name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
ContinuousMap.ker_evalStarAlgHom_inter_adjoin_id
Mathlib/Topology/ContinuousMap/StoneWeierstrass.lean
lemma ker_evalStarAlgHom_inter_adjoin_id (s : Set 𝕜) (h0 : 0 ∈ s) : (StarAlgebra.adjoin 𝕜 {restrict s (.id 𝕜)} : Set C(s, 𝕜)) ∩ RingHom.ker (evalStarAlgHom 𝕜 𝕜 (⟨0, h0⟩ : s)) = adjoin 𝕜 {restrict s (.id 𝕜)}
case h.mp.intro 𝕜 : Type u_1 inst✝ : RCLike 𝕜 s : Set 𝕜 h0 : 0 ∈ s f : C(↑s, 𝕜) hf₁ : f ∈ ↑(StarAlgebra.adjoin 𝕜 {restrict s (ContinuousMap.id 𝕜)}) hf₂ : f ∈ RingHom.ker (evalStarAlgHom 𝕜 𝕜 ⟨0, h0⟩) ⊢ f ∈ adjoin 𝕜 {restrict s (ContinuousMap.id 𝕜)}
simp_rw [adjoin_id_eq_span_one_add, Set.mem_add, SetLike.mem_coe, mem_span_singleton] at hf₁
case h.mp.intro 𝕜 : Type u_1 inst✝ : RCLike 𝕜 s : Set 𝕜 h0 : 0 ∈ s f : C(↑s, 𝕜) hf₂ : f ∈ RingHom.ker (evalStarAlgHom 𝕜 𝕜 ⟨0, h0⟩) hf₁ : ∃ x, (∃ a, a • 1 = x) ∧ ∃ y ∈ adjoin 𝕜 {restrict s (ContinuousMap.id 𝕜)}, x + y = f ⊢ f ∈ adjoin 𝕜 {restrict s (ContinuousMap.id 𝕜)}
c6f4688dc57cb558
AlgebraicGeometry.Scheme.IdealSheafData.ideal_iSup
Mathlib/AlgebraicGeometry/IdealSheaf.lean
@[simp] lemma ideal_iSup {ι : Type*} {I : ι → IdealSheafData X} : (iSup I).ideal = ⨆ i, (I i).ideal
X : Scheme ι : Type u_1 I : ι → X.IdealSheafData ⊢ (iSup I).ideal = ⨆ i, (I i).ideal
rw [← sSup_range, ← sSup_range, ideal_sSup, ← Set.range_comp, Function.comp_def]
no goals
7459fbe32e481a66
Encodable.decode₂_ne_none_iff
Mathlib/Logic/Encodable/Basic.lean
theorem decode₂_ne_none_iff [Encodable α] {n : ℕ} : decode₂ α n ≠ none ↔ n ∈ Set.range (encode : α → ℕ)
α : Type u_1 inst✝ : Encodable α n : ℕ ⊢ decode₂ α n ≠ none ↔ n ∈ Set.range encode
simp_rw [Set.range, Set.mem_setOf_eq, Ne, Option.eq_none_iff_forall_not_mem, Encodable.mem_decode₂, not_forall, not_not]
no goals
41dd8e696b7b01f7
MeasureTheory.AEStronglyMeasurable.integral_prod_right'
Mathlib/MeasureTheory/Integral/Prod.lean
theorem MeasureTheory.AEStronglyMeasurable.integral_prod_right' [SFinite ν] [NormedSpace ℝ E] ⦃f : α × β → E⦄ (hf : AEStronglyMeasurable f (μ.prod ν)) : AEStronglyMeasurable (fun x => ∫ y, f (x, y) ∂ν) μ := ⟨fun x => ∫ y, hf.mk f (x, y) ∂ν, hf.stronglyMeasurable_mk.integral_prod_right', by filter_upwards [ae_ae_of_ae_prod hf.ae_eq_mk] with _ hx using integral_congr_ae hx⟩
α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁴ : MeasurableSpace α inst✝³ : MeasurableSpace β μ : Measure α ν : Measure β inst✝² : NormedAddCommGroup E inst✝¹ : SFinite ν inst✝ : NormedSpace ℝ E f : α × β → E hf : AEStronglyMeasurable f (μ.prod ν) ⊢ (fun x => ∫ (y : β), f (x, y) ∂ν) =ᶠ[ae μ] fun x => ∫ (y : β), AEStronglyMeasurable.mk f hf (x, y) ∂ν
filter_upwards [ae_ae_of_ae_prod hf.ae_eq_mk] with _ hx using integral_congr_ae hx
no goals
fe24fedfafefecf5
LinearIndependent.pair_iff'
Mathlib/LinearAlgebra/LinearIndependent/Lemmas.lean
theorem LinearIndependent.pair_iff' {x y : V} (hx : x ≠ 0) : LinearIndependent K ![x, y] ↔ ∀ a : K, a • x ≠ y
case neg K : Type u_3 V : Type u inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V x y : V hx : x ≠ 0 H : ∀ (a : K), a • x ≠ y s t : K ht : ¬t = 0 hst : t⁻¹ • (s • x + t • y) = t⁻¹ • 0 ⊢ s = 0 ∧ t = 0
simp only [smul_add, smul_smul, inv_mul_cancel₀ ht] at hst
case neg K : Type u_3 V : Type u inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V x y : V hx : x ≠ 0 H : ∀ (a : K), a • x ≠ y s t : K ht : ¬t = 0 hst : (t⁻¹ * s) • x + 1 • y = t⁻¹ • 0 ⊢ s = 0 ∧ t = 0
19c2c5ebd4d42798
lp.inner_single_left
Mathlib/Analysis/InnerProductSpace/l2Space.lean
theorem inner_single_left [DecidableEq ι] (i : ι) (a : G i) (f : lp G 2) : ⟪lp.single 2 i a, f⟫ = ⟪a, f i⟫
case pos ι : Type u_1 𝕜 : Type u_2 inst✝³ : RCLike 𝕜 G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) inst✝ : DecidableEq ι f : ↥(lp G 2) j : ι a : G j ⊢ inner (Pi.single j a j) (↑f j) = inner a (↑f j)
rw [Pi.single_eq_same]
no goals
5ec876fe1b1e7ef5
CategoryTheory.preserves_fin_of_preserves_binary_and_initial
Mathlib/CategoryTheory/Limits/Constructions/FiniteProductsOfBinaryProducts.lean
/-- If `F` preserves the initial object and binary coproducts, then it preserves products indexed by `Fin n` for any `n`. -/ lemma preserves_fin_of_preserves_binary_and_initial : ∀ (n : ℕ) (f : Fin n → C), PreservesColimit (Discrete.functor f) F | 0 => fun f => by letI : PreservesColimitsOfShape (Discrete (Fin 0)) F := preservesColimitsOfShape_of_equiv.{0, 0} (Discrete.equivalence finZeroEquiv'.symm) _ infer_instance | n + 1 => by haveI := preserves_fin_of_preserves_binary_and_initial n intro f apply preservesColimit_of_preserves_colimit_cocone (extendCofanIsColimit f (colimit.isColimit _) (colimit.isColimit _)) _ apply (isColimitMapCoconeCofanMkEquiv _ _ _).symm _ let this := extendCofanIsColimit (fun i => F.obj (f i)) (isColimitOfHasCoproductOfPreservesColimit F _) (isColimitOfHasBinaryCoproductOfPreservesColimit F _ _) refine IsColimit.ofIsoColimit this ?_ apply Cocones.ext _ _ · apply Iso.refl _ rintro ⟨j⟩ refine Fin.inductionOn j ?_ ?_ · apply Category.comp_id · rintro i _ dsimp [extendCofan_ι_app, Iso.refl_hom, Cofan.mk_ι_app] rw [comp_id, ← F.map_comp]
C : Type u inst✝⁴ : Category.{v, u} C D : Type u' inst✝³ : Category.{v', u'} D F : C ⥤ D inst✝² : PreservesColimitsOfShape (Discrete WalkingPair) F inst✝¹ : PreservesColimitsOfShape (Discrete PEmpty.{1}) F inst✝ : HasFiniteCoproducts C n : ℕ this✝ : ∀ (f : Fin n → C), PreservesColimit (Discrete.functor f) F f : Fin (n + 1) → C this : IsColimit (extendCofan (Cofan.mk (F.obj (∐ fun i => f i.succ)) fun j => F.map (Sigma.ι (fun i => f i.succ) j)) (BinaryCofan.mk (F.map coprod.inl) (F.map coprod.inr))) := extendCofanIsColimit (fun i => F.obj (f i)) (isColimitOfHasCoproductOfPreservesColimit F fun i => f i.succ) (isColimitOfHasBinaryCoproductOfPreservesColimit F (f 0) (∐ fun i => f i.succ)) ⊢ (extendCofan (Cofan.mk (F.obj (∐ fun i => f i.succ)) fun j => F.map (Sigma.ι (fun i => f i.succ) j)) (BinaryCofan.mk (F.map coprod.inl) (F.map coprod.inr))).pt ≅ (Cofan.mk (F.obj (colimit.cocone (pair (f 0) (colimit.cocone (Discrete.functor fun i => f i.succ)).pt)).pt) fun j => F.map (Fin.cases (BinaryCofan.inl (colimit.cocone (pair (f 0) (colimit.cocone (Discrete.functor fun i => f i.succ)).pt))) (fun i => (colimit.cocone (Discrete.functor fun i => f i.succ)).ι.app { as := i } ≫ BinaryCofan.inr (colimit.cocone (pair (f 0) (colimit.cocone (Discrete.functor fun i => f i.succ)).pt))) j)).pt
apply Iso.refl _
no goals
974807fb6f70ed28
CStarAlgebra.isClosed_nonneg
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Order.lean
/-- The set of nonnegative elements in a C⋆-algebra is closed. -/ lemma isClosed_nonneg : IsClosed {a : A | 0 ≤ a}
case h.e'_3.h A : Type u_1 inst✝² : NonUnitalCStarAlgebra A inst✝¹ : PartialOrder A inst✝ : StarOrderedRing A this : IsClosed {a | 0 ≤ a} a : Unitization ℂ A ⊢ (∃ x, 0 ≤ x ∧ ↑x = a) ↔ ∃ x, 0 ≤ a ∧ ↑x = a
congr! 2 with x
case h.e'_3.h.a.h.e'_2.h.a A : Type u_1 inst✝² : NonUnitalCStarAlgebra A inst✝¹ : PartialOrder A inst✝ : StarOrderedRing A this : IsClosed {a | 0 ≤ a} a : Unitization ℂ A x : A ⊢ 0 ≤ x ∧ ↑x = a ↔ 0 ≤ a ∧ ↑x = a
330fbc0341ffcf7d
szemeredi_regularity
Mathlib/Combinatorics/SimpleGraph/Regularity/Lemma.lean
theorem szemeredi_regularity (hε : 0 < ε) (hl : l ≤ card α) : ∃ P : Finpartition univ, P.IsEquipartition ∧ l ≤ #P.parts ∧ #P.parts ≤ bound ε l ∧ P.IsUniform G ε
case pos α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Fintype α G : SimpleGraph α inst✝ : DecidableRel G.Adj ε : ℝ l : ℕ hε : 0 < ε hl : l ≤ Fintype.card α hα : bound ε l ≤ Fintype.card α t : ℕ := initialBound ε l htα : t ≤ #univ dum : Finpartition univ hdum₁ : dum.IsEquipartition hdum₂ : #dum.parts = initialBound ε l hε₁ : ε ≤ 1 this : Nonempty α i : ℕ P : Finpartition univ hP₁ : P.IsEquipartition hP₂ : t ≤ #P.parts hP₃ : #P.parts ≤ stepBound^[i] t hP₄ : P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G) huniform : P.IsUniform G ε ⊢ ∃ P, P.IsEquipartition ∧ t ≤ #P.parts ∧ #P.parts ≤ stepBound^[i + 1] t ∧ (P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑(i + 1) ≤ ↑(P.energy G))
refine ⟨P, hP₁, hP₂, ?_, Or.inl huniform⟩
case pos α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Fintype α G : SimpleGraph α inst✝ : DecidableRel G.Adj ε : ℝ l : ℕ hε : 0 < ε hl : l ≤ Fintype.card α hα : bound ε l ≤ Fintype.card α t : ℕ := initialBound ε l htα : t ≤ #univ dum : Finpartition univ hdum₁ : dum.IsEquipartition hdum₂ : #dum.parts = initialBound ε l hε₁ : ε ≤ 1 this : Nonempty α i : ℕ P : Finpartition univ hP₁ : P.IsEquipartition hP₂ : t ≤ #P.parts hP₃ : #P.parts ≤ stepBound^[i] t hP₄ : P.IsUniform G ε ∨ ε ^ 5 / 4 * ↑i ≤ ↑(P.energy G) huniform : P.IsUniform G ε ⊢ #P.parts ≤ stepBound^[i + 1] t
be596e961a4dc7ee
Int.lt_add_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
theorem lt_add_succ (a : Int) (n : Nat) : a < a + Nat.succ n := le.intro n <| by rw [Int.add_comm, Int.add_left_comm]; rfl
a : Int n : Nat ⊢ a + 1 + ↑n = a + ↑n.succ
rw [Int.add_comm, Int.add_left_comm]
a : Int n : Nat ⊢ a + (↑n + 1) = a + ↑n.succ
a407616c1a6ec4df
ContinuousLinearMap.norm_smulRight_apply
Mathlib/Analysis/NormedSpace/OperatorNorm/Bilinear.lean
theorem norm_smulRight_apply (c : E →L[𝕜] 𝕜) (f : Fₗ) : ‖smulRight c f‖ = ‖c‖ * ‖f‖
𝕜 : Type u_1 E : Type u_4 Fₗ : Type u_7 inst✝⁴ : SeminormedAddCommGroup E inst✝³ : SeminormedAddCommGroup Fₗ inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜 Fₗ c : E →L[𝕜] 𝕜 f : Fₗ x : E ⊢ ‖c‖ * ‖x‖ * ‖f‖ = ‖c‖ * ‖f‖ * ‖x‖
ring
no goals
cc50e5b485f6d483
Filter.Eventually.diag_of_prod_right
Mathlib/Order/Filter/Prod.lean
theorem Eventually.diag_of_prod_right {f : Filter α} {g : Filter γ} {p : α × γ × γ → Prop} : (∀ᶠ x in f ×ˢ (g ×ˢ g), p x) → ∀ᶠ x : α × γ in f ×ˢ g, p (x.1, x.2, x.2)
α : Type u_1 γ : Type u_3 f : Filter α g : Filter γ p : α × γ × γ → Prop h : ∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x ⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p (x.1, x.2, x.2)
obtain ⟨t, ht, s, hs, hst⟩ := eventually_prod_iff.1 h
case intro.intro.intro.intro α : Type u_1 γ : Type u_3 f : Filter α g : Filter γ p : α × γ × γ → Prop h : ∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x t : α → Prop ht : ∀ᶠ (x : α) in f, t x s : γ × γ → Prop hs : ∀ᶠ (y : γ × γ) in g ×ˢ g, s y hst : ∀ {x : α}, t x → ∀ {y : γ × γ}, s y → p (x, y) ⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p (x.1, x.2, x.2)
