pdf
stringlengths 49
199
⌀ | aff
stringlengths 1
1.36k
⌀ | year
stringclasses 19
values | technical_novelty_avg
float64 0
4
⌀ | video
stringlengths 21
47
⌀ | doi
stringlengths 31
63
⌀ | presentation_avg
float64 0
4
⌀ | proceeding
stringlengths 43
129
⌀ | presentation
stringclasses 796
values | sess
stringclasses 576
values | technical_novelty
stringclasses 700
values | arxiv
stringlengths 10
16
⌀ | author
stringlengths 1
1.96k
⌀ | site
stringlengths 37
191
⌀ | keywords
stringlengths 2
582
⌀ | oa
stringlengths 86
198
⌀ | empirical_novelty_avg
float64 0
4
⌀ | poster
stringlengths 57
95
⌀ | openreview
stringlengths 41
45
⌀ | conference
stringclasses 11
values | corr_rating_confidence
float64 -1
1
⌀ | corr_rating_correctness
float64 -1
1
⌀ | project
stringlengths 1
162
⌀ | track
stringclasses 3
values | rating_avg
float64 0
10
⌀ | rating
stringlengths 1
17
⌀ | correctness
stringclasses 809
values | slides
stringlengths 32
41
⌀ | title
stringlengths 2
192
⌀ | github
stringlengths 3
165
⌀ | authors
stringlengths 7
161
⌀ | correctness_avg
float64 0
5
⌀ | confidence_avg
float64 0
5
⌀ | status
stringclasses 22
values | confidence
stringlengths 1
17
⌀ | empirical_novelty
stringclasses 763
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
2022
| 1.5 | null | null | 0 | null | null | null |
2;1;1;2
| null | null | null |
AI in finance;micro-segmentation;personality traits;explainability;recurrent neural networks;trajectory clustering;attractors
| null | 1.75 | null | null |
iclr
| 0 | 0.333333 | null |
main
| 2.5 |
1;3;3;3
|
2;2;3;2
| null |
Discovering Novel Customer Features with Recurrent Neural Networks for Personality Based Financial Services
| null | null | 2.25 | 4 |
Withdraw
|
4;4;4;4
|
2;1;2;2
|
null | null |
2022
| 1.5 | null | null | 0 | null | null | null |
1;1;2;2
| null | null | null |
generalization;ensembling;algorithmic stability
| null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
2;2;2;3
| null |
Image Functions In Neural Networks: A Perspective On Generalization
| null | null | 2.25 | 3 |
Reject
|
3;2;4;3
|
1;2;3;2
|
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
2;3;3
| null | null | null |
channel pruning;knowledge distillation
| null | 2.333333 | null | null |
iclr
| 0.5 | 0 | null |
main
| 4.333333 |
3;5;5
|
3;3;3
| null |
Automated Channel Pruning with Learned Importance
| null | null | 3 | 3.666667 |
Reject
|
3;5;3
|
2;2;3
|
null |
Facebook AI Research; Center for Data Science, Peking University; University of California, Berkeley; University of Washington; Key Laboratory of Machine Perception, MOE, School of Artificial Intelligence, Peking University, International Center for Machine Learning Research, Peking University
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/7122; None
| null | 0 | null | null | null |
3;2;3;3
| null |
Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric, Liwei Wang, Simon Du
|
https://iclr.cc/virtual/2022/poster/7122
|
bandits;lower bound;reinforcement learning theory
| null | 1 | null |
https://openreview.net/forum?id=AcrlgZ9BKed
|
iclr
| -0.57735 | 0.57735 | null |
main
| 7 |
6;6;8;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/7122
|
A Reduction-Based Framework for Conservative Bandits and Reinforcement Learning
| null | null | 3.75 | 3.75 |
Poster
|
4;4;4;3
|
1;0;0;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null |
Metric learning;few-shot learning;image classification
| null | 1.75 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
3;2;2;2
| null |
Assessing two novel distance-based loss functions for few-shot image classification
| null | null | 2.25 | 4 |
Reject
|
3;5;4;4
|
2;2;2;1
|
null | null |
2022
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Complementary-label learning;Few-shot learning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 0 | null | null | null |
Learning with Few-Shot Complementary Labels
| null | null | 0 | 0 |
Withdraw
| null | null |
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;3;2
| null | null | null |
Distillation;Large models;Efficient inference
| null | 2.5 | null | null |
iclr
| -0.408248 | 0.942809 | null |
main
| 5 |
3;5;6;6
|
2;3;3;3
| null |
When in Doubt, Summon the Titans: A Framework for Efficient Inference with Large Models
| null | null | 2.75 | 3.5 |
Reject
|
4;3;3;4
|
2;2;3;3
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/5963; None
| null | 0 | null | null | null |
2;3;3;4
| null |
Yulun Zhang, Huan Wang, Can Qin, Yun Fu
|
https://iclr.cc/virtual/2022/poster/5963
|
image super-resolution
| null | 3 | null |
https://openreview.net/forum?id=AjGC97Aofee
|
iclr
| 0.555556 | 0.485662 | null |
main
| 6.75 |
5;6;8;8
|
3;1;4;3
|
https://iclr.cc/virtual/2022/poster/5963
|
Learning Efficient Image Super-Resolution Networks via Structure-Regularized Pruning
| null | null | 2.75 | 4.25 |
Poster
|
4;4;4;5
|
3;2;3;4
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
pretraining;active learning;alignment;safety
| null | 2.5 | null | null |
iclr
| -0.518321 | 0.366508 | null |
main
| 4.75 |
3;3;5;8
|
4;3;3;4
| null |
Pretrained models are active learners
| null | null | 3.5 | 4 |
Reject
|
4;4;5;3
|
2;2;3;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
3;3;2;2
| null | null | null |
RUDDER;reinforcement learning;reward redistribution;return decomposition;delayed reward;sparse reward;episodic reward;minecraft
| null | 2.75 | null | null |
iclr
| -0.471405 | 0.866025 | null |
main
| 5 |
3;5;6;6
|
2;3;4;3
| null |
Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution
| null | null | 3 | 3.75 |
Reject
|
4;4;3;4
|
3;3;3;2
|
null | null |
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6242; None
| null | 0 | null | null | null |
3;3;3;2
| null |
Fangyu Liu, Yunlong Jiao, Jordan Massiah, Emine Yilmaz, Serhii Havrylov
|
https://iclr.cc/virtual/2022/poster/6242
|
self-supervised learning;sentence embeddings;sentence representations;knowledge distillation
| null | 2.75 | null |
https://openreview.net/forum?id=AmUhwTOHgm
|
iclr
| 0.57735 | 0.904534 | null |
main
| 5.5 |
5;5;6;6
|
2;3;4;4
|
https://iclr.cc/virtual/2022/poster/6242
|
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations
| null | null | 3.25 | 3.75 |
Poster
|
3;4;4;4
|
2;3;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
3;2;2;2
| null | null | null | null | null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
3;2;3;3
| null |
AA-PINN: ATTENTION AUGMENTED PHYSICS INFORMED NEURAL NETWORKS
