name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Surreal.dyadicMap_apply_pow
Mathlib/SetTheory/Surreal/Dyadic.lean
theorem dyadicMap_apply_pow (m : ℤ) (n : ℕ) : dyadicMap (IsLocalization.mk' (Localization (Submonoid.powers 2)) m (Submonoid.pow 2 n)) = m • powHalf n
m : ℤ n : ℕ ⊢ dyadicMap (IsLocalization.mk' (Localization (Submonoid.powers 2)) m (Submonoid.pow 2 n)) = m • powHalf n
rw [dyadicMap_apply, @Submonoid.log_pow_int_eq_self 2 one_lt_two]
m : ℤ n : ℕ ⊢ ↑m * powHalf n = m • powHalf n
31cee7a46f75546d
OreLocalization.smul'_char
Mathlib/GroupTheory/OreLocalization/Basic.lean
theorem smul'_char (r₁ : R) (r₂ : X) (s₁ s₂ : S) (u : S) (v : R) (huv : u * r₁ = v * s₂) : OreLocalization.smul' r₁ s₁ r₂ s₂ = v • r₂ /ₒ (u * s₁)
case h.right R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S X : Type u_2 inst✝ : MulAction R X r₁ : R r₂ : X s₁ s₂ u : ↥S v : R huv : ↑u * r₁ = v * ↑s₂ v₀ : R := oreNum r₁ s₂ u₀ : ↥S := oreDenom r₁ s₂ h₀ : ↑u₀ * r₁ = v₀ * ↑s₂ r₃ : R s₃ : ↥S h₃ : ↑s₃ * ↑u₀ = r₃ * ↑u this : r₃ * v * ↑s₂ = ↑s₃ * v₀ * ↑s₂ s₄ : ↥S hs₄ : ↑s₄ * (r₃ * v) = ↑s₄ * (↑s₃ * v₀) ⊢ ↑s₄ * (r₃ * ↑u) * ↑s₁ = ↑s₄ * r₃ * (↑u * ↑s₁)
simp only [mul_assoc]
no goals
158523f845373f5e
RootPairing.coroot_eq_coreflection_of_root_eq'
Mathlib/LinearAlgebra/RootSystem/Basic.lean
private lemma coroot_eq_coreflection_of_root_eq' [CharZero R] [NoZeroSMulDivisors R M] (p : PerfectPairing R M N) (root : ι ↪ M) (coroot : ι ↪ N) (hp : ∀ i, p (root i) (coroot i) = 2) (hr : ∀ i, MapsTo (preReflection (root i) (p.flip (coroot i))) (range root) (range root)) (hc : ∀ i, MapsTo (preReflection (coroot i) (p (root i))) (range coroot) (range coroot)) {i j k : ι} (hk : root k = preReflection (root i) (p.flip (coroot i)) (root j)) : coroot k = preReflection (coroot i) (p (root i)) (coroot j)
case intro ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁷ : CommRing R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Finite ι inst✝¹ : CharZero R inst✝ : NoZeroSMulDivisors R M p : PerfectPairing R M N root : ι ↪ M coroot : ι ↪ N hp : ∀ (i : ι), (p (root i)) (coroot i) = 2 hr : ∀ (i : ι), MapsTo (⇑(preReflection (root i) (p.flip (coroot i)))) (range ⇑root) (range ⇑root) hc : ∀ (i : ι), MapsTo (⇑(preReflection (coroot i) (p (root i)))) (range ⇑coroot) (range ⇑coroot) i j k : ι α : M := root i β : M := root j α' : N := coroot i β' : N := coroot j sα : End R M := preReflection α (p.flip α') hk : root k = sα β sβ : End R M := preReflection β (p.flip β') sα' : End R N := preReflection α' (p α) hij : preReflection (sα β) (p.flip (sα' β')) = sα ∘ₗ sβ ∘ₗ sα hk₀ : root k ≠ 0 l : ι hl : coroot l = (preReflection (coroot i) (p (root i))) (coroot j) ⊢ coroot k = coroot l
have hkl : (p.flip (coroot l)) (root k) = 2 := by simp only [hl, preReflection_apply, hk, PerfectPairing.flip_apply_apply, map_sub, hp j, map_smul, smul_eq_mul, hp i, mul_sub, sα, α, α', β, mul_two, mul_add, LinearMap.sub_apply, LinearMap.smul_apply] rw [mul_comm (p (root i) (coroot j))] abel
case intro ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁷ : CommRing R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Finite ι inst✝¹ : CharZero R inst✝ : NoZeroSMulDivisors R M p : PerfectPairing R M N root : ι ↪ M coroot : ι ↪ N hp : ∀ (i : ι), (p (root i)) (coroot i) = 2 hr : ∀ (i : ι), MapsTo (⇑(preReflection (root i) (p.flip (coroot i)))) (range ⇑root) (range ⇑root) hc : ∀ (i : ι), MapsTo (⇑(preReflection (coroot i) (p (root i)))) (range ⇑coroot) (range ⇑coroot) i j k : ι α : M := root i β : M := root j α' : N := coroot i β' : N := coroot j sα : End R M := preReflection α (p.flip α') hk : root k = sα β sβ : End R M := preReflection β (p.flip β') sα' : End R N := preReflection α' (p α) hij : preReflection (sα β) (p.flip (sα' β')) = sα ∘ₗ sβ ∘ₗ sα hk₀ : root k ≠ 0 l : ι hl : coroot l = (preReflection (coroot i) (p (root i))) (coroot j) hkl : (p.flip (coroot l)) (root k) = 2 ⊢ coroot k = coroot l
24145ec892545416
EuclideanGeometry.cospherical_of_two_zsmul_oangle_eq_of_not_collinear
Mathlib/Geometry/Euclidean/Angle/Sphere.lean
theorem cospherical_of_two_zsmul_oangle_eq_of_not_collinear {p₁ p₂ p₃ p₄ : P} (h : (2 : ℤ) • ∡ p₁ p₂ p₄ = (2 : ℤ) • ∡ p₁ p₃ p₄) (hn : ¬Collinear ℝ ({p₁, p₂, p₄} : Set P)) : Cospherical ({p₁, p₂, p₃, p₄} : Set P)
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) p₁ p₂ p₃ p₄ : P h : 2 • ∡ p₁ p₂ p₄ = 2 • ∡ p₁ p₃ p₄ hn : ¬Collinear ℝ {p₁, p₂, p₄} hn' : ¬Collinear ℝ {p₁, p₃, p₄} t₁ : Affine.Triangle ℝ P := { points := ![p₁, p₂, p₄], independent := ⋯ } t₂ : Affine.Triangle ℝ P := { points := ![p₁, p₃, p₄], independent := ⋯ } ⊢ 0 ≠ 1
decide
no goals
72f963b4dc2afd6e
hasSum_mellin_pi_mul_sq'
Mathlib/NumberTheory/LSeries/MellinEqDirichlet.lean
/-- Tailored version for odd Jacobi theta functions. -/ lemma hasSum_mellin_pi_mul_sq' {a : ι → ℂ} {r : ι → ℝ} {F : ℝ → ℂ} {s : ℂ} (hs : 0 < s.re) (hF : ∀ t ∈ Ioi 0, HasSum (fun i ↦ a i * r i * rexp (-π * r i ^ 2 * t)) (F t)) (h_sum : Summable fun i ↦ ‖a i‖ / |r i| ^ s.re) : HasSum (fun i ↦ Gammaℝ (s + 1) * a i * SignType.sign (r i) / |r i| ^ s) (mellin F ((s + 1) / 2))
ι : Type u_1 inst✝ : Countable ι a : ι → ℂ r : ι → ℝ F : ℝ → ℂ s : ℂ hs : 0 < s.re hF : ∀ t ∈ Ioi 0, HasSum (fun i => a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t))) (F t) h_sum : Summable fun i => ‖a i‖ / |r i| ^ s.re ⊢ HasSum (fun i => (s + 1).Gammaℝ * a i * ↑(SignType.sign (r i)) / ↑|r i| ^ s) (mellin F ((s + 1) / 2))
have hs₁ : s ≠ 0 := fun h ↦ lt_irrefl _ (zero_re ▸ h ▸ hs)
ι : Type u_1 inst✝ : Countable ι a : ι → ℂ r : ι → ℝ F : ℝ → ℂ s : ℂ hs : 0 < s.re hF : ∀ t ∈ Ioi 0, HasSum (fun i => a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t))) (F t) h_sum : Summable fun i => ‖a i‖ / |r i| ^ s.re hs₁ : s ≠ 0 ⊢ HasSum (fun i => (s + 1).Gammaℝ * a i * ↑(SignType.sign (r i)) / ↑|r i| ^ s) (mellin F ((s + 1) / 2))
22936c8a231e7fbd
LinearOrderedField.exists_mem_cutMap_mul_self_of_lt_inducedMap_mul_self
Mathlib/Algebra/Order/CompleteField.lean
theorem exists_mem_cutMap_mul_self_of_lt_inducedMap_mul_self (ha : 0 < a) (b : β) (hba : b < inducedMap α β a * inducedMap α β a) : ∃ c ∈ cutMap β (a * a), b < c
case inr.intro.intro.intro.intro.intro α : Type u_2 β : Type u_3 inst✝² : LinearOrderedField α inst✝¹ : ConditionallyCompleteLinearOrderedField β inst✝ : Archimedean α a : α ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑(q ^ 2) hqa : ↑q * ↑q < inducedMap α β a * inducedMap α β a q' : ℚ hq' : ↑q < ↑q' hqa' : ↑q' < a ⊢ ↑q * ↑q < a * a
exact mul_self_lt_mul_self (mod_cast hq.le) (hqa'.trans' <| by assumption_mod_cast)
no goals
26fca4418a681185
MeasureTheory.martingale_martingalePart
Mathlib/Probability/Martingale/Centering.lean
theorem martingale_martingalePart (hf : Adapted ℱ f) (hf_int : ∀ n, Integrable (f n) μ) [SigmaFiniteFiltration μ ℱ] : Martingale (martingalePart f ℱ μ) ℱ μ
Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) μ inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᶠ[ae μ] f 0 + ∑ k ∈ Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) ⊢ ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᶠ[ae μ] 0
intro k hk
Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) μ inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᶠ[ae μ] f 0 + ∑ k ∈ Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) k : ℕ hk : i ≤ k ⊢ μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᶠ[ae μ] 0
c70218dd704192f5
MvQPF.liftpPreservation_iff_uniform
Mathlib/Data/QPF/Multivariate/Basic.lean
theorem liftpPreservation_iff_uniform : q.LiftPPreservation ↔ q.IsUniform
n : ℕ F : TypeVec.{u} n → Type u_1 q : MvQPF F ⊢ LiftPPreservation ↔ IsUniform
rw [← suppPreservation_iff_liftpPreservation, suppPreservation_iff_isUniform]
no goals
a47fa08b6b739c24
Rat.AbsoluteValue.apply_le_sum_digits
Mathlib/NumberTheory/Ostrowski.lean
/-- Given any two integers `n`, `m` with `m > 1`, the absolute value of `n` is bounded by `m + m * f m + m * (f m) ^ 2 + ... + m * (f m) ^ d` where `d` is the number of digits of the expansion of `n` in base `m`. -/ lemma apply_le_sum_digits (n : ℕ) {m : ℕ} (hm : 1 < m) : f n ≤ ((Nat.digits m n).mapIdx fun i _ ↦ m * (f m) ^ i).sum
f : AbsoluteValue ℚ ℝ n m : ℕ hm : 1 < m L : List ℕ := m.digits n L' : List ℚ := List.map Nat.cast (List.mapIdx (fun i a => a * m ^ i) L) hL' : L' = List.map Nat.cast (List.mapIdx (fun i a => a * m ^ i) L) hcoef : ∀ {c : ℕ}, c ∈ m.digits n → f ↑c < ↑m ⊢ (List.map (⇑f ∘ Nat.cast ∘ fun x => x.1 * m ^ x.2) L.zipIdx).sum ≤ (List.map (fun x => ↑m * f ↑m ^ x.2) L.zipIdx).sum
refine List.sum_le_sum fun ⟨a, i⟩ hia ↦ ?_
f : AbsoluteValue ℚ ℝ n m : ℕ hm : 1 < m L : List ℕ := m.digits n L' : List ℚ := List.map Nat.cast (List.mapIdx (fun i a => a * m ^ i) L) hL' : L' = List.map Nat.cast (List.mapIdx (fun i a => a * m ^ i) L) hcoef : ∀ {c : ℕ}, c ∈ m.digits n → f ↑c < ↑m x✝ : ℕ × ℕ a i : ℕ hia : (a, i) ∈ L.zipIdx ⊢ (⇑f ∘ Nat.cast ∘ fun x => x.1 * m ^ x.2) (a, i) ≤ ↑m * f ↑m ^ (a, i).2
0745d5149e053bfa
FirstOrder.Language.Ultraproduct.term_realize_cast
Mathlib/ModelTheory/Ultraproducts.lean
theorem term_realize_cast {β : Type*} (x : β → ∀ a, M a) (t : L.Term β) : (t.realize fun i => (x i : (u : Filter α).Product M)) = (fun a => t.realize fun i => x i a : (u : Filter α).Product M)
case h.e'_3.h.e'_3.h.var α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → L.Structure (M a) β : Type u_3 x : β → (a : α) → M a a : α a✝ : β ⊢ Term.realize (fun i => x i a) (var a✝) = Term.realize x (var a✝) a
rfl
no goals
2e4ccc1963d3c1a2
norm_sub_le_of_geometric_bound_of_hasSum
Mathlib/Analysis/SpecificLimits/Normed.lean
theorem norm_sub_le_of_geometric_bound_of_hasSum (hr : r < 1) (hf : ∀ n, ‖f n‖ ≤ C * r ^ n) {a : α} (ha : HasSum f a) (n : ℕ) : ‖(∑ x ∈ Finset.range n, f x) - a‖ ≤ C * r ^ n / (1 - r)
α : Type u_1 inst✝ : SeminormedAddCommGroup α r C : ℝ f : ℕ → α hr : r < 1 hf : ∀ (n : ℕ), ‖f n‖ ≤ C * r ^ n a : α ha : HasSum f a n : ℕ ⊢ dist (∑ x ∈ Finset.range n, f x) a ≤ C * r ^ n / (1 - r)
apply dist_le_of_le_geometric_of_tendsto r C hr (dist_partial_sum_le_of_le_geometric hf)
case ha α : Type u_1 inst✝ : SeminormedAddCommGroup α r C : ℝ f : ℕ → α hr : r < 1 hf : ∀ (n : ℕ), ‖f n‖ ≤ C * r ^ n a : α ha : HasSum f a n : ℕ ⊢ Tendsto (fun n => ∑ i ∈ Finset.range n, f i) atTop (𝓝 a)
9f5f5e32dd93ecb8
Orientation.map_eq_neg_iff_det_neg
Mathlib/LinearAlgebra/Orientation.lean
theorem map_eq_neg_iff_det_neg (x : Orientation R M ι) (f : M ≃ₗ[R] M) (h : Fintype.card ι = finrank R M) : Orientation.map ι f x = -x ↔ LinearMap.det (f : M →ₗ[R] M) < 0
case inl R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι ⊢ (map ι f) x = -x ↔ LinearMap.det ↑f < 0
have H : finrank R M = 0 := h.symm.trans Fintype.card_eq_zero
case inl R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι H : finrank R M = 0 ⊢ (map ι f) x = -x ↔ LinearMap.det ↑f < 0
4102f0312fa14e8a
gaugeRescale_gaugeRescale
Mathlib/Analysis/Convex/GaugeRescale.lean
theorem gaugeRescale_gaugeRescale {s t u : Set E} (hta : Absorbent ℝ t) (htb : IsVonNBounded ℝ t) (x : E) : gaugeRescale t u (gaugeRescale s t x) = gaugeRescale s u x
case inr E : Type u_1 inst✝³ : AddCommGroup E inst✝² : Module ℝ E inst✝¹ : TopologicalSpace E inst✝ : T1Space E s t u : Set E hta : Absorbent ℝ t htb : IsVonNBounded ℝ t x : E hx : x ≠ 0 ⊢ gaugeRescale t u (gaugeRescale s t x) = gaugeRescale s u x
rw [gaugeRescale_def s t x, gaugeRescale_smul, gaugeRescale, gaugeRescale, smul_smul, div_mul_div_cancel₀]
case inr E : Type u_1 inst✝³ : AddCommGroup E inst✝² : Module ℝ E inst✝¹ : TopologicalSpace E inst✝ : T1Space E s t u : Set E hta : Absorbent ℝ t htb : IsVonNBounded ℝ t x : E hx : x ≠ 0 ⊢ gauge t x ≠ 0 case inr.hc E : Type u_1 inst✝³ : AddCommGroup E inst✝² : Module ℝ E inst✝¹ : TopologicalSpace E inst✝ : T1Space E s t u : Set E hta : Absorbent ℝ t htb : IsVonNBounded ℝ t x : E hx : x ≠ 0 ⊢ 0 ≤ gauge s x / gauge t x
23b7e13d4a7b1b81
MeasureTheory.BoundedContinuousFunction.integral_le_of_levyProkhorovEDist_lt
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
