name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
SetTheory.PGame.nim_add_nim_equiv
Mathlib/SetTheory/Game/Nim.lean
theorem nim_add_nim_equiv (x y : Ordinal) : nim x + nim y ≈ nim (toOrdinal (∗x + ∗y))
x y : Ordinal.{u_1} ⊢ nim x + nim y ≈ nim (toOrdinal (toNimber x + toNimber y))
rw [← grundyValue_eq_iff_equiv_nim, grundyValue_nim_add_nim]
no goals
014c2a7b2048de90
TensorAlgebra.lift_unique
Mathlib/LinearAlgebra/TensorAlgebra/Basic.lean
theorem lift_unique {A : Type*} [Semiring A] [Algebra R A] (f : M →ₗ[R] A) (g : TensorAlgebra R M →ₐ[R] A) : g.toLinearMap.comp (ι R) = f ↔ g = lift R f
R : Type u_1 inst✝⁴ : CommSemiring R M : Type u_2 inst✝³ : AddCommMonoid M inst✝² : Module R M A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : M →ₗ[R] A g : TensorAlgebra R M →ₐ[R] A ⊢ g.toLinearMap ∘ₗ ι R = f ↔ (lift R).symm g = f
simp only [lift, Equiv.coe_fn_symm_mk]
no goals
d86969492c8a1bf3
ProbabilityTheory.iInf_rat_gt_defaultRatCDF
Mathlib/Probability/Kernel/Disintegration/MeasurableStieltjes.lean
lemma iInf_rat_gt_defaultRatCDF (t : ℚ) : ⨅ r : Ioi t, defaultRatCDF r = defaultRatCDF t
case intro t : ℚ y : ↑(Ioi t) hx : (fun r => if ↑r < 0 then 0 else 1) y ∈ range fun r => if ↑r < 0 then 0 else 1 ⊢ 0 ≤ (fun r => if ↑r < 0 then 0 else 1) y
dsimp only
case intro t : ℚ y : ↑(Ioi t) hx : (fun r => if ↑r < 0 then 0 else 1) y ∈ range fun r => if ↑r < 0 then 0 else 1 ⊢ 0 ≤ if ↑y < 0 then 0 else 1
470f37fe6a48e799
fwdDiff_iter_choose_zero
Mathlib/Algebra/Group/ForwardDiff.lean
lemma fwdDiff_iter_choose_zero (m n : ℕ) : Δ_[1]^[n] (fun x ↦ x.choose m : ℕ → ℤ) 0 = if n = m then 1 else 0
case inl.intro m k : ℕ hmn : m < m + k + 1 ⊢ Δ_[1]^[m + k + 1] (fun x => ↑(x.choose m)) 0 = if m + k + 1 = m then 1 else 0
simp_rw [hmn.ne', if_false, (by ring : m + k + 1 = k + 1 + m), iterate_add_apply, add_zero m ▸ fwdDiff_iter_choose 0 m, choose_zero_right, iterate_one, cast_one, fwdDiff_const, fwdDiff_iter_eq_sum_shift, smul_zero, sum_const_zero]
no goals
3b96d64e98a2a661
hasStrictDerivAt_zpow
Mathlib/Analysis/Calculus/Deriv/ZPow.lean
theorem hasStrictDerivAt_zpow (m : ℤ) (x : 𝕜) (h : x ≠ 0 ∨ 0 ≤ m) : HasStrictDerivAt (fun x => x ^ m) ((m : 𝕜) * x ^ (m - 1)) x
case intro 𝕜 : Type u inst✝ : NontriviallyNormedField 𝕜 m✝ : ℤ x : 𝕜 h : x ≠ 0 ∨ 0 ≤ m✝ m : ℕ hm : 0 < ↑m ⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (↑m - 1)) x
convert hasStrictDerivAt_pow m x using 2
case h.e'_9.h.e'_6 𝕜 : Type u inst✝ : NontriviallyNormedField 𝕜 m✝ : ℤ x : 𝕜 h : x ≠ 0 ∨ 0 ≤ m✝ m : ℕ hm : 0 < ↑m ⊢ x ^ (↑m - 1) = x ^ (m - 1)
c222b9aa15688dc1
Polynomial.eq_X_sub_C_of_separable_of_root_eq
Mathlib/FieldTheory/Separable.lean
theorem eq_X_sub_C_of_separable_of_root_eq {x : F} {h : F[X]} (h_sep : h.Separable) (h_root : h.eval x = 0) (h_splits : Splits i h) (h_roots : ∀ y ∈ (h.map i).roots, y = i x) : h = C (leadingCoeff h) * (X - C x)
F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : h.Separable h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ y ∈ (map i h).roots, y = i x h_ne_zero : h ≠ 0 ⊢ h = C h.leadingCoeff * (X - C x)
apply Polynomial.eq_X_sub_C_of_splits_of_single_root i h_splits
F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : h.Separable h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ y ∈ (map i h).roots, y = i x h_ne_zero : h ≠ 0 ⊢ (map i h).roots = {i x}
367aa3f70723825a
Seminorm.continuous_from_bounded
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
theorem continuous_from_bounded {p : SeminormFamily 𝕝 E ι} {q : SeminormFamily 𝕝₂ F ι'} {_ : TopologicalSpace E} (hp : WithSeminorms p) {_ : TopologicalSpace F} (hq : WithSeminorms q) (f : E →ₛₗ[τ₁₂] F) (hf : Seminorm.IsBounded p q f) : Continuous f
case intro.intro 𝕝 : Type u_3 𝕝₂ : Type u_4 E : Type u_5 F : Type u_6 ι : Type u_8 ι' : Type u_9 inst✝⁸ : AddCommGroup E inst✝⁷ : NormedField 𝕝 inst✝⁶ : Module 𝕝 E inst✝⁵ : AddCommGroup F inst✝⁴ : NormedField 𝕝₂ inst✝³ : Module 𝕝₂ F τ₁₂ : 𝕝 →+* 𝕝₂ inst✝² : RingHomIsometric τ₁₂ inst✝¹ : Nonempty ι inst✝ : Nonempty ι' p : SeminormFamily 𝕝 E ι q : SeminormFamily 𝕝₂ F ι' x✝¹ : TopologicalSpace E hp : WithSeminorms p x✝ : TopologicalSpace F hq : WithSeminorms q f : E →ₛₗ[τ₁₂] F hf : IsBounded p q f this : IsTopologicalAddGroup E i : ι' s : Finset ι C : ℝ≥0 hC : (q i).comp f ≤ s.sup (C • p) ⊢ Continuous fun x => (coeFnAddMonoidHom 𝕝 E) (∑ i ∈ s, C • p i) x
simp_rw [map_sum, Finset.sum_apply]
case intro.intro 𝕝 : Type u_3 𝕝₂ : Type u_4 E : Type u_5 F : Type u_6 ι : Type u_8 ι' : Type u_9 inst✝⁸ : AddCommGroup E inst✝⁷ : NormedField 𝕝 inst✝⁶ : Module 𝕝 E inst✝⁵ : AddCommGroup F inst✝⁴ : NormedField 𝕝₂ inst✝³ : Module 𝕝₂ F τ₁₂ : 𝕝 →+* 𝕝₂ inst✝² : RingHomIsometric τ₁₂ inst✝¹ : Nonempty ι inst✝ : Nonempty ι' p : SeminormFamily 𝕝 E ι q : SeminormFamily 𝕝₂ F ι' x✝¹ : TopologicalSpace E hp : WithSeminorms p x✝ : TopologicalSpace F hq : WithSeminorms q f : E →ₛₗ[τ₁₂] F hf : IsBounded p q f this : IsTopologicalAddGroup E i : ι' s : Finset ι C : ℝ≥0 hC : (q i).comp f ≤ s.sup (C • p) ⊢ Continuous fun x => ∑ c ∈ s, (coeFnAddMonoidHom 𝕝 E) (C • p c) x
0044c0551bf1b760
norm_combo_lt_of_ne
Mathlib/Analysis/Convex/StrictConvexSpace.lean
theorem norm_combo_lt_of_ne (hx : ‖x‖ ≤ r) (hy : ‖y‖ ≤ r) (hne : x ≠ y) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) : ‖a • x + b • y‖ < r
E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y : E a b r : ℝ hne : x ≠ y ha : 0 < a hb : 0 < b hab : a + b = 1 hx : x ∈ closedBall 0 r hy : y ∈ closedBall 0 r ⊢ a • x + b • y ∈ ball 0 r
exact combo_mem_ball_of_ne hx hy hne ha hb hab
no goals
7813d89c83271a4b
Ideal.Quotient.index_eq_zero
Mathlib/Algebra/CharP/Quotient.lean
theorem Ideal.Quotient.index_eq_zero {R : Type*} [CommRing R] (I : Ideal R) : (↑I.toAddSubgroup.index : R ⧸ I) = 0
R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ↑(Submodule.toAddSubgroup I).index = 0
rw [AddSubgroup.index, Nat.card_eq]
R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ↑(if x : Finite (R ⧸ Submodule.toAddSubgroup I) then Fintype.card (R ⧸ Submodule.toAddSubgroup I) else 0) = 0
64a79a192da7e338
Submodule.FG.pow
Mathlib/RingTheory/Finiteness/Subalgebra.lean
theorem FG.pow (h : M.FG) (n : ℕ) : (M ^ n).FG := Nat.recOn n ⟨{1}, by simp [one_eq_span]⟩ fun n ih => by simpa [pow_succ] using ih.mul h
R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A M : Submodule R A h : M.FG n✝ n : ℕ ih : (M ^ n).FG ⊢ (M ^ n.succ).FG
simpa [pow_succ] using ih.mul h
no goals
2974428bbe74428e
Computation.destruct_eq_pure
Mathlib/Data/Seq/Computation.lean
theorem destruct_eq_pure {s : Computation α} {a : α} : destruct s = Sum.inl a → s = pure a
case some.a α : Type u s : Computation α a val✝ : α f0 : ↑s 0 = some val✝ h : (match some val✝ with | none => Sum.inr s.tail | some a => Sum.inl a) = Sum.inl a ⊢ ↑s = ↑(pure a)
funext n
case some.a.h α : Type u s : Computation α a val✝ : α f0 : ↑s 0 = some val✝ h : (match some val✝ with | none => Sum.inr s.tail | some a => Sum.inl a) = Sum.inl a n : ℕ ⊢ ↑s n = ↑(pure a) n
d7b26a3ee2818517
geom_sum_eq_zero_iff_neg_one
Mathlib/Algebra/GeomSum.lean
theorem geom_sum_eq_zero_iff_neg_one [LinearOrderedRing α] (hn : n ≠ 0) : ∑ i ∈ range n, x ^ i = 0 ↔ x = -1 ∧ Even n
case inl α : Type u n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n hx : x = -1 ⊢ ∑ i ∈ range n, x ^ i ≠ 0
rw [hx, neg_one_geom_sum]
case inl α : Type u n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n hx : x = -1 ⊢ (if Even n then 0 else 1) ≠ 0
b77f74310391edb9
SzemerediRegularity.edgeDensity_star_not_uniform
Mathlib/Combinatorics/SimpleGraph/Regularity/Chunk.lean
theorem edgeDensity_star_not_uniform [Nonempty α] (hPα : #P.parts * 16 ^ #P.parts ≤ card α) (hPε : ↑100 ≤ ↑4 ^ #P.parts * ε ^ 5) (hε₁ : ε ≤ 1) {hU : U ∈ P.parts} {hV : V ∈ P.parts} (hUVne : U ≠ V) (hUV : ¬G.IsUniform ε U V) : ↑3 / ↑4 * ε ≤ |(∑ ab ∈ (star hP G ε hU V).product (star hP G ε hV U), (G.edgeDensity ab.1 ab.2 : ℝ)) / (#(star hP G ε hU V) * #(star hP G ε hV U)) - (∑ ab ∈ (chunk hP G ε hU).parts.product (chunk hP G ε hV).parts, (G.edgeDensity ab.1 ab.2 : ℝ)) / (16 : ℝ) ^ #P.parts|
α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ U V : Finset α inst✝ : Nonempty α hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hε₁ : ε ≤ 1 hU : U ∈ P.parts hV : V ∈ P.parts hUVne : U ≠ V hUV : ¬G.IsUniform ε U V p : ℝ := (∑ ab ∈ (star hP G ε hU V).product (star hP G ε hV U), ↑(G.edgeDensity ab.1 ab.2)) / (↑(#(star hP G ε hU V)) * ↑(#(star hP G ε hV U))) q : ℝ := (∑ ab ∈ (chunk hP G ε hU).parts.product (chunk hP G ε hV).parts, ↑(G.edgeDensity ab.1 ab.2)) / (4 ^ #P.parts * 4 ^ #P.parts) r : ℝ := ↑(G.edgeDensity ((star hP G ε hU V).biUnion id) ((star hP G ε hV U).biUnion id)) s : ℝ := ↑(G.edgeDensity (G.nonuniformWitness ε U V) (G.nonuniformWitness ε V U)) t : ℝ := ↑(G.edgeDensity U V) hrs : |r - s| ≤ ε / 5 hst : ε ≤ |s - t| hpr : |p - r| ≤ ε ^ 5 / 49 ⊢ |q - t| ≤ ε ^ 5 / 49
have := average_density_near_total_density hPα hPε hε₁ (Subset.refl (chunk hP G ε hU).parts) (Subset.refl (chunk hP G ε hV).parts)
α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ U V : Finset α inst✝ : Nonempty α hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hε₁ : ε ≤ 1 hU : U ∈ P.parts hV : V ∈ P.parts hUVne : U ≠ V hUV : ¬G.IsUniform ε U V p : ℝ := (∑ ab ∈ (star hP G ε hU V).product (star hP G ε hV U), ↑(G.edgeDensity ab.1 ab.2)) / (↑(#(star hP G ε hU V)) * ↑(#(star hP G ε hV U))) q : ℝ := (∑ ab ∈ (chunk hP G ε hU).parts.product (chunk hP G ε hV).parts, ↑(G.edgeDensity ab.1 ab.2)) / (4 ^ #P.parts * 4 ^ #P.parts) r : ℝ := ↑(G.edgeDensity ((star hP G ε hU V).biUnion id) ((star hP G ε hV U).biUnion id)) s : ℝ := ↑(G.edgeDensity (G.nonuniformWitness ε U V) (G.nonuniformWitness ε V U)) t : ℝ := ↑(G.edgeDensity U V) hrs : |r - s| ≤ ε / 5 hst : ε ≤ |s - t| hpr : |p - r| ≤ ε ^ 5 / 49 this : |(∑ ab ∈ (chunk hP G ε hU).parts.product (chunk hP G ε hV).parts, ↑(G.edgeDensity ab.1 ab.2)) / (↑(#(chunk hP G ε hU).parts) * ↑(#(chunk hP G ε hV).parts)) - ↑(G.edgeDensity ((chunk hP G ε hU).parts.biUnion id) ((chunk hP G ε hV).parts.biUnion id))| ≤ ε ^ 5 / 49 ⊢ |q - t| ≤ ε ^ 5 / 49