| null | null | 2.75 | 3.5 |
Reject
|
3;4;4;3
|
3;1;2;2
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
3;2;3;2
| null | null | null |
Adversarial Example;Adversarial Attack;Evasion Attack;Defense;Adversarial Training;Security in Machine Learning
| null | 1.5 | null | null |
iclr
| 0.333333 | 0.333333 | null |
main
| 4.5 |
3;5;5;5
|
3;3;4;3
| null |
Resilience to Multiple Attacks via Adversarially Trained MIMO Ensembles
| null | null | 3.25 | 4.25 |
Reject
|
4;4;4;5
|
2;0;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2
| null | null | null |
Magnitude pruning;Sparsity;IMP;Model Compression
| null | 3 | null | null |
iclr
| -1 | 0 | null |
main
| 5.333333 |
5;5;6
|
3;3;3
| null |
Back to Basics: Efficient Network Compression via IMP
| null | null | 3 | 3.666667 |
Reject
|
4;4;3
|
2;3;4
|
null | null |
2022
| 2.4 | null | null | 0 | null | null | null |
2;1;3;3;3
| null | null | null |
Federated Learning;Personalized Federated Learning
| null | 2 | null | null |
iclr
| -0.842701 | 0.589768 | null |
main
| 4.6 |
3;3;5;6;6
|
2;3;3;3;3
| null |
Agnostic Personalized Federated Learning with Kernel Factorization
| null | null | 2.8 | 3.6 |
Reject
|
4;4;4;3;3
|
2;1;2;3;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;3;2
| null | null | null |
Reinforcement learning;hindsight experience replay;counterintuitive prioritization
| null | 2.5 | null | null |
iclr
| -0.522233 | 1 | null |
main
| 3.5 |
1;3;5;5
|
2;3;4;4
| null |
Bootstrapped Hindsight Experience replay with Counterintuitive Prioritization
| null | null | 3.25 | 3.5 |
Reject
|
4;4;4;2
|
2;3;3;2
|
null | null |
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/6116; None
| null | 0 | null | null | null |
3;3;3;4
| null |
Kyuhong Shim, Jungwook Choi, Wonyong Sung
|
https://iclr.cc/virtual/2022/poster/6116
|
transformer;self attention;speech recognition
| null | 3 | null |
https://openreview.net/forum?id=AvcfxqRy4Y
|
iclr
| 0.333333 | 0.57735 | null |
main
| 7.5 |
6;8;8;8
|
3;4;3;4
|
https://iclr.cc/virtual/2022/poster/6116
|
Understanding the Role of Self Attention for Efficient Speech Recognition
| null | null | 3.5 | 4.25 |
Spotlight
|
4;5;4;4
|
2;3;3;4
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6466; None
| null | 0 | null | null | null |
4;2;3;3
| null |
David Acuna, Marc T Law, Guojun Zhang, Sanja Fidler
|
https://iclr.cc/virtual/2022/poster/6466
|
Domain Adversarial Training;Domain Adaptation;Neural Networks Optimization;Game Theory
| null | 3.25 | null |
https://openreview.net/forum?id=AwgtcUAhBq
|
iclr
| -0.688247 | 0.57735 | null |
main
| 7 |
6;6;8;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/6466
|
Domain Adversarial Training: A Game Perspective
| null | null | 3.75 | 3.25 |
Poster
|
5;3;3;2
|
4;3;3;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
1;3;3;3
| null | null | null |
ML as a Service;Multi-label classifications;ML systems;adaptive learning
| null | 3 | null | null |
iclr
| -0.366508 | 0.994558 | null |
main
| 6.25 |
3;6;8;8
|
2;3;4;4
| null |
FrugalMCT: Efficient Online ML API Selection for Multi-Label Classification Tasks
| null | null | 3.25 | 3.5 |
Reject
|
4;3;3;4
|
1;3;4;4
|
null |
ExxonMobil Research and Engineering
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6522; None
| null | 0 | null | null | null |
3;3;3;3;3
| null |
Kuang-Hung Liu
|
https://iclr.cc/virtual/2022/poster/6522
|
Relational learning;psychology;unsupervised learning;variational inference;probabilistic graphical model.
| null | 2.8 | null |
https://openreview.net/forum?id=Az-7gJc6lpr
|
iclr
| -1 | 0 | null |
main
| 5.8 |
5;6;6;6;6
|
3;3;3;3;3
|
https://iclr.cc/virtual/2022/poster/6522
|
Relational Learning with Variational Bayes
| null | null | 3 | 3.2 |
Poster
|
4;3;3;3;3
|
3;3;3;2;3
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6271; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Satya Narayan Shukla, Benjamin M Marlin
|
https://iclr.cc/virtual/2022/poster/6271
|
irregular sampling;uncertainty;imputation;interpolation;multivariate time series;missing data;variational autoencoder
| null | 3 | null |
https://openreview.net/forum?id=Az7opqbQE-3
|
iclr
| 0.229416 | 0 | null |
main
| 6.25 |
5;6;6;8
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6271
|
Heteroscedastic Temporal Variational Autoencoder For Irregularly Sampled Time Series
| null | null | 4 | 3.5 |
Poster
|
4;3;3;4
|
3;3;3;3
|
null |
ETH Zürich, Switzerland; Imperial College London, UK
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/5907; None
| null | 0 | null | null | null |
2;3;3;4
| null |
Rahul Rade, Seyed-Mohsen Moosavi-Dezfooli
|
https://iclr.cc/virtual/2022/poster/5907
|
adversarial training;robustness
| null | 3.75 | null |
https://openreview.net/forum?id=Azh9QBQ4tR7
|
iclr
| 0.57735 | 0.57735 | null |
main
| 6.5 |
6;6;6;8
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/5907
|
Reducing Excessive Margin to Achieve a Better Accuracy vs. Robustness Trade-off
|
https://github.com/imrahulr/hat
| null | 3.5 | 4.5 |
Poster
|
4;5;4;5
|
3;4;4;4
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
3;3;3;3
| null | null | null |
Multi-Agent Reinforcement Learning;Collaboration
| null | 2.75 | null | null |
iclr
| -0.333333 | 0.333333 | null |
main
| 5.75 |
5;6;6;6
|
3;3;3;4
| null |
PMIC: Improving Multi-Agent Reinforcement Learning with Progressive Mutual Information Collaboration
| null | null | 3.25 | 3.75 |
Reject
|
4;4;3;4
|
3;2;3;3
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/5919; None
| null | 0 | null | null | null |
3;2;4
| null |
Shaojie Bai, Vladlen Koltun, Zico Kolter
|
https://iclr.cc/virtual/2022/poster/5919
|
Deep learning;Implicit models;Deep equilibrium models
| null | 4 | null |
https://openreview.net/forum?id=B0oHOwT5ENL
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8
|
4;3;4
|
https://iclr.cc/virtual/2022/poster/5919
|
Neural Deep Equilibrium Solvers
| null | null | 3.666667 | 4 |
Poster
|
4;4;4
|
4;4;4
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
2;1;2;2
| null | null | null |
Evolving Plasticity;Learning to learn
| null | 1.75 | null | null |
iclr
| 0 | 0 | null |
main
| 3.5 |
3;3;3;5
|
2;4;3;3
| null |
Do What Nature Did To Us: Evolving Plastic Recurrent Neural Networks For Generalized Tasks
| null | null | 3 | 4 |
Reject
|
4;4;4;4
|
1;1;3;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;2;3
| null | null | null | null | null | 2.25 | null | null |
iclr
| -0.870388 | 0.816497 |