e2fbd788adeae135
Quotient.finLiftOn_mk
Mathlib/Data/Fintype/Quotient.lean
@[simp] lemma finLiftOn_mk (a : ∀ i, α i) : finLiftOn (S := S) (β := β) (⟦a ·⟧) = fun f _ ↦ f a
case h.h ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι α : ι → Sort u_2 S : (i : ι) → Setoid (α i) β : Sort u_3 a : (i : ι) → α i f : ((i : ι) → α i) → β h : ∀ (a b : (i : ι) → α i), (∀ (i : ι), a i ≈ b i) → f a = f b ⊢ finLiftOn (fun x => ⟦a x⟧) f h = f a
dsimp [finLiftOn]
case h.h ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι α : ι → Sort u_2 S : (i : ι) → Setoid (α i) β : Sort u_3 a : (i : ι) → α i f : ((i : ι) → α i) → β h : ∀ (a b : (i : ι) → α i), (∀ (i : ι), a i ≈ b i) → f a = f b ⊢ (finChoice fun x => ⟦a x⟧).liftOn f h = f a
ce66dfdf18f63aec
Fin.cons_le_cons
Mathlib/Data/Fin/Tuple/Basic.lean
theorem cons_le_cons [∀ i, Preorder (α i)] {x₀ y₀ : α 0} {x y : ∀ i : Fin n, α i.succ} : cons x₀ x ≤ cons y₀ y ↔ x₀ ≤ y₀ ∧ x ≤ y := forall_fin_succ.trans <| and_congr_right' <| by simp only [cons_succ, Pi.le_def]
n : ℕ α : Fin (n + 1) → Type u_1 inst✝ : (i : Fin (n + 1)) → Preorder (α i) x₀ y₀ : α 0 x y : (i : Fin n) → α i.succ ⊢ (∀ (i : Fin n), cons x₀ x i.succ ≤ cons y₀ y i.succ) ↔ x ≤ y
simp only [cons_succ, Pi.le_def]
no goals
739901c897d22006
Profinite.NobelingProof.Products.prop_of_isGood_of_contained
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem Products.prop_of_isGood_of_contained {l : Products I} (o : Ordinal) (h : l.isGood C) (hsC : contained C o) (i : I) (hi : i ∈ l.val) : ord I i < o
case h I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I l : Products I o : Ordinal.{u} h : isGood C l hsC : contained C o i : I hi : i ∈ ↑l x : ↑C h' : (∀ i ∈ ↑l, ↑x i = true) ∧ ¬False ⊢ ord I i < o
exact hsC x.val x.prop i (h'.1 i hi)
no goals
6b65398bdbf67509
Monotone.le_leftLim
Mathlib/Topology/Order/LeftRightLim.lean
theorem le_leftLim (h : x < y) : f x ≤ leftLim f y
case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[<] y ≠ ⊥ ⊢ f x ≤ sSup (f '' Iio y)
refine le_csSup ⟨f y, ?_⟩ (mem_image_of_mem _ h)
case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[<] y ≠ ⊥ ⊢ f y ∈ upperBounds (f '' Iio y)
55e2cef9a9579060
MeasureTheory.MemLp.of_bilin
Mathlib/MeasureTheory/Function/LpSeminorm/CompareExp.lean
theorem MemLp.of_bilin {p q r : ℝ≥0∞} {f : α → E} {g : α → F} (b : E → F → G) (c : ℝ≥0) (hf : MemLp f p μ) (hg : MemLp g q μ) (h : AEStronglyMeasurable (fun x ↦ b (f x) (g x)) μ) (hb : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ c * ‖f x‖₊ * ‖g x‖₊) [hpqr : HolderTriple p q r] : MemLp (fun x ↦ b (f x) (g x)) r μ
α : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 m : MeasurableSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedAddCommGroup F inst✝ : NormedAddCommGroup G μ : Measure α p q r : ℝ≥0∞ f : α → E g : α → F b : E → F → G c : ℝ≥0 hf : MemLp f p μ hg : MemLp g q μ h : AEStronglyMeasurable (fun x => b (f x) (g x)) μ hb : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ c * ‖f x‖₊ * ‖g x‖₊ hpqr : p.HolderTriple q r this✝ : eLpNorm f p μ < ⊤ this : eLpNorm g q μ < ⊤ ⊢ ↑c * eLpNorm f p μ * eLpNorm g q μ < ⊤
finiteness
no goals
098c91fdc550ca3e
List.toFinsupp_append
Mathlib/Data/List/ToFinsupp.lean
theorem toFinsupp_append {R : Type*} [AddZeroClass R] (l₁ l₂ : List R) [DecidablePred (getD (l₁ ++ l₂) · 0 ≠ 0)] [DecidablePred (getD l₁ · 0 ≠ 0)] [DecidablePred (getD l₂ · 0 ≠ 0)] : toFinsupp (l₁ ++ l₂) = toFinsupp l₁ + (toFinsupp l₂).embDomain (addLeftEmbedding l₁.length)
case h.inr.intro R : Type u_2 inst✝³ : AddZeroClass R l₁ l₂ : List R inst✝² : DecidablePred fun x => (l₁ ++ l₂).getD x 0 ≠ 0 inst✝¹ : DecidablePred fun x => l₁.getD x 0 ≠ 0 inst✝ : DecidablePred fun x => l₂.getD x 0 ≠ 0 k : ℕ h : l₁.length ≤ l₁.length + k ⊢ l₂.getD k 0 = (Finsupp.embDomain (addLeftEmbedding l₁.length) l₂.toFinsupp) (l₁.length + k)
exact Eq.symm (Finsupp.embDomain_apply _ _ _)
no goals
827e4cf140b9a24e
ValuationRing.iff_isInteger_or_isInteger
Mathlib/RingTheory/Valuation/ValuationRing.lean
theorem iff_isInteger_or_isInteger : ValuationRing R ↔ ∀ x : K, IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
case mp R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R x : K ⊢ IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
obtain ⟨x : R, y, hy, rfl⟩ := IsFractionRing.div_surjective (A := R) x
case mp.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R x y : R hy : y ∈ nonZeroDivisors R ⊢ IsLocalization.IsInteger R ((algebraMap R K) x / (algebraMap R K) y) ∨ IsLocalization.IsInteger R ((algebraMap R K) x / (algebraMap R K) y)⁻¹
7ab24d9ebd501080
Equiv.Perm.mem_cycleType_iff
Mathlib/GroupTheory/Perm/Cycle/Type.lean
theorem mem_cycleType_iff {n : ℕ} {σ : Perm α} : n ∈ cycleType σ ↔ ∃ c τ, σ = c * τ ∧ Disjoint c τ ∧ IsCycle c ∧ c.support.card = n
case mpr α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α n : ℕ σ : Perm α ⊢ (∃ c τ, σ = c * τ ∧ c.Disjoint τ ∧ c.IsCycle ∧ c.support.card = n) → n ∈ σ.cycleType
rintro ⟨c, t, rfl, hd, hc, rfl⟩
case mpr.intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α c t : Perm α hd : c.Disjoint t hc : c.IsCycle ⊢ c.support.card ∈ (c * t).cycleType
d7502a60859fe51e
CategoryTheory.regularTopology.mem_sieves_iff_hasEffectiveEpi
Mathlib/CategoryTheory/Sites/Coherent/RegularTopology.lean
theorem mem_sieves_iff_hasEffectiveEpi (S : Sieve X) : (S ∈ (regularTopology C) X) ↔ ∃ (Y : C) (π : Y ⟶ X), EffectiveEpi π ∧ (S.arrows π)
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preregular C X : C S : Sieve X ⊢ S ∈ (regularTopology C) X ↔ ∃ Y π, EffectiveEpi π ∧ S.arrows π
constructor
case mp C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preregular C X : C S : Sieve X ⊢ S ∈ (regularTopology C) X → ∃ Y π, EffectiveEpi π ∧ S.arrows π case mpr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preregular C X : C S : Sieve X ⊢ (∃ Y π, EffectiveEpi π ∧ S.arrows π) → S ∈ (regularTopology C) X
174547292021b135
CategoryTheory.Limits.preservesLimit_of_preservesEqualizers_and_product
Mathlib/CategoryTheory/Limits/Constructions/LimitsOfProductsAndEqualizers.lean
/-- If a functor preserves equalizers and the appropriate products, it preserves limits. -/ lemma preservesLimit_of_preservesEqualizers_and_product : PreservesLimitsOfShape J G where preservesLimit {K}
C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.1 ⟶ p.2))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.1 ⟶ p.2))) G K : J ⥤ C P : C := ∏ᶜ K.obj Q : C := ∏ᶜ fun f => K.obj f.fst.2 s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.2 } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ (Fan.mk (G.obj (∏ᶜ K.obj)) fun j => G.map (Pi.π K.obj j)).pt ⟶ (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.2) f)).pt
apply G.map s
no goals
1664359590cff5a6
blimsup_cthickening_ae_le_of_eventually_mul_le
Mathlib/MeasureTheory/Covering/LiminfLimsup.lean
theorem blimsup_cthickening_ae_le_of_eventually_mul_le (p : ℕ → Prop) {s : ℕ → Set α} {M : ℝ} (hM : 0 < M) {r₁ r₂ : ℕ → ℝ} (hr : Tendsto r₁ atTop (𝓝[>] 0)) (hMr : ∀ᶠ i in atTop, M * r₁ i ≤ r₂ i) : (blimsup (fun i => cthickening (r₁ i) (s i)) atTop p : Set α) ≤ᵐ[μ] (blimsup (fun i => cthickening (r₂ i) (s i)) atTop p : Set α)
α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α M : ℝ hM : 0 < M r₁ r₂ : ℕ → ℝ hr : Tendsto r₁ atTop (𝓝[>] 0) hMr : ∀ᶠ (i : ℕ) in atTop, M * r₁ i ≤ r₂ i R₁ : ℕ → ℝ := fun i => 0 ⊔ r₁ i ⊢ blimsup (fun i => cthickening (r₁ i) (s i)) atTop p ≤ᶠ[ae μ] blimsup (fun i => cthickening (r₂ i) (s i)) atTop p
let R₂ i := max 0 (r₂ i)
α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α M : ℝ hM : 0 < M r₁ r₂ : ℕ → ℝ hr : Tendsto r₁ atTop (𝓝[>] 0) hMr : ∀ᶠ (i : ℕ) in atTop, M * r₁ i ≤ r₂ i R₁ : ℕ → ℝ := fun i => 0 ⊔ r₁ i R₂ : ℕ → ℝ := fun i => 0 ⊔ r₂ i ⊢ blimsup (fun i => cthickening (r₁ i) (s i)) atTop p ≤ᶠ[ae μ] blimsup (fun i => cthickening (r₂ i) (s i)) atTop p
33861a164c277922
ae_restrict_of_ae_restrict_inter_Ioo
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
theorem ae_restrict_of_ae_restrict_inter_Ioo {μ : Measure ℝ} [NoAtoms μ] {s : Set ℝ} {p : ℝ → Prop} (h : ∀ a b, a ∈ s → b ∈ s → a < b → ∀ᵐ x ∂μ.restrict (s ∩ Ioo a b), p x) : ∀ᵐ x ∂μ.restrict s, p x
case intro.intro.right μ : Measure ℝ inst✝ : NoAtoms μ s : Set ℝ p : ℝ → Prop h : ∀ (a b : ℝ), a ∈ s → b ∈ s → a < b → ∀ᵐ (x : ℝ) ∂μ.restrict (s ∩ Ioo a b), p x T : ↑s × ↑s → Set ℝ := fun p => Ioo ↑p.1 ↑p.2 u : Set ℝ := ⋃ i, T i hfinite : (s \ u).Finite A : Set (↑s × ↑s) A_count : A.Countable hA : ⋃ i ∈ A, T i = ⋃ i, T i this : s ⊆ s \ u ∪ ⋃ p ∈ A, s ∩ T p ⊢ ∀ i ∈ A, ∀ᵐ (x : ℝ) ∂μ.restrict (s ∩ T i), p x
rintro ⟨⟨a, as⟩, ⟨b, bs⟩⟩ -
case intro.intro.right.mk.mk.mk μ : Measure ℝ inst✝ : NoAtoms μ s : Set ℝ p : ℝ → Prop h : ∀ (a b : ℝ), a ∈ s → b ∈ s → a < b → ∀ᵐ (x : ℝ) ∂μ.restrict (s ∩ Ioo a b), p x T : ↑s × ↑s → Set ℝ := fun p => Ioo ↑p.1 ↑p.2 u : Set ℝ := ⋃ i, T i hfinite : (s \ u).Finite A : Set (↑s × ↑s) A_count : A.Countable hA : ⋃ i ∈ A, T i = ⋃ i, T i this : s ⊆ s \ u ∪ ⋃ p ∈ A, s ∩ T p a : ℝ as : a ∈ s b : ℝ bs : b ∈ s ⊢ ∀ᵐ (x : ℝ) ∂μ.restrict (s ∩ T (⟨a, as⟩, ⟨b, bs⟩)), p x
40ad57d747c092a9
FirstOrder.Language.Substructure.subset_closure_withConstants
Mathlib/ModelTheory/Substructures.lean
theorem subset_closure_withConstants : A ⊆ closure (L[[A]]) s
L : Language M : Type w inst✝ : L.Structure M A s : Set M a : M ha : a ∈ A ⊢ a ∈ ↑((closure (L[[↑A]])).toFun s)
simp only [SetLike.mem_coe]
L : Language M : Type w inst✝ : L.Structure M A s : Set M a : M ha : a ∈ A ⊢ a ∈ (closure (L[[↑A]])).toFun s
0a5a93be9f4bcd75
Real.volume_ball
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
theorem volume_ball (a r : ℝ) : volume (Metric.ball a r) = ofReal (2 * r)
a r : ℝ ⊢ volume (Metric.ball a r) = ofReal (2 * r)
rw [ball_eq_Ioo, volume_Ioo, ← sub_add, add_sub_cancel_left, two_mul]
no goals
1f6bccc88203c80e
Orientation.oangle_eq_of_angle_eq_of_sign_eq
Mathlib/Geometry/Euclidean/Angle/Oriented/Basic.lean
theorem oangle_eq_of_angle_eq_of_sign_eq {w x y z : V} (h : InnerProductGeometry.angle w x = InnerProductGeometry.angle y z) (hs : (o.oangle w x).sign = (o.oangle y z).sign) : o.oangle w x = o.oangle y z