96200eb905ae7b75
MeasurableSet.baireMeasurableSet
Mathlib/Topology/Baire/BaireMeasurable.lean
theorem _root_.MeasurableSet.baireMeasurableSet [MeasurableSpace α] [BorelSpace α] (h : MeasurableSet s) : BaireMeasurableSet s
α : Type u_1 inst✝¹ : TopologicalSpace α s : Set α inst✝ : BorelSpace α h : MeasurableSet s this✝ : MeasurableSpace α := borel α ⊢ BaireMeasurableSet s
exact h.eventuallyMeasurableSet
no goals
6c46bad40395a38b
coe_lt_enorm
Mathlib/Analysis/Normed/Group/Basic.lean
@[simp, norm_cast] lemma coe_lt_enorm : r < ‖x‖ₑ ↔ r < ‖x‖₊
E : Type u_8 inst✝ : NNNorm E x : E r : ℝ≥0 ⊢ ↑r < ‖x‖ₑ ↔ r < ‖x‖₊
simp [enorm]
no goals
f87fd36369fbe207
List.eraseIdx_replicate
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Erase.lean
theorem eraseIdx_replicate {n : Nat} {a : α} {k : Nat} : (replicate n a).eraseIdx k = if k < n then replicate (n - 1) a else replicate n a
case isTrue α : Type u_1 n : Nat a : α k : Nat h : k < n ⊢ (replicate n a).eraseIdx k = replicate (n - 1) a
rw [eq_replicate_iff, length_eraseIdx_of_lt (by simpa using h)]
case isTrue α : Type u_1 n : Nat a : α k : Nat h : k < n ⊢ (replicate n a).length - 1 = n - 1 ∧ ∀ (b : α), b ∈ (replicate n a).eraseIdx k → b = a
eaeb466d41ba696c
mdifferentiableWithinAt_totalSpace
Mathlib/Geometry/Manifold/VectorBundle/MDifferentiable.lean
theorem mdifferentiableWithinAt_totalSpace (f : M → TotalSpace F E) {s : Set M} {x₀ : M} : MDifferentiableWithinAt IM (IB.prod 𝓘(𝕜, F)) f s x₀ ↔ MDifferentiableWithinAt IM IB (fun x => (f x).proj) s x₀ ∧ MDifferentiableWithinAt IM 𝓘(𝕜, F) (fun x ↦ (trivializationAt F E (f x₀).proj (f x)).2) s x₀
case refine_1 𝕜 : Type u_1 B : Type u_2 F : Type u_4 M : Type u_5 E : B → Type u_6 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : NormedAddCommGroup F inst✝¹³ : NormedSpace 𝕜 F inst✝¹² : TopologicalSpace (TotalSpace F E) inst✝¹¹ : (x : B) → TopologicalSpace (E x) EB : Type u_7 inst✝¹⁰ : NormedAddCommGroup EB inst✝⁹ : NormedSpace 𝕜 EB HB : Type u_8 inst✝⁸ : TopologicalSpace HB IB : ModelWithCorners 𝕜 EB HB EM : Type u_10 inst✝⁷ : NormedAddCommGroup EM inst✝⁶ : NormedSpace 𝕜 EM HM : Type u_11 inst✝⁵ : TopologicalSpace HM IM : ModelWithCorners 𝕜 EM HM inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace HM M inst✝² : TopologicalSpace B inst✝¹ : ChartedSpace HB B inst✝ : FiberBundle F E f : M → TotalSpace F E s : Set M x₀ : M hf : ContinuousWithinAt f s x₀ h1 : (fun x => (f x).proj) ⁻¹' (trivializationAt F E (f x₀).proj).baseSet ∈ 𝓝[s] x₀ x : M hx : x ∈ (fun x => (f x).proj) ⁻¹' (trivializationAt F E (f x₀).proj).baseSet ⊢ (fun x => ↑(extChartAt IB (f x₀).proj) (f x).proj) x = (Prod.fst ∘ fun x => (↑(extChartAt IB (f x₀).proj) (↑(trivializationAt F E (f x₀).proj).toPartialEquiv (f x)).1, (↑(trivializationAt F E (f x₀).proj).toPartialEquiv (f x)).2)) x
simp_rw [Function.comp, PartialHomeomorph.coe_coe, Trivialization.coe_coe]
case refine_1 𝕜 : Type u_1 B : Type u_2 F : Type u_4 M : Type u_5 E : B → Type u_6 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : NormedAddCommGroup F inst✝¹³ : NormedSpace 𝕜 F inst✝¹² : TopologicalSpace (TotalSpace F E) inst✝¹¹ : (x : B) → TopologicalSpace (E x) EB : Type u_7 inst✝¹⁰ : NormedAddCommGroup EB inst✝⁹ : NormedSpace 𝕜 EB HB : Type u_8 inst✝⁸ : TopologicalSpace HB IB : ModelWithCorners 𝕜 EB HB EM : Type u_10 inst✝⁷ : NormedAddCommGroup EM inst✝⁶ : NormedSpace 𝕜 EM HM : Type u_11 inst✝⁵ : TopologicalSpace HM IM : ModelWithCorners 𝕜 EM HM inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace HM M inst✝² : TopologicalSpace B inst✝¹ : ChartedSpace HB B inst✝ : FiberBundle F E f : M → TotalSpace F E s : Set M x₀ : M hf : ContinuousWithinAt f s x₀ h1 : (fun x => (f x).proj) ⁻¹' (trivializationAt F E (f x₀).proj).baseSet ∈ 𝓝[s] x₀ x : M hx : x ∈ (fun x => (f x).proj) ⁻¹' (trivializationAt F E (f x₀).proj).baseSet ⊢ ↑(extChartAt IB (f x₀).proj) (f x).proj = ↑(extChartAt IB (f x₀).proj) (↑(trivializationAt F E (f x₀).proj) (f x)).1
496d5b669ff12a5e
Finset.attach_affineCombination_of_injective
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
theorem attach_affineCombination_of_injective [DecidableEq P] (s : Finset P) (w : P → k) (f : s → P) (hf : Function.Injective f) : s.attach.affineCombination k f (w ∘ f) = (image f univ).affineCombination k id w
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V S : AffineSpace V P inst✝ : DecidableEq P s : Finset P w : P → k f : { x // x ∈ s } → P hf : Function.Injective f g₁ : { x // x ∈ s } → V := fun i => w (f i) • (f i -ᵥ Classical.choice ⋯) g₂ : P → V := fun i => w i • (i -ᵥ Classical.choice ⋯) ⊢ univ.sum g₁ = (image f univ).sum g₂
have hgf : g₁ = g₂ ∘ f := by ext simp [g₁, g₂]
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V S : AffineSpace V P inst✝ : DecidableEq P s : Finset P w : P → k f : { x // x ∈ s } → P hf : Function.Injective f g₁ : { x // x ∈ s } → V := fun i => w (f i) • (f i -ᵥ Classical.choice ⋯) g₂ : P → V := fun i => w i • (i -ᵥ Classical.choice ⋯) hgf : g₁ = g₂ ∘ f ⊢ univ.sum g₁ = (image f univ).sum g₂
d5e9d609b170565a
Std.Tactic.BVDecide.BVExpr.bitblast.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Expr.lean
theorem bitblast.go_decl_eq (aig : AIG BVBit) (expr : BVExpr w) : ∀ (idx : Nat) (h1) (h2), (go aig expr).val.aig.decls[idx]'h2 = aig.decls[idx]'h1
case arithShiftRight w idx m✝ n✝ : Nat lhs : BVExpr m✝ rhs : BVExpr n✝ lih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig lhs).val.aig.decls.size), (go aig lhs).val.aig.decls[idx] = aig.decls[idx] rih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig rhs).val.aig.decls.size), (go aig rhs).val.aig.decls[idx] = aig.decls[idx] aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (lhs.arithShiftRight rhs)).val.aig.decls.size ⊢ (blastArithShiftRight (go (go aig lhs).1.aig rhs).1.aig { n := n✝, target := (go aig lhs).1.vec.cast ⋯, distance := (go (go aig lhs).1.aig rhs).1.vec }).aig.decls[idx] = aig.decls[idx]
have := (bitblast.go aig lhs).property
case arithShiftRight w idx m✝ n✝ : Nat lhs : BVExpr m✝ rhs : BVExpr n✝ lih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig lhs).val.aig.decls.size), (go aig lhs).val.aig.decls[idx] = aig.decls[idx] rih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig rhs).val.aig.decls.size), (go aig rhs).val.aig.decls[idx] = aig.decls[idx] aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (lhs.arithShiftRight rhs)).val.aig.decls.size this : aig.decls.size ≤ (go aig lhs).val.aig.decls.size ⊢ (blastArithShiftRight (go (go aig lhs).1.aig rhs).1.aig { n := n✝, target := (go aig lhs).1.vec.cast ⋯, distance := (go (go aig lhs).1.aig rhs).1.vec }).aig.decls[idx] = aig.decls[idx]
f92988d5a1595b39
DyckWord.monotone_semilength
Mathlib/Combinatorics/Enumerative/DyckWord.lean
lemma monotone_semilength : Monotone semilength := fun p q pq ↦ by induction pq with | refl => rfl | tail _ mq ih => rename_i m r _ rcases eq_or_ne r 0 with rfl | hr · rw [insidePart_zero, outsidePart_zero, or_self] at mq rwa [mq] at ih · rcases mq with hm | hm · exact ih.trans (hm ▸ semilength_insidePart_lt hr).le · exact ih.trans (hm ▸ semilength_outsidePart_lt hr).le
case tail p q m r : DyckWord a✝ : Relation.ReflTransGen (fun p q => p = q.insidePart ∨ p = q.outsidePart) p m mq : m = r.insidePart ∨ m = r.outsidePart ih : p.semilength ≤ m.semilength ⊢ p.semilength ≤ r.semilength
rcases eq_or_ne r 0 with rfl | hr
case tail.inl p q m : DyckWord a✝ : Relation.ReflTransGen (fun p q => p = q.insidePart ∨ p = q.outsidePart) p m ih : p.semilength ≤ m.semilength mq : m = insidePart 0 ∨ m = outsidePart 0 ⊢ p.semilength ≤ semilength 0 case tail.inr p q m r : DyckWord a✝ : Relation.ReflTransGen (fun p q => p = q.insidePart ∨ p = q.outsidePart) p m mq : m = r.insidePart ∨ m = r.outsidePart ih : p.semilength ≤ m.semilength hr : r ≠ 0 ⊢ p.semilength ≤ r.semilength
a9bc9900c089d242
Nat.prime_of_pow_sub_one_prime
Mathlib/NumberTheory/Fermat.lean
theorem prime_of_pow_sub_one_prime {a n : ℕ} (hn1 : n ≠ 1) (hP : (a ^ n - 1).Prime) : a = 2 ∧ n.Prime
a n : ℕ hn1 : n ≠ 1 hP : Prime (a ^ n - 1) ⊢ a = 2 ∧ Prime n
have han1 : 1 < a ^ n := tsub_pos_iff_lt.mp hP.pos
a n : ℕ hn1 : n ≠ 1 hP : Prime (a ^ n - 1) han1 : 1 < a ^ n ⊢ a = 2 ∧ Prime n
c66e0e0b6f579aaa
Equiv.Perm.Disjoint.isConj_mul
Mathlib/GroupTheory/Perm/Finite.lean
theorem Disjoint.isConj_mul [Finite α] {σ τ π ρ : Perm α} (hc1 : IsConj σ π) (hc2 : IsConj τ ρ) (hd1 : Disjoint σ τ) (hd2 : Disjoint π ρ) : IsConj (σ * τ) (π * ρ)
case intro.intro.intro.refine_2.inl.refine_1 α : Type u inst✝ : Finite α σ τ : Perm α hd1 : σ.Disjoint τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : (f * σ * f⁻¹).Disjoint (g * τ * g⁻¹) hd1' : ↑(σ * τ).support = ↑σ.support ∪ ↑τ.support hd2' : ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)).support = ↑(f * σ * f⁻¹).support ∪ ↑(g * τ * g⁻¹).support hd1'' : _root_.Disjoint ↑σ.support ↑τ.support hd2'' : _root_.Disjoint ↑(f * σ * f⁻¹).support ↑(g * τ * g⁻¹).support x : α hx : x ∈ ↑(σ * τ).support hxσ : σ x ≠ x ⊢ ¬(f * σ * f⁻¹) (f x) = f x
rwa [mul_apply, mul_apply, inv_apply_self, apply_eq_iff_eq]