Link provided in the abstract
|
main
| 4.25 |
3;3;5;6
|
2;3;3;4
| null |
IDENTIFYING CONCEALED OBJECTS FROM VIDEOS
| null | null | 3 | 3.75 |
Withdraw
|
5;4;3;3
|
2;2;2;3
|
null |
Northwestern University; University of Washington
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6392; None
| null | 0 | null | null | null |
2;3;4
| null |
Xingyu Wang, Sewoong Oh, Chang-Han Rhee
|
https://iclr.cc/virtual/2022/poster/6392
|
Stochastic Gradient Descent;SGD;Heavy-Tails;Generalization
| null | 2.666667 | null |
https://openreview.net/forum?id=B3Nde6lvab
|
iclr
| 0.944911 | 0 | null |
main
| 6.333333 |
5;6;8
|
3;3;3
|
https://iclr.cc/virtual/2022/poster/6392
|
Eliminating Sharp Minima from SGD with Truncated Heavy-tailed Noise
| null | null | 3 | 3.666667 |
Poster
|
3;3;5
|
2;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
noisy labels;regularization;label correction
| null | 2.5 | null | null |
iclr
| -0.333333 | -0.333333 | null |
main
| 4.5 |
3;5;5;5
|
3;3;2;3
| null |
Confidence Adaptive Regularization for Deep Learning with Noisy Labels
| null | null | 2.75 | 4.75 |
Withdraw
|
5;5;4;5
|
2;3;2;3
|
null |
Stanford University; Oregon State University; Google; Stanford University, Google
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/7006; None
| null | 0 | null | null | null |
2;2;3;3
| null |
Evani Radiya-Dixit, Sanghyun Hong, Nicholas Carlini, Florian Tramer
|
https://iclr.cc/virtual/2022/poster/7006
|
Poisoning attacks;adversarial examples;facial recognition;arms race;defenses
| null | 2.25 | null |
https://openreview.net/forum?id=B5XahNLmna
|
iclr
| -0.50052 | 0.050443 | null |
main
| 5.75 |
1;6;8;8
|
3;4;3;3
|
https://iclr.cc/virtual/2022/poster/7006
|
Data Poisoning Won’t Save You From Facial Recognition
| null | null | 3.25 | 4.25 |
Poster
|
5;4;3;5
|
2;2;2;3
|
null |
University of Waterloo, Microsoft; University of Waterloo, Vector Institute; University of Toronto, Vector Institute
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/7132; None
| null | 0 | null | null | null |
3;2;3;3
| null |
Guiliang Liu, Ashutosh Adhikari, Amir-massoud Farahmand, Pascal Poupart
|
https://iclr.cc/virtual/2022/poster/7132
|
Object Oriented Markov Decision Process;Reinforcement Learning;Model-Based Planning;Text-Based Games;Knowledge Extraction
| null | 3 | null |
https://openreview.net/forum?id=B6EIcyp-Rb7
|
iclr
| 0.544331 | 0.777778 | null |
main
| 6.75 |
5;6;8;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/7132
|
Learning Object-Oriented Dynamics for Planning from Text
| null | null | 3.75 | 3 |
Poster
|
3;2;4;3
|
3;3;3;3
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
2;3;4;3
| null | null | null |
inductive logic programming;logic reasoning;first-order logic;reinforcement learning;Monte Carlo tree search
| null | 2.5 | null | null |
iclr
| 0 | 0.816497 | null |
main
| 5.75 |
5;6;6;6
|
2;3;4;3
| null |
PRIMA: Planner-Reasoner Inside a Multi-task Reasoning Agent
| null | null | 3 | 3 |
Reject
|
3;3;3;3
|
2;3;3;2
|
null |
Georgia Institute of Technology; Microsoft
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6179; None
| null | 0 | null | null | null |
2;3;3;4
| null |
Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan Awadalla, Ruofei Zhang, Jianfeng Gao, Tuo Zhao
|
https://iclr.cc/virtual/2022/poster/6179
| null | null | 3.25 | null |
https://openreview.net/forum?id=B72HXs80q4
|
iclr
| 0 | 0.927173 | null |
main
| 6.25 |
5;6;6;8
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6179
|
Taming Sparsely Activated Transformer with Stochastic Experts
|
https://github.com/microsoft/Stochastic-Mixture-of-Experts
| null | 3.25 | 4 |
Poster
|
4;5;3;4
|
2;4;3;4
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null |
meta-learning;generalizability;dynamical systems
| null | 3.25 | null | null |
iclr
| -0.927173 | 0.688247 | null |
main
| 6.25 |
5;6;6;8
|
3;3;4;4
| null |
Meta-Learning Dynamics Forecasting Using Task Inference
| null | null | 3.5 | 3.75 |
Reject
|
4;4;4;3
|
3;4;3;3
|
null |
School of ECE, Purdue University
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6546; None
| null | 0 | null | null | null |
2;2;3;4
| null |
Sheikh Shams Azam, Seyyedali Hosseinalipour, Qiang Qiu, Christopher Brinton
|
https://iclr.cc/virtual/2022/poster/6546
|
Distributed Machine Learning;Federated Learning;Gradient Subspace;SGD
| null | 2.75 | null |
https://openreview.net/forum?id=B7ZbqNLDn-_
|
iclr
| -0.333333 | 0 | null |
main
| 7.25 |
5;8;8;8
|
3;3;3;3
|
https://iclr.cc/virtual/2022/poster/6546
|
Recycling Model Updates in Federated Learning: Are Gradient Subspaces Low-Rank?
| null | null | 3 | 3.75 |
Poster
|
4;3;4;4
|
2;3;2;4
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;2;3;3
| null | null | null |
architecture;compression;variable network;neural network design;deep learning
| null | 2 | null | null |
iclr
| -0.353281 | 0.526152 | null |
main
| 4.25 |
1;5;5;6
|
3;3;3;4
| null |
Triangular Dropout: Variable Network Width without Retraining
| null | null | 3.25 | 4.25 |
Reject
|
5;4;3;5
|
1;2;2;3
|
null |
University of Oxford; University of Oxford & Stanford University; University of Oxford & University College London
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6743; None
| null | 0 | null | null | null |
3;3;3;3
| null |
James Whittington, Joseph Warren, Timothy Behrens
|
https://iclr.cc/virtual/2022/poster/6743
|
Neuroscience;representation learning;hippocampus;cortex;transformers
| null | 2.25 | null |
https://openreview.net/forum?id=B8DVo9B1YE0
|
iclr
| 0.57735 | 0.57735 | null |
main
| 7.5 |
6;8;8;8
|
3;4;3;4
|
https://iclr.cc/virtual/2022/poster/6743
|
Relating transformers to models and neural representations of the hippocampal formation
| null | null | 3.5 | 3.5 |
Poster
|
3;3;4;4
|
0;3;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;2;3
| null | null | null |
Rotation Detection;SkewIoU loss;Kalman Filter
| null | 1.75 | null | null |
iclr
| 0.57735 | 0.57735 | null |
main
| 3.75 |
3;3;3;6
|
3;2;2;3
| null |
The KFIoU Loss for Rotated Object Detection
| null | null | 2.5 | 3.5 |
Withdraw
|
3;4;3;4
|
2;1;2;2
|
null |
Paper under double-blind review
|
2022
| 2.75 | null | null | 0 | null | null | null |
3;2;3;3
| null | null | null |
differential privacy;bayesian inference;sgld
| null | 0.5 | null | null |
iclr
| -0.662266 | 0.229416 | null |
main
| 4.75 |
3;5;5;6
|
3;4;4;3
| null |
Can Stochastic Gradient Langevin Dynamics Provide Differential Privacy for Deep Learning?
| null | null | 3.5 | 3.75 |
Reject
|
4;4;4;3
|
0;2;0;0
|
null |
Facebook AI Research; Yale University; Criteo AI Lab; Google Research
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/7097; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Insu Han, Mike Gartrell, Jennifer Gillenwater, Elvis Dohmatob, Amin Karbasi
|
https://iclr.cc/virtual/2022/poster/7097
|
determinantal point processes;sampling
| null | 2.5 | null |
https://openreview.net/forum?id=BB4e8Atc1eR
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8;8
|
4;3;4;4
|
https://iclr.cc/virtual/2022/poster/7097
|
Scalable Sampling for Nonsymmetric Determinantal Point Processes
| null | null | 3.75 | 3.5 |
Spotlight
|
4;3;4;3
|
2;3;3;2
|
null |
University of Michigan; Seoul National University
|
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/6488; None
| null | 0 | null | null | null |
3;3;3;4
| null |
Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, Gunhee Kim
|
https://iclr.cc/virtual/2022/poster/6488
|
Reinforcement learning
| null | 3.75 | null |
https://openreview.net/forum?id=BGvt0ghNgA
|
iclr
| -0.333333 | 0 | null |
main
| 6.5 |
6;6;6;8
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6488
|
Lipschitz-constrained Unsupervised Skill Discovery
|
https://shpark.me/projects/lsd/
| null | 4 | 3.25 |
Poster
|
4;3;3;3
|
4;4;3;4
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;2;2;4
| null | null | null |
Backdoor attacks;data poisoning;clean labels;adversarial examples;security
| null | 3.25 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5;5
|
2;3;4;3
| null |
Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks Trained from Scratch
| null | null | 3 | 4 |
Withdraw
|
5;3;4;4
|
3;3;3;4
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;2;2;2
| null | null | null | null | null | 2 | null | null |
iclr
| -0.301511 | -0.904534 | null |
main
| 4 |
3;3;5;5
|
4;4;2;3
| null |
Towards Unknown-aware Deep Q-Learning
| null | null | 3.25 | 3.75 |
Withdraw
|
3;5;4;3
|
1;1;3;3
|
null |
Google Research, Brain Team
|
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/6754; None
| null | 0 | null | null | null |
3;2;4;4
| null |
Raphael Gontijo Lopes, Yann Dauphin, Ekin Cubuk
|
https://iclr.cc/virtual/2022/poster/6754
|
Representation Learning;Understanding Deep Learning;Deep Phenomena;Diversity;Novelty;Features;Training Methodologies;Contrastive Learning
| null | 3.75 | null |
https://openreview.net/forum?id=BK-4qbGgIE3
|
iclr
| -0.333333 | -0.57735 | null |
main
| 7.5 |
6;8;8;8
|
4;4;3;3
|
https://iclr.cc/virtual/2022/poster/6754
|
No One Representation to Rule Them All: Overlapping Features of Training Methods
| null | null | 3.5 | 3.75 |
Poster
|
4;4;4;3
|
3;4;4;4
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
3;3;3;3
| null | null | null |
Quantisation;Compression;AI Accelerators
| null | 2.5 | null | null |
iclr
| 0.57735 | 0.816497 | null |
main
| 5.75 |
5;5;5;8
|
3;2;3;4
| null |
Low Entropy Deep Networks
| null | null | 3 | 3.5 |
Reject
|
4;3;3;4
|
2;2;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;1;2;3
| null | null | null |
Robustness;Algorithmic fairness
| null | 2 | null | null |
iclr
| -0.345547 | 0.863868 | null |
main
| 4.75 |
3;3;5;8
|
3;2;3;4
| null |
On Adversarial Bias and the Robustness of Fair Machine Learning
| null | null | 3 | 4 |
Reject
|
5;4;3;4
|
1;2;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
3;2;2;3
| null |
Manan Tomar
| null |
Reinforcement Learning;Model-based RL;State Abstractions;Generalization in RL
| null | 2.5 | null | null |
iclr
| 0.333333 | 0 | null |
main
| 3.5 |
3;3;3;5
|
4;2;3;3
| null |
Model-Invariant State Abstractions for Model-Based Reinforcement Learning
| null | null | 3 | 3.75 |
Reject
|
4;3;4;4
|
3;2;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;2;4
| null | null | null | null | null | 2.5 | null | null |
iclr
| 0 | 0.816497 | null |
main
| 3 |
1;3;3;5
|
2;3;3;3
| null |
IA-MARL: Imputation Assisted Multi-Agent Reinforcement Learning for Missing Training Data
| null | null | 2.75 | 3.75 |
Reject
|
4;4;3;4
|
2;3;2;3
|
null |
McMaster University; University of Toronto
|
2022
| 2.6 |
https://iclr.cc/virtual/2022/poster/6136; None
| null | 0 | null | null | null |
1;3;3;3;3
| null |
Huan Liu, George Zhang, Jun Chen, Ashish Khisti
|
https://iclr.cc/virtual/2022/poster/6136
|
Image Compression;Image Restoration;Optimal Transport;Deep Learning
| null | 2.6 | null |
https://openreview.net/forum?id=BRFWxcZfAdC
|
iclr
| -0.517549 | 0.872872 | null |
main
| 6.2 |
3;6;6;8;8
|
1;4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6136
|
LOSSY COMPRESSION WITH DISTRIBUTION SHIFT AS ENTROPY CONSTRAINED OPTIMAL TRANSPORT
| null | null | 3.4 | 3 |
Poster
|
4;2;3;3;3
|
1;3;3;3;3
|
null |
Nanyang Technological University; Zhejiang University; Shannon.AI; Nanjing University
|
2022
| 2.666667 |
https://iclr.cc/virtual/2022/poster/6501; None
| null | 0 | null | null | null |
2;3;3
| null |
Yuxian Meng, Shi Zong, Xiaoya Li, Xiaofei Sun, Tianwei Zhang, Fei Wu, Jiwei Li
|
https://iclr.cc/virtual/2022/poster/6501
| null | null | 3.333333 | null |
https://openreview.net/forum?id=BS49l-B5Bql
|
iclr
| 0.866025 | 0.866025 | null |
main
| 8 |
6;8;10
|
3;4;4
|
https://iclr.cc/virtual/2022/poster/6501
|
GNN-LM: Language Modeling based on Global Contexts via GNN
|
https://github.com/ShannonAI/GNN-LM
| null | 3.666667 | 3.333333 |
Spotlight
|
3;3;4
|
3;4;3
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
2;2;3
| null | null | null |
character generation;parsing;reconstruction;self-supervised;omniglot
| null | 1.333333 | null | null |
iclr
| -0.5 | 1 | null |
main
| 4.333333 |
3;5;5
|
2;3;3
| null |
Character Generation through Self-Supervised Vectorization
| null | null | 2.666667 | 3.666667 |
Reject
|
4;3;4
|
1;1;2
|
null |
Dalian University of Technology, China; Wuhan University, China; University of Alberta, Canada
|
2022
| 2.666667 |
https://iclr.cc/virtual/2022/poster/5929; None
| null | 0 | null | null | null |
2;3;3
| null |
Wei Ji, Jingjing Li, Qi Bi, chuan guo, Jie Liu, Li Cheng
|
https://iclr.cc/virtual/2022/poster/5929
|
RGB-D saliency detection;salient object detection;deep learning;unsupervised learning
| null | 2 | null |
https://openreview.net/forum?id=BZnnMbt0pW
|
iclr
| 1 | 0.866025 | null |
main
| 7.333333 |
6;8;8
|
2;4;3
|
https://iclr.cc/virtual/2022/poster/5929
|
Promoting Saliency From Depth: Deep Unsupervised RGB-D Saliency Detection
| null | null | 3 | 3.666667 |
Poster
|
3;4;4
|
0;3;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
3;2;2;3
| null | null | null |
efficient training;transfer learning;efficient transfer;fine tuning;computer vision;linear probe
