pdf
stringlengths 49
199
⌀ | aff
stringlengths 1
1.36k
⌀ | year
stringclasses 19
values | technical_novelty_avg
float64 0
4
⌀ | video
stringlengths 21
47
⌀ | doi
stringlengths 31
63
⌀ | presentation_avg
float64 0
4
⌀ | proceeding
stringlengths 43
129
⌀ | presentation
stringclasses 796
values | sess
stringclasses 576
values | technical_novelty
stringclasses 700
values | arxiv
stringlengths 10
16
⌀ | author
stringlengths 1
1.96k
⌀ | site
stringlengths 37
191
⌀ | keywords
stringlengths 2
582
⌀ | oa
stringlengths 86
198
⌀ | empirical_novelty_avg
float64 0
4
⌀ | poster
stringlengths 57
95
⌀ | openreview
stringlengths 41
45
⌀ | conference
stringclasses 11
values | corr_rating_confidence
float64 -1
1
⌀ | corr_rating_correctness
float64 -1
1
⌀ | project
stringlengths 1
162
⌀ | track
stringclasses 3
values | rating_avg
float64 0
10
⌀ | rating
stringlengths 1
17
⌀ | correctness
stringclasses 809
values | slides
stringlengths 32
41
⌀ | title
stringlengths 2
192
⌀ | github
stringlengths 3
165
⌀ | authors
stringlengths 7
161
⌀ | correctness_avg
float64 0
5
⌀ | confidence_avg
float64 0
5
⌀ | status
stringclasses 22
values | confidence
stringlengths 1
17
⌀ | empirical_novelty
stringclasses 763
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Introspective learning;Large variations resistance;Image classification;Generative models
| null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 5 |
4;5;6
| null | null |
Towards Resisting Large Data Variations via Introspective Learning
| null | null | 0 | 3.666667 |
Withdraw
|
4;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Deep Learning;Survival Analysis;Event prediction;Time Series;Probabilistic Programming;Density Networks
| null | 0 | null | null |
iclr
| 0.866025 | 0 | null |
main
| 3.333333 |
3;3;4
| null | null |
Neural Distribution Learning for generalized time-to-event prediction
| null | null | 0 | 4 |
Reject
|
3;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
unsupervised learning;topic model;text generation
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 4.333333 |
4;4;5
| null | null |
TopicGAN: Unsupervised Text Generation from Explainable Latent Topics
| null | null | 0 | 3.333333 |
Reject
|
4;2;4
| null |
null |
University of Oxford; DeepMind; University College London
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktaeschel, Shimon Whiteson
|
https://iclr.cc/virtual/2019/poster/642
|
multi-agent learning;multiple interacting losses;opponent shaping;exploitation;convergence
| null | 0 | null | null |
iclr
| 0.944911 | 0 | null |
main
| 6.666667 |
6;6;8
| null | null |
Stable Opponent Shaping in Differentiable Games
| null | null | 0 | 2.333333 |
Poster
|
1;2;4
| null |
null |
Microsoft Research AI; Google Brain
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, Samuel Schoenholz
|
https://iclr.cc/virtual/2019/poster/802
|
theory;batch normalization;mean field theory;trainability
| null | 0 | null | null |
iclr
| 1 | 0 |
https://arxiv.org/abs/1902.08129
|
main
| 6.666667 |
6;7;7
| null | null |
A Mean Field Theory of Batch Normalization
| null | null | 0 | 2.333333 |
Poster
|
1;3;3
| null |
null |
Facebook AI Research; Carnegie Mellon University and Facebook AI Research; Carnegie Mellon University
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Tao Chen, Saurabh Gupta, Abhinav Gupta
|
https://iclr.cc/virtual/2019/poster/883
|
Exploration;navigation;reinforcement learning
| null | 0 | null | null |
iclr
| -0.5 | 0 |
https://sites.google.com/view/exploration-for-nav/
|
main
| 5.666667 |
3;7;7
| null | null |
Learning Exploration Policies for Navigation
| null | null | 0 | 4.666667 |
Poster
|
5;4;5
| null |
null |
Jagiellonian University
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Damian Leśniak, Igor Sieradzki, Igor Podolak
|
https://iclr.cc/virtual/2019/poster/865
|
generative models;latent distribution;Cauchy distribution;interpolations
| null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 6 |
5;6;7
| null | null |
Distribution-Interpolation Trade off in Generative Models
| null | null | 0 | 3.666667 |
Poster
|
4;4;3
| null |
null |
Paper under double-blind review
|
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Sparse Coding;Unsupervised Learning;Natural Scene Statistics;Biologically Plausible Deep Networks;Visual Perception;Computer Vision
| null | 0 | null | null |
iclr
| -0.327327 | 0 | null |
main
| 6 |
4;5;9
| null | null |
An adaptive homeostatic algorithm for the unsupervised learning of visual features
| null | null | 0 | 4.333333 |
Reject
|
4;5;4
| null |
null |
IIIS, Tsinghua University; Brown University; MIT CSAIL, Google Research; MIT CSAIL, Shanghai Jiao Tong University; MIT CSAIL
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Yunchao Liu, Zheng Wu, Daniel Ritchie, William Freeman, Joshua B Tenenbaum, Jiajun Wu
|
https://iclr.cc/virtual/2019/poster/769
|
Structured scene representations;program synthesis
