pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
IBM Research AI, Yorktown Heights, NY, 10598, USA
2019
0
null
null
0
null
null
null
null
null
Luis Lastras
https://iclr.cc/virtual/2019/poster/1056
latent variable modeling;rate-distortion theory;log likelihood bounds
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
Information Theoretic lower bounds on negative log likelihood
null
null
0
3.333333
Poster
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Generative Models;GANs;Denosing;Demixing;Structured Recovery
null
0
null
null
iclr
-0.755929
0
null
main
5.333333
4;5;7
null
null
LEARNING GENERATIVE MODELS FOR DEMIXING OF STRUCTURED SIGNALS FROM THEIR SUPERPOSITION USING GANS
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
quantifier;evaluation methodology;psycholinguistics;visual question answering
null
0
null
null
iclr
-0.5
0
null
main
5.666667
5;5;7
null
null
The meaning of "most" for visual question answering models
null
null
0
4.333333
Reject
4;5;4
null
null
Stanford University; University of Amsterdam; UC Berkeley
2019
0
null
null
0
null
null
null
null
null
Rohin Shah, Dmitrii Krasheninnikov, Jordan Alexander, Pieter Abbeel, Anca Dragan
https://iclr.cc/virtual/2019/poster/1092
Preference learning;Inverse reinforcement learning;Inverse optimal stochastic control;Maximum entropy reinforcement learning;Apprenticeship learning
null
0
null
null
iclr
0
0
null
main
6.5
6;6;7;7
null
null
Preferences Implicit in the State of the World
https://github.com/HumanCompatibleAI/rlsp
null
0
3.5
Poster
3;4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
transfer learning;semantic representation;spoken language understanding
null
0
null
null
iclr
0.866025
0
null
main
5
4;5;6
null
null
Transferring SLU Models in Novel Domains
null
null
0
3.333333
Reject
3;3;4
null
null
CentraleSupélec, GIPSA-Lab University of GrenobleAlpes; CEA List; CEA List, CentraleSupélec
2019
0
null
null
0
null
null
null
null
null
Mohamed El Amine Seddik, mohamed Tamaazousti, Romain Couillet
https://iclr.cc/virtual/2019/poster/785
Random Matrix Theory;Concentration of Measure;Sparse PCA;Covariance Thresholding
null
0
null
null
iclr
-0.981981
0
null
main
6
5;6;7
null
null
A Kernel Random Matrix-Based Approach for Sparse PCA
null
null
0
3.666667
Poster
5;4;2
null
null
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
2019
0
null
null
0
null
null
null
null
null
Apratim Bhattacharyya, Mario Fritz, Bernt Schiele
https://iclr.cc/virtual/2019/poster/670
bayesian inference;segmentation;anticipation;multi-modality
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;6;8
null
null
Bayesian Prediction of Future Street Scenes using Synthetic Likelihoods
null
null
0
3.333333
Poster
2;4;4
null
null
Cornell University
2019
0
null
null
0
null
null
null
null
null
Ben Athiwaratkun, Marc A Finzi, Pavel Izmailov, Andrew G Wilson
https://iclr.cc/virtual/2019/poster/903
semi-supervised learning;computer vision;classification;consistency regularization;flatness;weight averaging;stochastic weight averaging
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;6;8
null
null
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
null
null
0
3
Poster
1;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.866025
0
null
main
3
2;3;4
null
null
ATTENTIVE EXPLAINABILITY FOR PATIENT TEMPORAL EMBEDDING
null
null
0
3.666667
Reject
3;4;4
null
null
Clova AI Research, NAVER Corp.