/-- Assuming `levyProkhorovEDist μ ν < ε`, we can bound `∫ f ∂μ` in terms of `∫ t in (0, ‖f‖], ν (thickening ε {x | f(x) ≥ t}) dt` and `‖f‖`. -/ lemma BoundedContinuousFunction.integral_le_of_levyProkhorovEDist_lt (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] {ε : ℝ} (ε_pos : 0 < ε) (hμν : levyProkhorovEDist μ ν < ENNReal.ofReal ε) (f : Ω →ᵇ ℝ) (f_nn : 0 ≤ᵐ[μ] f) : ∫ ω, f ω ∂μ ≤ (∫ t in Ioc 0 ‖f‖, ENNReal.toReal (ν (thickening ε {a | t ≤ f a}))) + ε * ‖f‖
Ω : Type u_1 inst✝⁴ : MeasurableSpace Ω inst✝³ : PseudoMetricSpace Ω inst✝² : OpensMeasurableSpace Ω μ ν : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν ε : ℝ ε_pos : 0 < ε hμν : levyProkhorovEDist μ ν < ENNReal.ofReal ε f : Ω →ᵇ ℝ f_nn : 0 ≤ᶠ[ae μ] ⇑f key : (fun t => (μ {a | t ≤ f a}).toReal) ≤ fun t => (ν (thickening ε {a | t ≤ f a})).toReal + ε intble₁ : IntegrableOn (fun t => (μ {a | t ≤ f a}).toReal) (Ioc 0 ‖f‖) volume intble₂ : IntegrableOn (fun t => (ν (thickening ε {a | t ≤ f a})).toReal) (Ioc 0 ‖f‖) volume ⊢ (∫ (a : ℝ) in Ioc 0 ‖f‖, (ν (thickening ε {a_1 | a ≤ f a_1})).toReal) + ∫ (a : ℝ) in Ioc 0 ‖f‖, ε ≤ (∫ (t : ℝ) in Ioc 0 ‖f‖, (ν (thickening ε {a | t ≤ f a})).toReal) + ε * ‖f‖
apply add_le_add_left
case bc Ω : Type u_1 inst✝⁴ : MeasurableSpace Ω inst✝³ : PseudoMetricSpace Ω inst✝² : OpensMeasurableSpace Ω μ ν : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν ε : ℝ ε_pos : 0 < ε hμν : levyProkhorovEDist μ ν < ENNReal.ofReal ε f : Ω →ᵇ ℝ f_nn : 0 ≤ᶠ[ae μ] ⇑f key : (fun t => (μ {a | t ≤ f a}).toReal) ≤ fun t => (ν (thickening ε {a | t ≤ f a})).toReal + ε intble₁ : IntegrableOn (fun t => (μ {a | t ≤ f a}).toReal) (Ioc 0 ‖f‖) volume intble₂ : IntegrableOn (fun t => (ν (thickening ε {a | t ≤ f a})).toReal) (Ioc 0 ‖f‖) volume ⊢ ∫ (a : ℝ) in Ioc 0 ‖f‖, ε ≤ ε * ‖f‖
abad1a50e7cd6063
ProbabilityTheory.Kernel.iIndepSets.iIndep
Mathlib/Probability/Independence/Kernel.lean
theorem iIndepSets.iIndep (m : ι → MeasurableSpace Ω) (h_le : ∀ i, m i ≤ _mΩ) (π : ι → Set (Set Ω)) (h_pi : ∀ n, IsPiSystem (π n)) (h_generate : ∀ i, m i = generateFrom (π i)) (h_ind : iIndepSets π κ μ) : iIndep m κ μ
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ μ hμ : μ ≠ 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : a ∉ S h_rec : (∀ i ∈ S, f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, (η a) (⋂ i ∈ S, f i) = ∏ i ∈ S, (η a) (f i) hf_m : ∀ i ∈ insert a S, f i ∈ (fun x => {s | MeasurableSet s}) i x : ι hx : x ∈ S ⊢ x ∈ insert a S
simp [hx]
no goals
839768f1641edae0
Order.wcovBy_add_one
Mathlib/Algebra/Order/SuccPred.lean
theorem wcovBy_add_one (x : α) : x ⩿ x + 1
α : Type u_1 inst✝³ : Preorder α inst✝² : Add α inst✝¹ : One α inst✝ : SuccAddOrder α x : α ⊢ x ⩿ succ x
exact wcovBy_succ x
no goals
538b26d14edeb196
Complex.cos_sq
Mathlib/Data/Complex/Trigonometric.lean
theorem cos_sq : cos x ^ 2 = 1 / 2 + cos (2 * x) / 2
x : ℂ ⊢ cos x ^ 2 = 1 / 2 + cos (2 * x) / 2
simp [cos_two_mul, div_add_div_same, mul_div_cancel_left₀, two_ne_zero, -one_div]
no goals
408e5a224394b9fd
factorPowSucc.isUnit_of_isUnit_image
Mathlib/RingTheory/Ideal/Quotient/PowTransition.lean
lemma factorPowSucc.isUnit_of_isUnit_image {n : ℕ} (npos : n > 0) {a : R ⧸ I ^ (n + 1)} (h : IsUnit (factorPow I n.le_succ a)) : IsUnit a
R : Type u_3 inst✝ : CommRing R I : Ideal R n : ℕ npos : n > 0 a : R ⧸ I ^ (n + 1) h : IsUnit ((factorPow I ⋯) a) b : R ⧸ I ^ n right✝ : b * (factorPow I ⋯) a = 1 b' : R ⧸ I ^ n.succ hb' : (factor ⋯) b' = b hb : a * b' - 1 ∈ map (mk (I ^ n.succ)) (I ^ n) c : R hc : c ∈ ↑(I ^ n) eq : (mk (I ^ (n + 1))) c = a * b' - 1 ⊢ c ∈ I ^ (n - 1) * I ^ 1
simpa only [← pow_add, Nat.sub_add_cancel npos] using hc
no goals
2fc8789476860ecf
HasFPowerSeriesWithinOnBall.tendsto_partialSum_prod
Mathlib/Analysis/Analytic/Basic.lean
theorem HasFPowerSeriesWithinOnBall.tendsto_partialSum_prod {y : E} (hf : HasFPowerSeriesWithinOnBall f p s x r) (hy : y ∈ EMetric.ball (0 : E) r) (h'y : x + y ∈ insert x s) : Tendsto (fun (z : ℕ × E) ↦ p.partialSum z.1 z.2) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y)))
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F s : Set E x : E r : ℝ≥0∞ y : E hf : HasFPowerSeriesWithinOnBall f p s x r hy : y ∈ EMetric.ball 0 r h'y : x + y ∈ insert x s ⊢ Tendsto (fun z => p.partialSum z.1 z.2) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y)))
have A : Tendsto (fun (z : ℕ × E) ↦ p.partialSum z.1 y) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y))) := by apply (hf.tendsto_partialSum hy h'y).comp tendsto_fst
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F s : Set E x : E r : ℝ≥0∞ y : E hf : HasFPowerSeriesWithinOnBall f p s x r hy : y ∈ EMetric.ball 0 r h'y : x + y ∈ insert x s A : Tendsto (fun z => p.partialSum z.1 y) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y))) ⊢ Tendsto (fun z => p.partialSum z.1 z.2) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y)))
84f2046d5fc6e8a5
ContinuousMultilinearMap.norm_iteratedFDeriv_le'
Mathlib/Analysis/NormedSpace/Multilinear/Basic.lean
/-- Controlling the norm of `f.iteratedFDeriv` when `f` is continuous multilinear. For the same bound on the iterated derivative of `f` in the calculus sense, see `ContinuousMultilinearMap.norm_iteratedFDeriv_le`. -/ lemma norm_iteratedFDeriv_le' (f : ContinuousMultilinearMap 𝕜 E₁ G) (k : ℕ) (x : (i : ι) → E₁ i) : ‖f.iteratedFDeriv k x‖ ≤ Nat.descFactorial (Fintype.card ι) k * ‖f‖ * ‖x‖ ^ (Fintype.card ι - k)
𝕜 : Type u ι : Type v E₁ : ι → Type wE₁ G : Type wG inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : (i : ι) → SeminormedAddCommGroup (E₁ i) inst✝³ : (i : ι) → NormedSpace 𝕜 (E₁ i) inst✝² : SeminormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G inst✝ : Fintype ι f : ContinuousMultilinearMap 𝕜 E₁ G k : ℕ x : (i : ι) → E₁ i ⊢ ‖f.iteratedFDeriv k x‖ ≤ ↑((Fintype.card ι).descFactorial k) * ‖f‖ * ‖x‖ ^ (Fintype.card ι - k)
classical calc ‖f.iteratedFDeriv k x‖ _ ≤ ∑ e : Fin k ↪ ι, ‖iteratedFDerivComponent f e.toEquivRange (fun i ↦ x i)‖ := norm_sum_le _ _ _ ≤ ∑ _ : Fin k ↪ ι, ‖f‖ * ‖x‖ ^ (Fintype.card ι - k) := by gcongr with e _ simpa using norm_iteratedFDerivComponent_le f e.toEquivRange x _ = Nat.descFactorial (Fintype.card ι) k * ‖f‖ * ‖x‖ ^ (Fintype.card ι - k) := by simp [card_univ, mul_assoc]
no goals
63b61560d78f9381
MeasureTheory.unifIntegrable_of
Mathlib/MeasureTheory/Function/UniformIntegrable.lean
theorem unifIntegrable_of (hp : 1 ≤ p) (hp' : p ≠ ∞) {f : ι → α → β} (hf : ∀ i, AEStronglyMeasurable (f i) μ) (h : ∀ ε : ℝ, 0 < ε → ∃ C : ℝ≥0, ∀ i, eLpNorm ({ x | C ≤ ‖f i x‖₊ }.indicator (f i)) p μ ≤ ENNReal.ofReal ε) : UnifIntegrable f p μ
case neg α : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ f : ι → α → β hf : ∀ (i : ι), AEStronglyMeasurable (f i) μ h : ∀ (ε : ℝ), 0 < ε → ∃ C, ∀ (i : ι), eLpNorm ({x | C ≤ ‖f i x‖₊}.indicator (f i)) p μ ≤ ENNReal.ofReal ε g : ι → α → β := fun i => Exists.choose ⋯ ε : ℝ hε : 0 < ε C : ℝ≥0 hC : ∀ (i : ι), eLpNorm ({x | C ≤ ‖f i x‖₊}.indicator (f i)) p μ ≤ ENNReal.ofReal ε i : ι x : α hx : f i x = Exists.choose ⋯ x hfx : x ∉ {x | C ≤ ‖f i x‖₊} ⊢ {x | C ≤ ‖g i x‖₊}.indicator (g i) x = {x | C ≤ ‖f i x‖₊}.indicator (f i) x
rw [Set.indicator_of_not_mem hfx, Set.indicator_of_not_mem]
case neg.h α : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ f : ι → α → β hf : ∀ (i : ι), AEStronglyMeasurable (f i) μ h : ∀ (ε : ℝ), 0 < ε → ∃ C, ∀ (i : ι), eLpNorm ({x | C ≤ ‖f i x‖₊}.indicator (f i)) p μ ≤ ENNReal.ofReal ε g : ι → α → β := fun i => Exists.choose ⋯ ε : ℝ hε : 0 < ε C : ℝ≥0 hC : ∀ (i : ι), eLpNorm ({x | C ≤ ‖f i x‖₊}.indicator (f i)) p μ ≤ ENNReal.ofReal ε i : ι x : α hx : f i x = Exists.choose ⋯ x hfx : x ∉ {x | C ≤ ‖f i x‖₊} ⊢ x ∉ {x | C ≤ ‖g i x‖₊}
b752bffcb51df800
LinearMap.range_dualMap_eq_dualAnnihilator_ker_of_subtype_range_surjective
Mathlib/LinearAlgebra/Dual.lean
theorem range_dualMap_eq_dualAnnihilator_ker_of_subtype_range_surjective (f : M →ₗ[R] M') (hf : Function.Surjective f.range.subtype.dualMap) : LinearMap.range f.dualMap = f.ker.dualAnnihilator
case h.e'_3 R : Type u_1 M : Type u_2 M' : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hf : Function.Surjective ⇑(range f).subtype.dualMap rr_surj : Function.Surjective ⇑f.rangeRestrict this : range f.rangeRestrict.dualMap = (ker f.rangeRestrict).dualAnnihilator ⊢ (ker f).dualAnnihilator = (ker f.rangeRestrict).dualAnnihilator
apply congr_arg
case h.e'_3.h R : Type u_1 M : Type u_2 M' : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hf : Function.Surjective ⇑(range f).subtype.dualMap rr_surj : Function.Surjective ⇑f.rangeRestrict this : range f.rangeRestrict.dualMap = (ker f.rangeRestrict).dualAnnihilator ⊢ ker f = ker f.rangeRestrict
fec7dc8cbd988018
Lists'.mem_of_subset'
Mathlib/SetTheory/Lists.lean
theorem mem_of_subset' {a} : ∀ {l₁ l₂ : Lists' α true} (_ : l₁ ⊆ l₂) (_ : a ∈ l₁.toList), a ∈ l₂ | nil, _, Lists'.Subset.nil, h => by cases h | cons' a0 l0, l₂, s, h => by obtain - | ⟨e, m, s⟩ := s simp only [toList, Sigma.eta, List.find?, List.mem_cons] at h rcases h with (rfl | h) · exact ⟨_, m, e⟩ · exact mem_of_subset' s h
α : Type u_1 a : Lists α b✝ : Bool a0 : Lists' α b✝ l0 l₂ : Lists' α true s : a0.cons' l0 ⊆ l₂ h : a ∈ (a0.cons' l0).toList ⊢ a ∈ l₂
obtain - | ⟨e, m, s⟩ := s
case cons α : Type u_1 a : Lists α l0 l₂ : Lists' α true a✝ a'✝ : Lists α e : a✝ ~ a'✝ h : a ∈ (a✝.snd.cons' l0).toList m : a'✝ ∈ l₂.toList s : l0.Subset l₂ ⊢ a ∈ l₂
01e260cc3cd68d98
SmoothPartitionOfUnity.exists_isSubordinate
Mathlib/Geometry/Manifold/PartitionOfUnity.lean
theorem exists_isSubordinate {s : Set M} (hs : IsClosed s) (U : ι → Set M) (ho : ∀ i, IsOpen (U i)) (hU : s ⊆ ⋃ i, U i) : ∃ f : SmoothPartitionOfUnity ι I M s, f.IsSubordinate U
case refine_2.intro.intro ι : Type uι E : Type uE inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E H : Type uH inst✝⁶ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type uM inst✝⁵ : TopologicalSpace M inst✝⁴ : ChartedSpace H M inst✝³ : FiniteDimensional ℝ E inst✝² : IsManifold I ∞ M inst✝¹ : T2Space M inst✝ : SigmaCompactSpace M s : Set M hs : IsClosed s U : ι → Set M ho : ∀ (i : ι), IsOpen (U i) hU : s ⊆ ⋃ i, U i this✝ : LocallyCompactSpace H this : LocallyCompactSpace M f : BumpCovering ι M s hf : ∀ (i : ι), ContMDiff I 𝓘(ℝ, ℝ) ∞ ⇑(f i) hfU : f.IsSubordinate U ⊢ ∃ f, f.IsSubordinate U
exact ⟨f.toSmoothPartitionOfUnity hf, hfU.toSmoothPartitionOfUnity hf⟩
no goals
bb02907964d5e497
Ordinal.log_eq_iff
Mathlib/SetTheory/Ordinal/Exponential.lean
theorem log_eq_iff {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) (y : Ordinal) : log b x = y ↔ b ^ y ≤ x ∧ x < b ^ succ y
case mpr.intro.a b x : Ordinal.{u_1} hb : 1 < b hx : x ≠ 0 y : Ordinal.{u_1} hx₁ : b ^ y ≤ x hx₂ : x < b ^ succ y ⊢ log b x ≤ y
rwa [← lt_succ_iff, ← lt_opow_iff_log_lt hb hx]
no goals
bc76e1c0897bfe2a
Ordnode.dual_balanceL
Mathlib/Data/Ordmap/Ordset.lean
theorem dual_balanceL (l : Ordnode α) (x : α) (r : Ordnode α) : dual (balanceL l x r) = balanceR (dual r) x (dual l)
case pos α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α h✝ : ls > delta * rs ⊢ (rec nil (fun size l x_1 r l_ih r_ih => rec nil (fun size_1 l x_2 r l_ih r_ih => if size_1 < ratio * size then node (ls + rs + 1) ll lx (node (rs + size_1 + 1) lr x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) ll lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) lr) ll).dual = rec nil (fun size l x_1 r l_ih r_ih => rec nil (fun size_1 l x_2 r l_ih r_ih => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x lr.dual) lx ll.dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx ll.dual)) lr.dual) ll.dual
obtain - | ⟨lls, lll, llx, llr⟩ := ll <;> obtain - | ⟨lrs, lrl, lrx, lrr⟩ := lr <;> try rfl
