pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-1
0
null
main
5.333333
5;5;6
null
null
Characterizing Attacks on Deep Reinforcement Learning
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
learned representation;statistical characteristics;information theoretical characteristics;deep network
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
On the Statistical and Information Theoretical Characteristics of DNN Representations
null
null
0
3.333333
Reject
3;4;3
null
null
Department of Electrical and Computer Engineering, Duke University
2019
0
null
null
0
null
null
null
null
null
Yulai Cong, Miaoyun Zhao, Ke Bai, Lawrence Carin
https://iclr.cc/virtual/2019/poster/741
generalized reparameterization gradient;variance reduction;non-reparameterizable;discrete random variable;GO gradient;general and one-sample gradient;expectation-based objective;variable nabla;statistical back-propagation;hierarchical;graphical model
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
GO Gradient for Expectation-Based Objectives
null
null
0
4
Poster
4;4;4
null
null
Montreal Institute for Learning Algorithms (MILA), Canada; CIFAR Senior Fellow; Montreal Institute for Learning Algorithms (MILA), Canada
2019
0
null
null
0
null
null
null
null
null
Bhargav Kanuparthi, Devansh Arpit, Giancarlo Kerg, Nan Rosemary Ke, Ioannis Mitliagkas, Yoshua Bengio
https://iclr.cc/virtual/2019/poster/683
LSTM;Optimization;Long term dependencies;Back-propagation through time
null
0
null
null
iclr
0.5
0
null
main
6
5;6;7
null
null
h-detach: Modifying the LSTM Gradient Towards Better Optimization
https://github.com/bhargav104/h-detach
null
0
4
Poster
4;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Adversarial Machine Learning;Watermarking;Generative Adversarial Networks
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Fatty and Skinny: A Joint Training Method of Watermark Encoder and Decoder
null
null
0
4
Withdraw
4;4;4
null
null
Department of Applied Physics, Stanford University and Google Brain; Department of Psychology, Stanford University
2019
0
null
null
0
null
null
null
null
null
Andrew Lampinen, Surya Ganguli
https://iclr.cc/virtual/2019/poster/798
Generalization;Theory;Transfer;Multi-task;Linear
null
0
null
null
iclr
0.866025
0
null
main
7
6;7;8
null
null
An analytic theory of generalization dynamics and transfer learning in deep linear networks
null
null
0
3.666667
Poster
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Generative models;Input manipulation;Unsupervised feature learning;Variations
null
0
null
null
iclr
-0.981981
0
null
main
4.333333
3;4;6
null
null
Variation Network: Learning High-level Attributes for Controlled Input Manipulation
null
null
0
3
Reject
4;3;2
null
null
Under double-blind review
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;Deep Q-networks;actor-critic algorithm;ODE approximation
null
0
null
null
iclr
0.57735
0
null
main
5.5
5;5;6;6
null
null
Convergent Reinforcement Learning with Function Approximation: A Bilevel Optimization Perspective
null
null
0
3.75
Reject
4;3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
belief states;representation learning;contrastive predictive coding;reinforcement learning;predictive state representations;deep reinforcement learning
null
0
null
null
iclr
0.944911
0
null
main
5.333333
4;5;7
null
null
Neural Predictive Belief Representations
null
null
0
3.333333
Reject
3;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Probability distillation;Autoregressive models;normalizing flows;wavenet;pixelcnn
null
0
null
null
iclr
-0.944911
0
null
main
5.666667
5;5;7
null
null
On Difficulties of Probability Distillation
null
null
0
3.666667
Reject
4;5;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Image Composition;GAN;Conditional Image generation
null
0
null
null
iclr
-0.5
0
null
main
4.333333
4;4;5
null
null
Compositional GAN: Learning Conditional Image Composition
null
null
0
4.333333
Withdraw
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
imitation;from pixels;adversarial
null
0
null
null
iclr
0.944911
0
null
main
4.666667
3;5;6
null
null
Visual Imitation with a Minimal Adversary
null
null
0
3.666667
Reject
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
generative adversarial networks;computational biology;generating;generation;extrapolation;out-of-sample;neural network inference
null
0
null
null
iclr
1
0
null
main
5.333333
5;5;6
null
null
Out-of-Sample Extrapolation with Neuron Editing
null
null
0
3.333333
Reject
3;3;4
null
null
SenseTime Research; The Chinese University of Hong Kong; The Chinese University of Hong Kong, The University of Hong Kong
2019
0
null
null
0
null
null
null
null
null
Ping Luo, jiamin ren, zhanglin peng, Ruimao Zhang, Jingyu Li
https://iclr.cc/virtual/2019/poster/1116
normalization;deep learning;CNN;computer vision
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Differentiable Learning-to-Normalize via Switchable Normalization
https://github.com/switchablenorms/
null
0
4
Poster
5;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Variational Information Bottleneck;Blackwell Sufficiency;Le Cam Deficiency;Information Channel
null
0
null
null
iclr
-0.866025
0
null
main
6
5;6;7
null
null
The Variational Deficiency Bottleneck
null
null
0
3
Reject
5;2;2
null
null
Gatsby Unit, University College London; Department of Computer Science, ETH Zürich
2019
0
null
null
0
null
null
null
null
null
Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, Gunnar Rätsch
https://iclr.cc/virtual/2019/poster/729
deep learning;self-organizing map;variational autoencoder;representation learning;time series;machine learning;interpretability
null
0
null
null
iclr
0.5
0
null
main
7
6;6;9
null
null
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
null
null
0
3.333333
Poster
4;2;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
3D Reconstruction;3D Scene Understanding;Relative Prediction
null
0
null
null
iclr
-0.755929
0
null
main
4.666667
3;5;6
null
null
3D-RelNet: Joint Object and Relational Network for 3D Prediction
null
null
0
4.666667
Reject
5;5;4
null
null
Massachusetts Institute of Technology; Google Inc.
2019
0
null
null
0
null
null
null
null
null
Wei-Ning Hsu, Yu Zhang, Ron Weiss, Heiga Zen, Yonghui Wu, Yuxuan Wang, Yuan Cao, Ye Jia, Zhifeng Chen, Jonathan Shen, Patrick Nguyen, Ruoming Pang
https://iclr.cc/virtual/2019/poster/754
speech synthesis;representation learning;deep generative model;sequence-to-sequence model
null
0
null
null
iclr
-0.188982
0
null
main
6.333333
5;6;8
null
null
Hierarchical Generative Modeling for Controllable Speech Synthesis
null
null
0
4.333333
Poster
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Language Model Pre-training for Hierarchical Document Representations
null
null
0
4
Reject
4;4;4
null
null
Unknown Affiliation
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;model compression;optimization;ADMM;weight pruning
null
0
null
null
iclr
-0.5
0
bit.ly/2zxdlss
main
4.666667
4;5;5
null
null
Progressive Weight Pruning Of Deep Neural Networks Using ADMM
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Deep Learning;attentional mechanisms;neural machine translation;image captioning
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
Area Attention
null
null
0
4.333333
Reject
4;5;4
null
null
Language Technologies Institute, Carnegie Mellon University; Machine Learning Department, Carnegie Mellon University
2019
0
null
null
0
null
null
null
null
null
Yao-Hung Hubert Tsai, Paul Pu Liang, Amir Ali Bagherzade, Louis-Philippe Morency, Ruslan Salakhutdinov
https://iclr.cc/virtual/2019/poster/925
multimodal learning;representation learning
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
Learning Factorized Multimodal Representations
null
null
0
2.666667
Poster
3;2;3
null
null
University of Southern California
2019
0
null
null
0
null
null
null
null
null
Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward S Hu, Joseph Lim
https://iclr.cc/virtual/2019/poster/792
reinforcement learning;hierarchical reinforcement learning;continuous control;modular framework
null
0
null
null
iclr
0
0
https://youngwoon.github.io/transition
main
7.666667
7;7;9
null
null
Composing Complex Skills by Learning Transition Policies
https://github.com/youngwoon/transition
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
likelihood-free inference;implicit probabilistic models
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
Implicit Maximum Likelihood Estimation
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;General Value Functions;Policy Gradient;Hierarchical Reinforcement Learning;Successor Features
null
0
null
null
iclr
-0.944911
0
null
main
5.666667
4;6;7
null
null
Knowledge Representation for Reinforcement Learning using General Value Functions
null
null
0
3.333333
Withdraw
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
image translation;domain adaptation;saliency detection
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Show, Attend and Translate: Unsupervised Image Translation with Self-Regularization and Attention