2019
0
null
null
0
null
null
null
null
null
Sang-Woo Lee, Tong Gao, Sohee Yang, Jaejun Yoo, Jung-Woo Ha
https://iclr.cc/virtual/2019/poster/1039
null
null
0
null
null
iclr
0.755929
0
null
main
6.333333
6;6;7
null
null
Large-Scale Answerer in Questioner's Mind for Visual Dialog Question Generation
null
null
0
3.666667
Poster
2;4;5
null
null
Uber Advanced Technologies Group, University of Toronto; Uber Advanced Technologies Group, University of Waterloo
2019
0
null
null
0
null
null
null
null
null
Chris Zhang, Mengye Ren, Raquel Urtasun
https://iclr.cc/virtual/2019/poster/740
neural;architecture;search;graph;network;hypernetwork;meta;learning;anytime;prediction
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Graph HyperNetworks for Neural Architecture Search
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
generative adversarial networks;generative models;clustering;visual object recognition
null
0
null
null
iclr
0
0
null
main
5
4;6
null
null
Multi-Modal Generative Adversarial Networks for Diverse Datasets
null
null
0
4
Withdraw
4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Referential Language;3D Objects;Part-Awareness;Neural Speakers;Neural Listeners
null
0
null
null
iclr
-0.5
0
null
main
5.333333
4;6;6
null
null
Learning to Refer to 3D Objects with Natural Language
null
null
0
3.666667
Reject
4;3;4
null
null
University of Illinois at Urbana-Champaign; Big Data Department, Baidu Inc.; Big Data Lab, Baidu Research
2019
0
null
null
0
null
null
null
null
null
Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, Luke Huan
https://iclr.cc/virtual/2019/poster/644
transfer learning;deep learning;regularization;attention;cnn
null
0
null
null
iclr
-1
0
null
main
6.333333
6;6;7
null
null
DELTA: DEEP LEARNING TRANSFER USING FEATURE MAP WITH ATTENTION FOR CONVOLUTIONAL NETWORKS
null
null
0
3.666667
Poster
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
adaptive gradient descent;deeplearning;ADAM;RMSProp;autoencoders
null
0
null
null
iclr
-0.866025
0
null
main
4.666667
4;5;5
null
null
Convergence Guarantees for RMSProp and ADAM in Non-Convex Optimization and an Empirical Comparison to Nesterov Acceleration
null
null
0
4
Reject
5;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Do Language Models Have Common Sense?
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Unsupervised Generative Model;VAE;log hyperbolic cosine loss
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Log Hyperbolic Cosine Loss Improves Variational Auto-Encoder
null
null
0
4
Reject
4;4;4
null
null
Corporate Technology, Machine-Intelligence (MIC-DE), Siemens AG Munich, Germany; CIS, University of Munich (LMU) Munich, Germany
2019
0
null
null
0
null
null
null
null
null
Pankaj Gupta, Yatin Chaudhary, Florian Buettner, Hinrich Schuetze
https://iclr.cc/virtual/2019/poster/1069
neural topic model;natural language processing;text representation;language modeling;information retrieval;deep learning
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
textTOvec: DEEP CONTEXTUALIZED NEURAL AUTOREGRESSIVE TOPIC MODELS OF LANGUAGE WITH DISTRIBUTED COMPOSITIONAL PRIOR
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
computer vision;out-of-distribution detection;image classification
null
0
null
null
iclr
0
0
null
main
5.666667
5;5;7
null
null
Detecting Out-Of-Distribution Samples Using Low-Order Deep Features Statistics
null
null
0
4
Reject
4;4;4
null
null
Princeton University
2019
0
null
null
0
null
null
null
null
null
Sachin Ravi, Alex Beatson
https://iclr.cc/virtual/2019/poster/940
variational inference;meta-learning;few-shot learning;uncertainty quantification
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;6;6
null
null
Amortized Bayesian Meta-Learning
null
null
0
3.333333
Poster
3;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Inverse reinforcement learning;differentiable planning
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
Inferring Reward Functions from Demonstrators with Unknown Biases
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Dense graph propagation;zero-shot learning
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;5;7
null
null
Rethinking Knowledge Graph Propagation for Zero-Shot Learning
null
null
