_info": {"task": "summarization", "model": "pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP15", "metrics": [], "dataset_name": "kmfoda/booksum", "dataset_config": "kmfoda--booksum", "dataset_split": "test", "col_mapping": {"text": "chapter", "target": "summary_text"}}}
2022-09-22T01:29:45+00:00
bc5a20bfe51eff9d9e3e6bfe9d02ccb09cd15f72
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP15 * Dataset: billsum * Config: default * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-billsum-default-4428b0-1518954986
[ "autotrain", "evaluation", "region:us" ]
2022-09-20T21:48:43+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["billsum"], "eval_info": {"task": "summarization", "model": "pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP15", "metrics": [], "dataset_name": "billsum", "dataset_config": "default", "dataset_split": "test", "col_mapping": {"text": "text", "target": "summary"}}}
2022-09-22T03:13:05+00:00
eb2885f64a337ab00115293d9856a96f80b30d40
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/pegasus-x-large-book-summary * Dataset: samsum * Config: samsum * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-samsum-samsum-b534aa-1519254997
[ "autotrain", "evaluation", "region:us" ]
2022-09-20T22:47:58+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "pszemraj/pegasus-x-large-book-summary", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "test", "col_mapping": {"text": "dialogue", "target": "summary"}}}
2022-09-20T23:18:15+00:00
a760d3533762a423ca38cb5f4d1d59a31f016a68
Moussab/ORKG-training-evaluation-set
[ "license:afl-3.0", "region:us" ]
2022-09-20T23:39:50+00:00
{"license": "afl-3.0"}
2022-10-12T12:44:47+00:00
aac811df777aae214beb430564b14042ac1b4618
slartibartfast/emojis2
[ "license:openrail", "region:us" ]
2022-09-20T23:42:17+00:00
{"license": "openrail"}
2022-09-21T13:16:56+00:00
35887c2231bd760062d6b0089c0f147ae61a111e
Moussab/evaluation-vanilla-models
[ "license:afl-3.0", "region:us" ]
2022-09-20T23:42:56+00:00
{"license": "afl-3.0"}
2022-09-20T23:44:35+00:00
4eb43f034eb3fac376bb1c84851523adb09029f0
Moussab/evaluation-results-fine-tuned-models
[ "license:afl-3.0", "region:us" ]
2022-09-20T23:45:37+00:00
{"license": "afl-3.0"}
2022-09-20T23:46:23+00:00
ae75e6b3d921b85c9a7f5510181d1a32fc140c3c
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/pegasus-x-large-book-summary * Dataset: billsum * Config: default * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-billsum-default-dd03f7-1519455003
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T01:14:54+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["billsum"], "eval_info": {"task": "summarization", "model": "pszemraj/pegasus-x-large-book-summary", "metrics": [], "dataset_name": "billsum", "dataset_config": "default", "dataset_split": "test", "col_mapping": {"text": "text", "target": "summary"}}}
2022-09-21T16:34:50+00:00
84e95341fadae3179e6f9418e04ab530f0411814
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/pegasus-x-large-book-summary * Dataset: launch/gov_report * Config: plain_text * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-launch__gov_report-plain_text-4ad6c8-1519755004
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T01:15:01+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["launch/gov_report"], "eval_info": {"task": "summarization", "model": "pszemraj/pegasus-x-large-book-summary", "metrics": [], "dataset_name": "launch/gov_report", "dataset_config": "plain_text", "dataset_split": "test", "col_mapping": {"text": "document", "target": "summary"}}}
2022-09-21T06:37:56+00:00
8fcbf087a8ba256d1d8ad78d5474126481b43e73
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/pegasus-x-large-book-summary * Dataset: big_patent * Config: y * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-big_patent-y-b4cccf-1519855005
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T01:15:04+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["big_patent"], "eval_info": {"task": "summarization", "model": "pszemraj/pegasus-x-large-book-summary", "metrics": [], "dataset_name": "big_patent", "dataset_config": "y", "dataset_split": "test", "col_mapping": {"text": "description", "target": "abstract"}}}
2022-09-22T05:24:35+00:00
94ff6a5935f6cd3ff8a915f76e6852c4a3667a7f
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2 * Dataset: samsum * Config: samsum * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@samuelallen123](https://huggingface.co/samuelallen123) for evaluating this model.
autoevaluate/autoeval-eval-samsum-samsum-a5c306-1520055006
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T01:15:11+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "test", "col_mapping": {"text": "dialogue", "target": "summary"}}}
2022-09-21T01:23:40+00:00
169d0612fccaa4dd7bff2fa33ab533b40aeef69e
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2 * Dataset: samsum * Config: samsum * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@samuelallen123](https://huggingface.co/samuelallen123) for evaluating this model.
autoevaluate/autoeval-eval-samsum-samsum-bf100b-1520255007
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T01:15:16+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2", "metrics": ["rouge"], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "test", "col_mapping": {"text": "dialogue", "target": "summary"}}}
2022-09-21T01:23:16+00:00
523d566065cd18bc42172c82f9ffa933eaf29b05
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Zero-Shot Text Classification * Model: Tristan/opt-66b-copy * Dataset: Tristan/zero_shot_classification_test * Config: Tristan--zero_shot_classification_test * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@Tristan](https://huggingface.co/Tristan) for evaluating this model.
autoevaluate/autoeval-eval-Tristan__zero_shot_classification_test-Tristan__zero_sh-c10c5c-1520355008
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T01:23:04+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["Tristan/zero_shot_classification_test"], "eval_info": {"task": "text_zero_shot_classification", "model": "Tristan/opt-66b-copy", "metrics": [], "dataset_name": "Tristan/zero_shot_classification_test", "dataset_config": "Tristan--zero_shot_classification_test", "dataset_split": "test", "col_mapping": {"text": "text", "classes": "classes", "target": "target"}}}
2022-09-21T02:16:17+00:00
5d3309b8aa10d7cf28752a9589c8a8a99325e069
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Question Answering * Model: SebastianS/distilbert-base-uncased-finetuned-squad-d5716d28 * Dataset: squad_v2 * Config: squad_v2 * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@ColdYoungGuy](https://huggingface.co/ColdYoungGuy) for evaluating this model.
autoevaluate/autoeval-eval-squad_v2-squad_v2-e4ddf6-1520555010
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T03:30:06+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["squad_v2"], "eval_info": {"task": "extractive_question_answering", "model": "SebastianS/distilbert-base-uncased-finetuned-squad-d5716d28", "metrics": [], "dataset_name": "squad_v2", "dataset_config": "squad_v2", "dataset_split": "validation", "col_mapping": {"context": "context", "question": "question", "answers-text": "answers.text", "answers-answer_start": "answers.answer_start"}}}
2022-09-21T03:32:36+00:00
6a940d4970bd3b248c1d6e3f35bd59c7befdfade
HighSodium/inflation
[ "license:odbl", "region:us" ]
2022-09-21T07:01:53+00:00
{"license": "odbl"}
2022-09-21T07:07:12+00:00
a8f7d8754929868c25e7139e643b59a41dc19964
Harrietofthesea/public_test
[ "license:cc", "region:us" ]
2022-09-21T07:26:50+00:00
{"license": "cc"}
2022-09-21T07:31:29+00:00
af9881620d1112fee620f0b76a93233233d0e017
sdhj/wwww
[ "license:apache-2.0", "region:us" ]
2022-09-21T08:27:24+00:00
{"license": "apache-2.0"}
2022-09-21T08:47:48+00:00
f9fb35f4134e32b9c8100199d949398fd6d08a5f
We partition the earnings22 dataset at https://huggingface.co/datasets/anton-l/earnings22_baseline_5_gram by `source_id`: Validation: 4420696 4448760 4461799 4469836 4473238 4482110 Test: 4432298 4450488 4470290 4479741 4483338 4485244 Train: remainder Official script for processing these splits will be released shortly.
