name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Stirling.log_stirlingSeq_bounded_by_constant
Mathlib/Analysis/SpecialFunctions/Stirling.lean
theorem log_stirlingSeq_bounded_by_constant : ∃ c, ∀ n : ℕ, c ≤ log (stirlingSeq (n + 1))
⊢ ∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (n + 1))
obtain ⟨d, h⟩ := log_stirlingSeq_bounded_aux
case intro d : ℝ h : ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (n + 1)) ≤ d ⊢ ∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (n + 1))
c5d6b13878f90943
Ordnode.Valid'.balance'_lemma
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.balance'_lemma {α l l' r r'} (H1 : BalancedSz l' r') (H2 : Nat.dist (@size α l) l' ≤ 1 ∧ size r = r' ∨ Nat.dist (size r) r' ≤ 1 ∧ size l = l') : 2 * @size α r ≤ 9 * size l + 5 ∨ size r ≤ 3
α : Type u_2 l r : Ordnode α r' : ℕ hr : r.size.dist r' ≤ 1 left✝ : l.size ≤ delta * r' h₂ : r' ≤ delta * l.size ⊢ 1 ≤ 3
decide
no goals
11dbedcfce2b4a42
gramSchmidt_orthogonal
Mathlib/Analysis/InnerProductSpace/GramSchmidtOrtho.lean
theorem gramSchmidt_orthogonal (f : ι → E) {a b : ι} (h₀ : a ≠ b) : ⟪gramSchmidt 𝕜 f a, gramSchmidt 𝕜 f b⟫ = 0
𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_3 inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : WellFoundedLT ι f : ι → E a b : ι h₀ : a ≠ b ⊢ ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0
clear h₀ a b
𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_3 inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : WellFoundedLT ι f : ι → E ⊢ ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0
a5e33da8a7158e66
RingHom.SurjectiveOnStalks.comp
Mathlib/RingTheory/SurjectiveOnStalks.lean
lemma SurjectiveOnStalks.comp (hg : SurjectiveOnStalks g) (hf : SurjectiveOnStalks f) : SurjectiveOnStalks (g.comp f)
R : Type u_1 inst✝² : CommRing R S : Type u_2 inst✝¹ : CommRing S T : Type u_3 inst✝ : CommRing T g : S →+* T f : R →+* S hg : g.SurjectiveOnStalks hf : f.SurjectiveOnStalks ⊢ (g.comp f).SurjectiveOnStalks
intros I hI
R : Type u_1 inst✝² : CommRing R S : Type u_2 inst✝¹ : CommRing S T : Type u_3 inst✝ : CommRing T g : S →+* T f : R →+* S hg : g.SurjectiveOnStalks hf : f.SurjectiveOnStalks I : Ideal T hI : I.IsPrime ⊢ Function.Surjective ⇑(Localization.localRingHom (Ideal.comap (g.comp f) I) I (g.comp f) ⋯)
a57ce5a2a14f46e6
CategoryTheory.Pretriangulated.distinguished_cocone_triangle₂
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
/-- Any morphism `Z ⟶ X⟦1⟧` is part of a distinguished triangle `X ⟶ Y ⟶ Z ⟶ X⟦1⟧` -/ lemma distinguished_cocone_triangle₂ {Z X : C} (h : Z ⟶ X⟦(1 : ℤ)⟧) : ∃ (Y : C) (f : X ⟶ Y) (g : Y ⟶ Z), Triangle.mk f g h ∈ distTriang C
C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C Z X : C h : Z ⟶ (shiftFunctor C 1).obj X Y' : C f' : (shiftFunctor C 1).obj X ⟶ Y' g' : Y' ⟶ (shiftFunctor C 1).obj Z mem : Triangle.mk h f' g' ∈ distinguishedTriangles T' : Triangle C := (Triangle.mk h f' g').invRotate.invRotate ⊢ (Triangle.mk (((shiftEquiv C 1).unitIso.app X).hom ≫ T'.mor₁) T'.mor₂ h).mor₁ ≫ (Iso.refl (Triangle.mk (((shiftEquiv C 1).unitIso.app X).hom ≫ T'.mor₁) T'.mor₂ h).obj₂).hom = ((shiftEquiv C 1).unitIso.app X).hom ≫ (Triangle.mk h f' g').invRotate.invRotate.mor₁
aesop_cat
no goals
05c412872a1053b2
gcd_eq_of_dvd_sub_right
Mathlib/Algebra/GCDMonoid/Basic.lean
theorem gcd_eq_of_dvd_sub_right {a b c : α} (h : a ∣ b - c) : gcd a b = gcd a c
case h α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c d : α hd : b - c = a * d e : α he : b = gcd a b * e f : α hf : a = gcd a b * f ⊢ c = gcd a b * (e - f * d)
rw [mul_sub, ← he, ← mul_assoc, ← hf, ← hd, sub_sub_cancel]
no goals
43db9b878d1ce2f4
real_inner_add_sub_eq_zero_iff
Mathlib/Analysis/InnerProductSpace/Basic.lean
theorem real_inner_add_sub_eq_zero_iff (x y : F) : ⟪x + y, x - y⟫_ℝ = 0 ↔ ‖x‖ = ‖y‖
case mp F : Type u_3 inst✝¹ : SeminormedAddCommGroup F inst✝ : InnerProductSpace ℝ F x y : F h : ⟪y, x⟫_ℝ + ⟪x, x⟫_ℝ = ⟪y, x⟫_ℝ + ⟪y, y⟫_ℝ ⊢ ⟪x, x⟫_ℝ = ⟪y, y⟫_ℝ
linarith
no goals
f4e9bdcba8d76738
FirstOrder.Language.BoundedFormula.isPrenex_toPrenexImpRight
Mathlib/ModelTheory/Complexity.lean
theorem isPrenex_toPrenexImpRight {φ ψ : L.BoundedFormula α n} (hφ : IsQF φ) (hψ : IsPrenex ψ) : IsPrenex (φ.toPrenexImpRight ψ)
case of_isQF L : Language α : Type u' n : ℕ ψ : L.BoundedFormula α n n✝ : ℕ φ✝ : L.BoundedFormula α n✝ hψ : φ✝.IsQF φ : L.BoundedFormula α n✝ hφ : φ.IsQF ⊢ (φ.toPrenexImpRight φ✝).IsPrenex
rw [hψ.toPrenexImpRight]
case of_isQF L : Language α : Type u' n : ℕ ψ : L.BoundedFormula α n n✝ : ℕ φ✝ : L.BoundedFormula α n✝ hψ : φ✝.IsQF φ : L.BoundedFormula α n✝ hφ : φ.IsQF ⊢ (φ ⟹ φ✝).IsPrenex
732ec074ac9fd833
Traversable.foldMap_map
Mathlib/Control/Fold.lean
theorem foldMap_map [Monoid γ] (f : α → β) (g : β → γ) (xs : t α) : foldMap g (f <$> xs) = foldMap (g ∘ f) xs
α β γ : Type u t : Type u → Type u inst✝² : Traversable t inst✝¹ : LawfulTraversable t inst✝ : Monoid γ f : α → β g : β → γ xs : t α ⊢ foldMap g (f <$> xs) = foldMap (g ∘ f) xs
simp only [foldMap, traverse_map, Function.comp_def]
no goals
82cf1f3bb7fef8e6
Finsupp.extendDomain_subtypeDomain
Mathlib/Data/Finsupp/Basic.lean
theorem extendDomain_subtypeDomain (f : α →₀ M) (hf : ∀ a ∈ f.support, P a) : (subtypeDomain P f).extendDomain = f
α : Type u_1 M : Type u_13 inst✝¹ : Zero M P : α → Prop inst✝ : DecidablePred P f : α →₀ M hf : ∀ a ∈ f.support, P a ⊢ (subtypeDomain P f).extendDomain = f
ext a
case h α : Type u_1 M : Type u_13 inst✝¹ : Zero M P : α → Prop inst✝ : DecidablePred P f : α →₀ M hf : ∀ a ∈ f.support, P a a : α ⊢ (subtypeDomain P f).extendDomain a = f a
65d215dfe59b1c2f
Path.Homotopy.trans_assoc_reparam
Mathlib/AlgebraicTopology/FundamentalGroupoid/Basic.lean
theorem trans_assoc_reparam {x₀ x₁ x₂ x₃ : X} (p : Path x₀ x₁) (q : Path x₁ x₂) (r : Path x₂ x₃) : (p.trans q).trans r = (p.trans (q.trans r)).reparam (fun t => ⟨transAssocReparamAux t, transAssocReparamAux_mem_I t⟩) (by continuity) (Subtype.ext transAssocReparamAux_zero) (Subtype.ext transAssocReparamAux_one)
case neg X : Type u inst✝ : TopologicalSpace X x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ↑x ≤ 1 / 4 h✝¹ : ¬2 * ↑x ≤ 1 / 2 h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ r ⟨2 * ↑x - 1, ⋯⟩ = r ⟨2 * (2 * (2 * ↑x) - 1) - 1, ⋯⟩
exfalso
case neg X : Type u inst✝ : TopologicalSpace X x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ↑x ≤ 1 / 4 h✝¹ : ¬2 * ↑x ≤ 1 / 2 h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ False
fdaccc7c71c4d168
Polynomial.wronskian_self_eq_zero
Mathlib/RingTheory/Polynomial/Wronskian.lean
theorem wronskian_self_eq_zero (a : R[X]) : wronskian a a = 0
R : Type u_1 inst✝ : CommRing R a : R[X] ⊢ a.wronskian a = 0
rw [wronskian, mul_comm, sub_self]
no goals
fb4d7ed5e30182c2
AlgebraicTopology.DoldKan.decomposition_Q
Mathlib/AlgebraicTopology/DoldKan/Decomposition.lean
theorem decomposition_Q (n q : ℕ) : ((Q q).f (n + 1) : X _⦋n + 1⦌ ⟶ X _⦋n + 1⦌) = ∑ i ∈ Finset.filter (fun i : Fin (n + 1) => (i : ℕ) < q) Finset.univ, (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ X.σ (Fin.rev i)
case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ (Q 0).f (n + 1) = ∑ i ∈ Finset.filter (fun i => ↑i < 0) Finset.univ, (P ↑i).f (n + 1) ≫ X.δ i.rev.succ ≫ X.σ i.rev
simp only [Q_zero, HomologicalComplex.zero_f_apply, Nat.not_lt_zero, Finset.filter_False, Finset.sum_empty]
no goals
7a7706b8ab0d871c
HurwitzZeta.jacobiTheta₂'_functional_equation'
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
lemma jacobiTheta₂'_functional_equation' (z τ : ℂ) : jacobiTheta₂' z τ = (-2 * π) / (-I * τ) ^ (3 / 2 : ℂ) * jacobiTheta₂'' z (-1 / τ)
z τ : ℂ ⊢ jacobiTheta₂' z τ = -2 * ↑π / (-I * τ) ^ (3 / 2) * jacobiTheta₂'' z (-1 / τ)
rcases eq_or_ne τ 0 with rfl | hτ
case inl z : ℂ ⊢ jacobiTheta₂' z 0 = -2 * ↑π / (-I * 0) ^ (3 / 2) * jacobiTheta₂'' z (-1 / 0) case inr z τ : ℂ hτ : τ ≠ 0 ⊢ jacobiTheta₂' z τ = -2 * ↑π / (-I * τ) ^ (3 / 2) * jacobiTheta₂'' z (-1 / τ)
dc79ad2579abd9e6
HomologicalComplex.extend.comp_d_eq_zero_iff
Mathlib/Algebra/Homology/Embedding/ExtendHomology.lean
lemma comp_d_eq_zero_iff ⦃W : C⦄ (φ : W ⟶ K.X j) : φ ≫ K.d j k = 0 ↔ φ ≫ (K.extendXIso e hj').inv ≫ (K.extend e).d j' k' = 0
case neg ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝² : Category.{u_4, u_3} C inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' j k : ι j' k' : ι' hj' : e.f j = j' hk : c.next j = k hk' : c'.next j' = k' W : C φ : W ⟶ K.X j hjk : ¬c.Rel j k ⊢ φ ≫ K.d j k = 0 ↔ φ ≫ (K.extendXIso e hj').inv ≫ (K.extend e).d j' k' = 0
simp only [K.shape _ _ hjk, comp_zero, true_iff]
case neg ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝² : Category.{u_4, u_3} C inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' j k : ι j' k' : ι' hj' : e.f j = j' hk : c.next j = k hk' : c'.next j' = k' W : C φ : W ⟶ K.X j hjk : ¬c.Rel j k ⊢ φ ≫ (K.extendXIso e hj').inv ≫ (K.extend e).d j' k' = 0
fb2e617c809a5891
HomologicalComplex.extendMap_f
Mathlib/Algebra/Homology/Embedding/Extend.lean
lemma extendMap_f {i : ι} {i' : ι'} (h : e.f i = i') : (extendMap φ e).f i' = (extendXIso K e h).hom ≫ φ.f i ≫ (extendXIso L e h).inv
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝² : Category.{u_4, u_3} C inst✝¹ : HasZeroObject C inst✝ : HasZeroMorphisms C K L : HomologicalComplex C c φ : K ⟶ L e : c.Embedding c' i : ι i' : ι' h : e.f i = i' ⊢ (extend.XIso K ⋯).hom ≫ φ.f i ≫ (extend.XIso L ⋯).inv = (K.extendXIso e h).hom ≫ φ.f i ≫ (L.extendXIso e h).inv
rfl
no goals
37577a7201d0837b
ContinuousLinearMap.isInvertible_comp_equiv
Mathlib/Topology/Algebra/Module/Equiv.lean
@[simp] lemma isInvertible_comp_equiv {e : M₃ ≃L[R] M} {f : M →L[R] M₂} : (f ∘L (e : M₃ →L[R] M)).IsInvertible ↔ f.IsInvertible
R : Type u_3 M : Type u_4 M₂ : Type u_5 M₃ : Type u_6 inst✝⁹ : TopologicalSpace M inst✝⁸ : TopologicalSpace M₂ inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ e : M₃ ≃L[R] M f : M →L[R] M₂ ⊢ (f.comp ↑e).IsInvertible ↔ f.IsInvertible
constructor
case mp R : Type u_3 M : Type u_4 M₂ : Type u_5 M₃ : Type u_6 inst✝⁹ : TopologicalSpace M inst✝⁸ : TopologicalSpace M₂ inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ e : M₃ ≃L[R] M f : M →L[R] M₂ ⊢ (f.comp ↑e).IsInvertible → f.IsInvertible case mpr R : Type u_3 M : Type u_4 M₂ : Type u_5 M₃ : Type u_6 inst✝⁹ : TopologicalSpace M inst✝⁸ : TopologicalSpace M₂ inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ e : M₃ ≃L[R] M f : M →L[R] M₂ ⊢ f.IsInvertible → (f.comp ↑e).IsInvertible
58f6ac03b58e3c39
FreeRing.coe_eq
Mathlib/RingTheory/FreeCommRing.lean
theorem coe_eq : ((↑) : FreeRing α → FreeCommRing α) = @Functor.map FreeAbelianGroup _ _ _ fun l : List α => (l : Multiset α)
α : Type u ⊢ castFreeCommRing = Functor.map fun l => ↑l
funext x
case h α : Type u x : FreeRing α ⊢ ↑x = (fun l => ↑l) <$> x
ef7da7a0cbb1d4a2
List.set_eq_take_append_cons_drop
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/TakeDrop.lean
theorem set_eq_take_append_cons_drop (l : List α) (n : Nat) (a : α) : l.set n a = if n < l.length then l.take n ++ a :: l.drop (n + 1) else l
case neg α : Type u_1 l : List α n : Nat a : α h : n < l.length m : Nat h' : ¬m < n h'' : ¬m = n ⊢ (l.set n a)[m]? = (take n l ++ a :: drop (n + 1) l)[m]?