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) w x y z : V h : InnerProductGeometry.angle w x = InnerProductGeometry.angle y z hs : (o.oangle w x).sign = (o.oangle y z).sign h0 : (w = 0 ∨ x = 0) ∨ y = 0 ∨ z = 0 hswx : (o.oangle w x).sign = 0 hsyz : (o.oangle y z).sign = 0 hwx : InnerProductGeometry.angle w x = π / 2 hyz : InnerProductGeometry.angle y z = π / 2 ⊢ π / 2 ≠ π
intro hpi
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) w x y z : V h : InnerProductGeometry.angle w x = InnerProductGeometry.angle y z hs : (o.oangle w x).sign = (o.oangle y z).sign h0 : (w = 0 ∨ x = 0) ∨ y = 0 ∨ z = 0 hswx : (o.oangle w x).sign = 0 hsyz : (o.oangle y z).sign = 0 hwx : InnerProductGeometry.angle w x = π / 2 hyz : InnerProductGeometry.angle y z = π / 2 hpi : π / 2 = π ⊢ False
ec88cb80dbeb7f16
MaximalSpectrum.finite_of_toPiLocalization_pi_surjective
Mathlib/RingTheory/Spectrum/Maximal/Localization.lean
theorem finite_of_toPiLocalization_pi_surjective (h : Function.Surjective (toPiLocalization (Π i, R i))) : Finite ι
ι : Type u_5 R : ι → Type u_4 inst✝¹ : (i : ι) → CommSemiring (R i) inst✝ : ∀ (i : ι), Nontrivial (R i) h : ¬Finite ι ⊢ ¬Function.Surjective ⇑(toPiLocalization ((i : ι) → R i))
rw [not_finite_iff_infinite] at h
ι : Type u_5 R : ι → Type u_4 inst✝¹ : (i : ι) → CommSemiring (R i) inst✝ : ∀ (i : ι), Nontrivial (R i) h : Infinite ι ⊢ ¬Function.Surjective ⇑(toPiLocalization ((i : ι) → R i))
ba6a09a5dacaa2e4
blimsup_cthickening_mul_ae_eq
Mathlib/MeasureTheory/Covering/LiminfLimsup.lean
theorem blimsup_cthickening_mul_ae_eq (p : ℕ → Prop) (s : ℕ → Set α) {M : ℝ} (hM : 0 < M) (r : ℕ → ℝ) (hr : Tendsto r atTop (𝓝 0)) : (blimsup (fun i => cthickening (M * r i) (s i)) atTop p : Set α) =ᵐ[μ] (blimsup (fun i => cthickening (r i) (s i)) atTop p : Set α)
α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α M : ℝ hM : 0 < M r : ℕ → ℝ hr : Tendsto r atTop (𝓝 0) this : ∀ (p : ℕ → Prop) {r : ℕ → ℝ}, Tendsto r atTop (𝓝[>] 0) → blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᶠ[ae μ] blimsup (fun i => cthickening (r i) (s i)) atTop p r' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1) hr' : Tendsto r' atTop (𝓝[>] 0) h₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i) h₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i) h₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i) hp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0 ⊢ ((blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ 0 < r i) ⊔ blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ r i ≤ 0) =ᶠ[ae μ] (blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ 0 < r i) ⊔ blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ r i ≤ 0
simp only [sup_eq_union]
α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α M : ℝ hM : 0 < M r : ℕ → ℝ hr : Tendsto r atTop (𝓝 0) this : ∀ (p : ℕ → Prop) {r : ℕ → ℝ}, Tendsto r atTop (𝓝[>] 0) → blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᶠ[ae μ] blimsup (fun i => cthickening (r i) (s i)) atTop p r' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1) hr' : Tendsto r' atTop (𝓝[>] 0) h₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i) h₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i) h₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i) hp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0 ⊢ ((blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ 0 < r i) ∪ blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ r i ≤ 0) =ᶠ[ae μ] (blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ 0 < r i) ∪ blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ r i ≤ 0
8749d72cf710712d
IsCompact.finite_of_discrete
Mathlib/Topology/Compactness/Compact.lean
theorem IsCompact.finite_of_discrete [DiscreteTopology X] (hs : IsCompact s) : s.Finite
case intro.intro X : Type u inst✝¹ : TopologicalSpace X s : Set X inst✝ : DiscreteTopology X hs : IsCompact s this : ∀ (x : X), {x} ∈ 𝓝 x t : Finset X left✝ : ∀ x ∈ t, x ∈ s hst : s ⊆ ↑t ⊢ s.Finite
exact t.finite_toSet.subset hst
no goals
9c90eb234e0887ea
EuclideanGeometry.exists_circumradius_eq_of_cospherical
Mathlib/Geometry/Euclidean/Circumcenter.lean
theorem exists_circumradius_eq_of_cospherical {ps : Set P} {n : ℕ} [FiniteDimensional ℝ V] (hd : finrank ℝ V = n) (hc : Cospherical ps) : ∃ r : ℝ, ∀ sx : Simplex ℝ P n, Set.range sx.points ⊆ ps → sx.circumradius = r
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P ps : Set P n : ℕ inst✝ : FiniteDimensional ℝ V hd : finrank ℝ ↥⊤.direction = n hc : Cospherical ps this : Nonempty ↥⊤ ⊢ ps ⊆ ↑⊤
exact Set.subset_univ _
no goals
28a82da64f0b935b
Submodule.LinearDisjoint.linearIndependent_mul_of_flat_left
Mathlib/LinearAlgebra/LinearDisjoint.lean
theorem linearIndependent_mul_of_flat_left (H : M.LinearDisjoint N) [Module.Flat R M] {κ ι : Type*} {m : κ → M} {n : ι → N} (hm : LinearIndependent R m) (hn : LinearIndependent R n) : LinearIndependent R fun (i : κ × ι) ↦ (m i.1).1 * (n i.2).1
R : Type u S : Type v inst✝³ : CommRing R inst✝² : Ring S inst✝¹ : Algebra R S M N : Submodule R S H : M.LinearDisjoint N inst✝ : Module.Flat R ↥M κ : Type u_1 ι : Type u_2 m : κ → ↥M n : ι → ↥N hm : Function.Injective ⇑(Finsupp.linearCombination R m) hn : Function.Injective ⇑(Finsupp.linearCombination R n) i0 : (κ × ι →₀ R) ≃ₗ[R] (κ →₀ R) ⊗[R] (ι →₀ R) := (finsuppTensorFinsupp' R κ ι).symm i1 : (κ →₀ R) ⊗[R] (ι →₀ R) →ₗ[R] ↥M ⊗[R] (ι →₀ R) := LinearMap.rTensor (ι →₀ R) (Finsupp.linearCombination R m) i2 : ↥M ⊗[R] (ι →₀ R) →ₗ[R] ↥M ⊗[R] ↥N := LinearMap.lTensor (↥M) (Finsupp.linearCombination R n) i : (κ × ι →₀ R) →ₗ[R] S := M.mulMap N ∘ₗ i2 ∘ₗ i1 ∘ₗ ↑i0 h1 : Function.Injective ⇑i1 h2 : Function.Injective ⇑i2 h : Function.Injective ⇑i ⊢ i = Finsupp.linearCombination R fun i => ↑(m i.1) * ↑(n i.2)
ext x
case h.h R : Type u S : Type v inst✝³ : CommRing R inst✝² : Ring S inst✝¹ : Algebra R S M N : Submodule R S H : M.LinearDisjoint N inst✝ : Module.Flat R ↥M κ : Type u_1 ι : Type u_2 m : κ → ↥M n : ι → ↥N hm : Function.Injective ⇑(Finsupp.linearCombination R m) hn : Function.Injective ⇑(Finsupp.linearCombination R n) i0 : (κ × ι →₀ R) ≃ₗ[R] (κ →₀ R) ⊗[R] (ι →₀ R) := (finsuppTensorFinsupp' R κ ι).symm i1 : (κ →₀ R) ⊗[R] (ι →₀ R) →ₗ[R] ↥M ⊗[R] (ι →₀ R) := LinearMap.rTensor (ι →₀ R) (Finsupp.linearCombination R m) i2 : ↥M ⊗[R] (ι →₀ R) →ₗ[R] ↥M ⊗[R] ↥N := LinearMap.lTensor (↥M) (Finsupp.linearCombination R n) i : (κ × ι →₀ R) →ₗ[R] S := M.mulMap N ∘ₗ i2 ∘ₗ i1 ∘ₗ ↑i0 h1 : Function.Injective ⇑i1 h2 : Function.Injective ⇑i2 h : Function.Injective ⇑i x : κ × ι ⊢ (i ∘ₗ Finsupp.lsingle x) 1 = ((Finsupp.linearCombination R fun i => ↑(m i.1) * ↑(n i.2)) ∘ₗ Finsupp.lsingle x) 1
f1b7c2beac5cf02c
Array.flatMap_toArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem flatMap_toArray {β} (f : α → Array β) (as : List α) : as.toArray.flatMap f = (as.flatMap (fun a => (f a).toList)).toArray
α : Type u_1 β : Type u_2 f : α → Array β as : List α ⊢ flatMap f as.toArray = (List.flatMap (fun a => (f a).toList) as).toArray
induction as with | nil => simp | cons a as ih => apply ext' simp [ih, flatMap_toArray_cons]
no goals
e3ac00879d1ac7cf
AkraBazziRecurrence.GrowsPolynomially.add_isLittleO
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma GrowsPolynomially.add_isLittleO {f g : ℝ → ℝ} (hf : GrowsPolynomially f) (hfg : g =o[atTop] f) : GrowsPolynomially fun x => f x + g x
case h f g : ℝ → ℝ hf✝ : GrowsPolynomially f b : ℝ hb : b ∈ Set.Ioo 0 1 hb_ub : b < 1 hf' : ∀ᶠ (x : ℝ) in atTop, f x ≤ 0 c₁ : ℝ hc₁_mem : 0 < c₁ c₂ : ℝ hc₂_mem : 0 < c₂ hf : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hfg : ∀ᶠ (x : ℝ) in atTop, ‖g x‖ ≤ 1 / 2 * ‖f x‖ x : ℝ hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hfg' : ∀ (y : ℝ), b * id x ≤ y → ‖g y‖ ≤ 1 / 2 * ‖f y‖ hf₂ : ∀ (y : ℝ), b * id x ≤ y → f y ≤ 0 hx_nonneg : 0 ≤ x hbx : b * x ≤ x hfg₂ : ‖g x‖ ≤ -1 / 2 * f x hx_ub : f x + g x ≤ 1 / 2 * f x hx_lb : 3 / 2 * f x ≤ f x + g x ⊢ ∀ u ∈ Set.Icc (b * x) x, f u + g u ∈ Set.Icc (3 * c₁ * (f x + g x)) (c₂ / 3 * (f x + g x))
intro u ⟨hu_lb, hu_ub⟩
case h f g : ℝ → ℝ hf✝ : GrowsPolynomially f b : ℝ hb : b ∈ Set.Ioo 0 1 hb_ub : b < 1 hf' : ∀ᶠ (x : ℝ) in atTop, f x ≤ 0 c₁ : ℝ hc₁_mem : 0 < c₁ c₂ : ℝ hc₂_mem : 0 < c₂ hf : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hfg : ∀ᶠ (x : ℝ) in atTop, ‖g x‖ ≤ 1 / 2 * ‖f x‖ x : ℝ hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hfg' : ∀ (y : ℝ), b * id x ≤ y → ‖g y‖ ≤ 1 / 2 * ‖f y‖ hf₂ : ∀ (y : ℝ), b * id x ≤ y → f y ≤ 0 hx_nonneg : 0 ≤ x hbx : b * x ≤ x hfg₂ : ‖g x‖ ≤ -1 / 2 * f x hx_ub : f x + g x ≤ 1 / 2 * f x hx_lb : 3 / 2 * f x ≤ f x + g x u : ℝ hu_lb : b * x ≤ u hu_ub : u ≤ x ⊢ f u + g u ∈ Set.Icc (3 * c₁ * (f x + g x)) (c₂ / 3 * (f x + g x))
dd533a6f58fe3819
PrimeSpectrum.existsUnique_idempotent_basicOpen_eq_of_isClopen
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
@[stacks 00EE] lemma existsUnique_idempotent_basicOpen_eq_of_isClopen {s : Set (PrimeSpectrum R)} (hs : IsClopen s) : ∃! e : R, IsIdempotentElem e ∧ s = basicOpen e
case refine_1.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_3 R : Type u inst✝ : CommSemiring R s : Set (PrimeSpectrum R) hs : IsClopen s h✝ : Nontrivial R I : Ideal R hI : I.FG J : Ideal R hJ : J.FG hI' : zeroLocus ↑I = sᶜ hJ' : zeroLocus ↑J = s this : I * J ≤ nilradical R n : ℕ hn : I ^ n * J ^ n ≤ ⊥ hnz : n ≠ 0 x : R hx : x ∈ I ^ n y : R hy : y ∈ J ^ n e : x + y = 1 ⊢ ↑(basicOpen x) ⊆ s
rw [PrimeSpectrum.basicOpen_eq_zeroLocus_compl, Set.compl_subset_comm, ← hI']
case refine_1.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_3 R : Type u inst✝ : CommSemiring R s : Set (PrimeSpectrum R) hs : IsClopen s h✝ : Nontrivial R I : Ideal R hI : I.FG J : Ideal R hJ : J.FG hI' : zeroLocus ↑I = sᶜ hJ' : zeroLocus ↑J = s this : I * J ≤ nilradical R n : ℕ hn : I ^ n * J ^ n ≤ ⊥ hnz : n ≠ 0 x : R hx : x ∈ I ^ n y : R hy : y ∈ J ^ n e : x + y = 1 ⊢ zeroLocus ↑I ⊆ zeroLocus {x}
f72a236e53847d1c
HomologicalComplex₂.D₂_totalShift₂XIso_hom
Mathlib/Algebra/Homology/TotalComplexShift.lean
@[reassoc] lemma D₂_totalShift₂XIso_hom (n₀ n₁ n₀' n₁' : ℤ) (h₀ : n₀ + y = n₀') (h₁ : n₁ + y = n₁') : ((shiftFunctor₂ C y).obj K).D₂ (up ℤ) n₀ n₁ ≫ (K.totalShift₂XIso y n₁ n₁' h₁).hom = y.negOnePow • ((K.totalShift₂XIso y n₀ n₀' h₀).hom ≫ K.D₂ (up ℤ) n₀' n₁')