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 5.333333 |
4;6;6
| null | null |
Learning to Describe Scenes with Programs
| null | null | 0 | 3.333333 |
Poster
|
3;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Reinforcement Learning;Imitation Learning;Deep Learning
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 4.333333 |
4;4;5
| null | null |
Visual Imitation Learning with Recurrent Siamese Networks
| null | null | 0 | 3.666667 |
Reject
|
3;4;4
| null |
null |
Microsoft Research, Redmond, WA
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Daniel McDuff, Ashish Kapoor
|
https://iclr.cc/virtual/2019/poster/911
|
Reinforcement Learning;Simulation;Affective Computing
| null | 0 | null | null |
iclr
| 1 | 0 | null |
main
| 6.333333 |
6;6;7
| null | null |
Visceral Machines: Risk-Aversion in Reinforcement Learning with Intrinsic Physiological Rewards
| null | null | 0 | 4.333333 |
Poster
|
4;4;5
| null |
null |
Department of Engineering Science, University of Oxford; Department of Engineering Science, University of Oxford and Alan Turing Institute
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Leonard Berrada, Andrew Zisserman, M. Pawan Kumar
|
https://iclr.cc/virtual/2019/poster/975
|
optimization;conditional gradient;Frank-Wolfe;SVM
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 7.333333 |
7;7;8
| null | null |
Deep Frank-Wolfe For Neural Network Optimization
|
https://github.com/oval-group/dfw
| null | 0 | 4.333333 |
Poster
|
4;5;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
multi-agent reinforcement learning;deep reinforcement learning;multi-agent systems
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5
| null | null |
Inducing Cooperation via Learning to reshape rewards in semi-cooperative multi-agent reinforcement learning
| null | null | 0 | 3.666667 |
Reject
|
4;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Information maximization;unsupervised learning of hybrid of discrete and continuous representations
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
4;5;6
| null | null |
INFORMATION MAXIMIZATION AUTO-ENCODING
| null | null | 0 | 4.333333 |
Reject
|
4;5;4
| null |
null |
KAIST; University of Oxford; AITRICS; CAI, University of Technology Sydney
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, Yi Yang
|
https://iclr.cc/virtual/2019/poster/976
|
few-shot learning;meta-learning;label propagation;manifold learning
| null | 0 | null | null |
iclr
| 0.866025 | 0 | null |
main
| 6 |
5;6;7
| null | null |
LEARNING TO PROPAGATE LABELS: TRANSDUCTIVE PROPAGATION NETWORK FOR FEW-SHOT LEARNING
| null | null | 0 | 3.333333 |
Poster
|
3;3;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Policy Exploration;Uncertainty in Reward Space
| null | 0 | null | null |
iclr
| -0.944911 | 0 | null |
main
| 4.333333 |
3;5;5
| null | null |
Exploration by Uncertainty in Reward Space
| null | null | 0 | 3.333333 |
Reject
|
5;2;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
node embeddings;adversarial attacks
| null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 5.666667 |
5;6;6
| null | null |
Adversarial Attacks on Node Embeddings
| null | null | 0 | 4 |
Reject
|
5;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
sentence representations learning;multi-task learning;transfer learning
| null | 0 | null | null |
iclr
| 1 | 0 | null |
main
| 3.666667 |
3;4;4
| null | null |
Learning Robust, Transferable Sentence Representations for Text Classification
| null | null | 0 | 3.333333 |
Withdraw
|
2;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Interpretability;Interpretable Deep Learning;XAI;dependency graph;sensitivity analysis;outlier detection;instance-specific;model-centric
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 3.333333 |
3;3;4
| null | null |
Step-wise Sensitivity Analysis: Identifying Partially Distributed Representations for Interpretable Deep Learning
| null | null | 0 | 4.333333 |
Reject
|
4;5;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
theoretical analysis;deep network;optimization;disentangled representation
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
3;5;7
| null | null |
A theoretical framework for deep and locally connected ReLU network
| null | null | 0 | 3.666667 |
Reject
|
4;3;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Inverse Reinforcement Learning;Meta-Learning;Deep Learning
| null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 3.666667 |
3;4;4
| null | null |
Few-Shot Intent Inference via Meta-Inverse Reinforcement Learning
| null | null | 0 | 4 |
Reject
|
5;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
capsule networks;pairwise learning;few-shot learning;face verification
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 4.666667 |
3;5;6
| null | null |
Siamese Capsule Networks
| null | null | 0 | 4 |
Reject
|
4;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Generative Adversarial Networks;GANs;game theory
