name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Submodule.closure_induction
Mathlib/LinearAlgebra/Span/Defs.lean
theorem closure_induction {p : (x : M) → x ∈ span R s → Prop} (zero : p 0 (Submodule.zero_mem _)) (add : ∀ x y hx hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) (smul_mem : ∀ (r x) (h : x ∈ s), p (r • x) (Submodule.smul_mem _ _ <| subset_span h)) {x} (hx : x ∈ span R s) : p x hx
R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M p : (x : M) → x ∈ span R s → Prop zero : p 0 ⋯ add : ∀ (x y : M) (hx : x ∈ span R s) (hy : y ∈ span R s), p x hx → p y hy → p (x + y) ⋯ smul_mem : ∀ (r : R) (x : M) (h : x ∈ s), p (r • x) ⋯ x : M hx : x ∈ span R s key : ∀ {v : M}, v ∈ span R s ↔ v ∈ closure (univ • s) ⊢ ∀ (x : M) (h : x ∈ univ • s), (fun x hx => p x ⋯) x ⋯
rintro - ⟨r, -, x, hx, rfl⟩
case intro.intro.intro.intro R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M p : (x : M) → x ∈ span R s → Prop zero : p 0 ⋯ add : ∀ (x y : M) (hx : x ∈ span R s) (hy : y ∈ span R s), p x hx → p y hy → p (x + y) ⋯ smul_mem : ∀ (r : R) (x : M) (h : x ∈ s), p (r • x) ⋯ x✝ : M hx✝ : x✝ ∈ span R s key : ∀ {v : M}, v ∈ span R s ↔ v ∈ closure (univ • s) r : R left✝ : r ∈ univ x : M hx : x ∈ s ⊢ p ((fun x1 x2 => x1 • x2) r x) ⋯
3007157e1dc12f6a
Std.DHashMap.Internal.Raw₀.wfImp_alterₘ
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem wfImp_alterₘ [BEq α] [Hashable α] [LawfulBEq α] {m : Raw₀ α β} (h : Raw.WFImp m.1) {a : α} {f : Option (β a) → Option (β a)} : Raw.WFImp (m.alterₘ a f).1 where buckets_hash_self := isHashSelf_alterₘ m h a f distinct := DistinctKeys.perm (toListModel_alterₘ h) h.distinct.alterKey size_eq
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : Hashable α inst✝ : LawfulBEq α m : Raw₀ α β h : Raw.WFImp m.val a : α f : Option (β a) → Option (β a) h₁ : ¬containsKey a (toListModel m.val.buckets) = true ⊢ (match f none with | none => m | some b => (m.consₘ a b).expandIfNecessary).val.size = (alterKey a f (toListModel m.val.buckets)).length
rw [alterKey]
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : Hashable α inst✝ : LawfulBEq α m : Raw₀ α β h : Raw.WFImp m.val a : α f : Option (β a) → Option (β a) h₁ : ¬containsKey a (toListModel m.val.buckets) = true ⊢ (match f none with | none => m | some b => (m.consₘ a b).expandIfNecessary).val.size = (match f (getValueCast? a (toListModel m.val.buckets)) with | none => eraseKey a (toListModel m.val.buckets) | some v => insertEntry a v (toListModel m.val.buckets)).length
c03239080d29fbda
Polynomial.support_integralNormalization
Mathlib/RingTheory/Polynomial/IntegralNormalization.lean
theorem support_integralNormalization {f : R[X]} : (integralNormalization f).support = f.support
R : Type u inst✝¹ : Semiring R inst✝ : IsCancelMulZero R f : R[X] a✝ : Nontrivial R ⊢ f.integralNormalization.support = f.support
have : IsDomain R := {}
R : Type u inst✝¹ : Semiring R inst✝ : IsCancelMulZero R f : R[X] a✝ : Nontrivial R this : IsDomain R ⊢ f.integralNormalization.support = f.support
9178f9ebeb3af80a
LinearPMap.supSpanSingleton_apply_mk
Mathlib/LinearAlgebra/LinearPMap.lean
theorem supSpanSingleton_apply_mk (f : E →ₗ.[K] F) (x : E) (y : F) (hx : x ∉ f.domain) (x' : E) (hx' : x' ∈ f.domain) (c : K) : f.supSpanSingleton x y hx ⟨x' + c • x, mem_sup.2 ⟨x', hx', _, mem_span_singleton.2 ⟨c, rfl⟩, rfl⟩⟩ = f ⟨x', hx'⟩ + c • y
E : Type u_2 inst✝⁴ : AddCommGroup E F : Type u_3 inst✝³ : AddCommGroup F K : Type u_5 inst✝² : DivisionRing K inst✝¹ : Module K E inst✝ : Module K F f : E →ₗ.[K] F x : E y : F hx : x ∉ f.domain x' : E hx' : x' ∈ f.domain c : K ⊢ ↑(f.supSpanSingleton x y hx) ⟨x' + c • x, ⋯⟩ = ↑f ⟨x', hx'⟩ + c • y
erw [sup_apply _ ⟨x', hx'⟩ ⟨c • x, _⟩, mkSpanSingleton'_apply]
case h E : Type u_2 inst✝⁴ : AddCommGroup E F : Type u_3 inst✝³ : AddCommGroup F K : Type u_5 inst✝² : DivisionRing K inst✝¹ : Module K E inst✝ : Module K F f : E →ₗ.[K] F x : E y : F hx : x ∉ f.domain x' : E hx' : x' ∈ f.domain c : K ⊢ c • x ∈ (mkSpanSingleton' x y ⋯).domain case hz E : Type u_2 inst✝⁴ : AddCommGroup E F : Type u_3 inst✝³ : AddCommGroup F K : Type u_5 inst✝² : DivisionRing K inst✝¹ : Module K E inst✝ : Module K F f : E →ₗ.[K] F x : E y : F hx : x ∉ f.domain x' : E hx' : x' ∈ f.domain c : K ⊢ ↑⟨x', hx'⟩ + ↑⟨c • x, ?h⟩ = ↑⟨x' + c • x, ⋯⟩
80d977329e541b68
Polynomial.ofFinsupp_pow
Mathlib/Algebra/Polynomial/Basic.lean
theorem ofFinsupp_pow (a) (n : ℕ) : (⟨a ^ n⟩ : R[X]) = ⟨a⟩ ^ n
R : Type u inst✝ : Semiring R a : R[ℕ] n : ℕ ⊢ { toFinsupp := a ^ n } = { toFinsupp := a } ^ n
change _ = npowRec n _
R : Type u inst✝ : Semiring R a : R[ℕ] n : ℕ ⊢ { toFinsupp := a ^ n } = npowRec n { toFinsupp := a }
ffb2239c238f94f0
IsGenericPoint.disjoint_iff
Mathlib/Topology/Sober.lean
theorem disjoint_iff (h : IsGenericPoint x S) (hU : IsOpen U) : Disjoint S U ↔ x ∉ U
α : Type u_1 inst✝ : TopologicalSpace α x : α S U : Set α h : IsGenericPoint x S hU : IsOpen U ⊢ Disjoint S U ↔ x ∉ U
rw [h.mem_open_set_iff hU, ← not_disjoint_iff_nonempty_inter, Classical.not_not]
no goals
94f69857791b5b7c
CategoryTheory.Limits.biprod.conePointUniqueUpToIso_inv
Mathlib/CategoryTheory/Limits/Shapes/BinaryBiproducts.lean
theorem biprod.conePointUniqueUpToIso_inv (X Y : C) [HasBinaryBiproduct X Y] {b : BinaryBicone X Y} (hb : b.IsBilimit) : (hb.isLimit.conePointUniqueUpToIso (BinaryBiproduct.isLimit _ _)).inv = biprod.desc b.inl b.inr
case refine_2.mk.right C : Type uC inst✝² : Category.{uC', uC} C inst✝¹ : HasZeroMorphisms C X Y : C inst✝ : HasBinaryBiproduct X Y b : BinaryBicone X Y hb : b.IsBilimit ⊢ inr ≫ (BinaryBiproduct.bicone X Y).toCone.π.app { as := WalkingPair.right } = inr ≫ desc b.inl b.inr ≫ b.toCone.π.app { as := WalkingPair.right }
simp
no goals
c06efc3447119b63
CompactIccSpace.mk'
Mathlib/Topology/Order/Compact.lean
lemma CompactIccSpace.mk' [TopologicalSpace α] [Preorder α] (h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b)) : CompactIccSpace α where isCompact_Icc {a b}
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : Preorder α h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b) a b : α hab : ¬a ≤ b ⊢ IsCompact (Icc a b)
rw [Icc_eq_empty hab]
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : Preorder α h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b) a b : α hab : ¬a ≤ b ⊢ IsCompact ∅
a8529e4e18c5748e
Subalgebra.rank_eq_one_iff
Mathlib/LinearAlgebra/Dimension/FreeAndStrongRankCondition.lean
theorem rank_eq_one_iff [Nontrivial E] [Module.Free F S] : Module.rank F S = 1 ↔ S = ⊥
case intro.mk F : Type u_1 E : Type u_2 inst✝⁵ : CommRing F inst✝⁴ : StrongRankCondition F inst✝³ : Ring E inst✝² : Algebra F E inst✝¹ : Nontrivial E inst✝ : Free F ↥⊥ κ : Type u_2 b : Basis κ F ↥⊥ ⊢ Module.rank F ↥⊥ = 1
refine le_antisymm ?_ ?_
case intro.mk.refine_1 F : Type u_1 E : Type u_2 inst✝⁵ : CommRing F inst✝⁴ : StrongRankCondition F inst✝³ : Ring E inst✝² : Algebra F E inst✝¹ : Nontrivial E inst✝ : Free F ↥⊥ κ : Type u_2 b : Basis κ F ↥⊥ ⊢ Module.rank F ↥⊥ ≤ 1 case intro.mk.refine_2 F : Type u_1 E : Type u_2 inst✝⁵ : CommRing F inst✝⁴ : StrongRankCondition F inst✝³ : Ring E inst✝² : Algebra F E inst✝¹ : Nontrivial E inst✝ : Free F ↥⊥ κ : Type u_2 b : Basis κ F ↥⊥ ⊢ 1 ≤ Module.rank F ↥⊥
eb0ef629fef399e8
CategoryTheory.AB5StarOfSize_of_univLE
Mathlib/CategoryTheory/Abelian/GrothendieckAxioms/Basic.lean
lemma AB5StarOfSize_of_univLE [HasCofilteredLimitsOfSize.{w₂, w₂'} C] [UnivLE.{w, w₂}] [UnivLE.{w', w₂'}] [AB5StarOfSize.{w₂, w₂'} C] : haveI : HasCofilteredLimitsOfSize.{w, w'} C := hasCofilteredLimitsOfSize_of_univLE.{w} AB5StarOfSize.{w, w'} C
C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasCofilteredLimitsOfSize.{w₂, w₂', v, u} C inst✝² : UnivLE.{w, w₂} inst✝¹ : UnivLE.{w', w₂'} inst✝ : AB5StarOfSize.{w₂, w₂', v, u} C this : HasCofilteredLimitsOfSize.{w, w', v, u} C ⊢ AB5StarOfSize.{w, w', v, u} C
constructor
case ofShape C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasCofilteredLimitsOfSize.{w₂, w₂', v, u} C inst✝² : UnivLE.{w, w₂} inst✝¹ : UnivLE.{w', w₂'} inst✝ : AB5StarOfSize.{w₂, w₂', v, u} C this : HasCofilteredLimitsOfSize.{w, w', v, u} C ⊢ ∀ (J : Type w') [inst : Category.{w, w'} J] [inst_1 : IsCofiltered J], HasExactLimitsOfShape J C
f48846e21d253650
intervalIntegral.integral_pos_iff_support_of_nonneg_ae'
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
theorem integral_pos_iff_support_of_nonneg_ae' (hf : 0 ≤ᵐ[μ.restrict (Ι a b)] f) (hfi : IntervalIntegrable f μ a b) : (0 < ∫ x in a..b, f x ∂μ) ↔ a < b ∧ 0 < μ (support f ∩ Ioc a b)
case inr f : ℝ → ℝ a b : ℝ μ : Measure ℝ hf : 0 ≤ᶠ[ae (μ.restrict (Ι a b))] f hfi : IntervalIntegrable f μ a b hba : b ≤ a ⊢ 0 ≤ ∫ (x : ℝ) in Ioc b a, f x ∂μ
rw [uIoc_comm, uIoc_of_le hba] at hf
case inr f : ℝ → ℝ a b : ℝ μ : Measure ℝ hf : 0 ≤ᶠ[ae (μ.restrict (Ioc b a))] f hfi : IntervalIntegrable f μ a b hba : b ≤ a ⊢ 0 ≤ ∫ (x : ℝ) in Ioc b a, f x ∂μ
98c9d1e3c30988ab
MeasureTheory.Measure.haar.haarContent_self
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
theorem haarContent_self {K₀ : PositiveCompacts G} : haarContent K₀ K₀.toCompacts = 1
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G ⊢ (haarContent K₀) K₀.toCompacts = 1
simp_rw [← ENNReal.coe_one, haarContent_apply, ENNReal.coe_inj, chaar_self]