have h''' : n < m := by omega
case neg α : Type u_1 l : List α n : Nat a : α h : n < l.length m : Nat h' : ¬m < n h'' : ¬m = n h''' : n < m ⊢ (l.set n a)[m]? = (take n l ++ a :: drop (n + 1) l)[m]?
9fb4c99baced165c
FirstOrder.Language.Term.realize_relabel
Mathlib/ModelTheory/Semantics.lean
theorem realize_relabel {t : L.Term α} {g : α → β} {v : β → M} : (t.relabel g).realize v = t.realize (v ∘ g)
case func L : Language M : Type w inst✝ : L.Structure M α : Type u' β : Type v' g : α → β v : β → M n : ℕ f : L.Functions n ts : Fin n → L.Term α ih : ∀ (a : Fin n), realize v (relabel g (ts a)) = realize (v ∘ g) (ts a) ⊢ realize v (relabel g (func f ts)) = realize (v ∘ g) (func f ts)
simp [ih]
no goals
be0cdb57daa070d0
Grp.FilteredColimits.colimitInvAux_eq_of_rel
Mathlib/Algebra/Category/Grp/FilteredColimits.lean
theorem colimitInvAux_eq_of_rel (x y : Σ j, F.obj j) (h : Types.FilteredColimit.Rel (F ⋙ forget Grp) x y) : colimitInvAux.{v, u} F x = colimitInvAux F y
case h J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ Grp x y : (j : J) × ↑(F.obj j) h : Types.FilteredColimit.Rel (F ⋙ forget Grp) x y ⊢ ∃ k f g, (ConcreteCategory.hom (F.map f)) ⟨x.fst, x.snd⁻¹⟩.snd = (ConcreteCategory.hom (F.map g)) ⟨y.fst, y.snd⁻¹⟩.snd
obtain ⟨k, f, g, hfg⟩ := h
case h.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ Grp x y : (j : J) × ↑(F.obj j) k : J f : x.fst ⟶ k g : y.fst ⟶ k hfg : (F ⋙ forget Grp).map f x.snd = (F ⋙ forget Grp).map g y.snd ⊢ ∃ k f g, (ConcreteCategory.hom (F.map f)) ⟨x.fst, x.snd⁻¹⟩.snd = (ConcreteCategory.hom (F.map g)) ⟨y.fst, y.snd⁻¹⟩.snd
7ec8d6edded53dcd
FormalMultilinearSeries.ofScalars_radius_eq_top_of_tendsto
Mathlib/Analysis/Analytic/OfScalars.lean
theorem ofScalars_radius_eq_top_of_tendsto (hc : ∀ᶠ n in atTop, c n ≠ 0) (hc' : Tendsto (fun n ↦ ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0)) : (ofScalars E c).radius = ⊤
case h 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing E inst✝ : NormedAlgebra 𝕜 E c : ℕ → 𝕜 hc : ∀ᶠ (n : ℕ) in atTop, c n ≠ 0 hc' : Tendsto (fun n => ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0) r' : ℝ≥0 hrz : ¬r' = 0 n : ℕ hn : n ≠ 0 ⊢ ‖ofScalars E c n‖ * ↑r' ^ n ≤ ‖c n‖ * ↑r' ^ n
gcongr
case h.h 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing E inst✝ : NormedAlgebra 𝕜 E c : ℕ → 𝕜 hc : ∀ᶠ (n : ℕ) in atTop, c n ≠ 0 hc' : Tendsto (fun n => ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0) r' : ℝ≥0 hrz : ¬r' = 0 n : ℕ hn : n ≠ 0 ⊢ ‖ofScalars E c n‖ ≤ ‖c n‖
fed995db04eea233
List.find?_eq_some_iff_getElem
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Find.lean
theorem find?_eq_some_iff_getElem {xs : List α} {p : α → Bool} {b : α} : xs.find? p = some b ↔ p b ∧ ∃ i h, xs[i] = b ∧ ∀ j : Nat, (hj : j < i) → !p xs[j]
α : Type u_1 xs : List α p : α → Bool b : α ⊢ (p b = true ∧ ∃ as bs, xs = as ++ b :: bs ∧ ∀ (a : α), a ∈ as → (!p a) = true) ↔ p b = true ∧ ∃ i h, xs[i] = b ∧ ∀ (j : Nat) (hj : j < i), (!p xs[j]) = true
simp only [Bool.not_eq_eq_eq_not, Bool.not_true, exists_and_right, and_congr_right_iff]
α : Type u_1 xs : List α p : α → Bool b : α ⊢ p b = true → ((∃ as, (∃ x, xs = as ++ b :: x) ∧ ∀ (a : α), a ∈ as → p a = false) ↔ ∃ i h, xs[i] = b ∧ ∀ (j : Nat) (hj : j < i), p xs[j] = false)
61fa88fc2d6e44d7
AkraBazziRecurrence.rpow_p_mul_one_add_smoothingFn_ge
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma rpow_p_mul_one_add_smoothingFn_ge : ∀ᶠ (n : ℕ) in atTop, ∀ i, (b i) ^ (p a b) * n ^ (p a b) * (1 + ε n) ≤ (r i n) ^ (p a b) * (1 + ε (r i n))
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r i : α q : ℝ → ℝ := fun x => x ^ p a b * (1 + ε x) h_diff_q : DifferentiableOn ℝ q (Set.Ioi 1) h_deriv_q : deriv q =O[atTop] fun x => x ^ (p a b - 1) h_main_norm : (fun n => ‖q ↑(r i n) - q (b i * ↑n)‖) ≤ᶠ[atTop] fun n => ‖b i ^ p a b * ↑n ^ p a b * (ε (b i * ↑n) - ε ↑n)‖ n : ℕ hn : ⌈(b i)⁻¹⌉₊ < n hn' : 1 < n h₁ : 0 < b i this : b i < 1 ⊢ b i * ↑n ≤ 1 * ↑n
gcongr
no goals
6b09e1ce84116b26
Ideal.quotientInfToPiQuotient_surj
Mathlib/RingTheory/Ideal/Quotient/Operations.lean
lemma quotientInfToPiQuotient_surj {I : ι → Ideal R} (hI : Pairwise (IsCoprime on I)) : Surjective (quotientInfToPiQuotient I)
R : Type u_2 inst✝¹ : CommRing R ι : Type u_3 inst✝ : Finite ι I : ι → Ideal R hI : Pairwise (IsCoprime on I) val✝ : Fintype ι g : (i : ι) → R ⧸ I i f : ι → R hf : ∀ (i : ι), (Quotient.mk (I i)) (f i) = g i i : ι hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j) ⊢ ∃ e, (Quotient.mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (Quotient.mk (I j)) e = 0
rcases isCoprime_iff_exists.mp (isCoprime_biInf hI') with ⟨u, hu, e, he, hue⟩
case intro.intro.intro.intro R : Type u_2 inst✝¹ : CommRing R ι : Type u_3 inst✝ : Finite ι I : ι → Ideal R hI : Pairwise (IsCoprime on I) val✝ : Fintype ι g : (i : ι) → R ⧸ I i f : ι → R hf : ∀ (i : ι), (Quotient.mk (I i)) (f i) = g i i : ι hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j) u : R hu : u ∈ I i e : R he : e ∈ ⨅ j ∈ {i}ᶜ, I j hue : u + e = 1 ⊢ ∃ e, (Quotient.mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (Quotient.mk (I j)) e = 0
df184cf9a63521b9
ArithmeticFunction.vonMangoldt.continuousOn_LFunctionResidueClassAux
Mathlib/NumberTheory/LSeries/PrimesInAP.lean
/-- The L-series of the von Mangoldt function restricted to the prime residue class `a` mod `q` is continuous on `re s ≥ 1` except for a simple pole at `s = 1` with residue `(q.totient)⁻¹`. The statement as given here in terms of `ArithmeticFunction.vonMangoldt.LFunctionResidueClassAux` is equivalent. -/ lemma continuousOn_LFunctionResidueClassAux : ContinuousOn (LFunctionResidueClassAux a) {s | 1 ≤ s.re}
q : ℕ a : ZMod q inst✝ : NeZero q s : ℂ hs : s ∈ {s | 1 ≤ s.re} ⊢ s ∈ {s | s = 1 ∨ ∀ (χ : DirichletCharacter ℂ q), LFunction χ s ≠ 0}
rcases eq_or_ne s 1 with rfl | hs₁
case inl q : ℕ a : ZMod q inst✝ : NeZero q hs : 1 ∈ {s | 1 ≤ s.re} ⊢ 1 ∈ {s | s = 1 ∨ ∀ (χ : DirichletCharacter ℂ q), LFunction χ s ≠ 0} case inr q : ℕ a : ZMod q inst✝ : NeZero q s : ℂ hs : s ∈ {s | 1 ≤ s.re} hs₁ : s ≠ 1 ⊢ s ∈ {s | s = 1 ∨ ∀ (χ : DirichletCharacter ℂ q), LFunction χ s ≠ 0}
9814c5299d106445
Matroid.Indep.fundCircuit_isCircuit
Mathlib/Data/Matroid/Circuit.lean
lemma Indep.fundCircuit_isCircuit (hI : M.Indep I) (hecl : e ∈ M.closure I) (heI : e ∉ I) : M.IsCircuit (M.fundCircuit e I)
case refine_2 α : Type u_1 M : Matroid α I : Set α e : α hI : M.Indep I hecl : e ∈ M.closure I heI : e ∉ I aux : ⋂₀ {J | J ⊆ I ∧ e ∈ M.closure J} ⊆ I ⊢ e ∈ M.closure (⋂₀ {J | J ⊆ I ∧ e ∈ M.closure J})
rw [hI.closure_sInter_eq_biInter_closure_of_forall_subset ⟨I, by simpa⟩ (by simp +contextual)]
case refine_2 α : Type u_1 M : Matroid α I : Set α e : α hI : M.Indep I hecl : e ∈ M.closure I heI : e ∉ I aux : ⋂₀ {J | J ⊆ I ∧ e ∈ M.closure J} ⊆ I ⊢ e ∈ ⋂ J ∈ {J | J ⊆ I ∧ e ∈ M.closure J}, M.closure J
640cc0ceac07193c
Finset.small_alternating_pow_of_small_tripling
Mathlib/Combinatorics/Additive/SmallTripling.lean
/-- If `A` has small tripling, say with constant `K`, then `A` has small alternating powers, in the sense that `|A^±1 * ... * A^±1|` is at most `|A|` times a constant exponential in the number of terms in the product. When `A` is symmetric (`A⁻¹ = A`), the base of the exponential can be lowered from `K ^ 3` to `K`, where `K` is the tripling constant. See `Finset.small_pow_of_small_tripling`. -/ @[to_additive "If `A` has small tripling, say with constant `K`, then `A` has small alternating powers, in the sense that `|±A ± ... ± A|` is at most `|A|` times a constant exponential in the number of terms in the product. When `A` is symmetric (`-A = A`), the base of the exponential can be lowered from `K ^ 3` to `K`, where `K` is the tripling constant. See `Finset.small_nsmul_of_small_tripling`."] lemma small_alternating_pow_of_small_tripling (hm : 3 ≤ m) (hA : #(A ^ 3) ≤ K * #A) (ε : Fin m → ℤ) (hε : ∀ i, |ε i| = 1) : #((finRange m).map fun i ↦ A ^ ε i).prod ≤ K ^ (3 * (m - 2)) * #A
case ha G : Type u_1 inst✝¹ : DecidableEq G inst✝ : Group G A : Finset G K : ℝ m : ℕ hm : 3 ≤ m hA : ↑(#(A ^ 3)) ≤ K * ↑(#A) ε : Fin m → ℤ hε : ∀ (i : Fin m), |ε i| = 1 hm₀ : m ≠ 0 hε₀ : ∀ (i : Fin m), ε i ≠ 0 hA₀ : A.Nonempty hK₁ : 1 ≤ K δ : Fin 3 → ℤ hδ : (δ 0 = 1 ∨ δ 0 = -1) ∧ (δ 1 = 1 ∨ δ 1 = -1) ∧ (δ 2 = 1 ∨ δ 2 = -1) this : K ≤ K ^ 3 ⊢ 1 ≤ K
exact hK₁
no goals
647fdb3ae1591fd5
FreeSemigroup.length_mul
Mathlib/Algebra/Free.lean
theorem length_mul (x y : FreeSemigroup α) : (x * y).length = x.length + y.length
α : Type u x y : FreeSemigroup α ⊢ (x * y).length = x.length + y.length
simp [length, Nat.add_right_comm, List.length, List.length_append]
no goals
2bf5ecbd31187c57
VitaliFamily.ae_tendsto_lintegral_enorm_sub_div_of_integrable
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem ae_tendsto_lintegral_enorm_sub_div_of_integrable {f : α → E} (hf : Integrable f μ) : ∀ᵐ x ∂μ, Tendsto (fun a => (∫⁻ y in a, ‖f y - f x‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 0)
case e_a.h α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ f : α → E hf : Integrable f μ I : Integrable (AEStronglyMeasurable.mk f ⋯) μ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ‖AEStronglyMeasurable.mk f ⋯ y - AEStronglyMeasurable.mk f ⋯ x‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 0) h'x : f x = AEStronglyMeasurable.mk f ⋯ x a : Set α ⊢ (fun a => ‖AEStronglyMeasurable.mk f ⋯ a - AEStronglyMeasurable.mk f ⋯ x‖ₑ) =ᶠ[ae (μ.restrict a)] fun a => ‖f a - f x‖ₑ