0
3.666667
Withdraw
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Variational autoencoder;Unsupervised learning;(Semi-)Supervised learning;Topic modeling
null
0
null
null
iclr
-1
0
null
main
6
5;6;7
null
null
Dirichlet Variational Autoencoder
null
null
0
4
Reject
5;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
uncertainty in neural networks;ensemble;mixture model
null
0
null
null
iclr
0
0
null
main
4.666667
4;5;5
null
null
Compound Density Networks
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
autoencoder;generative models;deep neural networks
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Cramer-Wold AutoEncoder
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-1
0
null
main
5.333333
5;5;6
null
null
Towards Decomposed Linguistic Representation with Holographic Reduced Representation
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Artificial Intelligence;Deep learning;Machine learning;Compression
null
0
null
null
iclr
-0.866025
0
null
main
5.333333
5;5;6
null
null
NETWORK COMPRESSION USING CORRELATION ANALYSIS OF LAYER RESPONSES
null
null
0
4
Reject
4;5;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
online learning;nonconvex optimization;robust optimization
null
0
null
null
iclr
-0.522233
0
null
main
5.25
4;5;6;6
null
null
Optimal Attacks against Multiple Classifiers
null
null
0
3.75
Reject
4;4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.866025
0
null
main
4
3;4;5
null
null
Dual Importance Weight GAN
null
null
0
4.333333
Reject
5;4;4
null
null
Delft University of Technology; University College London
2019
0
null
null
0
null
null
null
null
null
Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, Wei Pan
https://iclr.cc/virtual/2019/poster/653
Multi-agent Reinforcement Learning;Recursive Reasoning
null
0
null
null
iclr
-1
0
null
main
7.333333
7;7;8
null
null
Probabilistic Recursive Reasoning for Multi-Agent Reinforcement Learning
null
null
0
3.666667
Poster
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Neural Network Compression;Low Rank Approximation;Higher Order Tensor Decomposition
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Exploiting Invariant Structures for Compression in Neural Networks
null
null
0
4
Withdraw
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
derivative-free optimization
null
0
null
null
iclr
0
0
null
main
3.333333
3;3;4
null
null
SHE2: Stochastic Hamiltonian Exploration and Exploitation for Derivative-Free Optimization
null
null
0
4
Reject
5;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
interpretability;sequence labeling;named entity recognition;LSTM;attention
null
0
null
null
iclr
-0.5
0
null
main
3.333333
3;3;4
null
null
Understanding and Improving Sequence-Labeling NER with Self-Attentive LSTMs
null
null
0
4.333333
Withdraw
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
interpretability;rationalization;text matching;dependent selection
null
0
null
null
iclr
-0.755929
0
null
main
4.333333
3;4;6
null
null
Learning Corresponded Rationales for Text Matching
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Riemannian geometry;Python package;machine learning;deep learning
null
0
null
null
iclr
-0.956689
0
https://goo.gl/XV2Rb7
main
4.75
3;4;4;8
null
null
Geomstats: a Python Package for Riemannian Geometry in Machine Learning
null
null
0
4
Reject
5;5;4;2
null
null
Stanford; Siemens
2019
0
null
null
0
null
null
null
null
null
Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, Stefano Ermon
https://iclr.cc/virtual/2019/poster/948
Partial differential equation;deep learning
null
0
null
null
iclr
0.866025
0
null
main
7
6;7;8
null
null
Learning Neural PDE Solvers with Convergence Guarantees
null
null
0
3.666667
Poster
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Noisy Labels;Adversarial Attacks;Generative Models
null
0
null
null
iclr
0.970725
0
null
main
4.666667
3;4;7
null
null
Robust Determinantal Generative Classifier for Noisy Labels and Adversarial Attacks
null
null
0
4.333333
Reject
4;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
imitation learning;state-only observations;self-exploration
null
0
null
null
iclr
-0.654654
0
null
main
5
4;5;6
null
null
Reinforced Imitation Learning from Observations
