pdf
stringlengths 49
199
⌀ | aff
stringlengths 1
1.36k
⌀ | year
stringclasses 19
values | technical_novelty_avg
float64 0
4
⌀ | video
stringlengths 21
47
⌀ | doi
stringlengths 31
63
⌀ | presentation_avg
float64 0
4
⌀ | proceeding
stringlengths 43
129
⌀ | presentation
stringclasses 796
values | sess
stringclasses 576
values | technical_novelty
stringclasses 700
values | arxiv
stringlengths 10
16
⌀ | author
stringlengths 1
1.96k
⌀ | site
stringlengths 37
191
⌀ | keywords
stringlengths 2
582
⌀ | oa
stringlengths 86
198
⌀ | empirical_novelty_avg
float64 0
4
⌀ | poster
stringlengths 57
95
⌀ | openreview
stringlengths 41
45
⌀ | conference
stringclasses 11
values | corr_rating_confidence
float64 -1
1
⌀ | corr_rating_correctness
float64 -1
1
⌀ | project
stringlengths 1
162
⌀ | track
stringclasses 3
values | rating_avg
float64 0
10
⌀ | rating
stringlengths 1
17
⌀ | correctness
stringclasses 809
values | slides
stringlengths 32
41
⌀ | title
stringlengths 2
192
⌀ | github
stringlengths 3
165
⌀ | authors
stringlengths 7
161
⌀ | correctness_avg
float64 0
5
⌀ | confidence_avg
float64 0
5
⌀ | status
stringclasses 22
values | confidence
stringlengths 1
17
⌀ | empirical_novelty
stringclasses 763
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null |
Agency for Defense Development
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6453; None
| null | 0 | null | null | null |
3;3;2;3
| null |
Kyungmin Lee
|
https://iclr.cc/virtual/2022/poster/6453
|
Knowledge distillation;contrastive learning;self-supervised learning
| null | 2.75 | null |
https://openreview.net/forum?id=8la28hZOwug
|
iclr
| -0.333333 | 0.333333 | null |
main
| 6.5 |
6;6;6;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/6453
|
Prototypical Contrastive Predictive Coding
| null | null | 3.75 | 3.25 |
Poster
|
3;3;4;3
|
3;3;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Unsupervised Domain Adaptation;Source-free Unsupervised Domain Adaptation;Confidence score
| null | 1.5 | null | null |
iclr
| 0.57735 | 0 | null |
main
| 4 |
3;3;5;5
|
4;2;3;3
| null |
Confidence Score Weighting Adaptation for Source-Free Unsupervised Domain Adaptation
| null | null | 3 | 4.25 |
Withdraw
|
4;4;4;5
|
2;2;0;2
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null |
Graph Neural Network;Structural Behavior;Learning Process
| null | 2.25 | null | null |
iclr
| 0 | 0.140028 | null |
main
| 3.25 |
1;3;3;6
|
3;2;2;3
| null |
On Locality in Graph Learning via Graph Neural Network
| null | null | 2.5 | 4 |
Reject
|
4;4;4;4
|
2;2;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;3;2
| null | null | null | null | null | 2.25 | null | null |
iclr
| -0.594089 | -0.080845 | null |
main
| 5.75 |
3;6;6;8
|
4;3;4;4
| null |
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models
| null | null | 3.75 | 4 |
Reject
|
5;3;4;4
|
2;3;2;2
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;2;4;3
| null | null | null |
adversarial robustness;regularization
| null | 2 | null | null |
iclr
| -0.707107 | 0.57735 | null |
main
| 4.5 |
3;3;6;6
|
3;3;4;3
| null |
Efficient Regularization for Adversarially Robustness Deep ReLU Networks
| null | null | 3.25 | 3 |
Withdraw
|
4;3;3;2
|
2;3;0;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null | null | null | 2.5 | null | null |
iclr
| 0 | 0.800641 | null |
main
| 5.5 |
3;5;6;8
|
3;4;4;4
| null |
Source-Target Unified Knowledge Distillation for Memory-Efficient Federated Domain Adaptation on Edge Devices
| null | null | 3.75 | 3.5 |
Reject
|
4;3;3;4
|
2;2;3;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null |
dynamic graphs;graph neural networks;graph representation learning;transformers;graph transformers
| null | 2.25 | null | null |
iclr
| -0.662266 | 0.662266 | null |
main
| 4.75 |
3;5;5;6
|
3;3;3;4
| null |
Dynamic Graph Representation Learning via Graph Transformer Networks
| null | null | 3.25 | 3.75 |
Reject
|
4;4;4;3
|
2;2;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
federated learning;non-IID;generative model;data augmentation
| null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 4.75 |
3;5;5;6
|
3;3;3;3
| null |
Federated Learning with GAN-based Data Synthesis for Non-IID Clients
| null | null | 3 | 4 |
Reject
|
4;4;4;4
|
2;2;2;2
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;1;3;4
| null | null | null |
Bayesian optimization;Gaussian process;hyperparameter tuning;meta learning;transfer learning;multi task
| null | 1.75 | null | null |
iclr
| -0.070535 | 0.345547 | null |
main
| 4.75 |
3;3;5;8
|
3;2;4;3
| null |
Automatic prior selection for meta Bayesian optimization with a case study on tuning deep neural network optimizers
| null | null | 3 | 3.75 |
Reject
|
4;4;3;4
|
1;1;2;3
|
null | null |
2022
| 2.6 | null | null | 0 | null | null | null |
1;3;3;3;3
| null | null | null | null | null | 2.4 | null | null |
iclr
| -0.263181 | -0.427669 | null |
main
| 5.6 |
3;5;6;6;8
|
4;3;2;4;3
| null |
Learning shared neural manifolds from multi-subject FMRI data
| null | null | 3.2 | 4.2 |
Reject
|
5;3;4;5;4
|
1;2;3;3;3
|
null |
Technion – Israel Institute of Technology
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6897; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Omer Antverg, Yonatan Belinkov
|
https://iclr.cc/virtual/2022/poster/6897
|
NLP;interpretability;multilingual;individual neurons
| null | 3 | null |
https://openreview.net/forum?id=8uz0EWPQIMu
|
iclr
| 0.333333 | -0.57735 | null |
main
| 7.5 |
6;8;8;8
|
4;3;3;4
|
https://iclr.cc/virtual/2022/poster/6897
|
On the Pitfalls of Analyzing Individual Neurons in Language Models
|
https://github.com/technion-cs-nlp/Individual-Neurons-Pitfalls
| null | 3.5 | 3.25 |
Poster
|
3;4;3;3
|
3;3;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
singular learning theory;Bayesian neural networks;variational inference;normalizing flow
| null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5;5
|
3;3;2;3
| null |
Variational Inference via Resolution of Singularities
| null | null | 2.75 | 2.75 |
Reject
|
4;3;2;2
|
2;2;2;2
|
null |
JD.com, Mountain View, CA, United States & Beijing, China
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/5974; None
| null | 0 | null | null | null |
3;3;3;2
| null |
Yunjiang Jiang, Han Zhang, Yiming Qiu, Yun Xiao, Bo Long, Wen-Yun Yang
|
https://iclr.cc/virtual/2022/poster/5974
|
Search index;Product quantization;Block coordinate descent