case pos.node.node α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ lx : α h✝ : ls > delta * rs lls : ℕ lll : Ordnode α llx : α llr : Ordnode α lrs : ℕ lrl : Ordnode α lrx : α lrr : Ordnode α ⊢ (rec nil (fun size l x_1 r l_ih r_ih => rec nil (fun size_1 l x_2 r l_ih r_ih => if size_1 < ratio * size then node (ls + rs + 1) (node lls lll llx llr) lx (node (rs + size_1 + 1) (node lrs lrl lrx lrr) x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) (node lls lll llx llr) lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) (node lrs lrl lrx lrr)) (node lls lll llx llr)).dual = rec nil (fun size l x_1 r l_ih r_ih => rec nil (fun size_1 l x_2 r l_ih r_ih => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x (node lrs lrl lrx lrr).dual) lx (node lls lll llx llr).dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx (node lls lll llx llr).dual)) (node lrs lrl lrx lrr).dual) (node lls lll llx llr).dual
3df822e7a054830f
AlgebraicGeometry.Scheme.stalkClosedPointTo_fromSpecStalk
Mathlib/AlgebraicGeometry/Stalk.lean
lemma stalkClosedPointTo_fromSpecStalk (x : X) : stalkClosedPointTo (X.fromSpecStalk x) = (X.presheaf.stalkCongr (by rw [fromSpecStalk_closedPoint]; rfl)).hom
X Y : Scheme f✝ : X ⟶ Y U V : X.Opens hU : IsAffineOpen U hV : IsAffineOpen V R : CommRingCat inst✝ : IsLocalRing ↑R f : Spec R ⟶ X x : ↑↑X.toPresheafedSpace ⊢ Inseparable x x
rfl
no goals
a51982c434736237
MeasureTheory.condExpIndSMul_empty
Mathlib/MeasureTheory/Function/ConditionalExpectation/CondexpL2.lean
theorem condExpIndSMul_empty {x : G} : condExpIndSMul hm MeasurableSet.empty ((measure_empty (μ := μ)).le.trans_lt ENNReal.coe_lt_top).ne x = 0
α : Type u_1 G : Type u_5 inst✝¹ : NormedAddCommGroup G m m0 : MeasurableSpace α μ : Measure α inst✝ : NormedSpace ℝ G hm : m ≤ m0 x : G ⊢ (compLpL 2 μ (toSpanSingleton ℝ x)) ↑((condExpL2 ℝ ℝ hm) 0) = 0
simp only [Submodule.coe_zero, ContinuousLinearMap.map_zero]
no goals
538016b4c4c1d685
Int.natAbs_eq_iff_associated
Mathlib/Data/Int/Associated.lean
theorem Int.natAbs_eq_iff_associated {a b : ℤ} : a.natAbs = b.natAbs ↔ Associated a b
case mp.inr b : ℤ ⊢ Associated (-b) b
exact ⟨-1, by simp⟩
no goals
bf707670bc5d3262
Polynomial.Monic.eq_one_of_isUnit
Mathlib/Algebra/Polynomial/Monic.lean
theorem Monic.eq_one_of_isUnit (hm : Monic p) (hpu : IsUnit p) : p = 1
R : Type u inst✝ : Semiring R p : R[X] hm : p.Monic hpu : IsUnit p ⊢ p = 1
nontriviality R
R : Type u inst✝ : Semiring R p : R[X] hm : p.Monic hpu : IsUnit p a✝ : Nontrivial R ⊢ p = 1
61dfc74a6847ac67
AlgebraicGeometry.Scheme.AffineZariskiSite.generate_presieveOfSections
Mathlib/AlgebraicGeometry/Sites/SmallAffineZariski.lean
lemma generate_presieveOfSections {U V : X.AffineZariskiSite} {s : Set Γ(X, U.toOpens)} {f : V ⟶ U} : Sieve.generate (presieveOfSections U s) f ↔ ∃ f ∈ s, ∃ g, X.basicOpen (f * g) = V.toOpens
case mk.mp X : Scheme U : X.AffineZariskiSite s : Set ↑Γ(X, U.toOpens) V : X.Opens hV : IsAffineOpen V f : ⟨V, hV⟩ ⟶ U ⊢ (Sieve.generate (U.presieveOfSections s)).arrows f → ∃ f ∈ s, ∃ g, X.basicOpen (f * g) = toOpens ⟨V, hV⟩
rintro ⟨⟨W, hW⟩, ⟨f₁, hf₁⟩, -, ⟨f₂, hf₂s, rfl⟩, rfl⟩
case mk.mp.intro.mk.intro.up.up.intro.intro.intro.intro.intro X : Scheme U : X.AffineZariskiSite s : Set ↑Γ(X, U.toOpens) V : X.Opens hV : IsAffineOpen V f₂ : ↑Γ(X, U.toOpens) hf₂s : f₂ ∈ s hW : IsAffineOpen (X.basicOpen f₂) f₁ : ↑Γ(X, toOpens ⟨X.basicOpen f₂, hW⟩) hf₁ : X.basicOpen f₁ = toOpens ⟨V, hV⟩ ⊢ ∃ f ∈ s, ∃ g, X.basicOpen (f * g) = toOpens ⟨V, hV⟩
f488c05e7e519ddc
integral_smul_const
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem integral_smul_const {𝕜 : Type*} [RCLike 𝕜] [NormedSpace 𝕜 E] [CompleteSpace E] (f : X → 𝕜) (c : E) : ∫ x, f x • c ∂μ = (∫ x, f x ∂μ) • c
case pos X : Type u_1 E : Type u_3 inst✝⁵ : MeasurableSpace X μ : Measure X inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E 𝕜 : Type u_6 inst✝² : RCLike 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : CompleteSpace E f : X → 𝕜 c : E hf : ¬Integrable f μ hc : c = 0 ⊢ ∫ (x : X), f x • c ∂μ = (∫ (x : X), f x ∂μ) • c
simp [hc, integral_zero, smul_zero]
no goals
aac8ef1cc4baf728
Ideal.iUnion_minimalPrimes
Mathlib/RingTheory/Ideal/MinimalPrime/Localization.lean
theorem Ideal.iUnion_minimalPrimes : ⋃ p ∈ I.minimalPrimes, p = { x | ∃ y ∉ I.radical, x * y ∈ I.radical }
case h.mp.intro.intro.intro.intro.intro.intro.mk.intro R : Type u_1 inst✝ : CommSemiring R I : Ideal R x : R p : Ideal R hxp : x ∈ p hp₃ : ∀ ⦃y : Ideal R⦄, (fun q => q.IsPrime ∧ I ≤ q) y → y ≤ p → p ≤ y hp₁ : p.IsPrime hp₂ : I ≤ p this : map (algebraMap R (Localization.AtPrime p)) p ≤ (map (algebraMap R (Localization.AtPrime p)) I).radical n : ℕ a : ↥I b t : ↥p.primeCompl ht : ↑t * (x ^ n * ↑(a, b).2) = ↑t * ↑(a, b).1 ⊢ ∃ y ∉ I.radical, x * y ∈ I.radical
refine ⟨t * b, fun h ↦ (t * b).2 (hp₁.radical_le_iff.mpr hp₂ h), n + 1, ?_⟩
case h.mp.intro.intro.intro.intro.intro.intro.mk.intro R : Type u_1 inst✝ : CommSemiring R I : Ideal R x : R p : Ideal R hxp : x ∈ p hp₃ : ∀ ⦃y : Ideal R⦄, (fun q => q.IsPrime ∧ I ≤ q) y → y ≤ p → p ≤ y hp₁ : p.IsPrime hp₂ : I ≤ p this : map (algebraMap R (Localization.AtPrime p)) p ≤ (map (algebraMap R (Localization.AtPrime p)) I).radical n : ℕ a : ↥I b t : ↥p.primeCompl ht : ↑t * (x ^ n * ↑(a, b).2) = ↑t * ↑(a, b).1 ⊢ (x * (↑t * ↑b)) ^ (n + 1) ∈ I
c2bb79363c5fb210
Polynomial.derivative_X_add_C_pow
Mathlib/Algebra/Polynomial/Derivative.lean
theorem derivative_X_add_C_pow (c : R) (m : ℕ) : derivative ((X + C c) ^ m) = C (m : R) * (X + C c) ^ (m - 1)
R : Type u inst✝ : CommSemiring R c : R m : ℕ ⊢ derivative ((X + C c) ^ m) = C ↑m * (X + C c) ^ (m - 1)
rw [derivative_pow, derivative_X_add_C, mul_one]
no goals
5d8c346242b176da
Padic.exi_rat_seq_conv_cauchy
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem exi_rat_seq_conv_cauchy : IsCauSeq (padicNorm p) (limSeq f) := fun ε hε ↦ by have hε3 : 0 < ε / 3 := div_pos hε (by norm_num) let ⟨N, hN⟩ := exi_rat_seq_conv f hε3 let ⟨N2, hN2⟩ := f.cauchy₂ hε3 exists max N N2 intro j hj suffices padicNormE (limSeq f j - f (max N N2) + (f (max N N2) - limSeq f (max N N2)) : ℚ_[p]) < ε by ring_nf at this ⊢ rw [← padicNormE.eq_padic_norm'] exact mod_cast this apply lt_of_le_of_lt · apply padicNormE.add_le · rw [← add_thirds ε] apply _root_.add_lt_add · suffices padicNormE (limSeq f j - f j + (f j - f (max N N2)) : ℚ_[p]) < ε / 3 + ε / 3 by simpa only [sub_add_sub_cancel] apply lt_of_le_of_lt · apply padicNormE.add_le · apply _root_.add_lt_add · rw [padicNormE.map_sub] apply mod_cast hN j exact le_of_max_le_left hj · exact hN2 _ (le_of_max_le_right hj) _ (le_max_right _ _) · apply mod_cast hN (max N N2) apply le_max_left
p : ℕ inst✝ : Fact (Nat.Prime p) f : CauSeq ℚ_[p] ⇑padicNormE ε : ℚ hε : ε > 0 hε3 : 0 < ε / 3 N : ℕ hN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3 N2 : ℕ hN2 : ∀ j ≥ N2, ∀ k ≥ N2, padicNormE (↑f j - ↑f k) < ε / 3 ⊢ ∃ i, ∀ j ≥ i, padicNorm p (limSeq f j - limSeq f i) < ε
exists max N N2
p : ℕ inst✝ : Fact (Nat.Prime p) f : CauSeq ℚ_[p] ⇑padicNormE ε : ℚ hε : ε > 0 hε3 : 0 < ε / 3 N : ℕ hN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3 N2 : ℕ hN2 : ∀ j ≥ N2, ∀ k ≥ N2, padicNormE (↑f j - ↑f k) < ε / 3 ⊢ ∀ j ≥ N ⊔ N2, padicNorm p (limSeq f j - limSeq f (N ⊔ N2)) < ε
5532e11826254be6
EuclideanGeometry.OrthocentricSystem.eq_insert_orthocenter
Mathlib/Geometry/Euclidean/MongePoint.lean
theorem OrthocentricSystem.eq_insert_orthocenter {s : Set P} (ho : OrthocentricSystem s) {t : Triangle ℝ P} (ht : Set.range t.points ⊆ s) : s = insert t.orthocenter (Set.range t.points)
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P t t₀ : Triangle ℝ P ht : Set.range t.points ⊆ insert t₀.orthocenter (Set.range t₀.points) ht₀o : t₀.orthocenter ∉ Set.range t₀.points ht₀s : s = insert t₀.orthocenter (Set.range t₀.points) i₁ i₂ i₃ j₂ j₃ : Fin 3 h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h₁₂₃ : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ h₁ : t.points i₁ = t₀.orthocenter hj₂₃ : j₂ ≠ j₃ h₂ : t₀.points j₂ = t.points i₂ h₃ : t₀.points j₃ = t.points i₃ ⊢ ∃ j₁, j₁ ≠ j₂ ∧ j₁ ≠ j₃ ∧ ∀ (j : Fin 3), j = j₁ ∨ j = j₂ ∨ j = j₃
clear h₂ h₃
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P t t₀ : Triangle ℝ P ht : Set.range t.points ⊆ insert t₀.orthocenter (Set.range t₀.points) ht₀o : t₀.orthocenter ∉ Set.range t₀.points ht₀s : s = insert t₀.orthocenter (Set.range t₀.points) i₁ i₂ i₃ j₂ j₃ : Fin 3 h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h₁₂₃ : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ h₁ : t.points i₁ = t₀.orthocenter hj₂₃ : j₂ ≠ j₃ ⊢ ∃ j₁, j₁ ≠ j₂ ∧ j₁ ≠ j₃ ∧ ∀ (j : Fin 3), j = j₁ ∨ j = j₂ ∨ j = j₃
727f37cad368951d
continuousOn_integral_bilinear_of_locally_integrable_of_compact_support
Mathlib/MeasureTheory/Integral/SetIntegral.lean
/-- Consider a parameterized integral `x ↦ ∫ y, L (g y) (f x y)` where `L` is bilinear, `g` is locally integrable and `f` is continuous and uniformly compactly supported. Then the integral depends continuously on `x`. -/ lemma continuousOn_integral_bilinear_of_locally_integrable_of_compact_support [NormedSpace 𝕜 E] (L : F →L[𝕜] G →L[𝕜] E) {f : X → Y → G} {s : Set X} {k : Set Y} {g : Y → F} (hk : IsCompact k) (hf : ContinuousOn f.uncurry (s ×ˢ univ)) (hfs : ∀ p, ∀ x, p ∈ s → x ∉ k → f p x = 0) (hg : IntegrableOn g k μ) : ContinuousOn (fun x ↦ ∫ y, L (g y) (f x y) ∂μ) s
case h Y : Type u_2 E : Type u_3 F : Type u_4 X : Type u_5 G : Type u_6 𝕜 : Type u_7 inst✝¹¹ : TopologicalSpace X inst✝¹⁰ : TopologicalSpace Y inst✝⁹ : MeasurableSpace Y inst✝⁸ : OpensMeasurableSpace Y μ : Measure Y inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F inst✝² : NormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G inst✝ : NormedSpace 𝕜 E L : F →L[𝕜] G →L[𝕜] E f : X → Y → G s : Set X k : Set Y g : Y → F hk : IsCompact k hf : ContinuousOn (uncurry f) (s ×ˢ univ) hfs : ∀ (p : X) (x : Y), p ∈ s → x ∉ k → f p x = 0 hg : IntegrableOn g k μ A : ∀ p ∈ s, Continuous (f p) q : X hq : q ∈ s ε : ℝ εpos : ε > 0 δ : ℝ δpos : 0 < δ hδ : ∫ (x : Y) in k, ‖L‖ * ‖g x‖ * δ ∂μ < ε v : Set X v_mem : v ∈ 𝓝[s] q hv : ∀ p ∈ v, ∀ x ∈ k, ‖f p x - f q x‖ < δ I : ∀ p ∈ s, IntegrableOn (fun y => (L (g y)) (f p y)) k μ p : X hp : p ∈ v h'p : p ∈ s ⊢ (fun a => ‖(L (g a)) (f p a) - (L (g a)) (f q a)‖) ≤ᶠ[ae (μ.restrict k)] fun a => ‖L‖ * ‖g a‖ * δ
filter_upwards with y
case h.h Y : Type u_2 E : Type u_3 F : Type u_4 X : Type u_5 G : Type u_6 𝕜 : Type u_7 inst✝¹¹ : TopologicalSpace X inst✝¹⁰ : TopologicalSpace Y inst✝⁹ : MeasurableSpace Y inst✝⁸ : OpensMeasurableSpace Y μ : Measure Y inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F inst✝² : NormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G inst✝ : NormedSpace 𝕜 E L : F →L[𝕜] G →L[𝕜] E f : X → Y → G s : Set X k : Set Y g : Y → F hk : IsCompact k hf : ContinuousOn (uncurry f) (s ×ˢ univ) hfs : ∀ (p : X) (x : Y), p ∈ s → x ∉ k → f p x = 0 hg : IntegrableOn g k μ A : ∀ p ∈ s, Continuous (f p) q : X hq : q ∈ s ε : ℝ εpos : ε > 0 δ : ℝ δpos : 0 < δ hδ : ∫ (x : Y) in k, ‖L‖ * ‖g x‖ * δ ∂μ < ε v : Set X v_mem : v ∈ 𝓝[s] q hv : ∀ p ∈ v, ∀ x ∈ k, ‖f p x - f q x‖ < δ I : ∀ p ∈ s, IntegrableOn (fun y => (L (g y)) (f p y)) k μ p : X hp : p ∈ v h'p : p ∈ s y : Y ⊢ ‖(L (g y)) (f p y) - (L (g y)) (f q y)‖ ≤ ‖L‖ * ‖g y‖ * δ
2723cd3ae22d6304
MeasureTheory.StronglyMeasurable.stronglyMeasurable_of_measurableSpace_le_on
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
theorem stronglyMeasurable_of_measurableSpace_le_on {α E} {m m₂ : MeasurableSpace α} [TopologicalSpace E] [Zero E] {s : Set α} {f : α → E} (hs_m : MeasurableSet[m] s) (hs : ∀ t, MeasurableSet[m] (s ∩ t) → MeasurableSet[m₂] (s ∩ t)) (hf : StronglyMeasurable[m] f) (hf_zero : ∀ x ∉ s, f x = 0) : StronglyMeasurable[m₂] f
α : Type u_5 E : Type u_6 m m₂ : MeasurableSpace α inst✝¹ : TopologicalSpace E inst✝ : Zero E s : Set α f : α → E hs_m : MeasurableSet s hs : ∀ (t : Set α), MeasurableSet (s ∩ t) → MeasurableSet (s ∩ t) hf : StronglyMeasurable f hf_zero : ∀ x ∉ s, f x = 0 hs_m₂ : MeasurableSet s g_seq_s : ℕ → α →ₛ E hg_seq_tendsto : ∀ (x : α), Tendsto (fun n => (g_seq_s n) x) atTop (𝓝 (f x)) hg_seq_zero : ∀ x ∉ s, ∀ (n : ℕ), (g_seq_s n) x = 0 n : ℕ x : E hx : x = 0 this : ⇑(g_seq_s n) ⁻¹' {x} ∩ sᶜ = sᶜ ⊢ MeasurableSet (⇑(g_seq_s n) ⁻¹' {x} ∩ sᶜ)
rw [this]