null
null
0
3.666667
Reject
4;5;2
null
null
Georgia Institute of Technology; Google; University of British Columbia
2019
0
null
null
0
null
null
null
null
null
Weiwei Kong, Christopher Liaw, Aranyak Mehta, D. Sivakumar
https://iclr.cc/virtual/2019/poster/1034
reinforcement learning;algorithms;adwords;knapsack;secretary
null
0
null
null
iclr
1
0
null
main
6.333333
6;6;7
null
null
A new dog learns old tricks: RL finds classic optimization algorithms
null
null
0
3.666667
Poster
3;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
privacy-preserving;image classification;adversarial training;learnable obfuscator
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
A PRIVACY-PRESERVING IMAGE CLASSIFICATION FRAMEWORK WITH A LEARNABLE OBFUSCATOR
null
null
0
4.333333
Withdraw
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Pushing the bounds of dropout
null
null
0
2.666667
Reject
3;2;3
null
null
Mila – Québec Artificial Intelligence Institute, Google Brain; Microsoft Research, Mila – Québec Artificial Intelligence Institute; Mila – Québec Artificial Intelligence Institute, McGill University; Department of Computer Science and Technology, University of Cambridge; Mila – Québec Artificial Intelligence Institute, Université de Montréal
2019
0
null
null
0
null
null
null
null
null
Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm
https://iclr.cc/virtual/2019/poster/782
Unsupervised Learning;Graph Neural Networks;Graph Convolutions;Mutual Information;Infomax;Deep Learning
null
0
null
null
iclr
0
0
null
main
7
5;7;9
null
null
Deep Graph Infomax
null
null
0
3.666667
Poster
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Negative Sampling;Sampled Softmax;Word embeddings;Adversarial Networks
null
0
null
null
iclr
0
0
null
main
4.666667
4;5;5
null
null
Partially Mutual Exclusive Softmax for Positive and Unlabeled data
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
state estimation;recurrent neural networks;Kalman Filter;deep learning
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
learning from observations;safe reinforcement learning;deep reinforcement learning
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
Safe Policy Learning from Observations
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Data parallel;Deep Learning;Multiple GPU system;Communication Compression;Sparsification;Quantization
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
RedSync : Reducing Synchronization Traffic for Distributed Deep Learning
null
null
0
3.666667
Reject
4;4;3
null
null
Princeton University and Institute for Advanced Study; Tsinghus University; Princeton University
2019
0
null
null
0
null
null
null
null
null
Sanjeev Arora, Zhiyuan Li, Kaifeng Lyu
https://iclr.cc/virtual/2019/poster/960
batch normalization;scale invariance;learning rate;stationary point
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Theoretical Analysis of Auto Rate-Tuning by Batch Normalization
null
null
0
2.666667
Poster
4;2;2
null
null
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Illinois, IL 61801, USA
2019
0
null
null
0
null
null
null
null
null
Charbel Sakr, Naresh Shanbhag
https://iclr.cc/virtual/2019/poster/747
deep learning;reduced precision;fixed-point;quantization;back-propagation algorithm
null
0
null
null
iclr
0.944911
0
null
main
6
3;7;8
null
null
Per-Tensor Fixed-Point Quantization of the Back-Propagation Algorithm
null
null
0
3
Poster
2;3;4
null
null
Tsinghua University; University of Toronto, Vector Institute
2019
0
null
null
0
null
null
null
null
null
Shengyang Sun, Guodong Zhang, Jiaxin Shi, Roger Grosse
https://iclr.cc/virtual/2019/poster/1035
functional variational inference;Bayesian neural networks;stochastic processes
null
0
null
null
iclr
0.5
0
null
main
6.333333
6;6;7
null
null
FUNCTIONAL VARIATIONAL BAYESIAN NEURAL NETWORKS
null
null
0
3.666667
Poster
4;3;4
null
null
SenseTime
2019
0
null
null
0
null
null
null
null
null
Sirui Xie, Junning Huang, Lanxin Lei, Chunxiao Liu, Zheng Ma, Wei Zhang, Liang Lin
https://iclr.cc/virtual/2019/poster/723
Reinforcement learning;exploration
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
NADPEx: An on-policy temporally consistent exploration method for deep reinforcement learning