| null | 2.5 | null |
https://openreview.net/forum?id=9-Rfew334N
|
iclr
| 0 | 0 | null |
main
| 6 |
6;6;6;6
|
3;3;3;3
|
https://iclr.cc/virtual/2022/poster/5974
|
Givens Coordinate Descent Methods for Rotation Matrix Learning in Trainable Embedding Indexes
| null | null | 3 | 3.5 |
Poster
|
4;3;4;3
|
2;3;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
drug discovery;3D molecular generation;monte carlo sampling
| null | 2.5 | null | null |
iclr
| -0.662266 | 0.973329 | null |
main
| 4.75 |
3;5;5;6
|
2;3;3;4
| null |
Knowledge Guided Geometric Editing for Unsupervised Drug Design
| null | null | 3 | 3.75 |
Reject
|
4;4;4;3
|
2;2;3;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;2;4
| null | null | null |
Genome Sequence Analysis;Self-supervised Learning;Representation Learning;Application in Computational Biology
| null | 2.75 | null | null |
iclr
| 0 | 0 | null |
main
| 6 |
5;5;6;8
|
4;2;3;3
| null |
Self-GenomeNet: Self-supervised Learning with Reverse-Complement Context Prediction for Nucleotide-level Genomics Data
| null | null | 3 | 4 |
Reject
|
4;4;4;4
|
3;2;3;3
|
null |
Department of Computer Science, Rutgers University§; NEC Labs America†, Department of Computer Science, Rutgers University§; NEC Labs America†
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6128; None
| null | 0 | null | null | null |
3;3;2;3
| null |
Tingfeng Li, Shaobo Han, Martin Min, Dimitris Metaxas
|
https://iclr.cc/virtual/2022/poster/6128
| null | null | 3.25 | null |
https://openreview.net/forum?id=92tYQiil17
|
iclr
| -0.904534 | 0 | null |
main
| 7 |
6;6;8;8
|
3;4;4;3
|
https://iclr.cc/virtual/2022/poster/6128
|
Learning Transferable Reward for Query Object Localization with Policy Adaptation
|
https://github.com/litingfeng/Localization-by-OrdEmbed
| null | 3.5 | 3.25 |
Poster
|
4;4;2;3
|
4;3;3;3
|
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
3;2;3
| null | null | null |
convolutional kernels;inductive bias;average pooling;downsampling;kernel ridge regression;generalization error;neural tangent kernel
| null | 2 | null | null |
iclr
| -0.5 | 0.5 | null |
main
| 5.333333 |
5;5;6
|
3;4;4
| null |
Learning with convolution and pooling operations in kernel methods
| null | null | 3.666667 | 3.333333 |
Reject
|
4;3;3
|
2;2;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null |
Causal Inference;Interventions;black-Box Models;Explanations;Deep Neural Networks
| null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
2;3;3;3
| null |
Interventional Black-Box Explanations
| null | null | 2.75 | 3.25 |
Reject
|
4;3;3;3
|
2;2;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2
| null | null | null |
Meta-Learning;Few-shot learning
| null | 2.666667 | null | null |
iclr
| -0.866025 | 0 | null |
main
| 3.666667 |
3;3;5
|
3;3;3
| null |
The Effect of diversity in Meta-Learning
| null | null | 3 | 4 |
Reject
|
5;4;3
|
3;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null |
Monotonic neural networks;Gradient penalties;Structural risk minimization
| null | 2 | null | null |
iclr
| -0.57735 | 0.333333 | null |
main
| 5.25 |
5;5;5;6
|
3;2;3;3
| null |
Monotonicity as a requirement and as a regularizer: efficient methods and applications
| null | null | 2.75 | 3.5 |
Reject
|
4;3;4;3
|
2;1;2;3
|
null | null |
2022
| 1 | null | null | 0 | null | null | null |
1;1;1;1
| null | null | null |
multi-objective optimization;neural architecture search;evolutionary algorithm;hardware-aware;accuracy predictor;latency estimator;FPGA
| null | 1 | null | null |
iclr
| -0.57735 | 0.816497 | null |
main
| 1.5 |
1;1;1;3
|
1;2;2;3
| null |
Multi-objective optimization for Hardware-aware Neural Architecture Search
|
https://anonymous.4open.science/r/multi-objective-optimization-0E27/README.md
| null | 2 | 4.5 |
Withdraw
|
4;5;5;4
|
1;1;1;1
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null |
Computer Vision;Visual Question Answering
| null | 1.5 | null | null |
iclr
| 0 | -0.57735 | null |
main
| 4 |
3;3;5;5
|
3;4;3;3
| null |
MGA-VQA: Multi-Granularity Alignment for Visual Question Answering
| null | null | 3.25 | 4 |
Withdraw
|
4;4;4;4
|
2;2;2;0
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null |
Deep neural networks;convex duality;convex optimization
| null | 0.25 | null | null |
iclr
| -1 | 0.870388 | null |
main
| 5.25 |
5;5;5;6
|
2;2;3;4
| null |
Parallel Deep Neural Networks Have Zero Duality Gap
| null | null | 2.75 | 3.75 |
Reject
|
4;4;4;3
|
1;0;0;0
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null |
self-supervised learning;visualization;diffusion model;conditional generative model;representation
| null | 2.75 | null | null |
iclr
| -0.942809 | 0.408248 | null |
main
| 6 |
5;5;6;8
|
4;3;3;4
| null |
High Fidelity Visualization of What Your Self-Supervised Representation Knows About
| null | null | 3.5 | 3.75 |
Reject
|
4;4;4;3
|
3;2;2;4
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null |
reinforcement learning;model-based RL;joint optimization
| null | 2.5 | null | null |
iclr
| -0.333333 | 0.870388 | null |
main
| 5.25 |
3;6;6;6
|
2;4;4;3
| null |
Mismatched No More: Joint Model-Policy Optimization for Model-Based RL
| null | null | 3.25 | 3.75 |
Reject
|
4;4;3;4
|
2;3;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
program repair;bugpatching;backtranslation;transformers
| null | 2.25 | null | null |
iclr
| -0.57735 | 0.816497 | null |
main
| 4.5 |
3;5;5;5
|
2;3;4;3
| null |
DeepDebug: Fixing Python Bugs Using Stack Traces, Backtranslation, and Code Skeletons
| null | null | 3 | 3.5 |
Reject
|
4;3;3;4
|
2;3;2;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;3;2;2
| null | null | null |
Rubik's Cube;self-supervised learning;combinatorial search;pathfinding;planning
| null | 2 | null | null |
iclr
| -0.57735 | 0.57735 | null |
main
| 4.5 |
3;5;5;5
|
2;2;3;3
| null |
Self-Supervision is All You Need for Solving Rubik's Cube
| null | null | 2.5 | 4.5 |
Withdraw
|
5;4;4;5
|
2;2;2;2
|
null |
New York University; KAIST; Institute for AI Industry Research (AIR), Tsinghua University; KAIST, AITRICS
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/7119; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu, Sung Ju Hwang
|
https://iclr.cc/virtual/2022/poster/7119
|
Continual Learning;Representational Learning;Deep Learning
| null | 3.25 | null |
https://openreview.net/forum?id=9Hrka5PA7LW
|
iclr
| 0 | 0 |
https://project_website.com (if available)
|
main
| 8 |
8;8;8;8
|
3;4;4;3
|
https://iclr.cc/virtual/2022/poster/7119
|
Representational Continuity for Unsupervised Continual Learning
|
https://github.com/author_or_organization/repo_name (if available)
| null | 3.5 | 3.75 |
Oral
|
3;4;4;4
|
3;3;4;3
|
null | null |
2022
| 2.4 | null | null | 0 | null | null | null |
2;3;2;3;2
| null | null | null |
Multi-Agent Reinforcement Learning;Hierarchical Multi-Agent Reinforcement Learning;Implicit Deep Learning;Differentiable Optimization
| null | 2 | null | null |
iclr
| -0.408248 | 0.612372 | null |
main
| 3.8 |
3;3;3;5;5
|
3;3;3;4;3
| null |
LPMARL: Linear Programming based Implicit Task Assigment for Hiearchical Multi-Agent Reinforcement Learning
| null | null | 3.2 | 3.6 |
Withdraw
|
5;2;5;3;3
|
2;2;2;2;2
|
null |
Department of Electrical and Computer Engineering, Technion - Israel Institute of Technology; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6450; None
| null | 0 | null | null | null |
2;3;3;3
| null |
Asaf Gendler, Tsui-Wei Weng, Luca Daniel, Yaniv Romano
|
https://iclr.cc/virtual/2022/poster/6450
|
Conformal Prediction;Adversarial Robustness;Randomized Smoothing;Uncertainty Estimation;Calibration
| null | 2.75 | null |
https://openreview.net/forum?id=9L1BsI4wP1H
|
iclr
| -0.555556 | 0.96225 | null |
main
| 6.75 |
5;6;8;8
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/6450
|
Adversarially Robust Conformal Prediction
| null | null | 3.5 | 3.75 |
Poster
|
4;4;3;4
|
2;3;3;3
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;2;2;2
| null | null | null | null | null | 2 | null | null |
iclr
| -0.662266 | 0.132453 | null |
main
| 4.75 |
3;5;5;6
|
3;3;4;3
| null |
Patchwise Sparse Dictionary Learning from pre-trained Neural Network Activation Maps for Anomaly Detection in Images
| null | null | 3.25 | 4.75 |
Withdraw
|
5;5;5;4
|
1;3;2;2
|
null |
VinAI Research, Vietnam; Hong Kong Polytechnic University
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6615; None
| null | 0 | null | null | null |
2;3;3;2
| null |
Hieu Vu, Toan Tran, Man-Chung Yue, Viet Anh Nguyen
|
https://iclr.cc/virtual/2022/poster/6615
|
fair principal component analysis;distributionally robust optimization;manifold optimization
| null | 2.25 | null |
https://openreview.net/forum?id=9NVd-DMtThY
|
iclr
| -0.816497 | 0.333333 | null |
main
| 5.75 |
5;6;6;6
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6615
|
Distributionally Robust Fair Principal Components via Geodesic Descents
| null | null | 3.25 | 4 |
Poster
|
5;4;3;4
|
2;2;3;2
|
null |
University of Texas at Austin; Texas A&M University
|
2022
| 2 |
https://iclr.cc/virtual/2022/poster/6428; None
| null | 0 | null | null | null |
2;2;2;2
| null |
Shaojin Ding, Tianlong Chen, Zhangyang Wang
|
https://iclr.cc/virtual/2022/poster/6428
|
Speech Recognition;Lottery Ticket Hypothesis
| null | 2.75 | null |
https://openreview.net/forum?id=9Nk6AJkVYB
|
iclr
| -0.333333 | 0.57735 | null |
main
| 5.75 |
5;6;6;6
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/6428
|
Audio Lottery: Speech Recognition Made Ultra-Lightweight, Noise-Robust, and Transferable
|
https://github.com/VITA-Group/Audio-Lottery
| null | 3.5 | 3.75 |
Poster
|
4;4;4;3
|
3;3;3;2
|
null |
Amazon Web Services; Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6276; None
| null | 0 | null | null | null |
3;4;2;2
| null |
Lukas Schott, Julius von Kuegelgen, Frederik Träuble, Peter Gehler, Chris Russell, Matthias Bethge, Bernhard Schoelkopf, Francesco Locatello, Wieland Brendel
|
https://iclr.cc/virtual/2022/poster/6276
|
Generalization;Composition;Out of distribution;Disentanglement
| null | 2.75 | null |
https://openreview.net/forum?id=9RUHPlladgh
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8;8
|
4;4;4;2
|
https://iclr.cc/virtual/2022/poster/6276
|
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain
| null | null | 3.5 | 3.75 |
Poster
|
5;3;4;3
|
3;3;3;2
|
null |
Westlake University
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/5934; None
| null | 0 | null | null | null |
2;2;4;3
| null |
Jinxin Liu, Hongyin Zhang, Donglin Wang
|
https://iclr.cc/virtual/2022/poster/5934
| null | null | 2.75 | null |
https://openreview.net/forum?id=9SDQB3b68K
|
iclr
| -0.207514 | 0 | null |
main
| 6.25 |
5;6;6;8
|
3;3;3;3
|
https://iclr.cc/virtual/2022/poster/5934
|
DARA: Dynamics-Aware Reward Augmentation in Offline Reinforcement Learning
| null | null | 3 | 3.75 |
Poster
|
5;3;3;4
|
2;2;3;4
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2
| null | null | null |
Deep Domain Adaptation;Deep Generative Models;Color Transfer;Optimal Transport
| null | 2.333333 | null | null |
iclr
| -0.866025 | 1 | null |
main
| 4 |
3;3;6
|
2;2;4
| null |
Improving Mini-batch Optimal Transport via Partial Transportation
| null | null | 2.666667 | 3 |
Withdraw
|
3;4;2
|
2;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;1;3
| null | null | null |
text generation;reinforcement learning for text generation
| null | 2.333333 | null | null |
iclr
| 0.5 | 1 | null |
main
| 5.333333 |
5;5;6
|
3;3;4
| null |
Text Generation with Efficient (Soft) $Q$-Learning
| null | null | 3.333333 | 3.666667 |
Reject
|
4;3;4
|
2;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;2;3
| null | null | null |
Signal propagation;deep ReLU networks;mean-field theory;improved initialization
| null | 1.75 | null | null |
iclr
| 0.522233 | 0.426401 | null |
main
| 3.5 |
1;3;5;5
|
3;2;3;4
| null |
Initializing ReLU networks in an expressive subspace of weights
| null | null | 3 | 3.25 |
Reject
|
3;3;3;4
|
1;2;2;2
|
null | null |
2022
| 2.25 |
https://iclr.cc/virtual/2022/poster/7101; None
| null | 0 | null | null | null |
1;3;3;2
| null |
Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Fries, Ryan Teehan, Teven Le Scao, Stella R Biderman, Leo Gao, Thomas Wolf, Alexander M Rush
|
https://iclr.cc/virtual/2022/poster/7101
| null | null | 3 | null |
https://openreview.net/forum?id=9Vrb9D0WI4
|
iclr
| -0.916949 | 0.493742 | null |
main
| 6.25 |
3;6;8;8
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/7101
|
Multitask Prompted Training Enables Zero-Shot Task Generalization
| null | null | 3.25 | 4.25 |
Spotlight
|
5;4;4;4
|
2;3;4;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null |
Neuroscience;spatiotemporal aware modeling;successive POI recommendation