| null | 2.75 | null | null |
iclr
| 0.301511 | 0.57735 | null |
main
| 5.5 |
5;5;6;6
|
3;2;3;3
| null |
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization
| null | null | 2.75 | 3.75 |
Reject
|
3;4;3;5
|
3;2;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
1;2;2;4
| null | null | null |
Approximate message passing;Lasso;High dimensional statistics
| null | 0 | null | null |
iclr
| -0.61396 | 0.728705 | null |
main
| 3.75 |
1;3;3;8
|
2;3;4;4
| null |
Equivalence of State Equations from Different Methods in High-dimensional Regression
| null | null | 3.25 | 4.25 |
Reject
|
5;4;4;4
| null |
null | null |
2022
| 1.5 | null | null | 0 | null | null | null |
2;2;1;1
| null | null | null |
Efficient DNN Training
| null | 2 | null | null |
iclr
| 0 | 1 | null |
main
| 4.5 |
3;5;5;5
|
2;3;3;3
| null |
InterTrain: Accelerating DNN Training using Input Interpolation
| null | null | 2.75 | 4 |
Withdraw
|
4;4;4;4
|
1;2;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2
| null | null | null |
deep reinforcement learning;reinforcement learning;deep learning;compositional generalization;generalization;recurrent architecture
| null | 2.666667 | null | null |
iclr
| 0 | 0.5 | null |
main
| 5.333333 |
5;5;6
|
3;2;3
| null |
Task-driven Discovery of Perceptual Schemas for Generalization in Reinforcement Learning
| null | null | 2.666667 | 4 |
Reject
|
4;4;4
|
3;2;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
3;2;2;2
| null | null | null |
meta learning;generalization;minimax regularization
| null | 2 | null | null |
iclr
| -0.333333 | 0.662266 | null |
main
| 3.5 |
3;3;3;5
|
1;3;3;4
| null |
Meta Learning with Minimax Regularization
| null | null | 2.75 | 3.25 |
Withdraw
|
4;3;3;3
|
2;2;2;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
Lottery Ticket Hypothesis;Graph Neural Networks;Neural Network Pruning
| null | 2 | null | null |
iclr
| -0.57735 | 0 | null |
main
| 5.5 |
5;5;6;6
|
3;3;3;3
| null |
Inductive Lottery Ticket Learning for Graph Neural Networks
| null | null | 3 | 3.25 |
Reject
|
3;4;3;3
|
2;0;3;3
|
null |
The University of Hong Kong; UC San Diego; Tencent AI Lab
|
2022
| 4 |
https://iclr.cc/virtual/2022/poster/6168; None
| null | 0 | null | null | null |
4;4;4;4
| null |
Youwei Liang, Chongjian GE, Zhan Tong, Yibing Song, Jue Wang, Pengtao Xie
|
https://iclr.cc/virtual/2022/poster/6168
|
Vision Transformers;multi-head self-attention;efficient inference
| null | 3.75 | null |
https://openreview.net/forum?id=BjyvwnXXVn_
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8;8
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/6168
|
EViT: Expediting Vision Transformers via Token Reorganizations
|
https://github.com/youweiliang/evit
| null | 3.5 | 4.5 |
Spotlight
|
5;5;4;4
|
4;3;4;4
|
null |
Paper under double-blind review
|
2022
| 2.25 | null | null | 0 | null | null | null |
2;3;2;2
| null | null | null | null | null | 1.75 | null | null |
iclr
| -0.870388 | 0.333333 | null |
main
| 5.75 |
5;6;6;6
|
3;3;3;4
| null |
Implicit Regularization of Bregman Proximal Point Algorithm and Mirror Descent on Separable Data
| null | null | 3.25 | 2.75 |
Reject
|
4;3;2;2
|
2;2;1;2
|
null |
Shanghai AI Laboratory; Australian National University; SenseTime Research, Shanghai AI Laboratory; SenseTime Research
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6040; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Qin Zhen, Weixuan Sun, Hui Deng, DONGXU LI, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong, Yiran Zhong
|
https://iclr.cc/virtual/2022/poster/6040
|
Linear Transformer;softmax attention
| null | 3 | null |
https://openreview.net/forum?id=Bl8CQrx2Up4
|
iclr
| -0.301511 | 0.707107 |
COSFORMER
|
main
| 7 |
6;6;8;8
|
3;2;3;4
|
https://iclr.cc/virtual/2022/poster/6040
|
cosFormer: Rethinking Softmax In Attention
|
Not provided
| null | 3 | 4.25 |
Poster
|
4;5;5;3
|
3;3;3;3
|
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
3;3;2
| null | null | null |
Safe Multi-Agent Reinforcement Learning;Safe Multi-Agent Trust Region Policy Optimisation;Safe Multi-Agent Proximal Policy Optimisation;Constrained Policy Optimisation
| null | 2.333333 | null | null |
iclr
| 0 | 0 |
https://sites.google.com/view/macpo
|
main
| 5 |
5;5;5
|
3;3;3
| null |
Multi-Agent Constrained Policy Optimisation
| null | null | 3 | 3 |
Reject
|
3;3;3
|
2;3;2
|
null |
University of Notre Dame; King Abdullah University of Science and Technology; NetApp; INRIA
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6787; None
| null | 0 | null | null | null |
3;3;3
| null |
Hongyan Bao, Yufei Han, Yujun Zhou, Yun Shen, Xiangliang Zhang
|
https://iclr.cc/virtual/2022/poster/6787
|
robustness certification;adversarial learning;categorical data
| null | 3 | null |
https://openreview.net/forum?id=BmJV7kyAmg
|
iclr
| 0.5 | -0.5 | null |
main
| 6.666667 |
6;6;8
|
4;3;3
|
https://iclr.cc/virtual/2022/poster/6787
|
Towards Understanding the Robustness Against Evasion Attack on Categorical Data
| null | null | 3.333333 | 3.666667 |
Poster
|
4;3;4
|
3;3;3
|
null |
Ant Group, Hangzhou, China; Sony AI, Tokyo, Japan; Lehigh University, Bethlehem, PA, USA; Peking University, Beijing, China
|
2022
| 3.5 |
https://iclr.cc/virtual/2022/poster/6256; None
| null | 0 | null | null | null |
2;4;4;4
| null |
Zhiyuan Zhang, Lingjuan Lyu, Weiqiang Wang, Lichao Sun, Xu Sun
|
https://iclr.cc/virtual/2022/poster/6256
|
backdoor learning;weight perturbation;consistency
| null | 3.75 | null |
https://openreview.net/forum?id=Bn09TnDngN
|
iclr
| 1 | -0.333333 | null |
main
| 7.5 |
6;8;8;8
|
4;3;4;4
|
https://iclr.cc/virtual/2022/poster/6256
|
How to Inject Backdoors with Better Consistency: Logit Anchoring on Clean Data
| null | null | 3.75 | 3.75 |
Poster
|
3;4;4;4
|
3;4;4;4
|
null | null |
2022
| 3 |
https://iclr.cc/virtual/2022/poster/5910; None
| null | 0 | null | null | null |
3;3;3;3;3
| null |
Dongsu Zhang, Changwoon Choi, Inbum Park, Young Min Kim
|
https://iclr.cc/virtual/2022/poster/5910
|
3D shape completion;3D generative model
| null | 2.2 | null |
https://openreview.net/forum?id=BnQhMqDfcKG
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8;8;8
|
3;3;4;4;3
|
https://iclr.cc/virtual/2022/poster/5910
|
Probabilistic Implicit Scene Completion
| null | null | 3.4 | 3.6 |
Spotlight
|
3;4;4;4;3
|
2;3;3;3;0
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
3;3;3
| null | null | null |
Lifelong Learning;Rehearsal
| null | 2 | null | null |
iclr
| -1 | 0.5 | null |
main
| 3.666667 |
3;3;5
|
3;2;3
| null |
Rethinking Rehearsal in Lifelong Learning: Does An Example Contribute the Plasticity or Stability?
