pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
Department of Computer Science, ETH Zurich, Switzerland
2019
0
null
null
0
null
null
null
null
null
Emre Aksan, Otmar Hilliges
https://iclr.cc/virtual/2019/poster/1126
latent variables;variational inference;temporal convolutional networks;sequence modeling;auto-regressive modeling
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
STCN: Stochastic Temporal Convolutional Networks
null
null
0
4
Poster
4;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
Quantization for Rapid Deployment of Deep Neural Networks
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
contextual modulation;recurrent convolutional network;robust visual learning
null
0
null
null
iclr
-0.5
0
null
main
3.666667
3;4;4
null
null
Contextual Recurrent Convolutional Model for Robust Visual Learning
null
null
0
4.666667
Reject
5;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Canonical Correlation Analysis;implicit probabilistic model;cross-view structure output prediction
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Canonical Correlation Analysis with Implicit Distributions
null
null
0
4.666667
Reject
5;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
video prediction;GANs;variational autoencoder
null
0
null
null
iclr
-0.866025
0
null
main
5.666667
5;6;6
null
null
Stochastic Adversarial Video Prediction
null
null
0
4
Reject
5;4;3
null
null
PROWLER.io, Cambridge, United Kingdom
2019
0
null
null
0
null
null
null
null
null
Jordi Grau-Moya, Felix Leibfried, Peter Vrancx
https://iclr.cc/virtual/2019/poster/822
reinforcement learning;regularization;entropy;mutual information
null
0
null
null
iclr
0.5
0
null
main
6.333333
6;6;7
null
null
Soft Q-Learning with Mutual-Information Regularization
null
null
0
3.666667
Poster
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Noisy Labels;Deep Learning;Meta Approach
null
0
null
null
iclr
-0.327327
0
null
main
4.666667
3;5;6
null
null
Pumpout: A Meta Approach for Robustly Training Deep Neural Networks with Noisy Labels
null
null
0
4
Reject
4;5;3
null
null
Department of Computer Science, Universidad de Chile & IMFD Chile
2019
0
null
null
0
null
null
null
null
null
Jorge Pérez, Javier Marinković, Pablo Barceló
https://iclr.cc/virtual/2019/poster/707
Transformer;NeuralGPU;Turing completeness
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
On the Turing Completeness of Modern Neural Network Architectures
null
null
0
2
Poster
2;2;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
dataset denoising;supervised learning;implicit regularization
null
0
null
null
iclr
0
0
null
main
5.666667
5;6;6
null
null
Better Generalization with On-the-fly Dataset Denoising
null
null
0
4
Reject
4;5;3
null
null
The Swiss AI Lab, IDSIA / USI / SUPSI, NNAISENSE; The Swiss AI Lab, IDSIA / USI / SUPSI
2019
0
null
null
0
null
null
null
null
null
Robert Csordas, Jürgen Schmidhuber
https://iclr.cc/virtual/2019/poster/691
rnn;dnc;memory augmented neural networks;mann
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Improving Differentiable Neural Computers Through Memory Masking, De-allocation, and Link Distribution Sharpness Control
null
null
0
5
Poster
5;5;5
null
null
Massachusetts Institute of Technology
2019
0
null
null
0
null
null
null
null
null
Vincent Tjeng, Kai Xiao, Russ Tedrake
https://iclr.cc/virtual/2019/poster/817
verification;adversarial robustness;adversarial examples;deep learning
null
0
null
null
iclr
0.5
0
null
main
7.333333
7;7;8
null
null
Evaluating Robustness of Neural Networks with Mixed Integer Programming
null
null
0
3.666667
Poster
1;5;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;theory;non convex optimization;over-parameterization
null
0
null
null
iclr
0
0
null
main
4.666667
4;5;5
null
null
Over-parameterization Improves Generalization in the XOR Detection Problem
null
null
0
4
Reject
4;4;4
null
null
University of Illinois at Urbana-Champaign; Rice University
2019
0
null
null
0
null
null
null
null
null