| null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 4 |
3;4;5
| null | null |
Evaluating GANs via Duality
| null | null | 0 | 3.333333 |
Reject
|
4;3;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
imitation learning;forecasting;computer vision
| null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 5.666667 |
5;6;6
| null | null |
Deep Imitative Models for Flexible Inference, Planning, and Control
| null | null | 0 | 3 |
Reject
|
5;1;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
deep learning;convolutional neural network;sensor fusion;activity recognition
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 3.666667 |
3;4;4
| null | null |
Optimized Gated Deep Learning Architectures for Sensor Fusion
| null | null | 0 | 4.333333 |
Reject
|
4;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Hierarchical Bayesian Modeling;Sparse sequence clustering;Group profiling;User group modeling
| null | 0 | null | null |
iclr
| -0.645497 | 0 | null |
main
| 2 |
1;2;2;2;3
| null | null |
Hierarchical Bayesian Modeling for Clustering Sparse Sequences in the Context of Group Profiling
| null | null | 0 | 4.6 |
Reject
|
5;4;5;5;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
GAN;Deep Learning;Reinforcement Learning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
4;5;6
| null | null |
Dissecting an Adversarial framework for Information Retrieval
| null | null | 0 | 3.666667 |
Reject
|
4;3;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| -1 | 0 | null |
main
| 5.666667 |
5;5;7
| null | null |
The loss landscape of overparameterized neural networks
| null | null | 0 | 3.666667 |
Reject
|
4;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
semi-supervised learning;generative adversarial networks;manifold regularization
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5.666667 |
5;5;7
| null | null |
Manifold regularization with GANs for semi-supervised learning
| null | null | 0 | 4 |
Reject
|
4;4;4
| null |
null |
Department of Machine Intelligence, Peking University; Department of Computer Science, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Computer Science, Cornell University, Ithaca 14850, NY, USA
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Chuanbiao Song, Kun He, Liwei Wang, John E Hopcroft
|
https://iclr.cc/virtual/2019/poster/675
|
adversarial training;domain adaptation;adversarial example;deep learning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 6 |
6;6;6
| null | null |
Improving the Generalization of Adversarial Training with Domain Adaptation
| null | null | 0 | 3 |
Poster
|
2;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
acceleration;batch selection;convergence;decision boundary
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5
| null | null |
Ada-Boundary: Accelerating the DNN Training via Adaptive Boundary Batch Selection
| null | null | 0 | 3.666667 |
Reject
|
4;3;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5.333333 |
4;6;6
| null | null |
Live Face De-Identification in Video
| null | null | 0 | 4 |
Withdraw
|
4;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 3.666667 |
3;4;4
| null | null |
Parametrizing Fully Convolutional Nets with a Single High-Order Tensor
| null | null | 0 | 4.333333 |
Withdraw
|
4;5;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Generative Deep Neural Networks;Feature Matching;Maximum Mean Discrepancy;Generative Adversarial Networks
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 6 |
6;6;6;6
| null | null |
Generative Feature Matching Networks
| null | null | 0 | 3.25 |
Reject
|
3;3;3;4
| null |
null |
Vector Institute, Canada; University of Toronto, Canada; Vector Institute, Canada; CIFAR Senior Fellow; University of Toronto, Canada; Vector Institute, Canada; Uber ATG, Canada; University of Toronto, Canada; Vector Institute, Canada
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Marc T Law, Jake Snell, Amir-massoud Farahmand, Raquel Urtasun, Richard Zemel
|
https://iclr.cc/virtual/2019/poster/1013
|
metric learning;distance learning;dimensionality reduction;bound guarantees
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 7.333333 |
6;7;9
| null | null |
Dimensionality Reduction for Representing the Knowledge of Probabilistic Models
| null | null | 0 | 2.666667 |
Poster
|
1;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Bayesian nonparametrics;Indian Buffet Process;Federated Learning
| null | 0 | null | null |
iclr
| 1 | 0 | null |
main
| 5.333333 |
4;6;6
| null | null |
Probabilistic Federated Neural Matching
| null | null | 0 | 3.666667 |
Reject
|
3;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Representation learning;transfer learning;health;machine learning;physiological signals;interpretation;feature attributions;shapley values;univariate embeddings;LSTMs;XGB;neural networks;stacked models;model pipelines;interpretable stacked models
| null | 0 | null | null |
iclr
| 0.866025 | 0 | null |