apply ae_restrict_of_ae
case e_a.h.h α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ f : α → E hf : Integrable f μ I : Integrable (AEStronglyMeasurable.mk f ⋯) μ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ‖AEStronglyMeasurable.mk f ⋯ y - AEStronglyMeasurable.mk f ⋯ x‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 0) h'x : f x = AEStronglyMeasurable.mk f ⋯ x a : Set α ⊢ ∀ᵐ (x_1 : α) ∂μ, (fun a => ‖AEStronglyMeasurable.mk f ⋯ a - AEStronglyMeasurable.mk f ⋯ x‖ₑ) x_1 = (fun a => ‖f a - f x‖ₑ) x_1
2445f889d49b35fc
MeasureTheory.hausdorffMeasure_pi_real
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem hausdorffMeasure_pi_real {ι : Type*} [Fintype ι] : (μH[Fintype.card ι] : Measure (ι → ℝ)) = volume
ι : Type u_4 inst✝ : Fintype ι a b : ι → ℚ H : ∀ (i : ι), a i < b i I : ∀ (i : ι), 0 ≤ ↑(b i) - ↑(a i) γ : ℕ → Type u_4 := fun n => (i : ι) → Fin ⌈(↑(b i) - ↑(a i)) * ↑n⌉₊ t : (n : ℕ) → γ n → Set (ι → ℝ) := fun n f => univ.pi fun i => Icc (↑(a i) + ↑↑(f i) / ↑n) (↑(a i) + (↑↑(f i) + 1) / ↑n) ⊢ Tendsto (fun n => 1 / ↑n) atTop (𝓝 0)
simp only [one_div, ENNReal.tendsto_inv_nat_nhds_zero]
no goals
90212ad5e070d6f0
FDRep.forget₂_ρ
Mathlib/RepresentationTheory/FDRep.lean
theorem forget₂_ρ (V : FDRep R G) : ((forget₂ (FDRep R G) (Rep R G)).obj V).ρ = V.ρ
case h.h R G : Type u inst✝¹ : CommRing R inst✝ : Monoid G V : FDRep R G g : G v : ↑((forget₂ (FDRep R G) (Rep R G)).obj V).V ⊢ (((forget₂ (FDRep R G) (Rep R G)).obj V).ρ g) v = (V.ρ g) v
rfl
no goals
78e7451a209bf9e5
CategoryTheory.ShortComplex.LeftHomologyData.map_f'
Mathlib/Algebra/Homology/ShortComplex/PreservesHomology.lean
@[simp] lemma map_f' : (h.map F).f' = F.map h.f'
C : Type u_1 D : Type u_2 inst✝⁵ : Category.{u_4, u_1} C inst✝⁴ : Category.{u_3, u_2} D inst✝³ : HasZeroMorphisms C inst✝² : HasZeroMorphisms D S : ShortComplex C h : S.LeftHomologyData F : C ⥤ D inst✝¹ : F.PreservesZeroMorphisms inst✝ : h.IsPreservedBy F ⊢ (h.map F).f' = F.map h.f'
rw [← cancel_mono (h.map F).i, f'_i, map_f, map_i, ← F.map_comp, f'_i]
no goals
7c179b1d073ec12c
Set.ncard_eq_three
Mathlib/Data/Set/Card.lean
theorem ncard_eq_three : s.ncard = 3 ↔ ∃ x y z, x ≠ y ∧ x ≠ z ∧ y ≠ z ∧ s = {x, y, z}
α : Type u_1 s : Set α ⊢ s.ncard = 3 ↔ ∃ x y z, x ≠ y ∧ x ≠ z ∧ y ≠ z ∧ s = {x, y, z}
rw [← encard_eq_three, ncard_def, ← Nat.cast_inj (R := ℕ∞), Nat.cast_ofNat]
α : Type u_1 s : Set α ⊢ ↑s.encard.toNat = 3 ↔ s.encard = 3
81e51a925750236b
Polynomial.isIntegral_isLocalization_polynomial_quotient
Mathlib/RingTheory/Jacobson/Ring.lean
theorem isIntegral_isLocalization_polynomial_quotient (P : Ideal R[X]) (pX : R[X]) (hpX : pX ∈ P) [Algebra (R ⧸ P.comap (C : R →+* R[X])) Rₘ] [IsLocalization.Away (pX.map (Ideal.Quotient.mk (P.comap (C : R →+* R[X])))).leadingCoeff Rₘ] [Algebra (R[X] ⧸ P) Sₘ] [IsLocalization ((Submonoid.powers (pX.map (Ideal.Quotient.mk (P.comap (C : R →+* R[X])))).leadingCoeff).map (quotientMap P C le_rfl) : Submonoid (R[X] ⧸ P)) Sₘ] : (IsLocalization.map Sₘ (quotientMap P C le_rfl) (Submonoid.powers (pX.map (Ideal.Quotient.mk (P.comap (C : R →+* R[X])))).leadingCoeff).le_comap_map : Rₘ →+* Sₘ).IsIntegral
R : Type u_1 inst✝⁶ : CommRing R Rₘ : Type u_3 Sₘ : Type u_4 inst✝⁵ : CommRing Rₘ inst✝⁴ : CommRing Sₘ P : Ideal R[X] pX : R[X] hpX : pX ∈ P inst✝³ : Algebra (R ⧸ comap C P) Rₘ inst✝² : IsLocalization.Away (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff Rₘ inst✝¹ : Algebra (R[X] ⧸ P) Sₘ inst✝ : IsLocalization (Submonoid.map (quotientMap P C ⋯) (Submonoid.powers (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff)) Sₘ P' : Ideal R := comap C P M : Submonoid (R ⧸ P') := Submonoid.powers (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff ⊢ (IsLocalization.map Sₘ (quotientMap P C ⋯) ⋯).IsIntegral
let M' : Submonoid (R[X] ⧸ P) := (Submonoid.powers (pX.map (Ideal.Quotient.mk (P.comap (C : R →+* R[X])))).leadingCoeff).map (quotientMap P C le_rfl)
R : Type u_1 inst✝⁶ : CommRing R Rₘ : Type u_3 Sₘ : Type u_4 inst✝⁵ : CommRing Rₘ inst✝⁴ : CommRing Sₘ P : Ideal R[X] pX : R[X] hpX : pX ∈ P inst✝³ : Algebra (R ⧸ comap C P) Rₘ inst✝² : IsLocalization.Away (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff Rₘ inst✝¹ : Algebra (R[X] ⧸ P) Sₘ inst✝ : IsLocalization (Submonoid.map (quotientMap P C ⋯) (Submonoid.powers (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff)) Sₘ P' : Ideal R := comap C P M : Submonoid (R ⧸ P') := Submonoid.powers (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff M' : Submonoid (R[X] ⧸ P) := Submonoid.map (quotientMap P C ⋯) (Submonoid.powers (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff) ⊢ (IsLocalization.map Sₘ (quotientMap P C ⋯) ⋯).IsIntegral
4f255f198e9b3f92
le_nhds_iff
Mathlib/Topology/Basic.lean
theorem le_nhds_iff {f} : f ≤ 𝓝 x ↔ ∀ s : Set X, x ∈ s → IsOpen s → s ∈ f
X : Type u x : X inst✝ : TopologicalSpace X f : Filter X ⊢ f ≤ 𝓝 x ↔ ∀ (s : Set X), x ∈ s → IsOpen s → s ∈ f
simp [nhds_def]
no goals
5415bef2b050be5e
AffineSubspace.direction_sup
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Basic.lean
theorem direction_sup {s₁ s₂ : AffineSubspace k P} {p₁ p₂ : P} (hp₁ : p₁ ∈ s₁) (hp₂ : p₂ ∈ s₂) : (s₁ ⊔ s₂).direction = s₁.direction ⊔ s₂.direction ⊔ k ∙ p₂ -ᵥ p₁
case refine_1.intro.intro.inr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s₁ s₂ : AffineSubspace k P p₁ p₂ : P hp₁ : p₁ ∈ ↑s₁ hp₂ : p₂ ∈ s₂ p₃ : P hp₃ : p₃ ∈ ↑s₂ ⊢ ∃ y ∈ s₁.direction, ∃ z ∈ s₂.direction ⊔ Submodule.span k {p₂ -ᵥ p₁}, y + z = (fun x => x -ᵥ p₁) p₃
use 0, Submodule.zero_mem _, p₃ -ᵥ p₁
case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s₁ s₂ : AffineSubspace k P p₁ p₂ : P hp₁ : p₁ ∈ ↑s₁ hp₂ : p₂ ∈ s₂ p₃ : P hp₃ : p₃ ∈ ↑s₂ ⊢ p₃ -ᵥ p₁ ∈ s₂.direction ⊔ Submodule.span k {p₂ -ᵥ p₁} ∧ 0 + (p₃ -ᵥ p₁) = (fun x => x -ᵥ p₁) p₃
64c047987a3af743
MeasureTheory.OuterMeasure.ofFunction_eq_iInf_mem
Mathlib/MeasureTheory/OuterMeasure/OfFunction.lean
theorem ofFunction_eq_iInf_mem {P : Set α → Prop} (m_top : ∀ s, ¬ P s → m s = ∞) (s : Set α) : OuterMeasure.ofFunction m m_empty s = ⨅ (t : ℕ → Set α) (_ : ∀ i, P (t i)) (_ : s ⊆ ⋃ i, t i), ∑' i, m (t i)
case neg α : Type u_1 m : Set α → ℝ≥0∞ m_empty : m ∅ = 0 P : Set α → Prop m_top : ∀ (s : Set α), ¬P s → m s = ⊤ s : Set α t : ℕ → Set α ht_subset : s ⊆ iUnion t ht : ¬∀ (i : ℕ), P (t i) ⊢ ⨅ (_ : ∀ (i : ℕ), P (t i)), ⨅ (_ : s ⊆ ⋃ i, t i), ∑' (i : ℕ), m (t i) ≤ ∑' (n : ℕ), m (t n)
simp only [ht, not_false_eq_true, iInf_neg, top_le_iff]
case neg α : Type u_1 m : Set α → ℝ≥0∞ m_empty : m ∅ = 0 P : Set α → Prop m_top : ∀ (s : Set α), ¬P s → m s = ⊤ s : Set α t : ℕ → Set α ht_subset : s ⊆ iUnion t ht : ¬∀ (i : ℕ), P (t i) ⊢ ∑' (i : ℕ), m (t i) = ⊤
6008c3e6e3e7ffd5
Finset.smul_univ₀'
Mathlib/Algebra/GroupWithZero/Pointwise/Finset.lean
lemma smul_univ₀' [Fintype β] {s : Finset α} (hs : s.Nontrivial) : s • (univ : Finset β) = univ := coe_injective <| by push_cast; exact Set.smul_univ₀' hs
α : Type u_1 β : Type u_2 inst✝³ : DecidableEq β inst✝² : GroupWithZero α inst✝¹ : MulAction α β inst✝ : Fintype β s : Finset α hs : s.Nontrivial ⊢ ↑(s • univ) = ↑univ
push_cast
α : Type u_1 β : Type u_2 inst✝³ : DecidableEq β inst✝² : GroupWithZero α inst✝¹ : MulAction α β inst✝ : Fintype β s : Finset α hs : s.Nontrivial ⊢ ↑s • Set.univ = Set.univ
361a54f04adc6b20
Rat.divInt_nonneg
Mathlib/Algebra/Order/Ring/Unbundled/Rat.lean
@[simp] lemma divInt_nonneg {a b : ℤ} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a /. b
case inr a b : ℤ ha : 0 ≤ a hb✝ : 0 ≤ b hb : 0 < b ⊢ 0 ≤ a /. b
rwa [divInt_nonneg_iff_of_pos_right hb]
no goals
933133477f35d8d8
continuousAt_gauge
Mathlib/Analysis/Convex/Gauge.lean
theorem continuousAt_gauge (hc : Convex ℝ s) (hs₀ : s ∈ 𝓝 0) : ContinuousAt (gauge s) x
case h.left E : Type u_2 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s : Set E x : E inst✝² : TopologicalSpace E inst✝¹ : IsTopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s ε : ℝ hε₀ : 0 < ε this : ε • s ∩ -(ε • s) ∈ 𝓝 0 y : E hy : y ∈ ε • s ∩ -(ε • s) ⊢ gauge s x ≤ gauge s (x + y) + ε
calc gauge s x = gauge s (x + y + (-y)) := by simp _ ≤ gauge s (x + y) + gauge s (-y) := gauge_add_le hc ha _ _ _ ≤ gauge s (x + y) + ε := add_le_add_left (gauge_le_of_mem hε₀.le (mem_neg.1 hy.2)) _
no goals
7f81bfcfb910ec17
Matrix.pow_inv_comm'
Mathlib/LinearAlgebra/Matrix/ZPow.lean
theorem pow_inv_comm' (A : M) (m n : ℕ) : A⁻¹ ^ m * A ^ n = A ^ n * A⁻¹ ^ m
case succ.zero n' : Type u_1 inst✝² : DecidableEq n' inst✝¹ : Fintype n' R : Type u_2 inst✝ : CommRing R A : M n : ℕ IH : ∀ (m : ℕ), A⁻¹ ^ m * A ^ n = A ^ n * A⁻¹ ^ m ⊢ A⁻¹ ^ 0 * A ^ (n + 1) = A ^ (n + 1) * A⁻¹ ^ 0
simp
no goals
1a086ad17decf402
Complex.differentiableAt_GammaAux
Mathlib/Analysis/SpecialFunctions/Gamma/Deriv.lean
theorem differentiableAt_GammaAux (s : ℂ) (n : ℕ) (h1 : 1 - s.re < n) (h2 : ∀ m : ℕ, s ≠ -m) : DifferentiableAt ℂ (GammaAux n) s
n : ℕ s : ℂ h1 : 1 - s.re < ↑n + 1 h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) ⊢ 1 - (s.re + 1) < ↑n
linarith
no goals
943fb7e67daeabdc
FractionalIdeal.eq_zero_or_one
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1
case mp K : Type u_4 L : Type u_5 inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra K L inst✝ : IsFractionRing K L I : FractionalIdeal K⁰ L hI : ¬I = 0 x : L x_mem : x ∈ I ⊢ ∃ x', (algebraMap K L) x' = x
obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x