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G ⊢ ⟨1, ⋯⟩ = 1
813491877e1017b7
denseRange_discrete
Mathlib/Topology/Order.lean
theorem denseRange_discrete {ι : Type*} {f : ι → α} : DenseRange f ↔ Surjective f
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : DiscreteTopology α ι : Type u_3 f : ι → α ⊢ DenseRange f ↔ Surjective f
rw [DenseRange, dense_discrete, range_eq_univ]
no goals
a720371fe21bcd06
TensorProduct.smul_tmul_smul
Mathlib/LinearAlgebra/TensorProduct/Basic.lean
theorem smul_tmul_smul (r s : R) (m : M) (n : N) : (r • m) ⊗ₜ[R] (s • n) = (r * s) • m ⊗ₜ[R] n
R : Type u_1 inst✝⁴ : CommSemiring R M : Type u_5 N : Type u_6 inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N r s : R m : M n : N ⊢ (r • m) ⊗ₜ[R] (s • n) = (r * s) • m ⊗ₜ[R] n
simp_rw [smul_tmul, tmul_smul, mul_smul]
no goals
74fdfcacd095fb85
Finset.diag_mem_sym2_mem_iff
Mathlib/Data/Finset/Sym.lean
theorem diag_mem_sym2_mem_iff : (∀ b, b ∈ Sym2.diag a → b ∈ s) ↔ a ∈ s
α : Type u_1 s : Finset α a : α ⊢ Sym2.diag a ∈ s.sym2 ↔ a ∈ s
exact mk_mem_sym2_iff.trans <| and_self_iff
no goals
cbd60f602a44e478
Ring.eq_mul_inverse_iff_mul_eq
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
theorem eq_mul_inverse_iff_mul_eq (x y z : M₀) (h : IsUnit z) : x = y * inverse z ↔ x * z = y := ⟨fun h1 => by rw [h1, inverse_mul_cancel_right _ _ h], fun h1 => by rw [← h1, mul_inverse_cancel_right _ _ h]⟩
M₀ : Type u_2 inst✝ : MonoidWithZero M₀ x y z : M₀ h : IsUnit z h1 : x = y * inverse z ⊢ x * z = y
rw [h1, inverse_mul_cancel_right _ _ h]
no goals
db768333e2c6e800
Ideal.subset_union_prime'
Mathlib/RingTheory/Ideal/Operations.lean
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι} (hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} : ((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
ι : Type u_1 R : Type u inst✝ : CommRing R s : Finset ι f : ι → Ideal R a b : ι hp : ∀ i ∈ s, (f i).IsPrime I : Ideal R n : ℕ hn : s.card = n ⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
intro h
ι : Type u_1 R : Type u inst✝ : CommRing R s : Finset ι f : ι → Ideal R a b : ι hp : ∀ i ∈ s, (f i).IsPrime I : Ideal R n : ℕ hn : s.card = n h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) ⊢ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
fa41770a7d2d9fd9
LieModule.lowerCentralSeriesLast_le_of_not_isTrivial
Mathlib/Algebra/Lie/Nilpotent.lean
theorem lowerCentralSeriesLast_le_of_not_isTrivial [IsNilpotent L M] (h : ¬ IsTrivial L M) : lowerCentralSeriesLast R L M ≤ lowerCentralSeries R L M 1
case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : IsNilpotent L M h : 1 < 0 hk : nilpotencyLength L M = 0 ⊢ (match 0 with | 0 => ⊥ | k.succ => lowerCentralSeries R L M k) ≤ lowerCentralSeries R L M 1
contradiction
no goals
9fbbbf8b7fa9fbd1
NonUnitalSubring.closure_induction'
Mathlib/RingTheory/NonUnitalSubring/Basic.lean
theorem closure_induction' {s : Set R} {p : closure s → Prop} (a : closure s) (mem : ∀ (x) (hx : x ∈ s), p ⟨x, subset_closure hx⟩) (zero : p 0) (add : ∀ x y, p x → p y → p (x + y)) (neg : ∀ x, p x → p (-x)) (mul : ∀ x y, p x → p y → p (x * y)) : p a := Subtype.recOn a fun b hb => by induction hb using closure_induction with | mem x hx => exact mem x hx | zero => exact zero | add x y hx hy h₁ h₂ => exact add _ _ h₁ h₂ | neg x hx h => exact neg _ h | mul x y hx hy h₁ h₂ => exact mul _ _ h₁ h₂
case neg R : Type u inst✝ : NonUnitalNonAssocRing R s : Set R p : ↥(closure s) → Prop a : ↥(closure s) mem : ∀ (x : R) (hx : x ∈ s), p ⟨x, ⋯⟩ zero : p 0 add : ∀ (x y : ↥(closure s)), p x → p y → p (x + y) neg : ∀ (x : ↥(closure s)), p x → p (-x) mul : ∀ (x y : ↥(closure s)), p x → p y → p (x * y) b x : R hx : x ∈ closure s h : p ⟨x, hx⟩ ⊢ p ⟨-x, ⋯⟩
exact neg _ h
no goals
8be1f3e87edfc4cb
Function.Embedding.schroeder_bernstein
Mathlib/SetTheory/Cardinal/SchroederBernstein.lean
theorem schroeder_bernstein {f : α → β} {g : β → α} (hf : Function.Injective f) (hg : Function.Injective g) : ∃ h : α → β, Bijective h
case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := ⋯ } s : Set α := OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g ⊢ ∃ h, Bijective h
have hg'ns : g' '' sᶜ = (f '' s)ᶜ := by rw [← hns, g'g.image_image]
case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := ⋯ } s : Set α := OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ ⊢ ∃ h, Bijective h
95bf487be3670949
Ordinal.exists_blsub_cof
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem exists_blsub_cof (o : Ordinal) : ∃ f : ∀ a < (cof o).ord, Ordinal, blsub.{u, u} _ f = o
case intro.intro.intro o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o hι : #ι = o.cof ⊢ ∃ f, o.cof.ord.blsub f = o
rcases Cardinal.ord_eq ι with ⟨r, hr, hι'⟩
case intro.intro.intro.intro.intro o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o hι : #ι = o.cof r : ι → ι → Prop hr : IsWellOrder ι r hι' : (#ι).ord = type r ⊢ ∃ f, o.cof.ord.blsub f = o
068b935e7bf4fed0
WeierstrassCurve.Jacobian.toAffine_addX_of_eq
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
private lemma toAffine_addX_of_eq {P : Fin 3 → F} (hPz : P z ≠ 0) {n d : F} (hd : d ≠ 0) : W.toAffine.addX (P x / P z ^ 2) (P x / P z ^ 2) (-n / (P z * d)) = (n ^ 2 - W.a₁ * n * P z * d - W.a₂ * P z ^ 2 * d ^ 2 - 2 * P x * d ^ 2) / (P z * d) ^ 2
F : Type u inst✝ : Field F W : Jacobian F P : Fin 3 → F hPz : P z ≠ 0 n d : F hd : d ≠ 0 ⊢ (toAffine W).addX (P x / P z ^ 2) (P x / P z ^ 2) (-n / (P z * d)) = (n ^ 2 - W.a₁ * n * P z * d - W.a₂ * P z ^ 2 * d ^ 2 - 2 * P x * d ^ 2) / (P z * d) ^ 2
field_simp [mul_ne_zero hPz hd]
F : Type u inst✝ : Field F W : Jacobian F P : Fin 3 → F hPz : P z ≠ 0 n d : F hd : d ≠ 0 ⊢ (((n ^ 2 * (P z * d) + -((toAffine W).a₁ * n * (P z * d) ^ 2) - (P z * d) ^ 2 * (P z * d) * (toAffine W).a₂) * P z ^ 2 - (P z * d) ^ 2 * (P z * d) * P x) * P z ^ 2 - (P z * d) ^ 2 * (P z * d) * P z ^ 2 * P x) * (P z * d) ^ 2 = (n ^ 2 - W.a₁ * n * P z * d - W.a₂ * P z ^ 2 * d ^ 2 - 2 * P x * d ^ 2) * ((P z * d) ^ 2 * (P z * d) * P z ^ 2 * P z ^ 2)
66255a2fa05782fd
Valued.integer.totallyBounded_iff_finite_residueField
Mathlib/Topology/Algebra/Valued/LocallyCompact.lean
lemma totallyBounded_iff_finite_residueField [IsDiscreteValuationRing 𝒪[K]] : TotallyBounded (Set.univ (α := 𝒪[K])) ↔ Finite 𝓀[K]
case mpr K : Type u_2 inst✝² : NontriviallyNormedField K inst✝¹ : IsUltrametricDist K inst✝ : IsDiscreteValuationRing ↥𝒪[K] H : Finite 𝓀[K] ε : ℝ εpos : ε > 0 ⊢ ∃ t, t.Finite ∧ Set.univ ⊆ ⋃ y ∈ t, Metric.ball y ε
obtain ⟨p, hp⟩ := IsDiscreteValuationRing.exists_irreducible 𝒪[K]
case mpr.intro K : Type u_2 inst✝² : NontriviallyNormedField K inst✝¹ : IsUltrametricDist K inst✝ : IsDiscreteValuationRing ↥𝒪[K] H : Finite 𝓀[K] ε : ℝ εpos : ε > 0 p : ↥𝒪[K] hp : Irreducible p ⊢ ∃ t, t.Finite ∧ Set.univ ⊆ ⋃ y ∈ t, Metric.ball y ε
368b1da03339c547
Lean.Omega.IntList.gcd_dvd
Mathlib/.lake/packages/lean4/src/lean/Init/Omega/IntList.lean
theorem gcd_dvd (xs : IntList) {a : Int} (m : a ∈ xs) : (xs.gcd : Int) ∣ a
case tail xs : IntList a b : Int as✝ : List Int m : List.Mem a as✝ ih : gcd as✝ ∣ a.natAbs ⊢ b.natAbs.gcd (gcd as✝) ∣ a.natAbs
exact Nat.dvd_trans (Nat.gcd_dvd_right _ _) ih
no goals
a2ce29a1d3b80c5c
Nat.exists_coprime
Mathlib/.lake/packages/batteries/Batteries/Data/Nat/Gcd.lean
theorem exists_coprime (m n : Nat) : ∃ m' n', Coprime m' n' ∧ m = m' * gcd m n ∧ n = n' * gcd m n
case inr m n : Nat hpos : m.gcd n > 0 ⊢ ∃ m' n', m'.Coprime n' ∧ m = m' * m.gcd n ∧ n = n' * m.gcd n
exact ⟨_, _, coprime_div_gcd_div_gcd hpos, (Nat.div_mul_cancel (gcd_dvd_left m n)).symm, (Nat.div_mul_cancel (gcd_dvd_right m n)).symm⟩
no goals
86c6a2ec263f3a53
PFunctor.M.mk_dest
Mathlib/Data/PFunctor/Univariate/M.lean
theorem mk_dest (x : M F) : M.mk (dest x) = x
case H.succ.intro.e_a.h F : PFunctor.{u} x : F.M n : ℕ a✝ : Approx.sMk x.dest n = x.approx n hd : F.A h' : hd = head' (x.approx 1) ch : F.B (head' (x.approx 1)) → CofixA F n h : x.approx n.succ = CofixA.intro (head' (x.approx 1)) ch a : F.B (head' (x.approx 1)) ⊢ children' (x.approx n.succ) (cast ⋯ a) = ch a
generalize hh : cast _ a = a''
case H.succ.intro.e_a.h F : PFunctor.{u} x : F.M n : ℕ a✝ : Approx.sMk x.dest n = x.approx n hd : F.A h' : hd = head' (x.approx 1) ch : F.B (head' (x.approx 1)) → CofixA F n h : x.approx n.succ = CofixA.intro (head' (x.approx 1)) ch a : F.B (head' (x.approx 1)) a'' : F.B (head' (x.approx n.succ)) hh : cast ⋯ a = a'' ⊢ children' (x.approx n.succ) a'' = ch a
475d78b79340343f
map_mul_left_nhds_one
Mathlib/Topology/Algebra/Group/Basic.lean
theorem map_mul_left_nhds_one (x : G) : map (x * ·) (𝓝 1) = 𝓝 x
G : Type w inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : IsTopologicalGroup G x : G ⊢ map (fun x_1 => x * x_1) (𝓝 1) = 𝓝 x
simp
no goals
af53bf0f875f4353
WittVector.ghostComponent_teichmullerFun
Mathlib/RingTheory/WittVector/Teichmuller.lean
theorem ghostComponent_teichmullerFun (r : R) (n : ℕ) : ghostComponent n (teichmullerFun p r) = r ^ p ^ n
case h₀ p : ℕ R : Type u_1 hp : Fact (Nat.Prime p) inst✝ : CommRing R r : R n : ℕ ⊢ ∀ b ∈ Finset.range (n + 1), b ≠ 0 → ↑p ^ b * (teichmullerFun p r).coeff b ^ p ^ (n - b) = 0
intro i _ h0
case h₀ p : ℕ R : Type u_1 hp : Fact (Nat.Prime p) inst✝ : CommRing R r : R n i : ℕ a✝ : i ∈ Finset.range (n + 1) h0 : i ≠ 0 ⊢ ↑p ^ i * (teichmullerFun p r).coeff i ^ p ^ (n - i) = 0