null
null
0
3
Poster
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
adaptive regularization;non-convex optimization
null
0
null
null
iclr
0
0
null
main
5.333333
5;5;6
null
null
The Case for Full-Matrix Adaptive Regularization
null
null
0
3
Reject
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
cross-lingual embeddings;evaluation;graph-based metric;modularity
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;4;6
null
null
Diagnosing Language Inconsistency in Cross-Lingual Word Embeddings
null
null
0
4.333333
Withdraw
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Model-X Knockoff Generator;model-free FDR control;variable selection
null
0
null
null
iclr
-0.944911
0
null
main
4.333333
3;4;6
null
null
Auto-Encoding Knockoff Generator for FDR Controlled Variable Selection
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Deep Reinforcement Learning
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
An Active Learning Framework for Efficient Robust Policy Search
null
null
0
3.333333
Reject
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Transfer Learning;Reinforcement Learning;Generative Adversarial Networks;Video Games
null
0
null
null
iclr
-1
0
null
main
6
4;7;7
null
null
Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation
null
null
0
3.333333
Reject
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Imitation Learning;Noisy Demonstration Set;Meta-Learning
null
0
null
null
iclr
0
0
https://sites.google.com/view/deepdj
main
4
4;4;4
null
null
Learning from Noisy Demonstration Sets via Meta-Learned Suitability Assessor
null
null
0
3.666667
Reject
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
meta-learning;few-shot learning;incremental learning
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
Incremental Few-Shot Learning with Attention Attractor Networks
null
null
0
4
Reject
4;3;5
null
null
Toyota Research Institute; Intel Labs
2019
0
null
null
0
null
null
null
null
null
Kuan-Hui Lee, German Ros, Jie Li, Adrien Gaidon
https://iclr.cc/virtual/2019/poster/779
domain adaptation;GAN;semantic segmentation;simulation;privileged information
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
SPIGAN: Privileged Adversarial Learning from Simulation
null
null
0
4.666667
Poster
5;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Disentangled representations;Variational Autoencoders;Adversarial Learning;Weakly-supervised learning
null
0
null
null
iclr
0.5
0
null
main
6.333333
6;6;7
null
null
Learning Disentangled Representations with Reference-Based Variational Autoencoders
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
5.333333
5;5;6
null
null
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;AlphaGo Zero
null
0
null
null
iclr
0
0
null
main
5.666667
5;5;7
null
null
Understanding & Generalizing AlphaGo Zero
null
null
0
4
Reject
3;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
generative learning;generative models;generative query networks;camera re-localization
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Learning models for visual 3D localization with implicit mapping
null
null
0
3.666667
Reject
4;3;4
null
null
Caltech; Salesforce; STATS
2019
0
null
null
0
null
null
null
null
null
Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, Patrick Lucey
https://iclr.cc/virtual/2019/poster/985
deep learning;generative models;imitation learning;hierarchical methods;data programming;weak supervision;spatiotemporal
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
https://github.com/ezhan94/multiagent-programmatic-supervision
null
0
3
Poster
3;3;3
null
null
Microsoft Research, Georgia Institute of Technology; Microsoft Research, Stony Brook University; Chesapeake Conservancy; Microsoft Research, Yale University; Stony Brook University; Microsoft Research
2019
0
null
null
0
null
null
null
null
null
Nikolay Malkin, Caleb Robinson, Le Hou, Rachel Soobitsky, Jacob Czawlytko, Dimitris Samaras, Joel Saltz, Lucas Joppa, Nebojsa Jojic
https://iclr.cc/virtual/2019/poster/673
weakly supervised segmentation;land cover mapping;medical imaging
null
0
null
null
iclr
0
0
null
main
7.333333
6;7;9
null
null
Label super-resolution networks
null
null
0
4
Poster
4;4;4
null
null