sanchit-gandhi/earnings22_split
[ "region:us" ]
2022-09-21T09:35:49+00:00
{}
2022-09-23T08:44:26+00:00
16c96aacfd2f858c7577cd1944a8e67992036e8c
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: pszemraj/pegasus-x-large-book-summary * Dataset: kmfoda/booksum * Config: kmfoda--booksum * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@pszemraj](https://huggingface.co/pszemraj) for evaluating this model.
autoevaluate/autoeval-eval-kmfoda__booksum-kmfoda__booksum-e42237-1523455078
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T10:41:40+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["kmfoda/booksum"], "eval_info": {"task": "summarization", "model": "pszemraj/pegasus-x-large-book-summary", "metrics": [], "dataset_name": "kmfoda/booksum", "dataset_config": "kmfoda--booksum", "dataset_split": "test", "col_mapping": {"text": "chapter", "target": "summary_text"}}}
2022-09-21T17:28:50+00:00
b87e432d0decd12b0de10ce6c92a3c75536f2b3f
AIRI-Institute/I4TALK_DATA
[ "license:cc-by-sa-4.0", "region:us" ]
2022-09-21T10:51:05+00:00
{"license": "cc-by-sa-4.0"}
2022-09-21T10:51:05+00:00
7c1cc64b8570c0d0882b285941fd625c4bbb886c
# 1 Source Source: https://github.com/alibaba-research/ChineseBLUE # 2 Definition of the tagset ```python tag_set = [ 'B_手术', 'I_疾病和诊断', 'B_症状', 'I_解剖部位', 'I_药物', 'B_影像检查', 'B_药物', 'B_疾病和诊断', 'I_影像检查', 'I_手术', 'B_解剖部位', 'O', 'B_实验室检验', 'I_症状', 'I_实验室检验' ] tag2id = lambda tag: tag_set.index(tag) id2tag = lambda id: tag_set[id] ``` # 3 Citation To use this dataset in your work please cite: Ningyu Zhang, Qianghuai Jia, Kangping Yin, Liang Dong, Feng Gao, Nengwei Hua. Conceptualized Representation Learning for Chinese Biomedical Text Mining ``` @article{zhang2020conceptualized, title={Conceptualized Representation Learning for Chinese Biomedical Text Mining}, author={Zhang, Ningyu and Jia, Qianghuai and Yin, Kangping and Dong, Liang and Gao, Feng and Hua, Nengwei}, journal={arXiv preprint arXiv:2008.10813}, year={2020} } ```
Adapting/chinese_biomedical_NER_dataset
[ "license:mit", "region:us" ]
2022-09-21T11:52:05+00:00
{"license": "mit"}
2022-09-21T17:21:15+00:00
9377b07c09c9e734468cb85f7a58b16c46aa264c
myt517/GID_benchmark
[ "license:apache-2.0", "region:us" ]
2022-09-21T12:42:32+00:00
{"license": "apache-2.0"}
2022-09-21T13:06:09+00:00
b52c6bf1f753da7c473f7954708a160b26fcaa6e
ArneBinder/xfund
[ "license:cc-by-nc-sa-4.0", "region:us" ]
2022-09-21T13:57:42+00:00
{"license": "cc-by-nc-sa-4.0"}
2022-09-21T14:12:34+00:00
51d9269a2818c7fe39b9380efc9a62f40a8e5b2e
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2 * Dataset: cnn_dailymail * Config: 3.0.0 * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@samuelallen123](https://huggingface.co/samuelallen123) for evaluating this model.
autoevaluate/autoeval-eval-cnn_dailymail-3.0.0-bf74a8-1524255094
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T14:21:44+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["cnn_dailymail"], "eval_info": {"task": "summarization", "model": "SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2", "metrics": [], "dataset_name": "cnn_dailymail", "dataset_config": "3.0.0", "dataset_split": "test", "col_mapping": {"text": "article", "target": "highlights"}}}
2022-09-21T17:43:44+00:00
662fce7ab3d2e18087973b1f15470b1dfaf81f9e
# Dataset Card for TellMeWhy ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://stonybrooknlp.github.io/tellmewhy/ - **Repository:** https://github.com/StonyBrookNLP/tellmewhy - **Paper:** https://aclanthology.org/2021.findings-acl.53/ - **Leaderboard:** None - **Point of Contact:** [Yash Kumar Lal](mailto:[email protected]) ### Dataset Summary TellMeWhy is a large-scale crowdsourced dataset made up of more than 30k questions and free-form answers concerning why characters in short narratives perform the actions described. ### Supported Tasks and Leaderboards The dataset is designed to test why-question answering abilities of models when bound by local context. ### Languages English ## Dataset Structure ### Data Instances A typical data point consists of a story, a question and a crowdsourced answer to that question. Additionally, the instance also indicates whether the question's answer would be implicit or if it is explicitly stated in text. If applicable, it also contains Likert scores (-2 to 2) about the answer's grammaticality and validity in the given context. ``` { "narrative":"Cam ordered a pizza and took it home. He opened the box to take out a slice. Cam discovered that the store did not cut the pizza for him. He looked for his pizza cutter but did not find it. He had to use his chef knife to cut a slice.", "question":"Why did Cam order a pizza?", "original_sentence_for_question":"Cam ordered a pizza and took it home.", "narrative_lexical_overlap":0.3333333333, "is_ques_answerable":"Not Answerable", "answer":"Cam was hungry.", "is_ques_answerable_annotator":"Not Answerable", "original_narrative_form":[ "Cam ordered a pizza and took it home.", "He opened the box to take out a slice.", "Cam discovered that the store did not cut the pizza for him.", "He looked for his pizza cutter but did not find it.", "He had to use his chef knife to cut a slice." ], "question_meta":"rocstories_narrative_41270_sentence_0_question_0", "helpful_sentences":[ ], "human_eval":false, "val_ann":[ ], "gram_ann":[ ] } ``` ### Data Fields - `question_meta` - Unique meta for each question in the corpus - `narrative` - Full narrative from ROCStories. Used as the context with which the question and answer are associated - `question` - Why question about an action or event in the narrative - `answer` - Crowdsourced answer to the question - `original_sentence_for_question` - Sentence in narrative from which question was generated - `narrative_lexical_overlap` - Unigram overlap of answer with the narrative - `is_ques_answerable` - Majority judgment by annotators on whether an answer to this question is explicitly stated in the narrative. If "Not Answerable", it is part of the Implicit-Answer questions subset, which is harder for models. - `is_ques_answerable_annotator` - Individual annotator judgment on whether an answer to this question is explicitly stated in the narrative. - `original_narrative_form` - ROCStories narrative as an array of its sentences - `human_eval` - Indicates whether a question is a specific part of the test set. Models should be evaluated for their answers on these questions using the human evaluation suite released by the authors. They advocate for this human evaluation to be the correct way to track progress on this dataset. - `val_ann` - Array of Likert scores (possible sizes are 0 and 3) about whether an answer is valid given the question and context. Empty arrays exist for cases where the human_eval flag is False. - `gram_ann` - Array of Likert scores (possible sizes are 0 and 3) about whether an answer is grammatical. Empty arrays exist for cases where the human_eval flag is False. ### Data Splits The data is split into training, valiudation, and test sets. | Train | Valid | Test | | ------ | ----- | ----- | | 23964 | 2992 | 3563 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data ROCStories corpus (Mostafazadeh et al, 2016) #### Initial Data Collection and Normalization ROCStories was used to create why-questions related to actions and events in the stories. #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process Amazon Mechanical Turk workers were provided a story and an associated why-question, and asked to answer. Three answers were collected for each question. For a small subset of questions, the quality of answers was also validated in a second round of annotation. This smaller subset should be used to perform human evaluation of any new models built for this dataset. #### Who are the annotators? Amazon Mechanical Turk workers ### Personal and Sensitive Information None ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Evaluation To evaluate progress on this dataset, the authors advocate for human evaluation and release a suite with the required settings [here](https://github.com/StonyBrookNLP/tellmewhy). Once inference on the test set has been completed, please filter out the answers on which human evaluation needs to be performed by selecting the questions (one answer per question, deduplication might be needed) in the test set where the `human_eval` flag is set to `True`. This subset can then be used to complete the requisite evaluation on TellMeWhy. ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @inproceedings{lal-etal-2021-tellmewhy, title = "{T}ell{M}e{W}hy: A Dataset for Answering Why-Questions in Narratives", author = "Lal, Yash Kumar and Chambers, Nathanael and Mooney, Raymond and Balasubramanian, Niranjan", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.53", doi = "10.18653/v1/2021.findings-acl.53", pages = "596--610", } ``` ### Contributions Thanks to [@yklal95](https://github.com/ykl7) for adding this dataset.