no goals
c57d6049be02c9ef
Polynomial.Chebyshev.U_two
Mathlib/RingTheory/Polynomial/Chebyshev.lean
theorem U_two : U R 2 = 4 * X ^ 2 - 1
R : Type u_1 inst✝ : CommRing R this : U R 2 = 2 * X * (2 * X) - 1 ⊢ U R 2 = 4 * X ^ 2 - 1
linear_combination this
no goals
487a90767cd81216
IsAntichain.volume_eq_zero
Mathlib/MeasureTheory/Order/UpperLower.lean
theorem IsAntichain.volume_eq_zero [Nonempty ι] (hs : IsAntichain (· ≤ ·) s) : volume s = 0
ι : Type u_1 inst✝¹ : Fintype ι s : Set (ι → ℝ) inst✝ : Nonempty ι hs : IsAntichain (fun x1 x2 => x1 ≤ x2) s ⊢ volume s = 0
refine measure_mono_null ?_ hs.ordConnected.null_frontier
ι : Type u_1 inst✝¹ : Fintype ι s : Set (ι → ℝ) inst✝ : Nonempty ι hs : IsAntichain (fun x1 x2 => x1 ≤ x2) s ⊢ s ⊆ frontier s
e697af406be31b26
CategoryTheory.Biprod.ofComponents_fst
Mathlib/CategoryTheory/Preadditive/Biproducts.lean
theorem Biprod.ofComponents_fst : Biprod.ofComponents f₁₁ f₁₂ f₂₁ f₂₂ ≫ biprod.fst = biprod.fst ≫ f₁₁ + biprod.snd ≫ f₂₁
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasBinaryBiproducts C X₁ X₂ Y₁ Y₂ : C f₁₁ : X₁ ⟶ Y₁ f₁₂ : X₁ ⟶ Y₂ f₂₁ : X₂ ⟶ Y₁ f₂₂ : X₂ ⟶ Y₂ ⊢ ofComponents f₁₁ f₁₂ f₂₁ f₂₂ ≫ biprod.fst = biprod.fst ≫ f₁₁ + biprod.snd ≫ f₂₁
simp [Biprod.ofComponents]
no goals
6a8e69c7d2206d3f
MeasureTheory.Integrable.smul_essSup
Mathlib/MeasureTheory/Function/L1Space/Integrable.lean
theorem Integrable.smul_essSup {𝕜 : Type*} [NormedRing 𝕜] [Module 𝕜 β] [BoundedSMul 𝕜 β] {f : α → 𝕜} (hf : Integrable f μ) {g : α → β} (g_aestronglyMeasurable : AEStronglyMeasurable g μ) (ess_sup_g : essSup (‖g ·‖ₑ) μ ≠ ∞) : Integrable (fun x : α => f x • g x) μ
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝³ : NormedAddCommGroup β 𝕜 : Type u_6 inst✝² : NormedRing 𝕜 inst✝¹ : Module 𝕜 β inst✝ : BoundedSMul 𝕜 β f : α → 𝕜 hf : Integrable f μ g : α → β g_aestronglyMeasurable : AEStronglyMeasurable g μ ess_sup_g : essSup (fun x => ‖g x‖ₑ) μ ≠ ⊤ ⊢ Integrable (fun x => f x • g x) μ
rw [← memLp_one_iff_integrable] at *
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝³ : NormedAddCommGroup β 𝕜 : Type u_6 inst✝² : NormedRing 𝕜 inst✝¹ : Module 𝕜 β inst✝ : BoundedSMul 𝕜 β f : α → 𝕜 hf : MemLp f 1 μ g : α → β g_aestronglyMeasurable : AEStronglyMeasurable g μ ess_sup_g : essSup (fun x => ‖g x‖ₑ) μ ≠ ⊤ ⊢ MemLp (fun x => f x • g x) 1 μ
a29141a482079b8c
SimpleGraph.Walk.IsTrail.length_le_card_edgeFinset
Mathlib/Combinatorics/SimpleGraph/Path.lean
theorem IsTrail.length_le_card_edgeFinset [Fintype G.edgeSet] {u v : V} {w : G.Walk u v} (h : w.IsTrail) : w.length ≤ G.edgeFinset.card
V : Type u G : SimpleGraph V inst✝ : Fintype ↑G.edgeSet u v : V w : G.Walk u v h : w.IsTrail edges : Finset (Sym2 V) := w.edges.toFinset ⊢ w.length ≤ G.edgeFinset.card
have : edges.card = w.length := length_edges _ ▸ List.toFinset_card_of_nodup h.edges_nodup
V : Type u G : SimpleGraph V inst✝ : Fintype ↑G.edgeSet u v : V w : G.Walk u v h : w.IsTrail edges : Finset (Sym2 V) := w.edges.toFinset this : edges.card = w.length ⊢ w.length ≤ G.edgeFinset.card
117de40399459014
collinear_iff_exists_forall_eq_smul_vadd
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
theorem collinear_iff_exists_forall_eq_smul_vadd (s : Set P) : Collinear k s ↔ ∃ (p₀ : P) (v : V), ∀ p ∈ s, ∃ r : k, p = r • v +ᵥ p₀
case inr.intro.mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s ⊢ (∃ v, ∀ p ∈ s, ∃ r, p = r • v +ᵥ p₁) → ∃ p₀ v, ∀ p ∈ s, ∃ r, p = r • v +ᵥ p₀
exact fun h => ⟨p₁, h⟩
no goals
5cfbd34dabed0b2c
Ideal.dvd_iff_le
Mathlib/RingTheory/DedekindDomain/Ideal.lean
theorem Ideal.dvd_iff_le {I J : Ideal A} : I ∣ J ↔ J ≤ I := ⟨Ideal.le_of_dvd, fun h => by by_cases hI : I = ⊥ · have hJ : J = ⊥
case neg A : Type u_2 inst✝¹ : CommRing A inst✝ : IsDedekindDomain A I J : Ideal A h : J ≤ I hI : ¬I = ⊥ hI' : ↑I ≠ 0 ⊢ I ∣ J
have : (I : FractionalIdeal A⁰ (FractionRing A))⁻¹ * J ≤ 1 := by rw [← inv_mul_cancel₀ hI'] exact mul_left_mono _ ((coeIdeal_le_coeIdeal _).mpr h)
case neg A : Type u_2 inst✝¹ : CommRing A inst✝ : IsDedekindDomain A I J : Ideal A h : J ≤ I hI : ¬I = ⊥ hI' : ↑I ≠ 0 this : (↑I)⁻¹ * ↑J ≤ 1 ⊢ I ∣ J
47e45faf0c157a11
LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton'
Mathlib/Algebra/Lie/Weights/Killing.lean
lemma coe_corootSpace_eq_span_singleton' (α : Weight K H L) : (corootSpace α).toSubmodule = K ∙ (cartanEquivDual H).symm α
case refine_2 K : Type u_2 L : Type u_3 inst✝⁷ : LieRing L inst✝⁶ : Field K inst✝⁵ : LieAlgebra K L inst✝⁴ : FiniteDimensional K L H : LieSubalgebra K L inst✝³ : H.IsCartanSubalgebra inst✝² : IsKilling K L inst✝¹ : IsTriangularizable K (↥H) L inst✝ : PerfectField K α : Weight K (↥H) L ⊢ (cartanEquivDual H).symm (Weight.toLinear K (↥H) L α) ∈ corootSpace ⇑α
exact cartanEquivDual_symm_apply_mem_corootSpace α
no goals
23e360d5eb243ad0
FormalMultilinearSeries.derivSeries_eq_zero
Mathlib/Analysis/Analytic/ChangeOrigin.lean
theorem derivSeries_eq_zero {n : ℕ} (hp : p (n + 1) = 0) : p.derivSeries n = 0
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F n : ℕ hp : p (n + 1) = 0 s : { s // s.card = n } hs : s ∈ Finset.univ ⊢ p.changeOriginSeriesTerm 1 n ↑s ⋯ = 0
ext v
case H.H 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F n : ℕ hp : p (n + 1) = 0 s : { s // s.card = n } hs : s ∈ Finset.univ v : Fin n → E x✝ : Fin 1 → E ⊢ ((p.changeOriginSeriesTerm 1 n ↑s ⋯) v) x✝ = (0 v) x✝
e92bd3437a4bd85b
MeasureTheory.OuterMeasure.isCaratheodory_union
Mathlib/MeasureTheory/OuterMeasure/Caratheodory.lean
theorem isCaratheodory_union (h₁ : IsCaratheodory m s₁) (h₂ : IsCaratheodory m s₂) : IsCaratheodory m (s₁ ∪ s₂) := fun t => by rw [h₁ t, h₂ (t ∩ s₁), h₂ (t \ s₁), h₁ (t ∩ (s₁ ∪ s₂)), inter_diff_assoc _ _ s₁, Set.inter_assoc _ _ s₁, inter_eq_self_of_subset_right Set.subset_union_left, union_diff_left, h₂ (t ∩ s₁)] simp [diff_eq, add_assoc]
α : Type u m : OuterMeasure α s₁ s₂ : Set α h₁ : m.IsCaratheodory s₁ h₂ : m.IsCaratheodory s₂ t : Set α ⊢ m t = m (t ∩ (s₁ ∪ s₂)) + m (t \ (s₁ ∪ s₂))
rw [h₁ t, h₂ (t ∩ s₁), h₂ (t \ s₁), h₁ (t ∩ (s₁ ∪ s₂)), inter_diff_assoc _ _ s₁, Set.inter_assoc _ _ s₁, inter_eq_self_of_subset_right Set.subset_union_left, union_diff_left, h₂ (t ∩ s₁)]
α : Type u m : OuterMeasure α s₁ s₂ : Set α h₁ : m.IsCaratheodory s₁ h₂ : m.IsCaratheodory s₂ t : Set α ⊢ m (t ∩ s₁ ∩ s₂) + m ((t ∩ s₁) \ s₂) + (m (t \ s₁ ∩ s₂) + m ((t \ s₁) \ s₂)) = m (t ∩ s₁ ∩ s₂) + m ((t ∩ s₁) \ s₂) + m (t ∩ (s₂ \ s₁)) + m (t \ (s₁ ∪ s₂))
8dc8dfd995295de1
ExceptT.bind_pure_comp
Mathlib/.lake/packages/lean4/src/lean/Init/Control/Lawful/Instances.lean
theorem bind_pure_comp [Monad m] (f : α → β) (x : ExceptT ε m α) : x >>= pure ∘ f = f <$> x
m : Type u_1 → Type u_2 α β ε : Type u_1 inst✝ : Monad m f : α → β x : ExceptT ε m α ⊢ x >>= pure ∘ f = f <$> x
rfl
no goals
a10b306d43aa950d
MeasureTheory.crossing_pos_eq
Mathlib/Probability/Martingale/Upcrossing.lean
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ hab : a < b hab' : 0 < b - a ⊢ ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
intro i ω
Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ hab : a < b hab' : 0 < b - a i : Ω ω : ℕ ⊢ b - a ≤ (f ω i - a)⁺ ↔ b ≤ f ω i
3016c9a152ee0783
Module.End.isNilpotent_restrict_genEigenspace_top
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
/-- The restriction of `f - μ • 1` to the generalized `μ`-eigenspace is nilpotent. -/ lemma isNilpotent_restrict_genEigenspace_top [IsNoetherian R M] (f : End R M) (μ : R) (h : MapsTo (f - μ • (1 : End R M)) (f.genEigenspace μ ⊤) (f.genEigenspace μ ⊤) := mapsTo_genEigenspace_of_comm (Algebra.mul_sub_algebraMap_commutes f μ) μ _) : IsNilpotent ((f - μ • 1).restrict h)
case hf R : Type v M : Type w inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsNoetherian R M f : End R M μ : R h : optParam (MapsTo ⇑(f - μ • 1) ↑((f.genEigenspace μ) ⊤) ↑((f.genEigenspace μ) ⊤)) ⋯ ⊢ IsNilpotent (LinearMap.restrict (f - μ • 1) ?hq)
apply isNilpotent_restrict_genEigenspace_nat f μ (maxUnifEigenspaceIndex f μ)
no goals
e1a3726aa4d97e52
FermatLastTheoremForThreeGen.Solution.formula2
Mathlib/NumberTheory/FLT/Three.lean
private lemma formula2 : S.Y ^ 3 + S.u₄ * S.Z ^ 3 = S.u₅ * (λ ^ (S.multiplicity - 1) * S.X) ^ 3
case refine_1 K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S : Solution hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K this : (S.multiplicity - 1) * 3 + 1 = 3 * S.multiplicity - 2 ⊢ ↑(η ^ 2 * FermatLastTheoremForThreeGen.Solution.u₁ S * (FermatLastTheoremForThreeGen.Solution.u₂ S)⁻¹) * (λ ^ (S.multiplicity - 1) * FermatLastTheoremForThreeGen.Solution.X S) ^ 3 * (λ * ↑(FermatLastTheoremForThreeGen.Solution.u₂ S) * ↑η) = FermatLastTheoremForThreeGen.Solution.X S ^ 3 * ↑(FermatLastTheoremForThreeGen.Solution.u₁ S) * λ ^ (3 * S.multiplicity - 2)
calc _ = S.X^3 *(S.u₂*S.u₂⁻¹)*(η^3*S.u₁)*(λ^((S.multiplicity-1)*3)*λ):= by push_cast; ring _ = S.X^3*S.u₁*λ^(3*S.multiplicity-2) := by simp [hζ.toInteger_cube_eq_one, ← pow_succ, this]
no goals
291915db94e2c072
Nat.Prime.emultiplicity_factorial_mul_succ
Mathlib/Data/Nat/Multiplicity.lean
theorem emultiplicity_factorial_mul_succ {n p : ℕ} (hp : p.Prime) : emultiplicity p (p * (n + 1))! = emultiplicity p (p * n)! + emultiplicity p (n + 1) + 1
n p : ℕ hp : Prime p hp' : _root_.Prime p h0 : 2 ≤ p h1 : 1 ≤ p * n + 1 h2 : p * n + 1 ≤ p * (n + 1) h3 : p * n + 1 ≤ p * (n + 1) + 1 m : ℕ hm : p * n + 1 ≤ m ∧ m < p * (n + 1) ⊢ ∃ k, p * k < m ∧ m < p * (k + 1)
exact ⟨n, lt_of_succ_le hm.1, hm.2⟩
no goals
097a3d59a78795b9
Std.Tactic.BVDecide.BVExpr.bitblast.blastZeroExtend.go_le_size