α : Type u_5 E : Type u_6 m m₂ : MeasurableSpace α inst✝¹ : TopologicalSpace E inst✝ : Zero E s : Set α f : α → E hs_m : MeasurableSet s hs : ∀ (t : Set α), MeasurableSet (s ∩ t) → MeasurableSet (s ∩ t) hf : StronglyMeasurable f hf_zero : ∀ x ∉ s, f x = 0 hs_m₂ : MeasurableSet s g_seq_s : ℕ → α →ₛ E hg_seq_tendsto : ∀ (x : α), Tendsto (fun n => (g_seq_s n) x) atTop (𝓝 (f x)) hg_seq_zero : ∀ x ∉ s, ∀ (n : ℕ), (g_seq_s n) x = 0 n : ℕ x : E hx : x = 0 this : ⇑(g_seq_s n) ⁻¹' {x} ∩ sᶜ = sᶜ ⊢ MeasurableSet sᶜ
d81af41568179792
Antitone.alternating_series_le_tendsto
Mathlib/Analysis/SpecificLimits/Normed.lean
theorem Antitone.alternating_series_le_tendsto (hfl : Tendsto (fun n ↦ ∑ i ∈ range n, (-1) ^ i * f i) atTop (𝓝 l)) (hfa : Antitone f) (k : ℕ) : ∑ i ∈ range (2 * k), (-1) ^ i * f i ≤ l
E : Type u_2 inst✝² : OrderedRing E inst✝¹ : TopologicalSpace E inst✝ : OrderClosedTopology E l : E f : ℕ → E hfl : Tendsto (fun n => ∑ i ∈ Finset.range n, (-1) ^ i * f i) atTop (𝓝 l) hfa : Antitone f k : ℕ hm : Monotone fun n => ∑ i ∈ Finset.range (2 * n), (-1) ^ i * f i n : ℕ ⊢ id n ≤ 2 * n
dsimp
E : Type u_2 inst✝² : OrderedRing E inst✝¹ : TopologicalSpace E inst✝ : OrderClosedTopology E l : E f : ℕ → E hfl : Tendsto (fun n => ∑ i ∈ Finset.range n, (-1) ^ i * f i) atTop (𝓝 l) hfa : Antitone f k : ℕ hm : Monotone fun n => ∑ i ∈ Finset.range (2 * n), (-1) ^ i * f i n : ℕ ⊢ n ≤ 2 * n
74802fbd069e02ac
Affine.Simplex.dist_circumcenter_sq_eq_sq_sub_circumradius
Mathlib/Geometry/Euclidean/Circumcenter.lean
theorem dist_circumcenter_sq_eq_sq_sub_circumradius {n : ℕ} {r : ℝ} (s : Simplex ℝ P n) {p₁ : P} (h₁ : ∀ i : Fin (n + 1), dist (s.points i) p₁ = r) (h₁' : ↑(s.orthogonalProjectionSpan p₁) = s.circumcenter) (h : s.points 0 ∈ affineSpan ℝ (Set.range s.points)) : dist p₁ s.circumcenter * dist p₁ s.circumcenter = r * r - s.circumradius * s.circumradius
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P n : ℕ r : ℝ s : Simplex ℝ P n p₁ : P h₁ : ∀ (i : Fin (n + 1)), dist (s.points i) p₁ = r h₁' : ↑(s.orthogonalProjectionSpan p₁) = s.circumcenter h : s.points 0 ∈ affineSpan ℝ (Set.range s.points) ⊢ dist s.circumcenter p₁ * dist s.circumcenter p₁ = dist (s.points 0) ↑(s.orthogonalProjectionSpan p₁) * dist (s.points 0) ↑(s.orthogonalProjectionSpan p₁) + dist p₁ ↑(s.orthogonalProjectionSpan p₁) * dist p₁ ↑(s.orthogonalProjectionSpan p₁) - s.circumradius * s.circumradius
simp only [h₁', dist_comm p₁, add_sub_cancel_left, Simplex.dist_circumcenter_eq_circumradius]
no goals
a172e99f2584bdc4
CategoryTheory.Limits.inv_prodComparison_map_fst
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
theorem inv_prodComparison_map_fst [IsIso (prodComparison F A B)] : inv (prodComparison F A B) ≫ F.map prod.fst = prod.fst
C : Type u inst✝⁴ : Category.{v, u} C D : Type u₂ inst✝³ : Category.{w, u₂} D F : C ⥤ D A B : C inst✝² : HasBinaryProduct A B inst✝¹ : HasBinaryProduct (F.obj A) (F.obj B) inst✝ : IsIso (prodComparison F A B) ⊢ inv (prodComparison F A B) ≫ F.map prod.fst = prod.fst
simp [IsIso.inv_comp_eq]
no goals
9bf7e403217b9d49
ProbabilityTheory.comap_cond
Mathlib/Probability/ConditionalProbability.lean
lemma comap_cond {i : Ω' → Ω} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ ω ∂μ, ω ∈ range i) (hs : MeasurableSet s) : comap i μ[|s] = (comap i μ)[|i in s]
case h.hms Ω : Type u_1 Ω' : Type u_2 m : MeasurableSpace Ω m' : MeasurableSpace Ω' μ : Measure Ω s : Set Ω i : Ω' → Ω hi : MeasurableEmbedding i hs : MeasurableSet s t : Set Ω' ht : MeasurableSet t hi' : μ (range i)ᶜ = 0 ⊢ MeasurableSet (i ⁻¹' s)
first | exact hi.injective | exact hi.measurableSet_image' | exact hs | exact ht | exact hi.measurable hs | exact (hi.measurable hs).inter ht
no goals
4f0b4c478fa397f8
Primrec.list_ofFn
Mathlib/Computability/Primrec.lean
theorem list_ofFn : ∀ {n} {f : Fin n → α → σ}, (∀ i, Primrec (f i)) → Primrec fun a => List.ofFn fun i => f i a | 0, _, _ => by simp only [List.ofFn_zero]; exact const [] | n + 1, f, hf => by simpa [List.ofFn_succ] using list_cons.comp (hf 0) (list_ofFn fun i => hf i.succ)
α : Type u_1 σ : Type u_3 inst✝¹ : Primcodable α inst✝ : Primcodable σ x✝¹ : Fin 0 → α → σ x✝ : ∀ (i : Fin 0), Primrec (x✝¹ i) ⊢ Primrec fun a => []
exact const []
no goals
08a4ab3a3904ba4f
CategoryTheory.Equalizer.Presieve.Arrows.compatible_iff
Mathlib/CategoryTheory/Sites/EqualizerSheafCondition.lean
theorem compatible_iff (x : FirstObj P X) : (Arrows.Compatible P π ((Types.productIso _).hom x)) ↔ firstMap P X π x = secondMap P X π x
case mp C : Type u inst✝¹ : Category.{v, u} C P : Cᵒᵖ ⥤ Type w B : C I : Type X : I → C π : (i : I) → X i ⟶ B inst✝ : (Presieve.ofArrows X π).hasPullbacks x : FirstObj P X ⊢ Arrows.PullbackCompatible P π ((Types.productIso fun i => P.obj (op (X i))).hom x) → firstMap P X π x = secondMap P X π x
intro t
case mp C : Type u inst✝¹ : Category.{v, u} C P : Cᵒᵖ ⥤ Type w B : C I : Type X : I → C π : (i : I) → X i ⟶ B inst✝ : (Presieve.ofArrows X π).hasPullbacks x : FirstObj P X t : Arrows.PullbackCompatible P π ((Types.productIso fun i => P.obj (op (X i))).hom x) ⊢ firstMap P X π x = secondMap P X π x
2fc6ec72d3282c45
Real.strictAnti_rpow_of_base_lt_one
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
lemma strictAnti_rpow_of_base_lt_one {b : ℝ} (hb₀ : 0 < b) (hb₁ : b < 1) : StrictAnti (b ^ · : ℝ → ℝ)
b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ StrictAnti fun x => b ^ x
simp_rw [Real.rpow_def_of_pos hb₀]
b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ StrictAnti fun x => rexp (log b * x)
7dc5d0774fecfa85
Array.size_swapAt!
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem size_swapAt! (a : Array α) (i : Nat) (v : α) : (a.swapAt! i v).2.size = a.size
α : Type u_1 a : Array α i : Nat v : α ⊢ (if h : i < a.size then a.swapAt i v ⋯ else panicWithPosWithDecl "Init.Data.Array.Basic" "Array.swapAt!" 275 4 ("index " ++ toString i ++ " out of bounds")).snd.size = a.size
split
case isTrue α : Type u_1 a : Array α i : Nat v : α h✝ : i < a.size ⊢ (a.swapAt i v ⋯).snd.size = a.size case isFalse α : Type u_1 a : Array α i : Nat v : α h✝ : ¬i < a.size ⊢ (panicWithPosWithDecl "Init.Data.Array.Basic" "Array.swapAt!" 275 4 ("index " ++ toString i ++ " out of bounds")).snd.size = a.size
281d82ebf6ef2cda
List.prev_getElem
Mathlib/Data/List/Cycle.lean
theorem prev_getElem (l : List α) (h : Nodup l) (i : Nat) (hi : i < l.length) : prev l l[i] (get_mem _ _) = (l[(i + (l.length - 1)) % l.length]'(Nat.mod_lt _ (by omega))) := match l with | [] => by simp at hi | x::l => by induction l generalizing i x with | nil => simp | cons y l hl => rcases i with (_ | _ | i) · simp [getLast_eq_getElem] · simp only [mem_cons, nodup_cons] at h push_neg at h simp only [zero_add, getElem_cons_succ, getElem_cons_zero, List.prev_cons_cons_of_ne _ _ _ _ h.left.left.symm, length, add_comm, Nat.add_sub_cancel_left, Nat.mod_self] · rw [prev_ne_cons_cons] · convert hl i.succ y h.of_cons (Nat.le_of_succ_le_succ hi) using 1 have : ∀ k hk, (y :: l)[k] = (x :: y :: l)[k + 1]'(Nat.succ_lt_succ hk)
case cons.succ.succ.hy.a α : Type u_1 inst✝ : DecidableEq α l✝ : List α y : α l : List α hl : ∀ (i : ℕ) (x : α), (x :: l).Nodup → ∀ (hi : i < (x :: l).length), (x :: l).prev (x :: l)[i] ⋯ = (x :: l)[(i + ((x :: l).length - 1)) % (x :: l).length] x : α h : Function.Injective (x :: y :: l).get i : ℕ hi : i + 1 + 1 < (x :: y :: l).length H : (x :: y :: l)[i + 1 + 1] = x ⊢ (x :: y :: l).get ⟨i + 1 + 1, hi⟩ = (x :: y :: l).get ⟨0, ⋯⟩
rw [← H]
case cons.succ.succ.hy.a α : Type u_1 inst✝ : DecidableEq α l✝ : List α y : α l : List α hl : ∀ (i : ℕ) (x : α), (x :: l).Nodup → ∀ (hi : i < (x :: l).length), (x :: l).prev (x :: l)[i] ⋯ = (x :: l)[(i + ((x :: l).length - 1)) % (x :: l).length] x : α h : Function.Injective (x :: y :: l).get i : ℕ hi : i + 1 + 1 < (x :: y :: l).length H : (x :: y :: l)[i + 1 + 1] = x ⊢ ((x :: y :: l)[i + 1 + 1] :: y :: l).get ⟨i + 1 + 1, hi⟩ = ((x :: y :: l)[i + 1 + 1] :: y :: l).get ⟨0, ⋯⟩
9ab0f8d6d9da20dc
intervalIntegral.integral_unitInterval_deriv_eq_sub
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
/-- A variant of `intervalIntegral.integral_deriv_eq_sub`, the Fundamental theorem of calculus, involving integrating over the unit interval. -/ lemma integral_unitInterval_deriv_eq_sub [RCLike 𝕜] [NormedSpace 𝕜 E] [IsScalarTower ℝ 𝕜 E] {f f' : 𝕜 → E} {z₀ z₁ : 𝕜} (hcont : ContinuousOn (fun t : ℝ ↦ f' (z₀ + t • z₁)) (Set.Icc 0 1)) (hderiv : ∀ t ∈ Set.Icc (0 : ℝ) 1, HasDerivAt f (f' (z₀ + t • z₁)) (z₀ + t • z₁)) : z₁ • ∫ t in (0 : ℝ)..1, f' (z₀ + t • z₁) = f (z₀ + z₁) - f z₀
𝕜 : Type u_2 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : RCLike 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : IsScalarTower ℝ 𝕜 E f f' : 𝕜 → E z₀ z₁ : 𝕜 hcont : ContinuousOn (fun t => f' (z₀ + t • z₁)) (Icc 0 1) hderiv : ∀ t ∈ Icc 0 1, HasDerivAt f (f' (z₀ + t • z₁)) (z₀ + t • z₁) γ : ℝ → 𝕜 := fun t => z₀ + t • z₁ hint : IntervalIntegrable (z₁ • f' ∘ γ) volume 0 1 t : ℝ ht : t ∈ [[0, 1]] this : HasDerivAt (fun t => t • z₁) z₁ t ⊢ HasDerivAt γ z₁ t
exact this.const_add z₀
no goals
33b334f9c09cf4b0
Besicovitch.exists_disjoint_closedBall_covering_ae_of_finiteMeasure_aux
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem exists_disjoint_closedBall_covering_ae_of_finiteMeasure_aux (μ : Measure α) [IsFiniteMeasure μ] (f : α → Set ℝ) (s : Set α) (hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty) : ∃ t : Set (α × ℝ), t.Countable ∧ (∀ p ∈ t, p.1 ∈ s) ∧ (∀ p ∈ t, p.2 ∈ f p.1) ∧ μ (s \ ⋃ (p : α × ℝ) (_ : p ∈ t), closedBall p.1 p.2) = 0 ∧ t.PairwiseDisjoint fun p => closedBall p.1 p.2
α : Type u_1 inst✝⁵ : MetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : HasBesicovitchCovering α μ : Measure α inst✝ : IsFiniteMeasure μ f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty N : ℕ τ : ℝ hτ : 1 < τ hN : IsEmpty (SatelliteConfig α N τ) P : Finset (α × ℝ) → Prop := fun t => ((↑t).PairwiseDisjoint fun p => closedBall p.1 p.2) ∧ (∀ p ∈ t, p.1 ∈ s) ∧ ∀ p ∈ t, p.2 ∈ f p.1 F : Finset (α × ℝ) → Finset (α × ℝ) hF : ∀ (t : Finset (α × ℝ)), P t → t ⊆ F t ∧ P (F t) ∧ μ (s \ ⋃ p ∈ F t, closedBall p.1 p.2) ≤ ↑N / (↑N + 1) * μ (s \ ⋃ p ∈ t, closedBall p.1 p.2) u : ℕ → Finset (α × ℝ) := fun n => F^[n] ∅ u_succ : ∀ (n : ℕ), u n.succ = F (u n) Pu : ∀ (n : ℕ), P (u n) A : ∀ (n : ℕ), μ (s \ ⋃ p ∈ ⋃ n, ↑(u n), closedBall p.1 p.2) ≤ μ (s \ ⋃ p ∈ u n, closedBall p.1 p.2) ⊢ ∀ (n : ℕ), μ (s \ ⋃ p ∈ u n, closedBall p.1 p.2) ≤ (↑N / (↑N + 1)) ^ n * μ s
intro n
α : Type u_1 inst✝⁵ : MetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : HasBesicovitchCovering α μ : Measure α inst✝ : IsFiniteMeasure μ f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty N : ℕ τ : ℝ hτ : 1 < τ hN : IsEmpty (SatelliteConfig α N τ) P : Finset (α × ℝ) → Prop := fun t => ((↑t).PairwiseDisjoint fun p => closedBall p.1 p.2) ∧ (∀ p ∈ t, p.1 ∈ s) ∧ ∀ p ∈ t, p.2 ∈ f p.1 F : Finset (α × ℝ) → Finset (α × ℝ) hF : ∀ (t : Finset (α × ℝ)), P t → t ⊆ F t ∧ P (F t) ∧ μ (s \ ⋃ p ∈ F t, closedBall p.1 p.2) ≤ ↑N / (↑N + 1) * μ (s \ ⋃ p ∈ t, closedBall p.1 p.2) u : ℕ → Finset (α × ℝ) := fun n => F^[n] ∅ u_succ : ∀ (n : ℕ), u n.succ = F (u n) Pu : ∀ (n : ℕ), P (u n) A : ∀ (n : ℕ), μ (s \ ⋃ p ∈ ⋃ n, ↑(u n), closedBall p.1 p.2) ≤ μ (s \ ⋃ p ∈ u n, closedBall p.1 p.2) n : ℕ ⊢ μ (s \ ⋃ p ∈ u n, closedBall p.1 p.2) ≤ (↑N / (↑N + 1)) ^ n * μ s
fb6f6078be13e9db
Complex.norm_exp_eq_iff_re_eq
Mathlib/Data/Complex/Trigonometric.lean
theorem norm_exp_eq_iff_re_eq {x y : ℂ} : ‖exp x‖ = ‖exp y‖ ↔ x.re = y.re
x y : ℂ ⊢ ‖cexp x‖ = ‖cexp y‖ ↔ x.re = y.re
rw [norm_exp, norm_exp, Real.exp_eq_exp]
no goals
30047c529b2e88ee
MeasureTheory.ergodicSMul_iterateMulAct
Mathlib/Dynamics/Ergodic/Action/Basic.lean
theorem ergodicSMul_iterateMulAct {f : α → α} (hf : Measurable f) : ErgodicSMul (IterateMulAct f) α μ ↔ Ergodic f μ
case refine_1 α : Type u_2 m : MeasurableSpace α μ : Measure α f : α → α hf : Measurable f x✝ : MeasurePreserving f μ μ ∧ ∀ {s : Set α}, MeasurableSet s → (∀ (g : IterateMulAct f), (fun x => g • x) ⁻¹' s =ᶠ[ae μ] s) → EventuallyConst s (ae μ) h₁ : MeasurePreserving f μ μ h₂ : ∀ {s : Set α}, MeasurableSet s → (∀ (g : IterateMulAct f), (fun x => g • x) ⁻¹' s =ᶠ[ae μ] s) → EventuallyConst s (ae μ) s : Set α hm : MeasurableSet s hs : f ⁻¹' s = s ⊢ EventuallyConst s (ae μ)