case mp.intro.intro K : Type u_4 L : Type u_5 inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra K L inst✝ : IsFractionRing K L I : FractionalIdeal K⁰ L hI : ¬I = 0 n : K d : ↥K⁰ x_mem : mk' L n d ∈ I ⊢ ∃ x', (algebraMap K L) x' = mk' L n d
a46b0893f2e92a27
MvPolynomial.IsHomogeneous.coeff_isHomogeneous_of_optionEquivLeft_symm
Mathlib/RingTheory/MvPolynomial/Homogeneous.lean
lemma coeff_isHomogeneous_of_optionEquivLeft_symm [hσ : Finite σ] {p : Polynomial (MvPolynomial σ R)} (hp : ((optionEquivLeft R σ).symm p).IsHomogeneous n) (i j : ℕ) (h : i + j = n) : (p.coeff i).IsHomogeneous j
case h.e'_4 σ : Type u_1 R : Type u_3 inst✝ : CommSemiring R n : ℕ hσ : Finite σ p : Polynomial (MvPolynomial σ R) hp : ((optionEquivLeft R σ).symm p).IsHomogeneous n i j : ℕ h : i + j = n k : ℕ e : σ ≃ Fin k e' : Option σ ≃ Fin (k + 1) := e.optionCongr.trans (_root_.finSuccEquiv k).symm F : MvPolynomial σ R ≃ₐ[R] MvPolynomial (Fin k) R := renameEquiv R e F' : MvPolynomial (Option σ) R ≃ₐ[R] MvPolynomial (Fin (k + 1)) R := renameEquiv R e' φ : MvPolynomial (Fin (k + 1)) R := F' ((optionEquivLeft R σ).symm p) hφ : φ.IsHomogeneous n ⊢ (rename ⇑e) (p.coeff i) = ((finSuccEquiv R k) ((rename ⇑e') ((optionEquivLeft R σ).symm p))).coeff i
rw [finSuccEquiv_rename_finSuccEquiv, AlgEquiv.apply_symm_apply]
case h.e'_4 σ : Type u_1 R : Type u_3 inst✝ : CommSemiring R n : ℕ hσ : Finite σ p : Polynomial (MvPolynomial σ R) hp : ((optionEquivLeft R σ).symm p).IsHomogeneous n i j : ℕ h : i + j = n k : ℕ e : σ ≃ Fin k e' : Option σ ≃ Fin (k + 1) := e.optionCongr.trans (_root_.finSuccEquiv k).symm F : MvPolynomial σ R ≃ₐ[R] MvPolynomial (Fin k) R := renameEquiv R e F' : MvPolynomial (Option σ) R ≃ₐ[R] MvPolynomial (Fin (k + 1)) R := renameEquiv R e' φ : MvPolynomial (Fin (k + 1)) R := F' ((optionEquivLeft R σ).symm p) hφ : φ.IsHomogeneous n ⊢ (rename ⇑e) (p.coeff i) = (Polynomial.map (rename ⇑e).toRingHom p).coeff i
5e0fbe3d40322b86
IsSeparable.of_algebra_isSeparable_of_isSeparable
Mathlib/FieldTheory/SeparableDegree.lean
theorem IsSeparable.of_algebra_isSeparable_of_isSeparable [Algebra E K] [IsScalarTower F E K] [Algebra.IsSeparable F E] {x : K} (hsep : IsSeparable E x) : IsSeparable F x
F : Type u E : Type v inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Algebra F E K : Type w inst✝⁴ : Field K inst✝³ : Algebra F K inst✝² : Algebra E K inst✝¹ : IsScalarTower F E K inst✝ : Algebra.IsSeparable F E x : K hsep : IsSeparable E x f : E[X] := minpoly E x hf : f = minpoly E x E' : IntermediateField F E := adjoin F ↑f.coeffs this : FiniteDimensional F ↥E' ⊢ IsSeparable F x
let g : E'[X] := f.toSubring E'.toSubring (subset_adjoin F _)
F : Type u E : Type v inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Algebra F E K : Type w inst✝⁴ : Field K inst✝³ : Algebra F K inst✝² : Algebra E K inst✝¹ : IsScalarTower F E K inst✝ : Algebra.IsSeparable F E x : K hsep : IsSeparable E x f : E[X] := minpoly E x hf : f = minpoly E x E' : IntermediateField F E := adjoin F ↑f.coeffs this : FiniteDimensional F ↥E' g : (↥E')[X] := f.toSubring E'.toSubring ⋯ ⊢ IsSeparable F x
6901ddfd7b743413
MvPFunctor.comp_wPathCasesOn
Mathlib/Data/PFunctor/Multivariate/W.lean
theorem comp_wPathCasesOn {α β : TypeVec n} (h : α ⟹ β) {a : P.A} {f : P.last.B a → P.last.W} (g' : P.drop.B a ⟹ α) (g : ∀ j : P.last.B a, P.WPath (f j) ⟹ α) : h ⊚ P.wPathCasesOn g' g = P.wPathCasesOn (h ⊚ g') fun i => h ⊚ g i
case a.h n : ℕ P : MvPFunctor.{u} (n + 1) α : TypeVec.{u_1} n β : TypeVec.{u_2} n h : α ⟹ β a : P.A f : P.last.B a → P.last.W g' : P.drop.B a ⟹ α g : (j : P.last.B a) → P.WPath (f j) ⟹ α i : Fin2 n x : P.WPath (WType.mk a f) i ⊢ (h ⊚ P.wPathCasesOn g' g) i x = P.wPathCasesOn (h ⊚ g') (fun i => h ⊚ g i) i x
cases x <;> rfl
no goals
c6ed33f023d791f0
List.unzip_toArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem unzip_toArray (as : List (α × β)) : as.toArray.unzip = Prod.map List.toArray List.toArray as.unzip
α : Type u_1 β : Type u_2 as : List (α × β) ⊢ as.toArray.unzip = Prod.map toArray toArray as.unzip
ext1 <;> simp
no goals
8bd3794a6a3f4550
SimpleGraph.iUnion_connectedComponentSupp
Mathlib/Combinatorics/SimpleGraph/Path.lean
lemma iUnion_connectedComponentSupp (G : SimpleGraph V) : ⋃ c : G.ConnectedComponent, c.supp = Set.univ
V : Type u G : SimpleGraph V v : V ⊢ ∃ y, y.supp = ↑(G.connectedComponentMk v)
use G.connectedComponentMk v
case h V : Type u G : SimpleGraph V v : V ⊢ (G.connectedComponentMk v).supp = ↑(G.connectedComponentMk v)
3a9ae24cb75c2aa7
Array.setIfInBounds_setIfInBounds
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem setIfInBounds_setIfInBounds (a b : α) (as : Array α) (i : Nat) : (as.setIfInBounds i a).setIfInBounds i b = as.setIfInBounds i b
case mk α : Type u_1 a b : α i : Nat toList✝ : List α ⊢ ({ toList := toList✝ }.setIfInBounds i a).setIfInBounds i b = { toList := toList✝ }.setIfInBounds i b
simp
no goals
ec9965e281a40a9f
Real.two_mul_arctan_add_pi
Mathlib/Analysis/SpecialFunctions/Trigonometric/Arctan.lean
theorem two_mul_arctan_add_pi {x : ℝ} (h : 1 < x) : 2 * arctan x = arctan (2 * x / (1 - x ^ 2)) + π
case e_a.e_x x : ℝ h : 1 < x ⊢ (x + x) / (1 - x * x) = 2 * x / (1 - x ^ 2)
ring
no goals
d1c8265a24878c41
Group.card_center_add_sum_card_noncenter_eq_card
Mathlib/GroupTheory/ClassEquation.lean
theorem Group.card_center_add_sum_card_noncenter_eq_card (G) [Group G] [∀ x : ConjClasses G, Fintype x.carrier] [Fintype G] [Fintype <| Subgroup.center G] [Fintype <| noncenter G] : Fintype.card (Subgroup.center G) + ∑ x ∈ (noncenter G).toFinset, x.carrier.toFinset.card = Fintype.card G
case h.e'_3 G : Type u_2 inst✝⁴ : Group G inst✝³ : (x : ConjClasses G) → Fintype ↑x.carrier inst✝² : Fintype G inst✝¹ : Fintype ↥(Subgroup.center G) inst✝ : Fintype ↑(noncenter G) ⊢ Fintype.card G = Nat.card G
simp
no goals
e8d5dab4b658ff9d
blimsup_cthickening_mul_ae_eq
Mathlib/MeasureTheory/Covering/LiminfLimsup.lean
theorem blimsup_cthickening_mul_ae_eq (p : ℕ → Prop) (s : ℕ → Set α) {M : ℝ} (hM : 0 < M) (r : ℕ → ℝ) (hr : Tendsto r atTop (𝓝 0)) : (blimsup (fun i => cthickening (M * r i) (s i)) atTop p : Set α) =ᵐ[μ] (blimsup (fun i => cthickening (r i) (s i)) atTop p : Set α)
α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ s : ℕ → Set α M : ℝ hM : 0 < M p : ℕ → Prop r : ℕ → ℝ hr : Tendsto r atTop (𝓝[>] 0) ⊢ Tendsto (fun i => M * r i) atTop (𝓝[>] 0)
convert TendstoNhdsWithinIoi.const_mul hM hr <;> simp only [mul_zero]
no goals
8749d72cf710712d
Stream'.Seq.map_cons
Mathlib/Data/Seq/Seq.lean
theorem map_cons (f : α → β) (a) : ∀ s, map f (cons a s) = cons (f a) (map f s) | ⟨s, al⟩ => by apply Subtype.eq; dsimp [cons, map]; rw [Stream'.map_cons]; rfl
case a α : Type u β : Type v f : α → β a : α s : Stream' (Option α) al : s.IsSeq ⊢ Option.map f (some a) :: Stream'.map (Option.map f) s = some (f a) :: Stream'.map (Option.map f) s
rfl
no goals
53104f98914cff40
ENNReal.toReal_eq_toReal
Mathlib/Data/ENNReal/Real.lean
theorem toReal_eq_toReal (ha : a ≠ ∞) (hb : b ≠ ∞) : a.toReal = b.toReal ↔ a = b
case intro.intro a b : ℝ≥0 ⊢ (↑a).toReal = (↑b).toReal ↔ ↑a = ↑b
simp only [coe_inj, NNReal.coe_inj, coe_toReal]
no goals
30f5aebaa93cabcd
MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets
Mathlib/MeasureTheory/Function/AEMeasurableOrder.lean
theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type*} {m : MeasurableSpace α} (μ : Measure α) {β : Type*} [CompleteLinearOrder β] [DenselyOrdered β] [TopologicalSpace β] [OrderTopology β] [SecondCountableTopology β] [MeasurableSpace β] [BorelSpace β] (s : Set β) (s_count : s.Countable) (s_dense : Dense s) (f : α → β) (h : ∀ p ∈ s, ∀ q ∈ s, p < q → ∃ u v, MeasurableSet u ∧ MeasurableSet v ∧ { x | f x < p } ⊆ u ∧ { x | q < f x } ⊆ v ∧ μ (u ∩ v) = 0) : AEMeasurable f μ
α : Type u_1 m : MeasurableSpace α μ : Measure α β : Type u_2 inst✝⁶ : CompleteLinearOrder β inst✝⁵ : DenselyOrdered β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β inst✝² : SecondCountableTopology β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β s : Set β s_count : s.Countable s_dense : Dense s f : α → β h : ∀ p ∈ s, ∀ q ∈ s, p < q → ∃ u v, MeasurableSet u ∧ MeasurableSet v ∧ {x | f x < p} ⊆ u ∧ {x | q < f x} ⊆ v ∧ μ (u ∩ v) = 0 this : Encodable ↑s u v : β → β → Set α huv : ∀ (p q : β), MeasurableSet (u p q) ∧ MeasurableSet (v p q) ∧ {x | f x < p} ⊆ u p q ∧ {x | q < f x} ⊆ v p q ∧ (p ∈ s → q ∈ s → p < q → μ (u p q ∩ v p q) = 0) u' : β → Set α := fun p => ⋂ q ∈ s ∩ Ioi p, u p q u'_meas : ∀ (i : β), MeasurableSet (u' i) f' : α → β := fun x => ⨅ i, (u' ↑i).piecewise (fun x => ↑i) (fun x => ⊤) x ⊢ AEMeasurable f μ
have f'_meas : Measurable f' := by fun_prop (disch := aesop)
α : Type u_1 m : MeasurableSpace α μ : Measure α β : Type u_2 inst✝⁶ : CompleteLinearOrder β inst✝⁵ : DenselyOrdered β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β inst✝² : SecondCountableTopology β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β s : Set β s_count : s.Countable s_dense : Dense s f : α → β h : ∀ p ∈ s, ∀ q ∈ s, p < q → ∃ u v, MeasurableSet u ∧ MeasurableSet v ∧ {x | f x < p} ⊆ u ∧ {x | q < f x} ⊆ v ∧ μ (u ∩ v) = 0 this : Encodable ↑s u v : β → β → Set α huv : ∀ (p q : β), MeasurableSet (u p q) ∧ MeasurableSet (v p q) ∧ {x | f x < p} ⊆ u p q ∧ {x | q < f x} ⊆ v p q ∧ (p ∈ s → q ∈ s → p < q → μ (u p q ∩ v p q) = 0) u' : β → Set α := fun p => ⋂ q ∈ s ∩ Ioi p, u p q u'_meas : ∀ (i : β), MeasurableSet (u' i) f' : α → β := fun x => ⨅ i, (u' ↑i).piecewise (fun x => ↑i) (fun x => ⊤) x f'_meas : Measurable f' ⊢ AEMeasurable f μ