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI; Department of Electrical and Computer Engineering, University of Toronto
2019
0
null
null
0
null
null
null
null
null
Nuwan Ferdinand, Haider Al-Lawati, Stark Draper, Matthew Nokleby
https://iclr.cc/virtual/2019/poster/970
distributed optimization;gradient descent;minibatch;stragglers
null
0
null
null
iclr
0
0
null
main
6
4;7;7
null
null
ANYTIME MINIBATCH: EXPLOITING STRAGGLERS IN ONLINE DISTRIBUTED OPTIMIZATION
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Internal Representations;Sensitivity Analysis;Object Detection
null
0
null
null
iclr
0.654654
0
null
main
4.333333
3;4;6
null
null
FAST OBJECT LOCALIZATION VIA SENSITIVITY ANALYSIS
null
null
0
4
Reject
4;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
few-shot learning;relation learning
null
0
null
null
iclr
0.5
0
null
main
4.666667
4;4;6
null
null
Few-Shot Learning by Exploiting Object Relation
null
null
0
3.666667
Withdraw
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
few-shot;one-shot;semi-supervised;meta-learning
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Projective Subspace Networks For Few-Shot Learning
null
null
0
3.666667
Reject
4;3;4
null
null
DeepMind & Google
2019
0
null
null
0
null
null
null
null
null
Yutian Chen, Yannis M Assael, Brendan Shillingford, David Budden, Scott Reed, Heiga Zen, Quan Wang, Luis C. Cobo, Andrew Trask, Ben Laurie, Caglar Gulcehre, Aaron van den Oord, Oriol Vinyals, Nando de Freitas
https://iclr.cc/virtual/2019/poster/786
few shot;meta learning;text to speech;wavenet
null
0
null
null
iclr
-1
0
null
main
6.666667
6;7;7
null
null
Sample Efficient Adaptive Text-to-Speech
null
null
0
4.333333
Poster
5;4;4
null
null
Department of Computer Science, University College London
2019
0
null
null
0
null
null
null
null
null
James Townsend, Thomas Bird, David Barber
https://iclr.cc/virtual/2019/poster/689
compression;variational auto-encoders;deep latent gaussian models;lossless compression;latent variables;approximate inference;variational inference
null
0
null
null
iclr
0.866025
0
null
main
6.666667
6;6;8
null
null
Practical lossless compression with latent variables using bits back coding
https://github.com/bits-back/bits-back
null
0
4
Poster
3;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
hyperparameter search;architecture search;convolutional neural networks
null
0
null
null
iclr
0
0
null
main
5.666667
5;6;6
null
null
Teacher Guided Architecture Search
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Gaussian Processes;Latent Variable Model;Variational Bayes;Stan;Asset Pricing;Portfolio Allocation;Finance;CAPM
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
Applications of Gaussian Processes in Finance
null
null
0
4.333333
Withdraw
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
adversarial robustness;feature prioritization;regularization
null
0
null
null
iclr
0.188982
0
null
main
4.666667
4;5;5
null
null
Feature prioritization and regularization improve standard accuracy and adversarial robustness
null
null
0
3.333333
Reject
3;2;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
evaluation metric;predictive uncertainty;deep learning
null
0
null
null
iclr
-0.866025
0
null
main
4
3;4;5
null
null
MERCI: A NEW METRIC TO EVALUATE THE CORRELATION BETWEEN PREDICTIVE UNCERTAINTY AND TRUE ERROR
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
normalization;optimization
null
0
null
null
iclr
-0.188982
0
null
main
5.666667
4;6;7
null
null
CONTROLLING COVARIATE SHIFT USING EQUILIBRIUM NORMALIZATION OF WEIGHTS
null
null
0
3
Reject
4;1;4
null
null
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139; Department of Physics, University of Texas at Austin, Austin, TX, 78712; Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712
2019
0
null
null
0
null
null
null
null
null
Christopher Roth, Ingmar Kanitscheider, Ila Fiete
https://iclr.cc/virtual/2019/poster/1061
RNNs;Biologically plausible learning rules;Algorithm;Neural Networks;Supervised Learning
null
0
null
null
iclr
0.866025
0
null
main
6
5;6;7
null
null
Kernel RNN Learning (KeRNL)
null
null
0
3
Poster
1;4;4
null
null
Sanofi
2019
0
null
null
0
null
null
null
null
null
Jesse Johnson