StonyBrookNLP/tellmewhy
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:unknown", "region:us" ]
2022-09-21T15:11:29+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "pretty_name": "TellMeWhy"}
2024-01-24T21:12:22+00:00
0af0ec66aa94b834cd671169833768ef6063285e
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Zero-Shot Text Classification * Model: mathemakitten/opt-125m * Dataset: mathemakitten/winobias_antistereotype_dev * Config: mathemakitten--winobias_antistereotype_dev * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@mathemakitten](https://huggingface.co/mathemakitten) for evaluating this model.
autoevaluate/autoeval-eval-mathemakitten__winobias_antistereotype_dev-mathemakitte-169e67-1524755111
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T16:28:14+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["mathemakitten/winobias_antistereotype_dev"], "eval_info": {"task": "text_zero_shot_classification", "model": "mathemakitten/opt-125m", "metrics": [], "dataset_name": "mathemakitten/winobias_antistereotype_dev", "dataset_config": "mathemakitten--winobias_antistereotype_dev", "dataset_split": "validation", "col_mapping": {"text": "text", "classes": "classes", "target": "target"}}}
2022-09-21T16:48:48+00:00
c4d0527ce23b301ba6b56bcf1c32d302d75c9bfb
MvsSrs/quistest
[ "license:unknown", "region:us" ]
2022-09-21T16:38:44+00:00
{"license": "unknown"}
2022-09-26T20:09:58+00:00
71fce68bfcbd42b9ac56f691818a957ef3c8f4fa
PotatoGod/testing
[ "license:afl-3.0", "region:us" ]
2022-09-21T16:50:32+00:00
{"license": "afl-3.0"}
2022-09-22T08:19:25+00:00
d27fa3d9aea71a1de1cfc280bb534887b05f510d
This dataset consists of Pubchem molecules downloaded from: https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/ There are in total ~85M compounds for training, with an additional ~10M held out for validation and testing.
zpn/pubchem_selfies
[ "license:openrail", "region:us" ]
2022-09-21T18:51:06+00:00
{"license": "openrail"}
2022-10-04T15:15:19+00:00
42a28644fe76522463f587f3719cab6a920f86a5
mehr4n-m/parsinlu-en-fa-structrual-edit
[ "license:cc-by-nc-sa-4.0", "region:us" ]
2022-09-21T20:17:17+00:00
{"license": "cc-by-nc-sa-4.0"}
2022-11-10T22:59:16+00:00
8852346e4b76d1f815e1b272c840d45d7dc08ea8
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Zero-Shot Text Classification * Model: autoevaluate/zero-shot-classification * Dataset: mathemakitten/winobias_antistereotype_dev * Config: mathemakitten--winobias_antistereotype_dev * Split: validation To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@mathemakitten](https://huggingface.co/mathemakitten) for evaluating this model.
autoevaluate/autoeval-eval-mathemakitten__winobias_antistereotype_dev-mathemakitte-f407ed-1527355152
[ "autotrain", "evaluation", "region:us" ]
2022-09-21T21:30:08+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["mathemakitten/winobias_antistereotype_dev"], "eval_info": {"task": "text_zero_shot_classification", "model": "autoevaluate/zero-shot-classification", "metrics": [], "dataset_name": "mathemakitten/winobias_antistereotype_dev", "dataset_config": "mathemakitten--winobias_antistereotype_dev", "dataset_split": "validation", "col_mapping": {"text": "text", "classes": "classes", "target": "target"}}}
2022-09-21T21:50:42+00:00
3af942a32b98c8e16043ec591f92f5c368ed2953
# Avatar Dataset Raw data stack of 18,000 sample images created for [Avatar AI](https://t.me/AvatarAIBot). ## Features - 256X256 Medium Quality - Micro Bloom
phaticusthiccy/avatar
[ "region:us" ]
2022-09-21T21:30:24+00:00
{}
2022-09-21T21:40:14+00:00
dc30b042b8caa6fc0cdbe7511e1867919f10fd80
# How Resilient are Imitation Learning Methods to Sub-Optimal Experts? ## Related Work Trajectories used in [How Resilient are Imitation Learning Methods to Sub-Optimal Experts?]() The code that uses this data is on GitHub: https://github.com/NathanGavenski/How-resilient-IL-methods-are # Structure These trajectories are formed by using [Stable Baselines](https://stable-baselines.readthedocs.io/en/master/). Each file is a dictionary of a set of trajectories with the following keys: * actions: the action in the given timestamp `t` * obs: current state in the given timestamp `t` * rewards: reward retrieved after the action in the given timestamp `t` * episode_returns: The aggregated reward of each episode (each file consists of 5000 runs) * episode_Starts: Whether that `obs` is the first state of an episode (boolean list) ## Citation Information ``` @inproceedings{gavenski2022how, title={How Resilient are Imitation Learning Methods to Sub-Optimal Experts?}, author={Nathan Gavenski and Juarez Monteiro and Adilson Medronha and Rodrigo Barros}, booktitle={2022 Brazilian Conference on Intelligent Systems (BRACIS)}, year={2022}, organization={IEEE} } ``` ## Contact: - [Nathan Schneider Gavenski]([email protected]) - [Juarez Monteiro]([email protected]) - [Adilson Medronha]([email protected]) - [Rodrigo C. Barros]([email protected])
NathanGavenski/How-Resilient-are-Imitation-Learning-Methods-to-Sub-Optimal-Experts
[ "task_categories:other", "annotations_creators:machine-generated", "language_creators:expert-generated", "size_categories:100B<n<1T", "source_datasets:original", "license:mit", "Imitation Learning", "Expert Trajectories", "Classic Control", "region:us" ]
2022-09-21T22:41:37+00:00
{"annotations_creators": ["machine-generated"], "language_creators": ["expert-generated"], "language": [], "license": ["mit"], "multilinguality": [], "size_categories": ["100B<n<1T"], "source_datasets": ["original"], "task_categories": ["other"], "task_ids": [], "pretty_name": "How Resilient are Imitation Learning Methods to Sub-Optimal Experts?", "tags": ["Imitation Learning", "Expert Trajectories", "Classic Control"]}
2022-10-25T13:48:38+00:00
fc13ca9b1583fd4f16359a22cc7053eeb6d75f76
mafzal/SOAP-notes
[ "license:apache-2.0", "region:us" ]
2022-09-22T00:18:51+00:00
{"license": "apache-2.0"}
2022-09-22T00:39:39+00:00
cee49c3f84bb914fbde672730c614a1cb2bff03f
dataDRVN/dog-wesley
[ "license:afl-3.0", "region:us" ]
2022-09-22T02:44:21+00:00
{"license": "afl-3.0"}
2022-09-22T02:52:54+00:00
aba349e6b3a4d06820576289db881e37f2d5c5e3
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: ARTeLab/it5-summarization-fanpage * Dataset: scan * Config: simple * Split: train To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@test_yoon_0921](https://huggingface.co/test_yoon_0921) for evaluating this model.
autoevaluate/autoeval-eval-scan-simple-0b9bd3-1528755178
[ "autotrain", "evaluation", "region:us" ]
2022-09-22T03:23:11+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["scan"], "eval_info": {"task": "summarization", "model": "ARTeLab/it5-summarization-fanpage", "metrics": [], "dataset_name": "scan", "dataset_config": "simple", "dataset_split": "train", "col_mapping": {"text": "commands", "target": "actions"}}}
2022-09-22T03:29:45+00:00
8381f2d7cd133cc20378a943ae802a21e0dd1a11
# AutoTrain Dataset for project: nllb_600_ft ## Dataset Description This dataset has been automatically processed by AutoTrain for project nllb_600_ft. ### Languages The BCP-47 code for the dataset's language is unk. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "feat_id": "772", "feat_URL": "https://en.wikivoyage.org/wiki/Apia", "feat_domain": "wikivoyage", "feat_topic": "Travel", "feat_has_image": "0", "feat_has_hyperlink": "0", "text": "All the ships were sunk, except for one British cruiser. Nearly 200 American and German lives were lost.", "target": "\u0628\u0647\u200c\u062c\u0632 \u06cc\u06a9 \u06a9\u0634\u062a\u06cc \u062c\u0646\u06af\u06cc \u0627\u0646\u06af\u0644\u06cc\u0633\u06cc \u0647\u0645\u0647 \u06a9\u0634\u062a\u06cc\u200c\u0647\u0627 \u063a\u0631\u0642 \u0634\u062f\u0646\u062f\u060c \u0648 \u0646\u0632\u062f\u06cc\u06a9 \u0628\u0647 200 \u0646\u0641\u0631 \u0622\u0645\u0631\u06cc\u06a9\u0627\u06cc\u06cc \u0648 \u0622\u0644\u0645\u0627\u0646\u06cc \u062c\u0627\u0646 \u062e\u0648\u062f \u0631\u0627 \u0627\u0632 \u062f\u0633\u062a \u062f\u0627\u062f\u0646\u062f." }, { "feat_id": "195", "feat_URL": "https://en.wikinews.org/wiki/Mitt_Romney_wins_Iowa_Caucus_by_eight_votes_over_surging_Rick_Santorum", "feat_domain": "wikinews", "feat_topic": "Politics", "feat_has_image": "0", "feat_has_hyperlink": "0", "text": "Bachmann, who won the Ames Straw Poll in August, decided to end her campaign.", "target": "\u0628\u0627\u062e\u0645\u0646\u060c \u06a9\u0647 \u062f\u0631 \u0645\u0627\u0647 \u0622\u06af\u0648\u0633\u062a \u0628\u0631\u0646\u062f\u0647 \u0646\u0638\u0631\u0633\u0646\u062c\u06cc \u0622\u0645\u0633 \u0627\u0633\u062a\u0631\u0627\u0648 \u0634\u062f\u060c \u062a\u0635\u0645\u06cc\u0645 \u06af\u0631\u0641\u062a \u06a9\u0645\u067e\u06cc\u0646 \u062e\u0648\u062f \u0631\u0627 \u062e\u0627\u062a\u0645\u0647 \u062f\u0647\u062f." } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "feat_id": "Value(dtype='string', id=None)", "feat_URL": "Value(dtype='string', id=None)", "feat_domain": "Value(dtype='string', id=None)", "feat_topic": "Value(dtype='string', id=None)", "feat_has_image": "Value(dtype='string', id=None)", "feat_has_hyperlink": "Value(dtype='string', id=None)", "text": "Value(dtype='string', id=None)", "target": "Value(dtype='string', id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 1608 | | valid | 402 |
mehr4n-m/autotrain-data-nllb_600_ft
[ "region:us" ]
2022-09-22T04:51:54+00:00
{"task_categories": ["conditional-text-generation"]}
2022-09-22T04:54:15+00:00
15477fbdfae891174be78e6285353d67d3b712cb
# Dataset Card for ssj500k **Important**: there exists another HF implementation of the dataset ([classla/ssj500k](https://huggingface.co/datasets/classla/ssj500k)), but it seems to be more narrowly focused. **This implementation is designed for more general use** - the CLASSLA version seems to expose only the specific training/validation/test annotations used in the CLASSLA library, for only a subset of the data. ### Dataset Summary The ssj500k training corpus contains about 500 000 tokens manually annotated on the levels of tokenization, sentence segmentation, morphosyntactic tagging, and lemmatization. It is also partially annotated for the following tasks: - named entity recognition (config `named_entity_recognition`) - dependency parsing(*), Universal Dependencies style (config `dependency_parsing_ud`) - dependency parsing, JOS/MULTEXT-East style (config `dependency_parsing_jos`) - semantic role labeling (config `semantic_role_labeling`) - multi-word expressions (config `multiword_expressions`) If you want to load all the data along with their partial annotations, please use the config `all_data`. \* _The UD dependency parsing labels are included here for completeness, but using the dataset [universal_dependencies](https://huggingface.co/datasets/universal_dependencies) should be preferred for dependency parsing applications to ensure you are using the most up-to-date data._ ### Supported Tasks and Leaderboards Sentence tokenization, sentence segmentation, morphosyntactic tagging, lemmatization, named entity recognition, dependency parsing, semantic role labeling, multi-word expression detection. ### Languages Slovenian. ## Dataset Structure ### Data Instances A sample instance from the dataset (using the config `all_data`): ``` { 'id_doc': 'ssj1', 'idx_par': 0, 'idx_sent': 0, 'id_words': ['ssj1.1.1.t1', 'ssj1.1.1.t2', 'ssj1.1.1.t3', 'ssj1.1.1.t4', 'ssj1.1.1.t5', 'ssj1.1.1.t6', 'ssj1.1.1.t7', 'ssj1.1.1.t8', 'ssj1.1.1.t9', 'ssj1.1.1.t10', 'ssj1.1.1.t11', 'ssj1.1.1.t12', 'ssj1.1.1.t13', 'ssj1.1.1.t14', 'ssj1.1.1.t15', 'ssj1.1.1.t16', 'ssj1.1.1.t17', 'ssj1.1.1.t18', 'ssj1.1.1.t19', 'ssj1.1.1.t20', 'ssj1.1.1.t21', 'ssj1.1.1.t22', 'ssj1.1.1.t23', 'ssj1.1.1.t24'], 'words': ['"', 'Tistega', 'večera', 'sem', 'preveč', 'popil', ',', 'zgodilo', 'se', 'je', 'mesec', 'dni', 'po', 'tem', ',', 'ko', 'sem', 'izvedel', ',', 'da', 'me', 'žena', 'vara', '.'], 'lemmas': ['"', 'tisti', 'večer', 'biti', 'preveč', 'popiti', ',', 'zgoditi', 'se', 'biti', 'mesec', 'dan', 'po', 'ta', ',', 'ko', 'biti', 'izvedeti', ',', 'da', 'jaz', 'žena', 'varati', '.'], 'msds': ['UPosTag=PUNCT', 'UPosTag=DET|Case=Gen|Gender=Masc|Number=Sing|PronType=Dem', 'UPosTag=NOUN|Case=Gen|Gender=Masc|Number=Sing', 'UPosTag=AUX|Mood=Ind|Number=Sing|Person=1|Polarity=Pos|Tense=Pres|VerbForm=Fin', 'UPosTag=DET|PronType=Ind', 'UPosTag=VERB|Aspect=Perf|Gender=Masc|Number=Sing|VerbForm=Part', 'UPosTag=PUNCT', 'UPosTag=VERB|Aspect=Perf|Gender=Neut|Number=Sing|VerbForm=Part', 'UPosTag=PRON|PronType=Prs|Reflex=Yes|Variant=Short', 'UPosTag=AUX|Mood=Ind|Number=Sing|Person=3|Polarity=Pos|Tense=Pres|VerbForm=Fin', 'UPosTag=NOUN|Animacy=Inan|Case=Acc|Gender=Masc|Number=Sing', 