6b0c36117865acf2
isClopen_iff_frontier_eq_empty
Mathlib/Topology/Clopen.lean
theorem isClopen_iff_frontier_eq_empty : IsClopen s ↔ frontier s = ∅
X : Type u inst✝ : TopologicalSpace X s : Set X h : closure s ⊆ interior s ⊢ closure s = s ∧ interior s = s
exact ⟨(h.trans interior_subset).antisymm subset_closure, interior_subset.antisymm (subset_closure.trans h)⟩
no goals
fd204de967800dba
Polynomial.mul_scaleRoots
Mathlib/RingTheory/Polynomial/ScaleRoots.lean
/-- Multiplication and `scaleRoots` commute up to a power of `r`. The factor disappears if we assume that the product of the leading coeffs does not vanish. See `Polynomial.mul_scaleRoots'`. -/ lemma mul_scaleRoots (p q : R[X]) (r : R) : r ^ (natDegree p + natDegree q - natDegree (p * q)) • (p * q).scaleRoots r = p.scaleRoots r * q.scaleRoots r
case inr.inr R : Type u_1 inst✝ : CommSemiring R p q : R[X] r : R n a b : ℕ e : a + b = n ha : a ≤ p.natDegree hb : b ≤ q.natDegree ⊢ p.coeff a * q.coeff b * r ^ (p.natDegree + q.natDegree - n) = p.coeff a * r ^ (p.natDegree - a) * (q.coeff b * r ^ (q.natDegree - b))
simp only [← e, mul_assoc, mul_comm (r ^ (_ - a)), ← pow_add]
case inr.inr R : Type u_1 inst✝ : CommSemiring R p q : R[X] r : R n a b : ℕ e : a + b = n ha : a ≤ p.natDegree hb : b ≤ q.natDegree ⊢ p.coeff a * (q.coeff b * r ^ (p.natDegree + q.natDegree - (a + b))) = p.coeff a * (q.coeff b * r ^ (q.natDegree - b + (p.natDegree - a)))
ac865a3551bb16a7
CochainComplex.HomComplex.Cochain.rightShift_leftShift
Mathlib/Algebra/Homology/HomotopyCategory/HomComplexShift.lean
lemma rightShift_leftShift (a n' : ℤ) (hn' : n + a = n') : (γ.leftShift a n' hn').rightShift a n hn' = (a * n' + (a * (a - 1)) / 2).negOnePow • γ.shift a
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C K L : CochainComplex C ℤ n : ℤ γ : Cochain K L n a n' : ℤ hn' : n + a = n' ⊢ (γ.leftShift a n' hn').rightShift a n hn' = (a * n' + a * (a - 1) / 2).negOnePow • γ.shift a
ext p q hpq
case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C K L : CochainComplex C ℤ n : ℤ γ : Cochain K L n a n' : ℤ hn' : n + a = n' p q : ℤ hpq : p + n = q ⊢ ((γ.leftShift a n' hn').rightShift a n hn').v p q hpq = ((a * n' + a * (a - 1) / 2).negOnePow • γ.shift a).v p q hpq
97919e60b1c652b4
Std.Tactic.BVDecide.BVPred.denote_bitblast
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Pred.lean
theorem denote_bitblast (aig : AIG BVBit) (pred : BVPred) (assign : BVExpr.Assignment) : ⟦bitblast aig pred, assign.toAIGAssignment⟧ = pred.eval assign
case bin.eq.hleft aig : AIG BVBit assign : BVExpr.Assignment w✝ : Nat lhs rhs : BVExpr w✝ idx✝ : Nat hidx✝ : idx✝ < w✝ ⊢ ({ lhs := (BVExpr.bitblast aig lhs).vec.cast ⋯, rhs := (BVExpr.bitblast (BVExpr.bitblast aig lhs).aig rhs).vec }.lhs.get idx✝ hidx✝).gate < (BVExpr.bitblast aig lhs).aig.decls.size
simp [Ref.hgate]
no goals
e5d3f10f6565948a
Std.Tactic.BVDecide.Normalize.BitVec.add_const_right
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Normalize/BitVec.lean
theorem BitVec.add_const_right (a b c : BitVec w) : a + (b + c) = (a + c) + b
w : Nat a b c : BitVec w ⊢ a + (b + c) = a + c + b
ac_rfl
no goals
8a66f00a112967f4
Nat.testBit_two_pow_add_gt
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Lemmas.lean
theorem testBit_two_pow_add_gt {i j : Nat} (j_lt_i : j < i) (x : Nat) : testBit (2^i + x) j = testBit x j
i j : Nat j_lt_i : j < i x : Nat i_def : i = j + (i - j) i_sub_j_eq : i - j = 0 ⊢ decide ((2 ^ 0 + x / 2 ^ j) % 2 = 1) = decide (x / 2 ^ j % 2 = 1)
exfalso
i j : Nat j_lt_i : j < i x : Nat i_def : i = j + (i - j) i_sub_j_eq : i - j = 0 ⊢ False
e0a351492794664a
Polynomial.natTrailingDegree_le_natDegree
Mathlib/Algebra/Polynomial/Degree/TrailingDegree.lean
theorem natTrailingDegree_le_natDegree (p : R[X]) : p.natTrailingDegree ≤ p.natDegree
R : Type u inst✝ : Semiring R p : R[X] ⊢ p.natTrailingDegree ≤ p.natDegree
by_cases hp : p = 0
case pos R : Type u inst✝ : Semiring R p : R[X] hp : p = 0 ⊢ p.natTrailingDegree ≤ p.natDegree case neg R : Type u inst✝ : Semiring R p : R[X] hp : ¬p = 0 ⊢ p.natTrailingDegree ≤ p.natDegree
4e2cdbf8a94a668c
Metric.hausdorffDist_image
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
theorem hausdorffDist_image (h : Isometry Φ) : hausdorffDist (Φ '' s) (Φ '' t) = hausdorffDist s t
α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t : Set α Φ : α → β h : Isometry Φ ⊢ hausdorffDist (Φ '' s) (Φ '' t) = hausdorffDist s t
simp [hausdorffDist, hausdorffEdist_image h]
no goals
80d7381c2de4781b
AffineBasis.coord_apply_combination_of_mem
Mathlib/LinearAlgebra/AffineSpace/Basis.lean
theorem coord_apply_combination_of_mem (hi : i ∈ s) {w : ι → k} (hw : s.sum w = 1) : b.coord i (s.affineCombination k b w) = w i
ι : Type u_1 k : Type u_5 V : Type u_6 P : Type u_7 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i : ι hi : i ∈ s w : ι → k hw : s.sum w = 1 ⊢ (b.coord i) ((Finset.affineCombination k s ⇑b) w) = w i
simp only [coord_apply, hi, Finset.affineCombination_eq_linear_combination, if_true, mul_boole, hw, Function.comp_apply, smul_eq_mul, s.sum_ite_eq, s.map_affineCombination b w hw]
no goals
3f38e0252350b813
nhds_basis_clopen
Mathlib/Topology/Separation/Profinite.lean
theorem nhds_basis_clopen (x : X) : (𝓝 x).HasBasis (fun s : Set X => x ∈ s ∧ IsClopen s) id := ⟨fun U => by constructor · have hx : connectedComponent x = {x} := totallyDisconnectedSpace_iff_connectedComponent_singleton.mp ‹_› x rw [connectedComponent_eq_iInter_isClopen] at hx intro hU let N := { s // IsClopen s ∧ x ∈ s } rsuffices ⟨⟨s, hs, hs'⟩, hs''⟩ : ∃ s : N, s.val ⊆ U · exact ⟨s, ⟨hs', hs⟩, hs''⟩ haveI : Nonempty N := ⟨⟨univ, isClopen_univ, mem_univ x⟩⟩ have hNcl : ∀ s : N, IsClosed s.val := fun s => s.property.1.1 have hdir : Directed Superset fun s : N => s.val
X : Type u_1 inst✝³ : TopologicalSpace X inst✝² : T2Space X inst✝¹ : CompactSpace X inst✝ : TotallyDisconnectedSpace X x : X U : Set X hx : ⋂ s, ↑s = {x} hU : U ∈ 𝓝 x N : Type (max 0 u_1) := { s // IsClopen s ∧ x ∈ s } this : Nonempty N hNcl : ∀ (s : N), IsClosed ↑s hdir : Directed Superset fun s => ↑s ⊢ ∃ s, ↑s ⊆ U
have h_nhd : ∀ y ∈ ⋂ s : N, s.val, U ∈ 𝓝 y := fun y y_in => by rw [hx, mem_singleton_iff] at y_in rwa [y_in]
X : Type u_1 inst✝³ : TopologicalSpace X inst✝² : T2Space X inst✝¹ : CompactSpace X inst✝ : TotallyDisconnectedSpace X x : X U : Set X hx : ⋂ s, ↑s = {x} hU : U ∈ 𝓝 x N : Type (max 0 u_1) := { s // IsClopen s ∧ x ∈ s } this : Nonempty N hNcl : ∀ (s : N), IsClosed ↑s hdir : Directed Superset fun s => ↑s h_nhd : ∀ y ∈ ⋂ s, ↑s, U ∈ 𝓝 y ⊢ ∃ s, ↑s ⊆ U
9480ae471dafed2e
affineCombination_mem_affineSpan
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
theorem affineCombination_mem_affineSpan [Nontrivial k] {s : Finset ι} {w : ι → k} (h : ∑ i ∈ s, w i = 1) (p : ι → P) : s.affineCombination k p w ∈ affineSpan k (Set.range p)
ι : Type u_1 k : Type u_2 V : Type u_3 P : Type u_4 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Nontrivial k s : Finset ι w : ι → k h : ∑ i ∈ s, w i = 1 p : ι → P ⊢ (Finset.affineCombination k s p) w ∈ affineSpan k (Set.range p)
classical have hnz : ∑ i ∈ s, w i ≠ 0 := h.symm ▸ one_ne_zero have hn : s.Nonempty := Finset.nonempty_of_sum_ne_zero hnz obtain ⟨i1, hi1⟩ := hn let w1 : ι → k := Function.update (Function.const ι 0) i1 1 have hw1 : ∑ i ∈ s, w1 i = 1 := by simp only [w1, Function.const_zero, Finset.sum_update_of_mem hi1, Pi.zero_apply, Finset.sum_const_zero, add_zero] have hw1s : s.affineCombination k p w1 = p i1 := s.affineCombination_of_eq_one_of_eq_zero w1 p hi1 (Function.update_self ..) fun _ _ hne => Function.update_of_ne hne .. have hv : s.affineCombination k p w -ᵥ p i1 ∈ (affineSpan k (Set.range p)).direction := by rw [direction_affineSpan, ← hw1s, Finset.affineCombination_vsub] apply weightedVSub_mem_vectorSpan simp [Pi.sub_apply, h, hw1] rw [← vsub_vadd (s.affineCombination k p w) (p i1)] exact AffineSubspace.vadd_mem_of_mem_direction hv (mem_affineSpan k (Set.mem_range_self _))
no goals
b0078337a6cd7107
ZMod.cast_one
Mathlib/Data/ZMod/Basic.lean
theorem cast_one (h : m ∣ n) : (cast (1 : ZMod n) : R) = 1
case succ.zero R : Type u_1 inst✝¹ : Ring R m : ℕ inst✝ : CharP R m h : m = 1 ⊢ ↑(1 % (0 + 1)) = 1
subst m
case succ.zero R : Type u_1 inst✝¹ : Ring R inst✝ : CharP R 1 ⊢ ↑(1 % (0 + 1)) = 1
e6a9c00445bb61a1
DoubleQuot.quotQuotEquivComm_symmₐ
Mathlib/RingTheory/Ideal/Quotient/Operations.lean
theorem quotQuotEquivComm_symmₐ : (quotQuotEquivCommₐ R I J).symm = quotQuotEquivCommₐ R J I
case h R : Type u A : Type u_1 inst✝² : CommSemiring R inst✝¹ : CommRing A inst✝ : Algebra R A I J : Ideal A a✝ : (A ⧸ J) ⧸ map (Quotient.mkₐ R J) I ⊢ (quotQuotEquivCommₐ R I J).symm a✝ = (quotQuotEquivCommₐ R J I) a✝
unfold quotQuotEquivCommₐ
case h R : Type u A : Type u_1 inst✝² : CommSemiring R inst✝¹ : CommRing A inst✝ : Algebra R A I J : Ideal A a✝ : (A ⧸ J) ⧸ map (Quotient.mkₐ R J) I ⊢ (AlgEquiv.ofRingEquiv ⋯).symm a✝ = (AlgEquiv.ofRingEquiv ⋯) a✝
2d73434f9d628cbe
PhragmenLindelof.right_half_plane_of_tendsto_zero_on_real
Mathlib/Analysis/Complex/PhragmenLindelof.lean
theorem right_half_plane_of_tendsto_zero_on_real (hd : DiffContOnCl ℂ f {z | 0 < z.re}) (hexp : ∃ c < (2 : ℝ), ∃ B, f =O[cobounded ℂ ⊓ 𝓟 {z | 0 < z.re}] fun z => expR (B * ‖z‖ ^ c)) (hre : Tendsto (fun x : ℝ => f x) atTop (𝓝 0)) (him : ∀ x : ℝ, ‖f (x * I)‖ ≤ C) (hz : 0 ≤ z.re) : ‖f z‖ ≤ C