64564ca6964107de
MeasureTheory.LevyProkhorov.continuous_equiv_probabilityMeasure
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
/-- The identity map `LevyProkhorov (ProbabilityMeasure Ω) → ProbabilityMeasure Ω` is continuous. -/ lemma LevyProkhorov.continuous_equiv_probabilityMeasure : Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω))
case h.refine_4 Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : PseudoMetricSpace Ω inst✝ : OpensMeasurableSpace Ω μs : ℕ → LevyProkhorov (ProbabilityMeasure Ω) ν : LevyProkhorov (ProbabilityMeasure Ω) hμs : Tendsto μs atTop (𝓝 ν) P : ProbabilityMeasure Ω := (equiv (ProbabilityMeasure Ω)) ν Ps : ℕ → ProbabilityMeasure Ω := fun n => (equiv (ProbabilityMeasure Ω)) (μs n) f✝ f : Ω →ᵇ ℝ f_nn : 0 ≤ f f_zero : ¬‖f‖ = 0 norm_f_pos : 0 < ‖f‖ δ : ℝ δ_pos : 0 < δ εs : ℕ → ℝ left✝ : StrictAnti εs εs_lim : Tendsto εs atTop (𝓝 0) ε_of_room : Tendsto (fun x => dist (μs x) ν + εs x) atTop (𝓝 0) ε_of_room' : Tendsto (fun n => dist (μs n) ν + εs n) atTop (𝓝[>] 0) key : Tendsto ((fun ε => ∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P (thickening ε {a | t ≤ f a}))).toReal) ∘ fun n => dist (μs n) ν + εs n) atTop (𝓝 (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal)) aux : ∀ (z : ℝ), Iio (z + δ / 2) ∈ 𝓝 z n : ℕ hn : ((fun ε => ∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P (thickening ε {a | t ≤ f a}))).toReal) ∘ fun n => dist (μs n) ν + εs n) n < (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal) + δ / 2 hn' : dist (μs n) ν + εs n < ‖f‖⁻¹ * δ / 2 εs_pos : 0 < εs n bound : ∫ (ω : Ω), f ω ∂↑(Ps n) ≤ (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑P (thickening (dist (μs n) ν + εs n) {a | t ≤ f a})).toReal) + (dist (μs n) ν + εs n) * ‖f‖ ⊢ (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal) + δ / 2 + (dist (μs n) ν + εs n) * ‖f‖ ≤ ∫ (x : Ω), f x ∂↑P + δ
rw [BoundedContinuousFunction.integral_eq_integral_meas_le]
case h.refine_4 Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : PseudoMetricSpace Ω inst✝ : OpensMeasurableSpace Ω μs : ℕ → LevyProkhorov (ProbabilityMeasure Ω) ν : LevyProkhorov (ProbabilityMeasure Ω) hμs : Tendsto μs atTop (𝓝 ν) P : ProbabilityMeasure Ω := (equiv (ProbabilityMeasure Ω)) ν Ps : ℕ → ProbabilityMeasure Ω := fun n => (equiv (ProbabilityMeasure Ω)) (μs n) f✝ f : Ω →ᵇ ℝ f_nn : 0 ≤ f f_zero : ¬‖f‖ = 0 norm_f_pos : 0 < ‖f‖ δ : ℝ δ_pos : 0 < δ εs : ℕ → ℝ left✝ : StrictAnti εs εs_lim : Tendsto εs atTop (𝓝 0) ε_of_room : Tendsto (fun x => dist (μs x) ν + εs x) atTop (𝓝 0) ε_of_room' : Tendsto (fun n => dist (μs n) ν + εs n) atTop (𝓝[>] 0) key : Tendsto ((fun ε => ∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P (thickening ε {a | t ≤ f a}))).toReal) ∘ fun n => dist (μs n) ν + εs n) atTop (𝓝 (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal)) aux : ∀ (z : ℝ), Iio (z + δ / 2) ∈ 𝓝 z n : ℕ hn : ((fun ε => ∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P (thickening ε {a | t ≤ f a}))).toReal) ∘ fun n => dist (μs n) ν + εs n) n < (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal) + δ / 2 hn' : dist (μs n) ν + εs n < ‖f‖⁻¹ * δ / 2 εs_pos : 0 < εs n bound : ∫ (ω : Ω), f ω ∂↑(Ps n) ≤ (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑P (thickening (dist (μs n) ν + εs n) {a | t ≤ f a})).toReal) + (dist (μs n) ν + εs n) * ‖f‖ ⊢ (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal) + δ / 2 + (dist (μs n) ν + εs n) * ‖f‖ ≤ (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑P {a | t ≤ f a}).toReal) + δ case h.refine_4.f_nn Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : PseudoMetricSpace Ω inst✝ : OpensMeasurableSpace Ω μs : ℕ → LevyProkhorov (ProbabilityMeasure Ω) ν : LevyProkhorov (ProbabilityMeasure Ω) hμs : Tendsto μs atTop (𝓝 ν) P : ProbabilityMeasure Ω := (equiv (ProbabilityMeasure Ω)) ν Ps : ℕ → ProbabilityMeasure Ω := fun n => (equiv (ProbabilityMeasure Ω)) (μs n) f✝ f : Ω →ᵇ ℝ f_nn : 0 ≤ f f_zero : ¬‖f‖ = 0 norm_f_pos : 0 < ‖f‖ δ : ℝ δ_pos : 0 < δ εs : ℕ → ℝ left✝ : StrictAnti εs εs_lim : Tendsto εs atTop (𝓝 0) ε_of_room : Tendsto (fun x => dist (μs x) ν + εs x) atTop (𝓝 0) ε_of_room' : Tendsto (fun n => dist (μs n) ν + εs n) atTop (𝓝[>] 0) key : Tendsto ((fun ε => ∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P (thickening ε {a | t ≤ f a}))).toReal) ∘ fun n => dist (μs n) ν + εs n) atTop (𝓝 (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal)) aux : ∀ (z : ℝ), Iio (z + δ / 2) ∈ 𝓝 z n : ℕ hn : ((fun ε => ∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P (thickening ε {a | t ≤ f a}))).toReal) ∘ fun n => dist (μs n) ν + εs n) n < (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑(P {a | t ≤ f a})).toReal) + δ / 2 hn' : dist (μs n) ν + εs n < ‖f‖⁻¹ * δ / 2 εs_pos : 0 < εs n bound : ∫ (ω : Ω), f ω ∂↑(Ps n) ≤ (∫ (t : ℝ) in Ioc 0 ‖f‖, (↑P (thickening (dist (μs n) ν + εs n) {a | t ≤ f a})).toReal) + (dist (μs n) ν + εs n) * ‖f‖ ⊢ 0 ≤ᶠ[ae ↑P] ⇑f
e3f8df53302ac07c
CategoryTheory.Limits.biproduct.map_lift_mapBiprod
Mathlib/CategoryTheory/Limits/Preserves/Shapes/Biproducts.lean
theorem biproduct.map_lift_mapBiprod (g : ∀ j, W ⟶ f j) : -- Porting note: twice we need haveI to tell Lean about hasBiproduct_of_preserves F f haveI : HasBiproduct fun j => F.obj (f j) := hasBiproduct_of_preserves F f F.map (biproduct.lift g) ≫ (F.mapBiproduct f).hom = biproduct.lift fun j => F.map (g j)
case w C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms C inst✝³ : HasZeroMorphisms D F : C ⥤ D inst✝² : F.PreservesZeroMorphisms J : Type w₁ f : J → C inst✝¹ : HasBiproduct f inst✝ : PreservesBiproduct f F W : C g : (j : J) → W ⟶ f j j : J ⊢ (F.map (lift g) ≫ (F.mapBiproduct f).hom) ≫ π (fun x => F.obj (f x)) j = (lift fun j => F.map (g j)) ≫ π (fun x => F.obj (f x)) j
haveI : HasBiproduct fun j => F.obj (f j) := hasBiproduct_of_preserves F f
case w C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms C inst✝³ : HasZeroMorphisms D F : C ⥤ D inst✝² : F.PreservesZeroMorphisms J : Type w₁ f : J → C inst✝¹ : HasBiproduct f inst✝ : PreservesBiproduct f F W : C g : (j : J) → W ⟶ f j j : J this : HasBiproduct fun j => F.obj (f j) ⊢ (F.map (lift g) ≫ (F.mapBiproduct f).hom) ≫ π (fun x => F.obj (f x)) j = (lift fun j => F.map (g j)) ≫ π (fun x => F.obj (f x)) j
b5befb27d4fb8b99
Std.DHashMap.Internal.List.eraseKey_of_perm
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem eraseKey_of_perm [BEq α] [EquivBEq α] {l l' : List ((a : α) × β a)} {k : α} (hl : DistinctKeys l) (h : Perm l l') : Perm (eraseKey k l) (eraseKey k l')
α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : EquivBEq α l l' : List ((a : α) × β a) k : α hl : DistinctKeys l h : l.Perm l' ⊢ ∀ (a : α), getEntry? a (eraseKey k l) = getEntry? a (eraseKey k l')
simp [getEntry?_eraseKey hl, getEntry?_eraseKey (hl.perm h.symm), getEntry?_of_perm hl h]
no goals
fe56f8c60e5a647f
ConvexOn.lipschitzOnWith_of_abs_le
Mathlib/Analysis/Convex/Continuous.lean
lemma ConvexOn.lipschitzOnWith_of_abs_le (hf : ConvexOn ℝ (ball x₀ r) f) (hε : 0 < ε) (hM : ∀ a, dist a x₀ < r → |f a| ≤ M) : LipschitzOnWith (2 * M / ε).toNNReal f (ball x₀ (r - ε))
case inr E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : E → ℝ x₀ : E ε r M : ℝ hf : ConvexOn ℝ (ball x₀ r) f hε : 0 < ε hM : ∀ (a : E), dist a x₀ < r → |f a| ≤ M K : ℝ := 2 * M / ε hK : K = 2 * M / ε x y : E hx : x ∈ ball x₀ (r - ε) hy : y ∈ ball x₀ (r - ε) hx₀r : ball x₀ (r - ε) ⊆ ball x₀ r hx' : x ∈ ball x₀ r hy' : y ∈ ball x₀ r z : E := x + (ε / ‖x - y‖) • (x - y) hxy : 0 < ‖x - y‖ hz : z ∈ ball x₀ r ⊢ f x - f y ≤ K * ‖x - y‖
let a := ε / (ε + ‖x - y‖)
case inr E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : E → ℝ x₀ : E ε r M : ℝ hf : ConvexOn ℝ (ball x₀ r) f hε : 0 < ε hM : ∀ (a : E), dist a x₀ < r → |f a| ≤ M K : ℝ := 2 * M / ε hK : K = 2 * M / ε x y : E hx : x ∈ ball x₀ (r - ε) hy : y ∈ ball x₀ (r - ε) hx₀r : ball x₀ (r - ε) ⊆ ball x₀ r hx' : x ∈ ball x₀ r hy' : y ∈ ball x₀ r z : E := x + (ε / ‖x - y‖) • (x - y) hxy : 0 < ‖x - y‖ hz : z ∈ ball x₀ r a : ℝ := ε / (ε + ‖x - y‖) ⊢ f x - f y ≤ K * ‖x - y‖
f794e80453a6298e
Submodule.le_traceDual
Mathlib/RingTheory/DedekindDomain/Different.lean
lemma le_traceDual {I J : Submodule B L} : I ≤ Jᵛ ↔ I * J ≤ 1ᵛ
A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : CommRing B inst✝⁷ : Field L inst✝⁶ : Algebra A K inst✝⁵ : Algebra B L inst✝⁴ : Algebra A B inst✝³ : Algebra K L inst✝² : Algebra A L inst✝¹ : IsScalarTower A K L inst✝ : IsScalarTower A B L I J : Submodule B L ⊢ I ≤ Jᵛ ↔ I * J ≤ 1ᵛ
rw [← le_traceDual_mul_iff, mul_one]
no goals
c9d13a23548775cc
Submodule.spanRank_finite_iff_fg
Mathlib/Algebra/Module/SpanRank.lean
/-- A submodule's `spanRank` is finite if and only if it is finitely generated. -/ @[simp] lemma spanRank_finite_iff_fg {p : Submodule R M} : p.spanRank < aleph0 ↔ p.FG
R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M ⊢ ⨅ s, #↑↑s < ℵ₀ ↔ ∃ S, S.Finite ∧ span R S = p
constructor
case mp R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M ⊢ ⨅ s, #↑↑s < ℵ₀ → ∃ S, S.Finite ∧ span R S = p case mpr R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M ⊢ (∃ S, S.Finite ∧ span R S = p) → ⨅ s, #↑↑s < ℵ₀
57fd9ea29407f8a5
List.mem_eraseIdx_iff_getElem?