https://iclr.cc/virtual/2019/poster/905
neural network;universality;expressability
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
Deep, Skinny Neural Networks are not Universal Approximators
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;continuous action space;prioritization;parameter;noise;policy gradients
null
0
null
null
iclr
-0.5
0
null
main
3.666667
3;4;4
null
null
Learning agents with prioritization and parameter noise in continuous state and action space
null
null
0
3.666667
Reject
4;4;3
null
null
Signal Processing Laboratory 2, EPFL, Station 11, 1015 Lausanne, Switzerland; Swiss Data Science Center, ETH Zürich, Universitätstrasse 25, 8006 Zürich, Switzerland
2019
0
null
null
0
null
null
null
null
null
Vassilis Kalofolias, Nathanaël Perraudin
https://iclr.cc/virtual/2019/poster/661
Graph learning;Graph signal processing;Network inference
null
0
null
null
iclr
0.866025
0
null
main
6.333333
5;7;7
null
null
Large Scale Graph Learning From Smooth Signals
null
null
0
4
Poster
3;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
synaptic neural network;surprisal;synapse;probability;excitation;inhibition;synapse learning;bose-einstein distribution;tensor;gradient;loss function;mnist;topologically conjugate
null
0
null
null
iclr
-0.333333
0
null
main
2.25
2;2;2;3
null
null
A Synaptic Neural Network and Synapse Learning
null
null
0
3.25
Reject
3;3;4;3
null
null
Stanford University; MIT
2019
0
null
null
0
null
null
null
null
null
Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka
https://iclr.cc/virtual/2019/poster/791
graph neural networks;theory;deep learning;representational power;graph isomorphism;deep multisets
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
How Powerful are Graph Neural Networks?
null
null
0
5
Oral
5;5;5
null
null
ICST, Peking University, Beijing, China; Department of Computer Science, University of Illinois at Chicago; Department of Information Science, School of Mathematical Sciences, Peking University
2019
0
null
null
0
null
null
null
null
null
Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Jay Tao, Jinwen Ma, Dongyan Zhao, Rui Yan
https://iclr.cc/virtual/2019/poster/914
overcoming forgetting;model adaptation;continual learning
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Overcoming Catastrophic Forgetting for Continual Learning via Model Adaptation
null
null
0
3.333333
Poster
4;2;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Pipeline Optimization;Reinforcement Learning;Stochastic Computation Graph;Faster R-CNN
null
0
null
null
iclr
-0.654654
0
null
main
4
3;4;5
null
null
Reinforced Pipeline Optimization: Behaving Optimally with Non-Differentiabilities
null
null
0
3.666667
Reject
4;5;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
GANs;mixed Nash equilibrium;mirror descent;sampling
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Finding Mixed Nash Equilibria of Generative Adversarial Networks
null
null
0
4.333333
Reject
4;5;4
null
null
Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong; TuSimple; Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong
2019
0
null
null
0
null
null
null
null
null
LU HOU, Ruiliang Zhang, James Kwok
https://iclr.cc/virtual/2019/poster/969
weight quantization;gradient quantization;distributed learning
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Analysis of Quantized Models
null
null
0
4
Poster
4;4;4
null
null
University of Oxford
2019
0
null
null
0
null
null
null
null
null
Guillermo Valle-Perez, Chico Q. Camargo, Ard Louis
https://iclr.cc/virtual/2019/poster/989
generalization;deep learning theory;PAC-Bayes;Gaussian processes;parameter-function map;simplicity bias
null
0
null
null
iclr
0.188982
0
null
main
5.333333
4;5;7
null
null
Deep learning generalizes because the parameter-function map is biased towards simple functions
null
null
0
3.666667
Poster
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;goal-oriented;convolutions;off-policy
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Q-map: a Convolutional Approach for Goal-Oriented Reinforcement Learning
null
null
0
4
Reject
3;5;4
null
null
New York University; New York University, Facebook AI Research†
2019
0
null
null
0
null
null
null
null
null