| null | 2.25 | null | null |
iclr
| 0 | 0.333333 | null |
main
| 5.25 |
5;5;5;6
|
3;3;2;3
| null |
Successive POI Recommendation via Brain-inspired Spatiotemporal Aware Representation
| null | null | 2.75 | 4 |
Reject
|
3;4;5;4
|
2;2;2;3
|
null | null |
2022
| 2.2 | null | null | 0 | null | null | null |
2;2;2;2;3
| null | null | null |
Deep Reinforcement Learning;Python library
| null | 2 | null | null |
iclr
| 0 | 0.583333 | null |
main
| 4.4 |
3;3;5;5;6
|
3;2;3;3;3
| null |
Efficient Reinforcement Learning Experimentation in PyTorch
| null | null | 2.8 | 4 |
Withdraw
|
4;4;4;4;4
|
2;2;2;2;2
|
null |
ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris; University of California, Berkeley; The University of Tokyo
|
2022
| 3.4 |
https://iclr.cc/virtual/2022/poster/6576; None
| null | 0 | null | null | null |
2;4;4;3;4
| null |
Liu Ziyin, Botao Li, James Simon, Masahito Ueda
|
https://iclr.cc/virtual/2022/poster/6576
|
stochastic gradient descent;saddle points;convergence;amsgrad;deep learning
| null | 2.4 | null |
https://openreview.net/forum?id=9XhPLAjjRB
|
iclr
| -0.645497 | -0.166667 | null |
main
| 7.2 |
6;6;8;8;8
|
4;3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6576
|
SGD Can Converge to Local Maxima
| null | null | 3.4 | 4 |
Spotlight
|
4;5;3;4;4
|
2;2;2;2;4
|
null |
OpenAI, University of Pittsburgh; OpenAI; ´Ecole Polytechnique
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6258; None
| null | 0 | null | null | null |
2;1;3;4
| null |
Kunhao Zheng, Jesse Han, Stanislas Polu
|
https://iclr.cc/virtual/2022/poster/6258
|
Neural theorem proving;Benchmark dataset
| null | 3 | null |
https://openreview.net/forum?id=9ZPegFuFTFv
|
iclr
| 0.870388 | 0 | null |
main
| 6.75 |
5;6;8;8
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6258
|
miniF2F: a cross-system benchmark for formal Olympiad-level mathematics
| null | null | 4 | 3.75 |
Poster
|
3;3;4;5
|
3;3;3;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;2;4
| null | null | null |
adversaries;interpretablity;generative modeling
| null | 2 | null | null |
iclr
| -0.648886 | 0.927173 | null |
main
| 4.75 |
3;5;5;6
|
2;3;3;3
| null |
One Thing to Fool them All: Generating Interpretable, Universal, and Physically-Realizable Adversarial Features
| null | null | 2.75 | 4 |
Reject
|
5;4;3;4
|
1;3;2;2
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
3;2;2;3
| null | null | null | null | null | 2.75 | null | null |
iclr
| 0.57735 | -0.57735 | null |
main
| 5.5 |
5;5;6;6
|
3;3;2;3
| null |
Test-time Batch Statistics Calibration for Covariate Shift
| null | null | 2.75 | 4.25 |
Reject
|
4;4;4;5
|
3;2;3;3
|
null |
National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China; Speech Lab, Alibaba Group
|
2022
| 2 |
https://iclr.cc/virtual/2022/poster/6219; None
| null | 0 | null | null | null |
2;2;2;2
| null |
Chao-Hong Tan, Qian Chen, Wen Wang, Qinglin Zhang, Siqi Zheng, Zhen-Hua Ling
|
https://iclr.cc/virtual/2022/poster/6219
|
Transformer;Efficient Transformers;Token Mixing;Pooling;Linear;Long Range Arena;Transfer Learning;BERT;GLUE
| null | 2.75 | null |
https://openreview.net/forum?id=9jInD9JjicF
|
iclr
| -0.471405 | 0 | null |
main
| 6 |
5;5;6;8
|
3;3;3;3
|
https://iclr.cc/virtual/2022/poster/6219
|
PoNet: Pooling Network for Efficient Token Mixing in Long Sequences
|
https://github.com/lxchtan/PoNet
| null | 3 | 4.25 |
Poster
|
4;5;4;4
|
3;2;3;3
|
null |
University of Texas at Austin; Texas A&M University; Kwai Inc.
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6958; None
| null | 0 | null | null | null |
3;3;3
| null |
Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji Liu, Zhangyang Wang
|
https://iclr.cc/virtual/2022/poster/6958
|
Vision Transformer;Model Compression;Pruning;Layer Skipping;Distillation
| null | 3.333333 | null |
https://openreview.net/forum?id=9jsZiUgkCZP
|
iclr
| -0.755929 | 0.755929 | null |
main
| 6.333333 |
5;6;8
|
2;4;4
|
https://iclr.cc/virtual/2022/poster/6958
|
Unified Visual Transformer Compression
|
https://github.com/VITA-Group/UVC
| null | 3.333333 | 4.333333 |
Poster
|
5;4;4
|
2;4;4
|
null | null |
2022
| 2.2 | null | null | 0 | null | null | null |
1;2;3;2;3
| null | null | null |
Periodic sampling;deep learning;computer vision;mammography
| null | 2.2 | null | null |
iclr
| 0 | 0.357217 | null |
main
| 4.8 |
3;5;5;5;6
|
3;4;4;2;4
| null |
When high-performing models behave poorly in practice: periodic sampling can help
| null | null | 3.4 | 4 |
Reject
|
4;4;4;4;4
|
2;2;2;2;3
|
null |
College of Informatics, Huazhong Agricultural University, China; College of Science, Huazhong Agricultural University, China; JD Explore Academy, JD.com Inc, China; Department of Computer Science, University of Illinois at Urbana-Champaign, USA
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6601; None
| null | 0 | null | null | null |
3;2;3;3
| null |
Yingjie Wang, Xianrui Zhong, Fengxiang He, Hong Chen, Dacheng Tao
|
https://iclr.cc/virtual/2022/poster/6601
|
Sparse additive models;variable selection;Huber;non-stationary;robust forecasting
| null | 1.75 | null |
https://openreview.net/forum?id=9kpuB2bgnim
|
iclr
| -0.522233 | 0 | null |
main
| 6.5 |
6;6;6;8
|
3;3;3;3
|
https://iclr.cc/virtual/2022/poster/6601
|
Huber Additive Models for Non-stationary Time Series Analysis
|
https://github.com/xianruizhong/SpHAM
| null | 3 | 2.75 |
Poster
|
4;2;3;2
|
2;0;2;3
|
null | null |
2022
| 1.25 | null | null | 0 | null | null | null |
1;2;1;1
| null | null | null |
MBRL;Model-based Reinforcement Learning;Ensemble;Dynamics;Neural Network;Reinforcement Learning
| null | 1.5 | null | null |
iclr
| -0.333333 | 0.333333 | null |
main
| 1.5 |
1;1;1;3
|
1;1;4;3
| null |
Model-based Reinforcement Learning with Ensembled Model-value Expansion
| null | null | 2.25 | 4.25 |
Withdraw
|
5;4;4;4
|
1;2;1;2
|
null |
CISPA Helmholtz Center for Information Security; Max Planck Institute for Informatics
|
2022
| 2.4 |
https://iclr.cc/virtual/2022/poster/7073; None
| null | 0 | null | null | null |
2;2;3;2;3
| null |
Jonas Fischer, Rebekka Burkholz
|
https://iclr.cc/virtual/2022/poster/7073
|
lottery tickets;ground truth;planting;LTH
| null | 2.6 | null |
https://openreview.net/forum?id=9n9c8sf0xm
|
iclr
| 0.408248 | 1 | null |
main
| 5.6 |
5;5;6;6;6
|
3;3;4;4;4
|
https://iclr.cc/virtual/2022/poster/7073
|
Plant 'n' Seek: Can You Find the Winning Ticket?