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Operations/ZeroExtend.lean
theorem go_le_size (aig : AIG α) (w : Nat) (input : AIG.RefVec aig w) (newWidth curr : Nat) (hcurr : curr ≤ newWidth) (s : AIG.RefVec aig curr) : aig.decls.size ≤ (go aig w input newWidth curr hcurr s).aig.decls.size
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α w : Nat input : aig.RefVec w newWidth curr : Nat hcurr : curr ≤ newWidth s : aig.RefVec curr h✝¹ : curr < newWidth h✝ : curr < w ⊢ ?m.14001 ≤ (go aig w input newWidth (curr + 1) ⋯ (s.push (input.get curr h✝))).aig.decls.size
apply go_le_size
no goals
5b8a3de9428e3a64
IndexedPartition.piecewise_bij
Mathlib/Data/Setoid/Partition.lean
theorem piecewise_bij {β : Type*} {f : ι → α → β} {t : ι → Set β} (ht : IndexedPartition t) (hf : ∀ i, BijOn (f i) (s i) (t i)) : Bijective (piecewise hs f)
ι : Type u_1 α : Type u_2 s : ι → Set α hs : IndexedPartition s β : Type u_3 f : ι → α → β t : ι → Set β ht : IndexedPartition t hf : ∀ (i : ι), BijOn (f i) (s i) (t i) g : α → β := hs.piecewise f hg : g = hs.piecewise f i : ι ⊢ BijOn g (s i) (t i)
refine BijOn.congr (hf i) ?_
ι : Type u_1 α : Type u_2 s : ι → Set α hs : IndexedPartition s β : Type u_3 f : ι → α → β t : ι → Set β ht : IndexedPartition t hf : ∀ (i : ι), BijOn (f i) (s i) (t i) g : α → β := hs.piecewise f hg : g = hs.piecewise f i : ι ⊢ EqOn (f i) g (s i)
c0eea0bbe5e450f8
AlgebraicGeometry.Scheme.fromSpecStalk_app
Mathlib/AlgebraicGeometry/Stalk.lean
lemma fromSpecStalk_app {x : X} (hxU : x ∈ U) : (X.fromSpecStalk x).app U = X.presheaf.germ U x hxU ≫ (ΓSpecIso (X.presheaf.stalk x)).inv ≫ (Spec (X.presheaf.stalk x)).presheaf.map (homOfLE le_top).op
case intro.intro.intro.intro.intro X : Scheme U : X.Opens x : ↑↑X.toPresheafedSpace hxU : x ∈ U V : X.Opens hV : V ∈ X.affineOpens hxV : x ∈ ↑V hVU : ↑V ⊆ ↑U ⊢ (X.presheaf.map (homOfLE hVU).op ≫ (ΓSpecIso Γ(X, V)).inv ≫ (Spec Γ(X, V)).presheaf.map (homOfLE ⋯).op) ≫ Hom.app (Spec.map (X.presheaf.germ V x hxV)) (IsAffineOpen.fromSpec hV ⁻¹ᵁ U) = (X.presheaf.map (homOfLE hVU).op ≫ X.presheaf.germ V x hxV) ≫ (ΓSpecIso (X.presheaf.stalk x)).inv ≫ (Spec (X.presheaf.stalk x)).presheaf.map (homOfLE ⋯).op
simp [Category.assoc, ← ΓSpecIso_inv_naturality_assoc]
no goals
9e796c10438ef7f2
AlgebraicGeometry.Scheme.smallGrothendieckTopologyOfLE_eq_toGrothendieck_smallPretopology
Mathlib/AlgebraicGeometry/Sites/Small.lean
lemma smallGrothendieckTopologyOfLE_eq_toGrothendieck_smallPretopology (hPQ : P ≤ Q) : S.smallGrothendieckTopologyOfLE hPQ = (S.smallPretopology P Q).toGrothendieck
case h.h.h P Q : MorphismProperty Scheme S : Scheme inst✝⁶ : P.IsMultiplicative inst✝⁵ : P.RespectsIso inst✝⁴ : P.IsStableUnderBaseChange inst✝³ : IsJointlySurjectivePreserving P inst✝² : Q.IsStableUnderComposition inst✝¹ : Q.IsStableUnderBaseChange inst✝ : Q.HasOfPostcompProperty Q hPQ : P ≤ Q X : Q.Over ⊤ S R : Sieve X ⊢ (∃ 𝒰 x, 𝒰.toPresieveOver ≤ (Sieve.functorPushforward (MorphismProperty.Over.forget Q ⊤ S) R).arrows) ↔ ∃ R_1 ∈ (smallPretopology P Q).coverings X, R_1 ≤ R.arrows
constructor
case h.h.h.mp P Q : MorphismProperty Scheme S : Scheme inst✝⁶ : P.IsMultiplicative inst✝⁵ : P.RespectsIso inst✝⁴ : P.IsStableUnderBaseChange inst✝³ : IsJointlySurjectivePreserving P inst✝² : Q.IsStableUnderComposition inst✝¹ : Q.IsStableUnderBaseChange inst✝ : Q.HasOfPostcompProperty Q hPQ : P ≤ Q X : Q.Over ⊤ S R : Sieve X ⊢ (∃ 𝒰 x, 𝒰.toPresieveOver ≤ (Sieve.functorPushforward (MorphismProperty.Over.forget Q ⊤ S) R).arrows) → ∃ R_1 ∈ (smallPretopology P Q).coverings X, R_1 ≤ R.arrows case h.h.h.mpr P Q : MorphismProperty Scheme S : Scheme inst✝⁶ : P.IsMultiplicative inst✝⁵ : P.RespectsIso inst✝⁴ : P.IsStableUnderBaseChange inst✝³ : IsJointlySurjectivePreserving P inst✝² : Q.IsStableUnderComposition inst✝¹ : Q.IsStableUnderBaseChange inst✝ : Q.HasOfPostcompProperty Q hPQ : P ≤ Q X : Q.Over ⊤ S R : Sieve X ⊢ (∃ R_1 ∈ (smallPretopology P Q).coverings X, R_1 ≤ R.arrows) → ∃ 𝒰 x, 𝒰.toPresieveOver ≤ (Sieve.functorPushforward (MorphismProperty.Over.forget Q ⊤ S) R).arrows
d52b87d79c719fdc
HolderOnWith.hausdorffMeasure_image_le
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem hausdorffMeasure_image_le (h : HolderOnWith C r f s) (hr : 0 < r) {d : ℝ} (hd : 0 ≤ d) : μH[d] (f '' s) ≤ (C : ℝ≥0∞) ^ d * μH[r * d] s
case inr.intro.intro.refine_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y inst✝³ : MeasurableSpace X inst✝² : BorelSpace X inst✝¹ : MeasurableSpace Y inst✝ : BorelSpace Y C r : ℝ≥0 f : X → Y s : Set X h : HolderOnWith C r f s hr : 0 < r d : ℝ hd : 0 ≤ d hC0 : 0 < C hCd0 : ↑C ^ d ≠ 0 hCd : ↑C ^ d ≠ ⊤ R : ℝ≥0∞ hR : 0 < R this : Tendsto (fun d => ↑C * d ^ ↑r) (𝓝 0) (𝓝 0) δ : ℝ≥0∞ δ0 : 0 < δ H : ∀ ⦃x : ℝ≥0∞⦄, x ∈ Iic δ → ↑C * x ^ ↑r < R t : ℕ → Set X hst : s ⊆ ⋃ n, t n ⊢ f '' s ⊆ ⋃ n, (fun n => f '' (t n ∩ s)) n
rw [← image_iUnion, ← iUnion_inter]
case inr.intro.intro.refine_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y inst✝³ : MeasurableSpace X inst✝² : BorelSpace X inst✝¹ : MeasurableSpace Y inst✝ : BorelSpace Y C r : ℝ≥0 f : X → Y s : Set X h : HolderOnWith C r f s hr : 0 < r d : ℝ hd : 0 ≤ d hC0 : 0 < C hCd0 : ↑C ^ d ≠ 0 hCd : ↑C ^ d ≠ ⊤ R : ℝ≥0∞ hR : 0 < R this : Tendsto (fun d => ↑C * d ^ ↑r) (𝓝 0) (𝓝 0) δ : ℝ≥0∞ δ0 : 0 < δ H : ∀ ⦃x : ℝ≥0∞⦄, x ∈ Iic δ → ↑C * x ^ ↑r < R t : ℕ → Set X hst : s ⊆ ⋃ n, t n ⊢ f '' s ⊆ f '' ((⋃ i, t i) ∩ s)
cf145f55a786d8cb
Nat.fib_succ_eq_succ_sum
Mathlib/Data/Nat/Fib/Basic.lean
theorem fib_succ_eq_succ_sum (n : ℕ) : fib (n + 1) = (∑ k ∈ Finset.range n, fib k) + 1
n : ℕ ih : fib (n + 1) = ∑ k ∈ Finset.range n, fib k + 1 ⊢ fib n + ∑ k ∈ Finset.range n, fib k + 1 = ∑ k ∈ Finset.range (n + 1), fib k + 1
simp [Finset.range_add_one]
no goals
a427d39ffc0db3ae
Int.fmod_eq_emod
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem fmod_eq_emod (a : Int) {b : Int} (hb : 0 ≤ b) : fmod a b = a % b
a b : Int hb : 0 ≤ b ⊢ a.fmod b = a % b
simp [fmod_def, emod_def, fdiv_eq_ediv _ hb]
no goals
f4ea0ff416263a8e
BoxIntegral.Prepartition.biUnion_le_iff
Mathlib/Analysis/BoxIntegral/Partition/Basic.lean
theorem biUnion_le_iff {πi : ∀ J, Prepartition J} {π' : Prepartition I} : π.biUnion πi ≤ π' ↔ ∀ J ∈ π, πi J ≤ π'.restrict J
case mpr.intro.intro.intro.intro.intro.intro ι : Type u_1 I : Box ι π : Prepartition I πi : (J : Box ι) → Prepartition J π' : Prepartition I H✝ : ∀ J ∈ π, πi J ≤ π'.restrict J J J₁ : Box ι h₁ : J₁ ∈ π hJ : J ∈ πi J₁ J₂ : Box ι h₂ : J₂ ∈ π'.restrict J₁ Hle : J ≤ J₂ J₃ : Box ι h₃ : J₃ ∈ π' H : ↑J₂ = ↑J₁ ⊓ ↑J₃ ⊢ ∃ I' ∈ π', J ≤ I'
exact ⟨J₃, h₃, Hle.trans <| WithBot.coe_le_coe.1 <| H.trans_le inf_le_right⟩
no goals
d064e02582f4c476
IsPrimitiveRoot.arg
Mathlib/RingTheory/RootsOfUnity/Complex.lean
theorem IsPrimitiveRoot.arg {n : ℕ} {ζ : ℂ} (h : IsPrimitiveRoot ζ n) (hn : n ≠ 0) : ∃ i : ℤ, ζ.arg = i / n * (2 * Real.pi) ∧ IsCoprime i n ∧ i.natAbs < n
case neg n : ℕ hn : n ≠ 0 i : ℕ h : i < n hin : i.Coprime n h₂ : ¬i * 2 ≤ n ⊢ (Complex.cos (↑i / ↑n * (2 * ↑Real.pi)) + Complex.sin (↑i / ↑n * (2 * ↑Real.pi)) * Complex.I).arg = ↑(↑i - ↑n) / ↑n * (2 * Real.pi)
rw [← Complex.cos_sub_two_pi, ← Complex.sin_sub_two_pi]
case neg n : ℕ hn : n ≠ 0 i : ℕ h : i < n hin : i.Coprime n h₂ : ¬i * 2 ≤ n ⊢ (Complex.cos (↑i / ↑n * (2 * ↑Real.pi) - 2 * ↑Real.pi) + Complex.sin (↑i / ↑n * (2 * ↑Real.pi) - 2 * ↑Real.pi) * Complex.I).arg = ↑(↑i - ↑n) / ↑n * (2 * Real.pi)
27e9c2564262c07b
IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow
Mathlib/NumberTheory/Cyclotomic/Rat.lean
theorem isIntegralClosure_adjoin_singleton_of_prime_pow [hcycl : IsCyclotomicExtension {p ^ k} ℚ K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) : IsIntegralClosure (adjoin ℤ ({ζ} : Set K)) ℤ K
case refine_1 p : ℕ+ k : ℕ K : Type u inst✝¹ : Field K ζ : K hp : Fact (Nat.Prime ↑p) inst✝ : CharZero K hcycl : IsCyclotomicExtension {p ^ k} ℚ K hζ : IsPrimitiveRoot ζ ↑(p ^ k) x : K h : IsIntegral ℤ x B : PowerBasis ℚ K := IsPrimitiveRoot.subOnePowerBasis ℚ hζ hint : IsIntegral ℤ B.gen this : FiniteDimensional ℚ K := finiteDimensional {p ^ k} ℚ K H : Algebra.discr ℚ ⇑B.basis • x ∈ adjoin ℤ {B.gen} ⊢ x ∈ adjoin ℤ {ζ}
obtain ⟨u, n, hun⟩ := discr_prime_pow_eq_unit_mul_pow' hζ
case refine_1.intro.intro p : ℕ+ k : ℕ K : Type u inst✝¹ : Field K ζ : K hp : Fact (Nat.Prime ↑p) inst✝ : CharZero K hcycl : IsCyclotomicExtension {p ^ k} ℚ K hζ : IsPrimitiveRoot ζ ↑(p ^ k) x : K h : IsIntegral ℤ x B : PowerBasis ℚ K := IsPrimitiveRoot.subOnePowerBasis ℚ hζ hint : IsIntegral ℤ B.gen this : FiniteDimensional ℚ K := finiteDimensional {p ^ k} ℚ K H : Algebra.discr ℚ ⇑B.basis • x ∈ adjoin ℤ {B.gen} u : ℤˣ n : ℕ hun : Algebra.discr ℚ ⇑(IsPrimitiveRoot.subOnePowerBasis ℚ hζ).basis = ↑↑u * ↑↑p ^ n ⊢ x ∈ adjoin ℤ {ζ}
076c1160c95c322f
List.isPrefix_replicate_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem isPrefix_replicate_iff {n} {a : α} {l : List α} : l <+: List.replicate n a ↔ l.length ≤ n ∧ l = List.replicate l.length a
α : Type u_1 n : Nat a : α l : List α ⊢ (∃ t, l ++ t = replicate n a) ↔ l.length ≤ n ∧ l = replicate l.length a
simp only [append_eq_replicate_iff]
α : Type u_1 n : Nat a : α l : List α ⊢ (∃ t, l.length + t.length = n ∧ l = replicate l.length a ∧ t = replicate t.length a) ↔ l.length ≤ n ∧ l = replicate l.length a
d81e01f4aefca35b
EisensteinSeries.div_linear_zpow_differentiableOn
Mathlib/NumberTheory/ModularForms/EisensteinSeries/MDifferentiable.lean
/-- Auxiliary lemma showing that for any `k : ℤ` the function `z → 1/(c*z+d)^k` is differentiable on `{z : ℂ | 0 < z.im}`. -/ lemma div_linear_zpow_differentiableOn (k : ℤ) (a : Fin 2 → ℤ) : DifferentiableOn ℂ (fun z : ℂ => (a 0 * z + a 1) ^ (-k)) {z : ℂ | 0 < z.im}