case pos.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K : HomologicalComplex₂ C (up ℤ) (up ℤ) y : ℤ inst✝ : K.HasTotal (up ℤ) n₀ n₁ n₀' n₁' : ℤ h₀ : n₀ + y = n₀' h₁ : n₁ + y = n₁' h : (up ℤ).Rel n₀ n₁ p q : ℤ hpq : (up ℤ).π (up ℤ) (up ℤ) (p, q) = n₀ ⊢ ((shiftFunctor₂ C y).obj K).ιTotal (up ℤ) p q n₀ hpq ≫ ((shiftFunctor₂ C y).obj K).D₂ (up ℤ) n₀ n₁ ≫ (K.totalShift₂XIso y n₁ n₁' h₁).hom = ((shiftFunctor₂ C y).obj K).ιTotal (up ℤ) p q n₀ hpq ≫ (y.negOnePow • (K.totalShift₂XIso y n₀ n₀' h₀).hom ≫ K.D₂ (up ℤ) n₀' n₁')
dsimp at h hpq
case pos.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K : HomologicalComplex₂ C (up ℤ) (up ℤ) y : ℤ inst✝ : K.HasTotal (up ℤ) n₀ n₁ n₀' n₁' : ℤ h₀ : n₀ + y = n₀' h₁ : n₁ + y = n₁' h : n₀ + 1 = n₁ p q : ℤ hpq : p + q = n₀ ⊢ ((shiftFunctor₂ C y).obj K).ιTotal (up ℤ) p q n₀ hpq ≫ ((shiftFunctor₂ C y).obj K).D₂ (up ℤ) n₀ n₁ ≫ (K.totalShift₂XIso y n₁ n₁' h₁).hom = ((shiftFunctor₂ C y).obj K).ιTotal (up ℤ) p q n₀ hpq ≫ (y.negOnePow • (K.totalShift₂XIso y n₀ n₀' h₀).hom ≫ K.D₂ (up ℤ) n₀' n₁')
f1ece82a737eae57
Complex.hasDerivAt_Gammaℂ_one
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
lemma hasDerivAt_Gammaℂ_one : HasDerivAt Gammaℂ (-(γ + log (2 * π)) / π) 1
⊢ HasDerivAt Gammaℂ (-(↑γ + log (2 * ↑π)) / ↑π) 1
let f (s : ℂ) : ℂ := 2 * (2 * π) ^ (-s)
f : ℂ → ℂ := fun s => 2 * (2 * ↑π) ^ (-s) ⊢ HasDerivAt Gammaℂ (-(↑γ + log (2 * ↑π)) / ↑π) 1
154450c4585fc111
List.permutations_perm_permutations'
Mathlib/Data/List/Permutation.lean
theorem permutations_perm_permutations' (ts : List α) : ts.permutations ~ ts.permutations'
case intro.succ.refine_2 α : Type u_1 n : ℕ IH : ∀ (ts : List α), ts.length < n → ts.permutations ~ ts.permutations' ts✝ : List α h✝ : ts✝.length < n + 1 ts : List α t : α x✝ : ts.length < n + 1 → ts.permutations ~ ts.permutations' h : ts.length < n IH₂ : ts.reverse.permutations ~ ts.permutations' ⊢ map (fun x => x ++ [t]) ts.permutations ++ flatMap (fun y => (permutationsAux2 t [] [] y id).2) ts.reverse.permutations ~ (ts ++ [t]).permutations'
refine (perm_append_comm.trans ((IH₂.flatMap_right _).append ((IH _ h).map _))).trans (Perm.trans ?_ perm_append_comm.permutations')
case intro.succ.refine_2 α : Type u_1 n : ℕ IH : ∀ (ts : List α), ts.length < n → ts.permutations ~ ts.permutations' ts✝ : List α h✝ : ts✝.length < n + 1 ts : List α t : α x✝ : ts.length < n + 1 → ts.permutations ~ ts.permutations' h : ts.length < n IH₂ : ts.reverse.permutations ~ ts.permutations' ⊢ flatMap (fun y => (permutationsAux2 t [] [] y id).2) ts.permutations' ++ map (fun x => x ++ [t]) ts.permutations' ~ ([t] ++ ts).permutations'
c620c610f6f713f1
LieAlgebra.InvariantForm.restrict_nondegenerate
Mathlib/Algebra/Lie/InvariantForm.lean
lemma restrict_nondegenerate (I : LieIdeal K L) (hI : IsAtom I) : (Φ.restrict I).Nondegenerate
K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : LieRing L inst✝¹ : LieAlgebra K L inst✝ : Module.Finite K L Φ : LinearMap.BilinForm K L hΦ_nondeg : Φ.Nondegenerate hΦ_inv : LinearMap.BilinForm.lieInvariant L Φ hΦ_refl : Φ.IsRefl hL : ∀ (I : LieIdeal K L), IsAtom I → ¬IsLieAbelian ↥I I : LieIdeal K L hI : IsAtom I ⊢ IsCompl (LieIdeal.toLieSubalgebra K L I).toSubmodule (Φ.orthogonal (LieIdeal.toLieSubalgebra K L I).toSubmodule)
exact orthogonal_isCompl_toSubmodule Φ hΦ_nondeg hΦ_inv hΦ_refl hL I hI
no goals
7eb68de4008f4a5e
HomogeneousLocalization.mk_eq_zero_of_num
Mathlib/RingTheory/GradedAlgebra/HomogeneousLocalization.lean
lemma mk_eq_zero_of_num (f : NumDenSameDeg 𝒜 x) (h : f.num = 0) : mk f = 0
case a ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Algebra R A 𝒜 : ι → Submodule R A x : Submonoid A inst✝² : AddCommMonoid ι inst✝¹ : DecidableEq ι inst✝ : GradedAlgebra 𝒜 f : NumDenSameDeg 𝒜 x h : f.num = 0 ⊢ (mk f).val = val 0
simp only [val_mk, val_zero, h, ZeroMemClass.coe_zero, Localization.mk_zero]
no goals
d979ef3d9145bed7
SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂
Mathlib/AlgebraicTopology/SimplicialSet/Coskeletal.lean
lemma fac_aux₂ {n : ℕ} (s : Cone (proj (op ⦋n⦌) (Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X)) (x : s.pt) (i j : ℕ) (hij : i ≤ j) (hj : j ≤ n) : X.map (mkOfLe ⟨i, by omega⟩ ⟨j, by omega⟩ hij).op (lift s x) = s.π.app (strArrowMk₂ (mkOfLe ⟨i, by omega⟩ ⟨j, by omega⟩ hij)) x
case a.h.h.h X : SSet inst✝ : X.StrictSegal n : ℕ s : Cone (proj (op ⦋n⦌) (Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X) x✝ : s.pt k : ℕ hk : ∀ (i j : ℕ) (hij : i ≤ j) (hj : j ≤ n), i + k = j → X.map (mkOfLe ⟨i, ⋯⟩ ⟨j, ⋯⟩ hij).op (lift s x✝) = s.π.app (strArrowMk₂ (mkOfLe ⟨i, ⋯⟩ ⟨j, ⋯⟩ hij) ⋯) x✝ i j : ℕ hij : i ≤ j hj : j ≤ n hik : i + (k + 1) = j α : StructuredArrow (op ⦋n⦌) (Truncated.inclusion 2).op := strArrowMk₂ (mkOfLeComp ⟨i, ⋯⟩ ⟨i + k, ⋯⟩ ⟨j, ⋯⟩ ⋯ ⋯) ⋯ α₀ : StructuredArrow (op ⦋n⦌) (Truncated.inclusion 2).op := strArrowMk₂ (mkOfLe ⟨i + k, ⋯⟩ ⟨j, ⋯⟩ ⋯) ⋯ α₁ : StructuredArrow (op ⦋n⦌) (Truncated.inclusion 2).op := strArrowMk₂ (mkOfLe ⟨i, ⋯⟩ ⟨j, ⋯⟩ ⋯) ⋯ α₂ : StructuredArrow (op ⦋n⦌) (Truncated.inclusion 2).op := strArrowMk₂ (mkOfLe ⟨i, ⋯⟩ ⟨i + k, ⋯⟩ ⋯) ⋯ β₀ : α ⟶ α₀ := homMk (mkOfSucc 1).op ⋯ x : Fin ((unop ((Truncated.inclusion 2).op.obj α₁.right)).len + 1) ⊢ ↑((Hom.toOrderHom (α.hom ≫ (Truncated.inclusion 2).op.map (δ 1).op).unop) x) = ↑((Hom.toOrderHom α₁.hom.unop) x)
fin_cases x <;> rfl
no goals
764b0c7acb432811
Ideal.quotientMap_injective'
Mathlib/RingTheory/Ideal/Quotient/Operations.lean
theorem quotientMap_injective' {J : Ideal R} {I : Ideal S} [I.IsTwoSided] [J.IsTwoSided] {f : R →+* S} {H : J ≤ I.comap f} (h : I.comap f ≤ J) : Function.Injective (quotientMap I f H)
R : Type u inst✝³ : Ring R S : Type v inst✝² : Ring S J : Ideal R I : Ideal S inst✝¹ : I.IsTwoSided inst✝ : J.IsTwoSided f : R →+* S H : J ≤ comap f I h : comap f I ≤ J ⊢ Injective ⇑(quotientMap I f H)
refine (injective_iff_map_eq_zero (quotientMap I f H)).2 fun a ha => ?_
R : Type u inst✝³ : Ring R S : Type v inst✝² : Ring S J : Ideal R I : Ideal S inst✝¹ : I.IsTwoSided inst✝ : J.IsTwoSided f : R →+* S H : J ≤ comap f I h : comap f I ≤ J a : R ⧸ J ha : (quotientMap I f H) a = 0 ⊢ a = 0
e89d6b071a709d49
Real.two_le_pi
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem two_le_pi : (2 : ℝ) ≤ π := (div_le_div_iff_of_pos_right (show (0 : ℝ) < 2 by norm_num)).1 (by rw [div_self (two_ne_zero' ℝ)]; exact one_le_pi_div_two)
⊢ 1 ≤ π / 2
exact one_le_pi_div_two
no goals
d399a33e85a2e9c9
Submodule.exists_smith_normal_form_of_le
Mathlib/LinearAlgebra/FreeModule/PID.lean
theorem Submodule.exists_smith_normal_form_of_le [Finite ι] (b : Basis ι R M) (N O : Submodule R M) (N_le_O : N ≤ O) : ∃ (n o : ℕ) (hno : n ≤ o) (bO : Basis (Fin o) R O) (bN : Basis (Fin n) R N) (a : Fin n → R), ∀ i, (bN i : M) = a i • bO (Fin.castLE hno i)
case neg ι : Type u_1 R : Type u_2 inst✝⁵ : CommRing R M : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : IsDomain R inst✝¹ : IsPrincipalIdealRing R inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι M0 : Submodule R M ih : ∀ N' ≤ M0, ∀ x ∈ M0, (∀ (c : R), ∀ y ∈ N', c • x + y = 0 → c = 0) → ∀ N ≤ N', ∃ n o, ∃ (hno : n ≤ o), ∃ bO bN a, ∀ (i : Fin n), ↑(bN i) = a i • ↑(bO (Fin.castLE hno i)) N : Submodule R M N_le_O : N ≤ M0 m : ℕ b'M : Basis (Fin m) R ↥M0 N_bot : ¬N = ⊥ ⊢ ∃ n o, ∃ (hno : n ≤ o), ∃ bO bN a, ∀ (i : Fin n), ↑(bN i) = a i • ↑(bO (Fin.castLE hno i))
obtain ⟨y, hy, a, _, M', M'_le_M, N', _, N'_le_M', y_ortho, _, h⟩ := Submodule.basis_of_pid_aux M0 N b'M N_bot N_le_O
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro ι : Type u_1 R : Type u_2 inst✝⁵ : CommRing R M : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : IsDomain R inst✝¹ : IsPrincipalIdealRing R inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι M0 : Submodule R M ih : ∀ N' ≤ M0, ∀ x ∈ M0, (∀ (c : R), ∀ y ∈ N', c • x + y = 0 → c = 0) → ∀ N ≤ N', ∃ n o, ∃ (hno : n ≤ o), ∃ bO bN a, ∀ (i : Fin n), ↑(bN i) = a i • ↑(bO (Fin.castLE hno i)) N : Submodule R M N_le_O : N ≤ M0 m : ℕ b'M : Basis (Fin m) R ↥M0 N_bot : ¬N = ⊥ y : M hy : y ∈ M0 a : R left✝² : a • y ∈ N M' : Submodule R M M'_le_M : M' ≤ M0 N' : Submodule R M left✝¹ : N' ≤ N N'_le_M' : N' ≤ M' y_ortho : ∀ (c : R), ∀ z ∈ M', c • y + z = 0 → c = 0 left✝ : ∀ (c : R), ∀ z ∈ N', c • a • y + z = 0 → c = 0 h : ∀ (n' : ℕ) (bN' : Basis (Fin n') R ↥N'), ∃ bN, ∀ (m' : ℕ) (hn'm' : n' ≤ m') (bM' : Basis (Fin m') R ↥M'), ∃ (hnm : n' + 1 ≤ m' + 1), ∃ bM, ∀ (as : Fin n' → R), (∀ (i : Fin n'), ↑(bN' i) = as i • ↑(bM' (Fin.castLE hn'm' i))) → ∃ as', ∀ (i : Fin (n' + 1)), ↑(bN i) = as' i • ↑(bM (Fin.castLE hnm i)) ⊢ ∃ n o, ∃ (hno : n ≤ o), ∃ bO bN a, ∀ (i : Fin n), ↑(bN i) = a i • ↑(bO (Fin.castLE hno i))
ffa033f1b6ed3faa
AntitoneOn.integral_le_sum
Mathlib/Analysis/SumIntegralComparisons.lean
theorem AntitoneOn.integral_le_sum (hf : AntitoneOn f (Icc x₀ (x₀ + a))) : (∫ x in x₀..x₀ + a, f x) ≤ ∑ i ∈ Finset.range a, f (x₀ + i)
x₀ : ℝ a : ℕ f : ℝ → ℝ hf : AntitoneOn f (Icc x₀ (x₀ + ↑a)) k : ℕ hk : k < a ⊢ uIcc (x₀ + ↑k) (x₀ + ↑(k + 1)) ⊆ Icc x₀ (x₀ + ↑a)
rw [uIcc_of_le]
x₀ : ℝ a : ℕ f : ℝ → ℝ hf : AntitoneOn f (Icc x₀ (x₀ + ↑a)) k : ℕ hk : k < a ⊢ Icc (x₀ + ↑k) (x₀ + ↑(k + 1)) ⊆ Icc x₀ (x₀ + ↑a) x₀ : ℝ a : ℕ f : ℝ → ℝ hf : AntitoneOn f (Icc x₀ (x₀ + ↑a)) k : ℕ hk : k < a ⊢ x₀ + ↑k ≤ x₀ + ↑(k + 1)
709ac30a4a15e5af
Std.DHashMap.Raw.mem_of_mem_insertMany_list
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem mem_of_mem_insertMany_list [EquivBEq α] [LawfulHashable α] (h : m.WF) {l : List ((a : α) × β a)} {k : α} : k ∈ (m.insertMany l) → (l.map Sigma.fst).contains k = false → k ∈ m
α : Type u β : α → Type v m : Raw α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.WF l : List ((a : α) × β a) k : α ⊢ k ∈ m.insertMany l → (List.map Sigma.fst l).contains k = false → k ∈ m
simp only [mem_iff_contains]
α : Type u β : α → Type v m : Raw α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.WF l : List ((a : α) × β a) k : α ⊢ (m.insertMany l).contains k = true → (List.map Sigma.fst l).contains k = false → m.contains k = true
74b6f31dbf66a121
UniqueFactorizationMonoid.normalizedFactors_one
Mathlib/RingTheory/UniqueFactorizationDomain/NormalizedFactors.lean
theorem normalizedFactors_one : normalizedFactors (1 : α) = 0
case inr.hg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : UniqueFactorizationMonoid α h : Nontrivial α x : α hx : x ∈ 0 ⊢ Irreducible x
exfalso
case inr.hg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : UniqueFactorizationMonoid α h : Nontrivial α x : α hx : x ∈ 0 ⊢ False