Konik Kothari, Sidharth Gupta, Maarten V de Hoop, Ivan Dokmanic
https://iclr.cc/virtual/2019/poster/704
imaging;inverse problems;subspace projections;random Delaunay triangulations;CNN;geophysics;regularization
null
0
null
null
iclr
0.944911
0
null
main
5.666667
4;6;7
null
null
Random mesh projectors for inverse problems
null
null
0
3.666667
Poster
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Neuroevolution;Reinforcement Learning
null
0
null
null
iclr
0.027778
0
null
main
5.2
3;4;6;6;7
null
null
Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
null
null
0
3.8
Reject
4;4;2;4;5
null
null
University of Illinois at Urbana-Champaign; University of Science and Technology of China; Microsoft Research
2019
0
null
null
0
null
null
null
null
null
Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin, ChengXiang Zhai, Tie-Yan Liu
https://iclr.cc/virtual/2019/poster/1045
Dual Learning;Machine Learning;Neural Machine Translation
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Multi-Agent Dual Learning
null
null
0
3
Poster
3;2;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
adversarial attack;adversarial examples;audio processing;speech to text;deep learning;adversarial audio;black box;machine learning
null
0
null
null
iclr
0.188982
0
null
main
4.333333
3;4;6
null
null
Targeted Adversarial Examples for Black Box Audio Systems
null
null
0
3.666667
Reject
4;3;4
null
null
Google Research, Mountain View, CA, USA; Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan; Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan and Electronic and Optoelectronic System Research Laboratories, ITRI, Hsinchu, Taiwan
2019
0
null
null
0
null
null
null
null
null
Hao-Yun Chen, Pei-Hsin Wang, Chun-Hao Liu, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, Da-Cheng Juan
https://iclr.cc/virtual/2019/poster/678
optimization;entropy;image recognition;natural language understanding;adversarial attacks;deep learning
null
0
null
null
iclr
0
0
null
main
6.666667
5;7;8
null
null
Complement Objective Training
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
language goals;task generalization;hindsight experience replays;language grounding
null
0
null
null
iclr
1
0
null
main
5.666667
5;5;7
null
null
ACTRCE: Augmenting Experience via Teacher’s Advice
null
null
0
4.333333
Reject
4;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Adversarial example;Transferability;Smoothed gradient
null
0
null
null
iclr
1
0
null
main
5.333333
4;6;6
null
null
Exploring and Enhancing the Transferability of Adversarial Examples
null
null
0
2.666667
Reject
2;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Generative Models;Variational Inference;Generative Adversarial Networks.
null
0
null
null
iclr
0.5
0
null
main
5
3;6;6
null
null
Implicit Autoencoders
null
null
0
3.333333
Reject
3;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Memory Network;RNN;Sequence Modelling
null
0
null
null
iclr
-0.5
0
null
main
4.333333
4;4;5
null
null
SEQUENCE MODELLING WITH AUTO-ADDRESSING AND RECURRENT MEMORY INTEGRATING NETWORKS
null
null
0
4.333333
Reject
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
domain adaptation;training data selection;reinforcement learning;natural language processing
null
0
null
null
iclr
0.327327
0
null
main
5.333333
4;5;7
null
null
DOMAIN ADAPTATION VIA DISTRIBUTION AND REPRESENTATION MATCHING: A CASE STUDY ON TRAINING DATA SELECTION VIA REINFORCEMENT LEARNING
null
null
0
3
Reject
2;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Generative Adversarial Networks;Structured Latent Space;Stable Training
null
0
null
null
iclr
0.5
0
null
main
2.333333
2;2;3
null
null
Deli-Fisher GAN: Stable and Efficient Image Generation With Structured Latent Generative Space
null
null
0
4.666667
Reject
5;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
machine translation;dual learning
null
0
null
null
iclr
-0.970725
0
null
main
4.333333
2;5;6
null
null
Dual Learning: Theoretical Study and Algorithmic Extensions
null
null
0