refine h₂ hm fun n ↦ ?_
case refine_1 α : Type u_2 m : MeasurableSpace α μ : Measure α f : α → α hf : Measurable f x✝ : MeasurePreserving f μ μ ∧ ∀ {s : Set α}, MeasurableSet s → (∀ (g : IterateMulAct f), (fun x => g • x) ⁻¹' s =ᶠ[ae μ] s) → EventuallyConst s (ae μ) h₁ : MeasurePreserving f μ μ h₂ : ∀ {s : Set α}, MeasurableSet s → (∀ (g : IterateMulAct f), (fun x => g • x) ⁻¹' s =ᶠ[ae μ] s) → EventuallyConst s (ae μ) s : Set α hm : MeasurableSet s hs : f ⁻¹' s = s n : IterateMulAct f ⊢ (fun x => n • x) ⁻¹' s =ᶠ[ae μ] s
17bba3a79d18d80f
Asymptotics.isLittleO_norm_pow_id
Mathlib/Analysis/Asymptotics/Lemmas.lean
theorem isLittleO_norm_pow_id {n : ℕ} (h : 1 < n) : (fun x : E' => ‖x‖ ^ n) =o[𝓝 0] fun x => x
E' : Type u_6 inst✝ : SeminormedAddCommGroup E' n : ℕ h : 1 < n ⊢ (fun x => ‖x‖ ^ n) =o[𝓝 0] fun x => x
have := @isLittleO_norm_pow_norm_pow E' _ _ _ h
E' : Type u_6 inst✝ : SeminormedAddCommGroup E' n : ℕ h : 1 < n this : (fun x => ‖x‖ ^ n) =o[𝓝 0] fun x => ‖x‖ ^ 1 ⊢ (fun x => ‖x‖ ^ n) =o[𝓝 0] fun x => x
2973b7c8a10e88c9
Subgroup.isOpen_of_isClosed_of_finiteIndex
Mathlib/Topology/Algebra/ClosedSubgroup.lean
@[to_additive] lemma isOpen_of_isClosed_of_finiteIndex (H : Subgroup G) [H.FiniteIndex] (h : IsClosed (H : Set G)) : IsOpen (H : Set G)
G : Type u inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : ContinuousMul G H : Subgroup G inst✝ : H.FiniteIndex h✝ : IsClosed ↑H x : G h : x ∈ (↑H)ᶜ ⊢ 1⁻¹ * x ∉ H
simpa only [inv_one, one_mul, ne_eq]
no goals
5ef2fd5bf30d07f9
AEMeasurable.isLUB
Mathlib/MeasureTheory/Constructions/BorelSpace/Order.lean
theorem AEMeasurable.isLUB {ι} {μ : Measure δ} [Countable ι] {f : ι → δ → α} {g : δ → α} (hf : ∀ i, AEMeasurable (f i) μ) (hg : ∀ᵐ b ∂μ, IsLUB { a | ∃ i, f i b = a } (g b)) : AEMeasurable g μ
case inl α : Type u_1 δ : Type u_4 inst✝⁵ : TopologicalSpace α mα : MeasurableSpace α inst✝⁴ : BorelSpace α mδ : MeasurableSpace δ inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : SecondCountableTopology α ι : Sort u_5 μ : Measure δ inst✝ : Countable ι f : ι → δ → α g : δ → α hf : ∀ (i : ι), AEMeasurable (f i) μ hg : ∀ᵐ (b : δ) ∂μ, IsLUB {a | ∃ i, f i b = a} (g b) a✝ : Nontrivial α hα : Nonempty α hι : IsEmpty ι ⊢ AEMeasurable g μ
simp only [IsEmpty.exists_iff, setOf_false, isLUB_empty_iff] at hg
case inl α : Type u_1 δ : Type u_4 inst✝⁵ : TopologicalSpace α mα : MeasurableSpace α inst✝⁴ : BorelSpace α mδ : MeasurableSpace δ inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : SecondCountableTopology α ι : Sort u_5 μ : Measure δ inst✝ : Countable ι f : ι → δ → α g : δ → α hf : ∀ (i : ι), AEMeasurable (f i) μ a✝ : Nontrivial α hα : Nonempty α hι : IsEmpty ι hg : ∀ᵐ (b : δ) ∂μ, IsBot (g b) ⊢ AEMeasurable g μ
22b5a03f49a80425
Ideal.exists_ideal_over_prime_of_isIntegral_of_isDomain
Mathlib/RingTheory/Ideal/GoingUp.lean
theorem exists_ideal_over_prime_of_isIntegral_of_isDomain [Algebra.IsIntegral R S] (P : Ideal R) [IsPrime P] (hP : RingHom.ker (algebraMap R S) ≤ P) : ∃ Q : Ideal S, IsPrime Q ∧ Q.comap (algebraMap R S) = P
R : Type u_1 inst✝⁵ : CommRing R S : Type u_2 inst✝⁴ : CommRing S inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : Algebra.IsIntegral R S P : Ideal R inst✝ : P.IsPrime hP : RingHom.ker (algebraMap R S) ≤ P hP0 : 0 ∉ Algebra.algebraMapSubmonoid S P.primeCompl ⊢ ∃ Q, Q.IsPrime ∧ comap (algebraMap R S) Q = P
let Rₚ := Localization P.primeCompl
R : Type u_1 inst✝⁵ : CommRing R S : Type u_2 inst✝⁴ : CommRing S inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : Algebra.IsIntegral R S P : Ideal R inst✝ : P.IsPrime hP : RingHom.ker (algebraMap R S) ≤ P hP0 : 0 ∉ Algebra.algebraMapSubmonoid S P.primeCompl Rₚ : Type u_1 := Localization P.primeCompl ⊢ ∃ Q, Q.IsPrime ∧ comap (algebraMap R S) Q = P
ef69a42214a052c2
Nat.mem_properDivisors_prime_pow
Mathlib/NumberTheory/Divisors.lean
theorem mem_properDivisors_prime_pow {p : ℕ} (pp : p.Prime) (k : ℕ) {x : ℕ} : x ∈ properDivisors (p ^ k) ↔ ∃ (j : ℕ) (_ : j < k), x = p ^ j
case h p : ℕ pp : Prime p k x : ℕ ⊢ ∀ (a : ℕ), a ≤ k ∧ x = p ^ a ∧ x < p ^ k ↔ a < k ∧ x = p ^ a
intro a
case h p : ℕ pp : Prime p k x a : ℕ ⊢ a ≤ k ∧ x = p ^ a ∧ x < p ^ k ↔ a < k ∧ x = p ^ a
b547ebe2f9034e32
MvPolynomial.eval_indicator_apply_eq_one
Mathlib/FieldTheory/Finite/Polynomial.lean
theorem eval_indicator_apply_eq_one (a : σ → K) : eval a (indicator a) = 1
K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K a : σ → K a✝ : Nontrivial K this : 0 < Fintype.card K - 1 ⊢ (eval a) (indicator a) = 1
simp only [indicator, map_prod, map_sub, map_one, map_pow, eval_X, eval_C, sub_self, zero_pow this.ne', sub_zero, Finset.prod_const_one]
no goals
2a99aadb9c32fee5
Convex.isLittleO_alternate_sum_square
Mathlib/Analysis/Calculus/FDeriv/Symmetric.lean
theorem Convex.isLittleO_alternate_sum_square {v w : E} (h4v : x + (4 : ℝ) • v ∈ interior s) (h4w : x + (4 : ℝ) • w ∈ interior s) : (fun h : ℝ => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • f'' v w) =o[𝓝[>] 0] fun h => h ^ 2
E : Type u_1 F : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F s : Set E s_conv : Convex ℝ s f : E → F f' : E → E →L[ℝ] F f'' : E →L[ℝ] E →L[ℝ] F hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x x : E xs : x ∈ s hx : HasFDerivWithinAt f' f'' (interior s) x v w : E h4v : x + 4 • v ∈ interior s h4w : x + 4 • w ∈ interior s A : 1 / 2 ∈ Ioc 0 1 B : 1 / 2 ∈ Icc 0 1 h2v2w : x + 2 • v + 2 • w ∈ interior s h2vww : x + (2 • v + w) + w ∈ interior s h2v : x + 2 • v ∈ interior s h2w : x + 2 • w ∈ interior s hvw : x + (v + w) ∈ interior s h2vw : x + (2 • v + w) ∈ interior s hvww : x + (v + w) + w ∈ interior s TA1 : (fun h => f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w - (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0] fun h => h ^ 2 TA2 : (fun h => f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • (f' x) w - h ^ 2 • (f'' (v + w)) w - (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0] fun h => h ^ 2 ⊢ (fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) =o[𝓝[>] 0] fun h => h ^ 2
convert TA1.sub TA2 using 1
case h.e'_7 E : Type u_1 F : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F s : Set E s_conv : Convex ℝ s f : E → F f' : E → E →L[ℝ] F f'' : E →L[ℝ] E →L[ℝ] F hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x x : E xs : x ∈ s hx : HasFDerivWithinAt f' f'' (interior s) x v w : E h4v : x + 4 • v ∈ interior s h4w : x + 4 • w ∈ interior s A : 1 / 2 ∈ Ioc 0 1 B : 1 / 2 ∈ Icc 0 1 h2v2w : x + 2 • v + 2 • w ∈ interior s h2vww : x + (2 • v + w) + w ∈ interior s h2v : x + 2 • v ∈ interior s h2w : x + 2 • w ∈ interior s hvw : x + (v + w) ∈ interior s h2vw : x + (2 • v + w) ∈ interior s hvww : x + (v + w) + w ∈ interior s TA1 : (fun h => f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • (f' x) w - h ^ 2 • (f'' (2 • v + w)) w - (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0] fun h => h ^ 2 TA2 : (fun h => f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • (f' x) w - h ^ 2 • (f'' (v + w)) w - (h ^ 2 / 2) • (f'' w) w) =o[𝓝[>] 0] fun h => h ^ 2 ⊢ (fun h => f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h ^ 2 • (f'' v) w) = fun x_1 => f (x + x_1 • (2 • v + w) + x_1 • w) - f (x + x_1 • (2 • v + w)) - x_1 • (f' x) w - x_1 ^ 2 • (f'' (2 • v + w)) w - (x_1 ^ 2 / 2) • (f'' w) w - (f (x + x_1 • (v + w) + x_1 • w) - f (x + x_1 • (v + w)) - x_1 • (f' x) w - x_1 ^ 2 • (f'' (v + w)) w - (x_1 ^ 2 / 2) • (f'' w) w)
1b1627b2cea2c23c
MeasureTheory.AddContent.measure_eq
Mathlib/MeasureTheory/OuterMeasure/OfAddContent.lean
theorem measure_eq [mα : MeasurableSpace α] (m : AddContent C) (hC : IsSetSemiring C) (hC_gen : mα = MeasurableSpace.generateFrom C) (m_sigma_subadd : m.IsSigmaSubadditive) (hs : s ∈ C) : m.measure hC hC_gen.le m_sigma_subadd s = m s
α : Type u_1 C : Set (Set α) s : Set α mα : MeasurableSpace α m : AddContent C hC : IsSetSemiring C hC_gen : mα = MeasurableSpace.generateFrom C m_sigma_subadd : m.IsSigmaSubadditive hs : s ∈ C ⊢ (m.measure hC ⋯ m_sigma_subadd) s = m s
rw [measure, trim_measurableSet_eq]
α : Type u_1 C : Set (Set α) s : Set α mα : MeasurableSpace α m : AddContent C hC : IsSetSemiring C hC_gen : mα = MeasurableSpace.generateFrom C m_sigma_subadd : m.IsSigmaSubadditive hs : s ∈ C ⊢ (m.measureCaratheodory hC m_sigma_subadd) s = m s case hs α : Type u_1 C : Set (Set α) s : Set α mα : MeasurableSpace α m : AddContent C hC : IsSetSemiring C hC_gen : mα = MeasurableSpace.generateFrom C m_sigma_subadd : m.IsSigmaSubadditive hs : s ∈ C ⊢ MeasurableSet s
0f2be7b641ace502
MeasureTheory.levyProkhorovEDist_triangle
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
lemma levyProkhorovEDist_triangle [OpensMeasurableSpace Ω] (μ ν κ : Measure Ω) : levyProkhorovEDist μ κ ≤ levyProkhorovEDist μ ν + levyProkhorovEDist ν κ
Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : PseudoEMetricSpace Ω inst✝ : OpensMeasurableSpace Ω μ ν κ : Measure Ω LPμν_finite : ¬levyProkhorovEDist μ ν = ⊤ LPνκ_finite : ¬levyProkhorovEDist ν κ = ⊤ ε : ℝ≥0∞ B : Set Ω ε_pos : 0 < ε ε_lt_top : ε < ⊤ B_mble : MeasurableSet B half_ε_pos : 0 < ε / 2 half_ε_lt_top : ε / 2 < ⊤ r : ℝ≥0∞ := levyProkhorovEDist μ ν + ε / 2 s : ℝ≥0∞ := levyProkhorovEDist ν κ + ε / 2 lt_r : levyProkhorovEDist μ ν < r lt_s : levyProkhorovEDist ν κ < s hs_add_r : s + r = levyProkhorovEDist μ ν + levyProkhorovEDist ν κ + ε ⊢ s.toReal + r.toReal = (levyProkhorovEDist μ ν + levyProkhorovEDist ν κ + ε).toReal
rw [← hs_add_r, ← ENNReal.toReal_add]
case ha Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : PseudoEMetricSpace Ω inst✝ : OpensMeasurableSpace Ω μ ν κ : Measure Ω LPμν_finite : ¬levyProkhorovEDist μ ν = ⊤ LPνκ_finite : ¬levyProkhorovEDist ν κ = ⊤ ε : ℝ≥0∞ B : Set Ω ε_pos : 0 < ε ε_lt_top : ε < ⊤ B_mble : MeasurableSet B half_ε_pos : 0 < ε / 2 half_ε_lt_top : ε / 2 < ⊤ r : ℝ≥0∞ := levyProkhorovEDist μ ν + ε / 2 s : ℝ≥0∞ := levyProkhorovEDist ν κ + ε / 2 lt_r : levyProkhorovEDist μ ν < r lt_s : levyProkhorovEDist ν κ < s hs_add_r : s + r = levyProkhorovEDist μ ν + levyProkhorovEDist ν κ + ε ⊢ s ≠ ⊤ case hb Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : PseudoEMetricSpace Ω inst✝ : OpensMeasurableSpace Ω μ ν κ : Measure Ω LPμν_finite : ¬levyProkhorovEDist μ ν = ⊤ LPνκ_finite : ¬levyProkhorovEDist ν κ = ⊤ ε : ℝ≥0∞ B : Set Ω ε_pos : 0 < ε ε_lt_top : ε < ⊤ B_mble : MeasurableSet B half_ε_pos : 0 < ε / 2 half_ε_lt_top : ε / 2 < ⊤ r : ℝ≥0∞ := levyProkhorovEDist μ ν + ε / 2 s : ℝ≥0∞ := levyProkhorovEDist ν κ + ε / 2 lt_r : levyProkhorovEDist μ ν < r lt_s : levyProkhorovEDist ν κ < s hs_add_r : s + r = levyProkhorovEDist μ ν + levyProkhorovEDist ν κ + ε ⊢ r ≠ ⊤
afd23a58f0bdc27d
ConcaveOn.smul'
Mathlib/Analysis/Convex/Mul.lean
lemma ConcaveOn.smul' [OrderedSMul 𝕜 E] (hf : ConcaveOn 𝕜 s f) (hg : ConcaveOn 𝕜 s g) (hf₀ : ∀ ⦃x⦄, x ∈ s → 0 ≤ f x) (hg₀ : ∀ ⦃x⦄, x ∈ s → 0 ≤ g x) (hfg : AntivaryOn f g s) : ConcaveOn 𝕜 s (f • g)
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹⁰ : LinearOrderedCommRing 𝕜 inst✝⁹ : LinearOrderedCommRing E inst✝⁸ : LinearOrderedAddCommGroup F inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜 F inst✝⁵ : Module E F inst✝⁴ : IsScalarTower 𝕜 E F inst✝³ : SMulCommClass 𝕜 E F inst✝² : OrderedSMul 𝕜 F inst✝¹ : OrderedSMul E F s : Set 𝕜 f : 𝕜 → E g : 𝕜 → F inst✝ : OrderedSMul 𝕜 E hf : ConcaveOn 𝕜 s f hg : ConcaveOn 𝕜 s g hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x hfg : AntivaryOn f g s x : 𝕜 hx : x ∈ s y : 𝕜 hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ (a * a) • f x • g x + (b * b) • f y • g y + (a * b) • (f x • g y + f y • g x) = (a • f x + b • f y) • (a • g x + b • g y)
simp only [mul_add, add_smul, smul_add]