case intro.intro.intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C : ℝ f : ℂ → E hd : DiffContOnCl ℂ f {z | 0 < z.re} hre : Tendsto (fun x => f ↑x) atTop (𝓝 0) him : ∀ (x : ℝ), ‖f (↑x * I)‖ ≤ C C' : ℝ hC' : ∀ (x : ℝ), 0 ≤ x → ‖f ↑x‖ ≤ C' z : ℂ hz : 0 ≤ z.re c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 {z | 0 < z.re}] fun z => expR (B * ‖z‖ ^ c) ⊢ ‖f z‖ ≤ C ⊔ C'
rcases le_total z.im 0 with h | h
case intro.intro.intro.inl E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C : ℝ f : ℂ → E hd : DiffContOnCl ℂ f {z | 0 < z.re} hre : Tendsto (fun x => f ↑x) atTop (𝓝 0) him : ∀ (x : ℝ), ‖f (↑x * I)‖ ≤ C C' : ℝ hC' : ∀ (x : ℝ), 0 ≤ x → ‖f ↑x‖ ≤ C' z : ℂ hz : 0 ≤ z.re c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 {z | 0 < z.re}] fun z => expR (B * ‖z‖ ^ c) h : z.im ≤ 0 ⊢ ‖f z‖ ≤ C ⊔ C' case intro.intro.intro.inr E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C : ℝ f : ℂ → E hd : DiffContOnCl ℂ f {z | 0 < z.re} hre : Tendsto (fun x => f ↑x) atTop (𝓝 0) him : ∀ (x : ℝ), ‖f (↑x * I)‖ ≤ C C' : ℝ hC' : ∀ (x : ℝ), 0 ≤ x → ‖f ↑x‖ ≤ C' z : ℂ hz : 0 ≤ z.re c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 {z | 0 < z.re}] fun z => expR (B * ‖z‖ ^ c) h : 0 ≤ z.im ⊢ ‖f z‖ ≤ C ⊔ C'
8c2477e37fa78449
cardinal_eq_of_mem_nhds
Mathlib/Topology/Algebra/Module/Cardinality.lean
theorem cardinal_eq_of_mem_nhds {E : Type*} (𝕜 : Type*) [NontriviallyNormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [ContinuousAdd E] [ContinuousSMul 𝕜 E] {s : Set E} {x : E} (hs : s ∈ 𝓝 x) : #s = #E
E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ⇑g ⁻¹' s ⊢ #↑s = #E
have : t ∈ 𝓝 0 := g.continuous.continuousAt.preimage_mem_nhds (by simpa [g] using hs)
E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ⇑g ⁻¹' s this : t ∈ 𝓝 0 ⊢ #↑s = #E
fd663fd33aaad9d7
AkraBazziRecurrence.asympBound_pos
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma asympBound_pos (n : ℕ) (hn : 0 < n) : 0 < asympBound g a b n
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r n : ℕ hn : 0 < n ⊢ ↑n ^ p a b * (1 + 0) ≤ ↑n ^ p a b * (1 + ∑ u ∈ range n, g ↑u / ↑u ^ (p a b + 1))
gcongr n^p a b * (1 + ?_)
case h.bc α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r n : ℕ hn : 0 < n ⊢ 0 ≤ ∑ u ∈ range n, g ↑u / ↑u ^ (p a b + 1)
a0987b7c03f9cda1
Vector.zipIdx_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Range.lean
theorem zipIdx_eq_append_iff {l : Vector α (n + m)} {k : Nat} : zipIdx l k = l₁ ++ l₂ ↔ ∃ (l₁' : Vector α n) (l₂' : Vector α m), l = l₁' ++ l₂' ∧ l₁ = zipIdx l₁' k ∧ l₂ = zipIdx l₂' (k + n)
case mk.mk.mk α : Type u_1 k : Nat l : Array α l₁ l₂ : Array (α × Nat) h : l.size = l₁.size + l₂.size ⊢ { toArray := l, size_toArray := h }.zipIdx k = { toArray := l₁, size_toArray := ⋯ } ++ { toArray := l₂, size_toArray := ⋯ } ↔ ∃ l₁' l₂', { toArray := l, size_toArray := h } = l₁' ++ l₂' ∧ { toArray := l₁, size_toArray := ⋯ } = l₁'.zipIdx k ∧ { toArray := l₂, size_toArray := ⋯ } = l₂'.zipIdx (k + l₁.size)
simp only [zipIdx_mk, mk_append_mk, eq_mk, Array.zipIdx_eq_append_iff, mk_eq, toArray_append, toArray_zipIdx]
case mk.mk.mk α : Type u_1 k : Nat l : Array α l₁ l₂ : Array (α × Nat) h : l.size = l₁.size + l₂.size ⊢ (∃ l₁' l₂', l = l₁' ++ l₂' ∧ l₁ = l₁'.zipIdx k ∧ l₂ = l₂'.zipIdx (k + l₁'.size)) ↔ ∃ l₁' l₂', l = l₁'.toArray ++ l₂'.toArray ∧ l₁ = l₁'.zipIdx k ∧ l₂ = l₂'.zipIdx (k + l₁.size)
e21d92e5105fe40c
TendstoLocallyUniformlyOn.differentiableOn
Mathlib/Analysis/Complex/LocallyUniformLimit.lean
theorem _root_.TendstoLocallyUniformlyOn.differentiableOn [φ.NeBot] (hf : TendstoLocallyUniformlyOn F f φ U) (hF : ∀ᶠ n in φ, DifferentiableOn ℂ (F n) U) (hU : IsOpen U) : DifferentiableOn ℂ f U
E : Type u_1 ι : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E U : Set ℂ φ : Filter ι F : ι → ℂ → E f : ℂ → E inst✝¹ : CompleteSpace E inst✝ : φ.NeBot hf : TendstoLocallyUniformlyOn F f φ U hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U hU : IsOpen U ⊢ DifferentiableOn ℂ f U
rintro x hx
E : Type u_1 ι : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E U : Set ℂ φ : Filter ι F : ι → ℂ → E f : ℂ → E inst✝¹ : CompleteSpace E inst✝ : φ.NeBot hf : TendstoLocallyUniformlyOn F f φ U hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U hU : IsOpen U x : ℂ hx : x ∈ U ⊢ DifferentiableWithinAt ℂ f U x
4179b164980029db
MonoidAlgebra.of_mem_span_of_iff
Mathlib/RingTheory/FiniteType.lean
theorem of_mem_span_of_iff [Nontrivial R] {m : M} {S : Set M} : of R M m ∈ span R (of R M '' S) ↔ m ∈ S
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : Monoid M inst✝ : Nontrivial R m : M S : Set M h : ↑{m} ⊆ S ⊢ m ∈ S
simpa using h
no goals
e166d2db530130a9
CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_right
Mathlib/CategoryTheory/Sites/Subcanonical.lean
lemma yonedaEquiv_symm_naturality_right (X : C) {F F' : Sheaf J (Type v)} (f : F ⟶ F') (x : F.val.obj ⟨X⟩) : J.yonedaEquiv.symm x ≫ f = J.yonedaEquiv.symm (f.val.app ⟨X⟩ x)
C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C inst✝ : J.Subcanonical X : C F F' : Sheaf J (Type v) f : F ⟶ F' x : F.val.obj (op X) ⊢ J.yonedaEquiv.symm x ≫ f = J.yonedaEquiv.symm (f.val.app (op X) x)
apply J.yonedaEquiv.injective
case a C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C inst✝ : J.Subcanonical X : C F F' : Sheaf J (Type v) f : F ⟶ F' x : F.val.obj (op X) ⊢ J.yonedaEquiv (J.yonedaEquiv.symm x ≫ f) = J.yonedaEquiv (J.yonedaEquiv.symm (f.val.app (op X) x))
41b8ba8609f5fbc6
HallMarriageTheorem.hall_hard_inductive_step_B
Mathlib/Combinatorics/Hall/Finite.lean
theorem hall_hard_inductive_step_B {n : ℕ} (hn : Fintype.card ι = n + 1) (ht : ∀ s : Finset ι, #s ≤ #(s.biUnion t)) (ih : ∀ {ι' : Type u} [Fintype ι'] (t' : ι' → Finset α), Fintype.card ι' ≤ n → (∀ s' : Finset ι', #s' ≤ #(s'.biUnion t')) → ∃ f : ι' → α, Function.Injective f ∧ ∀ x, f x ∈ t' x) (s : Finset ι) (hs : s.Nonempty) (hns : s ≠ univ) (hus : #s = #(s.biUnion t)) : ∃ f : ι → α, Function.Injective f ∧ ∀ x, f x ∈ t x
case intro.intro.intro.intro ι : Type u α : Type v inst✝¹ : DecidableEq α t : ι → Finset α inst✝ : Fintype ι n : ℕ hn : Fintype.card ι = n.succ ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) ih : ∀ {ι' : Type u} [inst : Fintype ι'] (t' : ι' → Finset α), Fintype.card ι' ≤ n → (∀ (s' : Finset ι'), #s' ≤ #(s'.biUnion t')) → ∃ f, Function.Injective f ∧ ∀ (x : ι'), f x ∈ t' x s : Finset ι hs : s.Nonempty hns : s ≠ univ hus : #s = #(s.biUnion t) this : DecidableEq ι card_ι'_le : Fintype.card { x // x ∈ s } ≤ n t' : { x // x ∈ s } → Finset α := fun x' => t ↑x' f' : { x // x ∈ s } → α hf' : Function.Injective f' hsf' : ∀ (x : { x // x ∈ s }), f' x ∈ t' x ι'' : Set ι := (↑s)ᶜ t'' : ↑ι'' → Finset α := fun a'' => t ↑a'' \ s.biUnion t card_ι''_le : Fintype.card ↑ι'' ≤ n f'' : ↑ι'' → α hf'' : Function.Injective f'' hsf'' : ∀ (x : ↑ι''), f'' x ∈ t'' x f'_mem_biUnion : ∀ (x' : ι) (hx' : x' ∈ s), f' ⟨x', hx'⟩ ∈ s.biUnion t ⊢ ∃ f, Function.Injective f ∧ ∀ (x : ι), f x ∈ t x
have f''_not_mem_biUnion : ∀ (x'') (hx'' : ¬x'' ∈ s), ¬f'' ⟨x'', hx''⟩ ∈ s.biUnion t := by intro x'' hx'' have h := hsf'' ⟨x'', hx''⟩ rw [mem_sdiff] at h exact h.2
case intro.intro.intro.intro ι : Type u α : Type v inst✝¹ : DecidableEq α t : ι → Finset α inst✝ : Fintype ι n : ℕ hn : Fintype.card ι = n.succ ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) ih : ∀ {ι' : Type u} [inst : Fintype ι'] (t' : ι' → Finset α), Fintype.card ι' ≤ n → (∀ (s' : Finset ι'), #s' ≤ #(s'.biUnion t')) → ∃ f, Function.Injective f ∧ ∀ (x : ι'), f x ∈ t' x s : Finset ι hs : s.Nonempty hns : s ≠ univ hus : #s = #(s.biUnion t) this : DecidableEq ι card_ι'_le : Fintype.card { x // x ∈ s } ≤ n t' : { x // x ∈ s } → Finset α := fun x' => t ↑x' f' : { x // x ∈ s } → α hf' : Function.Injective f' hsf' : ∀ (x : { x // x ∈ s }), f' x ∈ t' x ι'' : Set ι := (↑s)ᶜ t'' : ↑ι'' → Finset α := fun a'' => t ↑a'' \ s.biUnion t card_ι''_le : Fintype.card ↑ι'' ≤ n f'' : ↑ι'' → α hf'' : Function.Injective f'' hsf'' : ∀ (x : ↑ι''), f'' x ∈ t'' x f'_mem_biUnion : ∀ (x' : ι) (hx' : x' ∈ s), f' ⟨x', hx'⟩ ∈ s.biUnion t f''_not_mem_biUnion : ∀ (x'' : ι) (hx'' : x'' ∉ s), f'' ⟨x'', hx''⟩ ∉ s.biUnion t ⊢ ∃ f, Function.Injective f ∧ ∀ (x : ι), f x ∈ t x
de2e47a85ff6c58c
Basis.eq_bot_of_rank_eq_zero
Mathlib/LinearAlgebra/Basis/Basic.lean
theorem Basis.eq_bot_of_rank_eq_zero [NoZeroDivisors R] (b : Basis ι R M) (N : Submodule R M) (rank_eq : ∀ {m : ℕ} (v : Fin m → N), LinearIndependent R ((↑) ∘ v : Fin m → M) → m = 0) : N = ⊥
case mk ι : Type u_1 R : Type u_3 M : Type u_5 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M x : M hx : x ∈ N x_ne : x ≠ 0 g : Fin 1 → R val✝ : ℕ hi : val✝ < 1 sum_eq : g 0 • (Subtype.val ∘ fun x_1 => ⟨x, hx⟩) 0 = 0 ⊢ g ⟨val✝, hi⟩ = 0
convert (b.smul_eq_zero.mp sum_eq).resolve_right x_ne
no goals
2aad7cb72b7cf502
MeasureTheory.Filtration.filtrationOfSet_eq_natural
Mathlib/Probability/Process/Filtration.lean
theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι → Set Ω} (hsm : ∀ i, MeasurableSet[m] (s i)) : filtrationOfSet hsm = natural (fun i => (s i).indicator (fun _ => 1 : Ω → β)) fun i => stronglyMeasurable_one.indicator (hsm i)
case h.refine_2.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t : Set Ω n : ι ht : MeasurableSet t ⊢ MeasurableSet t
suffices MeasurableSpace.generateFrom {t | n ≤ i ∧ MeasurableSet[MeasurableSpace.comap ((s n).indicator (fun _ => 1 : Ω → β)) mβ] t} ≤ MeasurableSpace.generateFrom {t | ∃ (j : ι), j ≤ i ∧ s j = t} by exact this _ ht
case h.refine_2.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t : Set Ω n : ι ht : MeasurableSet t ⊢ MeasurableSpace.generateFrom {t | n ≤ i ∧ MeasurableSet t} ≤ MeasurableSpace.generateFrom {t | ∃ j ≤ i, s j = t}
7ffbace60117795e
totallyBounded_interUnionBalls
Mathlib/Topology/UniformSpace/Cauchy.lean
lemma totallyBounded_interUnionBalls {p : ℕ → Prop} {U : ℕ → Set (α × α)} (H : (uniformity α).HasBasis p U) (xs : ℕ → α) (u : ℕ → ℕ) : TotallyBounded (interUnionBalls xs u U)
α : Type u uniformSpace : UniformSpace α p : ℕ → Prop U : ℕ → Set (α × α) H : (𝓤 α).HasBasis p U xs : ℕ → α u : ℕ → ℕ i : ℕ a✝ : p i h_subset : interUnionBalls xs u U ⊆ ⋃ m, ⋃ (_ : m ≤ u i), ball (xs m) (Prod.swap ⁻¹' U i) x : α hx : x ∈ interUnionBalls xs u U ⊢ x ∈ ⋃ y ∈ ↑(Finset.image xs (Finset.range (u i + 1))), {x | (x, y) ∈ U i}
simp only [Finset.coe_image, Finset.coe_range, mem_image, mem_Iio, iUnion_exists, biUnion_and', iUnion_iUnion_eq_right, Nat.lt_succ_iff]
α : Type u uniformSpace : UniformSpace α p : ℕ → Prop U : ℕ → Set (α × α) H : (𝓤 α).HasBasis p U xs : ℕ → α u : ℕ → ℕ i : ℕ a✝ : p i h_subset : interUnionBalls xs u U ⊆ ⋃ m, ⋃ (_ : m ≤ u i), ball (xs m) (Prod.swap ⁻¹' U i) x : α hx : x ∈ interUnionBalls xs u U ⊢ x ∈ ⋃ y, ⋃ (_ : y ≤ u i), {x | (x, xs y) ∈ U i}
a7e97fbc5a5e4030
StieltjesFunction.measure_const
Mathlib/MeasureTheory/Measure/Stieltjes.lean
@[simp] lemma measure_const (c : ℝ) : (StieltjesFunction.const c).measure = 0 := Measure.ext_of_Ioc _ _ (by simp)
c : ℝ ⊢ ∀ ⦃a b : ℝ⦄, a < b → (StieltjesFunction.const c).measure (Ioc a b) = 0 (Ioc a b)
simp
no goals
ddf913c1bd3042b4
Derivation.tensorProductTo_mul
Mathlib/RingTheory/Kaehler/Basic.lean
theorem Derivation.tensorProductTo_mul (D : Derivation R S M) (x y : S ⊗[R] S) : D.tensorProductTo (x * y) = TensorProduct.lmul' (S := S) R x • D.tensorProductTo y + TensorProduct.lmul' (S := S) R y • D.tensorProductTo x
case refine_2.refine_1 R : Type u S : Type v inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S M : Type u_1 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module S M inst✝ : IsScalarTower R S M D : Derivation R S M x y : S ⊗[R] S x₁ x₂ : S ⊢ D.tensorProductTo (x₁ ⊗ₜ[R] x₂ * 0) = (TensorProduct.lmul' R) (x₁ ⊗ₜ[R] x₂) • D.tensorProductTo 0 + (TensorProduct.lmul' R) 0 • D.tensorProductTo (x₁ ⊗ₜ[R] x₂)
rw [mul_zero, map_zero, map_zero, zero_smul, smul_zero, add_zero]
no goals
5acdf1d1a845072a
Real.pow_mul_norm_iteratedFDeriv_fourierIntegral_le
Mathlib/Analysis/Fourier/FourierTransformDeriv.lean
/-- One can bound `‖w‖^n * ‖D^k (𝓕 f) w‖` in terms of integrals of the derivatives of `f` (or order at most `n`) multiplied by powers of `v` (of order at most `k`). -/ lemma pow_mul_norm_iteratedFDeriv_fourierIntegral_le {K N : ℕ∞} (hf : ContDiff ℝ N f) (h'f : ∀ (k n : ℕ), k ≤ K → n ≤ N → Integrable (fun v ↦ ‖v‖^k * ‖iteratedFDeriv ℝ n f v‖)) {k n : ℕ} (hk : k ≤ K) (hn : n ≤ N) (w : V) : ‖w‖ ^ n * ‖iteratedFDeriv ℝ k (𝓕 f) w‖ ≤ (2 * π) ^ k * (2 * k + 2) ^ n * ∑ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ∫ v, ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖
case inr.inr E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E V : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : MeasurableSpace V inst✝ : BorelSpace V f : V → E K N : ℕ∞ hf : ContDiff ℝ (↑N) f h'f : ∀ (k n : ℕ), ↑k ≤ K → ↑n ≤ N → Integrable (fun v => ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) volume k n : ℕ hk : ↑k ≤ K hn✝ : ↑n ≤ N w : V Z : ‖w‖ ^ n * ‖iteratedFDeriv ℝ k (𝓕 f) w‖ ≤ (2 * (π * ‖innerSL ℝ‖)) ^ k * ((2 * ↑k + 2) ^ n * ∑ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ∫ (v : V), ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖) hn : n ≠ 0 hw : w ≠ 0 ⊢ (2 * (π * ‖innerSL ℝ‖)) ^ k * ((2 * ↑k + 2) ^ n * ∑ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ∫ (v : V), ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖) ≤ (2 * (π * 1)) ^ k * ((2 * ↑k + 2) ^ n * ∑ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ∫ (v : V), ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖)
gcongr
case inr.inr.h.hab.h.h E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E V : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : MeasurableSpace V inst✝ : BorelSpace V f : V → E K N : ℕ∞ hf : ContDiff ℝ (↑N) f h'f : ∀ (k n : ℕ), ↑k ≤ K → ↑n ≤ N → Integrable (fun v => ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) volume k n : ℕ hk : ↑k ≤ K hn✝ : ↑n ≤ N w : V Z : ‖w‖ ^ n * ‖iteratedFDeriv ℝ k (𝓕 f) w‖ ≤ (2 * (π * ‖innerSL ℝ‖)) ^ k * ((2 * ↑k + 2) ^ n * ∑ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ∫ (v : V), ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖) hn : n ≠ 0 hw : w ≠ 0 ⊢ ‖innerSL ℝ‖ ≤ 1
d6081cebd8a737ff
HomologicalComplex.singleMapHomologicalComplex_inv_app_self
Mathlib/Algebra/Homology/Additive.lean
theorem singleMapHomologicalComplex_inv_app_self (j : ι) (X : W₁) : ((singleMapHomologicalComplex F c j).inv.app X).f j = (singleObjXSelf c j (F.obj X)).hom ≫ F.map (singleObjXSelf c j X).inv
ι : Type u_1 W₁ : Type u_3 W₂ : Type u_4 inst✝⁷ : Category.{u_6, u_3} W₁ inst✝⁶ : Category.{u_5, u_4} W₂ inst✝⁵ : HasZeroMorphisms W₁ inst✝⁴ : HasZeroMorphisms W₂ inst✝³ : HasZeroObject W₁ inst✝² : HasZeroObject W₂ F : W₁ ⥤ W₂ inst✝¹ : F.PreservesZeroMorphisms c : ComplexShape ι inst✝ : DecidableEq ι j : ι X : W₁ ⊢ ((singleMapHomologicalComplex F c j).inv.app X).f j = (singleObjXSelf c j (F.obj X)).hom ≫ F.map (singleObjXSelf c j X).inv
simp [singleMapHomologicalComplex, singleObjXSelf, singleObjXIsoOfEq, eqToHom_map]
no goals
d9b018e698e4cb14
Nat.add_factorial_succ_le_factorial_add_succ
Mathlib/Data/Nat/Factorial/Basic.lean
theorem add_factorial_succ_le_factorial_add_succ (i : ℕ) (n : ℕ) : i + (n + 1)! ≤ (i + (n + 1))!
case inl i n : ℕ h✝ : 2 ≤ i ⊢ i + (n + 1)! ≤ (i + (n + 1))!
rw [← Nat.add_assoc]
case inl i n : ℕ h✝ : 2 ≤ i ⊢ i + (n + 1)! ≤ (i + n + 1)!
26356308d2e4db6a
Submodule.spanRank_span_le_card
Mathlib/Algebra/Module/SpanRank.lean
lemma spanRank_span_le_card (s : Set M) : (Submodule.span R s).spanRank ≤ #s
R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M ⊢ ⨅ s_1, #↑↑s_1 ≤ #↑s
let s' : {s1 : Set M // span R s1 = span R s} := ⟨s, rfl⟩
R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M s' : { s1 // span R s1 = span R s } := ⟨s, ⋯⟩ ⊢ ⨅ s_1, #↑↑s_1 ≤ #↑s
0eb082337e985dd3
ProbabilityTheory.IsRatStieltjesPoint.ite
Mathlib/Probability/Kernel/Disintegration/MeasurableStieltjes.lean
lemma IsRatStieltjesPoint.ite {f g : α → ℚ → ℝ} {a : α} (p : α → Prop) [DecidablePred p] (hf : p a → IsRatStieltjesPoint f a) (hg : ¬ p a → IsRatStieltjesPoint g a) : IsRatStieltjesPoint (fun a ↦ if p a then f a else g a) a where mono
α : Type u_1 f g : α → ℚ → ℝ a : α p : α → Prop inst✝ : DecidablePred p hf : p a → IsRatStieltjesPoint f a hg : ¬p a → IsRatStieltjesPoint g a ⊢ Monotone (if p a then f a else g a)
split_ifs with h
case pos α : Type u_1 f g : α → ℚ → ℝ a : α p : α → Prop inst✝ : DecidablePred p hf : p a → IsRatStieltjesPoint f a hg : ¬p a → IsRatStieltjesPoint g a h : p a ⊢ Monotone (f a) case neg α : Type u_1 f g : α → ℚ → ℝ a : α p : α → Prop inst✝ : DecidablePred p hf : p a → IsRatStieltjesPoint f a hg : ¬p a → IsRatStieltjesPoint g a h : ¬p a ⊢ Monotone (g a)
07e5c46b6daf969c
ProbabilityTheory.Kernel.iIndepFun.cond_iInter
Mathlib/Probability/Independence/Kernel.lean
/-- The probability of an intersection of preimages conditioning on another intersection factors into a product. -/ lemma iIndepFun.cond_iInter [Finite ι] (hY : ∀ i, Measurable (Y i)) (hindep : iIndepFun (fun _ ↦ mα.prod mβ) (fun i ω ↦ (X i ω, Y i ω)) κ μ) (hf : ∀ i ∈ s, MeasurableSet[mα.comap (X i)] (f i)) (hy : ∀ᵐ a ∂μ, ∀ i ∉ s, κ a (Y i ⁻¹' t i) ≠ 0) (ht : ∀ i, MeasurableSet (t i)) : ∀ᵐ a ∂μ, (κ a)[⋂ i ∈ s, f i | ⋂ i, Y i ⁻¹' t i] = ∏ i ∈ s, (κ a)[f i | Y i in t i]
case intro ι : Type u_4 Ω : Type u_5 α : Type u_6 β : Type u_7 mΩ : MeasurableSpace Ω mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α Ω μ : Measure α X : ι → Ω → α Y : ι → Ω → β f : ι → Set Ω t : ι → Set β s : Finset ι inst✝ : Finite ι hY : ∀ (i : ι), Measurable (Y i) hindep : iIndepFun (fun x => mα.prod mβ) (fun i ω => (X i ω, Y i ω)) κ μ hf : ∀ i ∈ s, MeasurableSet (f i) hy : ∀ᵐ (a : α) ∂μ, ∀ i ∉ s, (κ a) (Y i ⁻¹' t i) ≠ 0 ht : ∀ (i : ι), MeasurableSet (t i) val✝ : Fintype ι ⊢ ∀ᵐ (a : α) ∂μ, (κ a)[⋂ i ∈ s, f i | ⋂ i, Y i ⁻¹' t i] = ∏ i ∈ s, (κ a)[f i | Y i ⁻¹' t i]
let g (i' : ι) := if i' ∈ s then Y i' ⁻¹' t i' ∩ f i' else Y i' ⁻¹' t i'
case intro ι : Type u_4 Ω : Type u_5 α : Type u_6 β : Type u_7 mΩ : MeasurableSpace Ω mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α Ω μ : Measure α X : ι → Ω → α Y : ι → Ω → β f : ι → Set Ω t : ι → Set β s : Finset ι inst✝ : Finite ι hY : ∀ (i : ι), Measurable (Y i) hindep : iIndepFun (fun x => mα.prod mβ) (fun i ω => (X i ω, Y i ω)) κ μ hf : ∀ i ∈ s, MeasurableSet (f i) hy : ∀ᵐ (a : α) ∂μ, ∀ i ∉ s, (κ a) (Y i ⁻¹' t i) ≠ 0 ht : ∀ (i : ι), MeasurableSet (t i) val✝ : Fintype ι g : ι → Set Ω := fun i' => if i' ∈ s then Y i' ⁻¹' t i' ∩ f i' else Y i' ⁻¹' t i' ⊢ ∀ᵐ (a : α) ∂μ, (κ a)[⋂ i ∈ s, f i | ⋂ i, Y i ⁻¹' t i] = ∏ i ∈ s, (κ a)[f i | Y i ⁻¹' t i]
31a9bf09c9f649df
Multiset.rel_cons_right
Mathlib/Data/Multiset/ZeroCons.lean
theorem rel_cons_right {as b bs} : Rel r as (b ::ₘ bs) ↔ ∃ a as', r a b ∧ Rel r as' bs ∧ as = a ::ₘ as'