3.333333
Reject
4;3;3
null
null
University of Edinburgh
2019
0
null
null
0
null
null
null
null
null
Lucas Deecke, Iain Murray, Hakan Bilen
https://iclr.cc/virtual/2019/poster/833
Deep Learning;Expert Models;Normalization;Computer Vision
null
0
null
null
iclr
0
0
null
main
5.666667
5;6;6
null
null
Mode Normalization
null
null
0
4
Poster
4;4;4
null
null
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
2019
0
null
null
0
null
null
null
null
null
Tianxing He, James R Glass
https://iclr.cc/virtual/2019/poster/861
Deep Learning;Natural Language Processing;Adversarial Attacks;Dialogue Response Generation
null
0
null
null
iclr
-0.866025
0
null
main
7.333333
7;7;8
null
null
Detecting Egregious Responses in Neural Sequence-to-sequence Models
null
null
0
3
Poster
3;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Learning;Natural Language Processing;Representation Learning;Document Embedding
null
0
null
null
iclr
-0.188982
0
null
main
5.666667
4;6;7
null
null
Unsupervised Document Representation using Partition Word-Vectors Averaging
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Explanation;Network interpretation;Contrastive explanation
null
0
null
null
iclr
1
0
null
main
5.333333
5;5;6
null
null
CDeepEx: Contrastive Deep Explanations
null
null
0
4.333333
Reject
4;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
NP-hardness;ReLU activation;Two hidden layer networks
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
Complexity of Training ReLU Neural Networks
null
null
0
4.333333
Reject
5;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
CNN optimization;Reduction on convolution calculation;dynamic convolution;surveillance video
null
0
null
null
iclr
-0.5
0
null
main
3.666667
3;4;4
null
null
DynCNN: An Effective Dynamic Architecture on Convolutional Neural Network for Surveillance Videos
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
transfer learning
null
0
null
null
iclr
0
0
null
main
5.666667
5;5;7
null
null
SOSELETO: A Unified Approach to Transfer Learning and Training with Noisy Labels
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Neural Networks;Representation;Information density;Transfer Learning
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Measuring Density and Similarity of Task Relevant Information in Neural Representations
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Reinforcement learning;hierarchy;linear markov decision process;lmdl;subtask discovery;incremental
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
Incremental Hierarchical Reinforcement Learning with Multitask LMDPs
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
Dibya Ghosh, Abhishek Gupta, Sergey Levine
https://iclr.cc/virtual/2019/poster/910
Representation Learning;Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
5.666667
5;6;6
null
null
Learning Actionable Representations with Goal Conditioned Policies
null
null
0
4
Poster
4;4;4
null
null
DeepMind
2019
0
null
null
0
null
null
null
null
null
Chongli Qin, Krishnamurthy Dvijotham, Brendan ODonoghue, Rudy R Bunel, Robert Stanforth, Sven Gowal, Jonathan Uesato, Grzegorz Swirszcz, Pushmeet Kohli
https://iclr.cc/virtual/2019/poster/878
Verification;Convex Optimization;Adversarial Robustness
null
0
null
null
iclr
0.5
0
null
main
6.333333
5;7;7
null
null
Verification of Non-Linear Specifications for Neural Networks
null
null
0
3.666667
Poster
3;3;5
null
null
Department of Computer Science, Technical University of Munich
2019
0
null
null
0
null
null
null
null
null
Lukas Prantl, Boris Bonev, Nils Thuerey
https://iclr.cc/virtual/2019/poster/912
deformation learning;spatial transformer networks;fluid simulation
null
0
null
null
iclr
-0.5
0
null
main
6.333333
5;7;7
null
null
Generating Liquid Simulations with Deformation-aware Neural Networks
null
null
0
3.666667
Poster
4;4;3
null
null
Georgia Institute of Technology; DeepMind
2019
0
null
null
0
null
null
null
null
null
Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha
https://iclr.cc/virtual/2019/poster/800
Dynamic Graphs;Representation Learning;Dynamic Processes;Temporal Point Process;Attention;Latent Representation
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
DyRep: Learning Representations over Dynamic Graphs
null
null
0
4.333333
Poster
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;Markov decision processes;safety constraints;multi-objective optimization;geometric analysis
null
0
null
null
iclr
-0.5
0
null
main
4.333333
3;5;5
null
null
Multi-Objective Value Iteration with Parameterized Threshold-Based Safety Constraints
null
null
0
3.333333
Reject
4;2;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Noise engineered GAN;Latent space engineering;Mode matching;Unsupervised learning
null
0
null
null
iclr
1
0
null
main
5.333333
5;5;6
null
null
Unsupervised Conditional Generation using noise engineered mode matching GAN
null
null
0
3.333333
Reject
3;3;4
null
null
Carnegie Mellon University and Bosch Center for AI; Carnegie Mellon University; Intel Labs
2019
0
null
null
0
null
null
null
null
null
Shaojie Bai, Zico Kolter, Vladlen Koltun
https://iclr.cc/virtual/2019/poster/825
sequence modeling;language modeling;recurrent networks;convolutional networks;trellis networks
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Trellis Networks for Sequence Modeling
https://github.com/locuslab/trellisnet
null
0
3
Poster
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
interpretabile machine learning;neural network;hierarchical clustering
null
0
null
null
iclr
-1
0
null
main
3.333333
3;3;4
null
null
Interpreting Layered Neural Networks via Hierarchical Modular Representation
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;spatio-temporal dynamics;physical processes;differential equations;dynamical systems
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
Learning Partially Observed PDE Dynamics with Neural Networks
null
null
0
3.666667
Reject
3;5;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
rnns;hmms;latent variable models;language modelling;interpretability;sequence modelling
null
0
null
null
iclr
1
0
null
main
4.333333
3;5;5
null
null
Bridging HMMs and RNNs through Architectural Transformations
null
null
0
3.666667
Withdraw
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
dialogue generation;nlp applications;grounded text generation;contextual representation learning
null
0
null
null
iclr
0.188982
0
null
main
5.333333
4;5;7
null
null
I Know the Feeling: Learning to Converse with Empathy
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
activation pruning;weight pruning;computation cost reduction;efficient DNNs
null
0
null
null
iclr
1
0
null
main
4.666667
4;5;5
null
null
Integral Pruning on Activations and Weights for Efficient Neural Networks
null
null
0
3.666667
Reject
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
5.666667
5;5;7
null
null
A Frank-Wolfe Framework for Efficient and Effective Adversarial Attacks
null
null
0
4
Reject
4;4;4
null
null
Laboratory for Information & Decision Systems, Institute for Data, Systems and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
2019
0
null
null
0
null
null
null
null
null
Karren Yang, Caroline Uhler
https://iclr.cc/virtual/2019/poster/841
unbalanced optimal transport;generative adversarial networks;population modeling
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Scalable Unbalanced Optimal Transport using Generative Adversarial Networks
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
model acceleration;mimic;knowledge distillation;channel pruning
null
0
null
null
iclr
0.5
0
null
main
4.333333
4;4;5
null
null
PRUNING WITH HINTS: AN EFFICIENT FRAMEWORK FOR MODEL ACCELERATION
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
6.333333
6;6;7
null
null
Temporal Gaussian Mixture Layer for Videos
null
null
0
4.333333
Reject
5;3;5
null
null
Department of Statistics, University of California, Irvine; Department of Computer Science, University of California, Irvine
2019
0
null