case inr k : ℤ ⊢ DifferentiableOn ℂ (fun z => 0 ^ (-k)) {z | 0 < z.im}
apply differentiableOn_const
no goals
b522b463994e780a
Polynomial.natDegree_expand
Mathlib/Algebra/Polynomial/Expand.lean
theorem natDegree_expand (p : ℕ) (f : R[X]) : (expand R p f).natDegree = f.natDegree * p
case neg R : Type u inst✝ : CommSemiring R p : ℕ f : R[X] hp : p > 0 hf : ¬f = 0 hf1 : (expand R p) f ≠ 0 ⊢ ((expand R p) f).natDegree = f.natDegree * p
rw [← Nat.cast_inj (R := WithBot ℕ), ← degree_eq_natDegree hf1]
case neg R : Type u inst✝ : CommSemiring R p : ℕ f : R[X] hp : p > 0 hf : ¬f = 0 hf1 : (expand R p) f ≠ 0 ⊢ ((expand R p) f).degree = ↑(f.natDegree * p)
eb7f41a4dec073d7
Subfield.relrank_mul_relrank
Mathlib/FieldTheory/Relrank.lean
theorem relrank_mul_relrank (h1 : A ≤ B) (h2 : B ≤ C) : relrank A B * relrank B C = relrank A C
E : Type v inst✝ : Field E A B C : Subfield E h1 : A ≤ B h2 : B ≤ C h3 : A ≤ C ⊢ A.relrank B * B.relrank C = A.relrank C
rw [relrank_eq_rank_of_le h1, relrank_eq_rank_of_le h2, relrank_eq_rank_of_le h3]
E : Type v inst✝ : Field E A B C : Subfield E h1 : A ≤ B h2 : B ≤ C h3 : A ≤ C ⊢ Module.rank ↥A ↥(extendScalars h1) * Module.rank ↥B ↥(extendScalars h2) = Module.rank ↥A ↥(extendScalars h3)
3c081786cfcd4655
Set.not_equitableOn
Mathlib/Data/Set/Equitable.lean
@[simp] lemma not_equitableOn : ¬s.EquitableOn f ↔ ∃ a ∈ s, ∃ b ∈ s, f b + 1 < f a
α : Type u_1 β : Type u_2 inst✝² : LinearOrder β inst✝¹ : Add β inst✝ : One β s : Set α f : α → β ⊢ ¬s.EquitableOn f ↔ ∃ a ∈ s, ∃ b ∈ s, f b + 1 < f a
simp [EquitableOn]
no goals
af64e873021c1c5c
Submodule.LinearDisjoint.of_basis_left'
Mathlib/LinearAlgebra/LinearDisjoint.lean
theorem of_basis_left' {ι : Type*} (m : Basis ι R M) (H : Function.Injective (mulLeftMap N m)) : M.LinearDisjoint N
R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S M N : Submodule R S ι : Type u_1 m : Basis ι R ↥M H : Function.Injective ⇑(M.mulMap N) ⊢ M.LinearDisjoint N
exact ⟨H⟩
no goals
6c450f6f7004a3ca
hasFDerivAt_integral_of_dominated_loc_of_lip'
Mathlib/Analysis/Calculus/ParametricIntegral.lean
theorem hasFDerivAt_integral_of_dominated_loc_of_lip' {F' : α → H →L[𝕜] E} (ε_pos : 0 < ε) (hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ) (hF_int : Integrable (F x₀) μ) (hF'_meas : AEStronglyMeasurable F' μ) (h_lipsch : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖) (bound_integrable : Integrable (bound : α → ℝ) μ) (h_diff : ∀ᵐ a ∂μ, HasFDerivAt (F · a) (F' a) x₀) : Integrable F' μ ∧ HasFDerivAt (fun x ↦ ∫ a, F x a ∂μ) (∫ a, F' a ∂μ) x₀
case h α : Type u_1 inst✝⁶ : MeasurableSpace α μ : Measure α 𝕜 : Type u_2 inst✝⁵ : RCLike 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedSpace 𝕜 E H : Type u_4 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H F : H → α → E x₀ : H bound : α → ℝ ε : ℝ F' : α → H →L[𝕜] E ε_pos : 0 < ε hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ hF_int : Integrable (F x₀) μ hF'_meas : AEStronglyMeasurable F' μ bound_integrable : Integrable bound μ h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀ x₀_in : x₀ ∈ ball x₀ ε nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹ b : α → ℝ := fun a => |bound a| b_int : Integrable b μ b_nonneg : ∀ (a : α), 0 ≤ b a h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖ hF_int' : ∀ x ∈ ball x₀ ε, Integrable (F x) μ hF'_int : Integrable F' μ hE : CompleteSpace E h_ball : ball x₀ ε ∈ 𝓝 x₀ this : ∀ᶠ (x : H) in 𝓝 x₀, ‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - (∫ (a : α), F' a ∂μ) (x - x₀)‖ = ‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - (F' a) (x - x₀)) ∂μ‖ a✝ : H x_in : a✝ ∈ ball x₀ ε ⊢ AEStronglyMeasurable (fun a => ‖a✝ - x₀‖⁻¹ • (F a✝ a - F x₀ a - (F' a) (a✝ - x₀))) μ
apply AEStronglyMeasurable.const_smul
case h.hf α : Type u_1 inst✝⁶ : MeasurableSpace α μ : Measure α 𝕜 : Type u_2 inst✝⁵ : RCLike 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedSpace 𝕜 E H : Type u_4 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H F : H → α → E x₀ : H bound : α → ℝ ε : ℝ F' : α → H →L[𝕜] E ε_pos : 0 < ε hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ hF_int : Integrable (F x₀) μ hF'_meas : AEStronglyMeasurable F' μ bound_integrable : Integrable bound μ h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀ x₀_in : x₀ ∈ ball x₀ ε nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹ b : α → ℝ := fun a => |bound a| b_int : Integrable b μ b_nonneg : ∀ (a : α), 0 ≤ b a h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖ hF_int' : ∀ x ∈ ball x₀ ε, Integrable (F x) μ hF'_int : Integrable F' μ hE : CompleteSpace E h_ball : ball x₀ ε ∈ 𝓝 x₀ this : ∀ᶠ (x : H) in 𝓝 x₀, ‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - (∫ (a : α), F' a ∂μ) (x - x₀)‖ = ‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - (F' a) (x - x₀)) ∂μ‖ a✝ : H x_in : a✝ ∈ ball x₀ ε ⊢ AEStronglyMeasurable (fun a => F a✝ a - F x₀ a - (F' a) (a✝ - x₀)) μ
a8f4bcb6e23b7fde
AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_self
Mathlib/AlgebraicGeometry/AffineScheme.lean
theorem fromSpec_preimage_self : hU.fromSpec ⁻¹ᵁ U = ⊤
case h X : Scheme U : X.Opens hU : IsAffineOpen U ⊢ ⇑(ConcreteCategory.hom hU.fromSpec.base) ⁻¹' (⇑(ConcreteCategory.hom hU.fromSpec.base) '' Set.univ) = Set.univ
exact Set.preimage_image_eq _ PresheafedSpace.IsOpenImmersion.base_open.injective
no goals
13fff602d49d1869
BitVec.getMsbD_rotateRight_of_lt
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getMsbD_rotateRight_of_lt {w n m : Nat} {x : BitVec w} (hr : m < w) : (x.rotateRight m).getMsbD n = (decide (n < w) && (if (n < m % w) then x.getMsbD ((w + n - m % w) % w) else x.getMsbD (n - m % w)))
n m w : Nat x : BitVec (w + 1) hr : m < w + 1 h : n < m ⊢ n < w + 1
omega
no goals
446d3dd4304c7f2b
LinearOrderedAddCommGroupWithTop.add_eq_top
Mathlib/Algebra/Order/AddGroupWithTop.lean
@[simp] lemma add_eq_top : a + b = ⊤ ↔ a = ⊤ ∨ b = ⊤
α : Type u_1 inst✝ : LinearOrderedAddCommGroupWithTop α a b : α ⊢ a + b = ⊤ ↔ a = ⊤ ∨ b = ⊤
constructor
case mp α : Type u_1 inst✝ : LinearOrderedAddCommGroupWithTop α a b : α ⊢ a + b = ⊤ → a = ⊤ ∨ b = ⊤ case mpr α : Type u_1 inst✝ : LinearOrderedAddCommGroupWithTop α a b : α ⊢ a = ⊤ ∨ b = ⊤ → a + b = ⊤
46f63359352460d5
Real.rpow_le_rpow_of_exponent_nonpos
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
theorem rpow_le_rpow_of_exponent_nonpos {x y : ℝ} (hy : 0 < y) (hxy : y ≤ x) (hz : z ≤ 0) : x ^ z ≤ y ^ z
case inl z x y : ℝ hy : 0 < y hxy : y ≤ x hz : z ≤ 0 hz_zero : z ≠ 0 ⊢ x ^ z ≤ y ^ z case inr x y : ℝ hy : 0 < y hxy : y ≤ x hz : 0 ≤ 0 ⊢ x ^ 0 ≤ y ^ 0
case inl => rcases ne_or_eq x y with hxy' | rfl case inl => exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz) case inr => simp
case inr x y : ℝ hy : 0 < y hxy : y ≤ x hz : 0 ≤ 0 ⊢ x ^ 0 ≤ y ^ 0
5347c035e5dc89b4
Submodule.mem_sSup_of_mem
Mathlib/Algebra/Module/Submodule/Lattice.lean
theorem mem_sSup_of_mem {S : Set (Submodule R M)} {s : Submodule R M} (hs : s ∈ S) : ∀ {x : M}, x ∈ s → x ∈ sSup S
R : Type u_1 M : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M S : Set (Submodule R M) s : Submodule R M hs : s ∈ S this : Preorder.toLE.1 s (sSup S) ⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S
exact this
no goals
97d38de760144cae
alternatingGroup.normalClosure_swap_mul_swap_five
Mathlib/GroupTheory/SpecificGroups/Alternating.lean
theorem normalClosure_swap_mul_swap_five : normalClosure ({⟨swap 0 4 * swap 1 3, mem_alternatingGroup.2 (by decide)⟩} : Set (alternatingGroup (Fin 5))) = ⊤
⊢ sign (swap 0 2 * swap 0 1) = 1
decide
no goals
ff4623cb61a07e92
FermatLastTheoremForThreeGen.Solution.lambda_pow_dvd_a_add_b
Mathlib/NumberTheory/FLT/Three.lean
/-- We have that `λ ^ (3*S.multiplicity-2)` divides `S.a + S.b`. -/ private lemma lambda_pow_dvd_a_add_b : λ ^ (3 * S.multiplicity - 2) ∣ S.a + S.b
K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S : Solution hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K h : λ ^ S.multiplicity ∣ S.c ⊢ (λ ^ S.multiplicity) ^ 3 ∣ ↑S.u * S.c ^ 3
simp [h]
no goals
ca8f590be4efd444
PrimeSpectrum.toPiLocalization_surjective_of_discreteTopology
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
theorem toPiLocalization_surjective_of_discreteTopology : Function.Surjective (toPiLocalization R) := fun x ↦ by have (p : PrimeSpectrum R) : ∃ f, (basicOpen f : Set _) = {p} := have ⟨_, ⟨f, rfl⟩, hpf, hfp⟩ := isTopologicalBasis_basic_opens.isOpen_iff.mp (isOpen_discrete {p}) p rfl ⟨f, hfp.antisymm <| Set.singleton_subset_iff.mpr hpf⟩ choose f hf using this let e := Equiv.ofInjective f fun p q eq ↦ Set.singleton_injective (hf p ▸ eq ▸ hf q) have loc a : IsLocalization.AtPrime (Localization.Away a.1) (e.symm a).1 := (isLocalization_away_iff_atPrime_of_basicOpen_eq_singleton <| hf _).mp <| by simp_rw [e, Equiv.apply_ofInjective_symm]; infer_instance let algE a := IsLocalization.algEquiv (e.symm a).1.primeCompl (Localization.AtPrime (e.symm a).1) (Localization.Away a.1) have span_eq : Ideal.span (Set.range f) = ⊤ := iSup_basicOpen_eq_top_iff.mp <| top_unique fun p _ ↦ TopologicalSpace.Opens.mem_iSup.mpr ⟨p, (hf p).ge rfl⟩ replace hf a : (basicOpen a.1 : Set _) = {e.symm a}
R : Type u inst✝¹ : CommSemiring R inst✝ : DiscreteTopology (PrimeSpectrum R) x : PiLocalization R f : PrimeSpectrum R → R hf : ∀ (p : PrimeSpectrum R), ↑(basicOpen (f p)) = {p} e : PrimeSpectrum R ≃ ↑(Set.range f) := Equiv.ofInjective f ⋯ a : ↑(Set.range f) ⊢ IsLocalization.Away (f (e.symm a)) (Localization.Away ↑a)