α : Type u_1 β : Type v r : α → β → Prop as : Multiset α b : β bs : Multiset β a : α as' : Multiset α ⊢ flip r b a ∧ Rel (flip r) bs as' ∧ as = a ::ₘ as' ↔ r a b ∧ Rel r as' bs ∧ as = a ::ₘ as'
rw [rel_flip, flip]
no goals
173c90a4cd6cfbdd
Linarith.without_one_mul
Mathlib/Tactic/Linarith/Preprocessing.lean
theorem without_one_mul {M : Type*} [MulOneClass M] {a b : M} (h : 1 * a = b) : a = b
M : Type u_1 inst✝ : MulOneClass M a b : M h : 1 * a = b ⊢ a = b
rwa [one_mul] at h
no goals
6b0b47cad70d6773
GromovHausdorff.ghDist_le_of_approx_subsets
Mathlib/Topology/MetricSpace/GromovHausdorff.lean
theorem ghDist_le_of_approx_subsets {s : Set X} (Φ : s → Y) {ε₁ ε₂ ε₃ : ℝ} (hs : ∀ x : X, ∃ y ∈ s, dist x y ≤ ε₁) (hs' : ∀ x : Y, ∃ y : s, dist x (Φ y) ≤ ε₃) (H : ∀ x y : s, |dist x y - dist (Φ x) (Φ y)| ≤ ε₂) : ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃
case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y ∈ s, dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ
rcases hs xX with ⟨xs, hxs, Dxs⟩
case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y ∈ s, dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ
ca73aa8d17706ff3
IsUnifLocDoublingMeasure.ae_tendsto_average_norm_sub
Mathlib/MeasureTheory/Covering/DensityTheorem.lean
theorem ae_tendsto_average_norm_sub {f : α → E} (hf : LocallyIntegrable f μ) (K : ℝ) : ∀ᵐ x ∂μ, ∀ {ι : Type*} {l : Filter ι} (w : ι → α) (δ : ι → ℝ) (_ : Tendsto δ l (𝓝[>] 0)) (_ : ∀ᶠ j in l, x ∈ closedBall (w j) (K * δ j)), Tendsto (fun j => ⨍ y in closedBall (w j) (δ j), ‖f y - f x‖ ∂μ) l (𝓝 0)
α : Type u_1 inst✝⁶ : PseudoMetricSpace α inst✝⁵ : MeasurableSpace α μ : Measure α inst✝⁴ : IsUnifLocDoublingMeasure μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ E : Type u_2 inst✝ : NormedAddCommGroup E f : α → E hf : LocallyIntegrable f μ K : ℝ ⊢ ∀ᵐ (x : α) ∂μ, ∀ {ι : Type u_3} {l : Filter ι} (w : ι → α) (δ : ι → ℝ), Tendsto δ l (𝓝[>] 0) → (∀ᶠ (j : ι) in l, x ∈ closedBall (w j) (K * δ j)) → Tendsto (fun j => ⨍ (y : α) in closedBall (w j) (δ j), ‖f y - f x‖ ∂μ) l (𝓝 0)
filter_upwards [(vitaliFamily μ K).ae_tendsto_average_norm_sub hf] with x hx ι l w δ δlim xmem using hx.comp (tendsto_closedBall_filterAt μ _ _ δlim xmem)
no goals
86187b49abc7e85e
OrderIso.isMin_apply
Mathlib/Order/Hom/Basic.lean
theorem OrderIso.isMin_apply {α β : Type*} [Preorder α] [Preorder β] (f : α ≃o β) {x : α} : IsMin (f x) ↔ IsMin x
α : Type u_6 β : Type u_7 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β x : α ⊢ IsMin (f x) ↔ IsMin x
refine ⟨f.strictMono.isMin_of_apply, ?_⟩
α : Type u_6 β : Type u_7 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β x : α ⊢ IsMin x → IsMin (f x)
6e3aa051fe221b6a
Polynomial.ite_le_natDegree_coeff
Mathlib/Algebra/Polynomial/Degree/Operations.lean
theorem ite_le_natDegree_coeff (p : R[X]) (n : ℕ) (I : Decidable (n < 1 + natDegree p)) : @ite _ (n < 1 + natDegree p) I (coeff p n) 0 = coeff p n
case neg R : Type u inst✝ : Semiring R p : R[X] n : ℕ I : Decidable (n < 1 + p.natDegree) h : ¬n < 1 + p.natDegree ⊢ 0 = p.coeff n
exact (coeff_eq_zero_of_natDegree_lt (not_le.1 fun w => h (Nat.lt_one_add_iff.2 w))).symm
no goals
00b03bbf28d36178
Polynomial.quotient_mk_comp_C_isIntegral_of_jacobson'
Mathlib/RingTheory/Jacobson/Ring.lean
theorem quotient_mk_comp_C_isIntegral_of_jacobson' [Nontrivial R] (hR : IsJacobsonRing R) (hP' : ∀ x : R, C x ∈ P → x = 0) : ((Ideal.Quotient.mk P).comp C : R →+* R[X] ⧸ P).IsIntegral
case intro.intro R : Type u_1 inst✝¹ : CommRing R P : Ideal R[X] hP : P.IsMaximal inst✝ : Nontrivial R hR : IsJacobsonRing R hP' : ∀ (x : R), C x ∈ P → x = 0 P' : Ideal R := comap C P pX : R[X] hpX : pX ∈ P hp0 : map (Ideal.Quotient.mk (comap C P)) pX ≠ 0 ⊢ (quotientMap P C ⋯).IsIntegral
let a : R ⧸ P' := (pX.map (Ideal.Quotient.mk P')).leadingCoeff
case intro.intro R : Type u_1 inst✝¹ : CommRing R P : Ideal R[X] hP : P.IsMaximal inst✝ : Nontrivial R hR : IsJacobsonRing R hP' : ∀ (x : R), C x ∈ P → x = 0 P' : Ideal R := comap C P pX : R[X] hpX : pX ∈ P hp0 : map (Ideal.Quotient.mk (comap C P)) pX ≠ 0 a : R ⧸ P' := (map (Ideal.Quotient.mk P') pX).leadingCoeff ⊢ (quotientMap P C ⋯).IsIntegral
fe75ad9300033bac
trace_eq_trace_adjoin
Mathlib/RingTheory/Trace/Basic.lean
theorem trace_eq_trace_adjoin [FiniteDimensional K L] (x : L) : trace K L x = finrank K⟮x⟯ L • trace K K⟮x⟯ (AdjoinSimple.gen K x)
K : Type u_4 L : Type u_5 inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra K L inst✝ : FiniteDimensional K L x : L ⊢ (Algebra.trace K L) x = finrank (↥K⟮x⟯) L • (Algebra.trace K ↥K⟮x⟯) (AdjoinSimple.gen K x)
rw [← trace_trace (S := K⟮x⟯)]
K : Type u_4 L : Type u_5 inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra K L inst✝ : FiniteDimensional K L x : L ⊢ (Algebra.trace K ↥K⟮x⟯) ((Algebra.trace (↥K⟮x⟯) L) x) = finrank (↥K⟮x⟯) L • (Algebra.trace K ↥K⟮x⟯) (AdjoinSimple.gen K x)
aaab260abefe4404
Vitali.exists_disjoint_covering_ae
Mathlib/MeasureTheory/Covering/Vitali.lean
theorem exists_disjoint_covering_ae [PseudoMetricSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [SecondCountableTopology α] (μ : Measure α) [IsLocallyFiniteMeasure μ] (s : Set α) (t : Set ι) (C : ℝ≥0) (r : ι → ℝ) (c : ι → α) (B : ι → Set α) (hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a)) (μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ C * μ (B a)) (ht : ∀ a ∈ t, (interior (B a)).Nonempty) (h't : ∀ a ∈ t, IsClosed (B a)) (hf : ∀ x ∈ s, ∀ ε > (0 : ℝ), ∃ a ∈ t, r a ≤ ε ∧ c a = x) : ∃ u ⊆ t, u.Countable ∧ u.PairwiseDisjoint B ∧ μ (s \ ⋃ a ∈ u, B a) = 0
case inr.intro.intro.refine_2.h α : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : SecondCountableTopology α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set ι C : ℝ≥0 r : ι → ℝ c : ι → α B : ι → Set α hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a) μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ ↑C * μ (B a) ht : ∀ a ∈ t, (interior (B a)).Nonempty h't : ∀ a ∈ t, IsClosed (B a) hf : ∀ x ∈ s, ∀ ε > 0, ∃ a ∈ t, r a ≤ ε ∧ c a = x R : α → ℝ hR0 : ∀ (x : α), 0 < R x hR1 : ∀ (x : α), R x ≤ 1 hRμ : ∀ (x : α), μ (closedBall x (20 * R x)) < ⊤ t' : Set ι := {a | a ∈ t ∧ r a ≤ R (c a)} u : Set ι ut' : u ⊆ t' u_disj : u.PairwiseDisjoint B hu : ∀ a ∈ t', ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ r a ≤ 2 * r b ut : u ⊆ t u_count : u.Countable x : α x✝ : x ∈ s \ ⋃ a ∈ u, B a v : Set ι := {a | a ∈ u ∧ (B a ∩ ball x (R x)).Nonempty} vu : v ⊆ u Idist_v : ∀ a ∈ v, dist (c a) x ≤ r a + R x R0 : ℝ := sSup (r '' v) R0_def : R0 = sSup (r '' v) R0_bdd : BddAbove (r '' v) H : R x ≤ R0 R0pos : 0 < R0 vnonempty : v.Nonempty a : ι hav : a ∈ v R0a : R0 / 2 < r a b : ι bu : b ∈ u hbx : (B b ∩ ball x (R x)).Nonempty this : r b ≤ R0 ⊢ r b + dist (c b) x ≤ 8 * R0
linarith [Idist_v b ⟨bu, hbx⟩]
no goals
4466d2fc3e80cb3f
Std.Tactic.BVDecide.BVExpr.bitblast.blastConst.go_denote_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Const.lean
theorem go_denote_eq (aig : AIG α) (c : BitVec w) (assign : α → Bool) (curr : Nat) (hcurr : curr ≤ w) (s : AIG.RefVec aig curr) : ∀ (idx : Nat) (hidx1 : idx < w), curr ≤ idx → ⟦ (go aig c curr s hcurr).aig, (go aig c curr s hcurr).vec.get idx hidx1, assign ⟧ = c.getLsbD idx
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α c : BitVec w assign : α → Bool curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx res : RefVecEntry α w hgo : (if hcurr : curr < w then let res := aig.mkConstCached (c.getLsbD curr); let aig_1 := res.aig; let bitRef := res.ref; let s := s.cast ⋯; let s := s.push bitRef; go aig_1 c (curr + 1) s ⋯ else let_fun hcurr := ⋯; { aig := aig, vec := hcurr ▸ s }) = res ⊢ ⟦assign, { aig := res.aig, ref := res.vec.get idx hidx1 }⟧ = c.getLsbD idx
split at hgo
case isTrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α c : BitVec w assign : α → Bool curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx res : RefVecEntry α w h✝ : curr < w hgo : (let res := aig.mkConstCached (c.getLsbD curr); let aig_1 := res.aig; let bitRef := res.ref; let s := s.cast ⋯; let s := s.push bitRef; go aig_1 c (curr + 1) s ⋯) = res ⊢ ⟦assign, { aig := res.aig, ref := res.vec.get idx hidx1 }⟧ = c.getLsbD idx case isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α c : BitVec w assign : α → Bool curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx res : RefVecEntry α w h✝ : ¬curr < w hgo : (let_fun hcurr := ⋯; { aig := aig, vec := hcurr ▸ s }) = res ⊢ ⟦assign, { aig := res.aig, ref := res.vec.get idx hidx1 }⟧ = c.getLsbD idx
bf1ceda9c97ad4d3
smul_eq_of_le_smul
Mathlib/GroupTheory/OrderOfElement.lean
lemma smul_eq_of_le_smul {G : Type*} [Group G] [Finite G] {α : Type*} [PartialOrder α] {g : G} {a : α} [MulAction G α] [CovariantClass G α HSMul.hSMul LE.le] (h : a ≤ g • a) : g • a = a
G : Type u_6 inst✝⁴ : Group G inst✝³ : Finite G α : Type u_7 inst✝² : PartialOrder α g : G a : α inst✝¹ : MulAction G α inst✝ : CovariantClass G α HSMul.hSMul LE.le h : a ≤ g • a ⊢ g • a = a
have key := smul_mono_right g (le_pow_smul h (Nat.card G - 1))
G : Type u_6 inst✝⁴ : Group G inst✝³ : Finite G α : Type u_7 inst✝² : PartialOrder α g : G a : α inst✝¹ : MulAction G α inst✝ : CovariantClass G α HSMul.hSMul LE.le h : a ≤ g • a key : g • a ≤ g • g ^ (Nat.card G - 1) • a ⊢ g • a = a
ddaf2e7f08767f26
List.zip_nil_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Basic.lean
theorem zip_nil_right : zip (l : List α) ([] : List β) = []
α : Type u β : Type v l : List α ⊢ l.zip nil = nil
simp [zip, zipWith]
no goals
0bf5b75b986e3f15