| null | null | 2.666667 | 3.666667 |
Withdraw
|
4;4;3
|
2;2;2
|
null |
ETH Zurich, DeepMind; ETH Zurich
|
2022
| 2.8 |
https://iclr.cc/virtual/2022/poster/7045; None
| null | 0 | null | null | null |
2;4;3;3;2
| null |
Mislav Balunovic, Anian Ruoss, Martin Vechev
|
https://iclr.cc/virtual/2022/poster/7045
|
fairness;fair representation learning;adversarial fairness;trustworthy machine learning
| null | 2.8 | null |
https://openreview.net/forum?id=BrFIKuxrZE
|
iclr
| 0.153093 | -0.102062 | null |
main
| 6.2 |
5;6;6;6;8
|
3;4;3;3;3
|
https://iclr.cc/virtual/2022/poster/7045
|
Fair Normalizing Flows
| null | null | 3.2 | 3.4 |
Poster
|
4;4;3;2;4
|
2;4;3;2;3
|
null |
Kim Jaechul Graduate School of AI, KAIST, Daejeon, Republic of Korea; School of Computing, KAIST, Daejeon, Republic of Korea; School of Computing, KAIST, Daejeon, Republic of Korea; Kim Jaechul Graduate School of AI, KAIST, Daejeon, Republic of Korea; Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea; Mila, Quebec AI Institute; School of Computer Science, McGill University; School of Computing, KAIST, Daejeon, Republic of Korea; Kim Jaechul Graduate School of AI, KAIST, Daejeon, Republic of Korea
|
2022
| 2.333333 |
https://iclr.cc/virtual/2022/poster/6025; None
| null | 0 | null | null | null |
2;2;3
| null |
Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok Yang, Kee-Eung Kim
|
https://iclr.cc/virtual/2022/poster/6025
|
imitation learning;offline imitation learning;imperfect demonstration;non-expert demonstration
| null | 2.666667 | null |
https://openreview.net/forum?id=BrPdX1bDZkQ
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8
|
4;3;4
|
https://iclr.cc/virtual/2022/poster/6025
|
DemoDICE: Offline Imitation Learning with Supplementary Imperfect Demonstrations
| null | null | 3.666667 | 3.333333 |
Poster
|
4;3;3
|
3;3;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null |
Graph Neural Networks;Adversarial Attacks;Robustness;Tensor Decomposition
| null | 2.75 | null | null |
iclr
| 0.333333 | 0.57735 | null |
main
| 5.25 |
3;6;6;6
|
3;4;4;3
| null |
Defending Graph Neural Networks via Tensor-Based Robust Graph Aggregation
| null | null | 3.5 | 4.25 |
Reject
|
4;5;4;4
|
2;4;2;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;3;3;2
| null | null | null |
Federated Learning;Robustness;MPC;Privacy Preserving ML
| null | 2.5 | null | null |
iclr
| 0.333333 | 0.816497 | null |
main
| 4.5 |
3;5;5;5
|
2;3;4;3
| null |
Scalable Robust Federated Learning with Provable Security Guarantees
| null | null | 3 | 3.25 |
Reject
|
3;4;3;3
|
3;3;3;1
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;2;3
| null | null | null | null | null | 1.75 | null | null |
iclr
| -0.707107 | 0.5 | null |
main
| 3 |
1;3;3;5
|
2;3;4;3
| null |
DaSeGAN: Domain Adaptation for Segmentation Tasks via Generative Adversarial Networks
| null | null | 3 | 4 |
Withdraw
|
5;5;3;3
|
1;2;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2
| null | null | null |
supervised representation learning;reinforcement learning;privacy;decentralized learning;data heterogeneity;communication efficiency
| null | 1.666667 | null | null |
iclr
| -1 | 1 | null |
main
| 3.666667 |
3;3;5
|
2;2;3
| null |
Homogeneous Learning: Self-Attention Decentralized Deep Learning
| null | null | 2.333333 | 3.666667 |
Withdraw
|
4;4;3
|
1;2;2
|
null |
School of Mathematics, Georgia Institute of Technology, Atlanta, USA; Machine Learning Department, MBZUAI & BioMap, UAE & China
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6689; None
| null | 0 | null | null | null |
2;3;2;3
| null |
Xinshi Chen, Haoran Sun, Le Song
|
https://iclr.cc/virtual/2022/poster/6689
|
learning to learn;sparse parameter estimation;learning to optimize;algorithm unrolling;generalization bound
| null | 2.75 | null |
https://openreview.net/forum?id=BwPaPxwgyQb
|
iclr
| -0.688247 | 0.927173 | null |
main
| 6.25 |
5;6;6;8
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6689
|
Provable Learning-based Algorithm For Sparse Recovery
| null | null | 3.25 | 3.5 |
Poster
|
4;4;3;3
|
2;4;2;3
|
null | null |
2022
| 2.2 | null | null | 0 | null | null | null |
1;2;2;3;3
| null | null | null |
cognitive science;analogy;psychology;cognitive theory;cognition;abstraction;abstract reasoning;generalization;systematic generalization
| null | 1.8 | null | null |
iclr
| -0.612372 | 0.408248 | null |
main
| 4.6 |
3;5;5;5;5
|
2;2;3;3;2
| null |
Neural Structure Mapping For Learning Abstract Visual Analogies
| null | null | 2.4 | 4.4 |
Reject
|
5;5;4;4;4
|
1;2;2;2;2
|
null |
Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843, USA
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/7066; None
| null | 0 | null | null | null |
2;3;3;3
| null |
Youzhi Luo, Shuiwang Ji
|
https://iclr.cc/virtual/2022/poster/7066
|
3D molecular geometry generation;flow models;SphereNet
| null | 1.75 | null |
https://openreview.net/forum?id=C03Ajc-NS5W
|
iclr
| 0 | 0 | null |
main
| 6.25 |
5;6;6;8
|
3;3;3;3
|
https://iclr.cc/virtual/2022/poster/7066
|
An Autoregressive Flow Model for 3D Molecular Geometry Generation from Scratch
|
https://github.com/divelab/DIG
| null | 3 | 3 |
Poster
|
3;3;3;3
|
2;2;0;3
|
null |
University of Freiburg, Bosch Center for Artificial Intelligence; University of Freiburg
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6495; None
| null | 0 | null | null | null |
2;3;3;3
| null |
Fabio Ferreira, Thomas Nierhoff, Andreas Sälinger, Frank Hutter
|
https://iclr.cc/virtual/2022/poster/6495
|
Synthetic Environments;Synthetic Data;Meta-Learning;Reinforcement Learning;Evolution Strategies;Reward Shaping
| null | 3 | null |
https://openreview.net/forum?id=C1_esHN6AVn
|
iclr
| 0.140028 | 0.727607 | null |
main
| 5.75 |
3;6;6;8
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6495
|
Learning Synthetic Environments and Reward Networks for Reinforcement Learning
| null | null | 3.25 | 3.5 |
Poster
|
3;4;4;3
|
2;3;3;4
|
null | null |
2022
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 0 | null | null | null |
Shap-CAM: Visual Explanations for Convolutional Neural Networks based on Shapley Value
| null | null | 0 | 0 |
Withdraw
| null | null |
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null |
machine learning;deep learning;systems;frameworks;autograd library;tensor library
| null | 2 | null | null |
iclr
| -0.207514 | -0.648886 | null |
main
| 4.75 |
3;5;5;6
|
4;3;2;3
| null |
Flashlight: Enabling Innovation in Tools for Machine Learning
| null | null | 3 | 3.25 |
Reject
|
4;2;3;4
|
2;1;2;3
|
null |