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Basic.lean
theorem mem_eraseIdx_iff_getElem? {x : α} {l} {k} : x ∈ eraseIdx l k ↔ ∃ i ≠ k, l[i]? = some x
case mp α : Type u_1 x : α l : List α k i : Nat ⊢ (∃ x_1, l[i]? = some x) → l[i]? = some x
rintro ⟨_, h⟩
case mp.intro α : Type u_1 x : α l : List α k i : Nat w✝ : i < l.length h : l[i]? = some x ⊢ l[i]? = some x
b696caa5872e7aba
LSeries.tendsto_cpow_mul_atTop
Mathlib/NumberTheory/LSeries/Injectivity.lean
/-- If the coefficients `f m` of an L-series are zero for `m ≤ n` and the L-series converges at some point, then `f (n+1)` is the limit of `(n+1)^x * LSeries f x` as `x → ∞`. -/ lemma LSeries.tendsto_cpow_mul_atTop {f : ℕ → ℂ} {n : ℕ} (h : ∀ m ≤ n, f m = 0) (ha : abscissaOfAbsConv f < ⊤): Tendsto (fun x : ℝ ↦ (n + 1) ^ (x : ℂ) * LSeries f x) atTop (nhds (f (n + 1)))
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
conv => enter [3, 1]; rw [← add_zero (f _)]
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1) + 0))
0f9b595cc43bb900
Matroid.mem_closure_iff_exists_isCircuit
Mathlib/Data/Matroid/Circuit.lean
lemma mem_closure_iff_exists_isCircuit (he : e ∉ X) : e ∈ M.closure X ↔ ∃ C ⊆ insert e X, M.IsCircuit C ∧ e ∈ C := ⟨fun h ↦ exists_isCircuit_of_mem_closure h he, fun ⟨C, hCX, hC, heC⟩ ↦ mem_of_mem_of_subset (hC.mem_closure_diff_singleton_of_mem heC) (M.closure_subset_closure (by simpa))⟩
α : Type u_1 M : Matroid α X : Set α e : α he : e ∉ X x✝ : ∃ C ⊆ insert e X, M.IsCircuit C ∧ e ∈ C C : Set α hCX : C ⊆ insert e X hC : M.IsCircuit C heC : e ∈ C ⊢ C \ {e} ⊆ X
simpa
no goals
8f3c13c96dde755f
Set.iUnion_range_eq_iUnion
Mathlib/Data/Set/Lattice.lean
theorem iUnion_range_eq_iUnion (C : ι → Set α) {f : ∀ x : ι, β → C x} (hf : ∀ x : ι, Surjective (f x)) : ⋃ y : β, range (fun x : ι => (f x y).val) = ⋃ x, C x
case h α : Type u_1 β : Type u_2 ι : Sort u_5 C : ι → Set α f : (x : ι) → β → ↑(C x) hf : ∀ (x : ι), Surjective (f x) x : α ⊢ (x ∈ ⋃ y, range fun x => ↑(f x y)) ↔ x ∈ ⋃ x, C x
rw [mem_iUnion, mem_iUnion]
case h α : Type u_1 β : Type u_2 ι : Sort u_5 C : ι → Set α f : (x : ι) → β → ↑(C x) hf : ∀ (x : ι), Surjective (f x) x : α ⊢ (∃ i, x ∈ range fun x => ↑(f x i)) ↔ ∃ i, x ∈ C i
9d4f3f5bc914a4d2
Option.forall_mem_map
Mathlib/Data/Option/Basic.lean
theorem forall_mem_map {f : α → β} {o : Option α} {p : β → Prop} : (∀ y ∈ o.map f, p y) ↔ ∀ x ∈ o, p (f x)
α : Type u_1 β : Type u_2 f : α → β o : Option α p : β → Prop ⊢ (∀ (y : β), y ∈ Option.map f o → p y) ↔ ∀ (x : α), x ∈ o → p (f x)
simp
no goals
e4f68a2bbadcba76
MvPowerSeries.X_pow_dvd_iff
Mathlib/RingTheory/MvPowerSeries/Basic.lean
theorem X_pow_dvd_iff {s : σ} {n : ℕ} {φ : MvPowerSeries σ R} : (X s : MvPowerSeries σ R) ^ n ∣ φ ↔ ∀ m : σ →₀ ℕ, m s < n → coeff R m φ = 0
case mp.intro.mk.hnc σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m j : σ →₀ ℕ hij : (single s n, j).1 + (single s n, j).2 = m ⊢ n ≤ m s
rw [← hij, Finsupp.add_apply, Finsupp.single_eq_same]
case mp.intro.mk.hnc σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m j : σ →₀ ℕ hij : (single s n, j).1 + (single s n, j).2 = m ⊢ n ≤ n + (single s n, j).2 s
c235f2aaea0f4970
SuccOrder.forall_ne_bot_iff
Mathlib/Order/SuccPred/Archimedean.lean
lemma SuccOrder.forall_ne_bot_iff [Nontrivial α] [PartialOrder α] [OrderBot α] [SuccOrder α] [IsSuccArchimedean α] (P : α → Prop) : (∀ i, i ≠ ⊥ → P i) ↔ (∀ i, P (SuccOrder.succ i))
case intro α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) j : ℕ hi : Order.succ^[j] ⊥ ≠ ⊥ hj : 0 < j ⊢ P (Order.succ^[j.pred.succ] ⊥)
simp only [Function.iterate_succ', Function.comp_apply]
case intro α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) j : ℕ hi : Order.succ^[j] ⊥ ≠ ⊥ hj : 0 < j ⊢ P (Order.succ (Order.succ^[j.pred] ⊥))
de964cadf712f800
List.map₂Left_eq_zipWith
Mathlib/Data/List/Map2.lean
theorem map₂Left_eq_zipWith : ∀ as bs, length as ≤ length bs → map₂Left f as bs = zipWith (fun a b => f a (some b)) as bs | [], [], _ => by simp | [], _ :: _, _ => by simp | a :: as, [], h => by simp at h | a :: as, b :: bs, h => by simp only [length_cons, succ_le_succ_iff] at h simp [h, map₂Left_eq_zipWith]
α : Type u β : Type v γ : Type w f : α → Option β → γ head✝ : β tail✝ : List β x✝ : [].length ≤ (head✝ :: tail✝).length ⊢ map₂Left f [] (head✝ :: tail✝) = zipWith (fun a b => f a (some b)) [] (head✝ :: tail✝)
simp
no goals
d79f18ce8e9359bc
ENNReal.toNNReal_iSup
Mathlib/Data/ENNReal/Real.lean
theorem toNNReal_iSup (hf : ∀ i, f i ≠ ∞) : (iSup f).toNNReal = ⨆ i, (f i).toNNReal
case intro ι : Sort u_1 f : ι → ℝ≥0 ⊢ (⨆ i, ↑(f i)).toNNReal = ⨆ i, ((fun i => ↑(f i)) i).toNNReal
simp_rw [toNNReal_coe]
case intro ι : Sort u_1 f : ι → ℝ≥0 ⊢ (⨆ i, ↑(f i)).toNNReal = ⨆ i, f i
d664c6a853b7cbe6
Stream'.Seq.eq_of_bisim
Mathlib/Data/Seq/Seq.lean
theorem eq_of_bisim (bisim : IsBisimulation R) {s₁ s₂} (r : s₁ ~ s₂) : s₁ = s₂
case cons.cons.intro α : Type u R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' x✝¹ : α s✝¹ : Seq α x✝ : α s✝ : Seq α r✝ : R (cons x✝¹ s✝¹) (cons x✝ s✝) h1 : x✝¹ = x✝ h2 : R s✝¹ s✝ ⊢ some x✝¹ = some x✝ ∧ R s✝¹ s✝
constructor
case cons.cons.intro.left α : Type u R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' x✝¹ : α s✝¹ : Seq α x✝ : α s✝ : Seq α r✝ : R (cons x✝¹ s✝¹) (cons x✝ s✝) h1 : x✝¹ = x✝ h2 : R s✝¹ s✝ ⊢ some x✝¹ = some x✝ case cons.cons.intro.right α : Type u R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' x✝¹ : α s✝¹ : Seq α x✝ : α s✝ : Seq α r✝ : R (cons x✝¹ s✝¹) (cons x✝ s✝) h1 : x✝¹ = x✝ h2 : R s✝¹ s✝ ⊢ R s✝¹ s✝
1f640110e2fa7129
Polynomial.dickson_of_two_le
Mathlib/RingTheory/Polynomial/Dickson.lean
theorem dickson_of_two_le {n : ℕ} (h : 2 ≤ n) : dickson k a n = X * dickson k a (n - 1) - C a * dickson k a (n - 2)
case intro R : Type u_1 inst✝ : CommRing R k : ℕ a : R n : ℕ h : 2 ≤ 2 + n ⊢ dickson k a (n + 2) = X * dickson k a (n + 2 - 1) - C a * dickson k a (n + 2 - 2)
exact dickson_add_two k a n
no goals
4bd239701f69d797
Algebra.FinitePresentation.ker_fg_of_mvPolynomial
Mathlib/RingTheory/FinitePresentation.lean
theorem ker_fg_of_mvPolynomial {n : ℕ} (f : MvPolynomial (Fin n) R →ₐ[R] A) (hf : Function.Surjective f) [FinitePresentation R A] : f.toRingHom.ker.FG
R : Type w₁ A : Type w₂ inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] A hf : Surjective ⇑f inst✝ : FinitePresentation R A ⊢ (RingHom.ker f.toRingHom).FG
obtain ⟨m, f', hf', s, hs⟩ := FinitePresentation.out (R := R) (A := A)
case intro.intro.intro.intro R : Type w₁ A : Type w₂ inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] A hf : Surjective ⇑f inst✝ : FinitePresentation R A m : ℕ f' : MvPolynomial (Fin m) R →ₐ[R] A hf' : Surjective ⇑f' s : Finset (MvPolynomial (Fin m) R) hs : Ideal.span ↑s = RingHom.ker f'.toRingHom ⊢ (RingHom.ker f.toRingHom).FG
37c27acde7e67205
MeasureTheory.Integrable.norm_toL1
Mathlib/MeasureTheory/Function/L1Space/AEEqFun.lean
theorem norm_toL1 (f : α → β) (hf : Integrable f μ) : ‖hf.toL1 f‖ = (∫⁻ a, edist (f a) 0 ∂μ).toReal
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f : α → β hf : Integrable f μ ⊢ ‖toL1 f hf‖ = (∫⁻ (a : α), edist (f a) 0 ∂μ).toReal
simp [toL1, Lp.norm_toLp, eLpNorm, eLpNorm'_eq_lintegral_enorm]
no goals
48ed02ba7f9a526f
MeasureTheory.measurableSet_generateFrom_singleton_iff
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem measurableSet_generateFrom_singleton_iff {s t : Set α} : MeasurableSet[MeasurableSpace.generateFrom {s}] t ↔ t = ∅ ∨ t = s ∨ t = sᶜ ∨ t = univ
case h α : Type u_1 s : Set α x : Set Prop hT : True ∈ x hF : False ∉ x p : Prop hp : p ∈ x hpneg : ¬p = True ⊢ False
rw [eq_iff_iff, iff_true, ← false_iff] at hpneg
case h α : Type u_1 s : Set α x : Set Prop hT : True ∈ x hF : False ∉ x p : Prop hp : p ∈ x hpneg : False ↔ p ⊢ False
39127bdfcef76ebf
Algebra.Presentation.differentialsSolution_isPresentation
Mathlib/Algebra/Module/Presentation/Differentials.lean
lemma differentialsSolution_isPresentation : pres.differentialsSolution.IsPresentation
case left R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S pres : Presentation R S ⊢ Submodule.span S (Set.range pres.differentialsSolution.var) = ⊤
rw [← Module.Relations.Solution.surjective_π_iff_span_eq_top, ← comm₂₃]
case left R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S pres : Presentation R S ⊢ Function.Surjective ⇑(pres.toExtension.toKaehler ∘ₗ ↑pres.cotangentSpaceBasis.repr.symm)
d3c9201e4431d782
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.hom_ext
Mathlib/CategoryTheory/Functor/KanExtension/Pointwise.lean
lemma IsPointwiseLeftKanExtension.hom_ext {G : LeftExtension L F} {f₁ f₂ : E ⟶ G} : f₁ = f₂
case h.w.h C : Type u_1 D : Type u_2 H : Type u_3 inst✝² : Category.{u_4, u_1} C inst✝¹ : Category.{u_6, u_2} D inst✝ : Category.{u_5, u_3} H L : C ⥤ D F : C ⥤ H E : L.LeftExtension F h : E.IsPointwiseLeftKanExtension G : L.LeftExtension F f₁ f₂ : E ⟶ G Y : D X : CostructuredArrow L Y ⊢ (E.coconeAt Y).ι.app X ≫ f₁.right.app Y = (E.coconeAt Y).ι.app X ≫ f₂.right.app Y
have eq₁ := congr_app (StructuredArrow.w f₁) X.left
case h.w.h C : Type u_1 D : Type u_2 H : Type u_3 inst✝² : Category.{u_4, u_1} C inst✝¹ : Category.{u_6, u_2} D inst✝ : Category.{u_5, u_3} H L : C ⥤ D F : C ⥤ H E : L.LeftExtension F h : E.IsPointwiseLeftKanExtension G : L.LeftExtension F f₁ f₂ : E ⟶ G Y : D X : CostructuredArrow L Y eq₁ : (E.hom ≫ ((whiskeringLeft C D H).obj L).map f₁.right).app X.left = G.hom.app X.left ⊢ (E.coconeAt Y).ι.app X ≫ f₁.right.app Y = (E.coconeAt Y).ι.app X ≫ f₂.right.app Y
9c52946883f48623
Computation.LiftRelAux.ret_left
Mathlib/Data/Seq/Computation.lean
theorem LiftRelAux.ret_left (R : α → β → Prop) (C : Computation α → Computation β → Prop) (a cb) : LiftRelAux R C (Sum.inl a) (destruct cb) ↔ ∃ b, b ∈ cb ∧ R a b
α : Type u β : Type v R : α → β → Prop C : Computation α → Computation β → Prop a : α cb : Computation β ⊢ ∀ (cb : Computation β), LiftRelAux R C (Sum.inl a) cb.think.destruct ↔ ∃ b, b ∈ cb.think ∧ R a b
intro