'UPosTag=NOUN|Case=Gen|Gender=Masc|Number=Plur', 'UPosTag=ADP|Case=Loc', 'UPosTag=DET|Case=Loc|Gender=Neut|Number=Sing|PronType=Dem', 'UPosTag=PUNCT', 'UPosTag=SCONJ', 'UPosTag=AUX|Mood=Ind|Number=Sing|Person=1|Polarity=Pos|Tense=Pres|VerbForm=Fin', 'UPosTag=VERB|Aspect=Perf|Gender=Masc|Number=Sing|VerbForm=Part', 'UPosTag=PUNCT', 'UPosTag=SCONJ', 'UPosTag=PRON|Case=Acc|Number=Sing|Person=1|PronType=Prs|Variant=Short', 'UPosTag=NOUN|Case=Nom|Gender=Fem|Number=Sing', 'UPosTag=VERB|Aspect=Imp|Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin', 'UPosTag=PUNCT'], 'has_ne_ann': True, 'has_ud_dep_ann': True, 'has_jos_dep_ann': True, 'has_srl_ann': True, 'has_mwe_ann': True, 'ne_tags': ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], 'ud_dep_head': [5, 2, 5, 5, 5, -1, 7, 5, 7, 7, 7, 10, 13, 10, 17, 17, 17, 13, 22, 22, 22, 22, 17, 5], 'ud_dep_rel': ['punct', 'det', 'obl', 'aux', 'advmod', 'root', 'punct', 'parataxis', 'expl', 'aux', 'obl', 'nmod', 'case', 'nmod', 'punct', 'mark', 'aux', 'acl', 'punct', 'mark', 'obj', 'nsubj', 'ccomp', 'punct'], 'jos_dep_head': [-1, 2, 5, 5, 5, -1, -1, -1, 7, 7, 7, 10, 13, 10, -1, 17, 17, 13, -1, 22, 22, 22, 17, -1], 'jos_dep_rel': ['Root', 'Atr', 'AdvO', 'PPart', 'AdvM', 'Root', 'Root', 'Root', 'PPart', 'PPart', 'AdvO', 'Atr', 'Atr', 'Atr', 'Root', 'Conj', 'PPart', 'Atr', 'Root', 'Conj', 'Obj', 'Sb', 'Obj', 'Root'], 'srl_info': [ {'idx_arg': 2, 'idx_head': 5, 'role': 'TIME'}, {'idx_arg': 4, 'idx_head': 5, 'role': 'QUANT'}, {'idx_arg': 10, 'idx_head': 7, 'role': 'TIME'}, {'idx_arg': 20, 'idx_head': 22, 'role': 'PAT'}, {'idx_arg': 21, 'idx_head': 22, 'role': 'ACT'}, {'idx_arg': 22, 'idx_head': 17, 'role': 'RESLT'} ], 'mwe_info': [ {'type': 'IRV', 'word_indices': [7, 8]} ] } ``` ### Data Fields The following attributes are present in the most general config (`all_data`). Please see below for attributes present in the specific configs. - `id_doc`: a string containing the identifier of the document; - `idx_par`: an int32 containing the consecutive number of the paragraph, which the current sentence is a part of; - `idx_sent`: an int32 containing the consecutive number of the current sentence inside the current paragraph; - `id_words`: a list of strings containing the identifiers of words - potentially redundant, helpful for connecting the dataset with external datasets like coref149; - `words`: a list of strings containing the words in the current sentence; - `lemmas`: a list of strings containing the lemmas in the current sentence; - `msds`: a list of strings containing the morphosyntactic description of words in the current sentence; - `has_ne_ann`: a bool indicating whether the current example has named entities annotated; - `has_ud_dep_ann`: a bool indicating whether the current example has dependencies (in UD style) annotated; - `has_jos_dep_ann`: a bool indicating whether the current example has dependencies (in JOS style) annotated; - `has_srl_ann`: a bool indicating whether the current example has semantic roles annotated; - `has_mwe_ann`: a bool indicating whether the current example has multi-word expressions annotated; - `ne_tags`: a list of strings containing the named entity tags encoded using IOB2 - if `has_ne_ann=False` all tokens are annotated with `"N/A"`; - `ud_dep_head`: a list of int32 containing the head index for each word (using UD guidelines) - the head index of the root word is `-1`; if `has_ud_dep_ann=False` all tokens are annotated with `-2`; - `ud_dep_rel`: a list of strings containing the relation with the head for each word (using UD guidelines) - if `has_ud_dep_ann=False` all tokens are annotated with `"N/A"`; - `jos_dep_head`: a list of int32 containing the head index for each word (using JOS guidelines) - the head index of the root word is `-1`; if `has_jos_dep_ann=False` all tokens are annotated with `-2`; - `jos_dep_rel`: a list of strings containing the relation with the head for each word (using JOS guidelines) - if `has_jos_dep_ann=False` all tokens are annotated with `"N/A"`; - `srl_info`: a list of dicts, each containing index of the argument word, the head (verb) word, and the semantic role - if `has_srl_ann=False` this list is empty; - `mwe_info`: a list of dicts, each containing word indices and the type of a multi-word expression; #### Data fields in 'named_entity_recognition' ``` ['id_doc', 'idx_par', 'idx_sent', 'id_words', 'words', 'lemmas', 'msds', 'ne_tags'] ``` #### Data fields in 'dependency_parsing_ud' ``` ['id_doc', 'idx_par', 'idx_sent', 'id_words', 'words', 'lemmas', 'msds', 'ud_dep_head', 'ud_dep_rel'] ``` #### Data fields in 'dependency_parsing_jos' ``` ['id_doc', 'idx_par', 'idx_sent', 'id_words', 'words', 'lemmas', 'msds', 'jos_dep_head', 'jos_dep_rel'] ``` #### Data fields in 'semantic_role_labeling' ``` ['id_doc', 'idx_par', 'idx_sent', 'id_words', 'words', 'lemmas', 'msds', 'srl_info'] ``` #### Data fields in 'multiword_expressions' ``` ['id_doc', 'idx_par', 'idx_sent', 'id_words', 'words', 'lemmas', 'msds', 'mwe_info'] ``` ## Additional Information ### Dataset Curators Simon Krek; et al. (please see http://hdl.handle.net/11356/1434 for the full list) ### Licensing Information CC BY-NC-SA 4.0. ### Citation Information The paper describing the dataset: ``` @InProceedings{krek2020ssj500k, title = {The ssj500k Training Corpus for Slovene Language Processing}, author={Krek, Simon and Erjavec, Tomaž and Dobrovoljc, Kaja and Gantar, Polona and Arhar Holdt, Spela and Čibej, Jaka and Brank, Janez}, booktitle={Proceedings of the Conference on Language Technologies and Digital Humanities}, year={2020}, pages={24-33} } ``` The resource itself: ``` @misc{krek2021clarinssj500k, title = {Training corpus ssj500k 2.3}, author = {Krek, Simon and Dobrovoljc, Kaja and Erjavec, Toma{\v z} and Mo{\v z}e, Sara and Ledinek, Nina and Holz, Nanika and Zupan, Katja and Gantar, Polona and Kuzman, Taja and {\v C}ibej, Jaka and Arhar Holdt, {\v S}pela and Kav{\v c}i{\v c}, Teja and {\v S}krjanec, Iza and Marko, Dafne and Jezer{\v s}ek, Lucija and Zajc, Anja}, url = {http://hdl.handle.net/11356/1434}, year = {2021} } ``` ### Contributions Thanks to [@matejklemen](https://github.com/matejklemen) for adding this dataset.
cjvt/ssj500k
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "task_ids:part-of-speech", "task_ids:lemmatization", "task_ids:parsing", "annotations_creators:expert-generated", "language_creators:found", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "size_categories:10K<n<100K", "language:sl", "license:cc-by-nc-sa-4.0", "semantic-role-labeling", "multiword-expression-detection", "region:us" ]
2022-09-22T05:31:03+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["found", "expert-generated"], "language": ["sl"], "license": ["cc-by-nc-sa-4.0"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K", "10K<n<100K"], "source_datasets": [], "task_categories": ["token-classification"], "task_ids": ["named-entity-recognition", "part-of-speech", "lemmatization", "parsing"], "pretty_name": "ssj500k", "tags": ["semantic-role-labeling", "multiword-expression-detection"]}
2022-12-09T08:58:50+00:00
9f0ee7856c82c2e53f74187e8e6f62bf5f401806
christianwbsn/indotacos
[ "license:cc-by-nc-sa-4.0", "region:us" ]
2022-09-22T05:42:41+00:00
{"license": "cc-by-nc-sa-4.0"}
2022-09-22T05:47:12+00:00
69c6690b6b195935df66f1942f221dd459f561cb
biomegix/soap-notes
[ "license:apache-2.0", "region:us" ]
2022-09-22T07:04:39+00:00
{"license": "apache-2.0"}
2022-09-22T07:20:42+00:00
39256ba0c7edbf7fa945f2fcf44ee1a42c5a89d1
Nadav/runaway_scans
[ "license:afl-3.0", "region:us" ]
2022-09-22T07:55:37+00:00
{"license": "afl-3.0"}
2022-09-22T07:57:09+00:00
80845435ce686b8a9dbf70a05452fbfb8e09cdd7
# Dataset Card for Fashionpedia ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://fashionpedia.github.io/home/index.html - **Repository:** https://github.com/cvdfoundation/fashionpedia - **Paper:** https://arxiv.org/abs/2004.12276 ### Dataset Summary Fashionpedia is a dataset mapping out the visual aspects of the fashion world. From the paper: > Fashionpedia is a new dataset which consists of two parts: (1) an ontology built by fashion experts containing 27 main apparel categories, 19 apparel parts, 294 fine-grained attributes and their relationships; (2) a dataset with everyday and celebrity event fashion images annotated with segmentation masks and their associated per-mask fine-grained attributes, built upon the Fashionpedia ontology. Fashionpedia has: - 46781 images - 342182 bounding-boxes ### Supported Tasks - Object detection - Image classification ### Languages All of annotations use English as primary language. ## Dataset Structure The dataset is structured as follows: ```py DatasetDict({ train: Dataset({ features: ['image_id', 'image', 'width', 'height', 'objects'], num_rows: 45623 }) val: Dataset({ features: ['image_id', 'image', 'width', 'height', 'objects'], num_rows: 1158 }) }) ``` ### Data Instances An example of the data for one image is: ```py {'image_id': 23, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=682x1024>, 'width': 682, 'height': 1024, 'objects': {'bbox_id': [150311, 150312, 150313, 150314], 'category': [23, 23, 33, 10], 'bbox': [[445.0, 910.0, 505.0, 983.0], [239.0, 940.0, 284.0, 994.0], [298.0, 282.0, 386.0, 352.0], [210.0, 282.0, 448.0, 665.0]], 'area': [1422, 843, 373, 56375]}} ``` With the type of each field being defined as: ```py {'image_id': Value(dtype='int64'), 'image': Image(decode=True), 'width': Value(dtype='int64'), 'height': Value(dtype='int64'), 'objects': Sequence(feature={ 'bbox_id': Value(dtype='int64'), 'category': ClassLabel(num_classes=46, names=['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt', 'coat', 'dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'bag, wallet', 'scarf', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']), 'bbox': Sequence(feature=Value(dtype='float64'), length=4), 'area': Value(dtype='int64')}, length=-1)} ``` ### Data Fields The dataset has the following fields: - `image_id`: Unique numeric ID of the image. - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: Image width. - `height`: Image height. - `objects`: A dictionary containing bounding box metadata for the objects in the image: - `bbox_id`: Unique numeric ID of the bounding box annotation. - `category`: The object’s category. - `area`: The area of the bounding box. - `bbox`: The object’s bounding box (in the Pascal VOC format) ### Data Splits | | Train | Validation | Test | |----------------|--------|------------|------| | Images | 45623 | 1158 | 0 | | Bounding boxes | 333401 | 8781 | 0 | ## Additional Information ### Licensing Information Fashionpedia is licensed under a Creative Commons Attribution 4.0 International License. ### Citation Information ``` @inproceedings{jia2020fashionpedia, title={Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset}, author={Jia, Menglin and Shi, Mengyun and Sirotenko, Mikhail and Cui, Yin and Cardie, Claire and Hariharan, Bharath and Adam, Hartwig and Belongie, Serge} booktitle={European Conference on Computer Vision (ECCV)}, year={2020} } ``` ### Contributions Thanks to [@blinjrm](https://github.com/blinjrm) for adding this dataset.
detection-datasets/fashionpedia
[ "task_categories:object-detection", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:cc-by-4.0", "object-detection", "fashion", "computer-vision", "arxiv:2004.12276", "region:us" ]
2022-09-22T09:33:24+00:00
{"language": ["en"], "license": ["cc-by-4.0"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "paperswithcode_id": "fashionpedia", "pretty_name": "Fashionpedia", "tags": ["object-detection", "fashion", "computer-vision"]}
2022-09-22T12:22:02+00:00
871826e171a2cf997849318707f1a6970bc53be6
This data set is created by randomly sampling 1M documents from [the large supervised proportional mixture](https://github.com/google-research/text-to-text-transfer-transformer/blob/733428af1c961e09ea0b7292ad9ac9e0e001f8a5/t5/data/mixtures.py#L193) from the [T5](https://github.com/google-research/text-to-text-transfer-transformer) repository. The code to produce this sampled dataset can be found [here](https://github.com/chenyu-jiang/text-to-text-transfer-transformer/blob/main/prepare_dataset.py).