main
| 5 |
4;5;6
| null | null |
Physiological Signal Embeddings (PHASE) via Interpretable Stacked Models
| null | null | 0 | 4.333333 |
Reject
|
4;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Weak contraction mapping;fixed-point theorem;non-convex optimization
| null | 0 | null | null |
iclr
| -0.188982 | 0 | null |
main
| 2.666667 |
1;3;4
| null | null |
Weak contraction mapping and optimization
| null | null | 0 | 4 |
Reject
|
5;2;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
geometric deep learning;graph neural network;graph classification;scattering
| null | 0 | null | null |
iclr
| -1 | 0 | null |
main
| 5.333333 |
5;5;6
| null | null |
Graph Classification with Geometric Scattering
| null | null | 0 | 3.666667 |
Reject
|
4;4;3
| null |
null |
Computer Science and Artificial Intelligence Laboratory, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computational and Systems Biology, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Tristan Bepler, Bonnie Berger
|
https://iclr.cc/virtual/2019/poster/1101
|
sequence embedding;sequence alignment;RNN;LSTM;protein structure;amino acid sequence;contextual embeddings;transmembrane prediction
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 7.333333 |
7;7;8
| null | null |
Learning protein sequence embeddings using information from structure
|
https://github.com/tbepler/protein-sequence-embedding-iclr2019
| null | 0 | 3.666667 |
Poster
|
3;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| -1 | 0 | null |
main
| 4.666667 |
4;5;5
| null | null |
Noise-Tempered Generative Adversarial Networks
| null | null | 0 | 4.333333 |
Reject
|
5;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
neural attention;sequence-to-sequence;variational inference
| null | 0 | null | null |
iclr
| -1 | 0 | null |
main
| 5.666667 |
5;6;6
| null | null |
Amortized Context Vector Inference for Sequence-to-Sequence Networks
| null | null | 0 | 3.333333 |
Reject
|
4;3;3
| null |
null |
DeepMind
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Lingpeng Kong, Gábor Melis, Wang Ling, Lei Yu, Dani Yogatama
|
https://iclr.cc/virtual/2019/poster/677
| null | null | 0 | null | null |
iclr
| -0.981981 | 0 | null |
main
| 5 |
2;6;7
| null | null |
Variational Smoothing in Recurrent Neural Network Language Models
| null | null | 0 | 4.333333 |
Poster
|
5;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
VQA;Data Interpretation;Parsing;Object Detection
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
3;6;6
| null | null |
Data Interpretation and Reasoning Over Scientific Plots
| null | null | 0 | 4 |
Withdraw
|
4;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
semi-supervised learning;label propagation;graph convolutional networks
| null | 0 | null | null |
iclr
| 0.944911 | 0 | null |
main
| 4.333333 |
3;4;6
| null | null |
Generalized Label Propagation Methods for Semi-Supervised Learning
| null | null | 0 | 4.333333 |
Withdraw
|
4;4;5
| null |
null |
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Wu Xiao, HONGLIN CHEN, Qianli Liao, Tomaso Poggio
|
https://iclr.cc/virtual/2019/poster/662
|
biologically plausible learning algorithm;ImageNet;sign-symmetry;feedback alignment
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 7.333333 |
4;9;9
| null | null |
Biologically-Plausible Learning Algorithms Can Scale to Large Datasets
| null | null | 0 | 4.333333 |
Poster
|
4;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
deep learning
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 5.666667 |
3;7;7
| null | null |
Small steps and giant leaps: Minimal Newton solvers for Deep Learning
| null | null | 0 | 4.666667 |
Reject
|
5;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
network embedding;unsupervised learning;inductive learning
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 3.333333 |
2;4;4
| null | null |
BIGSAGE: unsupervised inductive representation learning of graph via bi-attended sampling and global-biased aggregating
| null | null | 0 | 3.666667 |
Reject
|
4;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Modular Networks;Reinforcement Learning;Task Separation;Representation Learning;Transfer Learning;Adversarial Transfer
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 3.333333 |
3;3;4
| null | null |
BEHAVIOR MODULE IN NEURAL NETWORKS
| null | null | 0 | 4.666667 |
Reject
|
5;4;5
| null |
null |
Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA; Salesforce Research, Palo Alto, CA
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Victor Zhong, Caiming Xiong, Nitish Shirish Keskar, richard socher
|
https://iclr.cc/virtual/2019/poster/757
|
question answering;reading comprehension;nlp;natural language processing;attention;representation learning
| null | 0 | null | null |
iclr
| 0.866025 | 0 | null |
main
| 6 |
4;7;7
| null | null |
Coarse-grain Fine-grain Coattention Network for Multi-evidence Question Answering
| null | null | 0 | 4 |
Poster
|
3;5;4
| null |
null |
Georgia Institute of Technology; University of Pennsylvania
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, Le Song
|
https://iclr.cc/virtual/2019/poster/801
|
Syntax-guided Synthesis;Context Free Grammar;Logical Specification;Representation Learning;Meta Learning;Reinforcement Learning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 7 |
7;7;7
| null | null |
Learning a Meta-Solver for Syntax-Guided Program Synthesis
| null | null | 0 | 3.666667 |
Poster
|
2;5;4
| null |
null |
Computer Science and Artificial Intelligence Lab, MIT
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Guang-He Lee, David Alvarez-Melis, Tommi Jaakkola
|
https://iclr.cc/virtual/2019/poster/964
|
robust derivatives;transparency;interpretability
| null | 0 | null | null |
iclr
| -0.5 | 0 |
http://people.csail.mit.edu/guanghe/locally_linear
|
main
| 7.666667 |
7;8;8
| null | null |
Towards Robust, Locally Linear Deep Networks
| null | null | 0 | 3.666667 |
Poster
|
4;3;4
| null |
null |
Google AI
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Kedar Dhamdhere, Mukund Sundararajan, Qiqi Yan
|
https://iclr.cc/virtual/2019/poster/927
|
attribution;saliency;influence
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 7 |
7;7;7
| null | null |
How Important is a Neuron
| null | null | 0 | 3.666667 |
Poster
|
5;2;4
| null |
null |
Deepmind, London
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Felix Hill, Adam Santoro, David Barrett, Ari Morcos, Timothy Lillicrap
|
https://iclr.cc/virtual/2019/poster/943
|
cognitive science;analogy;psychology;cognitive theory;cognition;abstraction;generalization
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 6.666667 |
6;7;7
| null | null |
Learning to Make Analogies by Contrasting Abstract Relational Structure
| null | null | 0 | 3.666667 |
Poster
|
3;5;3
| null |
null |
Ryerson University; University of Southern California; University of Pennsylvania
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Oleh Rybkin, Karl Pertsch, Kosta Derpanis, Kostas Daniilidis, Andrew Jaegle
|
https://iclr.cc/virtual/2019/poster/651
|
unsupervised learning;vision;motion;action space;video prediction;variational models
| null | 0 | null | null |
iclr
| 0.5 | 0 |
https://daniilidis-group.github.io/learned_action_spaces
|
main
| 6.333333 |
6;6;7
| null | null |
Learning what you can do before doing anything
| null | null | 0 | 3.666667 |
Poster
|
3;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Bayesian deep learning;network pruning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5.666667 |
5;5;7
| null | null |
ADAPTIVE NETWORK SPARSIFICATION VIA DEPENDENT VARIATIONAL BETA-BERNOULLI DROPOUT
| null | null | 0 | 4 |
Reject
|
4;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
program synthesis;semantic parsing;code idioms;domain-specific languages
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 0 | null | null | null |
Program Synthesis with Learned Code Idioms
| null | null | 0 | 0 |
Withdraw
| null | null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 6 |
5;6;7
| null | null |
IMAGE DEFORMATION META-NETWORK FOR ONE-SHOT LEARNING
| null | null | 0 | 3 |
Withdraw
|
4;4;1
| null |
null |
University of California, Los Angeles, USA; Hikvision Research Institute, Santa Clara, USA
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Ruiqi Gao, Jianwen Xie, Song-Chun Zhu, Yingnian Wu
|
https://iclr.cc/virtual/2019/poster/702
| null | null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 7.333333 |
7;7;8
| null | null |
Learning Grid Cells as Vector Representation of Self-Position Coupled with Matrix Representation of Self-Motion
| null | null | 0 | 4.333333 |
Poster
|
4;5;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
prototype networks;polar prototypes;output structure
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 4 |
3;4;5
| null | null |
Polar Prototype Networks
| null | null | 0 | 4 |
Reject
|
4;5;3
| null |
null |
University of Science and Technology of China; University of Iowa; JD AI Research
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Zaiyi Chen, Zhuoning Yuan, Jinfeng Yi, Bowen Zhou, Enhong Chen, Tianbao Yang
|
https://iclr.cc/virtual/2019/poster/955
|
optimization;sgd;adagrad
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 6.666667 |
6;6;8
| null | null |
Universal Stagewise Learning for Non-Convex Problems with Convergence on Averaged Solutions
| null | null | 0 | 4 |
Poster
|
4;4;4
| null |
null |
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Haggai Maron, Heli Ben-Hamu, Nadav Shamir, Yaron Lipman
|
https://iclr.cc/virtual/2019/poster/764
|
graph learning;equivariance;deep learning
| null | 0 | null | null |
iclr
| -0.654654 | 0 | null |
main
| 7 |
4;8;9
| null | null |
Invariant and Equivariant Graph Networks
| null | null | 0 | 4.666667 |
Poster
|
5;5;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Energy Efficiency;Autonomous Flying;Trail Detection