Dalian University of Technology; The University of Sydney
|
2022
| 2.4 |
https://iclr.cc/virtual/2022/poster/6677; None
| null | 0 | null | null | null |
3;3;2;2;2
| null |
Zhiyu Chong, Xinzhu Ma, Hong Zhang, Yuxin Yue, Haojie Li, Zhihui Wang, Wanli Ouyang
|
https://iclr.cc/virtual/2022/poster/6677
|
3D object detection;monocular images
| null | 3 | null |
https://openreview.net/forum?id=C54V-xTWfi
|
iclr
| -0.845154 | -0.395285 | null |
main
| 7 |
5;6;8;8;8
|
3;4;3;3;3
|
https://iclr.cc/virtual/2022/poster/6677
|
MonoDistill: Learning Spatial Features for Monocular 3D Object Detection
|
https://github.com/monster-ghost/MonoDistill
| null | 3.2 | 4.2 |
Poster
|
5;5;4;4;3
|
3;3;3;3;3
|
null | null |
2022
| 1.5 | null | null | 0 | null | null | null |
1;1;2;2
| null | null | null |
robust vision;instance segmentation;deep learning;object-centric;robustness;sensitivity analysis
| null | 1.75 | null | null |
iclr
| 0.19245 | 0.229416 | null |
main
| 4.5 |
3;3;6;6
|
1;4;3;3
| null |
An object-centric sensitivity analysis of deep learning based instance segmentation
| null | null | 2.75 | 3.75 |
Reject
|
5;2;5;3
|
1;1;2;3
|
null |
Paper under double-blind review
|
2022
| 2 | null | null | 0 | null | null | null |
2;2;2
| null | null | null |
Time series;Anomaly Detection;Intrusion Detection;Adversarial Attack
| null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5
|
3;3;4
| null |
Evaluating the Robustness of Time Series Anomaly and Intrusion Detection Methods against Adversarial Attacks
|
https://anonymous.4open.science/r/ICLR298
| null | 3.333333 | 4.333333 |
Reject
|
5;4;4
|
2;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Deep Neural Network;Rectified Linear Units;Generalization;Regularization;Dropout
| null | 2.25 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
3;3;2;2
| null |
ZeroLiers: Diminishing Large Outliers in ReLU-like Activations
| null | null | 2.5 | 4 |
Withdraw
|
4;4;4;4
|
3;2;2;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
3;2;2;2
| null | null | null |
Transformers;Kernel learning
| null | 2.25 | null | null |
iclr
| -0.899229 | 0 | null |
main
| 4.75 |
3;5;5;6
|
3;3;3;3
| null |
On Learning the Transformer Kernel
| null | null | 3 | 3.75 |
Withdraw
|
5;4;3;3
|
2;2;2;3
|
null | null |
2022
| 1.666667 | null | null | 0 | null | null | null |
1;2;2
| null | null | null |
representation learning;causality;invariance;distribution matching
| null | 2 | null | null |
iclr
| -0.5 | 0 | null |
main
| 3 |
1;3;5
|
3;3;3
| null |
Invariant Causal Mechanisms through Distribution Matching
| null | null | 3 | 4 |
Reject
|
5;3;4
|
1;2;3
|
null |
Affiliation; Second Affiliation
|
2022
| 2 | null | null | 0 | null | null | null |
3;2;1;2
| null | null | null |
Transfer Learning;Deep-Q Networks;Model-Free Deep Reinforcement Learning
| null | 2.25 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
3;3;2;2
| null |
On The Transferability of Deep-Q Networks
| null | null | 2.5 | 3.5 |
Withdraw
|
3;3;4;4
|
2;3;2;2
|
null |
Simon Fraser University; University of Waterloo, Vector Institute; University of Toronto, Vector Institute
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6650; None
| null | 0 | null | null | null |
2;2;3;4
| null |
Yudong Luo, Guiliang Liu, Haonan Duan, Oliver Schulte, Pascal Poupart
|
https://iclr.cc/virtual/2022/poster/6650
|
Distributional RL
| null | 2.75 | null |
https://openreview.net/forum?id=C8Ltz08PtBp
|
iclr
| -0.622543 | 0.688247 | null |
main
| 6.25 |
5;6;6;8
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/6650
|
Distributional Reinforcement Learning with Monotonic Splines
| null | null | 3.5 | 4.25 |
Poster
|
4;5;5;3
|
2;2;3;4
|
null | null |
2022
| 1.5 | null | null | 0 | null | null | null |
1;2;2;1
| null | null | null |
Feature Selection;Sparse Centroid-encoder;Non-linear feature Selection;Deep Feature Selection;Multi-class Feature Selection;Iterative Feature Selection
| null | 1.25 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
4;3;4;3
| null |
Robust Feature Selection using Sparse Centroid-Encoder
| null | null | 3.5 | 4.25 |
Reject
|
5;4;3;5
|
1;1;2;1
|
null |
Toyota Research Institute (TRI); University of California, Berkeley
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/7041; None
| null | 0 | null | null | null |
2;3;3;3
| null |
Blake W Wulfe, Logan Ellis, Jean Mercat, Rowan T McAllister, Adrien Gaidon
|
https://iclr.cc/virtual/2022/poster/7041
|
Reward Learning;Inverse Reinforcement Learning;Reinforcement Learning;Comparing Reward Functions
| null | 3.25 | null |
https://openreview.net/forum?id=CALFyKVs87
|
iclr
| 0 | 0.96225 |
https://sites.google.com/view/dard-paper
|
main
| 6.75 |
5;6;8;8
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/7041
|
Dynamics-Aware Comparison of Learned Reward Functions
| null | null | 3.5 | 3 |
Spotlight
|
3;3;3;3
|
3;3;4;3
|
null |
The University of Tokyo; Google Research
|
2022
| 2.666667 |
https://iclr.cc/virtual/2022/poster/6141; None
| null | 0 | null | null | null |
2;3;3
| null |
Hiroki Furuta, Yutaka Matsuo, Shixiang Gu
|
https://iclr.cc/virtual/2022/poster/6141
|
Hindsight Information Matching;Decision Transformer;State-Marginal Matching;Hindsight Experience Replay;Reinforcement Learning
| null | 2.666667 | null |
https://openreview.net/forum?id=CAjxVodl_v
|
iclr
| 0 | 0 | null |
main
| 7.333333 |
6;8;8
|
3;3;3
|
https://iclr.cc/virtual/2022/poster/6141
|
Generalized Decision Transformer for Offline Hindsight Information Matching
| null | null | 3 | 4 |
Spotlight
|
4;4;4
|
2;3;3
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;2;2;2
| null | null | null |
explainable ai;deep learning;time series;visual interpretation;evaluation metrics;classification;segmentation
| null | 2.25 | null | null |
iclr
| -0.408248 | 0.738549 | null |
main
| 5 |
3;5;6;6
|
2;4;4;3
| null |
Objective Evaluation of Deep Visual Interpretations on Time Series Data
| null | null | 3.25 | 3 |
Reject
|
4;2;2;4
|
1;2;3;3
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;2;2;2
| null | null | null |
Genetic Programming;Building Blocks;Regression;Bloat;Experimental evaluation
| null | 1.75 | null | null |
iclr
| -0.522233 | 0.816497 | null |
main
| 2.5 |
1;3;3;3
|
1;2;2;3
| null |
Building the Building Blocks: From Simplification to Winning Trees in Genetic Programming
| null | null | 2 | 4.25 |
Reject
|
5;5;4;3
|
1;2;2;2
|
null |
Departement Mathematik und Informatik, Universit¨ at Basel, 4051 Basel, Switzerland.; School of Computer and Electronic Information, Nanjing Normal University, 210023 Nanjing, China.
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/7079; None
| null | 0 | null | null | null |
1;3;3;3
| null |
Liming Pan, Cheng Shi, Ivan Dokmanic
|
https://iclr.cc/virtual/2022/poster/7079
|
Graph neural network;Link prediction;Random walk;Graph topology.
| null | 2.25 | null |
https://openreview.net/forum?id=CCu6RcUMwK0
|
iclr
| 0 | 0.662266 | null |
main
| 6.25 |
5;6;6;8
|
2;3;3;3
|
https://iclr.cc/virtual/2022/poster/7079
|
Neural Link Prediction with Walk Pooling
| null | null | 2.75 | 4 |
Poster
|
4;4;4;4
|
1;2;3;3
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
2;1;3;1
| null | null | null |
Meta-Learning;Generalization;Early-Stopping;Out-of-Distribution
| null | 2.5 | null | null |
iclr
| 0.333333 | 0.816497 | null |
main
| 3.5 |
3;3;3;5
|
3;2;3;4
| null |
Early-Stopping for Meta-Learning: Estimating Generalization from the Activation Dynamics
| null | null | 3 | 3.75 |
Withdraw
|
3;4;4;4
|
2;2;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;2;3
| null | null | null | null | null | 1.75 | null | null |
iclr
| 0.390567 | 0.667308 | null |
main
| 3.75 |
1;3;5;6
|
2;4;3;4
| null |
The weighted mean trick – optimization strategies for robustness
| null | null | 3.25 | 3.5 |
Reject
|
3;4;3;4
|
0;2;2;3
|
null |
Cognitive Computing Lab, Baidu Research, 10900 NE 8th St. Bellevue, WA 98004, USA
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6171; None
| null | 0 | null | null | null |
3;3;3
| null |
Xiaoyun Li, Belhal Karimi, Ping Li
|
https://iclr.cc/virtual/2022/poster/6171
| null | null | 3 | null |
https://openreview.net/forum?id=CI-xXX9dg9l
|
iclr
| -0.5 | 0 | null |
main
| 7 |
5;8;8
|
4;4;4
|
https://iclr.cc/virtual/2022/poster/6171
|
On Distributed Adaptive Optimization with Gradient Compression
| null | null | 4 | 2.666667 |
Poster
|
3;2;3
|
3;3;3
|
null |
National Center for Artificial Intelligence, Saudi Data and Artificial Intelligence Authority; Inception Institute of Artificial Intelligence; AIM Lab, University of Amsterdam
|
2022
| 2.8 |
https://iclr.cc/virtual/2022/poster/5984; None
| null | 0 | null | null | null |
3;3;2;3;3
| null |
Zehao Xiao, Xiantong Zhen, Ling Shao, Cees G Snoek
|
https://iclr.cc/virtual/2022/poster/5984
|
domain generalization;single test sample generalization;meta learning;variational inference
| null | 2.4 | null |
https://openreview.net/forum?id=CIaQKbTBwtU
|
iclr
| 1 | -0.166667 | null |
main
| 6.8 |
5;5;8;8;8
|
3;4;3;3;4
|
https://iclr.cc/virtual/2022/poster/5984
|
Learning to Generalize across Domains on Single Test Samples
|
https://github.com/zzzx1224/SingleSampleGeneralization-ICLR2022
| null | 3.4 | 3.6 |
Poster
|
3;3;4;4;4
|
3;2;2;2;3
|
null |
Harvard University; MIT; HHMI Janelia Research Campus
|
2022
| 2.25 |
https://iclr.cc/virtual/2022/poster/6591; None
| null | 0 | null | null | null |
2;3;2;2
| null |
Lu Mi, Richard Xu, Sridhama Prakhya, Albert Lin, Nir Shavit, Aravinthan Samuel, Srinivas C Turaga
|
https://iclr.cc/virtual/2022/poster/6591
|
connectome;latent-variable model;variational autoencoder;biophysics;whole-brain;neural activity;calcium imaging;caenorhabditis elegans;voltage;generative model;inference network
| null | 2.5 | null |
https://openreview.net/forum?id=CJzi3dRlJE-
|
iclr
| -0.493742 | 0 | null |
main
| 6.25 |
3;6;8;8
|
3;3;3;3
|
https://iclr.cc/virtual/2022/poster/6591
|
Connectome-constrained Latent Variable Model of Whole-Brain Neural Activity
| null | null | 3 | 3.75 |
Poster
|
4;4;3;4
|
1;3;3;3
|
null |
Huawei Noah’s Ark Lab; College of Intelligence and Computing, Tianjin University; UCL, London, United Kingdom
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/7072; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Changmin Yu, Dong Li, Jianye HAO, Jun Wang, Neil Burgess
|
https://iclr.cc/virtual/2022/poster/7072
|
Representation learning;model-based reinforcement learning
| null | 2.75 | null |
https://openreview.net/forum?id=CLpxpXqqBV
|
iclr
| -0.800641 | 0.588348 | null |
main
| 5.5 |
3;5;6;8
|
2;3;4;3
|
https://iclr.cc/virtual/2022/poster/7072
|
Learning State Representations via Retracing in Reinforcement Learning
| null | null | 3 | 3.25 |
Poster
|
4;3;3;3
|
2;3;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
Reward Shift;Reinforcement Learning;Batch RL;Offline RL;Online RL;Curiosity-Driven Method
| null | 2.25 | null | null |
iclr
| 0.19245 | 0.333333 | null |
main
| 4.25 |
3;3;5;6
|
3;3;4;3
| null |
Reward Shifting for Optimistic Exploration and Conservative Exploitation
| null | null | 3.25 | 3.5 |
Reject
|
4;3;3;4
|
2;2;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
code translation;machine translation;document similarity
| null | 2.25 | null | null |
iclr
| 0 | 0.301511 | null |
main
| 4 |
3;3;5;5
|
4;2;3;4
| null |
Using Document Similarity Methods to create Parallel Datasets for Code Translation
| null | null | 3.25 | 4 |
Reject
|
4;4;3;5
|
2;2;3;2
|
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
2;3;3
| null | null | null |
Graph Neural Network;Hyper-relational Knowledge Graph;Knowledge Base Embedding
| null | 3 | null | null |
iclr
| -1 | 1 | null |
main
| 5.666667 |
5;6;6
|
3;4;4
| null |
Message Function Search for Hyper-relational Knowledge Graph
| null | null | 3.666667 | 3.333333 |
Reject
|
4;3;3
|
3;3;3
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.