bf5e6a4744791dae
Stream'.WSeq.exists_of_liftRel_right
Mathlib/Data/Seq/WSeq.lean
theorem exists_of_liftRel_right {R : α → β → Prop} {s t} (H : LiftRel R s t) {b} (h : b ∈ t) : ∃ a, a ∈ s ∧ R a b
α : Type u β : Type v R : α → β → Prop s : WSeq α t : WSeq β H : LiftRel R s t b : β h : b ∈ t ⊢ ∃ a, a ∈ s ∧ R a b
rw [← LiftRel.swap] at H
α : Type u β : Type v R : α → β → Prop s : WSeq α t : WSeq β H : swap (LiftRel fun x y => R y x) s t b : β h : b ∈ t ⊢ ∃ a, a ∈ s ∧ R a b
03359b01f37ea099
HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff'
Mathlib/Algebra/Homology/Embedding/ExtendHomology.lean
/-- Auxiliary lemma for `lift_d_comp_eq_zero_iff`. -/ lemma lift_d_comp_eq_zero_iff' ⦃W : C⦄ (f' : K.X i ⟶ cone.pt) (hf' : f' ≫ cone.ι = K.d i j) (f'' : (K.extend e).X i' ⟶ cone.pt) (hf'' : f'' ≫ cone.ι ≫ (extendXIso K e hj').inv = (K.extend e).d i' j') (φ : cone.pt ⟶ W) : f' ≫ φ = 0 ↔ f'' ≫ φ = 0
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝² : Category.{u_4, u_3} C inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' i j k : ι i' j' : ι' hj' : e.f j = j' hi : c.prev j = i hi' : c'.prev j' = i' cone : KernelFork (K.d j k) hcone : IsLimit cone W : C f' : K.X i ⟶ cone.pt hf' : f' ≫ Fork.ι cone = K.d i j f'' : (K.extend e).X i' ⟶ cone.pt hf'' : f'' ≫ Fork.ι cone ≫ (K.extendXIso e hj').inv = (K.extend e).d i' j' φ : cone.pt ⟶ W hij : ¬c.Rel i j ⊢ f' ≫ Fork.ι cone = 0 ≫ Fork.ι cone
simp only [zero_comp, hf', K.shape _ _ hij]
no goals
47e14c7240329723
Finset.ciInf_eq_min'_image
Mathlib/Order/ConditionallyCompleteLattice/Finset.lean
theorem Finset.ciInf_eq_min'_image {s : Finset ι} (h : ∃ x ∈ s, f x ≤ sInf ∅) (h' : (s.image f).Nonempty
ι : Type u_1 α : Type u_2 inst✝ : ConditionallyCompleteLinearOrder α f : ι → α s : Finset ι h : ∃ x ∈ s, f x ≤ sInf ∅ h' : autoParam (image f s).Nonempty _auto✝ ⊢ (image (fun i => OrderDual.toDual (f i)) s).max' ⋯ = (image (⇑OrderDual.toDual ∘ f) s).max' ⋯
congr
no goals
b093b26813c26f92
ae_eq_const_or_norm_average_lt_of_norm_le_const
Mathlib/Analysis/Convex/Integral.lean
theorem ae_eq_const_or_norm_average_lt_of_norm_le_const [StrictConvexSpace ℝ E] (h_le : ∀ᵐ x ∂μ, ‖f x‖ ≤ C) : f =ᵐ[μ] const α (⨍ x, f x ∂μ) ∨ ‖⨍ x, f x ∂μ‖ < C
case inr α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α f : α → E C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
by_cases hfi : Integrable f μ
case pos α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α f : α → E C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : Integrable f μ ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C case neg α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α f : α → E C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : ¬Integrable f μ ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
ad5ef237f6de5f77
LinearMap.ker_eq_bot_of_cancel
Mathlib/Algebra/Module/Submodule/Range.lean
theorem ker_eq_bot_of_cancel {f : M →ₛₗ[τ₁₂] M₂} (h : ∀ u v : ker f →ₗ[R] M, f.comp u = f.comp v → u = v) : ker f = ⊥
R : Type u_1 R₂ : Type u_2 M : Type u_5 M₂ : Type u_6 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ f : M →ₛₗ[τ₁₂] M₂ h : ∀ (u v : ↥(ker f) →ₗ[R] M), f.comp u = f.comp v → u = v h₁ : f.comp 0 = 0 ⊢ ker f = ⊥
rw [← Submodule.range_subtype (ker f), ← h 0 f.ker.subtype (Eq.trans h₁ (comp_ker_subtype f).symm)]
R : Type u_1 R₂ : Type u_2 M : Type u_5 M₂ : Type u_6 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ f : M →ₛₗ[τ₁₂] M₂ h : ∀ (u v : ↥(ker f) →ₗ[R] M), f.comp u = f.comp v → u = v h₁ : f.comp 0 = 0 ⊢ range 0 = ⊥
eee034053a4c80f1
isSelfAdjoint_iff_isStarNormal_and_spectrumRestricts
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Instances.lean
/-- An element in a C⋆-algebra is selfadjoint if and only if it is normal and its spectrum is contained in `ℝ`. -/ lemma isSelfAdjoint_iff_isStarNormal_and_spectrumRestricts {a : A} : IsSelfAdjoint a ↔ IsStarNormal a ∧ SpectrumRestricts a Complex.reCLM
case refine_2.intro A : Type u_1 inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra ℂ A inst✝ : ContinuousFunctionalCalculus ℂ IsStarNormal a : A ha₁ : IsStarNormal a ha₂ : SpectrumRestricts a ⇑Complex.reCLM ⊢ star a = cfc id a
rw [← cfc_star_id a (R := ℂ)]
case refine_2.intro A : Type u_1 inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra ℂ A inst✝ : ContinuousFunctionalCalculus ℂ IsStarNormal a : A ha₁ : IsStarNormal a ha₂ : SpectrumRestricts a ⇑Complex.reCLM ⊢ cfc (fun x => star x) a = cfc id a
43364a93391bdcfb
PadicInt.lift_sub_val_mem_span
Mathlib/NumberTheory/Padics/RingHoms.lean
theorem lift_sub_val_mem_span (r : R) (n : ℕ) : lift f_compat r - (f n r).val ∈ (Ideal.span {(p : ℤ_[p]) ^ n})
R : Type u_1 inst✝ : NonAssocSemiring R p : ℕ f : (k : ℕ) → R →+* ZMod (p ^ k) hp_prime : Fact (Nat.Prime p) f_compat : ∀ (k1 k2 : ℕ) (hk : k1 ≤ k2), (ZMod.castHom ⋯ (ZMod (p ^ k1))).comp (f k2) = f k1 r : R n : ℕ ⊢ (lift f_compat) r - ↑((f n) r).val ∈ Ideal.span {↑p ^ n}
obtain ⟨k, hk⟩ := limNthHom_spec f_compat r _ (show (0 : ℝ) < (p : ℝ) ^ (-n : ℤ) from zpow_pos (mod_cast hp_prime.1.pos) _)
case intro R : Type u_1 inst✝ : NonAssocSemiring R p : ℕ f : (k : ℕ) → R →+* ZMod (p ^ k) hp_prime : Fact (Nat.Prime p) f_compat : ∀ (k1 k2 : ℕ) (hk : k1 ≤ k2), (ZMod.castHom ⋯ (ZMod (p ^ k1))).comp (f k2) = f k1 r : R n k : ℕ hk : ∀ n_1 ≥ k, ‖limNthHom f_compat r - ↑(nthHom f r n_1)‖ < ↑p ^ (-↑n) ⊢ (lift f_compat) r - ↑((f n) r).val ∈ Ideal.span {↑p ^ n}
86f8daac951c537a
Filter.extraction_forall_of_frequently
Mathlib/Order/Filter/AtTopBot/Basic.lean
theorem extraction_forall_of_frequently {P : ℕ → ℕ → Prop} (h : ∀ n, ∃ᶠ k in atTop, P n k) : ∃ φ : ℕ → ℕ, StrictMono φ ∧ ∀ n, P n (φ n)
P : ℕ → ℕ → Prop h : ∀ (n : ℕ), ∃ᶠ (k : ℕ) in atTop, P n k ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P n (φ n)
simp only [frequently_atTop'] at h
P : ℕ → ℕ → Prop h : ∀ (n a : ℕ), ∃ b > a, P n b ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P n (φ n)
5438ca62ebe37b43
fermatLastTheoremThree
Mathlib/NumberTheory/FLT/Three.lean
theorem fermatLastTheoremThree : FermatLastTheoremFor 3
K : Type := CyclotomicField 3 ℚ hζ : IsPrimitiveRoot (IsCyclotomicExtension.zeta 3 ℚ K) ↑3 := IsCyclotomicExtension.zeta_spec 3 ℚ K this : NumberField K a b c : NumberField.RingOfIntegers K u : (NumberField.RingOfIntegers K)ˣ hc : c ≠ 0 ha : ¬hζ.toInteger - 1 ∣ a hb : ¬hζ.toInteger - 1 ∣ b hcdvd : hζ.toInteger - 1 ∣ c coprime : IsCoprime a b H : a ^ 3 + b ^ 3 = ↑u * c ^ 3 S' : FermatLastTheoremForThreeGen.Solution' hζ := { a := a, b := b, c := c, u := u, ha := ha, hb := hb, hc := hc, coprime := coprime, hcdvd := hcdvd, H := H } ⊢ False
obtain ⟨S, -⟩ := FermatLastTheoremForThreeGen.exists_Solution_of_Solution' S'
case intro K : Type := CyclotomicField 3 ℚ hζ : IsPrimitiveRoot (IsCyclotomicExtension.zeta 3 ℚ K) ↑3 := IsCyclotomicExtension.zeta_spec 3 ℚ K this : NumberField K a b c : NumberField.RingOfIntegers K u : (NumberField.RingOfIntegers K)ˣ hc : c ≠ 0 ha : ¬hζ.toInteger - 1 ∣ a hb : ¬hζ.toInteger - 1 ∣ b hcdvd : hζ.toInteger - 1 ∣ c coprime : IsCoprime a b H : a ^ 3 + b ^ 3 = ↑u * c ^ 3 S' : FermatLastTheoremForThreeGen.Solution' hζ := { a := a, b := b, c := c, u := u, ha := ha, hb := hb, hc := hc, coprime := coprime, hcdvd := hcdvd, H := H } S : FermatLastTheoremForThreeGen.Solution hζ ⊢ False
53f56643c6c85b50
MeasureTheory.Measure.exists_positive_of_not_mutuallySingular
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem exists_positive_of_not_mutuallySingular (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] (h : ¬ μ ⟂ₘ ν) : ∃ ε : ℝ≥0, 0 < ε ∧ ∃ E : Set α, MeasurableSet E ∧ 0 < ν E ∧ ∀ A, MeasurableSet A → ε * ν (A ∩ E) ≤ μ (A ∩ E)
case pos α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν h : ¬μ ⟂ₘ ν f : ℕ → Set α hf₁ : ∀ (n : ℕ), MeasurableSet (f n) hf₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → ((1 / (↑n + 1)) • ν) (t ∩ f n) ≤ μ (t ∩ f n) hf₃ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ (f n)ᶜ) ≤ ((1 / (↑n + 1)) • ν) (t ∩ (f n)ᶜ) A : Set α := ⋂ n, (f n)ᶜ hAmeas : MeasurableSet A hA₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ A) ≤ ((1 / (↑n + 1)) • ν) (t ∩ A) μA : ℝ≥0 hA₃✝¹ : ∀ (n : ℕ), ↑μA ≤ ↑(1 / (↑n + 1)) * ν A νA : ℝ≥0 hA₃✝ hA₃ : ∀ (n : ℕ), ↑μA ≤ ↑(1 / (↑n + 1)) * ↑νA hb : 0 < νA ⊢ ∀ (b : ℝ≥0), 0 < b → μA ≤ b
intro c hc
case pos α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν h : ¬μ ⟂ₘ ν f : ℕ → Set α hf₁ : ∀ (n : ℕ), MeasurableSet (f n) hf₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → ((1 / (↑n + 1)) • ν) (t ∩ f n) ≤ μ (t ∩ f n) hf₃ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ (f n)ᶜ) ≤ ((1 / (↑n + 1)) • ν) (t ∩ (f n)ᶜ) A : Set α := ⋂ n, (f n)ᶜ hAmeas : MeasurableSet A hA₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ A) ≤ ((1 / (↑n + 1)) • ν) (t ∩ A) μA : ℝ≥0 hA₃✝¹ : ∀ (n : ℕ), ↑μA ≤ ↑(1 / (↑n + 1)) * ν A νA : ℝ≥0 hA₃✝ hA₃ : ∀ (n : ℕ), ↑μA ≤ ↑(1 / (↑n + 1)) * ↑νA hb : 0 < νA c : ℝ≥0 hc : 0 < c ⊢ μA ≤ c
48437d57402f42cd
AList.toFinmap_eq
Mathlib/Data/Finmap.lean
theorem AList.toFinmap_eq {s₁ s₂ : AList β} : toFinmap s₁ = toFinmap s₂ ↔ s₁.entries ~ s₂.entries
α : Type u β : α → Type v s₁ s₂ : AList β ⊢ ⟦s₁⟧ = ⟦s₂⟧ ↔ s₁.entries ~ s₂.entries
cases s₁
case mk α : Type u β : α → Type v s₂ : AList β entries✝ : List (Sigma β) nodupKeys✝ : entries✝.NodupKeys ⊢ ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ = ⟦s₂⟧ ↔ { entries := entries✝, nodupKeys := nodupKeys✝ }.entries ~ s₂.entries
5aad0d12e928d483
IsLocalization.isInteger_smul
Mathlib/RingTheory/Localization/Integer.lean
theorem isInteger_smul {a : R} {b : S} (hb : IsInteger R b) : IsInteger R (a • b)
case intro R : Type u_1 inst✝² : CommSemiring R S : Type u_2 inst✝¹ : CommSemiring S inst✝ : Algebra R S a : R b : S b' : R hb : (algebraMap R S) b' = b ⊢ IsInteger R (a • b)
use a * b'
case h R : Type u_1 inst✝² : CommSemiring R S : Type u_2 inst✝¹ : CommSemiring S inst✝ : Algebra R S a : R b : S b' : R hb : (algebraMap R S) b' = b ⊢ (algebraMap R S) (a * b') = a • b
92eaf71c2574e8d9
Std.DHashMap.Internal.List.insertList_perm_of_perm_first
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem insertList_perm_of_perm_first [BEq α] [EquivBEq α] {l1 l2 toInsert : List ((a : α) × β a)} (h : Perm l1 l2) (distinct : DistinctKeys l1) : Perm (insertList l1 toInsert) (insertList l2 toInsert)