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 2.666667 |
2;3;3
| null | null |
A CASE STUDY ON OPTIMAL DEEP LEARNING MODEL FOR UAVS
| null | null | 0 | 2.333333 |
Reject
|
2;2;3
| null |
null |
Massachusetts Institute of Technology
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, Aleksander Madry
|
https://iclr.cc/virtual/2019/poster/1032
|
adversarial examples;robust machine learning;robust optimization;deep feature representations
| null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 7.666667 |
7;8;8
| null | null |
Robustness May Be at Odds with Accuracy
| null | null | 0 | 3 |
Poster
|
4;2;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
cross-lingual transfer learning;multilingual transfer learning;zero-resource model transfer;adversarial training;mixture of experts;multilingual natural language understanding
| null | 0 | null | null |
iclr
| -1 | 0 | null |
main
| 5.666667 |
5;6;6
| null | null |
Zero-Resource Multilingual Model Transfer: Learning What to Share
| null | null | 0 | 4.333333 |
Reject
|
5;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
meta-learning;learning to learn;few-shot learning
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 5.666667 |
5;5;7
| null | null |
Attentive Task-Agnostic Meta-Learning for Few-Shot Text Classification
| null | null | 0 | 3.333333 |
Reject
|
3;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
group representations;group equivariant networks;tensor product nonlinearity
| null | 0 | null | null |
iclr
| 0.693375 | 0 | null |
main
| 5.333333 |
3;6;7
| null | null |
Cohen Welling bases & SO(2)-Equivariant classifiers using Tensor nonlinearity.
| null | null | 0 | 2.666667 |
Reject
|
2;2;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
deep neural networks;invertibility;invariance;robustness;ReLU networks
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 6.333333 |
6;6;7
| null | null |
Invariance and Inverse Stability under ReLU
| null | null | 0 | 3.333333 |
Reject
|
4;3;3
| null |
null |
Department of Electronic Engineering, The Chinese University of Hong Kong; Department of Information Engineering, The Chinese University of Hong Kong; The University of Sydney, SenseTime Computer Vision Research Group
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Hongyang Li, Bo Dai, Shaoshuai Shi, Wanli Ouyang, Xiaogang Wang
|
https://iclr.cc/virtual/2019/poster/698
|
feature learning;computer vision;deep learning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 7 |
5;7;9
| null | null |
Feature Intertwiner for Object Detection
| null | null | 0 | 3.666667 |
Poster
|
4;3;4
| null |
null |
Paper under double-blind review
|
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Reinforcement Learning
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 5 |
4;4;7
| null | null |
Accelerated Value Iteration via Anderson Mixing
| null | null | 0 | 3.666667 |
Reject
|
3;4;4
| null |
null |
Google Brain
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Gamaleldin Elsayed, Ian Goodfellow, Jascha Sohl-Dickstein
|
https://iclr.cc/virtual/2019/poster/1124
|
Adversarial;Neural Networks;Machine Learning Security
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 6 |
4;6;8
| null | null |
Adversarial Reprogramming of Neural Networks
| null | null | 0 | 4 |
Poster
|
3;5;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 4 |
3;4;5
| null | null |
Second-Order Adversarial Attack and Certifiable Robustness
| null | null | 0 | 4.333333 |
Reject
|
5;5;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
concept drift;wifi localization;feature representation.
| null | 0 | null | null |
iclr
| 0.866025 | 0 | null |
main
| 3 |
2;3;4
| null | null |
HANDLING CONCEPT DRIFT IN WIFI-BASED INDOOR LOCALIZATION USING REPRESENTATION LEARNING
| null | null | 0 | 3 |
Withdraw
|
1;4;4
| null |
null |
Microsoft Research Asia; University of Science and Technology of China; University of Chinese Academy of Sciences
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Qi Meng, Shuxin Zheng, Huishuai Zhang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, Nenghai Yu, Tie-Yan Liu
|
https://iclr.cc/virtual/2019/poster/724
|
optimization;neural network;irreducible positively scale-invariant space;deep learning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 7 |
7;7;7
| null | null |
G-SGD: Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space
| null | null | 0 | 3 |
Poster
|
4;3;2
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Reinforcement Learning;Safe Learning;Lyapunov Functions;Constrained Markov Decision Problems
| null | 0 | null | null |
iclr
| 0.229416 | 0 | null |
main
| 6.25 |
5;6;6;8
| null | null |
Lyapunov-based Safe Policy Optimization
| null | null | 0 | 2.5 |
Reject
|
3;2;2;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Mathematical Morphology;Neural Network;Activation Function;Universal Aproximatimation.
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5
| null | null |
Dense Morphological Network: An Universal Function Approximator
| null | null | 0 | 4 |
Reject
|
5;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
quantization;binary;ternary;flat minima;model compression;deep learning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 4.666667 |
4;5;5
| null | null |
Computation-Efficient Quantization Method for Deep Neural Networks
| null | null | 0 | 4 |
Reject
|
4;4;4
| null |
null |
Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Randall Balestriero, Richard Baraniuk
|
https://iclr.cc/virtual/2019/poster/991
|
Spline;Vector Quantization;Inference;Nonlinearities;Deep Network
| null | 0 | null | null |
iclr
| 0.866025 | 0 | null |
main
| 6.333333 |
6;6;7
| null | null |
From Hard to Soft: Understanding Deep Network Nonlinearities via Vector Quantization and Statistical Inference
| null | null | 0 | 4 |
Poster
|
4;3;5
| null |
null |
University of Toronto; Vector Institute
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
James Lucas, Shengyang Sun, Richard Zemel, Roger Grosse
|
https://iclr.cc/virtual/2019/poster/990
|
momentum;optimization;deep learning;neural networks
| null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 6 |
5;6;7
| null | null |
Aggregated Momentum: Stability Through Passive Damping
| null | null | 0 | 3.333333 |
Poster
|
4;3;3
| null |
null |
National Research University Higher School of Economics∗, Moscow, Russia; Samsung AI Center Moscow, Moscow, Russia; Samsung-HSE Laboratory, National Research University Higher School of Economics, Samsung AI Center Moscow, Moscow, Russia
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Oleg Ivanov, Mikhail Figurnov, Dmitry P. Vetrov
|
https://iclr.cc/virtual/2019/poster/659
|
unsupervised learning;generative models;conditional variational autoencoder;variational autoencoder;missing features multiple imputation;inpainting
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 6.333333 |
6;6;7
| null | null |
Variational Autoencoder with Arbitrary Conditioning
| null | null | 0 | 3 |
Poster
|
3;3;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
quantum;neural networks;meta-learning
| null | 0 | null | null |
iclr
| 0.866025 | 0 | null |
main
| 4 |
3;4;5
| null | null |
Neural Network Cost Landscapes as Quantum States
| null | null | 0 | 4.333333 |
Reject
|
4;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Learning Representations;Feature Combinations;Self-Attention
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5
| null | null |
Learning Representations of Categorical Feature Combinations via Self-Attention
| null | null | 0 | 3.666667 |
Reject
|
4;3;4
| null |
null |
UC Berkeley
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Dinesh Jayaraman, Frederik Ebert, Alexei Efros, Sergey Levine
|
https://iclr.cc/virtual/2019/poster/967
|
visual prediction;subgoal generation;bottleneck states;time-agnostic
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 7.333333 |
7;7;8
| null | null |
Time-Agnostic Prediction: Predicting Predictable Video Frames
| null | null | 0 | 4 |
Poster
|
5;3;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| -1 | 0 | null |
main
| 4.333333 |
4;4;5
| null | null |
MANIFOLDNET: A DEEP NEURAL NETWORK FOR MANIFOLD-VALUED DATA
| null | null | 0 | 3.666667 |
Reject
|
4;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Neural random fields;Deep generative models;Unsupervised learning;Semi-supervised learning
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 5.666667 |
5;6;6
| null | null |
Learning Neural Random Fields with Inclusive Auxiliary Generators
| null | null | 0 | 2.666667 |
Reject
|
3;2;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
deep learning;image recognition;semi-supervised learning
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 4.333333 |
4;4;5
| null | null |
Selective Self-Training for semi-supervised Learning
| null | null | 0 | 4.333333 |
Reject
|
4;5;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| -1 | 0 | null |
main
| 5.333333 |
4;6;6
| null | null |
COCO-GAN: Conditional Coordinate Generative Adversarial Network
| null | null | 0 | 4.333333 |
Reject
|
5;4;4
| null |
null |
Salesforce Research, Palo Alto, US; Department of Computer Science, EPFL, Switzerland
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Akhilesh Deepak Gotmare, Nitish Shirish Keskar, Caiming Xiong, richard socher
|
https://iclr.cc/virtual/2019/poster/711
|
deep learning heuristics;learning rate restarts;learning rate warmup;knowledge distillation;mode connectivity;SVCCA
| null | 0 | null | null |
iclr
| 0.755929 | 0 | null |
main
| 5.666667 |
4;6;7
| null | null |
A Closer Look at Deep Learning Heuristics: Learning rate restarts, Warmup and Distillation
| null | null | 0 | 4.333333 |
Poster
|
4;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Empirical Bayes;Bayesian Deep Learning
| null | 0 | null | null |
iclr
| -0.970725 | 0 | null |
main
| 5.333333 |
3;6;7
| null | null |
Learning From the Experience of Others: Approximate Empirical Bayes in Neural Networks
| null | null | 0 | 4.333333 |
Reject
|
5;4;4
| null |
null |
University of Maryland, College Park; Georgia Institute of Technology; Salesforce Research
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Chih-Yao Ma, jiasen lu, Zuxuan Wu, Ghassan AlRegib, Zsolt Kira, richard socher, Caiming Xiong
|
https://iclr.cc/virtual/2019/poster/821
|
visual grounding;textual grounding;instruction-following;navigation agent
| null | 0 | null | null |
iclr
| 0.866025 | 0 | null |
main
| 7 |
6;7;8
| null | null |
Self-Monitoring Navigation Agent via Auxiliary Progress Estimation
|
https://github.com/chihyaoma/selfmonitoring-agent
| null | 0 | 4.333333 |
Poster
|
4;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
active learning;adversarial training;GAN
| null | 0 | null | null |
iclr
| -0.944911 | 0 | null |
main
| 5.333333 |
5;5;6
| null | null |
Adversarial Sampling for Active Learning
| null | null | 0 | 3.666667 |
Reject
|
5;4;2
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
submodular optimization;fact verification;differentiable module;deep unfolding
| null | 0 | null | null |
iclr
| -0.944911 | 0 | null |
main
| 3.666667 |
2;4;5
| null | null |
Differentiable Greedy Networks
| null | null | 0 | 4.333333 |
Withdraw
|
5;4;4
| null |
null |
Carnegie Mellon University
|
2019
| 0 | null | null | 0 | null | null | null | null | null |
Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabás Póczos
|
https://iclr.cc/virtual/2019/poster/693
|
deep kernel learning;generative models;kernel two-sample test;time series change-point detection
| null | 0 | null | null |
iclr
| -0.5 | 0 | null |
main
| 7.666667 |
7;8;8
| null | null |
Kernel Change-point Detection with Auxiliary Deep Generative Models
| null | null | 0 | 3.666667 |
Poster
|
4;4;3
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Split LBI;sparse penalty;network pruning;feature selection
| null | 0 | null | null |
iclr
| -1 | 0 | null |
main
| 4.666667 |
4;5;5
| null | null |
PRUNING IN TRAINING: LEARNING AND RANKING SPARSE CONNECTIONS IN DEEP CONVOLUTIONAL NETWORKS
| null | null | 0 | 4.333333 |
Reject
|
5;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
CoDraw;collaborative drawing;grounded language
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 5.666667 |
4;6;7
| null | null |
CoDraw: Collaborative Drawing as a Testbed for Grounded Goal-driven Communication
| null | null | 0 | 4 |
Reject
|
4;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
CNN;greedy learning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 6 |
5;6;7
| null | null |
Shallow Learning For Deep Networks
| null | null | 0 | 4 |
Reject
|
4;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
neural networks;deep and narrow;ReLU;collapse
| null | 0 | null | null |
iclr
| 0.755929 | 0 | null |
main
| 5.666667 |
4;6;7
| null | null |
Collapse of deep and narrow neural nets
| null | null | 0 | 4.333333 |
Reject
|
4;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Language model;LSTM;Deep Learning;NLP
| null | 0 | null | null |
iclr
| 0.5 | 0 | null |
main
| 3.333333 |
3;3;4
| null | null |
MAJOR-MINOR LSTMS FOR WORD-LEVEL LANGUAGE MODEL
| null | null | 0 | 4.666667 |
Withdraw
|
5;4;5
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null |
Chrisding
| null | null | null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 4.333333 |
3;5;5
| null | null |
NA
| null | null | 0 | 4 |
Withdraw
|
4;4;4
| null |
null | null |
2019
| 0 | null | null | 0 | null | null | null | null | null | null | null |
sequence generation;maximum likelihood learning;reinforcement learning;policy optimization;text generation;reward augmented maximum likelihood;exposure bias
| null | 0 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 5.333333 |
5;5;6
| null | null |
Connecting the Dots Between MLE and RL for Sequence Generation
| null | null | 0 | 4 |
Reject
|
4;5;3
| null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.