null
0
null
null
null
null
null
Stephen McAleer, Forest Agostinelli, Alexander K Shmakov, Pierre Baldi
https://iclr.cc/virtual/2019/poster/1094
reinforcement learning;Rubik's Cube;approximate policy iteration;deep learning;deep reinforcement learning
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Solving the Rubik's Cube with Approximate Policy Iteration
null
null
0
3.666667
Poster
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Efficient inference;Hardware-efficient model architectures;Quantization
null
0
null
null
iclr
-0.5
0
null
main
4.333333
4;4;5
null
null
NICE: noise injection and clamping estimation for neural network quantization
null
null
0
3.333333
Reject
3;4;3
null
null
MIT Computer Science and Artificial Intelligence Laboratory
2019
0
null
null
0
null
null
null
null
null
Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, Mohammad Alizadeh
https://iclr.cc/virtual/2019/poster/1025
reinforcement learning;policy gradient;input-driven environments;variance reduction;baseline
null
0
null
null
iclr
0
0
null
main
7.333333
6;7;9
null
null
Variance Reduction for Reinforcement Learning in Input-Driven Environments
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Latent space;Generative adversarial network;variational autoencoder;conditioned generation
null
0
null
null
iclr
-0.981981
0
null
main
4
3;4;5
null
null
Learning Latent Semantic Representation from Pre-defined Generative Model
null
null
0
3.333333
Reject
5;3;2
null
null
Paper under double-blind review
2019
0
null
null
0
null
null
null
null
null
null
null
Deep Generative Models;Normalizing Flows;RealNVP;Density Estimation
null
0
null
null
iclr
-0.866025
0
null
main
5.666667
5;6;6
null
null
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
null
null
0
4
Reject
5;3;4
null
null
The Alan Turing Institute, London, UK; Amazon, Cambridge, UK
2019
0
null
null
0
null
null
null
null
null
Sebastian Flennerhag, Pablo Moreno, Neil D Lawrence, Andreas Damianou
https://iclr.cc/virtual/2019/poster/771
meta-learning;transfer learning
null
0
null
null
iclr
-0.5
0
null
main
7.333333
6;8;8
null
null
Transferring Knowledge across Learning Processes
null
null
0
3.666667
Oral
4;3;4
null
null
Courant Institute, New York University; Facebook AI Research; Courant Institute, New York University; Courant Institute, New York University; Microsoft Research, NYC
2019
0
null
null
0
null
null
null
null
null
Mikael Henaff, Alfredo Canziani, Yann LeCun
https://iclr.cc/virtual/2019/poster/1121
model-based reinforcement learning;stochastic video prediction;autonomous driving
null
0
null
null
iclr
0.5
0
null
main
6.333333
6;6;7
null
null
Model-Predictive Policy Learning with Uncertainty Regularization for Driving in Dense Traffic
null
null
0
4.666667
Poster
4;5;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.755929
0
null
main
4.666667
3;5;6
null
null
$A^*$ sampling with probability matching
null
null
0
4
Reject
5;5;2
null
null
Paper under double-blind review
2019
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Strategic Exploration;Model Based Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
4.5
4;5
null
null
Fast Exploration with Simplified Models and Approximately Optimistic Planning in Model Based Reinforcement Learning
null
null
0
4
Reject
4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
regularization;generalization;image classification;latent space;feature learning
null
0
null
null
iclr
0.5
0
null
main
4.666667
4;4;6
null
null
MixFeat: Mix Feature in Latent Space Learns Discriminative Space
null
null
0
3.666667
Reject
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Image outlier;CNN;Deep Neural Forest
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Outlier Detection from Image Data
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
generative models;adversarial attack;defence;detection;Bayes' rule
null
0
null
null
iclr
-0.818182
0
null
main
5.5
4;4;6;8
null
null
Are Generative Classifiers More Robust to Adversarial Attacks?
null
null
0
3.75
Reject
5;4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
consciousness;conscious inference;object detection;object pose estimation
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;4;6
null
null
Conscious Inference for Object Detection
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua Tenenbaum, William Freeman, Antonio Torralba
https://iclr.cc/virtual/2019/poster/1089
GANs;representation;interpretability;causality
null
0
null
null
iclr
0.5
0
null
main
7.333333
7;7;8
null
null
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
null
null
0
3.666667
Poster
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Optimal margin distribution;Deep neural network;Generalization bound
null
0
null
null
iclr
-0.866025
0
null
main
5.333333
5;5;6
null
null
Optimal margin Distribution Network
null
null
0
4
Reject
4;5;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Imitation Learning;Sequential Information
null
0
null
null
iclr
-0.866025
0
null
main
4.666667
4;4;6
null
null
SIMILE: Introducing Sequential Information towards More Effective Imitation Learning
null
null
0
4
Reject
4;5;3
null
null
University of Melbourne; RMIT University
2019
0
null
null
0
null
null
null
null
null
Wei Wang, Yuan Sun, Saman Halgamuge
https://iclr.cc/virtual/2019/poster/676
generative adversarial nets;loss function;maximum mean discrepancy;image generation;unsupervised learning
null
0
null
null
iclr
1
0
null
main
6.666667
6;7;7
null
null
Improving MMD-GAN Training with Repulsive Loss Function
https://github.com/richardwth/MMD-GAN
null
0
4
Poster
2;5;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
disentangled representation learning
null
0
null
null
iclr
0.866025
0
null
main
5
4;5;6
null
null
FAVAE: SEQUENCE DISENTANGLEMENT USING IN- FORMATION BOTTLENECK PRINCIPLE
null
null
0
4.333333
Reject
4;4;5
null
null
Department of Computer Science, Carnegie Mellon University & Bosch Center for AI, Pittsburgh, PA; Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
2019
0
null
null
0
null
null
null
null
null
Vaishnavh Nagarajan, Zico Kolter
https://iclr.cc/virtual/2019/poster/954
generalization;PAC-Bayes;SGD;learning theory;implicit regularization
null
0
null
null
iclr
0.102598
0
null
main
6.75
5;7;7;8
null
null
Deterministic PAC-Bayesian generalization bounds for deep networks via generalizing noise-resilience
null
null
0
3.5
Poster
4;3;2;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Adversarial examples;Image denoising
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Unifying Bilateral Filtering and Adversarial Training for Robust Neural Networks
null
null
0
4.333333
Reject
5;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
4.333333
4;4;5
null
null
Rating Continuous Actions in Spatial Multi-Agent Problems
null
null
0
3.666667
Reject
4;3;4
null
null
University of California, Berkeley; Google Deepmind; IIT Kanpur; Mila, University of Montreal; Google Brain
2019
0
null
null
0
null
null
null
null
null
Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal, Timothy Lillicrap, Sergey Levine, Hugo Larochelle, Yoshua Bengio
https://iclr.cc/virtual/2019/poster/1033
Model free RL;Variational Inference
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
Recall Traces: Backtracking Models for Efficient Reinforcement Learning
null
null
0
2.666667
Poster
3;3;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Learned compression;generative adversarial networks;extreme compression
null
0
null
null
iclr
-1
0
null
main
5.333333
4;6;6
null
null
Generative Adversarial Networks for Extreme Learned Image Compression
null
null
0
3.333333
Reject
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
gradient method;max-margin;ReLU model
null
0
null
null
iclr
0.866025
0
null
main
4.666667
4;5;5
null
null
When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models?
null
null
0
4
Reject
3;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
computer vision;meta learning
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
Meta Learning with Fast/Slow Learners
null
null
0
3.333333
Reject
4;3;3
null
null
University of California, Berkeley
2019
0
null
null
0
null
null
null
null
null
John Miller, Moritz Hardt
https://iclr.cc/virtual/2019/poster/658
stability;gradient descent;non-convex optimization;recurrent neural networks
null
0
null
null
iclr
-1
0
null
main
6.333333
6;6;7
null
null
Stable Recurrent Models
null
null
0
3.333333
Poster
4;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
low-resource deep neural networks;quantized weights;weight-clustering;resource efficient neural networks
null
0
null
null
iclr
1
0
null
main
5
4;4;7
null
null
N-Ary Quantization for CNN Model Compression and Inference Acceleration
null
null
0
4.333333
Reject
4;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
quantization;network capacity;hardware implementation;network compression
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
Capacity of Deep Neural Networks under Parameter Quantization
null
null
0
3.333333
Withdraw
3;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-1
0
null
main
2.333333
2;2;3
null
null
VECTORIZATION METHODS IN RECOMMENDER SYSTEM
null
null
0
4.666667
Reject
5;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Capsule networks;generalization;scalability;adversarial robustness
null
0
null
null
iclr
-0.866025
0
null
main
4
3;4;5
null
null
Generalized Capsule Networks with Trainable Routing Procedure
null
null
0
4.333333
Reject
5;5;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
graph prediction;graph structure learning;graph neural network
null
0
null
null
iclr
0.5
0
null
main
3.666667
3;4;4
null
null
Graph Learning Network: A Structure Learning Algorithm
null
null
0
4.333333
Reject
4;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Reinforcement learning;multi-agent;hierarchical;noisy observation;partial observability;deep learning
null
0
null
null
iclr
-0.960769
0
null
main
5.333333
3;6;7
null
null
Multi-agent Deep Reinforcement Learning with Extremely Noisy Observations
null
null
0
3
Reject
4;3;2
null
null
UCLA, Los Angeles, CA 90095; MIT, Cambridge, MA 02139; UT Austin, Austin, TX 78712
2019
0
null
null
0
null
null
null
null
null
Huan Zhang, Hongge Chen, Zhao Song, Duane S Boning, Inderjit Dhillon, Cho-Jui Hsieh
https://iclr.cc/virtual/2019/poster/730
Adversarial Examples;Adversarial Training;Blind-Spot Attack
null
0
null
null
iclr
-0.866025
0
null
main
6.666667
6;7;7
null
null
The Limitations of Adversarial Training and the Blind-Spot Attack
https://github.com/MadryLab/mnist_challenge
null
0
3
Poster
4;2;3
null
null
Massachusetts Institute of Technology
2019
0
null
null
0
null
null
null
null
null
Chulhee Yun, Suvrit Sra, Ali Jadbabaie
https://iclr.cc/virtual/2019/poster/957
local optimality;second-order stationary point;escaping saddle points;nondifferentiability;ReLU;empirical risk
null
0
null
null
iclr
-0.594089
0
null
main
5.75
3;6;6;8
null
null
Efficiently testing local optimality and escaping saddles for ReLU networks
null
null
0
3
Poster
4;3;2;3
null
null
Massachusetts Institute of Technology
2019
0
null
null
0
null
null
null
null
null
Han Cai, Ligeng Zhu, Song Han
https://iclr.cc/virtual/2019/poster/1029
Neural Architecture Search;Efficient Neural Networks
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
https://github.com/MIT-HAN-LAB/ProxylessNAS
null
0
2.666667
Poster
2;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Statistics;Sensitivity;Exploding Gradient;Convolutional Neural Networks;Residual Neural Networks;Batch Normalization
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Statistical Characterization of Deep Neural Networks and their Sensitivity
null
null
0
0
Withdraw
null
null
null
RIKEN AIP, Tokyo, Japan; RIKEN AIP, Tokyo, Japan; University of Tokyo, Tokyo, Japan; University of Tokyo, Tokyo, Japan; RIKEN AIP, Tokyo, Japan
2019
0
null
null
0
null
null
null
null
null
Takayuki Osa, Voot Tangkaratt, Masashi Sugiyama
https://iclr.cc/virtual/2019/poster/1109
Hierarchical reinforcement learning;Representation learning;Continuous control
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Hierarchical Reinforcement Learning via Advantage-Weighted Information Maximization
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Distance Kernel;Embeddings;Random Features;Structured Inputs
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
D2KE: From Distance to Kernel and Embedding via Random Features For Structured Inputs
null
null
0
4
Withdraw
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Text Embeddings;Document Ranking;Improving Retrieval;Question-Answering;Learning to Rank
null
0
null
null
iclr
