code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = "▁" lowercase = {"vocab_file": "sentencepiece.bpe.model"} lowercase = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } lowercase = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off lowercase = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = [] lowerCAmelCase = [] def __init__( self , a , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a=None , a=None , a=None , a = None , a=None , **a , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , tokenizer_file=a , src_lang=a , tgt_lang=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a ) ) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model ) snake_case_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(a ) } snake_case_ = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) snake_case_ = src_lang if src_lang is not None else 'en_XX' snake_case_ = self.lang_code_to_id[self._src_lang] snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Union[str, Any]: snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , a ) -> Union[str, Any]: snake_case_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _UpperCamelCase ( self ) -> Tuple: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _UpperCamelCase ( self ) -> str: return self._src_lang @src_lang.setter def _UpperCamelCase ( self , a ) -> None: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self , a , a = None , a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) snake_case_ = [1] * len(self.prefix_tokens ) snake_case_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a )) + suffix_ones return prefix_ones + ([0] * len(a )) + ([0] * len(a )) + suffix_ones def _UpperCamelCase ( self , a , a = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self , a , a = None ) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self , a , a , a , a , **a ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) snake_case_ = src_lang snake_case_ = self(a , add_special_tokens=a , return_tensors=a , **a ) snake_case_ = self.convert_tokens_to_ids(a ) snake_case_ = tgt_lang_id return inputs def _UpperCamelCase ( self ) -> str: snake_case_ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , a ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _UpperCamelCase ( self , a ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , a ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , a ) -> str: snake_case_ = ''.join(a ).replace(a , ' ' ).strip() return out_string def _UpperCamelCase ( self , a , a = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def _UpperCamelCase ( self , a , a = "en_XX" , a = None , a = "ro_RO" , **a , ) -> BatchEncoding: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(a , a , **a ) def _UpperCamelCase ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self ) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self , a ) -> None: snake_case_ = self.lang_code_to_id[src_lang] snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] def _UpperCamelCase ( self , a ) -> None: snake_case_ = self.lang_code_to_id[lang] snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code]
178
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowercase = logging.get_logger(__name__) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , *a , **a ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , a , ) super().__init__(*a , **a )
178
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCamelCase (yaml.SafeLoader ): """simple docstring""" def A_ ( self : Dict, _UpperCAmelCase : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE__ : str = [tuple(_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else key for key in keys] SCREAMING_SNAKE_CASE__ : List[str] = Counter(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def A_ ( self : Tuple, _UpperCAmelCase : Any, _UpperCAmelCase : List[str]=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().construct_mapping(_UpperCAmelCase, deep=_UpperCAmelCase ) self._check_no_duplicates_on_constructed_node(_UpperCAmelCase ) return mapping def _a ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple[Optional[str], str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE__ : Optional[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE__ : Any = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def A_ ( cls : int, _UpperCAmelCase : Path ) -> "DatasetMetadata": """simple docstring""" with open(_UpperCAmelCase, encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE__ : int = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_UpperCAmelCase ) else: return cls() def A_ ( self : Optional[Any], _UpperCAmelCase : Path ) -> List[str]: """simple docstring""" if path.exists(): with open(_UpperCAmelCase, encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE__ : Any = readme_file.read() else: SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._to_readme(_UpperCAmelCase ) with open(_UpperCAmelCase, "w", encoding="utf-8" ) as readme_file: readme_file.write(_UpperCAmelCase ) def A_ ( self : Dict, _UpperCAmelCase : Optional[str] = None ) -> str: """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE__ : Tuple = _split_yaml_from_readme(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE__ : Optional[int] = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def A_ ( cls : str, _UpperCAmelCase : str ) -> "DatasetMetadata": """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = yaml.load(_UpperCAmelCase, Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE__ : List[Any] = { (key.replace("-", "_" ) if key.replace("-", "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> str: """simple docstring""" return yaml.safe_dump( { (key.replace("_", "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() }, sort_keys=_UpperCAmelCase, allow_unicode=_UpperCAmelCase, encoding="utf-8", ).decode("utf-8" ) _lowerCamelCase : Tuple = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser _lowerCamelCase : Tuple = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') _lowerCamelCase : Optional[int] = ap.parse_args() _lowerCamelCase : Tuple = Path(args.readme_filepath) _lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
368
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : Any, _UpperCAmelCase : List[Any]=sys.maxsize ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "bilinear" SCREAMING_SNAKE_CASE__ : Optional[int] = max_size SCREAMING_SNAKE_CASE__ : Optional[int] = short_edge_length def __call__( self : Optional[int], _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [] for img in imgs: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = img.shape[:2] # later: provide list and randomly choose index for resize SCREAMING_SNAKE_CASE__ : List[str] = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1 ) if size == 0: return img SCREAMING_SNAKE_CASE__ : int = size * 1.0 / min(_UpperCAmelCase, _UpperCAmelCase ) if h < w: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size if max(_UpperCAmelCase, _UpperCAmelCase ) > self.max_size: SCREAMING_SNAKE_CASE__ : str = self.max_size * 1.0 / max(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = newh * scale SCREAMING_SNAKE_CASE__ : List[str] = neww * scale SCREAMING_SNAKE_CASE__ : Any = int(neww + 0.5 ) SCREAMING_SNAKE_CASE__ : List[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: SCREAMING_SNAKE_CASE__ : List[Any] = Image.fromarray(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pil_image.resize((neww, newh), PILImageResampling.BILINEAR ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : str = img.permute(2, 0, 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw SCREAMING_SNAKE_CASE__ : Tuple = nn.functional.interpolate( _UpperCAmelCase, (newh, neww), mode=self.interp_method, align_corners=_UpperCAmelCase ).squeeze(0 ) img_augs.append(_UpperCAmelCase ) return img_augs class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST ) SCREAMING_SNAKE_CASE__ : Any = cfg.INPUT.FORMAT SCREAMING_SNAKE_CASE__ : List[str] = cfg.SIZE_DIVISIBILITY SCREAMING_SNAKE_CASE__ : List[Any] = cfg.PAD_VALUE SCREAMING_SNAKE_CASE__ : Dict = cfg.INPUT.MAX_SIZE_TEST SCREAMING_SNAKE_CASE__ : Optional[int] = cfg.MODEL.DEVICE SCREAMING_SNAKE_CASE__ : int = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) SCREAMING_SNAKE_CASE__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = lambda _UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def A_ ( self : str, _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = tuple(max(_UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [im.shape[-2:] for im in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ nn.functional.pad( _UpperCAmelCase, [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]], value=self.pad_value, ) for size, im in zip(_UpperCAmelCase, _UpperCAmelCase ) ] return torch.stack(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase ) def __call__( self : Any, _UpperCAmelCase : Dict, _UpperCAmelCase : List[str]=False ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : str = [images] if single_image: assert len(_UpperCAmelCase ) == 1 for i in range(len(_UpperCAmelCase ) ): if isinstance(images[i], torch.Tensor ): images.insert(_UpperCAmelCase, images.pop(_UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i], torch.Tensor ): images.insert( _UpperCAmelCase, torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase ), input_format=self.input_format ) ) .to(self.device ) .float(), ) # resize smallest edge SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([im.shape[:2] for im in images] ) SCREAMING_SNAKE_CASE__ : Tuple = self.aug(_UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic SCREAMING_SNAKE_CASE__ : List[Any] = [self.normalizer(_UpperCAmelCase ) for x in images] # now pad them to do the following operations SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.pad(_UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.true_divide(_UpperCAmelCase, _UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple[int, int] ) -> List[Any]: '''simple docstring''' assert torch.isfinite(SCREAMING_SNAKE_CASE__ ).all(), "Box tensor contains infinite or NaN!" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ )
191
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCamelCase : int = logging.getLogger(__name__) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCAmelCase , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCAmelCase , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCAmelCase , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCAmelCase , default="data/dump" , help="The dump file prefix." ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` SCREAMING_SNAKE_CASE_ : str = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE_ : Optional[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `<s>` SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE_ : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: SCREAMING_SNAKE_CASE_ : int = fp.readlines() logger.info("Start encoding" ) logger.info(f'{len(lowerCAmelCase )} examples to process.' ) SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 1_0_0_0_0 SCREAMING_SNAKE_CASE_ : Optional[Any] = time.time() for text in data: SCREAMING_SNAKE_CASE_ : Tuple = f'{bos} {text.strip()} {sep}' SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) rslt.append(lowerCAmelCase ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE_ : List[Any] = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) SCREAMING_SNAKE_CASE_ : Dict = time.time() logger.info("Finished binarization" ) logger.info(f'{len(lowerCAmelCase )} examples processed.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = f'{args.dump_file}.{args.tokenizer_name}.pickle' SCREAMING_SNAKE_CASE_ : Dict = tokenizer.vocab_size if vocab_size < (1 << 1_6): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.uintaa(lowerCAmelCase ) for d in rslt] else: SCREAMING_SNAKE_CASE_ : Dict = [np.intaa(lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(lowerCAmelCase , "wb" ) as handle: pickle.dump(rslt_ , lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : Optional[Any] = logging.get_logger(__name__) __A : Tuple = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __UpperCamelCase ( lowercase__ ): lowercase : Any = 'imagegpt' lowercase : List[str] = ['past_key_values'] lowercase : str = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self :Tuple ,_UpperCamelCase :Optional[int]=5_1_2 + 1 ,_UpperCamelCase :Tuple=3_2 * 3_2 ,_UpperCamelCase :Dict=5_1_2 ,_UpperCamelCase :List[Any]=2_4 ,_UpperCamelCase :Any=8 ,_UpperCamelCase :int=None ,_UpperCamelCase :int="quick_gelu" ,_UpperCamelCase :List[str]=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Optional[Any]=0.1 ,_UpperCamelCase :Any=1E-5 ,_UpperCamelCase :Optional[int]=0.02 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :List[str]=True ,_UpperCamelCase :Dict=False ,_UpperCamelCase :int=False ,_UpperCamelCase :Optional[int]=False ,**_UpperCamelCase :Any ,): snake_case_ : List[str] = vocab_size snake_case_ : Optional[int] = n_positions snake_case_ : Any = n_embd snake_case_ : Optional[int] = n_layer snake_case_ : Optional[int] = n_head snake_case_ : Tuple = n_inner snake_case_ : List[str] = activation_function snake_case_ : str = resid_pdrop snake_case_ : Optional[int] = embd_pdrop snake_case_ : Optional[Any] = attn_pdrop snake_case_ : Tuple = layer_norm_epsilon snake_case_ : Optional[Any] = initializer_range snake_case_ : List[Any] = scale_attn_weights snake_case_ : Tuple = use_cache snake_case_ : Dict = scale_attn_by_inverse_layer_idx snake_case_ : List[str] = reorder_and_upcast_attn snake_case_ : str = tie_word_embeddings super().__init__(tie_word_embeddings=_UpperCamelCase ,**_UpperCamelCase ) class __UpperCamelCase ( lowercase__ ): @property def a__ ( self :int ): return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def a__ ( self :Tuple ,_UpperCamelCase :"FeatureExtractionMixin" ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = -1 ,_UpperCamelCase :bool = False ,_UpperCamelCase :Optional["TensorType"] = None ,_UpperCamelCase :int = 3 ,_UpperCamelCase :int = 3_2 ,_UpperCamelCase :int = 3_2 ,): snake_case_ : Dict = self._generate_dummy_images(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[str] = dict(preprocessor(images=_UpperCamelCase ,return_tensors=_UpperCamelCase ) ) return inputs
8
'''simple docstring''' import re def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[Any] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": __A : int = '0094702343221' print(is_sri_lankan_phone_number(phone))
8
1
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = DebertaVaTokenizer UpperCamelCase = DebertaVaTokenizerFast UpperCamelCase = True UpperCamelCase = True def snake_case_( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_( self , A ) -> Dict: _SCREAMING_SNAKE_CASE = """this is a test""" _SCREAMING_SNAKE_CASE = """this is a test""" return input_text, output_text def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = """<pad>""" _SCREAMING_SNAKE_CASE = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(A ) , 3_0001 ) def snake_case_( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def snake_case_( self ) -> Any: # fmt: off _SCREAMING_SNAKE_CASE = """ \tHeLLo!how \n Are yoU? """ _SCREAMING_SNAKE_CASE = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def snake_case_( self ) -> List[Any]: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def snake_case_( self ) -> Optional[int]: pass def snake_case_( self ) -> Optional[Any]: # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> List[str]: # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> str: # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> Union[str, Any]: # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> List[str]: # fmt: off _SCREAMING_SNAKE_CASE = """ \tHeLLo!how \n Are yoU? """ _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = """This is a test""" _SCREAMING_SNAKE_CASE = [13, 1, 4398, 25, 21, 1289] _SCREAMING_SNAKE_CASE = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , keep_accents=A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , keep_accents=A ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A , A ) # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _SCREAMING_SNAKE_CASE = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A , A ) def snake_case_( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A , A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , A , ) @slow def snake_case_( self ) -> List[str]: # fmt: off _SCREAMING_SNAKE_CASE = {"""input_ids""": [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
58
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowercase_ = logging.getLogger(__name__) lowercase_ = """Hello world! cécé herlolip""" lowercase_ = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ) ->List[Any]: _SCREAMING_SNAKE_CASE = BertAbsConfig( temp_dir=""".""" , finetune_bert=__lowerCamelCase , large=__lowerCamelCase , share_emb=__lowerCamelCase , use_bert_emb=__lowerCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , lambda __lowerCamelCase , __lowerCamelCase : storage ) _SCREAMING_SNAKE_CASE = AbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) , __lowerCamelCase ) original.eval() _SCREAMING_SNAKE_CASE = BertAbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) _SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs _SCREAMING_SNAKE_CASE = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) _SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) _SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _SCREAMING_SNAKE_CASE = encoder_input_ids _SCREAMING_SNAKE_CASE = decoder_input_ids _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _SCREAMING_SNAKE_CASE = original(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] _SCREAMING_SNAKE_CASE = original.generator(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = new_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] _SCREAMING_SNAKE_CASE = new_model.generator(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) lowercase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
58
1
import math def lowerCamelCase__ ( lowercase = 100 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = sum(i * i for i in range(1 , n + 1 ) ) SCREAMING_SNAKE_CASE : int = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
319
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
285
import numpy as np def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
285
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a__ = get_tests_dir('''fixtures''') class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down _a : Dict = mock.Mock() _a : List[Any] = 5_0_0 _a : Optional[Any] = {} _a : Any = HTTPError _a : Union[str, Any] = {} # Download this model to make sure it's in the cache. _a : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_a ) as mock_head: _a : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self ) -> Any: # This test is for deprecated behavior and can be removed in v5 _a : List[str] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls ) -> Tuple: _a : Optional[int] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls ) -> int: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __lowercase ( self ) -> str: _a : int = WavaVecaFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) _a : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _a , repo_id='''test-feature-extractor''' , push_to_hub=_a , use_auth_token=self._token ) _a : Dict = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def __lowercase ( self ) -> List[Any]: _a : int = WavaVecaFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) _a : List[str] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _a , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_a , use_auth_token=self._token ) _a : str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def __lowercase ( self ) -> Union[str, Any]: CustomFeatureExtractor.register_for_auto_class() _a : Union[str, Any] = CustomFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) _a : str = AutoFeatureExtractor.from_pretrained( F"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_a ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
357
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
0
'''simple docstring''' import numpy as np import qiskit def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 8 , UpperCamelCase = None ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = np.random.default_rng(seed=UpperCamelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. lowerCAmelCase__ : Tuple = 6 * key_len # Measurement basis for Alice's qubits. lowerCAmelCase__ : List[str] = rng.integers(2 , size=UpperCamelCase ) # The set of states Alice will prepare. lowerCAmelCase__ : Optional[Any] = rng.integers(2 , size=UpperCamelCase ) # Measurement basis for Bob's qubits. lowerCAmelCase__ : List[Any] = rng.integers(2 , size=UpperCamelCase ) # Quantum Circuit to simulate BB84 lowerCAmelCase__ : Any = qiskit.QuantumCircuit(UpperCamelCase , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(UpperCamelCase ): if alice_state[index] == 1: bbaa_circ.x(UpperCamelCase ) if alice_basis[index] == 1: bbaa_circ.h(UpperCamelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(UpperCamelCase ): if bob_basis[index] == 1: bbaa_circ.h(UpperCamelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. lowerCAmelCase__ : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. lowerCAmelCase__ : Optional[int] = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1 , seed_simulator=UpperCamelCase ) # Returns the result of measurement. lowerCAmelCase__ : Union[str, Any] = job.result().get_counts(UpperCamelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. lowerCAmelCase__ : str = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( UpperCamelCase , UpperCamelCase , UpperCamelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. lowerCAmelCase__ : Tuple = gen_key[:key_len] if len(UpperCamelCase ) >= key_len else gen_key.ljust(UpperCamelCase , """0""" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
37
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase_ ): def __init__( self : Dict , _lowercase : CLIPSegForImageSegmentation , _lowercase : CLIPSegProcessor , _lowercase : AutoencoderKL , _lowercase : CLIPTextModel , _lowercase : CLIPTokenizer , _lowercase : UNetaDConditionModel , _lowercase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowercase : StableDiffusionSafetyChecker , _lowercase : CLIPImageProcessor , ): """simple docstring""" super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: SCREAMING_SNAKE_CASE__ = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , _lowercase , standard_warn=_lowercase ) SCREAMING_SNAKE_CASE__ = dict(scheduler.config ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FrozenDict(_lowercase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: SCREAMING_SNAKE_CASE__ = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , _lowercase , standard_warn=_lowercase ) SCREAMING_SNAKE_CASE__ = dict(scheduler.config ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FrozenDict(_lowercase ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=_lowercase , segmentation_processor=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , ) def __a ( self : List[Any] , _lowercase : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowercase ) def __a ( self : Any ): """simple docstring""" self.enable_attention_slicing(_lowercase ) def __a ( self : Optional[int] ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) SCREAMING_SNAKE_CASE__ = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __a ( self : Optional[int] ): """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , _lowercase : Union[str, List[str]] , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] , _lowercase : str , _lowercase : int = 5_12 , _lowercase : int = 5_12 , _lowercase : int = 50 , _lowercase : float = 7.5 , _lowercase : Optional[Union[str, List[str]]] = None , _lowercase : Optional[int] = 1 , _lowercase : float = 0.0 , _lowercase : Optional[torch.Generator] = None , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , _lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowercase : int = 1 , **_lowercase : str , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) SCREAMING_SNAKE_CASE__ = self.segmentation_model(**_lowercase ) SCREAMING_SNAKE_CASE__ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(_lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask SCREAMING_SNAKE_CASE__ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , height=_lowercase , width=_lowercase , num_inference_steps=_lowercase , guidance_scale=_lowercase , negative_prompt=_lowercase , num_images_per_prompt=_lowercase , eta=_lowercase , generator=_lowercase , latents=_lowercase , output_type=_lowercase , return_dict=_lowercase , callback=_lowercase , callback_steps=_lowercase , )
219
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __lowerCamelCase = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if isinstance(_UpperCAmelCase , torch.Tensor ): return image elif isinstance(_UpperCAmelCase , PIL.Image.Image ): A__ = [image] A__ = [trans(img.convert('RGB' ) ) for img in image] A__ = torch.stack(_UpperCAmelCase ) return image class UpperCamelCase__( snake_case__ ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: super().__init__() # make sure scheduler can always be converted to DDIM A__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCAmelCase_ ,scheduler=UpperCAmelCase_ ) def snake_case__ ( self ,__UpperCAmelCase ) -> int: if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: A__ = min(int(num_inference_steps * strength ) ,UpperCAmelCase_ ) A__ = max(num_inference_steps - init_timestep ,0 ) A__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> List[str]: if not isinstance(UpperCAmelCase_ ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase_ )}''' ) A__ = image.to(device=UpperCAmelCase_ ,dtype=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(UpperCAmelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) A__ = init_latents.shape A__ = randn_tensor(UpperCAmelCase_ ,generator=UpperCAmelCase_ ,device=UpperCAmelCase_ ,dtype=UpperCAmelCase_ ) # get latents print('add noise to latents at timestep' ,UpperCAmelCase_ ) A__ = self.scheduler.add_noise(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) A__ = init_latents return latents @torch.no_grad() def __call__( self ,__UpperCAmelCase = None ,__UpperCAmelCase = 0.8 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = None ,__UpperCAmelCase = 0.0 ,__UpperCAmelCase = 50 ,__UpperCAmelCase = None ,__UpperCAmelCase = "pil" ,__UpperCAmelCase = True ,) -> int: self.check_inputs(UpperCAmelCase_ ) # 2. Preprocess image A__ = preprocess(UpperCAmelCase_ ) # 3. set timesteps self.scheduler.set_timesteps(UpperCAmelCase_ ,device=self.device ) A__ = self.get_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,self.device ) A__ = timesteps[:1].repeat(UpperCAmelCase_ ) # 4. Prepare latent variables A__ = self.prepare_latents(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,self.unet.dtype ,self.device ,UpperCAmelCase_ ) A__ = latents # 5. Denoising loop for t in self.progress_bar(UpperCAmelCase_ ): # 1. predict noise model_output A__ = self.unet(UpperCAmelCase_ ,UpperCAmelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,eta=UpperCAmelCase_ ,use_clipped_model_output=UpperCAmelCase_ ,generator=UpperCAmelCase_ ,).prev_sample A__ = (image / 2 + 0.5).clamp(0 ,1 ) A__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCAmelCase_ )
365
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
154
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCAmelCase : Optional[Any] = TypeVar("T") class SCREAMING_SNAKE_CASE__ ( Generic[T] ): lowercase__ = 42 # Cache store of keys lowercase__ = 42 # References of the keys in cache lowercase__ = 10 # Maximum capacity of cache def __init__( self : Optional[Any] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""") else: lowercase_ = n def _UpperCAmelCase ( self : int , lowerCAmelCase_ : T): """simple docstring""" if x not in self.key_reference: if len(self.dq_store) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(lowerCAmelCase_) else: self.dq_store.remove(lowerCAmelCase_) self.dq_store.appendleft(lowerCAmelCase_) self.key_reference.add(lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" for k in self.dq_store: print(lowerCAmelCase_) def __repr__( self : Tuple): """simple docstring""" return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}''' if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
136
"""simple docstring""" from __future__ import annotations import math def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if len(__lowerCAmelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCAmelCase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[list, list, list, list]: '''simple docstring''' if len(__lowerCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase_ = len(__lowerCAmelCase ) lowercase_ = matrix_length // 2 lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase )] lowercase_ = [ [a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase ) ] lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase )] lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase )] return top_left, top_right, bot_left, bot_right def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[int, int]: '''simple docstring''' return len(__lowerCAmelCase ), len(matrix[0] ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> None: '''simple docstring''' print("""\n""".join(str(__lowerCAmelCase ) for line in matrix ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__lowerCAmelCase ) == (2, 2): return default_matrix_multiplication(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(__lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(__lowerCAmelCase ) lowercase_ = actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) lowercase_ = actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = matrix_addition(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase ) lowercase_ = matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase ) # construct the new matrix from our 4 quadrants lowercase_ = [] for i in range(len(__lowerCAmelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowerCAmelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__lowerCAmelCase )[1] != matrix_dimensions(__lowerCAmelCase )[0]: lowercase_ = ( """Unable to multiply these matrices, please check the dimensions.\n""" F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(__lowerCAmelCase ) lowercase_ = matrix_dimensions(__lowerCAmelCase ) lowercase_ = matrix_dimensions(__lowerCAmelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase_ = max(*__lowerCAmelCase , *__lowerCAmelCase ) lowercase_ = int(math.pow(2 , math.ceil(math.loga(__lowerCAmelCase ) ) ) ) lowercase_ = matrixa lowercase_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase_ = actual_strassen(__lowerCAmelCase , __lowerCAmelCase ) # Removing the additional zeros for i in range(0 , __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCAmelCase : List[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCAmelCase : Optional[int] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
136
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _UpperCAmelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _UpperCAmelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _UpperCAmelCase = shift_tokens_right(__A , model.config.pad_token_id , model.config.decoder_start_token_id ) _UpperCAmelCase = model(__A , decoder_input_ids=__A ).logits _UpperCAmelCase = optax.softmax_cross_entropy(__A , onehot(__A , logits.shape[-1] ) ).mean() _UpperCAmelCase = -(labels.shape[-1] * loss.item()) _UpperCAmelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
57
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class a ( __snake_case ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=1 ) -> str: lowerCamelCase_ = tokenizer lowerCamelCase_ = dataset lowerCamelCase_ = len(__SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks lowerCamelCase_ = n_copies def __iter__( self : Dict ) -> Any: lowerCamelCase_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase_ = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a ( __snake_case ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any ) -> List[Any]: lowerCamelCase_ = start_length lowerCamelCase_ = eof_strings lowerCamelCase_ = tokenizer def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: lowerCamelCase_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowerCamelCase : List[Any] ) -> Tuple: lowerCamelCase_ = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Dict=20 , **_lowerCamelCase : Dict ) -> List[str]: lowerCamelCase_ = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase_ = batch['ids'].shape[-1] lowerCamelCase_ = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase_ = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase_ = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase_ = generated_tokens.cpu().numpy() lowerCamelCase_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase_ = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase_ = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase__ ( ) -> Tuple: # Setup configuration lowerCamelCase_ = HfArgumentParser(_lowerCamelCase ) lowerCamelCase_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase_ = 'false' if args.num_workers is None: lowerCamelCase_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase_ = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase_ = tokenizer.eos_token lowerCamelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase_ = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase_ = load_dataset('openai_humaneval' ) lowerCamelCase_ = load_metric('code_eval' ) lowerCamelCase_ = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase_ = args.n_samples // args.batch_size lowerCamelCase_ = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase_ = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase_ = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase_ = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase_ = human_eval['test'][task]['test'] lowerCamelCase_ = F'''check({human_eval["test"][task]["entry_point"]})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase_ , lowerCamelCase_ = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
183
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BarthezTokenizer __snake_case = BarthezTokenizerFast __snake_case = True __snake_case = True def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" super().setUp() a = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__UpperCAmelCase ) a = tokenizer def __lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" a = '''<pad>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__UpperCAmelCase ) , 101_122 ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a = [0, 57, 3_018, 70_307, 91, 2] a = self.tokenizer( __UpperCAmelCase , max_length=len(__UpperCAmelCase ) , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) a = batch.input_ids.tolist()[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = '''I was born in 92000, and this is falsé.''' a = tokenizer.tokenize(__UpperCAmelCase ) a = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__UpperCAmelCase ) a = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = {'''input_ids''': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. a = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__UpperCAmelCase , )
26
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") lowerCamelCase__ = int(input("""Enter number: """).strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
86
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A__ ( _lowerCamelCase): A_ : Any = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'AutoImageProcessor' A_ : str = 'AutoTokenizer' def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = kwargs.pop('feature_extractor' ) __lowerCAmelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = self.image_processor __lowerCAmelCase : Tuple = False def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = kwargs.pop('images' , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = kwargs.pop('text' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase : Dict = args[0] __lowerCAmelCase : Union[str, Any] = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __lowerCAmelCase : Union[str, Any] = self.image_processor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: __lowerCAmelCase : Dict = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif images is None: return encodings else: __lowerCAmelCase : Union[str, Any] = encodings['input_ids'] return inputs def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @contextmanager def __lowerCamelCase ( self ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) __lowerCAmelCase : Any = True __lowerCAmelCase : Dict = self.tokenizer yield __lowerCAmelCase : Optional[int] = self.image_processor __lowerCAmelCase : Optional[Any] = False def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None ): if added_vocab is None: __lowerCAmelCase : str = self.tokenizer.get_added_vocab() __lowerCAmelCase : List[Any] = {} while tokens: __lowerCAmelCase : int = re.search(R'<s_(.*?)>' , _SCREAMING_SNAKE_CASE , re.IGNORECASE ) if start_token is None: break __lowerCAmelCase : Union[str, Any] = start_token.group(1 ) __lowerCAmelCase : Tuple = re.search(Rf"</s_{key}>" , _SCREAMING_SNAKE_CASE , re.IGNORECASE ) __lowerCAmelCase : str = start_token.group() if end_token is None: __lowerCAmelCase : Optional[int] = tokens.replace(_SCREAMING_SNAKE_CASE , '' ) else: __lowerCAmelCase : Optional[Any] = end_token.group() __lowerCAmelCase : Tuple = re.escape(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = re.escape(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = re.search(f"{start_token_escaped}(.*?){end_token_escaped}" , _SCREAMING_SNAKE_CASE , re.IGNORECASE ) if content is not None: __lowerCAmelCase : List[str] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __lowerCAmelCase : int = self.tokenajson(_SCREAMING_SNAKE_CASE , is_inner_value=_SCREAMING_SNAKE_CASE , added_vocab=_SCREAMING_SNAKE_CASE ) if value: if len(_SCREAMING_SNAKE_CASE ) == 1: __lowerCAmelCase : Tuple = value[0] __lowerCAmelCase : Tuple = value else: # leaf nodes __lowerCAmelCase : Any = [] for leaf in content.split(R'<sep/>' ): __lowerCAmelCase : List[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __lowerCAmelCase : Dict = leaf[1:-2] # for categorical special tokens output[key].append(_SCREAMING_SNAKE_CASE ) if len(output[key] ) == 1: __lowerCAmelCase : str = output[key][0] __lowerCAmelCase : Dict = tokens[tokens.find(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_SCREAMING_SNAKE_CASE , added_vocab=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _SCREAMING_SNAKE_CASE , ) return self.image_processor
86
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: try: with open(UpperCamelCase__ , 'rb' ) as flax_state_f: snake_case_ = from_bytes(UpperCamelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCamelCase__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights snake_case_ = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase : x.dtype == jnp.bfloataa , UpperCamelCase__ ) ).values() if any(UpperCamelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) snake_case_ = jax.tree_util.tree_map( lambda UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase__ ) snake_case_ = '' snake_case_ = flatten_dict(UpperCamelCase__ , sep='.' ) snake_case_ = pt_model.state_dict() # keep track of unexpected & missing keys snake_case_ = [] snake_case_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case_ = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: snake_case_ = flax_key_tuple_array[:-1] + ['weight'] snake_case_ = jnp.transpose(UpperCamelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": snake_case_ = flax_key_tuple_array[:-1] + ['weight'] snake_case_ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": snake_case_ = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCamelCase__ ): snake_case_ = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) snake_case_ = '.'.join(UpperCamelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict snake_case_ = np.asarray(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , np.ndarray ) else flax_tensor snake_case_ = torch.from_numpy(UpperCamelCase__ ) # remove from missing keys missing_keys.remove(UpperCamelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCamelCase__ ) pt_model.load_state_dict(UpperCamelCase__ ) # re-transform missing_keys to list snake_case_ = list(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(UpperCamelCase__ ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) return pt_model
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
'''simple docstring''' import random def a ( __a , __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = a[left_index] UpperCamelCase__ :Union[str, Any] = left_index + 1 for j in range(left_index + 1 , __a ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = a[i - 1], a[left_index] return i - 1 def a ( __a , __a , __a ) -> Optional[Any]: '''simple docstring''' if left < right: UpperCamelCase__ :Any = random.randint(__a , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :Any = partition(__a , __a , __a ) quick_sort_random( __a , __a , __a ) # recursive quicksort to the left of the pivot point quick_sort_random( __a , pivot_index + 1 , __a ) # recursive quicksort to the right of the pivot point def a ( ) -> str: '''simple docstring''' UpperCamelCase__ :Any = input('''Enter numbers separated by a comma:\n''' ).strip() UpperCamelCase__ :str = [int(__a ) for item in user_input.split(''',''' )] quick_sort_random(__a , 0 , len(__a ) ) print(__a ) if __name__ == "__main__": main()
97
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
"""simple docstring""" import math def _a ( _snake_case = 100 ): """simple docstring""" UpperCAmelCase = sum(i * i for i in range(1 , n + 1 ) ) UpperCAmelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
351
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _UpperCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } _UpperCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _a ( _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = create_model( """HTSAT-tiny""" , """roberta""" , _snake_case , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_snake_case , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = R""".*sequential.(\d+).*""" UpperCAmelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list UpperCAmelCase = re.match(_snake_case , _snake_case ).group(1 ) UpperCAmelCase = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_snake_case )//3}.linear.''' ) elif re.match(_snake_case , _snake_case ): UpperCAmelCase = int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase = 1 if projecton_layer == 0 else 2 UpperCAmelCase = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase = value UpperCAmelCase = mixed_qkv.size(0 ) // 3 UpperCAmelCase = mixed_qkv[:qkv_dim] UpperCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase = query_layer UpperCAmelCase = key_layer UpperCAmelCase = value_layer else: UpperCAmelCase = value return model_state_dict def _a ( _snake_case , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() UpperCAmelCase = clap_model.state_dict() UpperCAmelCase = rename_state_dict(_snake_case ) UpperCAmelCase = ClapConfig() UpperCAmelCase = enable_fusion UpperCAmelCase = ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") _UpperCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
234
0
'''simple docstring''' def lowerCamelCase ( __lowerCamelCase : int = 10 , __lowerCamelCase : int = 1000 , __lowerCamelCase : bool = True ) ->int: assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int ) ->int: return int((number_a + number_a) / 2 ) def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ) ->None: assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(__lowerCamelCase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) _SCREAMING_SNAKE_CASE = lower _SCREAMING_SNAKE_CASE = higher _SCREAMING_SNAKE_CASE = [] while True: _SCREAMING_SNAKE_CASE = get_avg(__lowerCamelCase , __lowerCamelCase ) last_numbers.append(__lowerCamelCase ) if answer(__lowerCamelCase ) == "low": _SCREAMING_SNAKE_CASE = number elif answer(__lowerCamelCase ) == "high": _SCREAMING_SNAKE_CASE = number else: break print(F'guess the number : {last_numbers[-1]}' ) print(F'details : {last_numbers!s}' ) def lowerCamelCase ( ) ->None: _SCREAMING_SNAKE_CASE = int(input("""Enter lower value : """ ).strip() ) _SCREAMING_SNAKE_CASE = int(input("""Enter high value : """ ).strip() ) _SCREAMING_SNAKE_CASE = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
58
import argparse import json from tqdm import tqdm def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=SCREAMING_SNAKE_CASE , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=SCREAMING_SNAKE_CASE , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=SCREAMING_SNAKE_CASE , help='''where to store parsed gold_data_path file''' , ) __UpperCamelCase :str = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: __UpperCamelCase :List[str] = json.load(SCREAMING_SNAKE_CASE ) for dpr_record in tqdm(SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[str] = dpr_record['''question'''] __UpperCamelCase :Tuple = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(SCREAMING_SNAKE_CASE ) + '''\n''' ) if __name__ == "__main__": main()
43
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __magic_name__: Any = logging.get_logger(__name__) __magic_name__: Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __magic_name__: int = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __magic_name__: Union[str, Any] = {"allegro/herbert-base-cased": 514} __magic_name__: str = {} class snake_case__ ( SCREAMING_SNAKE_CASE__ ): lowercase__ : Tuple = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = HerbertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="</s>" , **lowerCAmelCase__ , ) -> Dict: super().__init__( a_ , a_ , tokenizer_file=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , sep_token=a_ , **a_ , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Any: __magic_name__ : int = [self.cls_token_id] __magic_name__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[str]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[str]: __magic_name__ : List[Any] = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
359
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __magic_name__: Any = logging.get_logger(__name__) __magic_name__: Dict = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Any = '''blenderbot-small''' lowercase__ : Optional[int] = ['''past_key_values'''] lowercase__ : Dict = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase__=5_02_65 , lowerCAmelCase__=5_12 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=16 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=5_12 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Tuple: __magic_name__ : Tuple = vocab_size __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Union[str, Any] = d_model __magic_name__ : Optional[int] = encoder_ffn_dim __magic_name__ : Union[str, Any] = encoder_layers __magic_name__ : List[str] = encoder_attention_heads __magic_name__ : List[Any] = decoder_ffn_dim __magic_name__ : str = decoder_layers __magic_name__ : List[str] = decoder_attention_heads __magic_name__ : Union[str, Any] = dropout __magic_name__ : Tuple = attention_dropout __magic_name__ : List[Any] = activation_dropout __magic_name__ : List[Any] = activation_function __magic_name__ : Optional[int] = init_std __magic_name__ : Dict = encoder_layerdrop __magic_name__ : Union[str, Any] = decoder_layerdrop __magic_name__ : Optional[int] = use_cache __magic_name__ : List[Any] = encoder_layers __magic_name__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) class snake_case__ ( _lowerCAmelCase ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ : List[Any] = {0: """batch"""} __magic_name__ : Dict = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __magic_name__ : List[str] = {0: """batch""", 1: """decoder_sequence"""} __magic_name__ : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __magic_name__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ ,__magic_name__ : Dict = self.num_layers for i in range(lowerCAmelCase__ ): __magic_name__ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : int = {0: """batch""", 2: """past_sequence + sequence"""} else: __magic_name__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Any = super().outputs else: __magic_name__ : int = super(lowerCAmelCase__ , self ).outputs if self.use_past: __magic_name__ ,__magic_name__ : str = self.num_layers for i in range(lowerCAmelCase__ ): __magic_name__ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: __magic_name__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Generate decoder inputs __magic_name__ : Optional[int] = seq_length if not self.use_past else 1 __magic_name__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __magic_name__ : Dict = dict(**lowerCAmelCase__ , **lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ ,__magic_name__ : List[Any] = common_inputs["""input_ids"""].shape __magic_name__ : Optional[Any] = common_inputs["""decoder_input_ids"""].shape[1] __magic_name__ ,__magic_name__ : str = self.num_attention_heads __magic_name__ : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Any = decoder_seq_length + 3 __magic_name__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __magic_name__ : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ )] , dim=1 ) __magic_name__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __magic_name__ ,__magic_name__ : List[str] = self.num_layers __magic_name__ : Optional[Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = max(lowerCAmelCase__ , lowerCAmelCase__ ) - min_num_layers __magic_name__ : Tuple = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowerCAmelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), ) ) # TODO: test this. __magic_name__ : Union[str, Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowerCAmelCase__ , lowerCAmelCase__ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: __magic_name__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ ,__magic_name__ : Tuple = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __magic_name__ : List[Any] = seqlen + 2 __magic_name__ ,__magic_name__ : Any = self.num_layers __magic_name__ ,__magic_name__ : int = self.num_attention_heads __magic_name__ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Optional[int] = common_inputs["""attention_mask"""].dtype __magic_name__ : Optional[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) __magic_name__ : Tuple = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(lowerCAmelCase__ ) ] return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __magic_name__ : Tuple = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ : str = tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) __magic_name__ : List[str] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence __magic_name__ : List[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __magic_name__ : List[str] = dict(tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) elif self.task == "causal-lm": __magic_name__ : str = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) else: __magic_name__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : List[Any] = super()._flatten_past_key_values_(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: __magic_name__ : Tuple = super(lowerCAmelCase__ , self )._flatten_past_key_values_( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
138
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCAmelCase : List[str] = 2_99_79_24_58 # Symbols UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = symbols('''ct x y z''') def _SCREAMING_SNAKE_CASE ( a ) -> float: if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def _SCREAMING_SNAKE_CASE ( a ) -> float: return 1 / sqrt(1 - beta(a ) ** 2 ) def _SCREAMING_SNAKE_CASE ( a ) -> np.ndarray: return np.array( [ [gamma(a ), -gamma(a ) * beta(a ), 0, 0], [-gamma(a ) * beta(a ), gamma(a ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def _SCREAMING_SNAKE_CASE ( a , a = None ) -> np.ndarray: # Ensure event is not empty if event is None: __A : str = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(a ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCAmelCase : str = transform(29_97_92_45) print('''Example of four vector: ''') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values UpperCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} UpperCAmelCase : Any = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
280
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase : Any = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
280
1
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _a : List[Any] = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def lowerCamelCase__ ( __snake_case = "dhaka", __snake_case = 5 ) -> int: """simple docstring""" _UpperCamelCase = min(__snake_case, 50 ) # Prevent abuse! _UpperCamelCase = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _UpperCamelCase = requests.get('''https://www.google.com/search''', params=__snake_case, headers=__snake_case ) _UpperCamelCase = BeautifulSoup(html.text, '''html.parser''' ) _UpperCamelCase = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''', str(soup.select('''script''' ) ) ) ) _UpperCamelCase = json.dumps(__snake_case ) _UpperCamelCase = json.loads(__snake_case ) _UpperCamelCase = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''', __snake_case, ) if not matched_google_image_data: return 0 _UpperCamelCase = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''', '''''', str(__snake_case ), ) _UpperCamelCase = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''', __snake_case, ) for index, fixed_full_res_image in enumerate(__snake_case ): if index >= max_images: return index _UpperCamelCase = bytes(__snake_case, '''ascii''' ).decode( '''unicode-escape''' ) _UpperCamelCase = bytes(__snake_case, '''ascii''' ).decode( '''unicode-escape''' ) _UpperCamelCase = urllib.request.build_opener() _UpperCamelCase = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(__snake_case ) _UpperCamelCase = F'''query_{query.replace(" ", "_" )}''' if not os.path.exists(__snake_case ): os.makedirs(__snake_case ) urllib.request.urlretrieve( # noqa: S310 __snake_case, F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: _a : Optional[int] = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print("""Please provide a search term.""") raise
364
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
100
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case__ : """simple docstring""" @staticmethod def lowercase_ ( *_snake_case : Optional[Any], **_snake_case : int ) ->Optional[int]: pass @is_pipeline_test @require_vision @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase_ ( self : Optional[int], _snake_case : Dict, _snake_case : Dict, _snake_case : Any ) ->Dict: snake_case__ : List[Any] = pipeline( 'zero-shot-object-detection', model='hf-internal-testing/tiny-random-owlvit-object-detection' ) snake_case__ : str = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def lowercase_ ( self : Union[str, Any], _snake_case : Optional[int], _snake_case : Optional[int] ) ->Any: snake_case__ : str = object_detector(examples[0], threshold=0.0 ) snake_case__ : Any = len(_snake_case ) self.assertGreater(_snake_case, 0 ) self.assertEqual( _snake_case, [ { 'score': ANY(_snake_case ), 'label': ANY(_snake_case ), 'box': {'xmin': ANY(_snake_case ), 'ymin': ANY(_snake_case ), 'xmax': ANY(_snake_case ), 'ymax': ANY(_snake_case )}, } for i in range(_snake_case ) ], ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def lowercase_ ( self : int ) ->Optional[int]: pass @require_torch def lowercase_ ( self : Any ) ->Tuple: snake_case__ : Dict = pipeline( 'zero-shot-object-detection', model='hf-internal-testing/tiny-random-owlvit-object-detection' ) snake_case__ : Tuple = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png', candidate_labels=['cat', 'remote', 'couch'], threshold=0.6_4, ) self.assertEqual( nested_simplify(_snake_case, decimals=4 ), [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ], ) snake_case__ : Optional[int] = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ], threshold=0.6_4, ) self.assertEqual( nested_simplify(_snake_case, decimals=4 ), [ [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ] ], ) @require_torch @slow def lowercase_ ( self : List[Any] ) ->Dict: snake_case__ : str = pipeline('zero-shot-object-detection' ) snake_case__ : str = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg', candidate_labels=['cat', 'remote', 'couch'], ) self.assertEqual( nested_simplify(_snake_case, decimals=4 ), [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], ) snake_case__ : List[str] = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ], ) self.assertEqual( nested_simplify(_snake_case, decimals=4 ), [ [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], ], ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def lowercase_ ( self : List[str] ) ->Any: pass @require_torch @slow def lowercase_ ( self : Optional[int] ) ->Tuple: snake_case__ : Tuple = 0.2 snake_case__ : Union[str, Any] = pipeline('zero-shot-object-detection' ) snake_case__ : Optional[Any] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg', candidate_labels=['cat', 'remote', 'couch'], threshold=_snake_case, ) self.assertEqual( nested_simplify(_snake_case, decimals=4 ), [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, ], ) @require_torch @slow def lowercase_ ( self : List[Any] ) ->str: snake_case__ : List[Any] = 2 snake_case__ : Optional[int] = pipeline('zero-shot-object-detection' ) snake_case__ : List[str] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg', candidate_labels=['cat', 'remote', 'couch'], top_k=_snake_case, ) self.assertEqual( nested_simplify(_snake_case, decimals=4 ), [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, ], )
277
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ (A : str , A : List[Any] , A : Any ): # Initialise PyTorch model snake_case__ : List[Any] = LxmertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case__ : List[str] = LxmertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": a_ :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ :Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
277
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _A ( UpperCamelCase_ : Optional[int]) -> List[str]: '''simple docstring''' __lowercase = 384 if "tiny" in model_name: __lowercase = [3, 3, 9, 3] __lowercase = [96, 192, 384, 768] if "small" in model_name: __lowercase = [3, 3, 27, 3] __lowercase = [96, 192, 384, 768] if "base" in model_name: __lowercase = [3, 3, 27, 3] __lowercase = [128, 256, 512, 1024] __lowercase = 512 if "large" in model_name: __lowercase = [3, 3, 27, 3] __lowercase = [192, 384, 768, 1536] __lowercase = 768 if "xlarge" in model_name: __lowercase = [3, 3, 27, 3] __lowercase = [256, 512, 1024, 2048] __lowercase = 1024 # set label information __lowercase = 150 __lowercase = "huggingface/label-files" __lowercase = "ade20k-id2label.json" __lowercase = json.load(open(hf_hub_download(UpperCamelCase_, UpperCamelCase_, repo_type="dataset"), "r")) __lowercase = {int(UpperCamelCase_): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = ConvNextConfig( depths=UpperCamelCase_, hidden_sizes=UpperCamelCase_, out_features=["stage1", "stage2", "stage3", "stage4"]) __lowercase = UperNetConfig( backbone_config=UpperCamelCase_, auxiliary_in_channels=UpperCamelCase_, num_labels=UpperCamelCase_, idalabel=UpperCamelCase_, labelaid=UpperCamelCase_, ) return config def _A ( UpperCamelCase_ : List[str]) -> str: '''simple docstring''' __lowercase = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight")) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias")) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight")) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""")) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""")) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""")) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""")) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""")) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""")) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""")) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""")) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""")) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ]) # fmt: on return rename_keys def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : List[str], UpperCamelCase_ : Tuple) -> List[str]: '''simple docstring''' __lowercase = dct.pop(UpperCamelCase_) __lowercase = val def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : Tuple) -> Union[str, Any]: '''simple docstring''' __lowercase = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __lowercase = model_name_to_url[model_name] __lowercase = torch.hub.load_state_dict_from_url(UpperCamelCase_, map_location="cpu")["state_dict"] __lowercase = get_upernet_config(UpperCamelCase_) __lowercase = UperNetForSemanticSegmentation(UpperCamelCase_) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowercase = state_dict.pop(UpperCamelCase_) if "bn" in key: __lowercase = key.replace("bn", "batch_norm") __lowercase = val # rename keys __lowercase = create_rename_keys(UpperCamelCase_) for src, dest in rename_keys: rename_key(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) model.load_state_dict(UpperCamelCase_) # verify on image __lowercase = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __lowercase = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_).raw).convert("RGB") __lowercase = SegformerImageProcessor() __lowercase = processor(UpperCamelCase_, return_tensors="pt").pixel_values with torch.no_grad(): __lowercase = model(UpperCamelCase_) if model_name == "upernet-convnext-tiny": __lowercase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]]) elif model_name == "upernet-convnext-small": __lowercase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]]) elif model_name == "upernet-convnext-base": __lowercase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]]) elif model_name == "upernet-convnext-large": __lowercase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]]) elif model_name == "upernet-convnext-xlarge": __lowercase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]]) print("Logits:", outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3], UpperCamelCase_, atol=1E-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(UpperCamelCase_) print(F"""Saving processor to {pytorch_dump_folder_path}""") processor.save_pretrained(UpperCamelCase_) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""") model.push_to_hub(F"""openmmlab/{model_name}""") processor.push_to_hub(F"""openmmlab/{model_name}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F"upernet-convnext-{size}" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
355
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _a = 5_00_00 _a = 50_00 _a , _a = os.path.split(__file__) _a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, UpperCamelCase_ : List[str]) -> List[str]: '''simple docstring''' for i in range(UpperCamelCase_): __lowercase = dataset[i] @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, UpperCamelCase_ : List[Any], UpperCamelCase_ : int) -> Dict: '''simple docstring''' for i in range(0, len(UpperCamelCase_), UpperCamelCase_): __lowercase = dataset[i : i + batch_size] @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, UpperCamelCase_ : Any, UpperCamelCase_ : Optional[int]) -> List[str]: '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase_): for i in range(UpperCamelCase_): __lowercase = dataset[i] @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any]) -> Dict: '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase_): for i in range(0, UpperCamelCase_, UpperCamelCase_): __lowercase = dataset[i : i + batch_size] def _A ( ) -> List[str]: '''simple docstring''' __lowercase = {"num examples": SPEED_TEST_N_EXAMPLES} __lowercase = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] __lowercase = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset") __lowercase = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32")), "numbers": datasets.Value("float32")}) __lowercase = generate_example_dataset( os.path.join(UpperCamelCase_, "dataset.arrow"), UpperCamelCase_, num_examples=UpperCamelCase_, seq_shapes={"list": (100,)}, ) print("first set of iterations") for func, kwargs in functions: print(func.__name__, str(UpperCamelCase_)) __lowercase = func(UpperCamelCase_, **UpperCamelCase_) print("shuffling dataset") __lowercase = dataset.shuffle() print("Second set of iterations (after shuffling") for func, kwargs in functions_shuffled: print("shuffled ", func.__name__, str(UpperCamelCase_)) __lowercase = func( UpperCamelCase_, **UpperCamelCase_) with open(UpperCamelCase_, "wb") as f: f.write(json.dumps(UpperCamelCase_).encode("utf-8")) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
144
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _UpperCAmelCase = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize _UpperCAmelCase = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ _UpperCAmelCase = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ _UpperCAmelCase = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase=0.9 , lowercase=3 , lowercase=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): A_ : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowercase ) , word_tokenize(lowercase ) , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] else: A_ : Optional[Any] = [ meteor_score.single_meteor_score(lowercase , lowercase , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] return {"meteor": np.mean(lowercase )}
140
from collections import deque from .hash_table import HashTable class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): """simple docstring""" super().__init__(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : int = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowercase ) A_ : int = self.values[key] def lowerCAmelCase_ ( self ): """simple docstring""" return ( sum(self.charge_factor - len(lowercase ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowercase ) == 0 ): return key return super()._collision_resolution(lowercase , lowercase )
140
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _lowerCAmelCase : '''simple docstring''' a_ : Union[str, Any] =None def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case : Union[str, Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Optional[Any] = os.path.join(UpperCamelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(UpperCamelCase ) _snake_case : Optional[int] = self.feature_extraction_class.from_json_file(UpperCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : List[str] = feat_extract_first.save_pretrained(UpperCamelCase )[0] check_json_file_has_correct_format(UpperCamelCase ) _snake_case : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase )
362
from __future__ import annotations lowerCAmelCase_ = """#""" class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any ): '''simple docstring''' _snake_case : dict = {} def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[Any] = self._trie for char in text: if char not in trie: _snake_case : int = {} _snake_case : int = trie[char] _snake_case : Optional[Any] = True def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[int] = self._trie for char in prefix: if char in trie: _snake_case : Optional[Any] = trie[char] else: return [] return self._elements(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : dict ): '''simple docstring''' _snake_case : int = [] for c, v in d.items(): _snake_case : Dict = [' '] if c == END else [(c + s) for s in self._elements(UpperCamelCase )] result.extend(UpperCamelCase ) return tuple(UpperCamelCase ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCamelCase_ ( lowerCAmelCase: str )-> tuple: _snake_case : List[Any] = trie.find_word(lowerCAmelCase ) return tuple(string + word for word in suffixes ) def lowerCamelCase_ ( )-> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
260
0
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' for attribute in key.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: UpperCAmelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.feature_extractor UpperCAmelCase__ = hf_model.adapter for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase__ = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: UpperCAmelCase__ = """weight_g""" elif "weight_v" in name: UpperCAmelCase__ = """weight_v""" elif "bias" in name: UpperCAmelCase__ = """bias""" elif "weight" in name: UpperCAmelCase__ = """weight""" else: UpperCAmelCase__ = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase__ = name.split(""".""" ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' UpperCAmelCase__ = full_name.split("""adaptor.""" )[-1] UpperCAmelCase__ = name.split(""".""" ) if items[1].isdigit(): UpperCAmelCase__ = int(items[1] ) else: UpperCAmelCase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' UpperCAmelCase__ = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' UpperCAmelCase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' UpperCAmelCase__ = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' UpperCAmelCase__ = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' UpperCAmelCase__ = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' UpperCAmelCase__ = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = emb.weight.shape UpperCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = emb.weight.data return lin_layer @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' UpperCAmelCase__ = WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , add_adapter=SCREAMING_SNAKE_CASE__ , adapter_stride=SCREAMING_SNAKE_CASE__ , adapter_kernel_size=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , output_hidden_size=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) # load model UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) UpperCAmelCase__ = model[0].eval() # load feature extractor UpperCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ ) # set weights for wav2vec2 encoder UpperCAmelCase__ = WavaVecaModel(SCREAMING_SNAKE_CASE__ ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE__ ) # load decoder weights UpperCAmelCase__ = MBartForCausalLM(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE__ ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) UpperCAmelCase__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = False UpperCAmelCase__ = MBartaaTokenizer(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = hf_wavavec.config.to_dict() UpperCAmelCase__ = tokenizer.pad_token_id UpperCAmelCase__ = tokenizer.bos_token_id UpperCAmelCase__ = tokenizer.eos_token_id UpperCAmelCase__ = """mbart50""" UpperCAmelCase__ = """wav2vec2""" UpperCAmelCase__ = tokenizer.eos_token_id UpperCAmelCase__ = 250004 UpperCAmelCase__ = tokenizer.eos_token_id UpperCAmelCase__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE__ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_0_2_4, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=2_5_0_0_0_4, type=int, help='`decoder_start_token_id` of model config') UpperCAmelCase_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
346
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ): """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor: UpperCAmelCase__ = [] UpperCAmelCase__ = Counter() UpperCAmelCase__ = 0 UpperCAmelCase__ = defaultdict(_UpperCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ): for candidate in candidates: UpperCAmelCase__ = candidate + """\n""" + test_case UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id]) UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase ) futures.append(_UpperCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_UpperCAmelCase ): UpperCAmelCase__ = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) UpperCAmelCase__ , UpperCAmelCase__ = [], [] for result in results.values(): result.sort() UpperCAmelCase__ = [r[1]["""passed"""] for r in result] total.append(len(_UpperCAmelCase ) ) correct.append(sum(_UpperCAmelCase ) ) UpperCAmelCase__ = np.array(_UpperCAmelCase ) UpperCAmelCase__ = np.array(_UpperCAmelCase ) UpperCAmelCase__ = k UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) else: assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ ) return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
346
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
365
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'efficientformer' def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_act a = hidden_dropout_prob a = hidden_sizes a = num_hidden_layers a = num_attention_heads a = initializer_range a = layer_norm_eps a = patch_size a = num_channels a = depths a = mlp_expansion_ratio a = downsamples a = dim a = key_dim a = attention_ratio a = resolution a = pool_size a = downsample_patch_size a = downsample_stride a = downsample_pad a = drop_path_rate a = num_metaad_blocks a = distillation a = use_layer_scale a = layer_scale_init_value a = image_size a = batch_norm_eps
330
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase :str = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _lowerCAmelCase :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
263
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _lowerCAmelCase :str = object() # For specifying empty leaf dict `{}` _lowerCAmelCase :str = object() def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : int ): _UpperCAmelCase : Dict = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _UpperCAmelCase : str = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def lowerCamelCase_ (UpperCamelCase__ : List[str] ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def lowerCamelCase_ (): return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P('''mp''' , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCamelCase_ (UpperCamelCase__ : str ): _UpperCAmelCase : List[str] = _get_partition_rules() _UpperCAmelCase : List[str] = _replacement_rules(UpperCamelCase__ ) _UpperCAmelCase : List[Any] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _UpperCAmelCase : int = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
263
1
class _lowercase : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None ) -> Union[str, Any]: lowerCamelCase : Tuple = data lowerCamelCase : List[Any] = previous lowerCamelCase : Optional[int] = next_node def __str__( self ) -> str: return F"""{self.data}""" def _UpperCamelCase ( self ) -> int: return self.data def _UpperCamelCase ( self ) -> Dict: return self.next def _UpperCamelCase ( self ) -> List[str]: return self.previous class _lowercase : def __init__( self , UpperCAmelCase_ ) -> Any: lowerCamelCase : Union[str, Any] = head def __iter__( self ) -> List[str]: return self def _UpperCamelCase ( self ) -> Optional[int]: if not self.current: raise StopIteration else: lowerCamelCase : List[Any] = self.current.get_data() lowerCamelCase : Tuple = self.current.get_next() return value class _lowercase : def __init__( self ) -> Union[str, Any]: lowerCamelCase : List[Any] = None # First node in list lowerCamelCase : Optional[Any] = None # Last node in list def __str__( self ) -> Any: lowerCamelCase : Optional[Any] = self.head lowerCamelCase : str = [] while current is not None: nodes.append(current.get_data() ) lowerCamelCase : Tuple = current.get_next() return " ".join(str(UpperCAmelCase_ ) for node in nodes ) def __contains__( self , UpperCAmelCase_ ) -> Optional[int]: lowerCamelCase : str = self.head while current: if current.get_data() == value: return True lowerCamelCase : str = current.get_next() return False def __iter__( self ) -> Tuple: return LinkedListIterator(self.head ) def _UpperCamelCase ( self ) -> List[Any]: if self.head: return self.head.get_data() return None def _UpperCamelCase ( self ) -> Optional[Any]: if self.tail: return self.tail.get_data() return None def _UpperCamelCase ( self , UpperCAmelCase_ ) -> None: if self.head is None: lowerCamelCase : List[str] = node lowerCamelCase : Dict = node else: self.insert_before_node(self.head , UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> None: if self.head is None: self.set_head(UpperCAmelCase_ ) else: self.insert_after_node(self.tail , UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> None: lowerCamelCase : Union[str, Any] = Node(UpperCAmelCase_ ) if self.head is None: self.set_head(UpperCAmelCase_ ) else: self.set_tail(UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> None: lowerCamelCase : int = node lowerCamelCase : List[str] = node.previous if node.get_previous() is None: lowerCamelCase : List[str] = node_to_insert else: lowerCamelCase : str = node_to_insert lowerCamelCase : List[Any] = node_to_insert def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> None: lowerCamelCase : Tuple = node lowerCamelCase : str = node.next if node.get_next() is None: lowerCamelCase : Union[str, Any] = node_to_insert else: lowerCamelCase : int = node_to_insert lowerCamelCase : Union[str, Any] = node_to_insert def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> None: lowerCamelCase : int = 1 lowerCamelCase : Any = Node(UpperCAmelCase_ ) lowerCamelCase : List[str] = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase_ , UpperCAmelCase_ ) return current_position += 1 lowerCamelCase : Union[str, Any] = node.next self.insert_after_node(self.tail , UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Node: lowerCamelCase : List[str] = self.head while node: if node.get_data() == item: return node lowerCamelCase : Optional[int] = node.get_next() raise Exception('Node not found' ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Any: if (node := self.get_node(UpperCAmelCase_ )) is not None: if node == self.head: lowerCamelCase : str = self.head.get_next() if node == self.tail: lowerCamelCase : List[str] = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase_ ) @staticmethod def _UpperCamelCase ( UpperCAmelCase_ ) -> None: if node.get_next(): lowerCamelCase : Dict = node.previous if node.get_previous(): lowerCamelCase : Optional[int] = node.next lowerCamelCase : List[str] = None lowerCamelCase : Union[str, Any] = None def _UpperCamelCase ( self ) -> int: return self.head is None def UpperCAmelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _A = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _A = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') _A = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') _A = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') _A = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') _A = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
205
0
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = abs(lowerCamelCase) __lowerCAmelCase = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def __magic_name__( lowerCamelCase): __lowerCAmelCase = abs(lowerCamelCase) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0) def __magic_name__( lowerCamelCase): return sum(int(lowerCamelCase) for c in str(abs(lowerCamelCase))) def __magic_name__( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase, lowerCamelCase) -> None: __lowerCAmelCase = F"""{func.__name__}({value})""" __lowerCAmelCase = timeit(F"""__main__.{call}""", setup='''import __main__''') print(F"""{call:56} = {func(lowerCamelCase)} -- {timing:.4f} seconds""") for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowerCamelCase, lowerCamelCase) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
174
'''simple docstring''' import operator def __magic_name__( lowerCamelCase, lowerCamelCase = False, lowerCamelCase = None): __lowerCAmelCase = operator.lt if reverse else operator.gt __lowerCAmelCase = solution or [] if not arr: return solution __lowerCAmelCase = [arr.pop(0)] for i, item in enumerate(lowerCamelCase): if _operator(lowerCamelCase, sublist[-1]): sublist.append(lowerCamelCase) arr.pop(lowerCamelCase) # merging sublist into solution list if not solution: solution.extend(lowerCamelCase) else: while sublist: __lowerCAmelCase = sublist.pop(0) for i, xx in enumerate(lowerCamelCase): if not _operator(lowerCamelCase, lowerCamelCase): solution.insert(lowerCamelCase, lowerCamelCase) break else: solution.append(lowerCamelCase) strand_sort(lowerCamelCase, lowerCamelCase, lowerCamelCase) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
174
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __A = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" if rng is None: lowerCAmelCase__ :Dict = random.Random() lowerCAmelCase__ :Tuple = 1 for dim in shape: total_dims *= dim lowerCAmelCase__ :List[Any] = [] for _ in range(_SCREAMING_SNAKE_CASE ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCAmelCase__ :int = np.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa ).reshape(_SCREAMING_SNAKE_CASE ) return output def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = ids_tensor(_SCREAMING_SNAKE_CASE , vocab_size=2 , rng=_SCREAMING_SNAKE_CASE ) # make sure that at least one token is attended to for each batch lowerCAmelCase__ :Any = 1 return attn_mask @require_flax class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[int] = None __magic_name__ :List[str] = () def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCAmelCase__ :Union[str, Any] = 2 lowerCAmelCase__ :List[Any] = inputs['input_ids'].shape[-1] // 2 lowerCAmelCase__ :Union[str, Any] = inputs['input_ids'][:max_batch_size, :sequence_length] lowerCAmelCase__ :str = jnp.ones_like(__UpperCAmelCase ) lowerCAmelCase__ :int = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCAmelCase__ :List[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCAmelCase__ :Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config() lowerCAmelCase__ :int = False lowerCAmelCase__ :List[Any] = max_length lowerCAmelCase__ :List[Any] = 0 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :int = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase__ :List[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = pt_model_class(__UpperCAmelCase ).eval() lowerCAmelCase__ :Dict = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params ) lowerCAmelCase__ :Union[str, Any] = flax_model.generate(__UpperCAmelCase ).sequences lowerCAmelCase__ :Union[str, Any] = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCAmelCase__ :Union[str, Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config() lowerCAmelCase__ :Any = False lowerCAmelCase__ :Any = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Any = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = jit(model.generate ) lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = self._get_input_ids_and_config() lowerCAmelCase__ :int = True lowerCAmelCase__ :Optional[int] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Dict = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :Optional[Any] = False lowerCAmelCase__ :Dict = max_length lowerCAmelCase__ :Dict = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Dict = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Any = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config() lowerCAmelCase__ :int = False lowerCAmelCase__ :Optional[Any] = max_length lowerCAmelCase__ :Optional[Any] = 2 lowerCAmelCase__ :Optional[int] = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :str = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config() lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Tuple = max_length lowerCAmelCase__ :Optional[int] = 0.8 lowerCAmelCase__ :Any = 1_0 lowerCAmelCase__ :List[Any] = 0.3 lowerCAmelCase__ :Tuple = 1 lowerCAmelCase__ :Union[str, Any] = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jit(model.generate ) lowerCAmelCase__ :Any = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :Union[str, Any] = max_length lowerCAmelCase__ :str = 1 lowerCAmelCase__ :Tuple = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = jit(model.generate ) lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self._get_input_ids_and_config() lowerCAmelCase__ :str = max_length lowerCAmelCase__ :Dict = 2 lowerCAmelCase__ :Dict = 1 lowerCAmelCase__ :Optional[int] = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Dict = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :Tuple = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Union[str, Any] = False lowerCAmelCase__ :Optional[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :int = jit(model.generate ) lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :Any = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :Dict = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jit(model.generate ) lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :int = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :int = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Dict = 2 lowerCAmelCase__ :Optional[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Any = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = jit(model.generate ) lowerCAmelCase__ :int = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) lowerCAmelCase__ :List[str] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCAmelCase__ :Optional[int] = 'Hello world' lowerCAmelCase__ :Union[str, Any] = tokenizer(__UpperCAmelCase , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , 'do_samples' ): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , 'foo' ): lowerCAmelCase__ :Optional[int] = {'foo': 'bar'} model.generate(__UpperCAmelCase , **__UpperCAmelCase )
254
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __A (_SCREAMING_SNAKE_CASE = "" ) ->dict[str, float]: """simple docstring""" lowerCAmelCase__ :Optional[Any] = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' lowerCAmelCase__ :str = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , 'html.parser' ) lowerCAmelCase__ :List[Any] = soup.find_all('td' , attrs='titleColumn' ) lowerCAmelCase__ :Optional[int] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) } def __A (_SCREAMING_SNAKE_CASE = "IMDb_Top_250_Movies.csv" ) ->None: """simple docstring""" lowerCAmelCase__ :Any = get_imdb_top_aaa_movies() with open(_SCREAMING_SNAKE_CASE , 'w' , newline='' ) as out_file: lowerCAmelCase__ :Dict = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
254
1
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Optional[int] = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _a : Dict = hex_num[0] == '-' if is_negative: _a : Optional[int] = hex_num[1:] try: _a : Optional[Any] = int(lowerCAmelCase_ , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _a : int = '' while int_num > 0: _a : Union[str, Any] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
89
'''simple docstring''' def __lowerCamelCase ( ) -> Tuple: for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: _a : Any = 1 _a : Tuple = 2 while i * i <= n: _a : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __lowerCamelCase ( ) -> str: return next(i for i in triangle_number_generator() if count_divisors(lowerCAmelCase_ ) > 500 ) if __name__ == "__main__": print(solution())
89
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __magic_name__: Tuple = "http://www.mocksite.com/file1.txt" __magic_name__: int = "\"text\": [\"foo\", \"foo\"]" __magic_name__: Any = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class snake_case__ : lowercase__ : List[Any] = 200 lowercase__ : Optional[int] = {'''Content-Length''': '''100'''} lowercase__ : Dict = {} def __magic_name__ ( self , **lowerCAmelCase__ ) -> Union[str, Any]: return [bytes(lowerCAmelCase__ , """utf-8""" )] def UpperCamelCase ( *_A, **_A ): """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""", [str, list, dict] ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" import requests monkeypatch.setattr(_A, """request""", _A ) __magic_name__ : Union[str, Any] = URL if issubclass(_A, _A ): __magic_name__ : Optional[int] = url elif issubclass(_A, _A ): __magic_name__ : str = [url] elif issubclass(_A, _A ): __magic_name__ : List[str] = {"""train""": url} __magic_name__ : Optional[int] = """dummy""" __magic_name__ : Tuple = """downloads""" __magic_name__ : Dict = tmp_path __magic_name__ : Any = DownloadConfig( cache_dir=os.path.join(_A, _A ), use_etag=_A, ) __magic_name__ : List[Any] = DownloadManager(dataset_name=_A, download_config=_A ) __magic_name__ : List[str] = dl_manager.download(_A ) __magic_name__ : str = urls for downloaded_paths in [downloaded_paths]: if isinstance(_A, _A ): __magic_name__ : str = [downloaded_paths] __magic_name__ : Optional[int] = [urls] elif isinstance(_A, _A ): assert "train" in downloaded_paths.keys() __magic_name__ : Union[str, Any] = downloaded_paths.values() __magic_name__ : str = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_A, _A ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __magic_name__ : List[Any] = Path(_A ) __magic_name__ : Tuple = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __magic_name__ : Tuple = downloaded_path.read_text() assert content == CONTENT __magic_name__ : Optional[Any] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __magic_name__ : Any = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""", [str, list, dict] ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Tuple = str(_A ) if issubclass(_A, _A ): __magic_name__ : str = filename elif issubclass(_A, _A ): __magic_name__ : Union[str, Any] = [filename] elif issubclass(_A, _A ): __magic_name__ : Any = {"""train""": filename} __magic_name__ : int = """dummy""" __magic_name__ : Optional[Any] = xz_file.parent __magic_name__ : Tuple = """extracted""" __magic_name__ : List[str] = DownloadConfig( cache_dir=_A, use_etag=_A, ) __magic_name__ : str = DownloadManager(dataset_name=_A, download_config=_A ) __magic_name__ : str = dl_manager.extract(_A ) __magic_name__ : int = paths for extracted_paths in [extracted_paths]: if isinstance(_A, _A ): __magic_name__ : List[Any] = [extracted_paths] __magic_name__ : Dict = [paths] elif isinstance(_A, _A ): assert "train" in extracted_paths.keys() __magic_name__ : Dict = extracted_paths.values() __magic_name__ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_A, _A ): assert extracted_path == dl_manager.extracted_paths[input_path] __magic_name__ : Union[str, Any] = Path(_A ) __magic_name__ : Union[str, Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(_A, etag=_A ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __magic_name__ : Dict = extracted_path.read_text() __magic_name__ : List[str] = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCamelCase ( _A, _A ): """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_A, start=1 ): __magic_name__ : Union[str, Any] = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""", ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : str = request.getfixturevalue(_A ) __magic_name__ : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_A ), start=1 ): _test_jsonl(_A, _A ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""", ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : List[Any] = request.getfixturevalue(_A ) __magic_name__ : int = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_A ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_A ), start=1 ): _test_jsonl(_A, _A ) assert num_tar == 1 assert num_jsonl == 2 def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_A ), start=1 ): assert os.path.basename(_A ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
138
def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) __magic_name__ : str = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
138
1
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = AudioLDMPipeline lowercase__ = TEXT_TO_AUDIO_PARAMS lowercase__ = TEXT_TO_AUDIO_BATCH_PARAMS lowercase__ = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def __lowerCAmelCase ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=(3_2, 6_4) ,class_embed_type='''simple_projection''' ,projection_class_embeddings_input_dim=3_2 ,class_embeddings_concat=lowercase_ ,) lowerCAmelCase__ : List[Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase_ ,set_alpha_to_one=lowercase_ ,) torch.manual_seed(0 ) lowerCAmelCase__ : Any = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=1 ,out_channels=1 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowerCAmelCase__ : Dict = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,projection_dim=3_2 ,) lowerCAmelCase__ : int = ClapTextModelWithProjection(lowercase_ ) lowerCAmelCase__ : Tuple = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' ,model_max_length=7_7 ) lowerCAmelCase__ : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=1_6_0_0_0 ,upsample_initial_channel=1_6 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=lowercase_ ,) lowerCAmelCase__ : Any = SpeechTaHifiGan(lowercase_ ) lowerCAmelCase__ : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def __lowerCAmelCase ( self : str ,lowercase_ : Dict ,lowercase_ : Optional[Any]=0 ): if str(lowercase_ ).startswith('''mps''' ): lowerCAmelCase__ : Optional[Any] = torch.manual_seed(lowercase_ ) else: lowerCAmelCase__ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase__ : List[str] = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : List[str] = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : str = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 2_5_6 lowerCAmelCase__ : str = audio[:1_0] lowerCAmelCase__ : str = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Any = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : int = audioldm_pipe.to(lowercase_ ) lowerCAmelCase__ : Tuple = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : List[str] = 3 * [inputs['''prompt''']] # forward lowerCAmelCase__ : int = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : List[str] = output.audios[0] lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : str = 3 * [inputs.pop('''prompt''' )] lowerCAmelCase__ : List[Any] = audioldm_pipe.tokenizer( lowercase_ ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=lowercase_ ,return_tensors='''pt''' ,) lowerCAmelCase__ : Tuple = text_inputs['''input_ids'''].to(lowercase_ ) lowerCAmelCase__ : List[Any] = audioldm_pipe.text_encoder( lowercase_ ,) lowerCAmelCase__ : Tuple = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase__ : Tuple = F.normalize(lowercase_ ,dim=-1 ) lowerCAmelCase__ : List[Any] = prompt_embeds # forward lowerCAmelCase__ : Union[str, Any] = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : Any = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : List[str] = audioldm_pipe.to(lowercase_ ) lowerCAmelCase__ : Dict = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : str = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : int = 3 * ['''this is a negative prompt'''] lowerCAmelCase__ : Any = negative_prompt lowerCAmelCase__ : int = 3 * [inputs['''prompt''']] # forward lowerCAmelCase__ : Tuple = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : List[str] = output.audios[0] lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : Optional[int] = 3 * [inputs.pop('''prompt''' )] lowerCAmelCase__ : Optional[Any] = [] for p in [prompt, negative_prompt]: lowerCAmelCase__ : int = audioldm_pipe.tokenizer( lowercase_ ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=lowercase_ ,return_tensors='''pt''' ,) lowerCAmelCase__ : Optional[Any] = text_inputs['''input_ids'''].to(lowercase_ ) lowerCAmelCase__ : Dict = audioldm_pipe.text_encoder( lowercase_ ,) lowerCAmelCase__ : Dict = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase__ : Any = F.normalize(lowercase_ ,dim=-1 ) embeds.append(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : int = embeds # forward lowerCAmelCase__ : List[str] = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase_ ) lowerCAmelCase__ : Optional[int] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : List[str] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = '''egg cracking''' lowerCAmelCase__ : Tuple = audioldm_pipe(**lowercase_ ,negative_prompt=lowercase_ ) lowerCAmelCase__ : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 2_5_6 lowerCAmelCase__ : Any = audio[:1_0] lowerCAmelCase__ : List[Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components() lowerCAmelCase__ : int = PNDMScheduler(skip_prk_steps=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Optional[int] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowerCAmelCase__ : Dict = audioldm_pipe(lowercase_ ,num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowerCAmelCase__ : List[Any] = 2 lowerCAmelCase__ : Union[str, Any] = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt lowerCAmelCase__ : Dict = 2 lowerCAmelCase__ : int = audioldm_pipe(lowercase_ ,num_inference_steps=2 ,num_waveforms_per_prompt=lowercase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts lowerCAmelCase__ : Optional[int] = 2 lowerCAmelCase__ : List[Any] = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=lowercase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : List[Any] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Any = audioldm_pipe.vocoder.config.sampling_rate lowerCAmelCase__ : Any = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : Dict = audioldm_pipe(audio_length_in_s=0.016 ,**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) / vocoder_sampling_rate == 0.016 lowerCAmelCase__ : Union[str, Any] = audioldm_pipe(audio_length_in_s=0.032 ,**lowercase_ ) lowerCAmelCase__ : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) / vocoder_sampling_rate == 0.032 def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : str = ['''hey'''] lowerCAmelCase__ : str = audioldm_pipe(lowercase_ ,num_inference_steps=1 ) lowerCAmelCase__ : str = output.audios.shape assert audio_shape == (1, 2_5_6) lowerCAmelCase__ : Tuple = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowerCAmelCase__ : int = SpeechTaHifiGan(lowercase_ ).to(lowercase_ ) lowerCAmelCase__ : str = audioldm_pipe(lowercase_ ,num_inference_steps=1 ) lowerCAmelCase__ : Dict = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def __lowerCAmelCase ( self : Any ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase_ ) def __lowerCAmelCase ( self : Dict ): self._test_inference_batch_single_identical(test_mean_pixel_difference=lowercase_ ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def __lowerCAmelCase ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_ ) @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Any ,lowercase_ : Any ,lowercase_ : Union[str, Any]="cpu" ,lowercase_ : Any=torch.floataa ,lowercase_ : Tuple=0 ): lowerCAmelCase__ : str = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase__ : str = np.random.RandomState(lowercase_ ).standard_normal((1, 8, 1_2_8, 1_6) ) lowerCAmelCase__ : str = torch.from_numpy(lowercase_ ).to(device=lowercase_ ,dtype=lowercase_ ) lowerCAmelCase__ : List[Any] = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Union[str, Any] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCAmelCase__ : List[Any] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.get_inputs(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = 2_5 lowerCAmelCase__ : Optional[Any] = audioldm_pipe(**lowercase_ ).audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 8_1_9_2_0 lowerCAmelCase__ : Optional[Any] = audio[7_7_2_3_0:7_7_2_4_0] lowerCAmelCase__ : Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) lowerCAmelCase__ : List[str] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Optional[int] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCAmelCase__ : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowerCAmelCase__ : str = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Optional[Any] = self.get_inputs(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = audioldm_pipe(**lowercase_ ).audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 8_1_9_2_0 lowerCAmelCase__ : List[Any] = audio[2_7_7_8_0:2_7_7_9_0] lowerCAmelCase__ : Any = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) lowerCAmelCase__ : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
106
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : Any = logging.getLogger(__name__) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0_5_2_2, type=int) __UpperCamelCase : Any = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: __UpperCamelCase : List[Any] = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __UpperCamelCase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) __UpperCamelCase : Optional[Any] = [0] * args.vocab_size for k, v in counter.items(): __UpperCamelCase : Dict = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
106
1
"""simple docstring""" import operator as op def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : str = [] lowerCamelCase : List[str] = lambda a_, a_ : int(x / y ) # noqa: E731 integer division operation lowerCamelCase : Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ), 'Action'.center(12 ), 'Stack', sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ), ('push(' + x + ')').ljust(12 ), ','.join(__UpperCAmelCase ), sep=' | ' ) else: lowerCamelCase : List[Any] = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ), ('pop(' + b + ')').ljust(12 ), ','.join(__UpperCAmelCase ), sep=' | ' ) lowerCamelCase : str = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ), ('pop(' + a + ')').ljust(12 ), ','.join(__UpperCAmelCase ), sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ), int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ('push(' + a + x + b + ')').ljust(12 ), ','.join(__UpperCAmelCase ), sep=' | ', ) return int(stack[0] ) if __name__ == "__main__": _A = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
352
"""simple docstring""" import numpy as np def UpperCAmelCase ( a_, a_, a_ = 1E-12, a_ = 100, ): '''simple docstring''' assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) lowerCamelCase : Optional[int] = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_, input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCamelCase : Union[str, Any] = False lowerCamelCase : List[str] = 0 lowerCamelCase : Any = 0 lowerCamelCase : Dict = 1E12 while not convergence: # Multiple matrix by the vector. lowerCamelCase : Optional[int] = np.dot(a_, a_ ) # Normalize the resulting output vector. lowerCamelCase : Optional[int] = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCamelCase : Optional[Any] = vector.conj().T if is_complex else vector.T lowerCamelCase : str = np.dot(a_, np.dot(a_, a_ ) ) # Check convergence. lowerCamelCase : Optional[int] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCamelCase : int = True lowerCamelCase : Optional[Any] = lambda_ if is_complex: lowerCamelCase : Any = np.real(lambda_ ) return lambda_, vector def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : str = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCamelCase : str = np.array([41, 4, 20] ) lowerCamelCase : Optional[Any] = real_input_matrix.astype(np.complexaaa ) lowerCamelCase : Dict = np.triu(1j * complex_input_matrix, 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCamelCase : List[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCamelCase : str = real_input_matrix lowerCamelCase : Any = real_vector elif problem_type == "complex": lowerCamelCase : str = complex_input_matrix lowerCamelCase : Dict = complex_vector # Our implementation. lowerCamelCase , lowerCamelCase : List[str] = power_iteration(a_, a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCamelCase , lowerCamelCase : Optional[Any] = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. lowerCamelCase : Dict = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCamelCase : List[str] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
205
0
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): def get_matched_characters(__lowerCamelCase : str , __lowerCamelCase : str ) -> str: snake_case : Tuple = [] snake_case : Union[str, Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): snake_case : Any = int(max(0 , i - limit ) ) snake_case : Any = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__lowerCamelCase ) snake_case : Dict = f"""{_stra[0:_stra.index(__lowerCamelCase )]} {_stra[_stra.index(__lowerCamelCase ) + 1:]}""" return "".join(__lowerCamelCase ) # matching characters snake_case : List[str] = get_matched_characters(__lowerCamelCase , __lowerCamelCase ) snake_case : Union[str, Any] = get_matched_characters(__lowerCamelCase , __lowerCamelCase ) snake_case : List[str] = len(__lowerCamelCase ) # transposition snake_case : List[Any] = ( len([(ca, ca) for ca, ca in zip(__lowerCamelCase , __lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: snake_case : Dict = 0.0 else: snake_case : int = ( 1 / 3 * ( match_count / len(__lowerCamelCase ) + match_count / len(__lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters snake_case : Any = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
59
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.array: lowerCAmelCase__ : Dict = F'''{sampling_rate}''' lowerCAmelCase__ : Any = '1' lowerCAmelCase__ : Optional[Any] = 'f32le' lowerCAmelCase__ : Any = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(SCREAMING_SNAKE_CASE_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase__ : List[Any] = ffmpeg_process.communicate(SCREAMING_SNAKE_CASE_ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCAmelCase__ : List[str] = output_stream[0] lowerCAmelCase__ : str = np.frombuffer(SCREAMING_SNAKE_CASE_ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "f32le" , ) -> Dict: lowerCAmelCase__ : Optional[Any] = F'''{sampling_rate}''' lowerCAmelCase__ : Any = '1' if format_for_conversion == "s16le": lowerCAmelCase__ : Dict = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : List[str] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCAmelCase__ : Tuple = platform.system() if system == "Linux": lowerCAmelCase__ : str = 'alsa' lowerCAmelCase__ : str = 'default' elif system == "Darwin": lowerCAmelCase__ : Any = 'avfoundation' lowerCAmelCase__ : Tuple = ':0' elif system == "Windows": lowerCAmelCase__ : Any = 'dshow' lowerCAmelCase__ : int = 'default' lowerCAmelCase__ : Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCAmelCase__ : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase__ : str = _ffmpeg_stream(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for item in iterator: yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "f32le" , ) -> str: if stream_chunk_s is not None: lowerCAmelCase__ : Union[str, Any] = stream_chunk_s else: lowerCAmelCase__ : Tuple = chunk_length_s lowerCAmelCase__ : Any = ffmpeg_microphone(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , format_for_conversion=SCREAMING_SNAKE_CASE_ ) if format_for_conversion == "s16le": lowerCAmelCase__ : Optional[Any] = np.intaa lowerCAmelCase__ : Optional[Any] = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : Optional[Any] = np.floataa lowerCAmelCase__ : Optional[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCAmelCase__ : Dict = chunk_length_s / 6 lowerCAmelCase__ : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ): lowerCAmelCase__ : Dict = [stride_length_s, stride_length_s] lowerCAmelCase__ : Union[str, Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase__ : List[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase__ : Any = datetime.datetime.now() lowerCAmelCase__ : Any = datetime.timedelta(seconds=SCREAMING_SNAKE_CASE_ ) for item in chunk_bytes_iter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=(stride_left, stride_right) , stream=SCREAMING_SNAKE_CASE_ ): # Put everything back in numpy scale lowerCAmelCase__ : Any = np.frombuffer(item['raw'] , dtype=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCAmelCase__ : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> Optional[int]: lowerCAmelCase__ : Union[str, Any] = b'' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCAmelCase__ : List[str] = 0 for raw in iterator: acc += raw if stream and len(SCREAMING_SNAKE_CASE_ ) < chunk_len: lowerCAmelCase__ : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(SCREAMING_SNAKE_CASE_ ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase__ : Dict = (_stride_left, stride_right) lowerCAmelCase__ : Any = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCAmelCase__ : Optional[int] = False yield item lowerCAmelCase__ : Optional[int] = stride_left lowerCAmelCase__ : Optional[int] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(SCREAMING_SNAKE_CASE_ ) > stride_left: lowerCAmelCase__ : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCAmelCase__ : Any = False yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : int = 2**24 # 16Mo try: with subprocess.Popen(SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE , bufsize=SCREAMING_SNAKE_CASE_ ) as ffmpeg_process: while True: lowerCAmelCase__ : List[str] = ffmpeg_process.stdout.read(SCREAMING_SNAKE_CASE_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
212
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Any: # Initialise PyTorch model a = AlbertConfig.from_json_file(__UpperCamelCase) print(f'''Building PyTorch model from configuration: {config}''') a = AlbertForPreTraining(__UpperCamelCase) # Load weights from tf checkpoint load_tf_weights_in_albert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , __UpperCamelCase) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
180
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list[int]: a = 2 a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__UpperCamelCase) if n > 1: factors.append(__UpperCamelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
180
1
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowercase_ ( pl.LightningModule ): def __init__( self , a ): super().__init__() UpperCamelCase__ = model UpperCamelCase__ = 2 UpperCamelCase__ = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __a ( self ): pass def _UpperCamelCase ( __A , __A , __A ) -> str: '''simple docstring''' UpperCamelCase__ = LongformerModel.from_pretrained(__A ) UpperCamelCase__ = LightningModel(__A ) UpperCamelCase__ = torch.load(__A , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model UpperCamelCase__ = LongformerForQuestionAnswering.from_pretrained(__A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__A ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__ : str = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
80
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase_ ( a__ ): def __init__( self , a , a , a = None , a = None , a = False , **a , ): super().__init__(features=a , cache_dir=a , keep_in_memory=a , **a ) UpperCamelCase__ = Sql( cache_dir=a , features=a , sql=a , con=a , **a , ) def __a ( self ): UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , ) # Build dataset for splits UpperCamelCase__ = self.builder.as_dataset( split="train" , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class lowercase_ : def __init__( self , a , a , a , a = None , a = None , **a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCamelCase__ = dataset UpperCamelCase__ = name UpperCamelCase__ = con UpperCamelCase__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCamelCase__ = num_proc UpperCamelCase__ = to_sql_kwargs def __a ( self ): UpperCamelCase__ = self.to_sql_kwargs.pop("sql" , a ) UpperCamelCase__ = self.to_sql_kwargs.pop("con" , a ) UpperCamelCase__ = self.to_sql_kwargs.pop("index" , a ) UpperCamelCase__ = self._write(index=a , **self.to_sql_kwargs ) return written def __a ( self , a ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = args UpperCamelCase__ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs UpperCamelCase__ = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCamelCase__ = batch.to_pandas() UpperCamelCase__ = df.to_sql(self.name , self.con , index=a , **a ) return num_rows or len(a ) def __a ( self , a , **a ): UpperCamelCase__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCamelCase__ , UpperCamelCase__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
80
1
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> int: require_version(deps[pkg] , __UpperCAmelCase )
2
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowercase__ = False class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase_ ( self : str ) -> Tuple: return 12 @property def UpperCAmelCase_ ( self : Tuple ) -> Dict: return 12 @property def UpperCAmelCase_ ( self : List[Any] ) -> str: return 32 @property def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase_ ( self : List[str] ) -> Tuple: UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: torch.manual_seed(0 ) UpperCAmelCase : Any = 12 UpperCAmelCase : Optional[int] = 12 UpperCAmelCase : Tuple = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCAmelCase : Optional[Any] = TransformeraDModel(**lowercase_ ) return model def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase : Any = 'cpu' UpperCAmelCase : Optional[int] = self.dummy_vqvae UpperCAmelCase : List[str] = self.dummy_text_encoder UpperCAmelCase : str = self.dummy_tokenizer UpperCAmelCase : Dict = self.dummy_transformer UpperCAmelCase : Union[str, Any] = VQDiffusionScheduler(self.num_embed ) UpperCAmelCase : str = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) UpperCAmelCase : Optional[Any] = VQDiffusionPipeline( vqvae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , transformer=lowercase_ , scheduler=lowercase_ , learned_classifier_free_sampling_embeddings=lowercase_ , ) UpperCAmelCase : Optional[int] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Any = 'teddy bear playing in the pool' UpperCAmelCase : List[str] = torch.Generator(device=lowercase_ ).manual_seed(0 ) UpperCAmelCase : List[str] = pipe([prompt] , generator=lowercase_ , num_inference_steps=2 , output_type='np' ) UpperCAmelCase : List[str] = output.images UpperCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(0 ) UpperCAmelCase : Union[str, Any] = pipe( [prompt] , generator=lowercase_ , output_type='np' , return_dict=lowercase_ , num_inference_steps=2 )[0] UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCAmelCase : Optional[Any] = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : str = 'cpu' UpperCAmelCase : List[str] = self.dummy_vqvae UpperCAmelCase : Tuple = self.dummy_text_encoder UpperCAmelCase : Dict = self.dummy_tokenizer UpperCAmelCase : int = self.dummy_transformer UpperCAmelCase : Optional[int] = VQDiffusionScheduler(self.num_embed ) UpperCAmelCase : List[str] = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) UpperCAmelCase : List[Any] = VQDiffusionPipeline( vqvae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , transformer=lowercase_ , scheduler=lowercase_ , learned_classifier_free_sampling_embeddings=lowercase_ , ) UpperCAmelCase : Optional[int] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = 'teddy bear playing in the pool' UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(0 ) UpperCAmelCase : Tuple = pipe([prompt] , generator=lowercase_ , num_inference_steps=2 , output_type='np' ) UpperCAmelCase : List[Any] = output.images UpperCAmelCase : Tuple = torch.Generator(device=lowercase_ ).manual_seed(0 ) UpperCAmelCase : int = pipe( [prompt] , generator=lowercase_ , output_type='np' , return_dict=lowercase_ , num_inference_steps=2 )[0] UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCAmelCase : Optional[Any] = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : int ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) UpperCAmelCase : Tuple = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) UpperCAmelCase : str = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCAmelCase : Any = torch.Generator(device=lowercase_ ).manual_seed(0 ) UpperCAmelCase : Any = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowercase_ , output_type='np' , ) UpperCAmelCase : Dict = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
151
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["YolosFeatureExtractor"] lowercase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
151
1
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _SCREAMING_SNAKE_CASE : int = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } _SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def UpperCamelCase_( snake_case : str , snake_case : Tuple=False ): '''simple docstring''' snake_case_ , snake_case_ = create_model( "HTSAT-tiny" , "roberta" , snake_case , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=snake_case , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = {} snake_case_ = r".*sequential.(\d+).*" snake_case_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case_ = key.replace(snake_case , snake_case ) if re.match(snake_case , snake_case ): # replace sequential layers with list snake_case_ = re.match(snake_case , snake_case ).group(1 ) snake_case_ = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(snake_case )//3}.linear.' ) elif re.match(snake_case , snake_case ): snake_case_ = int(re.match(snake_case , snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case_ = 1 if projecton_layer == 0 else 2 snake_case_ = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case_ = value snake_case_ = mixed_qkv.size(0 ) // 3 snake_case_ = mixed_qkv[:qkv_dim] snake_case_ = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case_ = mixed_qkv[qkv_dim * 2 :] snake_case_ = query_layer snake_case_ = key_layer snake_case_ = value_layer else: snake_case_ = value return model_state_dict def UpperCamelCase_( snake_case : Optional[Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Any=False ): '''simple docstring''' snake_case_ , snake_case_ = init_clap(snake_case , enable_fusion=snake_case ) clap_model.eval() snake_case_ = clap_model.state_dict() snake_case_ = rename_state_dict(snake_case ) snake_case_ = ClapConfig() snake_case_ = enable_fusion snake_case_ = ClapModel(snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case , strict=snake_case ) model.save_pretrained(snake_case ) transformers_config.save_pretrained(snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") _SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
353
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = "mgp-str" def __init__( self , a__=[32, 128] , a__=4 , a__=3 , a__=27 , a__=38 , a__=50_257 , a__=30_522 , a__=768 , a__=12 , a__=12 , a__=4.0 , a__=True , a__=False , a__=1e-5 , a__=0.0 , a__=0.0 , a__=0.0 , a__=False , a__=0.0_2 , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = max_token_length snake_case_ = num_character_labels snake_case_ = num_bpe_labels snake_case_ = num_wordpiece_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = mlp_ratio snake_case_ = distilled snake_case_ = layer_norm_eps snake_case_ = drop_rate snake_case_ = qkv_bias snake_case_ = attn_drop_rate snake_case_ = drop_path_rate snake_case_ = output_aa_attentions snake_case_ = initializer_range
92
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = np.argmax(A_, axis=1 ) return np.sum(outputs == labels ) def a__ ( A_ ): '''simple docstring''' with open(A_, encoding="""utf_8""" ) as f: __magic_name__ = csv.reader(A_ ) __magic_name__ = [] next(A_ ) # skip the first line for line in tqdm(A_ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( A_, A_, A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = [] for dataset in encoded_datasets: __magic_name__ = len(A_ ) __magic_name__ = np.zeros((n_batch, 2, input_len), dtype=np.intaa ) __magic_name__ = np.zeros((n_batch, 2), dtype=np.intaa ) __magic_name__ = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.intaa ) __magic_name__ = np.zeros((n_batch,), dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(A_ ): __magic_name__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __magic_name__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __magic_name__ = with_conta __magic_name__ = with_conta __magic_name__ = len(A_ ) - 1 __magic_name__ = len(A_ ) - 1 __magic_name__ = with_conta __magic_name__ = with_conta __magic_name__ = mc_label __magic_name__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(A_ ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' __magic_name__ = argparse.ArgumentParser() parser.add_argument("""--model_name""", type=A_, default="""openai-gpt""", help="""pretrained model name""" ) parser.add_argument("""--do_train""", action="""store_true""", help="""Whether to run training.""" ) parser.add_argument("""--do_eval""", action="""store_true""", help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""", default=A_, type=A_, required=A_, help="""The output directory where the model predictions and checkpoints will be written.""", ) parser.add_argument("""--train_dataset""", type=A_, default="""""" ) parser.add_argument("""--eval_dataset""", type=A_, default="""""" ) parser.add_argument("""--seed""", type=A_, default=42 ) parser.add_argument("""--num_train_epochs""", type=A_, default=3 ) parser.add_argument("""--train_batch_size""", type=A_, default=8 ) parser.add_argument("""--eval_batch_size""", type=A_, default=16 ) parser.add_argument("""--adam_epsilon""", default=1e-8, type=A_, help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""", type=A_, default=1 ) parser.add_argument( """--max_steps""", default=-1, type=A_, help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ), ) parser.add_argument( """--gradient_accumulation_steps""", type=A_, default=1, help="""Number of updates steps to accumulate before performing a backward/update pass.""", ) parser.add_argument("""--learning_rate""", type=A_, default=6.25e-5 ) parser.add_argument("""--warmup_steps""", default=0, type=A_, help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""", type=A_, default="""warmup_linear""" ) parser.add_argument("""--weight_decay""", type=A_, default=0.01 ) parser.add_argument("""--lm_coef""", type=A_, default=0.9 ) parser.add_argument("""--n_valid""", type=A_, default=374 ) parser.add_argument("""--server_ip""", type=A_, default="""""", help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""", type=A_, default="""""", help="""Can be used for distant debugging.""" ) __magic_name__ = parser.parse_args() print(A_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=A_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __magic_name__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __magic_name__ = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(A_, A_ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __magic_name__ = ["""_start_""", """_delimiter_""", """_classify_"""] __magic_name__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(A_ ) __magic_name__ = tokenizer.convert_tokens_to_ids(A_ ) __magic_name__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(A_ ) ) model.to(A_ ) # Load and encode the datasets def tokenize_and_encode(A_ ): if isinstance(A_, A_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(A_ ) ) elif isinstance(A_, A_ ): return obj return [tokenize_and_encode(A_ ) for o in obj] logger.info("""Encoding dataset...""" ) __magic_name__ = load_rocstories_dataset(args.train_dataset ) __magic_name__ = load_rocstories_dataset(args.eval_dataset ) __magic_name__ = (train_dataset, eval_dataset) __magic_name__ = tokenize_and_encode(A_ ) # Compute the max input length for the Transformer __magic_name__ = model.config.n_positions // 2 - 2 __magic_name__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ), len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __magic_name__ = min(A_, model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __magic_name__ = pre_process_datasets(A_, A_, A_, *A_ ) __magic_name__ , __magic_name__ = tensor_datasets[0], tensor_datasets[1] __magic_name__ = TensorDataset(*A_ ) __magic_name__ = RandomSampler(A_ ) __magic_name__ = DataLoader(A_, sampler=A_, batch_size=args.train_batch_size ) __magic_name__ = TensorDataset(*A_ ) __magic_name__ = SequentialSampler(A_ ) __magic_name__ = DataLoader(A_, sampler=A_, batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __magic_name__ = args.max_steps __magic_name__ = args.max_steps // (len(A_ ) // args.gradient_accumulation_steps) + 1 else: __magic_name__ = len(A_ ) // args.gradient_accumulation_steps * args.num_train_epochs __magic_name__ = list(model.named_parameters() ) __magic_name__ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] __magic_name__ = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] __magic_name__ = AdamW(A_, lr=args.learning_rate, eps=args.adam_epsilon ) __magic_name__ = get_linear_schedule_with_warmup( A_, num_warmup_steps=args.warmup_steps, num_training_steps=A_ ) if args.do_train: __magic_name__ , __magic_name__ , __magic_name__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ), desc="""Epoch""" ): __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = tqdm(A_, desc="""Training""" ) for step, batch in enumerate(A_ ): __magic_name__ = tuple(t.to(A_ ) for t in batch ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = batch __magic_name__ = model(A_, mc_token_ids=A_, lm_labels=A_, mc_labels=A_ ) __magic_name__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __magic_name__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __magic_name__ = """Training loss: {:.2e} lr: {:.2e}""".format(A_, scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __magic_name__ = model.module if hasattr(A_, """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __magic_name__ = os.path.join(args.output_dir, A_ ) __magic_name__ = os.path.join(args.output_dir, A_ ) torch.save(model_to_save.state_dict(), A_ ) model_to_save.config.to_json_file(A_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __magic_name__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __magic_name__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(A_ ) if args.do_eval: model.eval() __magic_name__ , __magic_name__ = 0, 0 __magic_name__ , __magic_name__ = 0, 0 for batch in tqdm(A_, desc="""Evaluating""" ): __magic_name__ = tuple(t.to(A_ ) for t in batch ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = batch with torch.no_grad(): __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = model( A_, mc_token_ids=A_, lm_labels=A_, mc_labels=A_ ) __magic_name__ = mc_logits.detach().cpu().numpy() __magic_name__ = mc_labels.to("""cpu""" ).numpy() __magic_name__ = accuracy(A_, A_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __magic_name__ = eval_loss / nb_eval_steps __magic_name__ = eval_accuracy / nb_eval_examples __magic_name__ = tr_loss / nb_tr_steps if args.do_train else None __magic_name__ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} __magic_name__ = os.path.join(args.output_dir, """eval_results.txt""" ) with open(A_, """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""", A_, str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
88
"""simple docstring""" from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = False ) -> float: if not arr: return 0 lowercase__: Any = 0 if allow_empty_subarrays else float('''-inf''' ) lowercase__: Union[str, Any] = 0.0 for num in arr: lowercase__: List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase__: int = max(__UpperCAmelCase , __UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __A = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
177
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' def merge(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowercase_ ) <= 1: return collection lowerCAmelCase : str = len(lowercase_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
362
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ = 13 , snake_case__ = 64 , snake_case__ = 2 , snake_case__ = 3 , snake_case__ = 3 , snake_case__ = True , snake_case__ = True , snake_case__ = 128 , snake_case__=[16, 32, 64, 128] , snake_case__ = 7 , snake_case__ = 4 , snake_case__ = 37 , snake_case__ = "gelu" , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 10 , snake_case__ = 0.02 , snake_case__ = 2 , snake_case__ = 1 , snake_case__ = 128 , snake_case__ = [2, 2, 2, 2] , snake_case__ = 2 , snake_case__ = 2 , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : int = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : int = is_training lowerCAmelCase : Tuple = use_labels lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[int] = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : List[str] = encoder_stride lowerCAmelCase : Union[str, Any] = num_attention_outputs lowerCAmelCase : Any = embed_dim lowerCAmelCase : Tuple = embed_dim + 1 lowerCAmelCase : str = resolution lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : Any = hidden_sizes lowerCAmelCase : List[str] = dim lowerCAmelCase : str = mlp_expansion_ratio def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFEfficientFormerModel(config=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = self.type_sequence_label_size lowerCAmelCase : Dict = TFEfficientFormerForImageClassification(snake_case__ ) lowerCAmelCase : Tuple = model(snake_case__ , labels=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : str = 1 lowerCAmelCase : Any = TFEfficientFormerForImageClassification(snake_case__ ) lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : str = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = config_and_inputs lowerCAmelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a : Union[str, Any] =( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a : int =False a : Optional[Any] =False a : List[Any] =False a : str =False a : List[Any] =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = TFEfficientFormerModelTester(self ) lowerCAmelCase : Dict = ConfigTester( self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(snake_case__ ) lowerCAmelCase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) if hasattr(self.model_tester , "encoder_seq_length" ): lowerCAmelCase : Union[str, Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowerCAmelCase : Tuple = seq_length * self.model_tester.chunk_length else: lowerCAmelCase : List[str] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCAmelCase : Tuple = outputs.decoder_hidden_states self.asseretIsInstance(snake_case__ , (list, tuple) ) self.assertEqual(len(snake_case__ ) , snake_case__ ) lowerCAmelCase : int = getattr(self.model_tester , "seq_length" , snake_case__ ) lowerCAmelCase : Tuple = getattr(self.model_tester , "decoder_seq_length" , snake_case__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : str = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" lowerCAmelCase : Optional[int] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = TFEfficientFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : Union[str, Any] = getattr(self.model_tester , "seq_length" , snake_case__ ) lowerCAmelCase : Dict = getattr(self.model_tester , "encoder_seq_length" , snake_case__ ) lowerCAmelCase : Union[str, Any] = getattr(self.model_tester , "key_length" , snake_case__ ) lowerCAmelCase : List[str] = getattr(self.model_tester , "chunk_length" , snake_case__ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowerCAmelCase : Dict = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCAmelCase : int = True lowerCAmelCase : int = False lowerCAmelCase : Dict = True lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : Tuple = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) lowerCAmelCase : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : int = True lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : int = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) lowerCAmelCase : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCAmelCase : List[str] = model_class(snake_case__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCAmelCase : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=snake_case__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.assertTrue(outputs_dict is not None ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : List[str] = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : Optional[int] = model(**snake_case__ , training=snake_case__ ) # verify the logits lowerCAmelCase : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Tuple = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCAmelCase : Optional[int] = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Tuple = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : Dict = model(**snake_case__ , training=snake_case__ ) # verify the logits lowerCAmelCase : Optional[int] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Any = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
133
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = (PNDMScheduler,) lowerCamelCase : Optional[int] = (('''num_inference_steps''', 50),) def __UpperCAmelCase ( self : int , **UpperCAmelCase__ : List[str] ) -> Dict: lowerCAmelCase = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**UpperCAmelCase__ ) return config def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Any=0 , **UpperCAmelCase__ : List[Any] ) -> Tuple: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , UpperCAmelCase__ ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**UpperCAmelCase__ ) lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(UpperCAmelCase__ ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase__ ) lowerCAmelCase = scheduler_class.from_pretrained(UpperCAmelCase__ ) new_scheduler.set_timesteps(UpperCAmelCase__ ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample lowerCAmelCase = new_scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample lowerCAmelCase = new_scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : List[str] ) -> Tuple: pass def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[int]=0 , **UpperCAmelCase__ : Tuple ) -> List[str]: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , UpperCAmelCase__ ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(UpperCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase__ ) lowerCAmelCase = scheduler_class.from_pretrained(UpperCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample lowerCAmelCase = new_scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample lowerCAmelCase = new_scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : Dict , **UpperCAmelCase__ : Tuple ) -> str: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**UpperCAmelCase__ ) lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = 1_0 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample return sample def __UpperCAmelCase ( self : Tuple ) -> List[Any]: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , UpperCAmelCase__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase__ , 'set_timesteps' ): scheduler.set_timesteps(UpperCAmelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase__ , 'set_timesteps' ): lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , 0 , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , 1 , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , 0 , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , 1 , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self : int ) -> Tuple: for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase__ ) lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: for t in [1, 5, 1_0]: self.check_over_forward(time_step=UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> str: for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> str: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCAmelCase = 2_7 for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(UpperCAmelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample def __UpperCAmelCase ( self : Union[str, Any] ) -> int: with self.assertRaises(UpperCAmelCase__ ): lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: lowerCAmelCase = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01 ) lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def __UpperCAmelCase ( self : Any ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01 ) lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
4
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : int ="gpt_neox_japanese" def __init__( self : str , lowerCAmelCase : List[Any]=3_20_00 , lowerCAmelCase : Any=25_60 , lowerCAmelCase : Any=32 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Optional[int]=1.00 , lowerCAmelCase : str=1_00_00 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Tuple=1e-5 , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=3_19_96 , lowerCAmelCase : Optional[Any]=3_19_99 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[Any]=0.0 , **lowerCAmelCase : List[str] , ) -> Optional[Any]: """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : Optional[Any] = max_position_embeddings __lowerCAmelCase : Dict = hidden_size __lowerCAmelCase : str = num_hidden_layers __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : int = intermediate_multiple_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : Dict = rotary_pct __lowerCAmelCase : Dict = rotary_emb_base __lowerCAmelCase : Dict = initializer_range __lowerCAmelCase : List[Any] = layer_norm_eps __lowerCAmelCase : str = use_cache __lowerCAmelCase : Union[str, Any] = attention_dropout __lowerCAmelCase : Dict = hidden_dropout
139
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Dict =(EulerDiscreteScheduler,) lowerCamelCase : Dict =10 def SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowerCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = self.scheduler_classes[0] __lowerCAmelCase : int = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase : str = torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase : int = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Tuple = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = output.prev_sample __lowerCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.scheduler_classes[0] __lowerCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowerCAmelCase : List[str] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase : Any = torch.manual_seed(0 ) __lowerCAmelCase : int = self.dummy_model() __lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase : List[Any] = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Any = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Dict = output.prev_sample __lowerCAmelCase : List[str] = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config() __lowerCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCAmelCase : Dict = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCAmelCase : Dict = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: __lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[str] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Any = output.prev_sample __lowerCAmelCase : int = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : Optional[int] = self.get_scheduler_config() __lowerCAmelCase : List[Any] = scheduler_class(**lowerCAmelCase , use_karras_sigmas=lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) __lowerCAmelCase : str = torch.manual_seed(0 ) __lowerCAmelCase : str = self.dummy_model() __lowerCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCAmelCase : int = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: __lowerCAmelCase : int = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : List[Any] = output.prev_sample __lowerCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
139
1
def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True A_ : List[str] = 4 A_ : int = (1 << p) - 1 for _ in range(p - 2 ): A_ : str = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
140
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if hor == 1_28: A_ : List[Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A_ : Tuple = (32, 1_28, 2_56) A_ : Optional[int] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A_ : Union[str, Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A_ : Any = (32, 64, 1_28, 2_56) A_ : int = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A_ : List[str] = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A_ : List[Any] = model.state_dict() A_ : List[str] = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A_ : Union[str, Any] = UNetaDModel(**__lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A_ : Optional[Any] = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A_ : Optional[int] = state_dict.pop(__lowercase ) hf_value_function.load_state_dict(__lowercase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__lowercase ,__lowercase ) def UpperCamelCase ( ): '''simple docstring''' A_ : Any = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A_ : Union[str, Any] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A_ : List[Any] = model A_ : Union[str, Any] = UNetaDModel(**__lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A_ : Optional[int] = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A_ : List[str] = state_dict.pop(__lowercase ) hf_value_function.load_state_dict(__lowercase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__lowercase ,__lowercase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
140
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a: Union[str, Any] = logging.get_logger(__name__) __a: Tuple = {"""tokenizer_file""": """tokenizer.json"""} __a: Union[str, Any] = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = None def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=False , __lowerCAmelCase=False , **__lowerCAmelCase , ) -> Union[str, Any]: super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: lowercase__ : int = getattr(__lowerCAmelCase , pre_tok_state.pop('''type''' ) ) lowercase__ : Tuple = add_prefix_space lowercase__ : List[str] = pre_tok_class(**__lowerCAmelCase ) lowercase__ : Union[str, Any] = add_prefix_space def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> BatchEncoding: lowercase__ : Dict = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> BatchEncoding: lowercase__ : str = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: lowercase__ : List[Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[int]: lowercase__ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) + [self.eos_token_id] ) if len(__lowerCAmelCase ) > self.model_max_length: lowercase__ : Optional[Any] = input_ids[-self.model_max_length :] return input_ids
214
'''simple docstring''' class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> List[str]: lowercase__ : Dict = {} def _lowerCAmelCase( self ) -> None: print(self.vertex ) for i in self.vertex: print(__lowerCAmelCase , ''' -> ''' , ''' -> '''.join([str(__lowerCAmelCase ) for j in self.vertex[i]] ) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCAmelCase ) else: # else make a new vertex lowercase__ : Union[str, Any] = [to_vertex] def _lowerCAmelCase( self ) -> None: # visited array for storing already visited nodes lowercase__ : str = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: # mark start vertex as visited lowercase__ : List[str] = True print(__lowerCAmelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __a: Optional[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
214
1
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCamelCase = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCamelCase = [file for file in filepaths if file != file.lower()] if upper_files: print(f'{len(upper_files)} files contain uppercase characters:') print('''\n'''.join(upper_files) + '''\n''') UpperCamelCase = [file for file in filepaths if ''' ''' in file] if space_files: print(f'{len(space_files)} files contain space characters:') print('''\n'''.join(space_files) + '''\n''') UpperCamelCase = [file for file in filepaths if '''-''' in file] if hyphen_files: print(f'{len(hyphen_files)} files contain hyphen characters:') print('''\n'''.join(hyphen_files) + '''\n''') UpperCamelCase = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'{len(nodir_files)} files are not in a directory:') print('''\n'''.join(nodir_files) + '''\n''') UpperCamelCase = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
319
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """convbert""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Dict = vocab_size A: Tuple = hidden_size A: Optional[int] = num_hidden_layers A: List[str] = num_attention_heads A: int = intermediate_size A: int = hidden_act A: List[str] = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Tuple = max_position_embeddings A: Any = type_vocab_size A: str = initializer_range A: Union[str, Any] = layer_norm_eps A: str = embedding_size A: Optional[int] = head_ratio A: List[Any] = conv_kernel_size A: List[Any] = num_groups A: Optional[int] = classifier_dropout class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A: List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
319
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) _UpperCAmelCase : Tuple = hex_num[0] == """-""" if is_negative: _UpperCAmelCase : Union[str, Any] = hex_num[1:] try: _UpperCAmelCase : Optional[Any] = int(lowerCAmelCase__ , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) _UpperCAmelCase : Union[str, Any] = """""" while int_num > 0: _UpperCAmelCase : int = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def a__ ( lowerCAmelCase__ ) -> int: return EnvironmentCommand() def a__ ( lowerCAmelCase__ ) -> Dict: return EnvironmentCommand(args.accelerate_config_file ) class lowerCamelCase_ ( __a ): @staticmethod def lowercase_ ( _A : ArgumentParser ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_A ) download_parser.add_argument( '''--accelerate-config_file''' , default=_A , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_A ) def __init__( self : Any , _A : List[str] , *_A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = accelerate_config_file def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = '''not installed''' if is_safetensors_available(): import safetensors UpperCAmelCase__ : List[str] = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors UpperCAmelCase__ : Union[str, Any] = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" UpperCAmelCase__ : Optional[int] = '''not installed''' UpperCAmelCase__ : str = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase__ : List[str] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_A ): UpperCAmelCase__ : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase__ : List[str] = ( '''\n'''.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_A , _A ) else f"""\t{accelerate_config}""" ) UpperCAmelCase__ : Optional[int] = '''not installed''' UpperCAmelCase__ : str = '''NA''' if is_torch_available(): import torch UpperCAmelCase__ : Optional[Any] = torch.__version__ UpperCAmelCase__ : Dict = torch.cuda.is_available() UpperCAmelCase__ : List[Any] = '''not installed''' UpperCAmelCase__ : str = '''NA''' if is_tf_available(): import tensorflow as tf UpperCAmelCase__ : Dict = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase__ : List[str] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase__ : List[str] = bool(tf.config.list_physical_devices('''GPU''' ) ) UpperCAmelCase__ : Union[str, Any] = '''not installed''' UpperCAmelCase__ : Dict = '''not installed''' UpperCAmelCase__ : Any = '''not installed''' UpperCAmelCase__ : int = '''NA''' if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase__ : Optional[int] = flax.__version__ UpperCAmelCase__ : Optional[Any] = jax.__version__ UpperCAmelCase__ : Dict = jaxlib.__version__ UpperCAmelCase__ : Dict = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase__ : Dict = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f"""{safetensors_version}""", '''Accelerate version''': f"""{accelerate_version}""", '''Accelerate config''': f"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': f"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': f"""{flax_version} ({jax_backend})""", '''Jax version''': f"""{jax_version}""", '''JaxLib version''': f"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_A ) ) return info @staticmethod def lowercase_ ( _A : List[str] ): '''simple docstring''' return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
181
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') UpperCamelCase__ , UpperCamelCase__ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') UpperCamelCase__ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: UpperCamelCase__ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCamelCase__ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
181
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
223
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Construct model if gpta_config_file == "": UpperCamelCase_: Union[str, Any] = GPTaConfig() else: UpperCamelCase_: Optional[Any] = GPTaConfig.from_json_file(lowerCamelCase ) UpperCamelCase_: List[Any] = GPTaModel(lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model UpperCamelCase_: int = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase_: Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) lowerCamelCase_ : List[str] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
223
1
def lowerCAmelCase_ ( __a ) -> list[int]: """simple docstring""" lowerCamelCase__: List[str] =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: lowerCamelCase__ , lowerCamelCase__: Optional[Any] =numbers[j], numbers[i] return numbers if __name__ == "__main__": __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
10
__lowerCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def snake_case_ ( snake_case , snake_case , snake_case ) -> list[str]: lowercase__: int = set() # keep track of all the paths to be checked lowercase__: Optional[int] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase__: List[Any] = queue.pop(0 ) # get the last node from the path lowercase__: Optional[int] = path[-1] if node not in explored: lowercase__: Optional[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase__: Tuple = list(snake_case ) new_path.append(snake_case ) queue.append(snake_case ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(snake_case ) # in case there's no path between the 2 nodes return [] def snake_case_ ( snake_case , snake_case , snake_case ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase__: Tuple = [start] lowercase__: List[Any] = set(snake_case ) # Keep tab on distances from `start` node. lowercase__: Tuple = {start: 0, target: -1} while queue: lowercase__: Dict = queue.pop(0 ) if node == target: lowercase__: str = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(snake_case ) queue.append(snake_case ) lowercase__: List[str] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
196
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __UpperCAmelCase : def __init__( self: Optional[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: Optional[int]=6 , UpperCAmelCase_: Optional[Any]=17 , UpperCAmelCase_: Dict=23 , UpperCAmelCase_: Dict=11 , UpperCAmelCase_: Optional[int]=True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = act_dim _SCREAMING_SNAKE_CASE = state_dim _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = max_length _SCREAMING_SNAKE_CASE = is_training def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _SCREAMING_SNAKE_CASE = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _SCREAMING_SNAKE_CASE = floats_tensor((self.batch_size, self.seq_length, 1) ) _SCREAMING_SNAKE_CASE = floats_tensor((self.batch_size, self.seq_length, 1) ) _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _SCREAMING_SNAKE_CASE = random_attention_mask((self.batch_size, self.seq_length) ) _SCREAMING_SNAKE_CASE = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: int , UpperCAmelCase_: List[Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: Dict , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = DecisionTransformerModel(config=__A ) model.to(__A ) model.eval() _SCREAMING_SNAKE_CASE = model(__A , __A , __A , __A , __A , __A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( _SCREAMING_SNAKE_CASE ) = config_and_inputs _SCREAMING_SNAKE_CASE = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase (A__ ,A__ ,A__ ,unittest.TestCase ): __snake_case : Any = (DecisionTransformerModel,) if is_torch_available() else () __snake_case : Tuple = () __snake_case : Optional[int] = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __snake_case : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __snake_case : Optional[Any] = False __snake_case : Union[str, Any] = False __snake_case : Dict = False __snake_case : Tuple = False __snake_case : str = False __snake_case : Any = False __snake_case : Optional[Any] = False __snake_case : Dict = False __snake_case : List[str] = False def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = DecisionTransformerModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = DecisionTransformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(__A ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(__A )] , __A ) @require_torch class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 2 # number of steps of autoregressive prediction we will perform _SCREAMING_SNAKE_CASE = 10 # defined by the RL environment, may be normalized _SCREAMING_SNAKE_CASE = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) _SCREAMING_SNAKE_CASE = model.to(__A ) _SCREAMING_SNAKE_CASE = model.config torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = torch.randn(1 , 1 , config.state_dim ).to(device=__A , dtype=torch.floataa ) # env.reset() _SCREAMING_SNAKE_CASE = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=__A ) _SCREAMING_SNAKE_CASE = torch.tensor(__A , device=__A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _SCREAMING_SNAKE_CASE = state _SCREAMING_SNAKE_CASE = torch.zeros(1 , 0 , config.act_dim , device=__A , dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = torch.zeros(1 , 0 , device=__A , dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = torch.tensor(0 , device=__A , dtype=torch.long ).reshape(1 , 1 ) for step in range(__A ): _SCREAMING_SNAKE_CASE = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__A )] , dim=1 ) _SCREAMING_SNAKE_CASE = torch.cat([rewards, torch.zeros(1 , 1 , device=__A )] , dim=1 ) _SCREAMING_SNAKE_CASE = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model( states=__A , actions=__A , rewards=__A , returns_to_go=__A , timesteps=__A , attention_mask=__A , return_dict=__A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _SCREAMING_SNAKE_CASE = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__A , dtype=torch.floataa ), 1.0, False, {}, ) _SCREAMING_SNAKE_CASE = action_pred[0, -1] _SCREAMING_SNAKE_CASE = torch.cat([states, state] , dim=1 ) _SCREAMING_SNAKE_CASE = returns_to_go[0, -1] - reward _SCREAMING_SNAKE_CASE = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _SCREAMING_SNAKE_CASE = torch.cat( [timesteps, torch.ones((1, 1) , device=__A , dtype=torch.long ) * (step + 1)] , dim=1 )
351
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __UpperCAmelCase : def __init__( self: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: str=True , UpperCAmelCase_: List[str]=99 , UpperCAmelCase_: int=32 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Dict=37 , UpperCAmelCase_: Tuple="gelu" , UpperCAmelCase_: Any=0.1 , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Optional[int]=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[int]=0.02 , UpperCAmelCase_: Union[str, Any]=3 , UpperCAmelCase_: Optional[int]=4 , UpperCAmelCase_: Tuple=None , UpperCAmelCase_: Any=0 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = projection_dim def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) _SCREAMING_SNAKE_CASE = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRContextEncoder(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRReader(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : Dict = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __snake_case : Optional[Any] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __snake_case : str = False __snake_case : List[Any] = False __snake_case : Any = False __snake_case : List[Any] = False __snake_case : Tuple = False def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRReader.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) _SCREAMING_SNAKE_CASE = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , *_A , **_A ) -> None: warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
299
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowerCAmelCase__ : Optional[int] =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={ 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class UpperCAmelCase_ ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ : int = '''imagegpt''' UpperCamelCase__ : Union[str, Any] = ['''past_key_values'''] UpperCamelCase__ : str = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _A=512 + 1 , _A=32 * 32 , _A=512 , _A=24 , _A=8 , _A=None , _A="quick_gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=1e-5 , _A=0.0_2 , _A=True , _A=True , _A=False , _A=False , _A=False , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_embd __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = n_inner __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = attn_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scale_attn_weights __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx __SCREAMING_SNAKE_CASE = reorder_and_upcast_attn __SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=_A , **_A ) class UpperCAmelCase_ ( _lowerCamelCase ): '''simple docstring''' @property def _A ( self ): '''simple docstring''' return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def _A ( self , _A , _A = 1 , _A = -1 , _A = False , _A = None , _A = 3 , _A = 32 , _A = 32 , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self._generate_dummy_images(_A , _A , _A , _A ) __SCREAMING_SNAKE_CASE = dict(preprocessor(images=_A , return_tensors=_A ) ) return inputs
353
def __lowercase ( a__ = 10_00 ) -> int: __SCREAMING_SNAKE_CASE = -1 __SCREAMING_SNAKE_CASE = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __SCREAMING_SNAKE_CASE = (n * n - 2 * a * n) // (2 * n - 2 * a) __SCREAMING_SNAKE_CASE = n - a - b if c * c == (a * a + b * b): __SCREAMING_SNAKE_CASE = a * b * c if candidate >= product: __SCREAMING_SNAKE_CASE = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
118
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int =VOCAB_FILES_NAMES a : Tuple =PRETRAINED_VOCAB_FILES_MAP a : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[int] =["input_ids", "attention_mask"] a : int =RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: lowerCAmelCase : Optional[int] = getattr(snake_case__ , pre_tok_state.pop("type" ) ) lowerCAmelCase : Union[str, Any] = add_prefix_space lowerCAmelCase : Union[str, Any] = pre_tok_class(**snake_case__ ) lowerCAmelCase : int = add_prefix_space lowerCAmelCase : Union[str, Any] = "post_processor" lowerCAmelCase : List[str] = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: lowerCAmelCase : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase : Tuple = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase : List[Any] = tuple(state["cls"] ) lowerCAmelCase : int = False if state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: lowerCAmelCase : Union[str, Any] = add_prefix_space lowerCAmelCase : List[Any] = True if state.get("trim_offsets" , snake_case__ ) != trim_offsets: lowerCAmelCase : List[str] = trim_offsets lowerCAmelCase : Optional[int] = True if changes_to_apply: lowerCAmelCase : Union[str, Any] = getattr(snake_case__ , state.pop("type" ) ) lowerCAmelCase : Optional[Any] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value lowerCAmelCase : Optional[Any] = value def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Any = kwargs.get("is_split_into_words" , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words" , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : List[Any] = [self.sep_token_id] lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
108
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Union[str, Any] = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase_: '''simple docstring''' def snake_case__ ( self , lowerCamelCase__ ): raise NotImplementedError() def snake_case__ ( self ): raise NotImplementedError() class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ = False , **lowerCamelCase__ ): _lowerCamelCase = tokenizer _lowerCamelCase = skip_prompt _lowerCamelCase = decode_kwargs # variables used in the streaming process _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = True def snake_case__ ( self , lowerCamelCase__ ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: _lowerCamelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _lowerCamelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _lowerCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): _lowerCamelCase = text[self.print_len :] _lowerCamelCase = [] _lowerCamelCase = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCamelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _lowerCamelCase = text[self.print_len :] self.print_len += len(lowerCamelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _lowerCamelCase = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(lowerCamelCase__ ) self.on_finalized_text(lowerCamelCase__ ) def snake_case__ ( self ): # Flush the cache, if it exists if len(self.token_cache ) > 0: _lowerCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _lowerCamelCase = text[self.print_len :] _lowerCamelCase = [] _lowerCamelCase = 0 else: _lowerCamelCase = '''''' _lowerCamelCase = True self.on_finalized_text(lowerCamelCase__ , stream_end=lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = False ): print(lowerCamelCase__ , flush=lowerCamelCase__ , end='''''' if not stream_end else None ) def snake_case__ ( self , lowerCamelCase__ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = None , **lowerCamelCase__ ): super().__init__(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) _lowerCamelCase = Queue() _lowerCamelCase = None _lowerCamelCase = timeout def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = False ): self.text_queue.put(lowerCamelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): return self def snake_case__ ( self ): _lowerCamelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase__ ( unittest.TestCase): __SCREAMING_SNAKE_CASE = MODEL_FOR_MASKED_LM_MAPPING __SCREAMING_SNAKE_CASE = TF_MODEL_FOR_MASKED_LM_MAPPING def __lowerCamelCase ( self ) -> int: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCamelCase = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 3_8_0_1_5, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 2_5_5_0_6, """token_str""": """ accuser"""}, ] , ) __UpperCamelCase = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 3_8_0_1_5, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 2_5_5_0_6, """token_str""": """ accuser""", }, ] , ) __UpperCamelCase = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 1_3_6_0_6, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_4_9_9, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_9_4_1, """token_str""": """ Te"""}, ] , ) @require_torch def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCamelCase = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 3_5_6_7_6, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 1_6_4_1_6, """token_str""": """ELS"""}, ] , ) __UpperCamelCase = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 3_5_6_7_6, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 1_6_4_1_6, """token_str""": """ELS"""}, ] , ) __UpperCamelCase = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_4_9_9, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_9_4_1, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 1_3_6_0_6, """token_str""": """ Clara"""}, ] , ) __UpperCamelCase = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 3_5_6_7_6, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 1_6_4_1_6, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 3_5_6_7_6, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 1_6_4_1_6, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCamelCase = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowercase , lowercase ) @slow @require_torch def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(lowercase ) @slow @require_tf def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(lowercase ) def __lowerCamelCase ( self , lowercase ) -> Dict: __UpperCamelCase = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowercase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 6_1_0, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_5_7_3, """token_str""": """ Chris"""}, ] , ) __UpperCamelCase = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowercase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_2_0_1, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2_7_9_0, """token_str""": """ Lyon""", }, ] , ) __UpperCamelCase = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowercase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_4_9_9, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3_6_0_6, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_9_4_1, """token_str""": """ Te"""}, ] , ) @require_torch def __lowerCamelCase ( self ) -> str: __UpperCamelCase = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCamelCase = None __UpperCamelCase = None self.run_pipeline_test(lowercase , [] ) @require_tf def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCamelCase = None __UpperCamelCase = None self.run_pipeline_test(lowercase , [] ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCamelCase = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) __UpperCamelCase = [ f"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def __lowerCamelCase ( self , lowercase , lowercase ) -> Tuple: __UpperCamelCase = fill_masker.tokenizer __UpperCamelCase = fill_masker.model __UpperCamelCase = fill_masker( f"This is a {tokenizer.mask_token}" , ) self.assertEqual( lowercase , [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ] , ) __UpperCamelCase = fill_masker([f"This is a {tokenizer.mask_token}"] ) self.assertEqual( lowercase , [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ] , ) __UpperCamelCase = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."] ) self.assertEqual( lowercase , [ [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ], [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ], ] , ) with self.assertRaises(lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowercase ): fill_masker("""This is""" ) self.run_test_top_k(lowercase , lowercase ) self.run_test_targets(lowercase , lowercase ) self.run_test_top_k_targets(lowercase , lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(lowercase , lowercase ) self.fill_mask_with_multiple_masks(lowercase , lowercase ) def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = tokenizer.get_vocab() __UpperCamelCase = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCamelCase = FillMaskPipeline(model=lowercase , tokenizer=lowercase , targets=lowercase ) __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( lowercase , [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ] , ) __UpperCamelCase = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowercase ) __UpperCamelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowercase ) ) # Call argument __UpperCamelCase = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=lowercase ) self.assertEqual( lowercase , [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ] , ) __UpperCamelCase = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowercase ) __UpperCamelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowercase ) ) # Score equivalence __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=lowercase ) __UpperCamelCase = [top_mask["""token_str"""] for top_mask in outputs] __UpperCamelCase = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase ) == set(lowercase ): __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=lowercase ) __UpperCamelCase = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowercase ) , nested_simplify(lowercase ) ) # Raises with invalid with self.assertRaises(lowercase ): __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowercase ): __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[""""""] ) with self.assertRaises(lowercase ): __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets="""""" ) def __lowerCamelCase ( self , lowercase , lowercase ) -> Any: __UpperCamelCase = FillMaskPipeline(model=lowercase , tokenizer=lowercase , top_k=2 ) __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( lowercase , [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ] , ) __UpperCamelCase = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( lowercase , [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ] , ) self.assertEqual(nested_simplify(lowercase ) , nested_simplify(lowercase ) ) def __lowerCamelCase ( self , lowercase , lowercase ) -> Any: __UpperCamelCase = tokenizer.get_vocab() __UpperCamelCase = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) # top_k=2, ntargets=3 __UpperCamelCase = sorted(vocab.keys() )[:3] __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 , targets=lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCamelCase = [el["""token_str"""] for el in sorted(lowercase , key=lambda lowercase : x["score"] , reverse=lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase ).issubset(lowercase ): __UpperCamelCase = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=3 , targets=lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowercase ) , nested_simplify(lowercase ) ) def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) __UpperCamelCase = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCamelCase = sorted(vocab.keys() )[:3] __UpperCamelCase = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCamelCase = fill_masker(f"My name is {tokenizer.mask_token}" , targets=lowercase , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowercase ) , 3 ) def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: __UpperCamelCase = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) __UpperCamelCase = fill_masker( f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( lowercase , [ [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ], [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ], [ {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, {"""sequence""": ANY(lowercase ), """score""": ANY(lowercase ), """token""": ANY(lowercase ), """token_str""": ANY(lowercase )}, ], ] , )
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ : int = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['LayoutLMv3FeatureExtractor'] a__ : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __get__( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) SCREAMING_SNAKE_CASE : Union[str, Any] = "__cached_" + self.fget.__name__ SCREAMING_SNAKE_CASE : