pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
Center for Brains, Minds, and Machines (CBMM), Department of Brain and Cognitive Sciences, Children’s Hospital, Harvard Medical School, USA; Computer Science and Artificial Intelligence Laboratory, Center for Brains, Minds, and Machines (CBMM), Massachusetts Institute of Technology, USA; Center for Brains, Minds, and Machines (CBMM), Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
2019
0
null
null
0
null
null
null
null
null
Sanjana Srivastava, Guy Ben-Yosef, Xavier Boix
https://iclr.cc/virtual/2019/poster/679
null
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Minimal Images in Deep Neural Networks: Fragile Object Recognition in Natural Images
null
null
0
4
Poster
4;4;4
null
null
Department of Engineering Science, University of Oxford, Alan Turing Institute; Department of Engineering Science, University of Oxford; Department of Statistics, University of Oxford
2019
0
null
null
0
null
null
null
null
null
Stefan Webb, Tom Rainforth, Yee Whye Teh, M. Pawan Kumar
https://iclr.cc/virtual/2019/poster/767
neural network verification;multi-level splitting;formal verification
null
0
null
null
iclr
-1
0
null
main
7
6;7;8
null
null
A Statistical Approach to Assessing Neural Network Robustness
null
null
0
4
Poster
5;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Similarity learning;structured objects;graph matching networks
null
0
null
null
iclr
0
0
null
main
5.666667
5;6;6
null
null
Graph Matching Networks for Learning the Similarity of Graph Structured Objects
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
calibration;deep models;bayesian neural networks
null
0
null
null
iclr
0
0
null
main
3.333333
3;3;4
null
null
Offline Deep models calibration with bayesian neural networks
https://github.com/2019submission/bnn.2019
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Adversarial examples;generalization
null
0
null
null
iclr
-0.5
0
null
main
4.333333
4;4;5
null
null
Adversarial Examples Are a Natural Consequence of Test Error in Noise
null
null
0
3.333333
Reject
3;4;3
null
null
Department of Applied Physics, Stanford; Google Brain, Mountain View, CA
2019
0
null
null
0
null
null
null
null
null
Jack Lindsey, Samuel Ocko, Surya Ganguli, Stephane Deny
https://iclr.cc/virtual/2019/poster/732
visual system;convolutional neural networks;efficient coding;retina
null
0
null
null
iclr
0
0
null
main
8
8;8;8
null
null
A Unified Theory of Early Visual Representations from Retina to Cortex through Anatomically Constrained Deep CNNs
https://github.com/ganguli-lab/RetinalResources
null
0
4.333333
Oral
3;5;5
null
null
Duke University; Microsoft Dynamics 365 AI Research; Baidu Research; SUNY at Buffalo; Microsoft Research
2019
0
null
null
0
null
null
null
null
null
Liqun Chen, Yizhe Zhang, Ruiyi Zhang, Chenyang Tao, Zhe Gan, Haichao Zhang, Bai Li, Dinghan Shen, Changyou Chen, Lawrence Carin
https://iclr.cc/virtual/2019/poster/831
NLP;optimal transport;sequence to sequence;natural language processing
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Improving Sequence-to-Sequence Learning via Optimal Transport
null
null
0
3.666667
Poster
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
multi-view;learning;sentence;representation
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Improving Sentence Representations with Multi-view Frameworks
null
null
0
4.333333
Reject
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
bias-variance trade-off;James-stein estimator;reinforcement learning
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Shrinkage-based Bias-Variance Trade-off for Deep Reinforcement Learning
null
null
0
3
Reject
4;2;3
null
null
University of Cambridge, UK; Department of Electrical and Computer Engineering, UCLA, California, USA; Alan Turing Institute, London, UK; Department of Electrical and Computer Engineering, UCLA, California, USA; Engineering Science Department, University of Oxford, UK
2019
0
null
null
0
null
null
null
null
null
James Jordon, Jinsung Yoon, Mihaela Schaar
https://iclr.cc/virtual/2019/poster/880
Synthetic data generation;Differential privacy;Generative adversarial networks;Private Aggregation of Teacher ensembles
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees
null
null
0
3.666667
Poster
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;off-policy;imitation;batch reinforcement learning
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;5;7
null
null
Where Off-Policy Deep Reinforcement Learning Fails
null
null
0
3.666667
Reject
3;4;4
null
null
Google, Mountain View, CA 94043, USA
2019
0
null
null
0
null
null
null
null
null
Johannes Ballé, Nick Johnston, David Minnen
https://iclr.cc/virtual/2019/poster/1017
data compression;variational models;network quantization
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
Integer Networks for Data Compression with Latent-Variable Models
null
null
0
3
Poster
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
maximum entropy RL;policy composition;deep rl
null
0
null
null
iclr
-0.188982
0
null
main
5.333333
4;5;7
null
null
Composing Entropic Policies using Divergence Correction
null
null
0
3.333333
Reject
3;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;planning;deep learning
null
0
null
null
iclr
-0.5
0
null
main
5.333333
4;6;6
null
null
Dynamic Planning Networks
null
null
0
4
Reject
5;5;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
machine translation;syntax;diversity;code learning
null
0
null
null
iclr
-0.755929
0
null
main
3.666667
2;4;5
null
null
Discrete Structural Planning for Generating Diverse Translations
null
null
0
4.333333
Reject
5;5;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
Nantas Nardelli, Gabriel Synnaeve, Zeming Lin, Pushmeet Kohli, Philip Torr, Nicolas Usunier
https://iclr.cc/virtual/2019/poster/1077
Reinforcement Learning;Value Iteration;Navigation;Convolutional Neural Networks;Learning to plan
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Value Propagation Networks
null
null
0
3
Poster
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
Gilwoo Lee, Brian Hou, Aditya Mandalika, Jeongseok Lee, Sanjiban Choudhury, Siddhartha Srinivasa
https://iclr.cc/virtual/2019/poster/823
Bayes-Adaptive Markov Decision Process;Model Uncertainty;Bayes Policy Optimization
null
0
null
null
iclr
-0.301511
0
null
main
6.25
5;6;7;7
null
null
Bayesian Policy Optimization for Model Uncertainty
null
null
0
3.5
Poster
4;3;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Artificial Neural Networks;Neural Networks;ReLU;GaLU;Deep Learning
null
0
null
null
iclr
-0.5
0
null
main
2.666667
2;3;3
null
null
Decoupling Gating from Linearity
null
null
0
4.666667
Reject
5;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Unsupervised;Semi-supervised;Generative;Adversarial;Clustering
null
0
null
null
iclr
-0.944911
0
null
main
5.666667
5;6;6
null
null
Adversarially Learned Mixture Model
null
null
0
2.333333
Reject
4;2;1
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
lifelong learning;continual learning;sequential learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Uncertainty-guided Lifelong Learning in Bayesian Networks
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
variational inference;time series;nonlinear dynamics;neuroscience
null
0
null
null
iclr
0.944911
0
null
main
6.333333
5;6;8
null
null
A NOVEL VARIATIONAL FAMILY FOR HIDDEN NON-LINEAR MARKOV MODELS
null
null
0
3.666667
Reject
3;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
sentence embedding;generative models
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
A NON-LINEAR THEORY FOR SENTENCE EMBEDDING
null
null
0
3.333333
Reject
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep reinforcement learning;guided exploration;RL training speed up
null
0
null
null
iclr
1
0
null
main
5
3;5;7
null
null
Guided Exploration in Deep Reinforcement Learning
null
null
0
4
Reject
3;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
complementary labels;weak supervision
null
0
null
null
iclr
0.5
0
null
main
5.333333
5;5;6
null
null
Complementary-label learning for arbitrary losses and models
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Normalizing Flows
null
0
null
null
iclr
0
0
null
main
4.666667
4;4;6
null
null
Boosting Trust Region Policy Optimization by Normalizing flows Policy
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Information Diffusion;Recurrent Neural Network;Black Box Inference
null
0
null
null
iclr
0
0
null
main
5
4;4;7
null
null
A RECURRENT NEURAL CASCADE-BASED MODEL FOR CONTINUOUS-TIME DIFFUSION PROCESS
null
null
0
4
Reject
4;4;4
null
null
Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
2019
0
null
null
0
null
null
null
null
null
Cheng Zhang, Frederick A Matsen
https://iclr.cc/virtual/2019/poster/1060
Bayesian phylogenetic inference;Variational inference;Subsplit Bayesian networks
null
0
null
null
iclr
-0.866025
0
null
main
6
5;6;7
null
null
Variational Bayesian Phylogenetic Inference
null
null
0
2.333333
Poster
3;3;1
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Machine learning;privacy;adversarial training;information theory;data-driven privacy
null
0
null
null
iclr
-0.5
0
null
main
5.666667
5;6;6
null
null
Learning data-derived privacy preserving representations from information metrics
null
null
0
3.666667
Reject
4;3;4
null
null
EPFL; University of Queensland; Monash University
2019
0
null
null
0
null
null
null
null
null
Mahsa Baktashmotlagh, Masoud Faraki, Tom Drummond, Mathieu Salzmann
https://iclr.cc/virtual/2019/poster/1036
Open Set Domain Adaptation
null
0
null
null
iclr
-0.866025
0
null
main
6.333333
6;6;7
null
null
LEARNING FACTORIZED REPRESENTATIONS FOR OPEN-SET DOMAIN ADAPTATION
null
null
0
4
Poster
4;5;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Convolutional neural network;Early terminating;Dynamic model optimization
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;6;6
null
null
Dynamic Early Terminating of Multiply Accumulate Operations for Saving Computation Cost in Convolutional Neural Networks
null
null
0
3.666667
Reject
3;3;5
null
null
IBM Thomas J. Watson Research Center; University of Notre Dame
2019
0
null
null
0
null
null
null
null
null
Yukun Ding, Jinglan Liu, Jinjun Xiong, Yiyu Shi
https://iclr.cc/virtual/2019/poster/699
Quantized Neural Networks;Universial Approximability;Complexity Bounds;Optimal Bit-width
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
On the Universal Approximability and Complexity Bounds of Quantized ReLU Neural Networks
null
null
0
3
Poster
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
statistical mechanics;self-regularization;random matrix;glassy behavior;heavy-tailed
null
0
null
null
iclr
0.693375
0
null
main
4.666667
4;4;6
null
null
Traditional and Heavy Tailed Self Regularization in Neural Network Models
null
null
0
3.333333
Reject
1;4;5
null
null
Under double-blind review
2019
0
null
null
0
null
null
null
null
null
Henok Ghebrechristos
null
CNN;Deep Learning;Feature Extraction;Patch Ordering;Convergence;Image Classification
null
0
null
null
iclr
0
0
null
main
0
null
null
null
EXPLORING DEEP LEARNING USING INFORMATION THEORY TOOLS AND PATCH ORDERING
null
null
0
0
Withdraw
null
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;bio-plausibility;random projections;spiking networks;unsupervised learning;MNIST;spike timing dependent plasticity
null
0
null
null
iclr
-0.866025
0
null
main
3.666667
3;3;5
null
null
Localized random projections challenge benchmarks for bio-plausible deep learning
null
null
0
4
Reject
5;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.866025
0
null
main
6
4;6;8
null
null
DADAM: A consensus-based distributed adaptive gradient method for online optimization
null
null
0
3.666667
Reject
4;4;3
null
null
Politecnico di Torino, Torino, Italy
2019
0
null
null
0
null
null
null
null
null
Diego Valsesia, Giulia Fracastoro, Enrico Magli
https://iclr.cc/virtual/2019/poster/721
GAN;graph convolution;point clouds
null
0
null
null
iclr
-0.755929
0
null
main
7.333333
6;7;9
null
null
Learning Localized Generative Models for 3D Point Clouds via Graph Convolution
null
null
0
3.333333
Poster
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
PASS: Phased Attentive State Space Modeling of Disease Progression Trajectories
null
null
0
0
Withdraw
null
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Adversarial Attacks;Deep Neural Networks
null
0
null
null
iclr
0.27735
0
null
main
6.666667
5;6;9
null
null
Detecting Adversarial Examples Via Neural Fingerprinting
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Deep Learning;Classification;Prediction;Cautious Methods
null
0
null
null
iclr
-0.755929
0
null
main
5
4;4;7
null
null
Cautious Deep Learning
null
null
0
3.333333
Reject
5;3;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
program translation;tree structures;transformer
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Novel positional encodings to enable tree-structured transformers
null
null
0
3
Reject
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
meta-learning;metric learning;bayesian nonparametrics;few-shot learning;deep learning
null
0
null
null
iclr
0.5
0
null
main
4.333333
4;4;5
null
null
Variadic Learning by Bayesian Nonparametric Deep Embedding
null
null
0
3.333333
Reject
4;2;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
theory and analysis of RNNs architectures;reversibe evolution;stability of deep neural network;learning representations of outputs or states;quantum inspired embedding
null
0
null
null
iclr
-0.57735
0
null
main
4.5
4;4;5;5
null
null
Unification of Recurrent Neural Network Architectures and Quantum Inspired Stable Design
null
null
0
2.25
Reject
3;2;2;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Binary Network;Binary Training;Model Compression;Quantization
null
0
null
null
iclr
0
0
null
main
6
4;6;8
null
null
BNN+: Improved Binary Network Training
null
null
0
3.666667
Reject
4;3;4
null
null
Columbia Business School, Columbia University, New York City, NY 10027, USA; Department of Industrial Engineering & Management Science, Northwestern University, Evanston, IL 60201, USA; Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2019
0
null
null
0
null
null
null
null
null
Yi Chen, Jinglin Chen, Jing Dong, Jian Peng, Zhaoran Wang
https://iclr.cc/virtual/2019/poster/894
null
null
0
null
null
iclr
0
0
null
main
5.666667
4;6;7
null
null
ACCELERATING NONCONVEX LEARNING VIA REPLICA EXCHANGE LANGEVIN DIFFUSION
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Network interpretability;deep learning;knowledge distillation;convolutional neural networks
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Explaining Neural Networks Semantically and Quantitatively
null
null
0
4.333333
Withdraw
4;5;4
null
null
School Of Mathematical Science, Peking University; Institute of Computer Science and Technology, Peking University; Beijing International Center for Mathematical Research, Peking University; Center for Data Science, Peking University; Beijing Institute of Big Data Research, Beijing, China
2019
0
null
null
0
null
null
null
null
null
Xiaoshuai Zhang, Yiping Lu, Jiaying Liu, Bin Dong
https://iclr.cc/virtual/2019/poster/674
image restoration;differential equation
null
0
null
null
iclr
0
0
http://www.jet.pku.edu.cn/durr/
main
6.333333
6;6;7
null
null
Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration
null
null
0
4
Poster
5;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
hyperparameter optimization;black box optimization
null
0
null
null
iclr
0
0
null
main
5.333333
5;5;6
null
null
Open Loop Hyperparameter Optimization and Determinantal Point Processes
null
null
0
4
Reject
3;5;4
null
null
Computer Science Department, Technion – Israel Institute of Technology
2019
0
null
null
0
null
null
null
null
null
Yonatan Geifman, Guy Uziel, Ran El-Yaniv
https://iclr.cc/virtual/2019/poster/963
Uncertainty estimation;Deep learning
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Bias-Reduced Uncertainty Estimation for Deep Neural Classifiers
null
null
0
3
Poster
2;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4.333333
3;5;5
null
null
Realistic Adversarial Examples in 3D Meshes
null
null
0
3
Withdraw
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
teaching to teach;dark knowledge;curriculum learning;teaching
null
0
null
null
iclr
0.419314
0
null
main
4.333333
3;4;6
null
null
Teaching to Teach by Structured Dark Knowledge
null
null
0
3.333333
Reject
4;1;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
malware;execution;control;deep reinforcement learning
null
0
null
null
iclr
-1
0
null
main
4.666667
4;5;5
null
null
NEURAL MALWARE CONTROL WITH DEEP REINFORCEMENT LEARNING
null
null
0
2.333333
Reject
3;2;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Batch normalization;Convergence analysis;Gradient descent;Ordinary least squares;Deep neural network
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;4;6
null
null
On the Convergence and Robustness of Batch Normalization
null
null
0
3.666667
Reject
5;3;3
null
null
Tencent A.I. Lab; Department of Computer Science, University of Central Florida; Computational and Information Sciences Directorate, U.S. Army Research Laboratory
2019
0
null
null
0
null
null
null
null
null
Yang Zhang, Hassan Foroosh, Phiip David, Boqing Gong
https://iclr.cc/virtual/2019/poster/645
Adversarial Attack;Object Detection;Synthetic Simulation
null
0
null
null
iclr
0.693375
0
null
main
6.333333
4;7;8
null
null
CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild
null
null
0
3.333333
Poster
3;3;4
null
null
Department of Mathematics & Information Technology, The Education University of Hong Kong; Department of Computer Science and Engineering, The Hong Kong University of Science and Technology
2019
0
null
null
0
null
null
null
null
null
Xiaopeng Li, Zhourong Chen, Leonard Poon, Nevin Zhang
https://iclr.cc/virtual/2019/poster/838
latent tree model;variational autoencoder;deep learning;latent variable model;bayesian network;structure learning;stepwise em;message passing;graphical model;multidimensional clustering;unsupervised learning
null
0
null
null
iclr
0.5
0
null
main
7.333333
7;7;8
null
null
Learning Latent Superstructures in Variational Autoencoders for Deep Multidimensional Clustering
null
null
0
3.666667
Poster
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Policy Robustness;Policy generalization;Automated Curriculum
null
0
null
null
iclr
-0.188982
0
null
main
4.666667
3;5;6
null
null
Exploiting Environmental Variation to Improve Policy Robustness in Reinforcement Learning
null
null
0
3.666667
Reject
4;3;4
null
null
The University of Edinburgh, FiveAI
2019
0
null
null
0
null
null
null
null
null
Svetlin Penkov, Subramanian Ramamoorthy
https://iclr.cc/virtual/2019/poster/1107
representation learning;structured representations;symbols;programs
null
0
null
null
iclr
0.5
0
null
main
6
5;6;7
null
null
Learning Programmatically Structured Representations with Perceptor Gradients
null
null
0
3
Poster
3;1;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
2.666667
2;2;4
null
null
Multiple Encoder-Decoders Net for Lane Detection
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep reinforcement learning;generalization;semantic structure;model-based
null
0
null
null
iclr
-0.944911
0
null
main
5.333333
4;5;7
null
null
Learning and Planning with a Semantic Model
null
null
0
3.666667
Reject
4;4;3
null
null
School of Computing Science, Simon Fraser University; ; California Institute of Technology
2019
0
null
null
0
null
null
null
null
null
Jiawei He, Yu Gong, Joe Marino, Greg Mori, Andreas Lehrmann
https://iclr.cc/virtual/2019/poster/953
deep generative models;structure learning
null
0
null
null
iclr
1
0
null
main
7
6;7;8
null
null
Variational Autoencoders with Jointly Optimized Latent Dependency Structure
null
null
0
4
Poster
3;4;5
null
null
Institute for Infocomm Research, A*STAR; Nanyang Technological University (NTU); National University of Singapore (NUS); Singapore University of Technology and Design
2019
0
null
null
0
null
null
null
null
null
Yasin YAZICI, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Piliouras, Vijay Chandrasekhar
https://iclr.cc/virtual/2019/poster/1095
Generative Adversarial Networks (GANs);Moving Average;Exponential Moving Average;Convergence;Limit Cycles
null
0
null
null
iclr
1
0
null
main
5.666667
5;6;6
null
null
The Unusual Effectiveness of Averaging in GAN Training
https://github.com/yasinyazici/EMA_GAN
null
0
3.333333
Poster
2;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;model compression;pruning;PCA
null
0
null
null
iclr
0.5
0
null
main
4.333333
4;4;5
null
null
A SINGLE SHOT PCA-DRIVEN ANALYSIS OF NETWORK STRUCTURE TO REMOVE REDUNDANCY
null
null
0
4.666667
Withdraw
4;5;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Conditional GAN;Video Generation;Text-to-Video Synthesis;Conditional Generative Models;Deep Generative Models
null
0
null
null
iclr
-0.981981
0
null
main
4.666667
3;5;6
null
null
TFGAN: Improving Conditioning for Text-to-Video Synthesis
null
null
0
4
Withdraw
5;4;3
null
null
McGill University; Carnegie Mellon University; University of Toronto
2019
0
null
null
0
null
null
null
null
null
Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, Alec Jacobson
https://iclr.cc/virtual/2019/poster/1132
adversarial examples;norm-balls;differentiable renderer
null
0
null
null
iclr
1
0
null
main
6.666667
6;7;7
null
null
Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically Differentiable Renderer
null
null
0
3.666667
Poster
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Compound Question Decomposition;Reinforcement Learning;Knowledge-Based Question Answering;Learning-to-decompose
null
0
null
null
iclr
0.866025
0
null
main
5.333333
5;5;6
null
null
Learning to Decompose Compound Questions with Reinforcement Learning
null
null
0
4
Reject
4;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
learning from demonstration;imitation learning;behavioral cloning;reinforcement learning;off-policy;continuous control;autonomous vehicles;deep learning;machine learning;policy gradient
null
0
null
null
iclr
-0.866025
0
null
main
3
2;3;4
null
null
ReNeg and Backseat Driver: Learning from demonstration with continuous human feedback
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
global interpretability;additive explanations;model distillation;neural nets;tabular data
null
0
null
null
iclr
-0.5
0
https://youtu.be/ATNcgurNHhc
main
5.333333
4;6;6
null
null
Learning Global Additive Explanations for Neural Nets Using Model Distillation
null
null
0
4.666667
Reject
5;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
personalized learning;e-learning;text embedding;Skip-gram;imbalanced data set;data level classification methods
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
Prob2Vec: Mathematical Semantic Embedding for Problem Retrieval in Adaptive Tutoring
null
null
0
3.333333
Reject
3;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Agent Modeling;Theory of Mind;Deep Reinforcement Learning;Multi-agent Reinforcement Learning
null
0
null
null
iclr
0
0
https://www.dropbox.com/s/8mz6rd3349tso67/Probing_Demo.mov?dl=0
main
6
6;6;6;6
null
null
Interactive Agent Modeling by Learning to Probe
null
null
0
3.75
Reject
4;4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Deep Learning;Machine Learning;Knowledge Distill;Model Compression
null
0
null
null
iclr
-1
0
null
main
3
1;3;5
null
null
KNOWLEDGE DISTILL VIA LEARNING NEURON MANIFOLD
null
null
0
4
Withdraw
5;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Representation learning. Generative Adversarial Network (GAN). Positive Unlabeled learning. Image classification
null
0
null
null
iclr
-0.970725
0
null
main
3.666667
3;3;5
null
null
D-GAN: Divergent generative adversarial network for positive unlabeled learning and counter-examples generation
null
null
0
3.333333
Reject
5;4;1
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Translational invariance;CNN;Capsule Network
null
0
null
null
iclr
-1
0
null
main
3.333333
3;3;4
null
null
A quantifiable testing of global translational invariance in Convolutional and Capsule Networks
null
null
0
4.666667
Reject
5;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
new learning criterion;penalized maximum likelihood;posterior inference in deep generative models;input forgetting issue;latent variable collapse issue
null
0
null
null
iclr
0
0
null
main
3
2;3;4
null
null
Learning with Reflective Likelihoods
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Distribution regression;Distribution sequence;Forward prediction
null
0
null
null
iclr
1
0
null
main
4.666667
4;5;5
null
null
An Efficient Network for Predicting Time-Varying Distributions
null
null
0
3.666667
Withdraw
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.866025
0
null
main
4.666667
4;5;5
null
null
Expanding the Reach of Federated Learning by Reducing Client Resource Requirements
null
null
0
4
Reject
5;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
convolutional neural networks;channel-selectivity;channel re-wiring;bottleneck architectures;deep learning
null
0
null
null
iclr
-1
0
null
main
5.333333
5;5;6
null
null
Selective Convolutional Units: Improving CNNs via Channel Selectivity
null
null
0
2.666667
Reject
3;3;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
hierarchical model;RNN;generative model;automatic composing
null
0
null
null
iclr
0.5
0
null
main
2.666667
2;3;3
null
null
HAPPIER: Hierarchical Polyphonic Music Generative RNN
null
null
0
4.333333
Reject
4;5;4
null
null
UC Berkeley, Google Brain; Carnegie Mellon University, Google Brain; Google Brain; UC Berkeley
2019
0
null
null
0
null
null
null
null
null
Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, Sergey Levine
https://iclr.cc/virtual/2019/poster/720
reinforcement learning;unsupervised learning;skill discovery
null
0
null
null
iclr
0.5
0
https://sites.google.com/view/diayn/
main
7.333333
7;7;8
null
null
Diversity is All You Need: Learning Skills without a Reward Function
null
null
0
3.666667
Poster
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
neural network;quantization;optimization;low-precision;convolutional network;recurrent network
null
0
null
null
iclr
0.5
0
null
main
6
5;6;7
null
null
Precision Highway for Ultra Low-precision Quantization
null
null
0
4
Reject
3;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
generative adversarial nets;minimax duality gap;equilibrium
null
0
null
null
iclr
-0.755929
0
null
main
5.333333
4;5;7
null
null
Stackelberg GAN: Towards Provable Minimax Equilibrium via Multi-Generator Architectures
null
null
0
3.333333
Reject
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
4
3;4;5
null
null
Functional Bayesian Neural Networks for Model Uncertainty Quantification
null
null
0
3
Reject
3;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;machine learning;multimodal;generative adversarial networks
null
0
null
null
iclr
0.5
0
null
main
3.666667
3;4;4
null
null
Generating Images from Sounds Using Multimodal Features and GANs
null
null
0
4.333333
Reject
4;5;4
null
null
New York University; University of California, San Diego; New York University/New York University Shanghai
2019
0
null
null
0
null
null
null
null
null
Quan Vuong, Yiming Zhang, Keith Ross
https://iclr.cc/virtual/2019/poster/744
Deep Reinforcement Learning
null
0
null
null
iclr
-0.866025
0
null
main
7
6;6;9
null
null
Supervised Policy Update for Deep Reinforcement Learning
null
null
0
3
Poster
3;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
natural language processing;bilingual dictionary induction;unsupervised learning;generative adversarial networks
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Empirical observations on the instability of aligning word vector spaces with GANs
null
null
0
3.666667
Withdraw
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Generative Adversarial Networks;GANs;conditional GANs;Discriminator;Fusion
null
0
null
null
iclr
-1
0
null
main
3.666667
3;3;5
null
null
Structured Prediction using cGANs with Fusion Discriminator
null
null
0
3.666667
Reject
4;4;3
null
null
Paper under double-blind review
2019
0
null
null
0
null
null
null
null
null
null
null
Adversarial sample;Text;Black-box;MCTS;Homoglyph
null
0
null
null
iclr
-1
0
null
main
3.5
3;4
null
null
MCTSBug: Generating Adversarial Text Sequences via Monte Carlo Tree Search and Homoglyph Attack
null
null
0
3.5
Withdraw
4;3
null
null
Massachusetts Institute of Technology
2019
0
null
null
0
null
null
null
null
null
Victoria Xia, Zi Wang, Kelsey Allen, Tom Silver, Leslie Kaelbling
https://iclr.cc/virtual/2019/poster/934
Deictic reference;relational model;rule-based transition model
null
0
null
null
iclr
-0.5
0
null
main
7
6;7;8
null
null
Learning sparse relational transition models
null
null
0
3
Poster
4;2;3
null
null
School of Electrical Engineering, KAIST
2019
0
null
null
0
null
null
null
null
null
Daewoo Kim, Sangwoo Moon, David Earl Hostallero, Wan Ju Kang, Taeyoung Lee, Kyunghwan Son, Yung Yi
https://iclr.cc/virtual/2019/poster/931
Multi agent reinforcement learning;deep reinforcement learning;Communication
null
0
null
null
iclr
0.944911
0
null
main
7.333333
7;7;8
null
null
Learning to Schedule Communication in Multi-agent Reinforcement Learning
null
null
0
3.333333
Poster
2;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
dialogue models;adversarial networks;dialogue generation
null
0
null
null
iclr
0.174078
0
null
main
4.75
4;4;5;6
null
null
Multi-turn Dialogue Response Generation in an Adversarial Learning Framework
null
null
0
4.25
Reject
4;4;5;4
null
null
Carnegie Mellon University, Facebook AI Research; New York University, Facebook AI Research; Facebook AI Research
2019
0
null
null
0
null
null
null
null
null
Kenneth Marino, Abhinav Gupta, Rob Fergus, Arthur Szlam
https://iclr.cc/virtual/2019/poster/1042
null
null
0
null
null
iclr
0
0