jchenyu/t5_large_supervised_proportional_1M
[ "license:apache-2.0", "region:us" ]
2022-09-22T10:21:39+00:00
{"license": "apache-2.0"}
2022-09-22T10:35:08+00:00
2db8cc29752777441ed3bed7ca97352171059550
# Dataset Card for SemCor ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://web.eecs.umich.edu/~mihalcea/downloads.html#semcor - **Repository:** - **Paper:** https://aclanthology.org/H93-1061/ - **Leaderboard:** - **Point of Contact:** ### Dataset Summary SemCor 3.0 was automatically created from SemCor 1.6 by mapping WordNet 1.6 to WordNet 3.0 senses. SemCor 1.6 was created and is property of Princeton University. Some (few) word senses from WordNet 1.6 were dropped, and therefore they cannot be retrieved anymore in the 3.0 database. A sense of 0 (wnsn=0) is used to symbolize a missing sense in WordNet 3.0. The automatic mapping was performed within the Language and Information Technologies lab at UNT, by Rada Mihalcea ([email protected]). THIS MAPPING IS PROVIDED "AS IS" AND UNT MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, UNT MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. In agreement with the license from Princeton Univerisity, you are granted permission to use, copy, modify and distribute this database for any purpose and without fee and royalty is hereby granted, provided that you agree to comply with the Princeton copyright notice and statements, including the disclaimer, and that the same appear on ALL copies of the database, including modifications that you make for internal use or for distribution. Both LICENSE and README files distributed with the SemCor 1.6 package are included in the current distribution of SemCor 3.0. ### Languages English ## Additional Information ### Licensing Information WordNet Release 1.6 Semantic Concordance Release 1.6 This software and database is being provided to you, the LICENSEE, by Princeton University under the following license. By obtaining, using and/or copying this software and database, you agree that you have read, understood, and will comply with these terms and conditions.: Permission to use, copy, modify and distribute this software and database and its documentation for any purpose and without fee or royalty is hereby granted, provided that you agree to comply with the following copyright notice and statements, including the disclaimer, and that the same appear on ALL copies of the software, database and documentation, including modifications that you make for internal use or for distribution. WordNet 1.6 Copyright 1997 by Princeton University. All rights reserved. THIS SOFTWARE AND DATABASE IS PROVIDED "AS IS" AND PRINCETON UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PRINCETON UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE, DATABASE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. The name of Princeton University or Princeton may not be used in advertising or publicity pertaining to distribution of the software and/or database. Title to copyright in this software, database and any associated documentation shall at all times remain with Princeton University and LICENSEE agrees to preserve same. ### Citation Information ```bibtex @inproceedings{miller-etal-1993-semantic, title = "A Semantic Concordance", author = "Miller, George A. and Leacock, Claudia and Tengi, Randee and Bunker, Ross T.", booktitle = "{H}uman {L}anguage {T}echnology: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993", year = "1993", url = "https://aclanthology.org/H93-1061", } ``` ### Contributions Thanks to [@thesofakillers](https://github.com/thesofakillers) for adding this dataset, converting from xml to csv.
thesofakillers/SemCor
[ "task_categories:text-classification", "task_ids:topic-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:en", "license:other", "word sense disambiguation", "semcor", "wordnet", "region:us" ]
2022-09-22T12:31:04+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["other"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": ["topic-classification"], "pretty_name": "SemCor", "tags": ["word sense disambiguation", "semcor", "wordnet"]}
2022-10-12T07:46:28+00:00
63aac2cc0638acf1d69b9e1fb0a1b615da567550
# Dataset Card for sd-nlp ## Table of Contents - [Dataset Card for [EMBO/sd-nlp-non-tokenized]](#dataset-card-for-dataset-name) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization) - [Who are the source language producers?](#who-are-the-source-language-producers) - [Annotations](#annotations) - [Annotation process](#annotation-process) - [Who are the annotators?](#who-are-the-annotators) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://sourcedata.embo.org - **Repository:** https://github.com/source-data/soda-roberta - **Paper:** - **Leaderboard:** - **Point of Contact:** [email protected], [email protected] ### Dataset Summary This dataset is based on the content of the SourceData (https://sourcedata.embo.org) database, which contains manually annotated figure legends written in English and extracted from scientific papers in the domain of cell and molecular biology (Liechti et al, Nature Methods, 2017, https://doi.org/10.1038/nmeth.4471). Unlike the dataset [`sd-nlp`](https://huggingface.co/datasets/EMBO/sd-nlp), pre-tokenized with the `roberta-base` tokenizer, this dataset is not previously tokenized, but just splitted into words. Users can therefore use it to fine-tune other models. Additional details at https://github.com/source-data/soda-roberta ### Supported Tasks and Leaderboards Tags are provided as [IOB2-style tags](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)). `PANELIZATION`: figure captions (or figure legends) are usually composed of segments that each refer to one of several 'panels' of the full figure. Panels tend to represent results obtained with a coherent method and depicts data points that can be meaningfully compared to each other. `PANELIZATION` provide the start (B-PANEL_START) of these segments and allow to train for recogntion of the boundary between consecutive panel lengends. `NER`: biological and chemical entities are labeled. Specifically the following entities are tagged: - `SMALL_MOLECULE`: small molecules - `GENEPROD`: gene products (genes and proteins) - `SUBCELLULAR`: subcellular components - `CELL`: cell types and cell lines. - `TISSUE`: tissues and organs - `ORGANISM`: species - `EXP_ASSAY`: experimental assays `ROLES`: the role of entities with regard to the causal hypotheses tested in the reported results. The tags are: - `CONTROLLED_VAR`: entities that are associated with experimental variables and that subjected to controlled and targeted perturbations. - `MEASURED_VAR`: entities that are associated with the variables measured and the object of the measurements. `BORING`: entities are marked with the tag `BORING` when they are more of descriptive value and not directly associated with causal hypotheses ('boring' is not an ideal choice of word, but it is short...). Typically, these entities are so-called 'reporter' geneproducts, entities used as common baseline across samples, or specify the context of the experiment (cellular system, species, etc...). ### Languages The text in the dataset is English. ## Dataset Structure ### Data Instances ```json {'text': '(E) Quantification of the number of cells without γ-Tubulin at centrosomes (γ-Tub -) in pachytene and diplotene spermatocytes in control, Plk1(∆/∆) and BI2536-treated spermatocytes. Data represent average of two biological replicates per condition. ', 'labels': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 3, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} ``` ### Data Fields - `text`: `str` of the text - `label_ids` dictionary composed of list of strings on a character-level: - `entity_types`: `list` of `strings` for the IOB2 tags for entity type; possible value in `["O", "I-SMALL_MOLECULE", "B-SMALL_MOLECULE", "I-GENEPROD", "B-GENEPROD", "I-SUBCELLULAR", "B-SUBCELLULAR", "I-CELL", "B-CELL", "I-TISSUE", "B-TISSUE", "I-ORGANISM", "B-ORGANISM", "I-EXP_ASSAY", "B-EXP_ASSAY"]` - `panel_start`: `list` of `strings` for IOB2 tags `["O", "B-PANEL_START"]` ### Data Splits ```python DatasetDict({ train: Dataset({ features: ['text', 'labels'], num_rows: 66085 }) test: Dataset({ features: ['text', 'labels'], num_rows: 8225 }) validation: Dataset({ features: ['text', 'labels'], num_rows: 7948 }) }) ``` ## Dataset Creation ### Curation Rationale The dataset was built to train models for the automatic extraction of a knowledge graph based from the scientific literature. The dataset can be used to train character-based models for text segmentation and named entity recognition. ### Source Data #### Initial Data Collection and Normalization Figure legends were annotated according to the SourceData framework described in Liechti et al 2017 (Nature Methods, 2017, https://doi.org/10.1038/nmeth.4471). The curation tool at https://curation.sourcedata.io was used to segment figure legends into panel legends, tag enities, assign experiemental roles and normalize with standard identifiers (not available in this dataset). The source data was downloaded from the SourceData API (https://api.sourcedata.io) on 21 Jan 2021. #### Who are the source language producers? The examples are extracted from the figure legends from scientific papers in cell and molecular biology. ### Annotations #### Annotation process The annotations were produced manually with expert curators from the SourceData project (https://sourcedata.embo.org) #### Who are the annotators? Curators of the SourceData project. ### Personal and Sensitive Information None known. ## Considerations for Using the Data ### Social Impact of Dataset Not applicable. ### Discussion of Biases The examples are heavily biased towards cell and molecular biology and are enriched in examples from papers published in EMBO Press journals (https://embopress.org) ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators Thomas Lemberger, EMBO. ### Licensing Information CC BY 4.0 ### Citation Information [More Information Needed] ### Contributions Thanks to [@tlemberger](https://github.com/tlemberger>) and [@drAbreu](https://github.com/drAbreu>) for adding this dataset.
EMBO/sd-character-level-ner
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:named-entity-recognition", "task_ids:parsing", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "language:en", "license:cc-by-4.0", "region:us" ]
2022-09-22T12:57:31+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["cc-by-4.0"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": [], "task_categories": ["text-classification", "structure-prediction"], "task_ids": ["multi-class-classification", "named-entity-recognition", "parsing"]}
2022-10-23T05:41:24+00:00
4a706ce4d084ae644acb17bac7fd0919e493dbeb
# Dataset Card for Fashionpedia_4_categories This dataset is a variation of the fashionpedia dataset available [here](https://huggingface.co/datasets/detection-datasets/fashionpedia), with 2 key differences: - It contains only 4 categories: - Clothing - Shoes - Bags - Accessories - New splits were created: - Train: 90% of the images - Val: 5% - Test 5% The goal is to make the detection task easier with 4 categories instead of 46 for the full fashionpedia dataset. This dataset was created using the `detection_datasets` library ([GitHub](https://github.com/blinjrm/detection-datasets), [PyPI](https://pypi.org/project/detection-datasets/)), you can check here the full creation [notebook](https://blinjrm.github.io/detection-datasets/tutorials/2_Transform/). In a nutshell, the following mapping was applied: ```Python mapping = { 'shirt, blouse': 'clothing', 'top, t-shirt, sweatshirt': 'clothing', 'sweater': 'clothing', 'cardigan': 'clothing', 'jacket': 'clothing', 'vest': 'clothing', 'pants': 'clothing', 'shorts': 'clothing', 'skirt': 'clothing', 'coat': 'clothing', 'dress': 'clothing', 'jumpsuit': 'clothing', 'cape': 'clothing', 'glasses': 'accessories', 'hat': 'accessories', 'headband, head covering, hair accessory': 'accessories', 'tie': 'accessories', 'glove': 'accessories', 'belt': 'accessories', 'tights, stockings': 'accessories', 'sock': 'accessories', 'shoe': 'shoes', 'bag, wallet': 'bags', 'scarf': 'accessories', } ``` As a result, annotations with no category equivalent in the mapping have been dropped.
detection-datasets/fashionpedia_4_categories
[ "task_categories:object-detection", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:fashionpedia", "language:en", "license:cc-by-4.0", "object-detection", "fashion", "computer-vision", "region:us" ]
2022-09-22T13:09:27+00:00
{"language": ["en"], "license": ["cc-by-4.0"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["fashionpedia"], "task_categories": ["object-detection"], "paperswithcode_id": "fashionpedia", "pretty_name": "Fashionpedia_4_categories", "tags": ["object-detection", "fashion", "computer-vision"]}
2022-09-22T13:45:18+00:00
2e7fdae1b8a959fa70bdadea392312869a02c744
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: facebook/bart-large-cnn * Dataset: cnn_dailymail * Config: 3.0.0 * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@samuelallen123](https://huggingface.co/samuelallen123) for evaluating this model.
autoevaluate/autoeval-eval-cnn_dailymail-3.0.0-6f9c29-1531855204
[ "autotrain", "evaluation", "region:us" ]
2022-09-22T13:15:05+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["cnn_dailymail"], "eval_info": {"task": "summarization", "model": "facebook/bart-large-cnn", "metrics": ["accuracy"], "dataset_name": "cnn_dailymail", "dataset_config": "3.0.0", "dataset_split": "test", "col_mapping": {"text": "article", "target": "highlights"}}}
2022-09-22T14:17:52+00:00
ad46e5b6677b9bd3aa6368c688dac0fc30d5e4ca
Large file storage for the paper `Convergent Representations of Computer Programs in Human and Artificial Neural Networks` by Shashank Srikant*, Benjamin Lipkin*, Anna A. Ivanova, Evelina Fedorenko, and Una-May O'Reilly. The code repository is hosted on [GitHub](https://github.com/ALFA-group/code-representations-ml-brain). Check it out! If you use this work, please cite: ```bibtex @inproceedings{SrikantLipkin2022, author = {Srikant, Shashank and Lipkin, Benjamin and Ivanova, Anna and Fedorenko, Evelina and O'Reilly, Una-May}, title = {Convergent Representations of Computer Programs in Human and Artificial Neural Networks}, year = {2022}, journal = {Advances in Neural Information Processing Systems}, } ```
benlipkin/braincode-neurips2022
[ "license:mit", "region:us" ]
2022-09-22T13:17:03+00:00
{"license": "mit"}
2022-09-22T16:24:45+00:00
caba75ded0756e6f559f383b667112a74578f55e
MadhuLokanath/New_Data
[ "license:apache-2.0", "region:us" ]
2022-09-22T13:32:22+00:00
{"license": "apache-2.0"}
2022-09-22T13:32:22+00:00
9623e24bcc3da5ec8a7ab5ed6b194294d6a18358
# Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2 * Dataset: samsum * Config: samsum * Split: train To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@samuelallen123](https://huggingface.co/samuelallen123) for evaluating this model.
autoevaluate/autoeval-eval-samsum-samsum-61187c-1532155205
[ "autotrain", "evaluation", "region:us" ]
2022-09-22T13:42:56+00:00
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "train", "col_mapping": {"text": "dialogue", "target": "summary"}}}
2022-09-22T15:40:56+00:00
e7367bb69fc0a14d622f29f74d51efddea95b46a
GGWON/jnstyle
[ "license:afl-3.0", "region:us" ]
2022-09-22T14:29:18+00:00
{"license": "afl-3.0"}
2022-09-22T14:29:18+00:00
8178d8c493897dc0cf759dd21413c118c0423718
[source](https://github.com/wangle1218/KBQA-for-Diagnosis/tree/main/nlu/bert_intent_recognition/data)
nlp-guild/intent-recognition-biomedical
[ "license:mit", "region:us" ]
2022-09-22T15:10:30+00:00
{"license": "mit"}
2022-09-22T15:13:44+00:00
7eecec7624c6677ce4d20471785ab36a068da321
Azarthehulk/hand_written_dataset
[ "license:other", "region:us" ]
2022-09-22T15:57:28+00:00
{"license": "other"}
2022-09-22T15:57:28+00:00
b1ff4f0b5abaadff2684a551d01334e4b2133d59
aseem007/sd
[ "region:us" ]
2022-09-22T17:43:10+00:00
{}
2022-11-06T13:10:58+00:00
6ec16181a1c4b5ed412c979adc8a4c05d6321ce9
Theo89/teracotta
[ "license:artistic-2.0", "region:us" ]
2022-09-22T17:51:03+00:00
{"license": "artistic-2.0"}
2022-09-22T17:55:36+00:00