null
null
0
0
Withdraw
null
null
null
LIT AI Lab, Johannes Kepler University Linz; Institute for Machine Learning, Johannes Kepler University Linz; Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna
2019
0
null
null
0
null
null
null
null
null
Elisabeth Rumetshofer, Markus Hofmarcher, Clemens Röhrl, Sepp Hochreiter, Günter Klambauer
https://iclr.cc/virtual/2019/poster/1108
Convolutional Neural Networks;High-resolution images;Multiple-Instance Learning;Microscopy Imaging;Protein Localization
null
0
null
null
iclr
0.27735
0
null
main
5.666667
4;5;8
null
null
Human-level Protein Localization with Convolutional Neural Networks
https://github.com/ml-jku/gapnet-pl
null
0
3.666667
Poster
4;3;4
null
null
The Robotics Institute, Carnegie Mellon University and Facebook AI Research; The Robotics Institute, Carnegie Mellon University
2019
0
null
null
0
null
null
null
null
null
Wenxuan Zhou, Lerrel Pinto, Abhinav Gupta
https://iclr.cc/virtual/2019/poster/915
Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Environment Probing Interaction Policies
null
null
0
3
Poster
4;2;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
language modeling;variational inference;dynamic model;temporal data;deep learning
null
0
null
null
iclr
-0.5
0
null
main
3.666667
3;4;4
null
null
Modeling Evolution of Language Through Time with Neural Networks
null
null
0
4.666667
Withdraw
5;4;5
null
null
University of California San Diego; Carnegie Mellon University
2019
0
null
null
0
null
null
null
null
null
Junxian He, Daniel Spokoyny, Graham Neubig, Taylor Berg-Kirkpatrick
https://iclr.cc/virtual/2019/poster/640
variational autoencoders;posterior collapse;generative models
null
0
null
null
iclr
0
0
null
main
7.666667
7;8;8
null
null
Lagging Inference Networks and Posterior Collapse in Variational Autoencoders
https://github.com/jxhe/vae-lagging-encoder
null
0
4
Poster
4;4;4
null
null
Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, USA
2019
0
null
null
0
null
null
null
null
null
Robert Hannah, Fei Feng, Wotao Yin
https://iclr.cc/virtual/2019/poster/1125
asynchronous;optimization;parallel;accelerated;complexity
null
0
null
null
iclr
0.5
0
null
main
7.666667
7;7;9
null
null
A2BCD: Asynchronous Acceleration with Optimal Complexity
null
null
0
4.666667
Poster
5;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
non-convex optimization;generative adversarial network;primal dual algorithm
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Understand the dynamics of GANs via Primal-Dual Optimization
null
null
0
3.333333
Reject
4;3;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;generalization;benchmark
null
0
null
null
iclr
-0.944911
0
null
main
4.333333
3;5;5
null
null
Assessing Generalization in Deep Reinforcement Learning
null
null
0
3.333333
Reject
5;2;3
null
null
Massachusetts Institute of Technology; Massachusetts Institute of Technology, Google Research; Princeton University
2019
0
null
null
0
null
null
null
null
null
Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William Freeman, Joshua B Tenenbaum, Jiajun Wu
https://iclr.cc/virtual/2019/poster/639
Program Synthesis;3D Shape Modeling;Self-supervised Learning
null
0
null
null
iclr
0.5
0
http://shape2prog.csail.mit.edu
main
6.666667
6;7;7
null
null
Learning to Infer and Execute 3D Shape Programs
null
null
0
4.333333
Poster
4;4;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
NA
null
0
null
null
iclr
-0.693375
0
null
main
3.333333
1;4;5
null
null
NA
null
null
0
3.666667
Withdraw
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
semi-supervised learning;generative models;few shot learning
null
0
null
null
iclr
0
0
null
main
4.666667
4;4;6
null
null
Learning with Little Data: Evaluation of Deep Learning Algorithms
null
null
0
4
Withdraw
5;3;4
null
null
Department of Mathematics and College of Computer and Information Science, Northeastern University; Department of Electrical and Computer Engineering, Rice University
2019
0
null
null
0
null
null
null
null
null
Reinhard Heckel, Paul Hand
https://iclr.cc/virtual/2019/poster/973
natural image model;image prior;under-determined neural networks;untrained network;non-convolutional network;denoising;inverse problem
null
0
null
null
iclr
1
0
null
main
7.666667
7;8;8
null
null
Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks
null
null
0
3.666667
Poster
3;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Adversarial examples;Robustness
null
0
null
null
iclr
-0.755929
0
null
main
4.666667
3;5;6
null
null