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹⁰ : LinearOrderedCommRing 𝕜 inst✝⁹ : LinearOrderedCommRing E inst✝⁸ : LinearOrderedAddCommGroup F inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜 F inst✝⁵ : Module E F inst✝⁴ : IsScalarTower 𝕜 E F inst✝³ : SMulCommClass 𝕜 E F inst✝² : OrderedSMul 𝕜 F inst✝¹ : OrderedSMul E F s : Set 𝕜 f : 𝕜 → E g : 𝕜 → F inst✝ : OrderedSMul 𝕜 E hf : ConcaveOn 𝕜 s f hg : ConcaveOn 𝕜 s g hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x hfg : AntivaryOn f g s x : 𝕜 hx : x ∈ s y : 𝕜 hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ (a * a) • f x • g x + (b * b) • f y • g y + ((a * b) • f x • g y + (a * b) • f y • g x) = (a • f x) • a • g x + (b • f y) • a • g x + ((a • f x) • b • g y + (b • f y) • b • g y)
4d4df82f123ffdd1
Holor.cprankMax_sum
Mathlib/Data/Holor.lean
theorem cprankMax_sum [Ring α] {β} {n : ℕ} (s : Finset β) (f : β → Holor α ds) : (∀ x ∈ s, CPRankMax n (f x)) → CPRankMax (s.card * n) (∑ x ∈ s, f x) := letI := Classical.decEq β Finset.induction_on s (by simp [CPRankMax.zero]) (by intro x s (h_x_notin_s : x ∉ s) ih h_cprank simp only [Finset.sum_insert h_x_notin_s, Finset.card_insert_of_not_mem h_x_notin_s] rw [Nat.right_distrib] simp only [Nat.one_mul, Nat.add_comm] have ih' : CPRankMax (Finset.card s * n) (∑ x ∈ s, f x)
α : Type ds : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x : β s : Finset β h_x_notin_s : x ∉ s ih : (∀ x ∈ s, CPRankMax n (f x)) → CPRankMax (s.card * n) (∑ x ∈ s, f x) h_cprank : ∀ x_1 ∈ insert x s, CPRankMax n (f x_1) ⊢ CPRankMax (s.card * n + 1 * n) (f x + ∑ x ∈ s, f x)
simp only [Nat.one_mul, Nat.add_comm]
α : Type ds : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x : β s : Finset β h_x_notin_s : x ∉ s ih : (∀ x ∈ s, CPRankMax n (f x)) → CPRankMax (s.card * n) (∑ x ∈ s, f x) h_cprank : ∀ x_1 ∈ insert x s, CPRankMax n (f x_1) ⊢ CPRankMax (n + s.card * n) (f x + ∑ x ∈ s, f x)
0c565ca3da967211
IsUpperSet.div_left
Mathlib/Algebra/Order/UpperLower.lean
theorem IsUpperSet.div_left (ht : IsUpperSet t) : IsLowerSet (s / t)
α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α ht : IsUpperSet t ⊢ IsLowerSet (s * t⁻¹)
exact ht.inv.mul_left
no goals
843eaf181c6d2c88
Real.arctan_inv_of_pos
Mathlib/Analysis/SpecialFunctions/Trigonometric/Arctan.lean
theorem arctan_inv_of_pos {x : ℝ} (h : 0 < x) : arctan x⁻¹ = π / 2 - arctan x
x : ℝ h : 0 < x ⊢ arctan x⁻¹ = π / 2 - arctan x
rw [← arctan_tan (x := _ - _), tan_pi_div_two_sub, tan_arctan]
case hx₁ x : ℝ h : 0 < x ⊢ -(π / 2) < π / 2 - arctan x case hx₂ x : ℝ h : 0 < x ⊢ π / 2 - arctan x < π / 2
fa2a609837cbeb83
Module.End.independent_iInf_maxGenEigenspace_of_forall_mapsTo
Mathlib/LinearAlgebra/Eigenspace/Pi.lean
lemma independent_iInf_maxGenEigenspace_of_forall_mapsTo (h : ∀ i j φ, MapsTo (f i) ((f j).maxGenEigenspace φ) ((f j).maxGenEigenspace φ)) : iSupIndep fun χ : ι → R ↦ ⨅ i, (f i).maxGenEigenspace (χ i)
case empty ι : Type u_1 R : Type u_2 M : Type u_4 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M f : ι → End R M inst✝ : NoZeroSMulDivisors R M h : ∀ (l : ι) (χ : ι → R), MapsTo (⇑(f l)) (⨅ i, ↑((f i).maxGenEigenspace (χ i))) (⨅ i, ↑((f i).maxGenEigenspace (χ i))) χ₁ : ι → R ⊢ χ₁ ∉ ∅ → Disjoint (⨅ i, (f i).maxGenEigenspace (χ₁ i)) (∅.sup fun χ => ⨅ i, (f i).maxGenEigenspace (χ i))
simp
no goals
4dd72b81f13de433
MvPolynomial.aeval_sumElim_pderiv_inl
Mathlib/Algebra/MvPolynomial/PDeriv.lean
lemma aeval_sumElim_pderiv_inl {S τ : Type*} [CommRing S] [Algebra R S] (p : MvPolynomial (σ ⊕ τ) R) (f : τ → S) (j : σ) : aeval (Sum.elim X (C ∘ f)) ((pderiv (Sum.inl j)) p) = (pderiv j) ((aeval (Sum.elim X (C ∘ f))) p)
case h_X R : Type u σ : Type v inst✝² : CommSemiring R S : Type u_1 τ : Type u_2 inst✝¹ : CommRing S inst✝ : Algebra R S f : τ → S j : σ p : MvPolynomial (σ ⊕ τ) R q : σ ⊕ τ h : (aeval (Sum.elim X (⇑C ∘ f))) ((pderiv (Sum.inl j)) p) = (pderiv j) ((aeval (Sum.elim X (⇑C ∘ f))) p) ⊢ (aeval (Sum.elim X (⇑C ∘ f))) p * (aeval (Sum.elim X (⇑C ∘ f))) (Pi.single (Sum.inl j) 1 q) + Sum.elim X (⇑C ∘ f) q * (pderiv j) ((aeval (Sum.elim X (⇑C ∘ f))) p) = (aeval (Sum.elim X (⇑C ∘ f))) p * (pderiv j) (Sum.elim X (⇑C ∘ f) q) + Sum.elim X (⇑C ∘ f) q * (pderiv j) ((aeval (Sum.elim X (⇑C ∘ f))) p)
cases q <;> simp [Pi.single_apply]
no goals
cea34ff12d9793df
Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Operations/Udiv.lean
theorem go_decl_eq (aig : AIG α) (curr : Nat) (falseRef trueRef : AIG.Ref aig) (n d : AIG.RefVec aig w) (wn wr : Nat) (q r : AIG.RefVec aig w) : ∀ (idx : Nat) (h1) (h2), (go aig curr falseRef trueRef n d wn wr q r).aig.decls[idx]'h2 = aig.decls[idx]'h1
case h_1 α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w res : BlastUdivOutput aig w curr✝ : Nat hgo : { aig := aig, q := q, r := r, hle := ⋯ } = res ⊢ ∀ (idx : Nat) (h1 : idx < aig.decls.size) (h2 : idx < res.aig.decls.size), res.aig.decls[idx] = aig.decls[idx]
simp [← hgo]
no goals
5789cda59f77ea8b
List.fst_eq_of_mem_zipIdx
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Range.lean
theorem fst_eq_of_mem_zipIdx {x : α × Nat} {l : List α} {k : Nat} (h : x ∈ zipIdx l k) : x.1 = l[x.2 - k]'(by have := le_snd_of_mem_zipIdx h; have := snd_lt_add_of_mem_zipIdx h; omega)
case cons.tail α : Type u_1 x : α × Nat hd : α tl : List α k : Nat m : Mem x (tl.zipIdx (k + 1)) ih : x.fst = tl[x.snd - (k + 1)] this : x.snd - k = x.snd - (k + 1) + 1 ⊢ x.fst = (hd :: tl)[x.snd - k]
simp [this, ih]
no goals
6b68bcf3cd90098c
Nat.pow_pow_add_primeFactors_one_lt
Mathlib/NumberTheory/Fermat.lean
/-- Prime factors of `a ^ (2 ^ n) + 1` are of form `k * 2 ^ (n + 1) + 1`. -/ lemma pow_pow_add_primeFactors_one_lt {a n p : ℕ} (hp : p.Prime) (hp2 : p ≠ 2) (hpdvd : p ∣ a ^ (2 ^ n) + 1) : ∃ k, p = k * 2 ^ (n + 1) + 1
a n p : ℕ hp : Prime p hp2 : p ≠ 2 hpdvd : p ∣ a ^ 2 ^ n + 1 this✝ : Fact (2 < p) this : Fact (Prime p) ha1 : ↑a ^ 2 ^ n = -1 ⊢ ∃ k, p = k * 2 ^ (n + 1) + 1
have ha0 : (a : ZMod p) ≠ 0 := by intro h rw [h, zero_pow (pow_ne_zero n two_ne_zero), zero_eq_neg] at ha1 exact one_ne_zero ha1
a n p : ℕ hp : Prime p hp2 : p ≠ 2 hpdvd : p ∣ a ^ 2 ^ n + 1 this✝ : Fact (2 < p) this : Fact (Prime p) ha1 : ↑a ^ 2 ^ n = -1 ha0 : ↑a ≠ 0 ⊢ ∃ k, p = k * 2 ^ (n + 1) + 1
6ed2a2d9400f8630
IsPrimitiveRoot.toInteger_sub_one_dvd_prime
Mathlib/NumberTheory/Cyclotomic/Rat.lean
/-- In a `p ^ (k + 1)`-th cyclotomic extension of `ℚ`, we have that `ζ - 1` divides `p` in `𝓞 K`. -/ lemma toInteger_sub_one_dvd_prime [hcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K] (hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))) : ((hζ.toInteger - 1)) ∣ p
p : ℕ+ k : ℕ K : Type u inst✝¹ : Field K ζ : K hp : Fact (Nat.Prime ↑p) inst✝ : CharZero K hcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1)) htwo : ↑p ^ (k + 1) = 2 hp2 : ↑p = 2 hk : k = 0 hζ' : ζ = -1 ⊢ hζ.toInteger = -1
ext
case h p : ℕ+ k : ℕ K : Type u inst✝¹ : Field K ζ : K hp : Fact (Nat.Prime ↑p) inst✝ : CharZero K hcycl : IsCyclotomicExtension {p ^ (k + 1)} ℚ K hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1)) htwo : ↑p ^ (k + 1) = 2 hp2 : ↑p = 2 hk : k = 0 hζ' : ζ = -1 ⊢ ↑hζ.toInteger = ↑(-1)
7b3f289dfd402da6
CategoryTheory.Limits.colimitLimitToLimitColimit_surjective
Mathlib/CategoryTheory/Limits/FilteredColimitCommutesFiniteLimit.lean
theorem colimitLimitToLimitColimit_surjective : Function.Surjective (colimitLimitToLimitColimit F)
case intro.intro.h.w J : Type u₁ K : Type u₂ inst✝⁴ : SmallCategory J inst✝³ : Category.{v₂, u₂} K inst✝² : Small.{v, u₂} K inst✝¹ : FinCategory J F : J × K ⥤ Type v inst✝ : IsFiltered K x : limit (curry.obj F ⋙ colim) k : J → K y : (j : J) → F.obj (j, k j) e : ∀ (j : J), colimit.ι ((curry.obj F).obj j) (k j) (y j) = limit.π (curry.obj F ⋙ colim) j x k' : K g : (j : J) → k j ⟶ k' kf : {j j' : J} → (j ⟶ j') → K hf gf : {j j' : J} → (f : j ⟶ j') → k' ⟶ kf f wf : ∀ {j j' : J} (f : j ⟶ j'), F.map (𝟙 j', g j' ≫ gf f) (y j') = F.map (f, g j ≫ hf f) (y j) k'' : K i : {j j' : J} → (f : j ⟶ j') → kf f ⟶ k'' s : ∀ {j₁ j₂ j₃ j₄ : J} (f : j₁ ⟶ j₂) (f' : j₃ ⟶ j₄), gf f ≫ i f = hf f' ≫ i f' j : J ⊢ limit.π (curry.obj F ⋙ colim) j (colimitLimitToLimitColimit F (colimit.ι (curry.obj (swap K J ⋙ F) ⋙ lim) k'' (id (Limit.mk ((curry.obj (swap K J ⋙ F)).obj k'') (fun j => F.map (𝟙 j, g j ≫ gf (𝟙 j) ≫ i (𝟙 j)) (y j)) ⋯)))) = limit.π (curry.obj F ⋙ colim) j x
simp only [id, ← e, Limits.ι_colimitLimitToLimitColimit_π_apply, colimit_eq_iff, Bifunctor.map_id_comp, types_comp_apply, curry_obj_obj_map, Functor.comp_obj, colim_obj, Limit.π_mk]
case intro.intro.h.w J : Type u₁ K : Type u₂ inst✝⁴ : SmallCategory J inst✝³ : Category.{v₂, u₂} K inst✝² : Small.{v, u₂} K inst✝¹ : FinCategory J F : J × K ⥤ Type v inst✝ : IsFiltered K x : limit (curry.obj F ⋙ colim) k : J → K y : (j : J) → F.obj (j, k j) e : ∀ (j : J), colimit.ι ((curry.obj F).obj j) (k j) (y j) = limit.π (curry.obj F ⋙ colim) j x k' : K g : (j : J) → k j ⟶ k' kf : {j j' : J} → (j ⟶ j') → K hf gf : {j j' : J} → (f : j ⟶ j') → k' ⟶ kf f wf : ∀ {j j' : J} (f : j ⟶ j'), F.map (𝟙 j', g j' ≫ gf f) (y j') = F.map (f, g j ≫ hf f) (y j) k'' : K i : {j j' : J} → (f : j ⟶ j') → kf f ⟶ k'' s : ∀ {j₁ j₂ j₃ j₄ : J} (f : j₁ ⟶ j₂) (f' : j₃ ⟶ j₄), gf f ≫ i f = hf f' ≫ i f' j : J ⊢ ∃ k_1 f g_1, F.map (𝟙 j, f) (F.map (𝟙 j, g j ≫ gf (𝟙 j) ≫ i (𝟙 j)) (y j)) = F.map (𝟙 j, g_1) (y j)
1be585fb623fc3d9
ClassGroup.equiv_mk0
Mathlib/RingTheory/ClassGroup.lean
theorem ClassGroup.equiv_mk0 [IsDedekindDomain R] (I : (Ideal R)⁰) : ClassGroup.equiv K (ClassGroup.mk0 I) = QuotientGroup.mk' (toPrincipalIdeal R K).range (FractionalIdeal.mk0 K I)
R : Type u_1 K : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : Field K inst✝³ : Algebra R K inst✝² : IsFractionRing R K inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : ↥(Ideal R)⁰ ⊢ (QuotientGroup.mk' (toPrincipalIdeal R K).range) ((Units.mapEquiv ↑(canonicalEquiv R⁰ (FractionRing R) K)) ((FractionalIdeal.mk0 (FractionRing R)) I)) = (QuotientGroup.mk' (toPrincipalIdeal R K).range) ((FractionalIdeal.mk0 K) I)
congr 1
case h.e_6.h R : Type u_1 K : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : Field K inst✝³ : Algebra R K inst✝² : IsFractionRing R K inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : ↥(Ideal R)⁰ ⊢ (Units.mapEquiv ↑(canonicalEquiv R⁰ (FractionRing R) K)) ((FractionalIdeal.mk0 (FractionRing R)) I) = (FractionalIdeal.mk0 K) I
7d59bf1c821655a1
derivWithin_smul_const
Mathlib/Analysis/Calculus/Deriv/Mul.lean
theorem derivWithin_smul_const (hc : DifferentiableWithinAt 𝕜 c s x) (f : F) : derivWithin (fun y => c y • f) s x = derivWithin c s x • f
𝕜 : Type u inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F x : 𝕜 s : Set 𝕜 𝕜' : Type u_2 inst✝³ : NontriviallyNormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' F inst✝ : IsScalarTower 𝕜 𝕜' F c : 𝕜 → 𝕜' hc : DifferentiableWithinAt 𝕜 c s x f : F ⊢ derivWithin (fun y => c y • f) s x = derivWithin c s x • f
rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
case inl 𝕜 : Type u inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F x : 𝕜 s : Set 𝕜 𝕜' : Type u_2 inst✝³ : NontriviallyNormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' F inst✝ : IsScalarTower 𝕜 𝕜' F c : 𝕜 → 𝕜' hc : DifferentiableWithinAt 𝕜 c s x f : F hxs : UniqueDiffWithinAt 𝕜 s x ⊢ derivWithin (fun y => c y • f) s x = derivWithin c s x • f case inr 𝕜 : Type u inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F x : 𝕜 s : Set 𝕜 𝕜' : Type u_2 inst✝³ : NontriviallyNormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' F inst✝ : IsScalarTower 𝕜 𝕜' F c : 𝕜 → 𝕜' hc : DifferentiableWithinAt 𝕜 c s x f : F hxs : 𝓝[s \ {x}] x = ⊥ ⊢ derivWithin (fun y => c y • f) s x = derivWithin c s x • f
3895cc9acf01c4d6
NNRat.num_div_den
Mathlib/Algebra/Field/Rat.lean
@[simp] lemma num_div_den (q : ℚ≥0) : (q.num : ℚ≥0) / q.den = q
case a q : ℚ≥0 ⊢ ↑(↑q.num / ↑q.den) = ↑q
rw [coe_div, coe_natCast, coe_natCast, num, ← Int.cast_natCast]
case a q : ℚ≥0 ⊢ ↑↑(↑q).num.natAbs / ↑q.den = ↑q
e61d31e94aa6be48
Profinite.exists_locallyConstant_finite_aux
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