-0.5
0
null
main
3.666667
3;3;5
null
null
Text Embeddings for Retrieval from a Large Knowledge Base
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.866025
0
null
main
2.666667
2;3;3
null
null
End-to-End Learning of Video Compression Using Spatio-Temporal Autoencoders
null
null
0
4
Reject
5;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Task-GAN: Improving Generative Adversarial Network for Image Restoration
null
0
null
null
iclr
-1
0
null
main
4.333333
4;4;5
null
null
Task-GAN for Improved GAN based Image Restoration
null
null
0
4.666667
Reject
5;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
unsupervised representation learning;sense embedding;word sense disambiguation;human evaluation
null
0
null
null
iclr
-0.866025
0
null
main
6.333333
6;6;7
null
null
A Differentiable Self-disambiguated Sense Embedding Model via Scaled Gumbel Softmax
null
null
0
4
Reject
5;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Graph Representation Learning;Dynamic Graphs;Attention;Self-Attention;Deep Learning
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Dynamic Graph Representation Learning via Self-Attention Networks
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;exploration;representation learning
null
0
null
null
iclr
-0.5
0
null
main
6.333333
5;7;7
null
null
EMI: Exploration with Mutual Information Maximizing State and Action Embeddings
null
null
0
3.666667
Reject
4;3;4
null
null
Google Brain Amsterdam; DeepMind
2019
0
null
null
0
null
null
null
null
null
Jacob Menick, Nal Kalchbrenner
https://iclr.cc/virtual/2019/poster/1064
null
null
0
null
null
iclr
0.755929
0
null
main
8.666667
7;9;10
null
null
GENERATING HIGH FIDELITY IMAGES WITH SUBSCALE PIXEL NETWORKS AND MULTIDIMENSIONAL UPSCALING
null
null
0
3.666667
Oral
3;3;5
null
null
Department of Electrical Engineering, Stanford University
2019
0
null
null
0
null
null
null
null
null
Farzan Farnia, Jesse Zhang, David Tse
https://iclr.cc/virtual/2019/poster/958
Adversarial attacks;adversarial training;spectral normalization;generalization guarantee
null
0
null
null
iclr
0.866025
0
null
main
5.666667
5;6;6
null
null
Generalizable Adversarial Training via Spectral Normalization
null
null
0
4
Poster
3;4;5
null
null
University of Montreal, Montreal, Canada; Northwestern University, Evanston, IL, USA
2019
0
null
null
0
null
null
null
null
null
Ali Farshchian, Juan Álvaro Gallego, Joseph Paul Cohen, Yoshua Bengio, Lee E Miller, Sara A Solla
https://iclr.cc/virtual/2019/poster/686
Brain-Machine Interfaces;Domain Adaptation;Adversarial Networks
null
0
null
null
iclr
0.5
0
null
main
7
5;7;9
null
null
Adversarial Domain Adaptation for Stable Brain-Machine Interfaces
null
null
0
4
Poster
3;5;4
null
null
University of California, Berkeley
2019
0
null
null
0
null
null
null
null
null
Anusha Nagabandi, Chelsea Finn, Sergey Levine
https://iclr.cc/virtual/2019/poster/1078
meta-learning;model-based;reinforcement learning;online learning;adaptation
null
0
null
null
iclr
0
0
https://sites.google.com/berkeley.edu/onlineviameta
main
7
7;7;7
null
null
Deep Online Learning Via Meta-Learning: Continual Adaptation for Model-Based RL
null
null
0
3
Poster
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Adversarial Training;Gradient Regularization;Deep Learning
null
0
null
null
iclr
0
0
null
main
3.666667
3;4;4
null
null
Adversarially Robust Training through Structured Gradient Regularization
null
null
0
4
Reject
4;4;4
null
null
University of Chicago; Oregon State University; University of California, Berkeley
2019
0
null
null
0
null
null
null
null
null
Dan Hendrycks and Mantas Mazeika and Thomas Dietterich
https://iclr.cc/virtual/2019/poster/772
confidence;uncertainty;anomaly;robustness
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;6;8
null
null
Deep Anomaly Detection with Outlier Exposure
null
null
0
4.333333
Poster
4;5;4
null
null
University of Michigan and Google Brain; University of Michigan; Google Brain
2019
0
null
null
0
null
null
null
null
null
Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, Honglak Lee
https://iclr.cc/virtual/2019/poster/695
Reinforcement Learning;Exploration;Contingency-Awareness
null
0
null
null
iclr
0
0
https://coex-rl.github.io/
main
6.666667
6;7;7
null
null
Contingency-Aware Exploration in Reinforcement Learning
null
null
0
3
Poster
3;4;2
null