simp_rw [e, Equiv.apply_ofInjective_symm]
R : Type u inst✝¹ : CommSemiring R inst✝ : DiscreteTopology (PrimeSpectrum R) x : PiLocalization R f : PrimeSpectrum R → R hf : ∀ (p : PrimeSpectrum R), ↑(basicOpen (f p)) = {p} e : PrimeSpectrum R ≃ ↑(Set.range f) := Equiv.ofInjective f ⋯ a : ↑(Set.range f) ⊢ IsLocalization.Away (↑a) (Localization.Away ↑a)
680284c76fd78d8c
FormalMultilinearSeries.comp_coeff_one
Mathlib/Analysis/Analytic/Composition.lean
theorem comp_coeff_one (q : FormalMultilinearSeries 𝕜 F G) (p : FormalMultilinearSeries 𝕜 E F) (v : Fin 1 → E) : (q.comp p) 1 v = q 1 fun _i => p 1 v
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁵ : CommRing 𝕜 inst✝¹⁴ : AddCommGroup E inst✝¹³ : AddCommGroup F inst✝¹² : AddCommGroup G inst✝¹¹ : Module 𝕜 E inst✝¹⁰ : Module 𝕜 F inst✝⁹ : Module 𝕜 G inst✝⁸ : TopologicalSpace E inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalSpace G inst✝⁵ : IsTopologicalAddGroup E inst✝⁴ : ContinuousConstSMul 𝕜 E inst✝³ : IsTopologicalAddGroup F inst✝² : ContinuousConstSMul 𝕜 F inst✝¹ : IsTopologicalAddGroup G inst✝ : ContinuousConstSMul 𝕜 G q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F v : Fin 1 → E ⊢ {Composition.ones 1}.card = Fintype.card (Composition 1)
simp [composition_card]
no goals
2ac1709b5f4213f3
CategoryTheory.MorphismProperty.IsInvertedBy.leftOp
Mathlib/CategoryTheory/MorphismProperty/IsInvertedBy.lean
theorem leftOp {W : MorphismProperty C} {L : C ⥤ Dᵒᵖ} (h : W.IsInvertedBy L) : W.op.IsInvertedBy L.leftOp := fun X Y f hf => by haveI := h f.unop hf dsimp infer_instance
C : Type u inst✝¹ : Category.{v, u} C D : Type u' inst✝ : Category.{v', u'} D W : MorphismProperty C L : C ⥤ Dᵒᵖ h : W.IsInvertedBy L X Y : Cᵒᵖ f : X ⟶ Y hf : W.op f ⊢ IsIso (L.leftOp.map f)
haveI := h f.unop hf
C : Type u inst✝¹ : Category.{v, u} C D : Type u' inst✝ : Category.{v', u'} D W : MorphismProperty C L : C ⥤ Dᵒᵖ h : W.IsInvertedBy L X Y : Cᵒᵖ f : X ⟶ Y hf : W.op f this : IsIso (L.map f.unop) ⊢ IsIso (L.leftOp.map f)
9cb9a5e070efd211
WeierstrassCurve.coeff_preΨ'_ne_zero
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Degree.lean
lemma coeff_preΨ'_ne_zero {n : ℕ} (h : (n : R) ≠ 0) : (W.preΨ' n).coeff ((n ^ 2 - if Even n then 4 else 1) / 2) ≠ 0
case intro.inl R : Type u inst✝ : CommRing R W : WeierstrassCurve R n : ℕ h : ↑(2 * n) ≠ 0 ⊢ (W.preΨ' (2 * n)).coeff (((2 * n) ^ 2 - if Even (2 * n) then 4 else 1) / 2) ≠ 0
rw [coeff_preΨ', if_pos <| even_two_mul n, n.mul_div_cancel_left two_pos]
case intro.inl R : Type u inst✝ : CommRing R W : WeierstrassCurve R n : ℕ h : ↑(2 * n) ≠ 0 ⊢ ↑n ≠ 0
fccb7dd4d924abaf
CategoryTheory.Pretriangulated.Triangle.coyoneda_exact₂
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
lemma coyoneda_exact₂ {X : C} (f : X ⟶ T.obj₂) (hf : f ≫ T.mor₂ = 0) : ∃ (g : X ⟶ T.obj₁), f = g ≫ T.mor₁
C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive hC : Pretriangulated C T : Triangle C hT : T ∈ distinguishedTriangles X : C f : X ⟶ T.obj₂ hf : f ≫ T.mor₂ = 0 a : (contractibleTriangle X).obj₁ ⟶ T.obj₁ ha₁ : (contractibleTriangle X).mor₁ ≫ f = a ≫ T.mor₁ right✝ : (contractibleTriangle X).mor₃ ≫ (CategoryTheory.shiftFunctor C 1).map a = 0 ≫ T.mor₃ ⊢ f = a ≫ T.mor₁
simpa using ha₁
no goals
bd5002c2de82ef50
IsOfFinOrder.of_mem_zpowers
Mathlib/GroupTheory/OrderOfElement.lean
theorem IsOfFinOrder.of_mem_zpowers (h : IsOfFinOrder x) (h' : y ∈ Subgroup.zpowers x) : IsOfFinOrder y
case intro G : Type u_1 inst✝ : Group G x : G h : IsOfFinOrder x k : ℤ h' : x ^ k ∈ zpowers x ⊢ IsOfFinOrder (x ^ k)
exact h.zpow
no goals
bb35899fd4351fd8
CliffordAlgebra.toEven_ι
Mathlib/LinearAlgebra/CliffordAlgebra/EvenEquiv.lean
theorem toEven_ι (m : M) : (toEven Q (ι Q m) : CliffordAlgebra (Q' Q)) = e0 Q * v Q m
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M m : M ⊢ (LinearMap.mulLeft R (e0 Q) ∘ₗ v Q) m = e0 Q * (v Q) m
rw [LinearMap.coe_comp, Function.comp_apply, LinearMap.mulLeft_apply]
no goals
4b729990bfda8273
ComplexShape.Embedding.homRestrict.f_eq
Mathlib/Algebra/Homology/Embedding/HomEquiv.lean
lemma f_eq {i : ι} {i' : ι'} (h : e.f i = i') : f ψ i = (K.restrictionXIso e h).hom ≫ ψ.f i' ≫ (L.extendXIso e h).hom
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' e : c.Embedding c' C : Type u_3 inst✝³ : Category.{u_4, u_3} C inst✝² : HasZeroMorphisms C inst✝¹ : HasZeroObject C K : HomologicalComplex C c' L : HomologicalComplex C c inst✝ : e.IsRelIff ψ : K ⟶ L.extend e i : ι ⊢ f ψ i = (K.restrictionXIso e ⋯).hom ≫ ψ.f (e.f i) ≫ (L.extendXIso e ⋯).hom
simp [f, restrictionXIso]
no goals
f5405c6a7b0e3ab8
Multiset.map_eq_map_of_bij_of_nodup
Mathlib/Data/Multiset/Nodup.lean
theorem map_eq_map_of_bij_of_nodup (f : α → γ) (g : β → γ) {s : Multiset α} {t : Multiset β} (hs : s.Nodup) (ht : t.Nodup) (i : ∀ a ∈ s, β) (hi : ∀ a ha, i a ha ∈ t) (i_inj : ∀ a₁ ha₁ a₂ ha₂, i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂) (i_surj : ∀ b ∈ t, ∃ a ha, i a ha = b) (h : ∀ a ha, f a = g (i a ha)) : s.map f = t.map g
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → γ g : β → γ s : Multiset α t : Multiset β hs : s.Nodup ht : t.Nodup i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t i_inj : ∀ (a₁ : α) (ha₁ : a₁ ∈ s) (a₂ : α) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ b ∈ t, ∃ a, ∃ (ha : a ∈ s), i a ha = b h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) this : t = map (fun x => i ↑x ⋯) s.attach ⊢ map (fun x => f ↑x) s.attach = map (g ∘ fun x => i ↑x ⋯) s.attach
exact map_congr rfl fun x _ => h _ _
no goals
75d9895300027737
Real.differentiableAt_Gamma
Mathlib/Analysis/SpecialFunctions/Gamma/Deriv.lean
theorem differentiableAt_Gamma {s : ℝ} (hs : ∀ m : ℕ, s ≠ -m) : DifferentiableAt ℝ Gamma s
s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ ∀ (m : ℕ), ¬s = -↑m
exact hs
no goals
35506c9ecfa9da1d
Fin.map_valEmbedding_Iic
Mathlib/Order/Interval/Finset/Fin.lean
theorem map_valEmbedding_Iic : (Iic b).map Fin.valEmbedding = Iic ↑b
n : ℕ b : Fin n ⊢ map valEmbedding (Iic b) = Iic ↑b
simp [Iic_eq_finset_subtype, Finset.fin, Finset.map_map, Iic_filter_lt_of_lt_right]
no goals
94722a0b3074eb1d
Ordinal.mem_closure_tfae
Mathlib/SetTheory/Ordinal/Topology.lean
theorem mem_closure_tfae (a : Ordinal.{u}) (s : Set Ordinal) : TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ t.Nonempty ∧ BddAbove t ∧ sSup t = a, ∃ (o : Ordinal.{u}), o ≠ 0 ∧ ∃ (f : ∀ x < o, Ordinal), (∀ x hx, f x hx ∈ s) ∧ bsup.{u, u} o f = a, ∃ (ι : Type u), Nonempty ι ∧ ∃ f : ι → Ordinal, (∀ i, f i ∈ s) ∧ ⨆ i, f i = a]
case inl a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) x✝ : a ∈ closure (s ∩ Iic a) h : a ∈ closure (s ∩ Iic a) := x✝ he : s ∩ Iic a = ∅ ⊢ (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a
simp [he] at h
no goals
f361ec1995f661dc
Orientation.oangle_rotation_self_right
Mathlib/Geometry/Euclidean/Angle/Oriented/Rotation.lean
theorem oangle_rotation_self_right {x : V} (hx : x ≠ 0) (θ : Real.Angle) : o.oangle x (o.rotation θ x) = θ
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x : V hx : x ≠ 0 θ : Real.Angle ⊢ o.oangle x ((o.rotation θ) x) = θ
simp [hx]
no goals
21c9a49259599093
PadicSeq.norm_eq_zpow_neg_valuation
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem norm_eq_zpow_neg_valuation {f : PadicSeq p} (hf : ¬f ≈ 0) : f.norm = (p : ℚ) ^ (-f.valuation : ℤ)
case hnc p : ℕ inst✝ : Fact (Nat.Prime p) f : PadicSeq p hf : ¬f ≈ 0 H : ↑f (stationaryPoint hf) = 0 ⊢ False
apply CauSeq.not_limZero_of_not_congr_zero hf
case hnc p : ℕ inst✝ : Fact (Nat.Prime p) f : PadicSeq p hf : ¬f ≈ 0 H : ↑f (stationaryPoint hf) = 0 ⊢ LimZero f
45ff701a2243d145
TruncatedWittVector.eq_of_le_of_cast_pow_eq_zero
Mathlib/RingTheory/WittVector/Compare.lean
theorem eq_of_le_of_cast_pow_eq_zero [CharP R p] (i : ℕ) (hin : i ≤ n) (hpi : (p : TruncatedWittVector p n R) ^ i = 0) : i = n
p : ℕ hp : Fact (Nat.Prime p) n : ℕ R : Type u_1 inst✝¹ : CommRing R inst✝ : CharP R p i : ℕ hin : i < n this : ↑p ^ i = (WittVector.truncate n) (↑p ^ i) ⊢ ↑p ^ i ≠ 0
rw [this, ne_eq, TruncatedWittVector.ext_iff, not_forall]
p : ℕ hp : Fact (Nat.Prime p) n : ℕ R : Type u_1 inst✝¹ : CommRing R inst✝ : CharP R p i : ℕ hin : i < n this : ↑p ^ i = (WittVector.truncate n) (↑p ^ i) ⊢ ∃ x, ¬coeff x ((WittVector.truncate n) (↑p ^ i)) = coeff x 0
37d90faaabbdab7c
SimpleGraph.IsClique.of_induce
Mathlib/Combinatorics/SimpleGraph/Clique.lean
theorem IsClique.of_induce {S : Subgraph G} {F : Set α} {A : Set F} (c : (S.induce F).coe.IsClique A) : G.IsClique (Subtype.val '' A)
α : Type u_1 G : SimpleGraph α S : G.Subgraph F : Set α A : Set ↑F c : (S.induce F).coe.IsClique A ⊢ ∀ ⦃x : α⦄, (∃ (x_1 : x ∈ F), ⟨x, ⋯⟩ ∈ A) → ∀ ⦃y : α⦄, (∃ (x : y ∈ F), ⟨y, ⋯⟩ ∈ A) → x ≠ y → G.Adj x y
intro _ ⟨_, ainA⟩ _ ⟨_, binA⟩ anb
α : Type u_1 G : SimpleGraph α S : G.Subgraph F : Set α A : Set ↑F c : (S.induce F).coe.IsClique A x✝ : α w✝¹ : x✝ ∈ F ainA : ⟨x✝, ⋯⟩ ∈ A y✝ : α w✝ : y✝ ∈ F binA : ⟨y✝, ⋯⟩ ∈ A anb : x✝ ≠ y✝ ⊢ G.Adj x✝ y✝
e25505f81b0d4e77
Turing.ToPartrec.Code.exists_code
Mathlib/Computability/TMConfig.lean
theorem exists_code {n} {f : List.Vector ℕ n →. ℕ} (hf : Nat.Partrec' f) : ∃ c : Code, ∀ v : List.Vector ℕ n, c.eval v.1 = pure <$> f v
case rfind.intro.mp n✝ : ℕ f✝ : List.Vector ℕ n✝ →. ℕ n : ℕ f : List.Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : List.Vector ℕ n hf : ∀ (a : ℕ), cf.eval (a :: ↑v) = Part.some [f (a ::ᵥ v)] x : List ℕ ⊢ (∃ a ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) (0 :: ↑v), x = [a.headI.pred]) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = x
rintro ⟨v', h1, rfl⟩