case cons α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : EquivBEq α hd : (a : α) × β a tl : List ((a : α) × β a) ih : ∀ {l1 l2 : List ((a : α) × β a)}, l1.Perm l2 → DistinctKeys l1 → (insertList l1 tl).Perm (insertList l2 tl) l1 l2 : List ((a : α) × β a) h : l1.Perm l2 distinct : DistinctKeys l1 ⊢ (insertList l1 (hd :: tl)).Perm (insertList l2 (hd :: tl))
simp only [insertList]
case cons α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : EquivBEq α hd : (a : α) × β a tl : List ((a : α) × β a) ih : ∀ {l1 l2 : List ((a : α) × β a)}, l1.Perm l2 → DistinctKeys l1 → (insertList l1 tl).Perm (insertList l2 tl) l1 l2 : List ((a : α) × β a) h : l1.Perm l2 distinct : DistinctKeys l1 ⊢ (insertList (insertEntry hd.fst hd.snd l1) tl).Perm (insertList (insertEntry hd.fst hd.snd l2) tl)
4f56e4d2011c180d
LieIdeal.ker_incl
Mathlib/Algebra/Lie/Submodule.lean
theorem ker_incl : I.incl.ker = ⊥
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I : LieIdeal R L ⊢ I.incl.ker = ⊥
ext
case h R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I : LieIdeal R L m✝ : ↥I ⊢ m✝ ∈ I.incl.ker ↔ m✝ ∈ ⊥
7fbddbcb1f875af1
FirstOrder.Language.Formula.realize_iExs
Mathlib/ModelTheory/Semantics.lean
theorem _root_.FirstOrder.Language.Formula.realize_iExs [Finite γ] {φ : L.Formula (α ⊕ γ)} {v : α → M} : (φ.iExs γ).Realize v ↔ ∃ (i : γ → M), φ.Realize (Sum.elim v i)
L : Language M : Type w inst✝¹ : L.Structure M α : Type u' γ : Type u_3 inst✝ : Finite γ φ : L.Formula (α ⊕ γ) v : α → M e : γ ≃ Fin (Classical.choose ⋯) := Classical.choice ⋯ ⊢ (∃ xs, Realize φ (fun x => Sum.elim (fun x => v x) (fun x => xs (Fin.cast ⋯ ((Classical.choice ⋯) x))) x) fun x => xs (natAdd (Classical.choose ⋯) x)) ↔ ∃ i, φ.Realize (Sum.elim v i)
refine Equiv.exists_congr ?_ ?_
case refine_1 L : Language M : Type w inst✝¹ : L.Structure M α : Type u' γ : Type u_3 inst✝ : Finite γ φ : L.Formula (α ⊕ γ) v : α → M e : γ ≃ Fin (Classical.choose ⋯) := Classical.choice ⋯ ⊢ (Fin (Classical.choose ⋯) → M) ≃ (γ → M) case refine_2 L : Language M : Type w inst✝¹ : L.Structure M α : Type u' γ : Type u_3 inst✝ : Finite γ φ : L.Formula (α ⊕ γ) v : α → M e : γ ≃ Fin (Classical.choose ⋯) := Classical.choice ⋯ ⊢ ∀ (a : Fin (Classical.choose ⋯) → M), (Realize φ (fun x => Sum.elim (fun x => v x) (fun x => a (Fin.cast ⋯ ((Classical.choice ⋯) x))) x) fun x => a (natAdd (Classical.choose ⋯) x)) ↔ φ.Realize (Sum.elim v (?refine_1 a))
edaad082a0094423
BitVec.ofNat_sub_ofNat
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem ofNat_sub_ofNat {n} (x y : Nat) : BitVec.ofNat n x - BitVec.ofNat n y = .ofNat n ((2^n - y % 2^n) + x)
case a n x y : Nat ⊢ (BitVec.ofNat n x - BitVec.ofNat n y).toNat = (BitVec.ofNat n (2 ^ n - y % 2 ^ n + x)).toNat
simp [BitVec.ofNat, Fin.ofNat'_sub]
no goals
b9aac0b64a9a17bd
Polynomial.bernoulli_generating_function
Mathlib/NumberTheory/BernoulliPolynomials.lean
theorem bernoulli_generating_function (t : A) : (mk fun n => aeval t ((1 / n ! : ℚ) • bernoulli n)) * (exp A - 1) = PowerSeries.X * rescale t (exp A)
case h.succ A : Type u_1 inst✝¹ : CommRing A inst✝ : Algebra ℚ A t : A n : ℕ hnp1 : IsUnit ↑(n + 1)! ⊢ (algebraMap ℚ A) ↑(n + 1)! * ∑ x ∈ range (n + 1), (PowerSeries.coeff A x) (PowerSeries.mk fun n => (aeval t) ((1 / ↑n !) • bernoulli n)) * (PowerSeries.coeff A (n + 1 - x)) (exp A - 1) = t ^ n * (algebraMap ℚ A) (↑((n + 1) * n !) * (1 / ↑n !))
rw [cast_mul, mul_assoc, mul_one_div_cancel (show (n ! : ℚ) ≠ 0 from cast_ne_zero.2 (factorial_ne_zero n)), mul_one, mul_comm (t ^ n), ← aeval_monomial, cast_add, cast_one]
case h.succ A : Type u_1 inst✝¹ : CommRing A inst✝ : Algebra ℚ A t : A n : ℕ hnp1 : IsUnit ↑(n + 1)! ⊢ (algebraMap ℚ A) ↑(n + 1)! * ∑ x ∈ range (n + 1), (PowerSeries.coeff A x) (PowerSeries.mk fun n => (aeval t) ((1 / ↑n !) • bernoulli n)) * (PowerSeries.coeff A (n + 1 - x)) (exp A - 1) = (aeval t) ((monomial n) (↑n + 1))
5c1f5e37cc9d52d3
Complex.approx_Gamma_integral_tendsto_Gamma_integral
Mathlib/Analysis/SpecialFunctions/Gamma/Beta.lean
theorem approx_Gamma_integral_tendsto_Gamma_integral {s : ℂ} (hs : 0 < re s) : Tendsto (fun n : ℕ => ∫ x : ℝ in (0)..n, ((1 - x / n) ^ n : ℝ) * (x : ℂ) ^ (s - 1)) atTop (𝓝 <| Gamma s)
s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => (Ioc 0 ↑n).indicator fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) (volume.restrict (Ioi 0)) f_tends : ∀ x ∈ Ioi 0, Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ ⊢ 0 ≤ ↑n
positivity
no goals
e883263ba9a935a5
Finset.support_sum_eq
Mathlib/Data/Finsupp/BigOperators.lean
theorem Finset.support_sum_eq [AddCommMonoid M] (s : Finset (ι →₀ M)) (hs : (s : Set (ι →₀ M)).PairwiseDisjoint Finsupp.support) : (s.sum id).support = Finset.sup s Finsupp.support
case h.e'_2.h.e'_4 ι : Type u_1 M : Type u_2 inst✝¹ : DecidableEq ι inst✝ : AddCommMonoid M s : Finset (ι →₀ M) hs : (↑s).PairwiseDisjoint Finsupp.support this : Multiset.Pairwise (Disjoint on Finsupp.support) s.val ⊢ s.sum id = s.val.sum
exact (Finset.sum_val _).symm
no goals
67f7aca84a3dab37
Equiv.Perm.card_support_eq_two
Mathlib/GroupTheory/Perm/Support.lean
theorem card_support_eq_two {f : Perm α} : #f.support = 2 ↔ IsSwap f
case mp.intro.intro.intro.intro.intro.H α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f : Perm α h : #f.support = 2 x y : α hmem : ¬x = y hins : {x, y} = f.support ht : #{y} = 1 a : α key : ∀ (b : α), f b ≠ b ↔ b = x ∨ b = y ⊢ f a = (swap x y) a
by_cases ha : f a = a
case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f : Perm α h : #f.support = 2 x y : α hmem : ¬x = y hins : {x, y} = f.support ht : #{y} = 1 a : α key : ∀ (b : α), f b ≠ b ↔ b = x ∨ b = y ha : f a = a ⊢ f a = (swap x y) a case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f : Perm α h : #f.support = 2 x y : α hmem : ¬x = y hins : {x, y} = f.support ht : #{y} = 1 a : α key : ∀ (b : α), f b ≠ b ↔ b = x ∨ b = y ha : ¬f a = a ⊢ f a = (swap x y) a
36f5f162aba5bd84
ApproximatesLinearOn.open_image
Mathlib/Analysis/Calculus/InverseFunctionTheorem/ApproximatesLinearOn.lean
theorem open_image (hf : ApproximatesLinearOn f f' s c) (f'symm : f'.NonlinearRightInverse) (hs : IsOpen s) (hc : Subsingleton F ∨ c < f'symm.nnnorm⁻¹) : IsOpen (f '' s)
case inr.intro.intro 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F f : E → F inst✝ : CompleteSpace E s : Set E c : ℝ≥0 f' : E →L[𝕜] F hf : ApproximatesLinearOn f f' s c f'symm : f'.NonlinearRightInverse hc : c < f'symm.nnnorm⁻¹ hs : ∀ x ∈ s, ∃ i, 0 < i ∧ closedBall x i ⊆ s x : E hx : x ∈ s ε : ℝ ε0 : 0 < ε hε : closedBall x ε ⊆ s ⊢ ∃ i, 0 < i ∧ closedBall (f x) i ⊆ f '' s
refine ⟨(f'symm.nnnorm⁻¹ - c) * ε, mul_pos (sub_pos.2 hc) ε0, ?_⟩
case inr.intro.intro 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F f : E → F inst✝ : CompleteSpace E s : Set E c : ℝ≥0 f' : E →L[𝕜] F hf : ApproximatesLinearOn f f' s c f'symm : f'.NonlinearRightInverse hc : c < f'symm.nnnorm⁻¹ hs : ∀ x ∈ s, ∃ i, 0 < i ∧ closedBall x i ⊆ s x : E hx : x ∈ s ε : ℝ ε0 : 0 < ε hε : closedBall x ε ⊆ s ⊢ closedBall (f x) ((↑f'symm.nnnorm⁻¹ - ↑c) * ε) ⊆ f '' s
dff2560cbebf928f
PFun.id_comp
Mathlib/Data/PFun.lean
theorem id_comp (f : α →. β) : (PFun.id β).comp f = f := ext fun _ _ => by simp
α : Type u_1 β : Type u_2 f : α →. β x✝¹ : α x✝ : β ⊢ x✝ ∈ (PFun.id β).comp f x✝¹ ↔ x✝ ∈ f x✝¹
simp
no goals
206a34a628855fea
AlgebraicTopology.AlternatingFaceMapComplex.d_squared
Mathlib/AlgebraicTopology/AlternatingFaceMapComplex.lean
theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0
case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ P : Type := Fin (n + 2) × Fin (n + 3) S : Finset P := Finset.filter (fun ij => ↑ij.2 ≤ ↑ij.1) Finset.univ φ : (ij : P) → ij ∈ S → P := fun ij hij => (ij.2.castLT ⋯, ij.1.succ) ⊢ ∀ (a : P) (ha : a ∈ S), ((-1) ^ ↑a.2 • X.δ a.2) ≫ ((-1) ^ ↑a.1 • X.δ a.1) = -((-1) ^ ↑(φ a ha).2 • X.δ (φ a ha).2) ≫ ((-1) ^ ↑(φ a ha).1 • X.δ (φ a ha).1)
rintro ⟨i, j⟩ hij
case h.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ P : Type := Fin (n + 2) × Fin (n + 3) S : Finset P := Finset.filter (fun ij => ↑ij.2 ≤ ↑ij.1) Finset.univ φ : (ij : P) → ij ∈ S → P := fun ij hij => (ij.2.castLT ⋯, ij.1.succ) i : Fin (n + 2) j : Fin (n + 3) hij : (i, j) ∈ S ⊢ ((-1) ^ ↑(i, j).2 • X.δ (i, j).2) ≫ ((-1) ^ ↑(i, j).1 • X.δ (i, j).1) = -((-1) ^ ↑(φ (i, j) hij).2 • X.δ (φ (i, j) hij).2) ≫ ((-1) ^ ↑(φ (i, j) hij).1 • X.δ (φ (i, j) hij).1)
795ab48b2006c7af
Metric.closedBall_subset_cthickening_singleton
Mathlib/Topology/MetricSpace/Thickening.lean
theorem closedBall_subset_cthickening_singleton {α : Type*} [PseudoMetricSpace α] (x : α) (δ : ℝ) : closedBall x δ ⊆ cthickening δ ({x} : Set α)
α : Type u_2 inst✝ : PseudoMetricSpace α x : α δ : ℝ ⊢ closedBall x δ ⊆ cthickening δ {x}
rcases lt_or_le δ 0 with (hδ | hδ)
case inl α : Type u_2 inst✝ : PseudoMetricSpace α x : α δ : ℝ hδ : δ < 0 ⊢ closedBall x δ ⊆ cthickening δ {x} case inr α : Type u_2 inst✝ : PseudoMetricSpace α x : α δ : ℝ hδ : 0 ≤ δ ⊢ closedBall x δ ⊆ cthickening δ {x}
dbe71a115118f14a
Real.rpow_le_rpow_of_exponent_ge_of_imp
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
theorem rpow_le_rpow_of_exponent_ge_of_imp (hx0 : 0 ≤ x) (hx1 : x ≤ 1) (hyz : z ≤ y) (h : x = 0 → y = 0 → z = 0) : x ^ y ≤ x ^ z
x y z : ℝ hx0 : 0 ≤ x hx1 : x ≤ 1 hyz : z ≤ y h : x = 0 → y = 0 → z = 0 ⊢ x ^ y ≤ x ^ z
rcases eq_or_lt_of_le hx0 with (rfl | hx0')
case inl y z : ℝ hyz : z ≤ y hx0 : 0 ≤ 0 hx1 : 0 ≤ 1 h : 0 = 0 → y = 0 → z = 0 ⊢ 0 ^ y ≤ 0 ^ z case inr x y z : ℝ hx0 : 0 ≤ x hx1 : x ≤ 1 hyz : z ≤ y h : x = 0 → y = 0 → z = 0 hx0' : 0 < x ⊢ x ^ y ≤ x ^ z
148ee6ba8dfad2de
cfcₙAux_mem_range_inr
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Instances.lean
lemma cfcₙAux_mem_range_inr (f : C(σₙ 𝕜 a, 𝕜)₀) : cfcₙAux hp₁ a ha f ∈ NonUnitalStarAlgHom.range (Unitization.inrNonUnitalStarAlgHom 𝕜 A)
case refine_2 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : RCLike 𝕜 inst✝⁷ : NonUnitalNormedRing A inst✝⁶ : StarRing A inst✝⁵ : NormedSpace 𝕜 A inst✝⁴ : IsScalarTower 𝕜 A A inst✝³ : SMulCommClass 𝕜 A A inst✝² : StarModule 𝕜 A p : A → Prop p₁ : Unitization 𝕜 A → Prop hp₁ : ∀ {x : A}, p₁ ↑x ↔ p x a : A ha : p a inst✝¹ : ContinuousFunctionalCalculus 𝕜 p₁ inst✝ : CompleteSpace A f : C(↑(σₙ 𝕜 a), 𝕜)₀ h₁ : (cfcₙAux ⋯ a ha) f ∈ closure (⇑(cfcₙAux ⋯ a ha) '' ↑(NonUnitalStarAlgebra.adjoin 𝕜 {ContinuousMapZero.id ⋯})) ⊢ IsClosed ↑(NonUnitalStarAlgHom.range (Unitization.inrNonUnitalStarAlgHom 𝕜 A))