theorem exists_locallyConstant_finite_aux {α : Type*} [Finite α] (hC : IsLimit C) (f : LocallyConstant C.pt α) : ∃ (j : J) (g : LocallyConstant (F.obj j) (α → Fin 2)), (f.map fun a b => if a = b then (0 : Fin 2) else 1) = g.comap (C.π.app _).hom
case intro.intro J : Type v inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toTop) (Fin 2) := (LocallyConstant.map ι f).flip j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (TopCat.Hom.hom (C.π.app (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => ⋯.some gg : α → LocallyConstant (↑(F.obj j0).toTop) (Fin 2) := fun a => LocallyConstant.comap (TopCat.Hom.hom (F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toTop) (α → Fin 2) := LocallyConstant.unflip gg this : LocallyConstant.map ι f = LocallyConstant.unflip (LocallyConstant.map ι f).flip ⊢ LocallyConstant.unflip (LocallyConstant.map ι f).flip = LocallyConstant.comap (TopCat.Hom.hom (C.π.app j0)) ggg
clear this
case intro.intro J : Type v inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toTop) (Fin 2) := (LocallyConstant.map ι f).flip j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (TopCat.Hom.hom (C.π.app (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => ⋯.some gg : α → LocallyConstant (↑(F.obj j0).toTop) (Fin 2) := fun a => LocallyConstant.comap (TopCat.Hom.hom (F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toTop) (α → Fin 2) := LocallyConstant.unflip gg ⊢ LocallyConstant.unflip (LocallyConstant.map ι f).flip = LocallyConstant.comap (TopCat.Hom.hom (C.π.app j0)) ggg
ad55d9835f0fad2e
Complex.cos_eq_zero_iff
Mathlib/Analysis/SpecialFunctions/Trigonometric/Complex.lean
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
θ : ℂ h : (cexp (θ * I) + cexp (-θ * I)) / 2 = 0 ↔ cexp (2 * θ * I) = -1 ⊢ cos θ = 0 ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2
rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm]
θ : ℂ h : (cexp (θ * I) + cexp (-θ * I)) / 2 = 0 ↔ cexp (2 * θ * I) = -1 ⊢ (∃ n, 2 * I * θ = ↑π * I + ↑n * (2 * ↑π * I)) ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2
ea1f630e1fe1d549
Stream'.Seq.of_mem_append
Mathlib/Data/Seq/Seq.lean
theorem of_mem_append {s₁ s₂ : Seq α} {a : α} (h : a ∈ append s₁ s₂) : a ∈ s₁ ∨ a ∈ s₂
case cons.inl α : Type u s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ s₁.append s₂ → s₁.append s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ c : α t₁ : Seq α m : a ∈ (cons c t₁).append s₂ e : (cons c t₁).append s₂ = cons b s' this : ((cons c t₁).append s₂).destruct = (cons b s').destruct e' : a = c ⊢ c ∈ cons c t₁ ∨ c ∈ s₂
exact Or.inl (mem_cons _ _)
no goals
616ea8064ee30260
hnot_hnot_sdiff_distrib
Mathlib/Order/Heyting/Basic.lean
theorem hnot_hnot_sdiff_distrib (a b : α) : ¬¬(a \ b) = ¬¬a \ ¬¬b
case a α : Type u_2 inst✝ : CoheytingAlgebra α a b : α ⊢ ¬¬(a \ b) ≤ ¬¬a \ ¬¬b
refine hnot_le_comm.1 ((hnot_anti sdiff_le_inf_hnot).trans' ?_)
case a α : Type u_2 inst✝ : CoheytingAlgebra α a b : α ⊢ ¬(¬¬a \ ¬¬b) ≤ ¬(a ⊓ ¬b)
e5490f530f49ead6
Array.cons_lex_cons
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lex/Lemmas.lean
theorem cons_lex_cons [BEq α] {lt : α → α → Bool} {a b : α} {xs ys : Array α} : (#[a] ++ xs).lex (#[b] ++ ys) lt = (lt a b || a == b && xs.lex ys lt)
case true α : Type u_1 inst✝ : BEq α lt : α → α → Bool a b : α xs ys : Array α ⊢ (match (match if true = true then ForInStep.done ⟨some true, PUnit.unit⟩ else if (a != b) = true then ForInStep.done ⟨some false, PUnit.unit⟩ else ForInStep.yield ⟨none, PUnit.unit⟩ with | ForInStep.done b => b | ForInStep.yield b_1 => forIn' (List.range' 0 (min xs.size ys.size) 1) b_1 fun a_1 m b_2 => if lt xs[a_1] ys[a_1] = true then ForInStep.done ⟨some true, PUnit.unit⟩ else if (xs[a_1] != ys[a_1]) = true then ForInStep.done ⟨some false, PUnit.unit⟩ else ForInStep.yield ⟨none, PUnit.unit⟩).fst with | none => decide (xs.size < ys.size) | some a => a) = (true || a == b && match (forIn' (List.range' 0 (min xs.size ys.size) 1) ⟨none, PUnit.unit⟩ fun a m b => if lt xs[a] ys[a] = true then ForInStep.done ⟨some true, PUnit.unit⟩ else if (xs[a] != ys[a]) = true then ForInStep.done ⟨some false, PUnit.unit⟩ else ForInStep.yield ⟨none, PUnit.unit⟩).fst with | none => decide (xs.size < ys.size) | some a => a)
simp
no goals
af913f9ccd5e7085
DedekindDomain.ProdAdicCompletions.IsFiniteAdele.mul
Mathlib/RingTheory/DedekindDomain/FiniteAdeleRing.lean
theorem mul {x y : K_hat R K} (hx : x.IsFiniteAdele) (hy : y.IsFiniteAdele) : (x * y).IsFiniteAdele
R : Type u_1 K : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x y : K_hat R K hx : x.IsFiniteAdele hy : y.IsFiniteAdele ⊢ (x * y).IsFiniteAdele
rw [IsFiniteAdele, Filter.eventually_cofinite] at hx hy ⊢
R : Type u_1 K : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x y : K_hat R K hx : {x_1 | x x_1 ∉ adicCompletionIntegers K x_1}.Finite hy : {x | y x ∉ adicCompletionIntegers K x}.Finite ⊢ {x_1 | (x * y) x_1 ∉ adicCompletionIntegers K x_1}.Finite
9956a2ee34d7ebb6
exists_associated_pow_of_mul_eq_pow
Mathlib/Algebra/GCDMonoid/Basic.lean
theorem exists_associated_pow_of_mul_eq_pow [GCDMonoid α] {a b c : α} (hab : IsUnit (gcd a b)) {k : ℕ} (h : a * b = c ^ k) : ∃ d : α, Associated (d ^ k) a
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' ⊢ d₁ ^ k * (a' * b') = d₁ ^ k
apply (mul_right_inj' h0₂).mp
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' ⊢ d₂ ^ k * (d₁ ^ k * (a' * b')) = d₂ ^ k * d₁ ^ k
4887d5e0abe68a27
MeasureTheory.Measure.MeasureDense.of_generateFrom_isSetAlgebra_finite
Mathlib/MeasureTheory/Measure/SeparableMeasure.lean
theorem Measure.MeasureDense.of_generateFrom_isSetAlgebra_finite [IsFiniteMeasure μ] (h𝒜 : IsSetAlgebra 𝒜) (hgen : m = MeasurableSpace.generateFrom 𝒜) : μ.MeasureDense 𝒜 where measurable s hs := hgen ▸ measurableSet_generateFrom hs approx s ms
X : Type u_1 m : MeasurableSpace X μ : Measure X 𝒜 : Set (Set X) inst✝ : IsFiniteMeasure μ h𝒜 : IsSetAlgebra 𝒜 hgen : m = MeasurableSpace.generateFrom 𝒜 s : Set X ms : MeasurableSet s x✝ : Set X f : ℕ → Set X hs✝ : ∀ (n : ℕ), MeasurableSet (f n) hf : ∀ (n : ℕ), MeasurableSet (f n) ∧ ∀ (ε : ℝ), 0 < ε → ∃ t ∈ 𝒜, (μ (f n ∆ t)).toReal < ε ε : ℝ ε_pos : 0 < ε this : Filter.Tendsto (fun n => (μ (Accumulate f n)).toReal) Filter.atTop (nhds (μ (⋃ i, f i)).toReal) N : ℕ hN : ∀ n ≥ N, dist (μ (Accumulate f n)).toReal (μ (⋃ i, f i)).toReal < ε / 2 g : ℕ → Set X g_mem : ∀ (n : ℕ), g n ∈ 𝒜 hg : ∀ (n : ℕ), (μ (f n ∆ g n)).toReal < ε / (2 * (↑N + 1)) ⊢ (μ (⋃ n ∈ Finset.range (N + 1), f n ∆ g n)).toReal ≤ (∑ a ∈ Finset.range (N + 1), μ (f a ∆ g a)).toReal
exact toReal_mono (ne_of_lt <| sum_lt_top.2 fun _ _ ↦ measure_lt_top μ _) (measure_biUnion_finset_le _ _)
no goals
92d6fe7992cc346b
exists_spanning_measurableSet_le
Mathlib/MeasureTheory/Constructions/BorelSpace/Real.lean
theorem exists_spanning_measurableSet_le {f : α → ℝ≥0} (hf : Measurable f) (μ : Measure α) [SigmaFinite μ] : ∃ s : ℕ → Set α, (∀ n, MeasurableSet (s n) ∧ μ (s n) < ∞ ∧ ∀ x ∈ s n, f x ≤ n) ∧ ⋃ i, s i = Set.univ
α : Type u_1 mα : MeasurableSpace α f : α → ℝ≥0 hf : Measurable f μ : Measure α inst✝ : SigmaFinite μ sigma_finite_sets : ℕ → Set α := spanningSets μ norm_sets : ℕ → Set α := fun n => {x | f x ≤ ↑n} norm_sets_spanning : ⋃ n, norm_sets n = univ sets : ℕ → Set α := fun n => sigma_finite_sets n ∩ norm_sets n h_meas : ∀ (n : ℕ), MeasurableSet (sets n) h_finite : ∀ (n : ℕ), μ (sets n) < ⊤ i j : ℕ hij : i ≤ j x : α ⊢ f x ≤ ↑i → f x ≤ ↑j
refine fun hif => hif.trans ?_
α : Type u_1 mα : MeasurableSpace α f : α → ℝ≥0 hf : Measurable f μ : Measure α inst✝ : SigmaFinite μ sigma_finite_sets : ℕ → Set α := spanningSets μ norm_sets : ℕ → Set α := fun n => {x | f x ≤ ↑n} norm_sets_spanning : ⋃ n, norm_sets n = univ sets : ℕ → Set α := fun n => sigma_finite_sets n ∩ norm_sets n h_meas : ∀ (n : ℕ), MeasurableSet (sets n) h_finite : ∀ (n : ℕ), μ (sets n) < ⊤ i j : ℕ hij : i ≤ j x : α hif : f x ≤ ↑i ⊢ ↑i ≤ ↑j
447eb51f3f11a510
MeasureTheory.MemLp.prod
Mathlib/MeasureTheory/Function/LpSeminorm/CompareExp.lean
/-- See `MemLp.prod'` for the applied version. -/ protected lemma MemLp.prod (hf : ∀ i ∈ s, MemLp (f i) (p i) μ) : MemLp (∏ i ∈ s, f i) (∑ i ∈ s, (p i)⁻¹)⁻¹ μ
ι : Type u_1 α : Type u_2 𝕜 : Type u_3 x✝ : MeasurableSpace α inst✝ : NormedCommRing 𝕜 μ : Measure α f : ι → α → 𝕜 p : ι → ℝ≥0∞ s : Finset ι hf : ∀ i ∈ s, MemLp (f i) (p i) μ ⊢ MemLp (∏ i ∈ s, f i) (∑ i ∈ s, (p i)⁻¹)⁻¹ μ
induction s using cons_induction with | empty => by_cases hμ : μ = 0 <;> simp [MemLp, eLpNormEssSup_const, hμ, aestronglyMeasurable_const, Pi.one_def] | cons i s hi ih => rw [prod_cons] exact (ih <| forall_of_forall_cons hf).mul (hf i <| mem_cons_self ..) (hpqr := ⟨by simp⟩)
no goals
f26d6d3f2cdcf189
Nat.pow_lt_pow_iff_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem pow_lt_pow_iff_right {a n m : Nat} (h : 1 < a) : a ^ n < a ^ m ↔ n < m
case mp.a a n m : Nat h : 1 < a ⊢ ¬(a ^ n < a ^ m → n < m) → False
intros w
case mp.a a n m : Nat h : 1 < a w : ¬(a ^ n < a ^ m → n < m) ⊢ False
e0769ff7083a3d17
Stream'.WSeq.LiftRel.trans
Mathlib/Data/Seq/WSeq.lean
theorem LiftRel.trans (R : α → α → Prop) (H : Transitive R) : Transitive (LiftRel R) := fun s t u h1 h2 => by refine ⟨fun s u => ∃ t, LiftRel R s t ∧ LiftRel R t u, ⟨t, h1, h2⟩, fun {s u} h => ?_⟩ rcases h with ⟨t, h1, h2⟩ have h1 := liftRel_destruct h1 have h2 := liftRel_destruct h2 refine Computation.liftRel_def.2 ⟨(Computation.terminates_of_liftRel h1).trans (Computation.terminates_of_liftRel h2), fun {a c} ha hc => ?_⟩ rcases h1.left ha with ⟨b, hb, t1⟩ have t2 := Computation.rel_of_liftRel h2 hb hc obtain - | a := a <;> obtain - | c := c · trivial · cases b · cases t2 · cases t1 · cases a rcases b with - | b · cases t1 · cases b cases t2 · obtain ⟨a, s⟩ := a rcases b with - | b · cases t1 obtain ⟨b, t⟩ := b obtain ⟨c, u⟩ := c obtain ⟨ab, st⟩ := t1 obtain ⟨bc, tu⟩ := t2 exact ⟨H ab bc, t, st, tu⟩
case intro.intro.intro.intro.some.some.mk.none α : Type u R : α → α → Prop H : Transitive R s✝¹ t✝ u✝ : WSeq α h1✝¹ : LiftRel R s✝¹ t✝ h2✝¹ : LiftRel R t✝ u✝ s✝ u t : WSeq α h1✝ : LiftRel R s✝ t h2✝ : LiftRel R t u h1 : Computation.LiftRel (LiftRelO R (LiftRel R)) s✝.destruct t.destruct h2 : Computation.LiftRel (LiftRelO R (LiftRel R)) t.destruct u.destruct c : α × WSeq α hc : some c ∈ u.destruct a : α s : WSeq α ha : some (a, s) ∈ s✝.destruct hb : none ∈ t.destruct t2 : LiftRelO R (LiftRel R) none (some c) t1 : LiftRelO R (LiftRel R) (some (a, s)) none ⊢ LiftRelO R (fun s u => ∃ t, LiftRel R s t ∧ LiftRel R t u) (some (a, s)) (some c)
cases t1
no goals
edcc30ddce7afaad
ArithmeticFunction.vonMangoldt_mul_zeta
Mathlib/NumberTheory/VonMangoldt.lean
theorem vonMangoldt_mul_zeta : Λ * ζ = log
⊢ Λ * ↑ζ = log
ext n
case h n : ℕ ⊢ (Λ * ↑ζ) n = log n
0cbf011d894da1b2
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib/Tactic/Ring/Basic.lean
theorem add_pf_add_overlap_zero (h : IsNat (a₁ + b₁) (nat_lit 0)) (h₄ : a₂ + b₂ = c) : (a₁ + a₂ : R) + (b₁ + b₂) = c
R : Type u_1 inst✝ : CommSemiring R a₁ a₂ b₁ b₂ c : R h : IsNat (a₁ + b₁) 0 h₄ : a₂ + b₂ = c ⊢ a₁ + a₂ + (b₁ + b₂) = c
subst_vars
R : Type u_1 inst✝ : CommSemiring R a₁ a₂ b₁ b₂ : R h : IsNat (a₁ + b₁) 0 ⊢ a₁ + a₂ + (b₁ + b₂) = a₂ + b₂
eb5a9b3617dce6da
IsGreatest.nnnorm_cfcₙ_nnreal
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Isometric.lean
lemma IsGreatest.nnnorm_cfcₙ_nnreal (f : ℝ≥0 → ℝ≥0) (a : A) (hf : ContinuousOn f (σₙ ℝ≥0 a)
A : Type u_1 inst✝⁸ : NonUnitalNormedRing A inst✝⁷ : StarRing A inst✝⁶ : NormedSpace ℝ A inst✝⁵ : IsScalarTower ℝ A A inst✝⁴ : SMulCommClass ℝ A A inst✝³ : PartialOrder A inst✝² : StarOrderedRing A inst✝¹ : NonUnitalIsometricContinuousFunctionalCalculus ℝ A IsSelfAdjoint inst✝ : NonnegSpectrumClass ℝ A f : ℝ≥0 → ℝ≥0 a : A hf : autoParam (ContinuousOn f (σₙ ℝ≥0 a)) _auto✝ hf0 : autoParam (f 0 = 0) _auto✝ ha : autoParam (0 ≤ a) _auto✝ ha' : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ ContinuousOn (fun x => ↑(f x.toNNReal)) (σₙ ℝ a)
exact continuous_subtype_val.comp_continuousOn <| ContinuousOn.comp ‹_› continuous_real_toNNReal.continuousOn <| ha'.image ▸ Set.mapsTo_image ..