https://sites.google.com/view/hrl-ep3
main
6.666667
6;7;7
null
null
Hierarchical RL Using an Ensemble of Proprioceptive Periodic Policies
null
null
0
4
Poster
4;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
5.333333
5;5;6
null
null
DEEP GRAPH TRANSLATION
null
null
0
3.333333
Reject
4;2;4
null
null
Georgia Institute of Technology; Georgia Tech Research Institute; Georgia Institute of Technology and Georgia Tech Research Institute
2019
0
null
null
0
null
null
null
null
null
Yen-Chang Hsu, Zhaoyang Lv, Joel Schlosser, Phillip Odom, Zsolt Kira
https://iclr.cc/virtual/2019/poster/737
classification;unsupervised learning;semi-supervised learning;problem reduction;weak supervision;cross-task;learning;deep learning;neural network
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Multi-class classification without multi-class labels
https://github.com/GT-RIPL/L2C
null
0
3.666667
Poster
4;3;4
null
null
New York University; Brown University; Swarthmore College; Google AI Language; Johns Hopkins University
2019
0
null
null
0
null
null
null
null
null
Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, Tom McCoy, Najoung Kim, Benjamin Van Durme, Sam Bowman, Dipanjan Das, Ellie Pavlick
https://iclr.cc/virtual/2019/poster/1009
natural language processing;word embeddings;transfer learning;interpretability
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
What do you learn from context? Probing for sentence structure in contextualized word representations
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;convolutional neural network;pruning;Winograd convolution
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Spatial-Winograd Pruning Enabling Sparse Winograd Convolution
null
null
0
3
Reject
3;3;3
null
null
DeepMind; Google Brain
2019
0
null
null
0
null
null
null
null
null
David Pfau, Stig Petersen, Ashish Agarwal, David Barrett, Kimberly Stachenfeld
https://iclr.cc/virtual/2019/poster/962
spectral learning;unsupervised learning;manifold learning;dimensionality reduction
null
0
null
null
iclr
0
0
null
main
5.666667
5;5;7
null
null
Spectral Inference Networks: Unifying Deep and Spectral Learning
https://github.com/deepmind/spectral_inference_networks
null
0
3
Poster
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Generative Adversarial Networks;Continual Learning;Deep Learning
null
0
null
null
iclr
-0.866025
0
null
main
5
3;5;7
null
null
Generative Adversarial Network Training is a Continual Learning Problem
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;low rank representations;adversarial robustness
null
0
null
null
iclr
-0.944911
0
null
main
4.666667
3;5;6
null
null
Intriguing Properties of Learned Representations
null
null
0
2.666667
Reject
4;2;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
learning representation;decomposition;adversarial training;style transfer
null
0
null
null
iclr
-0.755929
0
null
main
4.333333
3;4;6
null
null
Adversarial Decomposition of Text Representation
null
null
0
3.333333
Withdraw
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;generalization error bound;convolutional neural networks
null
0
null
null
iclr
1
0
null
main
6.333333
5;7;7
null
null
On Tighter Generalization Bounds for Deep Neural Networks: CNNs, ResNets, and Beyond
null
null
0
3.666667
Reject
3;4;4
null
null
USI, Switzerland; Fabula AI, UK; Intel Perceptual Computing, Israel; NNAISENSE, Switzerland; Stanford University, USA; Imperial College London, UK
2019
0
null
null
0
null
null
null
null
null
Jan Svoboda, Jonathan Masci, Federico Monti, Michael Bronstein, Leonidas Guibas
https://iclr.cc/virtual/2019/poster/853
peernet;peernets;graph;geometric deep learning;adversarial;perturbation;defense;peer regularization
null
0
null
null
iclr
-1
0
null
main
6.5
6;7
null
null
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks
null
null
0
4.5
Poster
5;4
null
null
DeepMind, University of Oxford; DeepMind
2019
0
null
null
0
null
null
null
null
null
Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami, Dan Rosenbaum, Oriol Vinyals, Yee Whye Teh
https://iclr.cc/virtual/2019/poster/1006
Neural Processes;Conditional Neural Processes;Stochastic Processes;Regression;Attention
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Attentive Neural Processes
null
null
0
4
Poster
4;4;4
null