Interpreting Adversarial Robustness: A View from Decision Surface in Input Space
null
null
0
4.666667
Reject
5;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Artificial Neural Network;Convolution Neural Network;Long Short-Term Memory;Activation Function;Neuromodulation
null
0
null
null
iclr
-0.133631
0
null
main
4.4
4;4;4;4;6
null
null
Context Dependent Modulation of Activation Function
null
null
0
4.2
Reject
5;4;3;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;TD Learning;Deep Learning
null
0
null
null
iclr
-0.866025
0
null
main
3
2;3;4
null
null
HR-TD: A Regularized TD Method to Avoid Over-Generalization
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
unsupervised learning;abstractive summarization;reviews;text generation
null
0
null
null
iclr
0
0
null
main
6
4;5;9
null
null
Unsupervised Neural Multi-Document Abstractive Summarization of Reviews
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Unsupervised disentangled representation learning;GAN;Information Bottleneck;Variational Inference
null
0
null
null
iclr
-0.5
0
null
main
6
4;7;7
null
null
IB-GAN: Disentangled Representation Learning with Information Bottleneck GAN
null
null
0
3.666667
Reject
4;3;4
null
null
SenseTime
2019
0
null
null
0
null
null
null
null
null
Sirui Xie, Hehui Zheng, Chunxiao Liu, Liang Lin
https://iclr.cc/virtual/2019/poster/700
Neural Architecture Search
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
SNAS: stochastic neural architecture search
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
neural network;architecture search;evolution strategy
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Neuron Hierarchical Networks
null
null
0
4
Withdraw
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;generative modeling;unsupervised learning;maximum likelihood;adversarial learning;gan;vae
null
0
null
null
iclr
-0.755929
0
null
main
5.333333
4;5;7
null
null
Coverage and Quality Driven Training of Generative Image Models
null
null
0
4.333333
Reject
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Neural Machine Translation;Natural Language Processing
null
0
null
null
iclr
-0.5
0
null
main
4.333333
4;4;5
null
null
Contextualized Role Interaction for Neural Machine Translation
null
null
0
4.333333
Reject
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Generative Adversarial Network;Semi-Supervised Learning;Adversarial Training
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
Difference-Seeking Generative Adversarial Network
null
null
0
3.666667
Reject
4;3;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
confounder;causal inference;reinforcement learning
null
0
null
null
iclr
-0.5
0
null
main
3.333333
2;4;4
null
null
Deconfounding Reinforcement Learning in Observational Settings
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Curriculum Learning;Transfer Learning;Self-Paced Learning;Image Recognition
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
In Your Pace: Learning the Right Example at the Right Time
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Hierarchical Reinforcement Learning;Model-based Reinforcement Learning;Exploration
null
0
null
null
iclr
-0.866025
0
null
main
5
4;5;6
null
null
Learning Abstract Models for Long-Horizon Exploration
null
null
0
3.333333
Reject
4;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
graph neural networks;energy models;conditional random fields;label correlation
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
CGNF: Conditional Graph Neural Fields
null
null
0
4.666667
Reject
5;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.755929
0
null
main
4.666667
4;5;5
null
null
Logically-Constrained Neural Fitted Q-iteration
null
null
0
3.666667
Withdraw
5;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
data diversification;domain adaptation;transfer learning;stacked generalization
null
0
null
null
iclr
0
0
null
main
3
2;3;4
null
null
Stacking for Transfer Learning
null
null
0
5
Reject
5;5;5
null
null
Section on Functional Imaging Methods, National Institute of Mental Health; Section on Learning and Plasticity, National Institute of Mental Health
2019
0
null
null
0
null
null
null
null
null
Charles Zheng, Francisco Pereira, Chris I Baker, Martin N Hebart
https://iclr.cc/virtual/2019/poster/712
category representation;sparse coding;representation learning;interpretable representations
null
0
null
null
iclr
0
0
null
main
6.333333
5;7;7
null
null
Revealing interpretable object representations from human behavior
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
deep learning;lipschitz neural networks;generalization;universal approximation;adversarial examples;generative models;optimal transport;adversarial robustness
null
0
null
null
iclr
-0.944911
0
null
main
5.333333
4;5;7
null
null
Sorting out Lipschitz function approximation
null
null
0
3.666667
Reject
4;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
4.666667
3;5;6
null
null
Dual Skew Divergence Loss for Neural Machine Translation
null
null
0
4
Reject
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
adversarial examples;deep learning
null
0
null
null
iclr
0.866025
0
null
main
4.333333
4;4;5
null
null
Stochastic Quantized Activation: To prevent Overfitting in Fast Adversarial Training
null
null
0
4
Reject
4;3;5
null
null
Google Brain, Mountain View, CA, USA; University of British Columbia, Vancouver, BC, Canada
2019
0
null
null
0
null
null
null
null
null
Bo Chang, Minmin Chen, Eldad Haber, Ed H. Chi
https://iclr.cc/virtual/2019/poster/696
null
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks
null
null
0
5
Poster
5;5;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
efficient machine learning,binary neural network
null
0
null
null
iclr
0
0
null
main
5
5
null
null
A Main/Subsidiary Network Framework for Simplifying Binary Neural Networks
null
null
0
4
Withdraw
4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Neural-symbolic models;visual question answering;reasoning;interpretability;graphical models;variational inference
null
0
null
null
iclr
0.866025
0
null
main
7
6;7;8
null
null
Probabilistic Neural-Symbolic Models for Interpretable Visual Question Answering
null
null
0
3.666667
Reject
3;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Convolutional Neural Networks;Boolean satisfiability problem;Satisfiability modulo theories
null
0
null
null
iclr
-1
0
null
main
5.333333
5;5;6
null
null
CNNSAT: Fast, Accurate Boolean Satisfiability using Convolutional Neural Networks
null
null
0
3.333333
Reject
4;4;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Neural Architecture Search;Sparse Optimization
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
Single Shot Neural Architecture Search Via Direct Sparse Optimization
null
null
0
3.333333
Reject
3;4;3
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
causal inference;CATE estimation;ITE;deep learning
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Estimating Heterogeneous Treatment Effects Using Neural Networks With The Y-Learner
null
null
0
3.666667
Withdraw
4;4;3
null
null
‡Salesforce Research; †The Hong Kong University of Science and Technology
2019
0
null
null
0
null
null
null
null
null
Chien-Sheng Wu, richard socher, Caiming Xiong
https://iclr.cc/virtual/2019/poster/690
pointer networks;memory networks;task-oriented dialogue systems;natural language processing
null
0
null
null
iclr
-1
0
null
main
7
5;8;8
null
null
Global-to-local Memory Pointer Networks for Task-Oriented Dialogue
null
null
0
2.333333
Poster
3;2;2
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
graph convolution;hierarchical models;neural networks;multigraph;deep learning
null
0
null
null
iclr
-1
0
null
main
3.666667
3;4;4
null
null
Spectral Convolutional Networks on Hierarchical Multigraphs
null
null
0
4.333333
Withdraw
5;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
continuous learning;catastrophic forgetting;architecture learning
null
0
null
null
iclr
0
0
null
main
4
4;4;4
null
null
Continual Learning via Explicit Structure Learning
null
null
0
4.333333
Reject
4;5;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
adversarial training;conditional GAN
null
0
null
null
iclr
-0.188982
0
null
main
4.333333
3;4;6
null
null
From Adversarial Training to Generative Adversarial Networks
https://github.com/anonymous
null
0
3.333333
Withdraw
3;4;3
null
null
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea; AItrics, Seoul, Korea; Pohang University of Science and Technology (POSTECH), Pohang, Korea
2019
0
null
null
0
null
null
null
null
null
Sangwoo Mo, Minsu Cho, Jinwoo Shin
https://iclr.cc/virtual/2019/poster/742
Image-to-Image Translation;Generative Adversarial Networks
null
0
null
null
iclr
0.5
0
null
main
7.333333
7;7;8
null
null
InstaGAN: Instance-aware Image-to-Image Translation
https://github.com/sangwoomo/instagan
null
0
4.666667
Poster
5;4;5
null
null
KAUST; Intel Labs
2019
0
null
null
0
null
null
null
null
null
Adel Bibi, Bernard Ghanem, Vladlen Koltun, Rene Ranftl
https://iclr.cc/virtual/2019/poster/978
deep networks;optimization
null
0
null
null
iclr
-0.970725
0
null
main
7.333333
7;7;8
null
null
Deep Layers as Stochastic Solvers
null
null
0
3.333333
Poster
5;4;1
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
sparse recovery
null
0
null
null
iclr
-0.866025
0
null
main
4.666667
4;5;5
null
null
Accelerated Sparse Recovery Under Structured Measurements
null
null
0
4
Reject
5;4;3
null
null
Department of Computer Science, Brown University, Providence, RI, USA; College of Computer and Information Science, Northeastern University, Boston, MA, USA; Department of Computer Science, Boston University, Boston, MA, USA
2019
0
null
null
0
null
null
null
null
null
Andrew Levy, George D Konidaris, Robert Platt, Kate Saenko
https://iclr.cc/virtual/2019/poster/913
Hierarchical Reinforcement Learning;Reinforcement Learning;Deep Reinforcement Learning
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Learning Multi-Level Hierarchies with Hindsight
null
null
0
4
Poster
4;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
data selection;deep learning;uncertainty sampling
null
0
null
null
iclr
0.5
0
null
main
4.333333
4;4;5
null
null
Select Via Proxy: Efficient Data Selection For Training Deep Networks
null
null
0
3.333333
Reject
2;4;4
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
Natural Language Processing;Machine Translation;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Machine Translation With Weakly Paired Bilingual Documents
null
null
0
4.333333
Reject
5;3;5
null
null
null
2019
0
null
null
0
null
null
null
null
null
null
null
traffic flow forecasting;spatiotemporal dependencies;deep learning;intelligent transportation system
null
0
null
null
iclr
-0.866025
0
null
main
4
3;4;5
null
null
Layerwise Recurrent Autoencoder for General Real-world Traffic Flow Forecasting
null
null
0
3.333333
Reject
4;3;3
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
The return of AdaBoost.MH: multi-class Hamming trees
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Adaptive Feature Ranking for Unsupervised Transfer Learning
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Learning Type-Driven Tensor-Based Meaning Representations
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Auto-Encoding Variational Bayes
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Fast Training of Convolutional Networks through FFTs
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Can recursive neural tensor networks learn logical reasoning?
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Low-Rank Approximations for Conditional Feedforward Computation in Deep Neural Networks
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Zero-Shot Learning by Convex Combination of Semantic Embeddings
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Learning Transformations for Classification Forests
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Learning generative models with visual attention
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Deep Belief Networks for Image Denoising
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Multi-View Priors for Learning Detectors from Sparse Viewpoint Data
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Efficient Visual Coding: From Retina To V2
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Semistochastic Quadratic Bound Methods
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Spectral Networks and Locally Connected Networks on Graphs
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Learning High-level Image Representation for Image Retrieval via Multi-Task DNN using Clickthrough Data
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Continuous Learning: Engineering Super Features With Feature Algebras
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Deep and Wide Multiscale Recursive Networks for Robust Image Labeling
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Stopping Criteria in Contrastive Divergence: Alternatives to the Reconstruction Error
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Reference Distance Estimator
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
How to Construct Deep Recurrent Neural Networks
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Unit Tests for Stochastic Optimization
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Image Representation Learning Using Graph Regularized Auto-Encoders
null
null
0
0
Poster
null
null
null
null
2014
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
A Simple Model for Learning Multilingual Compositional Semantics
null
null
0
0
Poster
null
null