case rfind.intro.mp.intro.intro n✝ : ℕ f✝ : List.Vector ℕ n✝ →. ℕ n : ℕ f : List.Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : List.Vector ℕ n hf : ∀ (a : ℕ), cf.eval (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' : List ℕ h1 : v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) (0 :: ↑v) ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = [v'.headI.pred]
01823c87e1740c3b
WType.cardinalMk_le_max_aleph0_of_finite'
Mathlib/Data/W/Cardinal.lean
theorem cardinalMk_le_max_aleph0_of_finite' [∀ a, Finite (β a)] : #(WType β) ≤ max (lift.{v} #α) ℵ₀ := (isEmpty_or_nonempty α).elim (by intro h rw [Cardinal.mk_eq_zero (WType β)] exact zero_le _) fun hn => let m := max (lift.{v} #α) ℵ₀ cardinalMk_le_of_le' <| calc (Cardinal.sum fun a => m ^ lift.{u} #(β a)) ≤ lift.{v} #α * ⨆ a, m ^ lift.{u} #(β a) := Cardinal.sum_le_iSup_lift _ _ ≤ m * ⨆ a, m ^ lift.{u} #(β a) := mul_le_mul' (le_max_left _ _) le_rfl _ = m := mul_eq_left (le_max_right _ _) (ciSup_le' fun _ => pow_le (le_max_right _ _) (lt_aleph0_of_finite _)) <| pos_iff_ne_zero.1 <| Order.succ_le_iff.1 (by rw [succ_zero] obtain ⟨a⟩ : Nonempty α := hn refine le_trans ?_ (le_ciSup (bddAbove_range _) a) rw [← power_zero] exact power_le_power_left (pos_iff_ne_zero.1 (aleph0_pos.trans_le (le_max_right _ _))) (zero_le _))
α : Type u β : α → Type v inst✝ : ∀ (a : α), Finite (β a) hn : Nonempty α m : Cardinal.{max u v} := lift.{v, u} #α ⊔ ℵ₀ ⊢ Order.succ 0 ≤ ⨆ a, m ^ lift.{u, v} #(β a)
rw [succ_zero]
α : Type u β : α → Type v inst✝ : ∀ (a : α), Finite (β a) hn : Nonempty α m : Cardinal.{max u v} := lift.{v, u} #α ⊔ ℵ₀ ⊢ 1 ≤ ⨆ a, m ^ lift.{u, v} #(β a)
943db473760739a3
FormalMultilinearSeries.derivSeries_eq_zero
Mathlib/Analysis/Analytic/ChangeOrigin.lean
theorem derivSeries_eq_zero {n : ℕ} (hp : p (n + 1) = 0) : p.derivSeries n = 0
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F n : ℕ hp : p (n + 1) = 0 this : p.changeOriginSeries 1 n = 0 ⊢ p.derivSeries n = 0
ext v
case H.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F n : ℕ hp : p (n + 1) = 0 this : p.changeOriginSeries 1 n = 0 v : Fin n → E x✝ : E ⊢ ((p.derivSeries n) v) x✝ = (0 v) x✝
e92bd3437a4bd85b
MeasureTheory.IntegrableOn.hasBoxIntegral
Mathlib/Analysis/BoxIntegral/Integrability.lean
theorem IntegrableOn.hasBoxIntegral [CompleteSpace E] {f : (ι → ℝ) → E} {μ : Measure (ι → ℝ)} [IsLocallyFiniteMeasure μ] {I : Box ι} (hf : IntegrableOn f I μ) (l : IntegrationParams) (hl : l.bRiemann = false) : HasIntegral.{u, v, v} I l f μ.toBoxAdditive.toSMul (∫ x in I, f x ∂μ)
case intro.intro.intro.intro.intro.intro.intro.intro.refine_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g (↑I) μ f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g ⋯ (Set.range g ∪ {0}) 0 ⋯ hfi : ∀ (n : ℕ), IntegrableOn (⇑(f n)) (↑I) μ hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (⇑(f n)) μ.toBoxAdditive.toSMul hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖(f n) x - g x‖ ≤ ‖(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist ((f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => ⋯.convergenceR (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : l.MemBaseSet I c (r c) π hπp : π.IsPartition ⊢ dist (∑ J ∈ π.boxes, ∫ (x : ι → ℝ) in ↑J, (f (Nx (π.tag J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ↑ε
refine le_trans ?_ hN₀
case intro.intro.intro.intro.intro.intro.intro.intro.refine_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g (↑I) μ f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g ⋯ (Set.range g ∪ {0}) 0 ⋯ hfi : ∀ (n : ℕ), IntegrableOn (⇑(f n)) (↑I) μ hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (⇑(f n)) μ.toBoxAdditive.toSMul hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖(f n) x - g x‖ ≤ ‖(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist ((f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => ⋯.convergenceR (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : l.MemBaseSet I c (r c) π hπp : π.IsPartition ⊢ dist (∑ J ∈ π.boxes, ∫ (x : ι → ℝ) in ↑J, (f (Nx (π.tag J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ∫ (x : ι → ℝ) in ↑I, ‖(f N₀) x - g x‖ ∂μ
1cd867d174f2adc3
Polynomial.scaleRoots_eval₂_mul_of_commute
Mathlib/RingTheory/Polynomial/ScaleRoots.lean
theorem scaleRoots_eval₂_mul_of_commute {p : S[X]} (f : S →+* A) (a : A) (s : S) (hsa : Commute (f s) a) (hf : ∀ s₁ s₂, Commute (f s₁) (f s₂)) : eval₂ f (f s * a) (scaleRoots p s) = f s ^ p.natDegree * eval₂ f a p
S : Type u_2 A : Type u_3 inst✝¹ : Semiring S inst✝ : Semiring A p : S[X] f : S →+* A a : A s : S hsa : Commute (f s) a hf : ∀ (s₁ s₂ : S), Commute (f s₁) (f s₂) ⊢ ∑ i ∈ p.support, f s ^ p.natDegree * (f (p.coeff i) * a ^ i) = f s ^ p.natDegree * eval₂ f a p
simp [← Finset.mul_sum, eval₂_eq_sum, sum_def]
no goals
72127d2a3a809905
Mathlib.Tactic.Abel.term_smul
Mathlib/Tactic/Abel.lean
theorem term_smul {α} [AddCommMonoid α] (c n x a n' a') (h₁ : c * n = n') (h₂ : smul c a = a') : smul c (@term α _ n x a) = term n' x a'
α : Type u_1 inst✝ : AddCommMonoid α c n : ℕ x a : α n' : ℕ a' : α h₁ : c * n = n' h₂ : smul c a = a' ⊢ smul c (term n x a) = term n' x a'
simp [h₂.symm, h₁.symm, term, smul, nsmul_add, mul_nsmul']
no goals
459cd529084993cd
Stream'.Seq.terminatedAt_zero_iff
Mathlib/Data/Seq/Seq.lean
theorem terminatedAt_zero_iff {s : Seq α} : s.TerminatedAt 0 ↔ s = nil
case refine_1 α : Type u s : Seq α h : s.TerminatedAt 0 ⊢ s = nil
ext n
case refine_1.h.a α : Type u s : Seq α h : s.TerminatedAt 0 n : ℕ a✝ : α ⊢ a✝ ∈ s.get? n ↔ a✝ ∈ nil.get? n
10aa63b0fda6161a
ax_grothendieck_of_locally_finite
Mathlib/FieldTheory/AxGrothendieck.lean
theorem ax_grothendieck_of_locally_finite {ι K R : Type*} [Field K] [Finite K] [CommRing R] [Finite ι] [Algebra K R] [alg : Algebra.IsAlgebraic K R] (ps : ι → MvPolynomial ι R) (S : Set (ι → R)) (hm : S.MapsTo (fun v i => eval v (ps i)) S) (hinj : S.InjOn (fun v i => eval v (ps i))) : S.SurjOn (fun v i => eval v (ps i)) S
case intro.intro.mk ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R S : Set (ι → R) hm : Set.MapsTo (fun v i => (eval v) (ps i)) S S hinj : Set.InjOn (fun v i => (eval v) (ps i)) S is_int : ∀ (x : R), IsIntegral K x v : ι → R hvS : v ∈ S val✝ : Fintype ι s : Finset R := (univ.biUnion fun i => image (fun x => coeff x (ps i)) (ps i).support) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι), ∀ k ∈ (ps i).support, coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K ↥(Algebra.adjoin K ↑s) this✝ : Module.Finite K ↥(Algebra.adjoin K ↑s) this : Finite ↥(Algebra.adjoin K ↑s) S' : Set (ι → ↥(Algebra.adjoin K ↑s)) := (fun v => Subtype.val ∘ v) ⁻¹' S res : ↑S' → ↑S' := fun x => ⟨fun i => ⟨(eval fun j => ↑(↑x j)) (ps i), ⋯⟩, ⋯⟩ hres_surj : Function.Surjective res w : ι → ↥(Algebra.adjoin K ↑s) hwS' : w ∈ S' hw : res ⟨w, hwS'⟩ = ⟨fun i => ⟨v i, ⋯⟩, hvS⟩ ⊢ ((fun v i => (eval v) (ps i)) fun i => ↑(w i)) = v
simpa [Subtype.ext_iff, funext_iff] using hw
no goals
6b85e3de256b7145
Filter.Realizer.mem_sets
Mathlib/Data/Analysis/Filter.lean
theorem mem_sets {f : Filter α} (F : f.Realizer) {a : Set α} : a ∈ f ↔ ∃ b, F.F b ⊆ a
case mk α : Type u_1 a : Set α σ✝ : Type u_5 F✝ : CFilter (Set α) σ✝ ⊢ a ∈ F✝.toFilter ↔ ∃ b, { σ := σ✝, F := F✝, eq := ⋯ }.F.f b ⊆ a
rfl
no goals
18165e4fada01f24
Std.DHashMap.Internal.List.Const.getKey?_modifyKey
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getKey?_modifyKey [EquivBEq α] {k k' : α} {f : β → β} (l : List ((_ : α) × β)) (hl : DistinctKeys l) : getKey? k' (modifyKey k f l) = if k == k' then if containsKey k l then some k else none else getKey? k' l
α : Type u β : Type v inst✝¹ : BEq α inst✝ : EquivBEq α k k' : α f : β → β l : List ((_ : α) × β) hl : DistinctKeys l ⊢ getKey? k' (modifyKey k f l) = if (k == k') = true then if containsKey k l = true then some k else none else getKey? k' l
simp [modifyKey_eq_alterKey, getKey?_alterKey, containsKey_eq_isSome_getValue?, hl]
no goals
678544991fa81927
MeasureTheory.AEEqFun.inf_le_right
Mathlib/MeasureTheory/Function/AEEqFun.lean
theorem inf_le_right (f g : α →ₘ[μ] β) : f ⊓ g ≤ g
α : Type u_1 β : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : TopologicalSpace β inst✝¹ : SemilatticeInf β inst✝ : ContinuousInf β f g : α →ₘ[μ] β ⊢ ↑(f ⊓ g) ≤ᶠ[ae μ] ↑g
filter_upwards [coeFn_inf f g] with _ ha
case h α : Type u_1 β : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : TopologicalSpace β inst✝¹ : SemilatticeInf β inst✝ : ContinuousInf β f g : α →ₘ[μ] β a✝ : α ha : ↑(f ⊓ g) a✝ = ↑f a✝ ⊓ ↑g a✝ ⊢ ↑(f ⊓ g) a✝ ≤ ↑g a✝
4d1b7a227e1bb493
Ring.choose_succ_succ
Mathlib/RingTheory/Binomial.lean
theorem choose_succ_succ [NatPowAssoc R] (r : R) (k : ℕ) : choose (r + 1) (k + 1) = choose r k + choose r (k + 1)
R : Type u_1 inst✝³ : NonAssocRing R inst✝² : Pow R ℕ inst✝¹ : BinomialRing R inst✝ : NatPowAssoc R r : R k : ℕ ⊢ choose (r + 1) (k + 1) = choose r k + choose r (k + 1)
rw [← nsmul_right_inj (Nat.factorial_ne_zero (k + 1))]
R : Type u_1 inst✝³ : NonAssocRing R inst✝² : Pow R ℕ inst✝¹ : BinomialRing R inst✝ : NatPowAssoc R r : R k : ℕ ⊢ (k + 1).factorial • choose (r + 1) (k + 1) = (k + 1).factorial • (choose r k + choose r (k + 1))
db680efa3366c602
MeasureTheory.addHaar_image_le_mul_of_det_lt
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem addHaar_image_le_mul_of_det_lt (A : E →L[ℝ] E) {m : ℝ≥0} (hm : ENNReal.ofReal |A.det| < m) : ∀ᶠ δ in 𝓝[>] (0 : ℝ≥0), ∀ (s : Set E) (f : E → E), ApproximatesLinearOn f A s δ → μ (f '' s) ≤ m * μ s