α : Type u β : Type v R : α → β → Prop C : Computation α → Computation β → Prop a : α cb cb✝ : Computation β ⊢ LiftRelAux R C (Sum.inl a) cb✝.think.destruct ↔ ∃ b, b ∈ cb✝.think ∧ R a b
3b346dca3baf4786
CategoryTheory.Sheaf.isLocallyBijective_iff_isIso
Mathlib/CategoryTheory/Sites/LocallyBijective.lean
lemma isLocallyBijective_iff_isIso : IsLocallyInjective f ∧ IsLocallySurjective f ↔ IsIso f
case mp C : Type u inst✝⁵ : Category.{v, u} C J : GrothendieckTopology C A : Type u' inst✝⁴ : Category.{v', u'} A FA : A → A → Type u_1 CA : A → Type w' inst✝³ : (X Y : A) → FunLike (FA X Y) (CA X) (CA Y) inst✝² : ConcreteCategory A FA F G : Sheaf J A f : F ⟶ G inst✝¹ : (forget A).ReflectsIsomorphisms inst✝ : J.HasSheafCompose (forget A) ⊢ IsLocallyInjective f ∧ IsLocallySurjective f → IsIso f
rintro ⟨_, _⟩
case mp.intro C : Type u inst✝⁵ : Category.{v, u} C J : GrothendieckTopology C A : Type u' inst✝⁴ : Category.{v', u'} A FA : A → A → Type u_1 CA : A → Type w' inst✝³ : (X Y : A) → FunLike (FA X Y) (CA X) (CA Y) inst✝² : ConcreteCategory A FA F G : Sheaf J A f : F ⟶ G inst✝¹ : (forget A).ReflectsIsomorphisms inst✝ : J.HasSheafCompose (forget A) left✝ : IsLocallyInjective f right✝ : IsLocallySurjective f ⊢ IsIso f
c23e5f228ca366c1
Nat.ofDigits_digits
Mathlib/Data/Nat/Digits.lean
theorem ofDigits_digits (b n : ℕ) : ofDigits b (digits b n) = n
case succ n b : ℕ ⊢ ofDigits (b + 1) ((b + 1).digits n) = n
rcases b with - | b
case succ.zero n : ℕ ⊢ ofDigits (0 + 1) ((0 + 1).digits n) = n case succ.succ n b : ℕ ⊢ ofDigits (b + 1 + 1) ((b + 1 + 1).digits n) = n
ccfc3fb23072b183
EulerProduct.summable_and_hasSum_factoredNumbers_prod_filter_prime_geometric
Mathlib/NumberTheory/EulerProduct/Basic.lean
/-- Given a (completely) multiplicative function `f : ℕ → F`, where `F` is a normed field, such that `‖f p‖ < 1` for all primes `p`, we can express the sum of `f n` over all `s`-factored positive integers `n` as a product of `(1 - f p)⁻¹` over the primes `p ∈ s`. At the same time, we show that the sum involved converges absolutely. -/ lemma summable_and_hasSum_factoredNumbers_prod_filter_prime_geometric {f : ℕ →* F} (h : ∀ {p : ℕ}, p.Prime → ‖f p‖ < 1) (s : Finset ℕ) : Summable (fun m : factoredNumbers s ↦ ‖f m‖) ∧ HasSum (fun m : factoredNumbers s ↦ f m) (∏ p ∈ s with p.Prime, (1 - f p)⁻¹)
F : Type u_1 inst✝¹ : NormedField F inst✝ : CompleteSpace F f : ℕ →* F h : ∀ {p : ℕ}, Nat.Prime p → ‖f p‖ < 1 s : Finset ℕ hmul : ∀ {m n : ℕ}, m.Coprime n → f (m * n) = f m * f n H₁ : ∏ p ∈ filter (fun p => Nat.Prime p) s, ∑' (n : ℕ), f (p ^ n) = ∏ p ∈ filter (fun p => Nat.Prime p) s, (1 - f p)⁻¹ ⊢ ∀ {p : ℕ}, Nat.Prime p → Summable fun n => ‖f (p ^ n)‖
intro p hp
F : Type u_1 inst✝¹ : NormedField F inst✝ : CompleteSpace F f : ℕ →* F h : ∀ {p : ℕ}, Nat.Prime p → ‖f p‖ < 1 s : Finset ℕ hmul : ∀ {m n : ℕ}, m.Coprime n → f (m * n) = f m * f n H₁ : ∏ p ∈ filter (fun p => Nat.Prime p) s, ∑' (n : ℕ), f (p ^ n) = ∏ p ∈ filter (fun p => Nat.Prime p) s, (1 - f p)⁻¹ p : ℕ hp : Nat.Prime p ⊢ Summable fun n => ‖f (p ^ n)‖
b953f848801a28f5
IsAdjoinRootMonic.coeff_algebraMap
Mathlib/RingTheory/IsAdjoinRoot.lean
theorem coeff_algebraMap [Nontrivial S] (h : IsAdjoinRootMonic S f) (x : R) : h.coeff (algebraMap R S x) = Pi.single 0 x
case h R : Type u S : Type v inst✝³ : CommRing R inst✝² : Ring S f : R[X] inst✝¹ : Algebra R S inst✝ : Nontrivial S h : IsAdjoinRootMonic S f x : R i : ℕ ⊢ h.coeff ((algebraMap R S) x) i = Pi.single 0 x i
rw [Algebra.algebraMap_eq_smul_one, map_smul, coeff_one, Pi.smul_apply, smul_eq_mul]
case h R : Type u S : Type v inst✝³ : CommRing R inst✝² : Ring S f : R[X] inst✝¹ : Algebra R S inst✝ : Nontrivial S h : IsAdjoinRootMonic S f x : R i : ℕ ⊢ x * Pi.single 0 1 i = Pi.single 0 x i
272d1168eee9a4a9
zpow_pos
Mathlib/Algebra/Order/GroupWithZero/Unbundled.lean
lemma zpow_pos [PosMulStrictMono G₀] (ha : 0 < a) : ∀ n : ℤ, 0 < a ^ n | (n : ℕ) => by rw [zpow_natCast]; exact pow_pos ha _ |-(n + 1 : ℕ) => by rw [zpow_neg, inv_pos, zpow_natCast]; exact pow_pos ha _
G₀ : Type u_2 inst✝⁴ : GroupWithZero G₀ inst✝³ : PartialOrder G₀ inst✝² : ZeroLEOneClass G₀ inst✝¹ : PosMulReflectLT G₀ a : G₀ inst✝ : PosMulStrictMono G₀ ha : 0 < a n : ℕ ⊢ 0 < a ^ (-↑(n + 1))
rw [zpow_neg, inv_pos, zpow_natCast]
G₀ : Type u_2 inst✝⁴ : GroupWithZero G₀ inst✝³ : PartialOrder G₀ inst✝² : ZeroLEOneClass G₀ inst✝¹ : PosMulReflectLT G₀ a : G₀ inst✝ : PosMulStrictMono G₀ ha : 0 < a n : ℕ ⊢ 0 < a ^ (n + 1)
e7eef4564eadb7cb
WeierstrassCurve.VariableChange.comp_left_inv
Mathlib/AlgebraicGeometry/EllipticCurve/VariableChange.lean
lemma comp_left_inv (C : VariableChange R) : comp (inv C) C = id
R : Type u inst✝ : CommRing R C : VariableChange R ⊢ C.inv.comp C = id
rw [comp, id, inv]
R : Type u inst✝ : CommRing R C : VariableChange R ⊢ { u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u, r := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 + C.r, s := ↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s + C.s, t := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 + { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s * ↑C.u ^ 2 + C.t } = { u := 1, r := 0, s := 0, t := 0 }
3094bd89e944291c
sum_div_nat_floor_pow_sq_le_div_sq
Mathlib/Analysis/SpecificLimits/FloorPow.lean
theorem sum_div_nat_floor_pow_sq_le_div_sq (N : ℕ) {j : ℝ} (hj : 0 < j) {c : ℝ} (hc : 1 < c) : (∑ i ∈ range N with j < ⌊c ^ i⌋₊, (1 : ℝ) / (⌊c ^ i⌋₊ : ℝ) ^ 2) ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / j ^ 2
case hab N : ℕ j : ℝ hj : 0 < j c : ℝ hc : 1 < c cpos : 0 < c A : 0 < 1 - c⁻¹ i : ℕ _hi : i ∈ filter (fun i => j < c ^ i) (range N) ⊢ c ^ i ≤ (1 - c⁻¹)⁻¹ * ↑⌊c ^ i⌋₊
rw [← div_eq_inv_mul, le_div_iff₀ A, mul_comm]
case hab N : ℕ j : ℝ hj : 0 < j c : ℝ hc : 1 < c cpos : 0 < c A : 0 < 1 - c⁻¹ i : ℕ _hi : i ∈ filter (fun i => j < c ^ i) (range N) ⊢ (1 - c⁻¹) * c ^ i ≤ ↑⌊c ^ i⌋₊
a23322a47b698b23
orthogonalProjection_orthogonalProjection_of_le
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem orthogonalProjection_orthogonalProjection_of_le {U V : Submodule 𝕜 E} [HasOrthogonalProjection U] [HasOrthogonalProjection V] (h : U ≤ V) (x : E) : orthogonalProjection U (orthogonalProjection V x) = orthogonalProjection U x := Eq.symm <| by simpa only [sub_eq_zero, map_sub] using orthogonalProjection_mem_subspace_orthogonalComplement_eq_zero (Submodule.orthogonal_le h (sub_orthogonalProjection_mem_orthogonal x))
𝕜 : Type u_1 E : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E U V : Submodule 𝕜 E inst✝¹ : HasOrthogonalProjection U inst✝ : HasOrthogonalProjection V h : U ≤ V x : E ⊢ (orthogonalProjection U) x = (orthogonalProjection U) ↑((orthogonalProjection V) x)
simpa only [sub_eq_zero, map_sub] using orthogonalProjection_mem_subspace_orthogonalComplement_eq_zero (Submodule.orthogonal_le h (sub_orthogonalProjection_mem_orthogonal x))
no goals
12f7e1d041eb0827
Polynomial.integralNormalization_coeff_degree_ne
Mathlib/RingTheory/Polynomial/IntegralNormalization.lean
theorem integralNormalization_coeff_degree_ne {i : ℕ} (hi : p.degree ≠ i) : coeff (integralNormalization p) i = coeff p i * p.leadingCoeff ^ (p.natDegree - 1 - i)
R : Type u inst✝ : Semiring R p : R[X] i : ℕ hi : p.degree ≠ ↑i ⊢ p.integralNormalization.coeff i = p.coeff i * p.leadingCoeff ^ (p.natDegree - 1 - i)
rw [integralNormalization_coeff, if_neg hi]
no goals
209d6cef1bed6b4b
LieAlgebra.IsSemisimple.finitelyAtomistic
Mathlib/Algebra/Lie/Semisimple/Basic.lean
/-- In a semisimple Lie algebra, Lie ideals that are contained in the supremum of a finite collection of atoms are themselves the supremum of a finite subcollection of those atoms. By a compactness argument, this statement can be extended to arbitrary sets of atoms. See `atomistic`. The proof is by induction on the finite set of atoms. -/ private lemma finitelyAtomistic : ∀ s : Finset (LieIdeal R L), ↑s ⊆ {I : LieIdeal R L | IsAtom I} → ∀ I : LieIdeal R L, I ≤ s.sup id → ∃ t ⊆ s, I = t.sup id
R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L s : Finset (LieIdeal R L) hs : ↑s ⊆ {I | IsAtom I} I : LieIdeal R L hI✝ : I ≤ s.sup id S : Set (LieIdeal R L) := {I | IsAtom I} hI : I < s.sup id J : LieIdeal R L hJs : J ∈ s hJI : ¬J ≤ I s' : Finset (LieIdeal R L) := s.erase J hs' : s' ⊂ s hs'S : ↑s' ⊆ S K : LieIdeal R L := s'.sup id y : L hy : y ∈ id J z : L hz : z ∈ K hx : y + z ∈ I j : ↥J this : J ⊓ I = ⊥ ⊢ ⁅↑j, y + z⁆ ∈ ⊥
apply this.le
case a R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L s : Finset (LieIdeal R L) hs : ↑s ⊆ {I | IsAtom I} I : LieIdeal R L hI✝ : I ≤ s.sup id S : Set (LieIdeal R L) := {I | IsAtom I} hI : I < s.sup id J : LieIdeal R L hJs : J ∈ s hJI : ¬J ≤ I s' : Finset (LieIdeal R L) := s.erase J hs' : s' ⊂ s hs'S : ↑s' ⊆ S K : LieIdeal R L := s'.sup id y : L hy : y ∈ id J z : L hz : z ∈ K hx : y + z ∈ I j : ↥J this : J ⊓ I = ⊥ ⊢ ⁅↑j, y + z⁆ ∈ J ⊓ I
9feaa310a91f7482
HasDerivAt.lhopital_zero_left_on_Ioo
Mathlib/Analysis/Calculus/LHopital.lean
theorem lhopital_zero_left_on_Ioo (hab : a < b) (hff' : ∀ x ∈ Ioo a b, HasDerivAt f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, HasDerivAt g (g' x) x) (hg' : ∀ x ∈ Ioo a b, g' x ≠ 0) (hfb : Tendsto f (𝓝[<] b) (𝓝 0)) (hgb : Tendsto g (𝓝[<] b) (𝓝 0)) (hdiv : Tendsto (fun x => f' x / g' x) (𝓝[<] b) l) : Tendsto (fun x => f x / g x) (𝓝[<] b) l
a b : ℝ l : Filter ℝ f f' g g' : ℝ → ℝ hab : a < b hff' : ∀ x ∈ Ioo a b, HasDerivAt f (f' x) x hgg' : ∀ x ∈ Ioo a b, HasDerivAt g (g' x) x hg' : ∀ x ∈ Ioo a b, g' x ≠ 0 hfb : Tendsto f (𝓝[<] b) (𝓝 0) hgb : Tendsto g (𝓝[<] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[<] b) l hdnf : ∀ x ∈ Ioo (-b) (-a), HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ x ∈ Ioo (-b) (-a), HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x this✝ : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) (𝓝[>] (-b)) l this : Tendsto (fun x => (fun x => f (-x) / g (-x)) (-x)) (𝓝[<] b) l ⊢ Tendsto (fun x => f x / g x) (𝓝[<] b) l
simpa only [neg_neg]
no goals
8222c911c0270cee
exists_lub_Iio
Mathlib/Order/Bounds/Basic.lean
theorem exists_lub_Iio (i : γ) : ∃ j, IsLUB (Iio i) j