|
www.github.com/RelationalML/PlantNSeek
| null | 3.6 | 3.2 |
Poster
|
3;3;3;3;4
|
2;2;4;2;3
|
null |
School of Computing, KAIST
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6487; None
| null | 0 | null | null | null |
2;3;3;3
| null |
Donggyun Kim, Seongwoong Cho, Wonkwang Lee, Seunghoon Hong
|
https://iclr.cc/virtual/2022/poster/6487
|
stochastic processes;neural processes;multi-task learning;incomplete data
| null | 2.75 | null |
https://openreview.net/forum?id=9otKVlgrpZG
|
iclr
| -0.973329 | 0.927173 | null |
main
| 6.25 |
5;6;6;8
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6487
|
Multi-Task Processes
|
https://github.com/GitGyun/multi_task_neural_processes
| null | 3.25 | 4 |
Poster
|
5;4;4;3
|
3;3;2;3
|
null |
OnePlanet Research Center, imec-the Netherlands, Wageningen, Netherlands; Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; Google Research, San Francisco, CA, USA
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6910; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Gianluigi Silvestri, Emily Fertig, Dave Moore, Luca Ambrogioni
|
https://iclr.cc/virtual/2022/poster/6910
|
Normalizing Flows;Probabilistic model;Probabilistic programming;Generative modeling;Variational Inference
| null | 3 | null |
https://openreview.net/forum?id=9pEJSVfDbba
|
iclr
| 0.57735 | 0.57735 | null |
main
| 7 |
6;6;8;8
|
3;3;4;3
|
https://iclr.cc/virtual/2022/poster/6910
|
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling
| null | null | 3.25 | 3.75 |
Poster
|
4;3;4;4
|
3;3;3;3
|
null |
Under double-blind review
|
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
Chinese Word Segmentation;Knowledge Distillation;Decoding
| null | 2.25 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
3;2;3;3
| null |
Green CWS: Extreme Distillation and Efficient Decode Method Towards Industrial Application
| null | null | 2.75 | 3.5 |
Withdraw
|
4;4;3;3
|
3;2;2;2
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null | null | null | 2.75 | null | null |
iclr
| -0.816497 | 0.522233 | null |
main
| 3.75 |
3;3;3;6
|
2;3;4;4
| null |
Towards Understanding Data Values: Empirical Results on Synthetic Data
| null | null | 3.25 | 4 |
Reject
|
4;5;4;3
|
3;3;2;3
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
2;1;2;2
| null | null | null |
systematic generalization;meaningful learning;inductive learning;deductive learning;data augmentation
| null | 2 | null | null |
iclr
| -0.662266 | -1 | null |
main
| 4.5 |
3;5;5;5
|
4;3;3;3
| null |
From SCAN to Real Data: Systematic Generalization via Meaningful Learning
| null | null | 3.25 | 3.75 |
Reject
|
5;4;4;2
|
1;2;3;2
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
2;1;2;2
| null | null | null |
transformers;multi-task learning;image classification;video;audio;co-training
| null | 2 | null | null |
iclr
| -0.57735 | 0 | null |
main
| 4 |
3;3;5;5
|
2;3;2;3
| null |
PolyViT: Co-training Vision Transformers on Images, Videos and Audio
| null | null | 2.5 | 4.25 |
Withdraw
|
4;5;4;4
|
2;2;2;2
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null |
deep reinforcement learning;policy gradient;risk-sensitive;ai safety
| null | 2.25 | null | null |
iclr
| -0.904534 | 0.57735 | null |
main
| 5.5 |
5;5;6;6
|
3;2;3;3
| null |
A Risk-Sensitive Policy Gradient Method
| null | null | 2.75 | 3.25 |
Reject
|
4;4;2;3
|
2;2;2;3
|
null | null |
2022
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Reinforcement learning;policy optimization;policy gradient;sample complexity
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 0 | null | null | null |
A general sample complexity analysis of vanilla policy gradient
| null | null | 0 | 0 |
Withdraw
| null | null |
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
2;3;3
| null | null | null |
Deep reinforcement learning;intrinsic motivations;autonomous learning;social learning
| null | 2.666667 | null | null |
iclr
| -0.802955 | 0.993399 | null |
main
| 5.333333 |
3;5;8
|
2;3;4
| null |
Help Me Explore: Minimal Social Interventions for Graph-Based Autotelic Agents
| null | null | 3 | 3.333333 |
Reject
|
4;3;3
|
2;3;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;2;3;3
| null | null | null |
Deep Learning;Combinatorial Optimization Problem
| null | 2.5 | null | null |
iclr
| 0.57735 | 0.904534 | null |
main
| 4.5 |
3;3;6;6
|
2;2;4;3
| null |
Generative Adversarial Training for Neural Combinatorial Optimization Models
| null | null | 2.75 | 3.75 |
Reject
|
4;3;4;4
|
2;2;3;3
|
null |
Department of Informatics & Munich Data Science Institute, Technical University Munich
|
2022
| 2.666667 |
https://iclr.cc/virtual/2022/poster/7113; None
| null | 0 | null | null | null |
2;3;3
| null |
Bertrand Charpentier, Simon Kibler, Stephan Günnemann
|
https://iclr.cc/virtual/2022/poster/7113
|
DAG;Differentiable;Sampling;Probabilistic model
| null | 1.666667 | null |
https://openreview.net/forum?id=9wOQOgNe-w
|
iclr
| -1 | 1 | null |
main
| 6 |
5;5;8
|
3;3;4
|
https://iclr.cc/virtual/2022/poster/7113
|
Differentiable DAG Sampling
| null | null | 3.333333 | 3.666667 |
Poster
|
4;4;3
|
0;2;3
|
null |
Cornell University
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6507; None
| null | 0 | null | null | null |
2;3;3;3
| null |
Johan Bjorck, Carla Gomes, Kilian Weinberger
|
https://iclr.cc/virtual/2022/poster/6507
|
reinforcement learning;continuous control
| null | 3 | null |
https://openreview.net/forum?id=9xhgmsNVHu
|
iclr
| 0.57735 | -0.57735 | null |
main
| 7 |
6;6;6;10
|
4;3;4;3
|
https://iclr.cc/virtual/2022/poster/6507
|
Is High Variance Unavoidable in RL? A Case Study in Continuous Control
| null | null | 3.5 | 3.5 |
Poster
|
3;3;4;4
|
4;2;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;3
| null | null | null |
Monte Carlo;sampling;rejection sampling;Energy-Based Models;EBMs;controlled text generation;language models
| null | 1.666667 | null | null |
iclr
| -0.755929 | 0.188982 | null |
main
| 4 |
1;5;6
|
3;2;4
| null |
Sampling from Discrete Energy-Based Models with Quality/Efficiency Trade-offs
| null | null | 3 | 4 |
Reject
|
5;3;4
|
0;2;3
|
null |
Department of Mathematics and Department of Statistics, UCLA, CA, USA; Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany; Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/7080; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Johannes Müller, Guido Montufar
|
https://iclr.cc/virtual/2022/poster/7080
|
POMDPs;Memoryless Policies;Critical points;State-action frequencies;Algebraic degree
| null | 0.75 | null |
https://openreview.net/forum?id=A05I5IvrdL-
|
iclr
| 0 | 0.57735 | null |
main
| 7 |
6;6;8;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/7080
|
The Geometry of Memoryless Stochastic Policy Optimization in Infinite-Horizon POMDPs
| null | null | 3.75 | 2.5 |
Poster
|
2;3;3;2
|
3;0;0;0
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;2;2;2
| null | null | null |
POI entity matching;POI entity embedding;transformer-based model;POI-Transformers
| null | 2 | null | null |
iclr
| 0.870388 | 0.927173 | null |
main
| 4 |
1;5;5;5
|
1;4;3;3
| null |
POI-Transformers: POI Entity Matching through POI Embeddings by Incorporating Semantic and Geographic Information
| null | null | 2.75 | 3.25 |
Withdraw
|
2;3;4;4
|
1;3;2;2
|
null | null |
2022
| 3.5 |
https://iclr.cc/virtual/2022/poster/6485; None
| null | 0 | null | null | null |
4;3;4;3
| null |
Jiechao Guan, Zhiwu Lu
|
https://iclr.cc/virtual/2022/poster/6485
| null | null | 0 | null |
https://openreview.net/forum?id=A3HHaEdqAJL
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8;8
|
4;3;3;4
|
https://iclr.cc/virtual/2022/poster/6485
|
Task Relatedness-Based Generalization Bounds for Meta Learning
| null | null | 3.5 | 2.25 |
Spotlight
|
3;3;2;1
| null |
null | null |
2022
| 1.666667 | null | null | 0 | null | null | null |
1;2;2
| null | null | null |
Attention;Brain-Computer Interface (BCI);Electroencephalography (EEG);Convolutional Neural Networks (CNN);Motor Imagery (MI);Recurrent Neural Networks (RNN);grad-CAM
| null | 1 | null | null |
iclr
| -1 | -0.5 | null |
main
| 1.666667 |
1;1;3
|
2;3;2
| null |
Deep convolutional recurrent neural network for short-interval EEG motor imagery classification
| null | null | 2.333333 | 4 |
Reject
|
5;5;2
|
1;0;2
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;2;2;2
| null | null | null |
few-shot learning;instance segmentation;weakly supervised learning
| null | 2.25 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
3;2;3;2
| null |
FoxInst: A Frustratingly Simple Baseline for Weakly Few-shot Instance Segmentation
| null | null | 2.5 | 4.25 |
Withdraw
|
5;4;3;5
|
2;2;3;2
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
3;2;2
| null | null | null |
robust learning;label noise;divide-and-conquer
| null | 2.333333 | null | null |
iclr
| -1 | 0.5 | null |
main
| 3.666667 |
3;3;5
|
3;2;3
| null |
Robust Learning with Adaptive Sample Credibility Modeling
| null | null | 2.666667 | 4.333333 |
Withdraw
|
5;5;3
|
3;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;3;2
| null | null | null |
sequential modeling;multi-head attention;TCN;Transformer
| null | 1.666667 | null | null |
iclr
| 0.866025 | 1 | null |
main
| 3 |
1;3;5
|
1;2;3
| null |
TransTCN: An Attention-based TCN Framework for Sequential Modeling
| null | null | 2 | 3.333333 |
Withdraw
|
3;3;4
|
1;2;2
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6076; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Yao-Hung Hubert Tsai, Tianqin Li, Martin Ma, Han Zhao, Kun Zhang, Louis-Philippe Morency, Ruslan Salakhutdinov
|
https://iclr.cc/virtual/2022/poster/6076
|
Contrastive Learning;Conditional Sampling;Kernel methods
| null | 2.75 | null |
https://openreview.net/forum?id=AAJLBoGt0XM
|
iclr
| 0 | 0.4842 | null |
main
| 6.25 |
5;6;6;8
|
3;4;2;4
|
https://iclr.cc/virtual/2022/poster/6076
|
Conditional Contrastive Learning with Kernel
| null | null | 3.25 | 4 |
Poster
|
4;4;4;4
|
3;2;3;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
3;1;3;3
| null | null | null |
Mutli-agent Credit Assignment;Mutli-agent Joint Q-learning
| null | 2.25 | null | null |
iclr
| 0.19245 | 0.946729 | null |
main
| 4.25 |
3;3;5;6
|
1;2;3;4
| null |
Learning Explicit Credit Assignment for Multi-agent Joint Q-learning
| null | null | 2.5 | 3.5 |
Reject
|
4;3;3;4
|
2;2;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null |
Scaling laws;Neural Machine Translation
| null | 2.5 | null | null |
iclr
| 0 | 0.866025 | null |
main
| 5 |
3;5;6;6
|
2;3;3;4
| null |
Data Scaling Laws in NMT: The Effect of Noise and Architecture
| null | null | 3 | 3.75 |
Reject
|
4;3;4;4
|
2;2;3;3
|
null | null |
2022
| 1.8 | null | null | 0 | null | null | null |
1;2;3;1;2
| null | null | null | null | null | 2.2 | null | null |
iclr
| -0.102062 | 0.875 | null |
main
| 3.8 |
1;3;5;5;5
|
2;3;3;3;3
| null |
On Neurons Invariant to Sentence Structural Changes in Neural Machine Translation
| null | null | 2.8 | 3.6 |
Withdraw
|
4;3;3;4;4
|
2;2;3;2;2
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null |
weakly supervised learning;generative models;image segmentation
| null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
3;5;6;6
|
3;3;3;3
| null |
Resolving label uncertainty with implicit generative models
| null | null | 3 | 4 |
Reject
|
4;4;4;4
|
2;0;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Model Fusion;Cross-layer Alignment;Knowledge Distillation;Model Compression;Model Transfer
| null | 2.25 | null | null |
iclr
| 0.707107 | 0 | null |
main
| 4 |
3;3;5;5
|
3;3;3;3
| null |
Model Fusion of Heterogeneous Neural Networks via Cross-Layer Alignment
| null | null | 3 | 4 |
Reject
|
4;3;4;5
|
2;2;2;3
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6758; None
| null | 0 | null | null | null |
3;2;3;4
| null |
Milad Alizadeh, Shyam Tailor, Luisa Zintgraf, Joost van Amersfoort, Sebastian Farquhar, Nicholas Lane, Yarin Gal
|
https://iclr.cc/virtual/2022/poster/6758
|
pruning;lottery ticket hypothesis;pruning at initialization
| null | 3.25 | null |
https://openreview.net/forum?id=AIgn9uwfcD1
|
iclr
| 0.662266 | 0.229416 | null |
main
| 6.25 |
5;6;6;8
|
4;3;3;4
|
https://iclr.cc/virtual/2022/poster/6758
|
Prospect Pruning: Finding Trainable Weights at Initialization using Meta-Gradients
| null | null | 3.5 | 3.75 |
Poster
|
3;4;4;4
|
3;3;3;4
|
null |
Microsoft Research; University of Central Florida
|
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/7105; None
| null | 0 | null | null | null |
3;3;3;4
| null |
Wei Fan, Shun Zheng, Xiaohan Yi, Wei Cao, Yanjie Fu, Jiang Bian, Tie-Yan Liu
|
https://iclr.cc/virtual/2022/poster/7105
| null | null | 3.25 | null |
https://openreview.net/forum?id=AJAR-JgNw__
|
iclr
| 0.57735 | -0.57735 | null |
main
| 7.5 |
6;8;8;8
|
4;3;3;4
|
https://iclr.cc/virtual/2022/poster/7105
|
DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting
|
https://github.com/weifantt/DEPTS
| null | 3.5 | 3.5 |
Spotlight
|
3;3;4;4
|
3;3;3;4
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
3;2;3;2
| null | null | null |
Bayesian Learning;Probabilistic Methods;Uncertainty Quantification;Reinforcement Learning;Deep Q-learning
| null | 2.25 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
2;4;3;2
| null |
Analytically Tractable Bayesian Deep Q-Learning
| null | null | 2.75 | 2.5 |
Reject
|
3;2;3;2
|
2;2;2;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null | null | null | 1 | null | null |
iclr
| -0.688247 | 0.324443 | null |
main
| 4.75 |
3;5;5;6
|
3;3;2;4
| null |
Text-Driven Image Manipulation via Semantic-Aware Knowledge Transfer
| null | null | 3 | 3.5 |
Reject
|
4;4;3;3
|
2;0;0;2
|
null |
University of Cambridge, UK; Cambridge Centre for AI in Medicine, UK; The Alan Turing Institute, UK; University of Cambridge, UK; ETH AI Center, Switzerland; ETH Zürich, Switzerland; MPI for Intelligent Systems, Tübingen, Germany
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/7015; None
| null | 0 | null | null | null |
2;3;2;3
| null |
Alizée Pace, Alex Chan, Mihaela van der Schaar
|
https://iclr.cc/virtual/2022/poster/7015
|
Imitation Learning;Interpretable ML;Clinical Decision Support;Sequential Decision-Making
| null | 3 | null |
https://openreview.net/forum?id=AJsI-ymaKn_
|
iclr
| -1 | 0.870388 | null |
main
| 7.25 |
5;8;8;8
|
2;4;4;3
|
https://iclr.cc/virtual/2022/poster/7015
|
POETREE: Interpretable Policy Learning with Adaptive Decision Trees
| null | null | 3.25 | 3.25 |
Spotlight
|
4;3;3;3
|
3;3;3;3
|
null |
Paper under double-blind review
|
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null | null | null | 2.75 | null | null |
iclr
| 0.942809 | 0.288675 | null |
main
| 5 |
3;5;6;6
|
3;2;4;3
| null |
Towards Robust Point Cloud Models with Context-Consistency Network and Adaptive Augmentation
| null | null | 3 | 3.75 |
Withdraw
|
3;4;4;4
|
2;3;3;3
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;2;2;2
| null | null | null |
Adversarial attack;Physical Adversarial Examples;object detection
| null | 2.5 | null | null |
iclr
| -0.57735 | 0 | null |
main
| 4.5 |
3;5;5;5
|
3;3;3;3
| null |
Generating Realistic Physical Adversarial Examplesby Patch Transformer Network
| null | null | 3 | 3.5 |
Withdraw
|
4;4;3;3
|
2;3;2;3
|
null |
Huawei Noah’s Ark Lab; Shanghai Jiao Tong University
|
2022
| 2.6 |
https://iclr.cc/virtual/2022/poster/6091; None
| null | 0 | null | null | null |
3;2;3;3;2
| null |
Xiaojiang Yang, Yi Wang, Jiacheng Sun, Xing Zhang, Shifeng Zhang, Zhenguo Li, Junchi Yan
|
https://iclr.cc/virtual/2022/poster/6091
|
Independent Component Analysis;Nonlinear ICA;Identifiability
| null | 2.4 | null |
https://openreview.net/forum?id=AMpki9kp8Cn
|
iclr
| 0 | 0 | null |
main
| 6 |
6;6;6;6;6
|
4;3;3;4;3
|
https://iclr.cc/virtual/2022/poster/6091
|
Nonlinear ICA Using Volume-Preserving Transformations
| null | null | 3.4 | 3.2 |
Poster
|
3;4;3;3;3
|
3;2;3;2;2
|
null | null |
2022
| 1.5 | null | null | 0 | null | null | null |
1;1;2;2
| null | null | null |
Green's function;partial differential equation;boundary integral;neural network
| null | 1 | null | null |
iclr
| -0.522233 | -0.774597 | null |
main
| 2.5 |
1;3;3;3
|
4;2;1;3
| null |
A neural network framework for learning Green's function
| null | null | 2.5 | 4.25 |
Reject
|
5;4;5;3
|
0;1;2;1
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6654; None
| null | 0 | null | null | null |
2;3;4;3
| null |
Aviral Kumar, Joey Hong, Anikait Singh, Sergey Levine
|
https://iclr.cc/virtual/2022/poster/6654
|
offline RL
| null | 2.75 | null |
https://openreview.net/forum?id=AP1MKT37rJ
|
iclr
| 0.301511 | 0 | null |
main
| 7 |
6;6;8;8
|
3;4;4;3
|
https://iclr.cc/virtual/2022/poster/6654
|
Should I Run Offline Reinforcement Learning or Behavioral Cloning?
| null | null | 3.5 | 3.75 |
Poster
|
3;4;3;5
|
2;3;3;3
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
2;2;3
| null | null | null |
Federated Learning;Robust Mean Estimator;Secure Aggregation
| null | 1.666667 | null | null |
iclr
| 0.5 | 1 | null |
main
| 4 |
3;3;6
|
2;2;3
| null |
Secure Byzantine-Robust Federated Learning with Dimension-free Error
| null | null | 2.333333 | 3.666667 |
Withdraw
|
3;4;4
|
3;2;0
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2
| null | null | null | null | null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3
|
2;2;2
| null |
PRNet: A Progressive Regression Network for No-Reference User-Generated-Content Video Quality Assessment
| null | null | 2 | 4 |
Withdraw
|
3;5;4
|
2;2;2
|
null | null |
2022
| 1.333333 | null | null | 0 | null | null | null |
1;1;2
| null | null | null |
stepped sampler;LSTM;video detection;psychology;human memory rule
| null | 1.666667 | null | null |
iclr
| 0 | 1 | null |
main
| 2.333333 |
1;1;5
|
1;1;2
| null |
A stepped sampling method for video detection using LSTM
| null | null | 1.333333 | 5 |
Reject
|
5;5;5
|
1;1;3
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
3;2;3;4
| null | null | null | null | null | 3.25 | null | null |
iclr
| 0.942809 | 0.408248 | null |
main
| 6 |
5;5;6;8
|
4;3;3;4
| null |
Collaboration of Experts: Achieving 80% Top-1 Accuracy on ImageNet with 100M FLOPs
| null | null | 3.5 | 3.5 |
Reject
|
3;3;3;5
|
3;3;3;4
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
interpretability;semantic role relation table;supporting facts
| null | 2 | null | null |
iclr
| -0.870388 | 0.852803 | null |
main
| 2.5 |
1;1;3;5
|
1;2;2;3
| null |
Interpretable Semantic Role Relation Table for Supporting Facts Recognition of Reading Comprehension
| null | null | 2 | 3.75 |
Reject
|
4;4;4;3
|
1;2;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
3;2;2;3
| null | null | null |
Federated Learning;Dynamic Sparse Training;Communication-efficient Personalized Federated Learning
| null | 2.25 | null | null |
iclr
| -0.57735 | 0.57735 | null |
main
| 5.5 |
5;5;6;6
|
2;3;3;3
| null |
On Heterogeneously Distributed Data, Sparsity Matters
| null | null | 2.75 | 3.25 |
Reject
|
4;3;3;3
|
2;2;2;3
|
null | null |
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6434; None
| null | 0 | null | null | null |
2;3;3;2
| null |
Mingyue Tang, Pan Li, Carl Yang
|
https://iclr.cc/virtual/2022/poster/6434
|
graph representation learning;unsupervised learning;autoencoder;wasserstein distance
| null | 2.75 | null |
https://openreview.net/forum?id=ATUh28lnSuW
|
iclr
| 0.132453 | -0.688247 | null |
main
| 6.25 |
5;6;6;8
|
4;4;3;3
|
https://iclr.cc/virtual/2022/poster/6434
|
Graph Auto-Encoder via Neighborhood Wasserstein Reconstruction
| null | null | 3.5 | 3.75 |
Poster
|
4;3;4;4
|
2;3;3;3
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6459; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Rahma Chaabouni, Florian Strub, Florent Altché, Eugene Tarassov, Corentin Tallec, Elnaz Davoodi, Kory Mathewson, Olivier Tieleman, Angeliki Lazaridou, Bilal Piot
|
https://iclr.cc/virtual/2022/poster/6459
|
emergent communication;multi-agent reinforcement learning;representation learning
| null | 4 | null |
https://openreview.net/forum?id=AUGBfDIV9rL
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8;8
|
4;4;3;4
|
https://iclr.cc/virtual/2022/poster/6459
|
Emergent Communication at Scale
| null | null | 3.75 | 3.5 |
Spotlight
|
3;4;4;3
|
4;4;4;4
|
null | null |
2022
| 1.666667 | null | null | 0 | null | null | null |
1;2;2
| null | null | null |
Tmean,Byzantine attack,Byzantine-resilient
| null | 1.666667 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3
|
2;3;3
| null |
FEDERATED LEARNING FRAMEWORK BASED ON TRIMMED MEAN AGGREGATION RULES
| null | null | 2.666667 | 4.333333 |
Reject
|
4;5;4
|
1;2;2
|
null | null |
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6865; None
| null | 0 | null | null | null |
2;3;3;3
| null |
Moise Blanchard, Mohammed Amine Bennouna
|
https://iclr.cc/virtual/2022/poster/6865
| null | null | 0.5 | null |
https://openreview.net/forum?id=AV8FPoMTTa
|
iclr
| -0.333333 | 0.333333 | null |
main
| 6.5 |
6;6;6;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/6865
|
Shallow and Deep Networks are Near-Optimal Approximators of Korobov Functions
| null | null | 3.75 | 3.25 |
Poster
|
3;3;4;3
|
2;0;0;0
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
3;1;4;4
| null | null | null |
Transformer;Knowledge Distillation;Self-supervised Learning
| null | 2.5 | null | null |
iclr
| 0 | 0.57735 | null |
main
| 5.5 |
3;3;8;8
|
2;4;4;4
| null |
Self-supervised Models are Good Teaching Assistants for Vision Transformers
| null | null | 3.5 | 4.5 |
Withdraw
|
5;4;5;4
|
2;1;4;3
|
null |
Paper under double-blind review
|
2022
| 2.666667 | null | null | 0 | null | null | null |
2;2;4
| null | null | null |
chaos;dendritic computation;piecewise linear;recurrent neural network;variational inference;interpretability;tractability;basis expansion
| null | 2.333333 | null | null |
iclr
| 0 | 0.327327 | null |
main
| 4.666667 |
3;5;6
|
3;2;4
| null |
Tractable Dendritic RNNs for Identifying Unknown Nonlinear Dynamical Systems
| null | null | 3 | 4 |
Reject
|
4;4;4
|
1;2;4
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/5926; None
| null | 0 | null | null | null |
3;3;3
| null |
Dacheng Yin, Xuanchi Ren, Chong Luo, Yuwang Wang, Zhiwei Xiong, Wenjun Zeng
|
https://iclr.cc/virtual/2022/poster/5926
|
Content-style decomposed representation;Zero-shot voice conversion;Style transfer;Transformer;Unsupervised learning
| null | 2 | null |
https://openreview.net/forum?id=AXWygMvuT6Q
|
iclr
| 1 | 1 | null |
main
| 6.666667 |
6;6;8
|
3;3;4
|
https://iclr.cc/virtual/2022/poster/5926
|
Retriever: Learning Content-Style Representation as a Token-Level Bipartite Graph
| null | null | 3.333333 | 3.333333 |
Poster
|
3;3;4
|
0;2;4
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.