Amanpreet Singh, Tushar Jain, Sainbayar Sukhbaatar
https://iclr.cc/virtual/2019/poster/770
multiagent;communication;competitive;cooperative;continuous;emergent;reinforcement learning
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Learning when to Communicate at Scale in Multiagent Cooperative and Competitive Tasks
null
null
0
3
Poster
3;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;dqn;adversarial examples;robustness analysis;adversarial defense;robust learning;robust rl
null
0
null
null
iclr
0.866025
0
null
main
4
3;4;5
null
null
Distilled Agent DQN for Provable Adversarial Robustness
null
null
0
2.666667
Reject
2;2;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
representation learning;recurrent neural networks;syntax;part-of-speech tagging
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Language Modeling Teaches You More Syntax than Translation Does: Lessons Learned Through Auxiliary Task Analysis
null
null
0
4
Reject
4;4;4
null
null
UC Berkeley and ML@B; Google Brain; UC Berkeley
2019
0
null
null
0
null
null
null
null
null
Richard Shin, Neel Kant, Kavi Gupta, Christopher Bender, Brandon Trabucco, Rishabh Singh, Dawn Song
https://iclr.cc/virtual/2019/poster/832
null
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Synthetic Datasets for Neural Program Synthesis
null
null
0
3
Poster
2;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
low precision;stochastic gradient descent
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Dimension-Free Bounds for Low-Precision Training
null
null
0
3.333333
Reject
4;3;3
null
null
Microsoft Research Asia; KAIST; Carnegie Mellon University
2019
0
null
null
0
null
null
null
null
null
Sunghoon Im, Hae-Gon Jeon, Stephen Lin, In Kweon
https://iclr.cc/virtual/2019/poster/682
Deep Learning;Stereo;Depth;Geometry
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
DPSNet: End-to-end Deep Plane Sweep Stereo
null
null
0
4.333333
Poster
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Graph convolution;hypergraph;hyperlink prediction
null
0
null
null
iclr
-0.981981
0
null
main
5
4;5;6
null
null
Link Prediction in Hypergraphs using Graph Convolutional Networks
null
null
0
3.666667
Reject
5;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
adversarial perturbations;universal adversarial perturbations;game theory;robust machine learning
null
0
null
null
iclr
-0.944911
0
null
main
5.333333
5;5;6
null
null
Playing the Game of Universal Adversarial Perturbations
null
null
0
2.666667
Reject
3;4;1
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
GAN;Incremental training;Information projection;Mixture distribution
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;6;6
null
null
Incremental training of multi-generative adversarial networks
null
null
0
3.333333
Reject
3;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Autoencoder;dimensionality reduction;wireless positioning;channel charting;localization
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Representation-Constrained Autoencoders and an Application to Wireless Positioning
null
null
0
3.333333
Reject
4;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
adversarial attack;black-box;evolutional strategy;policy gradient
null
0
null
null
iclr
-0.5
0
null
main
5
4;4;7
null
null
NATTACK: A STRONG AND UNIVERSAL GAUSSIAN BLACK-BOX ADVERSARIAL ATTACK
null
null
0
3.666667
Reject
5;3;3
null
null
Department of Electronics and Information Systems (ELIS), IDLab, Ghent University, Ghent, Belgium
2019
0
null
null
0
null
null
null
null
null
Bo Kang, Jefrey Lijffijt, Tijl De Bie
https://iclr.cc/virtual/2019/poster/812
Network embedding;graph embedding;learning node representations;link prediction;multi-label classification of nodes
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Conditional Network Embeddings
null
null
0
3.666667
Poster
4;4;3
null
null
MIT-IBM Watson AI Lab; MIT
2019
0
null
null
0
null
null
null
null
null
Ji Lin, Chuang Gan, Song Han
https://iclr.cc/virtual/2019/poster/863
defensive quantization;model quantization;adversarial attack;efficiency;robustness
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Defensive Quantization: When Efficiency Meets Robustness
null
null
0
3
Poster
3;2;4
null