case neg γ : Type v inst✝ : LinearOrder γ i : γ h_exists_lt : ¬∃ j ∈ upperBounds (Iio i), j < i h : ¬∀ x ∈ upperBounds (Iio i), i ≤ x ⊢ False
refine h_exists_lt ?_
case neg γ : Type v inst✝ : LinearOrder γ i : γ h_exists_lt : ¬∃ j ∈ upperBounds (Iio i), j < i h : ¬∀ x ∈ upperBounds (Iio i), i ≤ x ⊢ ∃ j ∈ upperBounds (Iio i), j < i
726072efd7470ae2
List.erase_eq_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Erase.lean
theorem erase_eq_iff [LawfulBEq α] {a : α} {l : List α} : l.erase a = l' ↔ (a ∉ l ∧ l = l') ∨ ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l' = l₁ ++ l₂
case mp.inr.intro.intro.intro.intro.intro.intro.h α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α a' : α l' : List α h : ¬a' ∈ l' x : List α ⊢ ∃ l₁, ¬a' ∈ l₁ ∧ ∃ x_1, l' ++ a' :: x = l₁ ++ a' :: x_1 ∧ l' ++ x = l₁ ++ x_1
refine ⟨l', h, x, by simp⟩
no goals
f35279b2c0c6abba
compactlyGeneratedSpace_of_isClosed_of_t2
Mathlib/Topology/Compactness/CompactlyGeneratedSpace.lean
theorem compactlyGeneratedSpace_of_isClosed_of_t2 (h : ∀ s, (∀ (K : Set X), IsCompact K → IsClosed (s ∩ K)) → IsClosed s) : CompactlyGeneratedSpace X
X : Type u inst✝¹ : TopologicalSpace X inst✝ : T2Space X h : ∀ (s : Set X), (∀ (K : Set X), IsCompact K → IsClosed (s ∩ K)) → IsClosed s s : Set X hs : ∀ (K : Type u) [inst : TopologicalSpace K] [inst_1 : CompactSpace K] [inst_2 : T2Space K] (f : K → X), Continuous f → IsClosed (f ⁻¹' s) K : Set X hK : IsCompact K ⊢ IsClosed (s ∩ K)
rw [Set.inter_comm, ← Subtype.image_preimage_coe]
X : Type u inst✝¹ : TopologicalSpace X inst✝ : T2Space X h : ∀ (s : Set X), (∀ (K : Set X), IsCompact K → IsClosed (s ∩ K)) → IsClosed s s : Set X hs : ∀ (K : Type u) [inst : TopologicalSpace K] [inst_1 : CompactSpace K] [inst_2 : T2Space K] (f : K → X), Continuous f → IsClosed (f ⁻¹' s) K : Set X hK : IsCompact K ⊢ IsClosed (Subtype.val '' (Subtype.val ⁻¹' s))
3a8ef05dc35c2a4e
round_le
Mathlib/Algebra/Order/Round.lean
theorem round_le (x : α) (z : ℤ) : |x - round x| ≤ |x - z|
case inr.h α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z ⊢ 1 - fract x ≤ |x - ↑z|
rw [abs_eq_neg_self.mpr (sub_neg.mpr hx).le]
case inr.h α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z ⊢ 1 - fract x ≤ -(x - ↑z)
c274f3c721c0243d
Finset.le_mulEnergy
Mathlib/Combinatorics/Additive/Energy.lean
@[to_additive] lemma le_mulEnergy : s.card * t.card ≤ Eₘ[s, t]
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Mul α s t : Finset α a : α × α x✝¹ : a ∈ ↑(s ×ˢ t) b : α × α x✝ : b ∈ ↑(s ×ˢ t) ⊢ (fun x => ((x.1, x.1), x.2, x.2)) a = (fun x => ((x.1, x.1), x.2, x.2)) b → a = b
simp only [Prod.mk.inj_iff, and_self_iff, and_imp]
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Mul α s t : Finset α a : α × α x✝¹ : a ∈ ↑(s ×ˢ t) b : α × α x✝ : b ∈ ↑(s ×ˢ t) ⊢ a.1 = b.1 → a.2 = b.2 → a = b
9ead259eb013602b
convexOn_zpow
Mathlib/Analysis/Convex/Mul.lean
/-- `x^m`, `m : ℤ` is convex on `(0, +∞)` for all `m`. -/ lemma convexOn_zpow : ∀ n : ℤ, ConvexOn 𝕜 (Ioi 0) fun x : 𝕜 ↦ x ^ n | (n : ℕ) => by simp_rw [zpow_natCast] exact (convexOn_pow n).subset Ioi_subset_Ici_self (convex_Ioi _) | -[n+1] => by simp_rw [zpow_negSucc, ← inv_pow] refine (convexOn_iff_forall_pos.2 ⟨convex_Ioi _, ?_⟩).pow (fun x (hx : 0 < x) ↦ by positivity) _ rintro x (hx : 0 < x) y (hy : 0 < y) a b ha hb hab field_simp rw [div_le_div_iff₀, ← sub_nonneg] · calc 0 ≤ a * b * (x - y) ^ 2
𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 n : ℕ ⊢ ConvexOn 𝕜 (Ioi 0) fun x => x⁻¹ ^ (n + 1)
refine (convexOn_iff_forall_pos.2 ⟨convex_Ioi _, ?_⟩).pow (fun x (hx : 0 < x) ↦ by positivity) _
𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 n : ℕ ⊢ ∀ ⦃x : 𝕜⦄, x ∈ Ioi 0 → ∀ ⦃y : 𝕜⦄, y ∈ Ioi 0 → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → (a • x + b • y)⁻¹ ≤ a • x⁻¹ + b • y⁻¹
b154fb3321707078
Basis.coe_toOrthonormalBasis
Mathlib/Analysis/InnerProductSpace/PiL2.lean
theorem _root_.Basis.coe_toOrthonormalBasis (v : Basis ι 𝕜 E) (hv : Orthonormal 𝕜 v) : (v.toOrthonormalBasis hv : ι → E) = (v : ι → E) := calc (v.toOrthonormalBasis hv : ι → E) = ((v.toOrthonormalBasis hv).toBasis : ι → E)
ι : Type u_1 𝕜 : Type u_3 inst✝³ : RCLike 𝕜 E : Type u_4 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : Fintype ι v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ⇑v ⊢ ⇑(v.toOrthonormalBasis hv).toBasis = ⇑v
simp
no goals
c770b3de998236b1
Prime.exists_mem_multiset_dvd
Mathlib/Algebra/BigOperators/Associated.lean
theorem exists_mem_multiset_dvd (hp : Prime p) {s : Multiset α} : p ∣ s.prod → ∃ a ∈ s, p ∣ a := Multiset.induction_on s (fun h => (hp.not_dvd_one h).elim) fun a s ih h => have : p ∣ a * s.prod
α : Type u_1 inst✝ : CommMonoidWithZero α p : α hp : Prime p s✝ : Multiset α a : α s : Multiset α ih : p ∣ s.prod → ∃ a ∈ s, p ∣ a h : p ∣ (a ::ₘ s).prod ⊢ p ∣ a * s.prod
simpa using h
no goals
1d0eae0f00e03dec
Pi.mulSingle_mul_mulSingle_eq_mulSingle_mul_mulSingle
Mathlib/Algebra/Group/Pi/Lemmas.lean
theorem Pi.mulSingle_mul_mulSingle_eq_mulSingle_mul_mulSingle {M : Type*} [CommMonoid M] {k l m n : I} {u v : M} (hu : u ≠ 1) (hv : v ≠ 1) : (mulSingle k u : I → M) * mulSingle l v = mulSingle m u * mulSingle n v ↔ k = m ∧ l = n ∨ u = v ∧ k = n ∧ l = m ∨ u * v = 1 ∧ k = l ∧ m = n
case refine_1.inr.inr I : Type u inst✝¹ : DecidableEq I M : Type u_3 inst✝ : CommMonoid M k l m n : I u v : M hu : u ≠ 1 hv : v ≠ 1 h : mulSingle k u * mulSingle l v = mulSingle m u * mulSingle n v hk : ((if True then u else 1) * if k = l then v else 1) = (if k = m then u else 1) * if k = n then v else 1 hl : ((if l = k then u else 1) * if True then v else 1) = (if l = m then u else 1) * if l = n then v else 1 hm : ((if True then u else 1) * if m = n then v else 1) = (if m = k then u else 1) * if m = l then v else 1 hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = l then v else 1 hkm : k ≠ m hmn : m ≠ n ⊢ k = m ∧ l = n ∨ u = v ∧ k = n ∧ l = m ∨ u * v = 1 ∧ k = l ∧ m = n
rw [if_neg hkm.symm, if_neg hmn, one_mul, mul_one] at hm
case refine_1.inr.inr I : Type u inst✝¹ : DecidableEq I M : Type u_3 inst✝ : CommMonoid M k l m n : I u v : M hu : u ≠ 1 hv : v ≠ 1 h : mulSingle k u * mulSingle l v = mulSingle m u * mulSingle n v hk : ((if True then u else 1) * if k = l then v else 1) = (if k = m then u else 1) * if k = n then v else 1 hl : ((if l = k then u else 1) * if True then v else 1) = (if l = m then u else 1) * if l = n then v else 1 hm : (if True then u else 1) = if m = l then v else 1 hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = l then v else 1 hkm : k ≠ m hmn : m ≠ n ⊢ k = m ∧ l = n ∨ u = v ∧ k = n ∧ l = m ∨ u * v = 1 ∧ k = l ∧ m = n
e106ea91b86a42a8
top_himp
Mathlib/Order/Heyting/Basic.lean
theorem top_himp : ⊤ ⇨ a = a := eq_of_forall_le_iff fun b => by rw [le_himp_iff, inf_top_eq]
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α ⊢ b ≤ ⊤ ⇨ a ↔ b ≤ a
rw [le_himp_iff, inf_top_eq]
no goals
e7fb1b8b9764dc3f
PowerSeries.coeff_mul_X_pow
Mathlib/RingTheory/PowerSeries/Basic.lean
theorem coeff_mul_X_pow (p : R⟦X⟧) (n d : ℕ) : coeff R (d + n) (p * X ^ n) = coeff R d p
case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : R⟦X⟧ d i j : ℕ h1 : (i, j) ∈ antidiagonal (d + (i, j).2) h2 : (i, j) ≠ (d, (i, j).2) ⊢ False
apply h2
case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : R⟦X⟧ d i j : ℕ h1 : (i, j) ∈ antidiagonal (d + (i, j).2) h2 : (i, j) ≠ (d, (i, j).2) ⊢ (i, j) = (d, (i, j).2)
e458456f8b304f1d
Basis.finTwoProd_one
Mathlib/LinearAlgebra/Basis/Basic.lean
theorem finTwoProd_one (R : Type*) [Semiring R] : Basis.finTwoProd R 1 = (0, 1)
R : Type u_7 inst✝ : Semiring R ⊢ (Basis.finTwoProd R) 1 = (0, 1)
simp [Basis.finTwoProd, LinearEquiv.finTwoArrow]
no goals
98c21ee8ddca98c0
ConjClasses.card_carrier
Mathlib/GroupTheory/GroupAction/Quotient.lean
theorem ConjClasses.card_carrier {G : Type*} [Group G] [Fintype G] (g : G) [Fintype (ConjClasses.mk g).carrier] [Fintype <| MulAction.stabilizer (ConjAct G) g] : Fintype.card (ConjClasses.mk g).carrier = Fintype.card G / Fintype.card (MulAction.stabilizer (ConjAct G) g)
G : Type u_1 inst✝³ : Group G inst✝² : Fintype G g : G inst✝¹ : Fintype ↑(ConjClasses.mk g).carrier inst✝ : Fintype ↥(MulAction.stabilizer (ConjAct G) g) ⊢ Fintype.card ↑(ConjClasses.mk g).carrier = Fintype.card (ConjAct G) / Fintype.card ↥(MulAction.stabilizer (ConjAct G) g)
rw [← MulAction.card_orbit_mul_card_stabilizer_eq_card_group (ConjAct G) g, Nat.mul_div_cancel]
G : Type u_1 inst✝³ : Group G inst✝² : Fintype G g : G inst✝¹ : Fintype ↑(ConjClasses.mk g).carrier inst✝ : Fintype ↥(MulAction.stabilizer (ConjAct G) g) ⊢ Fintype.card ↑(ConjClasses.mk g).carrier = Fintype.card ↑(MulAction.orbit (ConjAct G) g) case H G : Type u_1 inst✝³ : Group G inst✝² : Fintype G g : G inst✝¹ : Fintype ↑(ConjClasses.mk g).carrier inst✝ : Fintype ↥(MulAction.stabilizer (ConjAct G) g) ⊢ 0 < Fintype.card ↥(MulAction.stabilizer (ConjAct G) g)
2414b4aad73a0546
TrivSqZeroExt.hasSum_snd_expSeries_of_smul_comm
Mathlib/Analysis/Normed/Algebra/TrivSqZeroExt.lean
theorem hasSum_snd_expSeries_of_smul_comm (x : tsze R M) (hx : MulOpposite.op x.fst • x.snd = x.fst • x.snd) {e : R} (h : HasSum (fun n => expSeries 𝕜 R n fun _ => x.fst) e) : HasSum (fun n => snd (expSeries 𝕜 (tsze R M) n fun _ => x)) (e • x.snd)
𝕜 : Type u_1 R : Type u_3 M : Type u_4 inst✝¹⁶ : Field 𝕜 inst✝¹⁵ : CharZero 𝕜 inst✝¹⁴ : Ring R inst✝¹³ : AddCommGroup M inst✝¹² : Algebra 𝕜 R inst✝¹¹ : Module 𝕜 M inst✝¹⁰ : Module R M inst✝⁹ : Module Rᵐᵒᵖ M inst✝⁸ : SMulCommClass R Rᵐᵒᵖ M inst✝⁷ : IsScalarTower 𝕜 R M inst✝⁶ : IsScalarTower 𝕜 Rᵐᵒᵖ M inst✝⁵ : TopologicalSpace R inst✝⁴ : TopologicalSpace M inst✝³ : IsTopologicalRing R inst✝² : IsTopologicalAddGroup M inst✝¹ : ContinuousSMul R M inst✝ : ContinuousSMul Rᵐᵒᵖ M x : tsze R M hx : MulOpposite.op x.fst • x.snd = x.fst • x.snd e : R h : HasSum (fun n => (↑n.factorial)⁻¹ • x.fst ^ n) e ⊢ HasSum (fun n => ((↑n.factorial)⁻¹ • x.fst ^ n) • x.snd) (e • x.snd)
exact h.smul_const _
no goals
80324e42321d0c0b
Besicovitch.exists_disjoint_closedBall_covering_ae_of_finiteMeasure_aux