have : Continuous (Unitization.fst (R := 𝕜) (A := A)) := Unitization.uniformEquivProd.continuous.fst
case refine_2 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : RCLike 𝕜 inst✝⁷ : NonUnitalNormedRing A inst✝⁶ : StarRing A inst✝⁵ : NormedSpace 𝕜 A inst✝⁴ : IsScalarTower 𝕜 A A inst✝³ : SMulCommClass 𝕜 A A inst✝² : StarModule 𝕜 A p : A → Prop p₁ : Unitization 𝕜 A → Prop hp₁ : ∀ {x : A}, p₁ ↑x ↔ p x a : A ha : p a inst✝¹ : ContinuousFunctionalCalculus 𝕜 p₁ inst✝ : CompleteSpace A f : C(↑(σₙ 𝕜 a), 𝕜)₀ h₁ : (cfcₙAux ⋯ a ha) f ∈ closure (⇑(cfcₙAux ⋯ a ha) '' ↑(NonUnitalStarAlgebra.adjoin 𝕜 {ContinuousMapZero.id ⋯})) this : Continuous Unitization.fst ⊢ IsClosed ↑(NonUnitalStarAlgHom.range (Unitization.inrNonUnitalStarAlgHom 𝕜 A))
694a4ae2d7053273
Plausible.InjectiveFunction.applyId_injective
Mathlib/Testing/Plausible/Functions.lean
theorem applyId_injective [DecidableEq α] {xs ys : List α} (h₀ : List.Nodup xs) (h₁ : xs ~ ys) : Injective.{u + 1, u + 1} (List.applyId (xs.zip ys))
α : Type u inst✝ : DecidableEq α xs ys : List α h₀ : xs.Nodup h₁ : xs ~ ys x y : α i : ℕ h : ys[i]? = some (applyId (xs.zip ys) y) hx : xs[i]? = some x j : ℕ hy : xs[j]? = some y h₂ : xs.length = ys.length ⊢ i < xs.length
rw [List.getElem?_eq_some_iff] at hx
α : Type u inst✝ : DecidableEq α xs ys : List α h₀ : xs.Nodup h₁ : xs ~ ys x y : α i : ℕ h : ys[i]? = some (applyId (xs.zip ys) y) hx : ∃ (h : i < xs.length), xs[i] = x j : ℕ hy : xs[j]? = some y h₂ : xs.length = ys.length ⊢ i < xs.length
159dee04a35ae3d2
MeasureTheory.tendsto_Lp_of_tendsto_ae_of_meas
Mathlib/MeasureTheory/Function/UnifTight.lean
theorem tendsto_Lp_of_tendsto_ae_of_meas (hp : 1 ≤ p) (hp' : p ≠ ∞) {f : ℕ → α → β} {g : α → β} (hf : ∀ n, StronglyMeasurable (f n)) (hg : StronglyMeasurable g) (hg' : MemLp g p μ) (hui : UnifIntegrable f p μ) (hut : UnifTight f p μ) (hfg : ∀ᵐ x ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (g x))) : Tendsto (fun n => eLpNorm (f n - g) p μ) atTop (𝓝 0)
case pos α : Type u_1 β : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup β μ : Measure α p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ f : ℕ → α → β g : α → β hf : ∀ (n : ℕ), StronglyMeasurable (f n) hg : StronglyMeasurable g hg' : MemLp g p μ hui : UnifIntegrable f p μ hut : UnifTight f p μ hfg : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (g x)) ε : ℝ≥0∞ hε : ε > 0 hfinε : ε ≠ ⊤ hμ : μ = 0 ⊢ ∃ N, ∀ n ≥ N, eLpNorm (f n - g) p μ ≤ ε
rw [hμ]
case pos α : Type u_1 β : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup β μ : Measure α p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ f : ℕ → α → β g : α → β hf : ∀ (n : ℕ), StronglyMeasurable (f n) hg : StronglyMeasurable g hg' : MemLp g p μ hui : UnifIntegrable f p μ hut : UnifTight f p μ hfg : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (g x)) ε : ℝ≥0∞ hε : ε > 0 hfinε : ε ≠ ⊤ hμ : μ = 0 ⊢ ∃ N, ∀ n ≥ N, eLpNorm (f n - g) p 0 ≤ ε
77334843f098ce11
Real.cos_nonneg_of_mem_Icc
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem cos_nonneg_of_mem_Icc {x : ℝ} (hx : x ∈ Icc (-(π / 2)) (π / 2)) : 0 ≤ cos x := sin_add_pi_div_two x ▸ sin_nonneg_of_mem_Icc ⟨by linarith [hx.1], by linarith [hx.2]⟩
x : ℝ hx : x ∈ Icc (-(π / 2)) (π / 2) ⊢ 0 ≤ x + π / 2
linarith [hx.1]
no goals
61947baea5937182
ContMDiffWithinAt.comp
Mathlib/Geometry/Manifold/ContMDiff/Basic.lean
theorem ContMDiffWithinAt.comp {t : Set M'} {g : M' → M''} (x : M) (hg : ContMDiffWithinAt I' I'' n g t (f x)) (hf : ContMDiffWithinAt I I' n f s x) (st : MapsTo f s t) : ContMDiffWithinAt I I'' n (g ∘ f) s x
𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M E' : Type u_5 inst✝¹⁰ : NormedAddCommGroup E' inst✝⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁷ : TopologicalSpace M' E'' : Type u_8 inst✝⁶ : NormedAddCommGroup E'' inst✝⁵ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝⁴ : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝³ : TopologicalSpace M'' inst✝² : ChartedSpace H M inst✝¹ : ChartedSpace H' M' inst✝ : ChartedSpace H'' M'' f : M → M' s : Set M n : WithTop ℕ∞ t : Set M' g : M' → M'' x : M hg : ContinuousWithinAt g t (f x) ∧ ContDiffWithinAt 𝕜 n (↑(extChartAt I'' (g (f x))) ∘ g ∘ ↑(extChartAt I' (f x)).symm) (↑(extChartAt I' (f x)).symm ⁻¹' t ∩ range ↑I') (↑(extChartAt I' (f x)) (f x)) hf : ContinuousWithinAt f s x ∧ ContDiffWithinAt 𝕜 n (↑(extChartAt I' (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x).symm ⁻¹' s ∩ range ↑I) (↑(extChartAt I x) x) st : MapsTo f s t ⊢ ContinuousWithinAt (g ∘ f) s x ∧ ContDiffWithinAt 𝕜 n (↑(extChartAt I'' ((g ∘ f) x)) ∘ (g ∘ f) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x).symm ⁻¹' s ∩ range ↑I) (↑(extChartAt I x) x)
refine ⟨hg.1.comp hf.1 st, ?_⟩
𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M E' : Type u_5 inst✝¹⁰ : NormedAddCommGroup E' inst✝⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁷ : TopologicalSpace M' E'' : Type u_8 inst✝⁶ : NormedAddCommGroup E'' inst✝⁵ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝⁴ : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝³ : TopologicalSpace M'' inst✝² : ChartedSpace H M inst✝¹ : ChartedSpace H' M' inst✝ : ChartedSpace H'' M'' f : M → M' s : Set M n : WithTop ℕ∞ t : Set M' g : M' → M'' x : M hg : ContinuousWithinAt g t (f x) ∧ ContDiffWithinAt 𝕜 n (↑(extChartAt I'' (g (f x))) ∘ g ∘ ↑(extChartAt I' (f x)).symm) (↑(extChartAt I' (f x)).symm ⁻¹' t ∩ range ↑I') (↑(extChartAt I' (f x)) (f x)) hf : ContinuousWithinAt f s x ∧ ContDiffWithinAt 𝕜 n (↑(extChartAt I' (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x).symm ⁻¹' s ∩ range ↑I) (↑(extChartAt I x) x) st : MapsTo f s t ⊢ ContDiffWithinAt 𝕜 n (↑(extChartAt I'' ((g ∘ f) x)) ∘ (g ∘ f) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x).symm ⁻¹' s ∩ range ↑I) (↑(extChartAt I x) x)
21a30820f7079ed0
IsIntegrallyClosed.pow_dvd_pow_iff
Mathlib/RingTheory/IntegralClosure/IntegrallyClosed.lean
theorem pow_dvd_pow_iff [IsDomain R] [IsIntegrallyClosed R] {n : ℕ} (hn : n ≠ 0) {a b : R} : a ^ n ∣ b ^ n ↔ a ∣ b
case neg.intro R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : IsIntegrallyClosed R n : ℕ hn : n ≠ 0 a b : R x✝ : a ^ n ∣ b ^ n x : R hx : b ^ n = a ^ n * x K : Type u_1 := FractionRing R ha : (algebraMap R K) a ≠ 0 y : K := (algebraMap R K) b / (algebraMap R K) a hy : IsIntegral R y k : R hk : (algebraMap R K) k = y ⊢ a ∣ b
refine ⟨k, IsFractionRing.injective R K ?_⟩
case neg.intro R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : IsIntegrallyClosed R n : ℕ hn : n ≠ 0 a b : R x✝ : a ^ n ∣ b ^ n x : R hx : b ^ n = a ^ n * x K : Type u_1 := FractionRing R ha : (algebraMap R K) a ≠ 0 y : K := (algebraMap R K) b / (algebraMap R K) a hy : IsIntegral R y k : R hk : (algebraMap R K) k = y ⊢ (algebraMap R K) b = (algebraMap R K) (a * k)
fff7a7a39e81336f
MvPolynomial.weightedDegree_eq_zero_iff
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
theorem weightedDegree_eq_zero_iff [CanonicallyOrderedAdd M] (hw : NonTorsionWeight w) {m : σ →₀ ℕ} : weight w m = 0 ↔ ∀ x : σ, m x = 0
case h.mpr M : Type u_2 σ : Type u_3 inst✝¹ : OrderedAddCommMonoid M w : σ → M inst✝ : CanonicallyOrderedAdd M hw : NonTorsionWeight w m : σ →₀ ℕ x : σ hax : m x = 0 a✝ : m x ≠ 0 ⊢ m x • w x = 0
simp only [hax, zero_smul]
no goals
2175db668788ba02
CategoryTheory.presheafHom_isSheafFor
Mathlib/CategoryTheory/Sites/SheafHom.lean
lemma presheafHom_isSheafFor : Presieve.IsSheafFor (presheafHom F G) S.arrows
C : Type u inst✝¹ : Category.{v, u} C A : Type u' inst✝ : Category.{v', u'} A F G : Cᵒᵖ ⥤ A X : C S : Sieve X hG : ⦃Y : C⦄ → (f : Y ⟶ X) → IsLimit (G.mapCone (Sieve.pullback f S).arrows.cocone.op) x : Presieve.FamilyOfElements (presheafHom F G) S.arrows hx : x.Compatible Y₁ Y₂ : Over X φ : Y₂ ⟶ Y₁ Z : Over Y₂.left hZ : (Sieve.pullback Y₂.hom S).arrows Z.hom ⊢ S.arrows ((Z.hom ≫ φ.left) ≫ Y₁.hom)
simpa using hZ
no goals
03e610e11f4d0fc5
intervalIntegral.integral_comp_smul_deriv'''
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
theorem integral_comp_smul_deriv''' {f f' : ℝ → ℝ} {g : ℝ → G} (hf : ContinuousOn f [[a, b]]) (hff' : ∀ x ∈ Ioo (min a b) (max a b), HasDerivWithinAt f (f' x) (Ioi x) x) (hg_cont : ContinuousOn g (f '' Ioo (min a b) (max a b))) (hg1 : IntegrableOn g (f '' [[a, b]])) (hg2 : IntegrableOn (fun x => f' x • (g ∘ f) x) [[a, b]]) : (∫ x in a..b, f' x • (g ∘ f) x) = ∫ u in f a..f b, g u
case intro.intro a b : ℝ G : Type u_5 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f f' : ℝ → ℝ g : ℝ → G hf : ContinuousOn f [[a, b]] hff' : ∀ x ∈ Ioo (a ⊓ b) (a ⊔ b), HasDerivWithinAt f (f' x) (Ioi x) x hg_cont : ContinuousOn g (f '' Ioo (a ⊓ b) (a ⊔ b)) hg1 : IntervalIntegrable g volume (sInf (f '' [[a, b]])) (sSup (f '' [[a, b]])) hg2 : IntegrableOn (fun x => f' x • (g ∘ f) x) [[a, b]] volume hG : CompleteSpace G h_cont : ContinuousOn (fun u => ∫ (t : ℝ) in f a..f u, g t) [[a, b]] x : ℝ hx : x ∈ Ioo (a ⊓ b) (a ⊔ b) c : ℝ hc : c ∈ Ioo (a ⊓ b) x d : ℝ hd : d ∈ Ioo x (a ⊔ b) cdsub : [[c, d]] ⊆ Ioo (a ⊓ b) (a ⊔ b) ⊢ HasDerivWithinAt (fun u => ∫ (t : ℝ) in f a..f u, g t) (f' x • (g ∘ f) x) (Ioi x) x
replace hg_cont := hg_cont.mono (image_subset f cdsub)
case intro.intro a b : ℝ G : Type u_5 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f f' : ℝ → ℝ g : ℝ → G hf : ContinuousOn f [[a, b]] hff' : ∀ x ∈ Ioo (a ⊓ b) (a ⊔ b), HasDerivWithinAt f (f' x) (Ioi x) x hg1 : IntervalIntegrable g volume (sInf (f '' [[a, b]])) (sSup (f '' [[a, b]])) hg2 : IntegrableOn (fun x => f' x • (g ∘ f) x) [[a, b]] volume hG : CompleteSpace G h_cont : ContinuousOn (fun u => ∫ (t : ℝ) in f a..f u, g t) [[a, b]] x : ℝ hx : x ∈ Ioo (a ⊓ b) (a ⊔ b) c : ℝ hc : c ∈ Ioo (a ⊓ b) x d : ℝ hd : d ∈ Ioo x (a ⊔ b) cdsub : [[c, d]] ⊆ Ioo (a ⊓ b) (a ⊔ b) hg_cont : ContinuousOn g (f '' [[c, d]]) ⊢ HasDerivWithinAt (fun u => ∫ (t : ℝ) in f a..f u, g t) (f' x • (g ∘ f) x) (Ioi x) x
c4728850936608e5
Unitization.quasispectrum_eq_spectrum_inr'
Mathlib/Algebra/Algebra/Quasispectrum.lean
lemma quasispectrum_eq_spectrum_inr' (R S : Type*) {A : Type*} [Semifield R] [Field S] [NonUnitalRing A] [Algebra R S] [Module S A] [IsScalarTower S A A] [SMulCommClass S A A] [Module R A] [IsScalarTower R S A] (a : A) : quasispectrum R a = spectrum R (a : Unitization S A)