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : E →L[ℝ] E m : ℝ≥0 hm : ENNReal.ofReal |A.det| < ↑m d : ℝ≥0∞ := ENNReal.ofReal |A.det| ε : ℝ hε : μ (closedBall 0 ε + ⇑A '' closedBall 0 1) < ↑m * μ (closedBall 0 1) εpos : 0 < ε this✝ : Iio ⟨ε, ⋯⟩ ∈ 𝓝 0 δ : ℝ≥0 s : Set E f : E → E hf : ApproximatesLinearOn f A s δ hδ : ↑δ < ε I : ∀ (x : E) (r : ℝ), x ∈ s → 0 ≤ r → μ (f '' (s ∩ closedBall x r)) ≤ ↑m * μ (closedBall x r) a : ℝ≥0∞ ha : 0 < a t : Set E r : E → ℝ t_count : t.Countable ts : t ⊆ s rpos : ∀ x ∈ t, 0 < r x st : s ⊆ ⋃ x ∈ t, closedBall x (r x) μt : ∑' (x : ↑t), μ (closedBall (↑x) (r ↑x)) ≤ μ s + a this : Encodable ↑t ⊢ ∑' (x : ↑t), ↑m * μ (closedBall (↑x) (r ↑x)) ≤ ↑m * (μ s + a)
rw [ENNReal.tsum_mul_left]
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : E →L[ℝ] E m : ℝ≥0 hm : ENNReal.ofReal |A.det| < ↑m d : ℝ≥0∞ := ENNReal.ofReal |A.det| ε : ℝ hε : μ (closedBall 0 ε + ⇑A '' closedBall 0 1) < ↑m * μ (closedBall 0 1) εpos : 0 < ε this✝ : Iio ⟨ε, ⋯⟩ ∈ 𝓝 0 δ : ℝ≥0 s : Set E f : E → E hf : ApproximatesLinearOn f A s δ hδ : ↑δ < ε I : ∀ (x : E) (r : ℝ), x ∈ s → 0 ≤ r → μ (f '' (s ∩ closedBall x r)) ≤ ↑m * μ (closedBall x r) a : ℝ≥0∞ ha : 0 < a t : Set E r : E → ℝ t_count : t.Countable ts : t ⊆ s rpos : ∀ x ∈ t, 0 < r x st : s ⊆ ⋃ x ∈ t, closedBall x (r x) μt : ∑' (x : ↑t), μ (closedBall (↑x) (r ↑x)) ≤ μ s + a this : Encodable ↑t ⊢ ↑m * ∑' (i : ↑t), μ (closedBall (↑i) (r ↑i)) ≤ ↑m * (μ s + a)
35c8118ffea35652
Polynomial.Splits.comp_of_map_degree_le_one
Mathlib/Algebra/Polynomial/Splits.lean
theorem Splits.comp_of_map_degree_le_one {f : K[X]} {p : K[X]} (hd : (p.map i).degree ≤ 1) (h : f.Splits i) : (f.comp p).Splits i
case neg K : Type v L : Type w inst✝¹ : CommRing K inst✝ : Field L i : K →+* L f p : K[X] hd : (map i p).degree ≤ 1 h : Splits i f hzero : ¬map i (f.comp p) = 0 ⊢ Splits i (f.comp p)
cases h with | inl h0 => exact Or.inl <| map_comp i _ _ ▸ h0.symm ▸ zero_comp | inr h => right intro g irr dvd rw [map_comp] at dvd hzero cases lt_or_eq_of_le hd with | inl hd => rw [eq_C_of_degree_le_zero (Nat.WithBot.lt_one_iff_le_zero.mp hd), comp_C] at dvd hzero refine False.elim (irr.1 (isUnit_of_dvd_unit dvd ?_)) simpa using hzero | inr hd => let _ := invertibleOfNonzero (leadingCoeff_ne_zero.mpr (ne_zero_of_degree_gt (n := ⊥) (by rw [hd]; decide))) rw [eq_X_add_C_of_degree_eq_one hd, dvd_comp_C_mul_X_add_C_iff _ _] at dvd have := h (irr.map (algEquivCMulXAddC _ _).symm) dvd rw [degree_eq_natDegree irr.ne_zero] rwa [algEquivCMulXAddC_symm_apply, ← comp_eq_aeval, degree_eq_natDegree (fun h => WithBot.bot_ne_one (h ▸ this)), natDegree_comp, natDegree_C_mul (invertibleInvOf.ne_zero), natDegree_X_sub_C, mul_one] at this
no goals
7862ae74e5525276
derivWithin_finset_prod
Mathlib/Analysis/Calculus/Deriv/Mul.lean
theorem derivWithin_finset_prod (hf : ∀ i ∈ u, DifferentiableWithinAt 𝕜 (f i) s x) : derivWithin (∏ i ∈ u, f i ·) s x = ∑ i ∈ u, (∏ j ∈ u.erase i, f j x) • derivWithin (f i) s x
𝕜 : Type u inst✝³ : NontriviallyNormedField 𝕜 x : 𝕜 s : Set 𝕜 ι : Type u_2 inst✝² : DecidableEq ι 𝔸' : Type u_3 inst✝¹ : NormedCommRing 𝔸' inst✝ : NormedAlgebra 𝕜 𝔸' u : Finset ι f : ι → 𝕜 → 𝔸' hf : ∀ i ∈ u, DifferentiableWithinAt 𝕜 (f i) s x ⊢ derivWithin (fun x => ∏ i ∈ u, f i x) s x = ∑ i ∈ u, (∏ j ∈ u.erase i, f j x) • derivWithin (f i) s x
rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
case inl 𝕜 : Type u inst✝³ : NontriviallyNormedField 𝕜 x : 𝕜 s : Set 𝕜 ι : Type u_2 inst✝² : DecidableEq ι 𝔸' : Type u_3 inst✝¹ : NormedCommRing 𝔸' inst✝ : NormedAlgebra 𝕜 𝔸' u : Finset ι f : ι → 𝕜 → 𝔸' hf : ∀ i ∈ u, DifferentiableWithinAt 𝕜 (f i) s x hxs : UniqueDiffWithinAt 𝕜 s x ⊢ derivWithin (fun x => ∏ i ∈ u, f i x) s x = ∑ i ∈ u, (∏ j ∈ u.erase i, f j x) • derivWithin (f i) s x case inr 𝕜 : Type u inst✝³ : NontriviallyNormedField 𝕜 x : 𝕜 s : Set 𝕜 ι : Type u_2 inst✝² : DecidableEq ι 𝔸' : Type u_3 inst✝¹ : NormedCommRing 𝔸' inst✝ : NormedAlgebra 𝕜 𝔸' u : Finset ι f : ι → 𝕜 → 𝔸' hf : ∀ i ∈ u, DifferentiableWithinAt 𝕜 (f i) s x hxs : 𝓝[s \ {x}] x = ⊥ ⊢ derivWithin (fun x => ∏ i ∈ u, f i x) s x = ∑ i ∈ u, (∏ j ∈ u.erase i, f j x) • derivWithin (f i) s x
569cd40d28616fff
CliffordAlgebra.lift_unique
Mathlib/LinearAlgebra/CliffordAlgebra/Basic.lean
theorem lift_unique (f : M →ₗ[R] A) (cond : ∀ m : M, f m * f m = algebraMap _ _ (Q m)) (g : CliffordAlgebra Q →ₐ[R] A) : g.toLinearMap.comp (ι Q) = f ↔ g = lift Q ⟨f, cond⟩
R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M Q : QuadraticForm R M A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : M →ₗ[R] A cond : ∀ (m : M), f m * f m = (algebraMap R A) (Q m) g : CliffordAlgebra Q →ₐ[R] A ⊢ g.toLinearMap ∘ₗ ι Q = f ↔ g = (lift Q) ⟨f, cond⟩
convert (lift Q : _ ≃ (CliffordAlgebra Q →ₐ[R] A)).symm_apply_eq
case h.e'_1.a R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M Q : QuadraticForm R M A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : M →ₗ[R] A cond : ∀ (m : M), f m * f m = (algebraMap R A) (Q m) g : CliffordAlgebra Q →ₐ[R] A ⊢ g.toLinearMap ∘ₗ ι Q = f ↔ (lift Q).symm g = ⟨f, cond⟩
ae71a02960c21142
Topology.IsInducing.frechetUrysohnSpace
Mathlib/Topology/Sequences.lean
theorem Topology.IsInducing.frechetUrysohnSpace [FrechetUrysohnSpace Y] {f : X → Y} (hf : IsInducing f) : FrechetUrysohnSpace X
case intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : FrechetUrysohnSpace Y f : X → Y hf : IsInducing f s : Set X x : X u : ℕ → Y hus : ∀ (n : ℕ), u n ∈ f '' s hu : Tendsto u atTop (𝓝 (f x)) ⊢ x ∈ seqClosure s
choose v hv hvu using hus
case intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : FrechetUrysohnSpace Y f : X → Y hf : IsInducing f s : Set X x : X u : ℕ → Y hu : Tendsto u atTop (𝓝 (f x)) v : ℕ → X hv : ∀ (n : ℕ), v n ∈ s hvu : ∀ (n : ℕ), f (v n) = u n ⊢ x ∈ seqClosure s
cd788f2aa1246489
Complex.HadamardThreeLines.norm_le_sSupNormIm
Mathlib/Analysis/Complex/Hadamard.lean
/-- If `f` is bounded on the unit vertical strip, then `f` is bounded by `sSupNormIm` there. -/ lemma norm_le_sSupNormIm (f : ℂ → E) (z : ℂ) (hD : z ∈ verticalClosedStrip 0 1) (hB : BddAbove ((norm ∘ f) '' verticalClosedStrip 0 1)) : ‖f z‖ ≤ sSupNormIm f (z.re)
E : Type u_1 inst✝ : NormedAddCommGroup E f : ℂ → E z : ℂ hD : z ∈ verticalClosedStrip 0 1 hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1) ⊢ re ⁻¹' {z.re} ⊆ verticalClosedStrip 0 1
exact preimage_mono (singleton_subset_iff.mpr hD)
no goals
c110645de8d374d2
Set.iUnion_range_eq_iUnion
Mathlib/Data/Set/Lattice.lean
theorem iUnion_range_eq_iUnion (C : ι → Set α) {f : ∀ x : ι, β → C x} (hf : ∀ x : ι, Surjective (f x)) : ⋃ y : β, range (fun x : ι => (f x y).val) = ⋃ x, C x
case h.mpr.intro α : Type u_1 β : Type u_2 ι : Sort u_5 C : ι → Set α f : (x : ι) → β → ↑(C x) hf : ∀ (x : ι), Surjective (f x) x : α i : ι hx : x ∈ C i ⊢ ∃ i, x ∈ range fun x => ↑(f x i)
obtain ⟨y, hy⟩ := hf i ⟨x, hx⟩
case h.mpr.intro.intro α : Type u_1 β : Type u_2 ι : Sort u_5 C : ι → Set α f : (x : ι) → β → ↑(C x) hf : ∀ (x : ι), Surjective (f x) x : α i : ι hx : x ∈ C i y : β hy : f i y = ⟨x, hx⟩ ⊢ ∃ i, x ∈ range fun x => ↑(f x i)
9d4f3f5bc914a4d2
IsTopologicalSemiring.continuousNeg_of_mul
Mathlib/Topology/Algebra/Ring/Basic.lean
theorem IsTopologicalSemiring.continuousNeg_of_mul [TopologicalSpace α] [NonAssocRing α] [ContinuousMul α] : ContinuousNeg α where continuous_neg
α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : NonAssocRing α inst✝ : ContinuousMul α ⊢ Continuous fun a => -a
simpa using (continuous_const.mul continuous_id : Continuous fun x : α => -1 * x)
no goals
268e24d94763f555
VitaliFamily.exists_measurable_supersets_limRatio
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem exists_measurable_supersets_limRatio {p q : ℝ≥0} (hpq : p < q) : ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | v.limRatio ρ x < p} ⊆ a ∧ {x | (q : ℝ≥0∞) < v.limRatio ρ x} ⊆ b ∧ μ (a ∩ b) = 0
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | v.limRatio ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < v.limRatio ρ x} ∩ o n m n : ℕ I✝ : (ρ + μ) (u m) ≠ ⊤ J : (ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) L : Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatio ρ x)) I : ∀ᶠ (b : Set α) in v.filterAt x, ρ b / μ b < ↑p a : Set α ha : ρ a / μ a < ↑p ⊢ μ a ≠ 0 ∨ ↑p ≠ ⊤
simp only [ENNReal.coe_ne_top, Ne, or_true, not_false_iff]
no goals
f2acb3dc8c3a0a55
Finite.exists_univ_list
Mathlib/Data/Fintype/Card.lean
theorem Finite.exists_univ_list (α) [Finite α] : ∃ l : List α, l.Nodup ∧ ∀ x : α, x ∈ l
α : Type u_4 inst✝ : Finite α ⊢ ∃ l, l.Nodup ∧ ∀ (x : α), x ∈ l
cases nonempty_fintype α
case intro α : Type u_4 inst✝ : Finite α val✝ : Fintype α ⊢ ∃ l, l.Nodup ∧ ∀ (x : α), x ∈ l
3ac20f8d6bf74439
MvPFunctor.w_map_wMk
Mathlib/Data/PFunctor/Multivariate/W.lean
theorem w_map_wMk {α β : TypeVec n} (g : α ⟹ β) (a : P.A) (f' : P.drop.B a ⟹ α) (f : P.last.B a → P.W α) : g <$$> P.wMk a f' f = P.wMk a (g ⊚ f') fun i => g <$$> f i
n : ℕ P : MvPFunctor.{u} (n + 1) α β : TypeVec.{u} n g : α ⟹ β a : P.A f' : P.drop.B a ⟹ α f : P.last.B a → P.W α this✝ : MvFunctor.map g ∘ f = fun i => ⟨(f i).fst, g ⊚ (f i).snd⟩ this : f = fun i => ⟨(f i).fst, (f i).snd⟩ ⊢ (g <$$> P.wMk a f' fun i => ⟨(f i).fst, (f i).snd⟩) = P.wMk a (g ⊚ f') fun i => ⟨((fun i => ⟨(f i).fst, (f i).snd⟩) i).fst, g ⊚ ((fun i => ⟨(f i).fst, (f i).snd⟩) i).snd⟩
dsimp
n : ℕ P : MvPFunctor.{u} (n + 1) α β : TypeVec.{u} n g : α ⟹ β a : P.A f' : P.drop.B a ⟹ α f : P.last.B a → P.W α this✝ : MvFunctor.map g ∘ f = fun i => ⟨(f i).fst, g ⊚ (f i).snd⟩ this : f = fun i => ⟨(f i).fst, (f i).snd⟩ ⊢ (g <$$> P.wMk a f' fun i => ⟨(f i).fst, (f i).snd⟩) = P.wMk a (g ⊚ f') fun i => ⟨(f i).fst, g ⊚ (f i).snd⟩
2aebefc7b173d248