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem exists_disjoint_closedBall_covering_ae_of_finiteMeasure_aux (μ : Measure α) [IsFiniteMeasure μ] (f : α → Set ℝ) (s : Set α) (hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty) : ∃ t : Set (α × ℝ), t.Countable ∧ (∀ p ∈ t, p.1 ∈ s) ∧ (∀ p ∈ t, p.2 ∈ f p.1) ∧ μ (s \ ⋃ (p : α × ℝ) (_ : p ∈ t), closedBall p.1 p.2) = 0 ∧ t.PairwiseDisjoint fun p => closedBall p.1 p.2
case intro.intro.intro.refine_3 α : Type u_1 inst✝⁵ : MetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : HasBesicovitchCovering α μ : Measure α inst✝ : IsFiniteMeasure μ f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty N : ℕ τ : ℝ hτ : 1 < τ hN : IsEmpty (SatelliteConfig α N τ) P : Finset (α × ℝ) → Prop := fun t => ((↑t).PairwiseDisjoint fun p => closedBall p.1 p.2) ∧ (∀ p ∈ t, p.1 ∈ s) ∧ ∀ p ∈ t, p.2 ∈ f p.1 F : Finset (α × ℝ) → Finset (α × ℝ) hF : ∀ (t : Finset (α × ℝ)), P t → t ⊆ F t ∧ P (F t) ∧ μ (s \ ⋃ p ∈ F t, closedBall p.1 p.2) ≤ ↑N / (↑N + 1) * μ (s \ ⋃ p ∈ t, closedBall p.1 p.2) u : ℕ → Finset (α × ℝ) := fun n => F^[n] ∅ u_succ : ∀ (n : ℕ), u n.succ = F (u n) Pu : ∀ (n : ℕ), P (u n) ⊢ μ (s \ ⋃ p ∈ ⋃ n, ↑(u n), closedBall p.1 p.2) = 0
have A : ∀ n, μ (s \ ⋃ (p : α × ℝ) (_ : p ∈ ⋃ n : ℕ, (u n : Set (α × ℝ))), closedBall p.fst p.snd) ≤ μ (s \ ⋃ (p : α × ℝ) (_ : p ∈ u n), closedBall p.fst p.snd) := by intro n gcongr μ (s \ ?_) exact biUnion_subset_biUnion_left (subset_iUnion (fun i => (u i : Set (α × ℝ))) n)
case intro.intro.intro.refine_3 α : Type u_1 inst✝⁵ : MetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : HasBesicovitchCovering α μ : Measure α inst✝ : IsFiniteMeasure μ f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty N : ℕ τ : ℝ hτ : 1 < τ hN : IsEmpty (SatelliteConfig α N τ) P : Finset (α × ℝ) → Prop := fun t => ((↑t).PairwiseDisjoint fun p => closedBall p.1 p.2) ∧ (∀ p ∈ t, p.1 ∈ s) ∧ ∀ p ∈ t, p.2 ∈ f p.1 F : Finset (α × ℝ) → Finset (α × ℝ) hF : ∀ (t : Finset (α × ℝ)), P t → t ⊆ F t ∧ P (F t) ∧ μ (s \ ⋃ p ∈ F t, closedBall p.1 p.2) ≤ ↑N / (↑N + 1) * μ (s \ ⋃ p ∈ t, closedBall p.1 p.2) u : ℕ → Finset (α × ℝ) := fun n => F^[n] ∅ u_succ : ∀ (n : ℕ), u n.succ = F (u n) Pu : ∀ (n : ℕ), P (u n) A : ∀ (n : ℕ), μ (s \ ⋃ p ∈ ⋃ n, ↑(u n), closedBall p.1 p.2) ≤ μ (s \ ⋃ p ∈ u n, closedBall p.1 p.2) ⊢ μ (s \ ⋃ p ∈ ⋃ n, ↑(u n), closedBall p.1 p.2) = 0
fb6f6078be13e9db
SupClosed.biSup_mem
Mathlib/Order/SupClosed.lean
lemma SupClosed.biSup_mem {ι : Type*} {t : Set ι} {f : ι → α} (hs : SupClosed s) (ht : t.Finite) (hbot : ⊥ ∈ s) (hf : ∀ i ∈ t, f i ∈ s) : ⨆ i ∈ t, f i ∈ s
α : Type u_3 inst✝ : CompleteLattice α s : Set α ι : Type u_5 t : Set ι f : ι → α hs : SupClosed s ht : t.Finite hbot : ⊥ ∈ s hf : ∀ i ∈ t, f i ∈ s ⊢ ⨆ i ∈ t, f i ∈ s
rw [← sSup_image]
α : Type u_3 inst✝ : CompleteLattice α s : Set α ι : Type u_5 t : Set ι f : ι → α hs : SupClosed s ht : t.Finite hbot : ⊥ ∈ s hf : ∀ i ∈ t, f i ∈ s ⊢ sSup (f '' t) ∈ s
a418015b4f12e2f7
AddCircle.norm_eq
Mathlib/Analysis/Normed/Group/AddCircle.lean
theorem norm_eq {x : ℝ} : ‖(x : AddCircle p)‖ = |x - round (p⁻¹ * x) * p|
case a x : ℝ h₁ : BddBelow (abs '' {m | ↑m = ↑x}) h₂ : (abs '' {m | ↑m = ↑x}).Nonempty ⊢ fract x ⊓ (1 - fract x) ≤ sInf (norm '' {m | ↑m = ↑x})
simp only [QuotientAddGroup.mk'_apply, Real.norm_eq_abs, le_csInf_iff h₁ h₂]
case a x : ℝ h₁ : BddBelow (abs '' {m | ↑m = ↑x}) h₂ : (abs '' {m | ↑m = ↑x}).Nonempty ⊢ ∀ b ∈ abs '' {m | ↑m = ↑x}, fract x ⊓ (1 - fract x) ≤ b
e14e944eccb5c30b
PowerSeries.X_prime
Mathlib/RingTheory/PowerSeries/Basic.lean
theorem X_prime : Prime (X : R⟦X⟧)
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Prime X
rw [← Ideal.span_singleton_prime]
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ (Ideal.span {X}).IsPrime R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ X ≠ 0
b6b9c2687b01e6ad
MeasureTheory.measurableSet_generateFrom_singleton_iff
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem measurableSet_generateFrom_singleton_iff {s t : Set α} : MeasurableSet[MeasurableSpace.generateFrom {s}] t ↔ t = ∅ ∨ t = s ∨ t = sᶜ ∨ t = univ
case neg α : Type u_1 s : Set α x : Set Prop hT : True ∉ x ⊢ (fun x => x ∈ s) ⁻¹' x = ∅ ∨ (fun x => x ∈ s) ⁻¹' x = s ∨ (fun x => x ∈ s) ⁻¹' x = sᶜ ∨ (fun x => x ∈ s) ⁻¹' x = univ
by_cases hF : False ∈ x
case pos α : Type u_1 s : Set α x : Set Prop hT : True ∉ x hF : False ∈ x ⊢ (fun x => x ∈ s) ⁻¹' x = ∅ ∨ (fun x => x ∈ s) ⁻¹' x = s ∨ (fun x => x ∈ s) ⁻¹' x = sᶜ ∨ (fun x => x ∈ s) ⁻¹' x = univ case neg α : Type u_1 s : Set α x : Set Prop hT : True ∉ x hF : False ∉ x ⊢ (fun x => x ∈ s) ⁻¹' x = ∅ ∨ (fun x => x ∈ s) ⁻¹' x = s ∨ (fun x => x ∈ s) ⁻¹' x = sᶜ ∨ (fun x => x ∈ s) ⁻¹' x = univ
39127bdfcef76ebf
Polynomial.flt_catalan
Mathlib/NumberTheory/FLT/Polynomial.lean
theorem Polynomial.flt_catalan {p q r : ℕ} (hp : 0 < p) (hq : 0 < q) (hr : 0 < r) (hineq : q * r + r * p + p * q ≤ p * q * r) (chp : (p : k) ≠ 0) (chq : (q : k) ≠ 0) (chr : (r : k) ≠ 0) {a b c : k[X]} (ha : a ≠ 0) (hb : b ≠ 0) (hc : c ≠ 0) (hab : IsCoprime a b) {u v w : k} (hu : u ≠ 0) (hv : v ≠ 0) (hw : w ≠ 0) (heq : C u * a ^ p + C v * b ^ q + C w * c ^ r = 0) : a.natDegree = 0 ∧ b.natDegree = 0 ∧ c.natDegree = 0
case refine_2 k : Type u_1 inst✝ : Field k p q r : ℕ hp : 0 < p hq : 0 < q hr : 0 < r hineq : r * p + p * q + q * r ≤ p * q * r chp : ↑p ≠ 0 chq : ↑q ≠ 0 chr : ↑r ≠ 0 a b c : k[X] ha : a ≠ 0 hb : b ≠ 0 hc : c ≠ 0 hab : IsCoprime a b u v w : k hu : u ≠ 0 hv : v ≠ 0 hw : w ≠ 0 heq : C v * b ^ q + C w * c ^ r + C u * a ^ p = 0 hbc : IsCoprime b c heq' : C v * b ^ q + C w * c ^ r + C u * a ^ p = 0 hca : IsCoprime c a ⊢ b.natDegree = 0
rw [mul_rotate] at hineq
case refine_2 k : Type u_1 inst✝ : Field k p q r : ℕ hp : 0 < p hq : 0 < q hr : 0 < r hineq : r * p + p * q + q * r ≤ q * r * p chp : ↑p ≠ 0 chq : ↑q ≠ 0 chr : ↑r ≠ 0 a b c : k[X] ha : a ≠ 0 hb : b ≠ 0 hc : c ≠ 0 hab : IsCoprime a b u v w : k hu : u ≠ 0 hv : v ≠ 0 hw : w ≠ 0 heq : C v * b ^ q + C w * c ^ r + C u * a ^ p = 0 hbc : IsCoprime b c heq' : C v * b ^ q + C w * c ^ r + C u * a ^ p = 0 hca : IsCoprime c a ⊢ b.natDegree = 0
0ef13b75af03c673
Matroid.IsBasis.iUnion_isBasis_iUnion
Mathlib/Data/Matroid/Basic.lean
theorem IsBasis.iUnion_isBasis_iUnion {ι : Type _} (X I : ι → Set α) (hI : ∀ i, M.IsBasis (I i) (X i)) (h_ind : M.Indep (⋃ i, I i)) : M.IsBasis (⋃ i, I i) (⋃ i, X i)
case intro.intro.intro.intro.refl α : Type u_1 M : Matroid α ι : Type u_2 X I : ι → Set α hI : ∀ (i : ι), M.IsBasis (I i) (X i) h_ind : M.Indep (⋃ i, I i) e : α he' : ∀ (x : ι), e ∉ I x i : ι hes : e ∈ X i ⊢ e ∈ M.E
exact (hI i).subset_ground hes
no goals
178721ff1f281c37
PreTilt.isDomain
Mathlib/RingTheory/Perfection.lean
theorem isDomain : IsDomain (PreTilt O p)
K : Type u₁ inst✝⁴ : Field K v : Valuation K ℝ≥0 O : Type u₂ inst✝³ : CommRing O inst✝² : Algebra O K hv : v.Integers O p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Fact ¬IsUnit ↑p hp : Nat.Prime p this✝ : Nontrivial (PreTilt O p) this : NoZeroDivisors (PreTilt O p) ⊢ IsDomain (PreTilt O p)
exact NoZeroDivisors.to_isDomain _
no goals
2dffd41f28def1f7
TopCat.Presheaf.locally_surjective_iff_surjective_on_stalks
Mathlib/Topology/Sheaves/LocallySurjective.lean
theorem locally_surjective_iff_surjective_on_stalks (T : ℱ ⟶ 𝒢) : IsLocallySurjective T ↔ ∀ x : X, Function.Surjective ((stalkFunctor C x).map T)
case h C : Type u inst✝⁴ : Category.{v, u} C FC : C → C → Type u_1 CC : C → Type v inst✝³ : (X Y : C) → FunLike (FC X Y) (CC X) (CC Y) inst✝² : ConcreteCategory C FC X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : IsLocallySurjective T x : ↑X U : Opens ↑X hxU : x ∈ U t : ToType (𝒢.obj (op U)) V : Opens ↑X ι : V ⟶ U hxV : x ∈ V s : ToType (ℱ.obj (op V)) h_eq : (ConcreteCategory.hom (T.app (op V))) s = (ConcreteCategory.hom (𝒢.map ι.op)) t ⊢ (ConcreteCategory.hom ((stalkFunctor C x).map T)) ((ConcreteCategory.hom (ℱ.germ V x hxV)) s) = (ConcreteCategory.hom (𝒢.germ U x hxU)) t
simp [h_eq, germ_res_apply]
no goals
564dc8774c703ba6
Turing.TM1to1.tr_supports
Mathlib/Computability/PostTuringMachine.lean
theorem tr_supports [Inhabited Λ] {S : Finset Λ} (ss : Supports M S) : Supports (tr enc dec M) (trSupp M S) := ⟨Finset.mem_biUnion.2 ⟨_, ss.1, Finset.mem_insert_self _ _⟩, fun q h ↦ by suffices ∀ q, SupportsStmt S q → (∀ q' ∈ writes q, q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ q' ∈ writes q, SupportsStmt (trSupp M S) (tr enc dec M q') by rcases Finset.mem_biUnion.1 h with ⟨l, hl, h⟩ have := this _ (ss.2 _ hl) fun q' hq ↦ Finset.mem_biUnion.2 ⟨_, hl, Finset.mem_insert_of_mem hq⟩ rcases Finset.mem_insert.1 h with (rfl | h) exacts [this.1, this.2 _ h] intro q hs hw induction q with | move d q IH => unfold writes at hw ⊢ replace IH := IH hs hw; refine ⟨?_, IH.2⟩ cases d <;> simp only [trNormal, iterate, supportsStmt_move, IH] | write f q IH => unfold writes at hw ⊢ simp only [Finset.mem_image, Finset.mem_union, Finset.mem_univ, exists_prop, true_and] at hw ⊢ replace IH := IH hs fun q hq ↦ hw q (Or.inr hq) refine ⟨supportsStmt_read _ fun a _ s ↦ hw _ (Or.inl ⟨_, rfl⟩), fun q' hq ↦ ?_⟩ rcases hq with (⟨a, q₂, rfl⟩ | hq) · simp only [tr, supportsStmt_write, supportsStmt_move, IH.1] · exact IH.2 _ hq | load a q IH => unfold writes at hw ⊢ replace IH := IH hs hw exact ⟨supportsStmt_read _ fun _ ↦ IH.1, IH.2⟩ | branch p q₁ q₂ IH₁ IH₂ => unfold writes at hw ⊢ simp only [Finset.mem_union] at hw ⊢ replace IH₁ := IH₁ hs.1 fun q hq ↦ hw q (Or.inl hq) replace IH₂ := IH₂ hs.2 fun q hq ↦ hw q (Or.inr hq) exact ⟨supportsStmt_read _ fun _ ↦ ⟨IH₁.1, IH₂.1⟩, fun q ↦ Or.rec (IH₁.2 _) (IH₂.2 _)⟩ | goto l => simp only [writes, Finset.not_mem_empty]; refine ⟨?_, fun _ ↦ False.elim⟩ refine supportsStmt_read _ fun a _ s ↦ ?_ exact Finset.mem_biUnion.2 ⟨_, hs _ _, Finset.mem_insert_self _ _⟩ | halt => simp only [writes, Finset.not_mem_empty]; refine ⟨?_, fun _ ↦ False.elim⟩ simp only [SupportsStmt, supportsStmt_move, trNormal]⟩