case h R : Type u_3 S : Type u_4 A : Type u_5 inst✝⁸ : Semifield R inst✝⁷ : Field S inst✝⁶ : NonUnitalRing A inst✝⁵ : Algebra R S inst✝⁴ : Module S A inst✝³ : IsScalarTower S A A inst✝² : SMulCommClass S A A inst✝¹ : Module R A inst✝ : IsScalarTower R S A a : A r : R ⊢ r ∈ quasispectrum R a ↔ r ∈ spectrum R ↑a
have := Set.singleton_subset_iff.mpr (zero_mem_spectrum_inr R S a)
case h R : Type u_3 S : Type u_4 A : Type u_5 inst✝⁸ : Semifield R inst✝⁷ : Field S inst✝⁶ : NonUnitalRing A inst✝⁵ : Algebra R S inst✝⁴ : Module S A inst✝³ : IsScalarTower S A A inst✝² : SMulCommClass S A A inst✝¹ : Module R A inst✝ : IsScalarTower R S A a : A r : R this : {0} ⊆ spectrum R ↑a ⊢ r ∈ quasispectrum R a ↔ r ∈ spectrum R ↑a
be0e30794ed1ae31
AlgebraicGeometry.Scheme.RationalMap.toRationalMap_toPartialMap
Mathlib/AlgebraicGeometry/RationalMap.lean
@[simp] lemma RationalMap.toRationalMap_toPartialMap [IsReduced X] [Y.IsSeparated] (f : X ⤏ Y) : f.toPartialMap.toRationalMap = f
X Y : Scheme inst✝¹ : IsReduced X inst✝ : Y.IsSeparated f : X.PartialMap Y ⊢ f.toRationalMap.toPartialMap.toRationalMap = (f.toRationalMap.toPartialMap.restrict f.domain ⋯ ⋯).toRationalMap
simp
no goals
a4d2e7ea40074dfe
Nat.shiftLeft_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Basic.lean
theorem shiftLeft_eq (a b : Nat) : a <<< b = a * 2 ^ b := match b with | 0 => (Nat.mul_one _).symm | b+1 => (shiftLeft_eq _ b).trans <| by simp [Nat.pow_succ, Nat.mul_assoc, Nat.mul_left_comm, Nat.mul_comm]
a b✝ b : Nat ⊢ 2 * a * 2 ^ b = a * 2 ^ (b + 1)
simp [Nat.pow_succ, Nat.mul_assoc, Nat.mul_left_comm, Nat.mul_comm]
no goals
1495ef5ce36bd66c
List.mapM_toArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem mapM_toArray [Monad m] [LawfulMonad m] (f : α → m β) (l : List α) : l.toArray.mapM f = List.toArray <$> l.mapM f
case cons m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → m β a : α l : List α init : Array β ih : ∀ (init : Array β), List.foldlM (fun bs a => bs.push <$> f a) init l = (fun x => init ++ x.toArray) <$> mapM' f l ⊢ List.foldlM (fun bs a => bs.push <$> f a) init (a :: l) = (fun x => init ++ x.toArray) <$> do let __do_lift ← f a let __do_lift_1 ← mapM' f l pure (__do_lift :: __do_lift_1)
simp [ih]
no goals
a3f66bae8e466bf7
Nat.Prime.primeFactors
Mathlib/Data/Nat/PrimeFin.lean
@[simp] protected lemma Prime.primeFactors (hp : p.Prime) : p.primeFactors = {p}
p : ℕ hp : Prime p ⊢ p.primeFactors = {p}
simp [Nat.primeFactors, primeFactorsList_prime hp]
no goals
8bea25087cfd338b
MeasureTheory.lintegral_tsum
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AEMeasurable (f i) μ) : ∫⁻ a, ∑' i, f i a ∂μ = ∑' i, ∫⁻ a, f i a ∂μ
case h.left α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (i : β), AEMeasurable (f i) μ s t : Finset β ⊢ (fun x1 x2 => x1 ≤ x2) ((fun s a => ∑ i ∈ s, f i a) s) ((fun s a => ∑ i ∈ s, f i a) (s ∪ t))
exact fun a => Finset.sum_le_sum_of_subset Finset.subset_union_left
no goals
a9b7b8322de28144
IsPrimitiveRoot.minpoly_eq_pow_coprime
Mathlib/RingTheory/RootsOfUnity/Minpoly.lean
theorem minpoly_eq_pow_coprime {m : ℕ} (hcop : Nat.Coprime m n) : minpoly ℤ μ = minpoly ℤ (μ ^ m)
case refine_2 K : Type u_1 inst✝² : CommRing K μ : K inst✝¹ : IsDomain K inst✝ : CharZero K m n✝ u : ℕ hunit : IsUnit u h✝ : IsPrimitiveRoot μ n✝ hcop✝ : u.Coprime n✝ ⊢ minpoly ℤ μ = minpoly ℤ (μ ^ u)
congr
case refine_2.e_x K : Type u_1 inst✝² : CommRing K μ : K inst✝¹ : IsDomain K inst✝ : CharZero K m n✝ u : ℕ hunit : IsUnit u h✝ : IsPrimitiveRoot μ n✝ hcop✝ : u.Coprime n✝ ⊢ μ = μ ^ u
ba6ce0a8c0aa9e21
legendreSym.at_two
Mathlib/NumberTheory/LegendreSymbol/QuadraticReciprocity.lean
theorem at_two (hp : p ≠ 2) : legendreSym p 2 = χ₈ p
p : ℕ inst✝ : Fact (Nat.Prime p) hp : p ≠ 2 ⊢ legendreSym p 2 = χ₈ ↑p
have : (2 : ZMod p) = (2 : ℤ) := by norm_cast
p : ℕ inst✝ : Fact (Nat.Prime p) hp : p ≠ 2 this : 2 = ↑2 ⊢ legendreSym p 2 = χ₈ ↑p
bcc80ad3cfdac489
Std.DHashMap.Raw.get?_ofList_of_mem
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem get?_ofList_of_mem [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : k == k') {v : β k} (distinct : l.Pairwise (fun a b => (a.1 == b.1) = false)) (mem : ⟨k, v⟩ ∈ l) : (ofList l).get? k' = some (cast (by congr; apply LawfulBEq.eq_of_beq k_beq) v)
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : Hashable α inst✝ : LawfulBEq α l : List ((a : α) × β a) k k' : α k_beq : (k == k') = true v : β k distinct : List.Pairwise (fun a b => (a.fst == b.fst) = false) l mem : ⟨k, v⟩ ∈ l ⊢ (ofList l).get? k' = some (cast ⋯ v)
simp_to_raw using Raw₀.get?_insertMany_empty_list_of_mem
no goals
576fda0473bbbdeb
Nat.primeFactors_eq_empty
Mathlib/Data/Nat/PrimeFin.lean
@[simp] lemma primeFactors_eq_empty : n.primeFactors = ∅ ↔ n = 0 ∨ n = 1
case mp n : ℕ ⊢ n ≠ 0 ∧ n ≠ 1 → n.primeFactors ≠ ∅
rintro hn
case mp n : ℕ hn : n ≠ 0 ∧ n ≠ 1 ⊢ n.primeFactors ≠ ∅
9bfb50858a6b3406
List.cycleType_formPerm
Mathlib/GroupTheory/Perm/Cycle/Concrete.lean
theorem cycleType_formPerm (hl : Nodup l) (hn : 2 ≤ l.length) : cycleType l.attach.formPerm = {l.length}
α : Type u_1 inst✝ : DecidableEq α l : List α hl : l.attach.Nodup hn : 2 ≤ l.attach.length x : { x // x ∈ l } h : l.attach = [x] ⊢ False
simp [h, Nat.succ_le_succ_iff] at hn
no goals
c111839ef78929d8
Fin.ofNat'_val_eq_self
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Fin/Lemmas.lean
theorem ofNat'_val_eq_self [NeZero n] (x : Fin n) : (Fin.ofNat' n x) = x
case h n : Nat inst✝ : NeZero n x : Fin n ⊢ ↑(Fin.ofNat' n ↑x) = ↑x
rw [val_ofNat', Nat.mod_eq_of_lt]
case h n : Nat inst✝ : NeZero n x : Fin n ⊢ ↑x < n
bf93afaa12d7610d
Polynomial.coeff_mul_degree_add_degree
Mathlib/Algebra/Polynomial/Degree/Operations.lean
theorem coeff_mul_degree_add_degree (p q : R[X]) : coeff (p * q) (natDegree p + natDegree q) = leadingCoeff p * leadingCoeff q := calc coeff (p * q) (natDegree p + natDegree q) = ∑ x ∈ antidiagonal (natDegree p + natDegree q), coeff p x.1 * coeff q x.2 := coeff_mul _ _ _ _ = coeff p (natDegree p) * coeff q (natDegree q)
case refine_1 R : Type u inst✝ : Semiring R p q : R[X] ⊢ ∀ b ∈ antidiagonal (p.natDegree + q.natDegree), b ≠ (p.natDegree, q.natDegree) → p.coeff b.1 * q.coeff b.2 = 0
rintro ⟨i, j⟩ h₁ h₂
case refine_1.mk R : Type u inst✝ : Semiring R p q : R[X] i j : ℕ h₁ : (i, j) ∈ antidiagonal (p.natDegree + q.natDegree) h₂ : (i, j) ≠ (p.natDegree, q.natDegree) ⊢ p.coeff (i, j).1 * q.coeff (i, j).2 = 0
90cfb4e75ea0e0dd
Function.funext_iff_of_subsingleton
Mathlib/Logic/Function/Basic.lean
lemma funext_iff_of_subsingleton [Subsingleton α] {g : α → β} (x y : α) : f x = g y ↔ f = g
case refine_2 α : Sort u_1 β : Sort u_2 f : α → β inst✝ : Subsingleton α g : α → β x y : α h : f = g ⊢ f x = g y
rw [h, Subsingleton.elim x y]
no goals
ba8d242339c93243
Std.Tactic.BVDecide.BVExpr.bitblast.blastUmod.denote_go_eq_divRec_r
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Umod.lean
theorem denote_go_eq_divRec_r (aig : AIG α) (assign : α → Bool) (curr : Nat) (lhs rhs rbv qbv : BitVec w) (falseRef trueRef : AIG.Ref aig) (n d q r : AIG.RefVec aig w) (wn wr : Nat) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, n.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, d.get idx hidx, assign⟧ = rhs.getLsbD idx) (hq : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, q.get idx hidx, assign⟧ = qbv.getLsbD idx) (hr : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, r.get idx hidx, assign⟧ = rbv.getLsbD idx) (hfalse : ⟦aig, falseRef, assign⟧ = false) (htrue : ⟦aig, trueRef, assign⟧ = true) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (go aig curr falseRef trueRef n d wn wr q r).aig, (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx, assign ⟧ = (BitVec.divRec curr { n := lhs, d := rhs} { wn, wr, q := qbv, r := rbv }).r.getLsbD idx
case hr.hfalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx✝ : Nat hidx✝ : idx✝ < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs idx : Nat hidx : idx < w ⊢ ⟦assign, { aig := aig, ref := falseRef }⟧ = false
exact hfalse
no goals
123e2e165ae62131
CategoryTheory.Limits.MonoFactorisation.ext
Mathlib/CategoryTheory/Limits/Shapes/Images.lean
theorem ext {F F' : MonoFactorisation f} (hI : F.I = F'.I) (hm : F.m = eqToHom hI ≫ F'.m) : F = F'
case mk.mk.refl.e_e C : Type u inst✝ : Category.{v, u} C X Y : C f : X ⟶ Y I✝ : C Fm : I✝ ⟶ Y m_mono✝¹ : Mono Fm e✝¹ : X ⟶ I✝ Ffac : e✝¹ ≫ Fm = f Fm' : I✝ ⟶ Y m_mono✝ : Mono Fm' e✝ : X ⟶ I✝ Ffac' : e✝ ≫ Fm' = f hm : Fm = Fm' ⊢ e✝¹ ≫ Fm = e✝ ≫ Fm
rw [Ffac, hm, Ffac']
no goals
806c385ef78a3681
Ideal.isPrime_of_prime
Mathlib/RingTheory/DedekindDomain/Ideal.lean
theorem Ideal.isPrime_of_prime {P : Ideal A} (h : Prime P) : IsPrime P
case refine_1 A : Type u_2 inst✝¹ : CommRing A inst✝ : IsDedekindDomain A P : Ideal A h : Prime P ⊢ P ≠ ⊤
rintro rfl
case refine_1 A : Type u_2 inst✝¹ : CommRing A inst✝ : IsDedekindDomain A h : Prime ⊤ ⊢ False
53a6e4534a408bba
Ergodic.ae_empty_or_univ_of_ae_le_preimage'
Mathlib/Dynamics/Ergodic/Ergodic.lean
theorem ae_empty_or_univ_of_ae_le_preimage' (hf : Ergodic f μ) (hs : NullMeasurableSet s μ) (hs' : s ≤ᵐ[μ] f ⁻¹' s) (h_fin : μ s ≠ ∞) : s =ᵐ[μ] (∅ : Set α) ∨ s =ᵐ[μ] univ
α : Type u_1 m : MeasurableSpace α s : Set α f : α → α μ : Measure α hf : Ergodic f μ hs : NullMeasurableSet s μ hs' : s ≤ᶠ[ae μ] f ⁻¹' s h_fin : μ (f ⁻¹' s) ≠ ⊤ ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
refine hf.quasiErgodic.ae_empty_or_univ₀ hs ?_
α : Type u_1 m : MeasurableSpace α s : Set α f : α → α μ : Measure α hf : Ergodic f μ hs : NullMeasurableSet s μ hs' : s ≤ᶠ[ae μ] f ⁻¹' s h_fin : μ (f ⁻¹' s) ≠ ⊤ ⊢ f ⁻¹' s =ᶠ[ae μ] s
0e46e73dd39f99ee
Polynomial.IsUnitTrinomial.irreducible_aux1
Mathlib/Algebra/Polynomial/UnitTrinomial.lean
theorem irreducible_aux1 {k m n : ℕ} (hkm : k < m) (hmn : m < n) (u v w : Units ℤ) (hp : p = trinomial k m n (u : ℤ) v w) : C (v : ℤ) * (C (u : ℤ) * X ^ (m + n) + C (w : ℤ) * X ^ (n - m + k + n)) = ⟨Finsupp.filter (· ∈ Set.Ioo (k + n) (n + n)) (p * p.mirror).toFinsupp⟩
case h p : ℤ[X] k m n : ℕ hkm : k < m hmn : m < n u v w : ℤˣ hp : p = trinomial k m n ↑u ↑v ↑w key : n - m + k < n ⊢ m + n ∈ Set.Ioo (k + n) (n + n)
exact ⟨add_lt_add_right hkm n, add_lt_add_right hmn n⟩
no goals
fb6ff88b1ff3f5f1