no goals
ef206d17d4f97fdb
FDRep.char_one
Mathlib/RepresentationTheory/Character.lean
theorem char_one (V : FDRep k G) : V.character 1 = Module.finrank k V
k : Type u inst✝¹ : Field k G : Type u inst✝ : Monoid G V : FDRep k G ⊢ V.character 1 = ↑(finrank k ↑V.V)
simp only [character, map_one, trace_one]
no goals
2ebbc1a121f1e3f7
CompHaus.epi_iff_surjective
Mathlib/Topology/Category/CompHaus/Basic.lean
theorem epi_iff_surjective {X Y : CompHaus.{u}} (f : X ⟶ Y) : Epi f ↔ Function.Surjective f
case mp.intro X Y : CompHaus f : X ⟶ Y y : ↑Y.toTop hy : ∀ (a : ↑X.toTop), (ConcreteCategory.hom f) a ≠ y hf : Epi f C : Set ((fun X => ↑X.toTop) Y) := Set.range ⇑(ConcreteCategory.hom f) hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D ⊢ False
have hCD : Disjoint C D := by rw [Set.disjoint_singleton_right] rintro ⟨y', hy'⟩ exact hy y' hy'
case mp.intro X Y : CompHaus f : X ⟶ Y y : ↑Y.toTop hy : ∀ (a : ↑X.toTop), (ConcreteCategory.hom f) a ≠ y hf : Epi f C : Set ((fun X => ↑X.toTop) Y) := Set.range ⇑(ConcreteCategory.hom f) hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D ⊢ False
ff981d5c42859c8e
Algebra.Norm.Transitivity.det_det_aux
Mathlib/RingTheory/Norm/Transitivity.lean
lemma det_det_aux (ih : ∀ M, (f (det M)).det = ((M.map f).comp {a // (a = k) = False} _ n n R).det) : ((f M.det).det - ((M.map f).comp m m n n R).det) * (f (M k k)).det ^ (Fintype.card m - 1) = 0
R : Type u_1 S : Type u_2 n : Type u_4 m : Type u_5 inst✝⁵ : CommRing R inst✝⁴ : CommRing S M : Matrix m m S inst✝³ : DecidableEq m inst✝² : DecidableEq n k : m inst✝¹ : Fintype m inst✝ : Fintype n f : S →+* Matrix n n R ih : ∀ (M : Matrix { a // (a = k) = False } { a // (a = k) = False } S), (f M.det).det = ((Matrix.comp { a // (a = k) = False } { a // (a = k) = False } n n R) (M.map ⇑f)).det ⊢ ((f M.det).det - ((Matrix.comp m m n n R) (M.map ⇑f)).det) * (f (M k k)).det ^ (Fintype.card m - 1) = 0
rw [sub_mul, comp_det_mul_pow, ← det_pow, ← map_pow, ← det_mul, ← _root_.map_mul, det_mul_corner_pow, _root_.map_mul, det_mul, ih, sub_self]
no goals
73bc4885c91c9ed7
norm_add_lt_of_not_sameRay
Mathlib/Analysis/Convex/StrictConvexSpace.lean
theorem norm_add_lt_of_not_sameRay (h : ¬SameRay ℝ x y) : ‖x + y‖ < ‖x‖ + ‖y‖
case intro.intro E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y : E hx : 0 < ‖x‖ hy : 0 < ‖y‖ hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y hxy : 0 < ‖x‖ + ‖y‖ ⊢ ‖x + y‖ < ‖x‖ + ‖y‖
have := combo_mem_ball_of_ne (inv_norm_smul_mem_unitClosedBall x) (inv_norm_smul_mem_unitClosedBall y) hne (div_pos hx hxy) (div_pos hy hxy) (by rw [← add_div, div_self hxy.ne'])
case intro.intro E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y : E hx : 0 < ‖x‖ hy : 0 < ‖y‖ hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y hxy : 0 < ‖x‖ + ‖y‖ this : (‖x‖ / (‖x‖ + ‖y‖)) • ‖x‖⁻¹ • x + (‖y‖ / (‖x‖ + ‖y‖)) • ‖y‖⁻¹ • y ∈ ball 0 1 ⊢ ‖x + y‖ < ‖x‖ + ‖y‖
98b452b77c170acf
Matrix.det_ne_zero_of_sum_col_pos
Mathlib/LinearAlgebra/Matrix/ToLinearEquiv.lean
/-- A matrix whose nondiagonal entries are negative with the sum of the entries of each column positive has nonzero determinant. -/ lemma det_ne_zero_of_sum_col_pos [DecidableEq n] {S : Type*} [LinearOrderedCommRing S] {A : Matrix n n S} (h1 : Pairwise fun i j => A i j < 0) (h2 : ∀ j, 0 < ∑ i, A i j) : A.det ≠ 0
case intro.intro n✝ : Type u_1 inst✝³ : Fintype n✝ n : Type u_1 inst✝² : Fintype n inst✝¹ : DecidableEq n S : Type u_2 inst✝ : LinearOrderedCommRing S A : Matrix n n S h1 : Pairwise fun i j => A i j < 0 h✝ : Nonempty n h2 : A.det = 0 v : n → S h_vnz : v ≠ 0 h_vA : v ᵥ* A = 0 h_sup : 0 < Finset.univ.sup' ⋯ v j₀ : n h_j₀ : Finset.univ.sup' ⋯ v = v j₀ ⊢ ∃ j, ∑ i : n, A i j ≤ 0
refine ⟨j₀, ?_⟩
case intro.intro n✝ : Type u_1 inst✝³ : Fintype n✝ n : Type u_1 inst✝² : Fintype n inst✝¹ : DecidableEq n S : Type u_2 inst✝ : LinearOrderedCommRing S A : Matrix n n S h1 : Pairwise fun i j => A i j < 0 h✝ : Nonempty n h2 : A.det = 0 v : n → S h_vnz : v ≠ 0 h_vA : v ᵥ* A = 0 h_sup : 0 < Finset.univ.sup' ⋯ v j₀ : n h_j₀ : Finset.univ.sup' ⋯ v = v j₀ ⊢ ∑ i : n, A i j₀ ≤ 0
3754ab49091301b2
Submodule.existsUnique_from_graph
Mathlib/LinearAlgebra/LinearPMap.lean
theorem existsUnique_from_graph {g : Submodule R (E × F)} (hg : ∀ {x : E × F} (_hx : x ∈ g) (_hx' : x.fst = 0), x.snd = 0) {a : E} (ha : a ∈ g.map (LinearMap.fst R E F)) : ∃! b : F, (a, b) ∈ g
case a R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.1 = 0 → x.2 = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g ⊢ (∃ x, (a, x) ∈ g) ↔ a ∈ map (LinearMap.fst R E F) g
simp
no goals
bd5e4ac4a1e6692d
QuadraticMap.posDef_pi_iff
Mathlib/LinearAlgebra/QuadraticForm/Prod.lean
theorem posDef_pi_iff {P} [Fintype ι] [OrderedAddCommMonoid P] [Module R P] {Q : ∀ i, QuadraticMap R (Mᵢ i) P} : (pi Q).PosDef ↔ ∀ i, (Q i).PosDef
case mp.intro ι : Type u_1 R : Type u_2 Mᵢ : ι → Type u_8 inst✝⁵ : CommSemiring R inst✝⁴ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝³ : (i : ι) → Module R (Mᵢ i) P : Type u_10 inst✝² : Fintype ι inst✝¹ : OrderedAddCommMonoid P inst✝ : Module R P Q : (i : ι) → QuadraticMap R (Mᵢ i) P hle : ∀ (i : ι) (x : Mᵢ i), 0 ≤ (Q i) x ha : (pi Q).Anisotropic i : ι ⊢ (∀ (x : Mᵢ i), 0 ≤ (Q i) x) ∧ (Q i).Anisotropic
exact ⟨hle i, anisotropic_of_pi ha i⟩
no goals
77c7beb36c84b56a
RightDerivMeasurableAux.A_mem_nhdsGT
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem A_mem_nhdsGT {L : F} {r ε x : ℝ} (hx : x ∈ A f L r ε) : A f L r ε ∈ 𝓝[>] x
case right F : Type u_1 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F L : F r ε x r' : ℝ rr' : r' ∈ Ioc (r / 2) r hr' : ∀ y ∈ Icc x (x + r'), ∀ z ∈ Icc x (x + r'), ‖f z - f y - (z - y) • L‖ ≤ ε * r s : ℝ s_gt : r / 2 < s s_lt : s < r' this : s ∈ Ioc (r / 2) r x' : ℝ hx' : x' ∈ Ioo x (x + r' - s) A : Icc x' (x' + s) ⊆ Icc x (x + r') ⊢ ∀ y ∈ Icc x' (x' + s), ∀ z ∈ Icc x' (x' + s), ‖f z - f y - (z - y) • L‖ ≤ ε * r
intro y hy z hz
case right F : Type u_1 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F L : F r ε x r' : ℝ rr' : r' ∈ Ioc (r / 2) r hr' : ∀ y ∈ Icc x (x + r'), ∀ z ∈ Icc x (x + r'), ‖f z - f y - (z - y) • L‖ ≤ ε * r s : ℝ s_gt : r / 2 < s s_lt : s < r' this : s ∈ Ioc (r / 2) r x' : ℝ hx' : x' ∈ Ioo x (x + r' - s) A : Icc x' (x' + s) ⊆ Icc x (x + r') y : ℝ hy : y ∈ Icc x' (x' + s) z : ℝ hz : z ∈ Icc x' (x' + s) ⊢ ‖f z - f y - (z - y) • L‖ ≤ ε * r
dbdd2fc84afd393e
Finset.sum_card_slice_div_choose_le_one
Mathlib/Combinatorics/SetFamily/LYM.lean
theorem sum_card_slice_div_choose_le_one [Fintype α] (h𝒜 : IsAntichain (· ⊆ ·) (𝒜 : Set (Finset α))) : (∑ r ∈ range (Fintype.card α + 1), (#(𝒜 # r) : 𝕜) / (Fintype.card α).choose r) ≤ 1
𝕜 : Type u_1 α : Type u_2 inst✝¹ : LinearOrderedField 𝕜 𝒜 : Finset (Finset α) inst✝ : Fintype α h𝒜 : IsAntichain (fun x1 x2 => x1 ⊆ x2) ↑𝒜 ⊢ 0 < (Fintype.card α).choose (Fintype.card α - Fintype.card α)
rw [tsub_self, choose_zero_right]
𝕜 : Type u_1 α : Type u_2 inst✝¹ : LinearOrderedField 𝕜 𝒜 : Finset (Finset α) inst✝ : Fintype α h𝒜 : IsAntichain (fun x1 x2 => x1 ⊆ x2) ↑𝒜 ⊢ 0 < 1
7bf2cd66ee834671
Asymptotics.isTheta_const_mul_right
Mathlib/Analysis/Asymptotics/Theta.lean
theorem isTheta_const_mul_right {c : 𝕜} {g : α → 𝕜} (hc : c ≠ 0) : (f =Θ[l] fun x ↦ c * g x) ↔ f =Θ[l] g
α : Type u_1 E : Type u_3 𝕜 : Type u_14 inst✝¹ : Norm E inst✝ : NormedField 𝕜 f : α → E l : Filter α c : 𝕜 g : α → 𝕜 hc : c ≠ 0 ⊢ (f =Θ[l] fun x => c * g x) ↔ f =Θ[l] g
simpa only [← smul_eq_mul] using isTheta_const_smul_right hc
no goals
88557470b82a8b7f
CategoryTheory.isTriangulated_of_essSurj_mapComposableArrows_two
Mathlib/CategoryTheory/Triangulated/Functor.lean
/-- If `F : C ⥤ D` is a triangulated functor from a triangulated category, then `D` is also triangulated if tuples of composables arrows in `D` can be lifted to `C`. -/ lemma isTriangulated_of_essSurj_mapComposableArrows_two (F : C ⥤ D) [F.CommShift ℤ] [F.IsTriangulated] [(F.mapComposableArrows 2).EssSurj] [IsTriangulated C] : IsTriangulated D
case octahedron_axiom.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro C : Type u_1 D : Type u_2 inst✝¹⁵ : Category.{u_3, u_1} C inst✝¹⁴ : Category.{u_4, u_2} D inst✝¹³ : HasShift C ℤ inst✝¹² : HasShift D ℤ inst✝¹¹ : HasZeroObject C inst✝¹⁰ : HasZeroObject D inst✝⁹ : Preadditive C inst✝⁸ : Preadditive D inst✝⁷ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝⁶ : ∀ (n : ℤ), (shiftFunctor D n).Additive inst✝⁵ : Pretriangulated C inst✝⁴ : Pretriangulated D F : C ⥤ D inst✝³ : F.CommShift ℤ inst✝² : F.IsTriangulated inst✝¹ : (F.mapComposableArrows 2).EssSurj inst✝ : IsTriangulated C Y₁ Y₂ Y₃ Z₁₂ Z₂₃ Z₁₃ : D u₁₂ : Y₁ ⟶ Y₂ u₂₃ : Y₂ ⟶ Y₃ u₁₃ : Y₁ ⟶ Y₃ comm : u₁₂ ≫ u₂₃ = u₁₃ v₁₂ : Y₂ ⟶ Z₁₂ w₁₂ : Z₁₂ ⟶ (shiftFunctor D 1).obj Y₁ h₁₂ : Triangle.mk u₁₂ v₁₂ w₁₂ ∈ distinguishedTriangles v₂₃ : Y₃ ⟶ Z₂₃ w₂₃ : Z₂₃ ⟶ (shiftFunctor D 1).obj Y₂ h₂₃ : Triangle.mk u₂₃ v₂₃ w₂₃ ∈ distinguishedTriangles v₁₃ : Y₃ ⟶ Z₁₃ w₁₃ : Z₁₃ ⟶ (shiftFunctor D 1).obj Y₁ h₁₃ : Triangle.mk u₁₃ v₁₃ w₁₃ ∈ distinguishedTriangles X₁ X₂ X₃ : C f : X₁ ⟶ X₂ g : X₂ ⟶ X₃ e : (F.mapComposableArrows 2).obj (ComposableArrows.mk₂ f g) ≅ ComposableArrows.mk₂ u₁₂ u₂₃ w✝² : C w✝¹ : X₂ ⟶ w✝² w✝ : w✝² ⟶ (shiftFunctor C 1).obj X₁ h₁₂' : Triangle.mk f w✝¹ w✝ ∈ distinguishedTriangles ⊢ Nonempty (Octahedron comm h₁₂ h₂₃ h₁₃)
obtain ⟨_, _, _, h₂₃'⟩ := distinguished_cocone_triangle g
case octahedron_axiom.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro C : Type u_1 D : Type u_2 inst✝¹⁵ : Category.{u_3, u_1} C inst✝¹⁴ : Category.{u_4, u_2} D inst✝¹³ : HasShift C ℤ inst✝¹² : HasShift D ℤ inst✝¹¹ : HasZeroObject C inst✝¹⁰ : HasZeroObject D inst✝⁹ : Preadditive C inst✝⁸ : Preadditive D inst✝⁷ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝⁶ : ∀ (n : ℤ), (shiftFunctor D n).Additive inst✝⁵ : Pretriangulated C inst✝⁴ : Pretriangulated D F : C ⥤ D inst✝³ : F.CommShift ℤ inst✝² : F.IsTriangulated inst✝¹ : (F.mapComposableArrows 2).EssSurj inst✝ : IsTriangulated C Y₁ Y₂ Y₃ Z₁₂ Z₂₃ Z₁₃ : D u₁₂ : Y₁ ⟶ Y₂ u₂₃ : Y₂ ⟶ Y₃ u₁₃ : Y₁ ⟶ Y₃ comm : u₁₂ ≫ u₂₃ = u₁₃ v₁₂ : Y₂ ⟶ Z₁₂ w₁₂ : Z₁₂ ⟶ (shiftFunctor D 1).obj Y₁ h₁₂ : Triangle.mk u₁₂ v₁₂ w₁₂ ∈ distinguishedTriangles v₂₃ : Y₃ ⟶ Z₂₃ w₂₃ : Z₂₃ ⟶ (shiftFunctor D 1).obj Y₂ h₂₃ : Triangle.mk u₂₃ v₂₃ w₂₃ ∈ distinguishedTriangles v₁₃ : Y₃ ⟶ Z₁₃ w₁₃ : Z₁₃ ⟶ (shiftFunctor D 1).obj Y₁ h₁₃ : Triangle.mk u₁₃ v₁₃ w₁₃ ∈ distinguishedTriangles X₁ X₂ X₃ : C f : X₁ ⟶ X₂ g : X₂ ⟶ X₃ e : (F.mapComposableArrows 2).obj (ComposableArrows.mk₂ f g) ≅ ComposableArrows.mk₂ u₁₂ u₂₃ w✝⁵ : C w✝⁴ : X₂ ⟶ w✝⁵ w✝³ : w✝⁵ ⟶ (shiftFunctor C 1).obj X₁ h₁₂' : Triangle.mk f w✝⁴ w✝³ ∈ distinguishedTriangles w✝² : C w✝¹ : X₃ ⟶ w✝² w✝ : w✝² ⟶ (shiftFunctor C 1).obj X₂ h₂₃' : Triangle.mk g w✝¹ w✝ ∈ distinguishedTriangles ⊢ Nonempty (Octahedron comm h₁₂ h₂₃ h₁₃)
b514da98fd8dcf0f