Γ : Type u_1 Λ : Type u_2 σ : Type u_3 n : ℕ enc : Γ → List.Vector Bool n dec : List.Vector Bool n → Γ M : Λ → Stmt Γ Λ σ inst✝¹ : Fintype Γ inst✝ : Inhabited Λ S : Finset Λ ss : Supports M S q : Λ' Γ Λ σ h : q ∈ trSupp M S ⊢ ∀ (q : Stmt Γ Λ σ), SupportsStmt S q → (∀ q' ∈ writes q, q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ q' ∈ writes q, SupportsStmt (trSupp M S) (tr enc dec M q')
intro q hs hw
Γ : Type u_1 Λ : Type u_2 σ : Type u_3 n : ℕ enc : Γ → List.Vector Bool n dec : List.Vector Bool n → Γ M : Λ → Stmt Γ Λ σ inst✝¹ : Fintype Γ inst✝ : Inhabited Λ S : Finset Λ ss : Supports M S q✝ : Λ' Γ Λ σ h : q✝ ∈ trSupp M S q : Stmt Γ Λ σ hs : SupportsStmt S q hw : ∀ q' ∈ writes q, q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ q' ∈ writes q, SupportsStmt (trSupp M S) (tr enc dec M q')
bea148d15df2302d
SmoothPartitionOfUnity.exists_isSubordinate_chartAt_source_of_isClosed
Mathlib/Geometry/Manifold/PartitionOfUnity.lean
theorem exists_isSubordinate_chartAt_source_of_isClosed {s : Set M} (hs : IsClosed s) : ∃ f : SmoothPartitionOfUnity s I M s, f.IsSubordinate (fun x ↦ (chartAt H (x : M)).source)
E : Type uE inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E H : Type uH inst✝⁶ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type uM inst✝⁵ : TopologicalSpace M inst✝⁴ : ChartedSpace H M inst✝³ : FiniteDimensional ℝ E inst✝² : IsManifold I ∞ M inst✝¹ : T2Space M inst✝ : SigmaCompactSpace M s : Set M hs : IsClosed s x : M hx : x ∈ s ⊢ x ∈ ⋃ i, (chartAt H ↑i).source
exact mem_iUnion_of_mem ⟨x, hx⟩ (mem_chart_source H x)
no goals
0a676c026e8923b0
Num.le_to_nat
Mathlib/Data/Num/Lemmas.lean
theorem le_to_nat {m n : Num} : (m : ℕ) ≤ n ↔ m ≤ n
m n : Num ⊢ ¬↑n < ↑m ↔ m ≤ n
exact not_congr lt_to_nat
no goals
030e1471e406d779
Lean.Order.admissible_or
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Basic.lean
theorem admissible_or (P Q : α → Prop) (hadm₁ : admissible P) (hadm₂ : admissible Q) : admissible (fun x => P x ∨ Q x)
case inl.h α : Sort u inst✝ : CCPO α P Q : α → Prop hadm₁ : admissible P hadm₂ : admissible Q c : α → Prop hchain : chain c h : ∀ (x : α), c x → (fun x => P x ∨ Q x) x hP : ∀ (x : α), c x → ∃ y, c y ∧ x ⊑ y ∧ P y ⊢ P (csup fun x => c x ∧ P x)
apply hadm₁ _ (chain_conj _ _ hchain)
case inl.h α : Sort u inst✝ : CCPO α P Q : α → Prop hadm₁ : admissible P hadm₂ : admissible Q c : α → Prop hchain : chain c h : ∀ (x : α), c x → (fun x => P x ∨ Q x) x hP : ∀ (x : α), c x → ∃ y, c y ∧ x ⊑ y ∧ P y ⊢ ∀ (x : α), c x ∧ P x → P x
d9092059bf3f532d
SimpleGraph.Walk.IsCycle.snd_ne_penultimate
Mathlib/Combinatorics/SimpleGraph/Path.lean
lemma IsCycle.snd_ne_penultimate {p : G.Walk u u} (hp : p.IsCycle) : p.snd ≠ p.penultimate
V : Type u G : SimpleGraph V u : V p : G.Walk u u hp : p.IsCycle h : p.snd = p.penultimate this : 3 ≤ p.length ⊢ 1 ≤ p.length
omega
no goals
0a5276b29b15aedb
ByteArray.data_append
Mathlib/.lake/packages/batteries/Batteries/Data/ByteArray.lean
theorem data_append (a b : ByteArray) : (a ++ b).data = a.data ++ b.data
a b : ByteArray ⊢ a.data ++ (b.data ++ a.data.extract (a.data.size + b.data.size)) = a.data ++ b.data
rw [Array.extract_empty_of_stop_le_start (h:=Nat.le_add_right ..), Array.append_empty]
no goals
8e1c51ba23736459
Std.DHashMap.Internal.Raw.insertMany_val
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/Raw.lean
theorem insertMany_val [BEq α][Hashable α] {m : Raw₀ α β} {ρ : Type w} [ForIn Id ρ ((a : α) × β a)] {l : ρ} : m.val.insertMany l = m.insertMany l
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : Hashable α m : Raw₀ α β ρ : Type w inst✝ : ForIn Id ρ ((a : α) × β a) l : ρ ⊢ m.val.insertMany l = (m.insertMany l).val.val
simp [Raw.insertMany, m.2]
no goals
bc16c55568456d90
LinearMap.isClosedEmbedding_of_injective
Mathlib/Topology/Algebra/Module/FiniteDimension.lean
theorem LinearMap.isClosedEmbedding_of_injective [T2Space E] [FiniteDimensional 𝕜 E] {f : E →ₗ[𝕜] F} (hf : LinearMap.ker f = ⊥) : IsClosedEmbedding f := let g := LinearEquiv.ofInjective f (LinearMap.ker_eq_bot.mp hf) { IsEmbedding.subtypeVal.comp g.toContinuousLinearEquiv.toHomeomorph.isEmbedding with isClosed_range
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹⁴ : NontriviallyNormedField 𝕜 inst✝¹³ : CompleteSpace 𝕜 inst✝¹² : AddCommGroup E inst✝¹¹ : TopologicalSpace E inst✝¹⁰ : IsTopologicalAddGroup E inst✝⁹ : Module 𝕜 E inst✝⁸ : ContinuousSMul 𝕜 E inst✝⁷ : AddCommGroup F inst✝⁶ : TopologicalSpace F inst✝⁵ : T2Space F inst✝⁴ : IsTopologicalAddGroup F inst✝³ : Module 𝕜 F inst✝² : ContinuousSMul 𝕜 F inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F hf : ker f = ⊥ g : E ≃ₗ[𝕜] ↥(range f) := LinearEquiv.ofInjective f ⋯ ⊢ IsClosed (Set.range ⇑f)
haveI := f.finiteDimensional_range
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹⁴ : NontriviallyNormedField 𝕜 inst✝¹³ : CompleteSpace 𝕜 inst✝¹² : AddCommGroup E inst✝¹¹ : TopologicalSpace E inst✝¹⁰ : IsTopologicalAddGroup E inst✝⁹ : Module 𝕜 E inst✝⁸ : ContinuousSMul 𝕜 E inst✝⁷ : AddCommGroup F inst✝⁶ : TopologicalSpace F inst✝⁵ : T2Space F inst✝⁴ : IsTopologicalAddGroup F inst✝³ : Module 𝕜 F inst✝² : ContinuousSMul 𝕜 F inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F hf : ker f = ⊥ g : E ≃ₗ[𝕜] ↥(range f) := LinearEquiv.ofInjective f ⋯ this : FiniteDimensional 𝕜 ↥(range f) ⊢ IsClosed (Set.range ⇑f)
0572f7ac8190d223
CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le
Mathlib/Order/CompactlyGenerated/Basic.lean
theorem isCompactElement_iff_le_of_directed_sSup_le (k : α) : IsCompactElement k ↔ ∀ s : Set α, s.Nonempty → DirectedOn (· ≤ ·) s → k ≤ sSup s → ∃ x : α, x ∈ s ∧ k ≤ x
case mpr.intro.intro α : Type u_2 inst✝ : CompleteLattice α k : α hk : ∀ (s : Set α), s.Nonempty → DirectedOn (fun x1 x2 => x1 ≤ x2) s → k ≤ sSup s → ∃ x ∈ s, k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = t.sup id} dir_US : DirectedOn (fun x1 x2 => x1 ≤ x2) S sup_S : sSup s ≤ sSup S Sne : S.Nonempty j : α hjS : j ∈ S hjk : k ≤ j ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ t.sup id
obtain ⟨t, ⟨htS, htsup⟩⟩ := hjS
case mpr.intro.intro.intro.intro α : Type u_2 inst✝ : CompleteLattice α k : α hk : ∀ (s : Set α), s.Nonempty → DirectedOn (fun x1 x2 => x1 ≤ x2) s → k ≤ sSup s → ∃ x ∈ s, k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = t.sup id} dir_US : DirectedOn (fun x1 x2 => x1 ≤ x2) S sup_S : sSup s ≤ sSup S Sne : S.Nonempty j : α hjk : k ≤ j t : Finset α htS : ↑t ⊆ s htsup : j = t.sup id ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ t.sup id
445bf3d7fb93c3e6
WeierstrassCurve.Affine.equation_negAdd
Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean
/-- The negated addition of two affine points in `W` on a sloped line lies in `W`. -/ lemma equation_negAdd {x₁ x₂ y₁ y₂ : F} (h₁ : W.Equation x₁ y₁) (h₂ : W.Equation x₂ y₂) (hxy : ¬(x₁ = x₂ ∧ y₁ = W.negY x₂ y₂)) : W.Equation (W.addX x₁ x₂ <| W.slope x₁ x₂ y₁ y₂) (W.negAddY x₁ x₂ y₁ <| W.slope x₁ x₂ y₁ y₂)
F : Type u inst✝ : Field F W : Affine F x₁ x₂ y₁ y₂ : F h₁ : W.Equation x₁ y₁ h₂ : W.Equation x₂ y₂ hxy : ¬(x₁ = x₂ ∧ y₁ = W.negY x₂ y₂) ⊢ -((W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂) - x₁) * (W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂) - x₂) * (W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂) - W.addX x₁ x₂ (W.slope x₁ x₂ y₁ y₂))) = 0
rw [neg_eq_zero, sub_self, mul_zero]
no goals
62648cb1aa459396
isExtreme_iInter
Mathlib/Analysis/Convex/Extreme.lean
theorem isExtreme_iInter {ι : Sort*} [Nonempty ι] {F : ι → Set E} (hAF : ∀ i : ι, IsExtreme 𝕜 A (F i)) : IsExtreme 𝕜 A (⋂ i : ι, F i)
𝕜 : Type u_1 E : Type u_2 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommMonoid E inst✝¹ : SMul 𝕜 E A : Set E ι : Sort u_6 inst✝ : Nonempty ι F : ι → Set E hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i) i : ι ⊢ IsExtreme 𝕜 A (⋂ i, F i)
refine ⟨iInter_subset_of_subset i (hAF i).1, fun x₁ hx₁A x₂ hx₂A x hxF hx ↦ ?_⟩
𝕜 : Type u_1 E : Type u_2 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommMonoid E inst✝¹ : SMul 𝕜 E A : Set E ι : Sort u_6 inst✝ : Nonempty ι F : ι → Set E hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i) i : ι x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxF : x ∈ ⋂ i, F i hx : x ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ ∈ ⋂ i, F i ∧ x₂ ∈ ⋂ i, F i
bc168c036470e611
Finset.sum_Ioc_by_parts
Mathlib/Algebra/BigOperators/Module.lean
theorem sum_Ioc_by_parts (hmn : m < n) : ∑ i ∈ Ioc m n, f i • g i = f n • G (n + 1) - f (m + 1) • G (m + 1) - ∑ i ∈ Ioc m (n - 1), (f (i + 1) - f i) • G (i + 1)
R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n ⊢ ∑ i ∈ Ioc m n, f i • g i = f n • ∑ i ∈ range (n + 1), g i - f (m + 1) • ∑ i ∈ range (m + 1), g i - ∑ i ∈ Ioc m (n - 1), (f (i + 1) - f i) • ∑ i ∈ range (i + 1), g i
simpa only [← Nat.Ico_succ_succ, Nat.succ_eq_add_one, Nat.sub_add_cancel (Nat.one_le_of_lt hmn), add_tsub_cancel_right] using sum_Ico_by_parts f g (Nat.succ_lt_succ hmn)
no goals
30ed679af84a904e
Std.Sat.AIG.RefVec.denote_map
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/RefVecOperator/Map.lean
theorem denote_map {aig : AIG α} (target : MapTarget aig len) : ∀ (idx : Nat) (hidx : idx < len), ⟦(map aig target).aig, (map aig target).vec.get idx hidx, assign⟧ = ⟦target.func aig (target.vec.get idx hidx), assign⟧
case a α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α len : Nat assign : α → Bool aig : AIG α target : MapTarget aig len idx : Nat hidx : idx < len ⊢ 0 ≤ idx
omega
no goals
964751d60bf234e3
memℓp_gen
Mathlib/Analysis/Normed/Lp/lpSpace.lean
theorem memℓp_gen {f : ∀ i, E i} (hf : Summable fun i => ‖f i‖ ^ p.toReal) : Memℓp f p
α : Type u_3 E : α → Type u_4 inst✝ : (i : α) → NormedAddCommGroup (E i) f : (i : α) → E i hf : Summable fun i => ‖f i‖ ^ ⊤.toReal ⊢ Summable fun x => 1
simpa using hf
no goals
a63b48f332040979
Complex.arg_eq_pi_iff
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0
z : ℂ ⊢ z.arg = π ↔ z.re < 0 ∧ z.im = 0
by_cases h₀ : z = 0
case pos z : ℂ h₀ : z = 0 ⊢ z.arg = π ↔ z.re < 0 ∧ z.im = 0 case neg z : ℂ h₀ : ¬z = 0 ⊢ z.arg = π ↔ z.re < 0 ∧ z.im = 0
1ed9b6f4a418a885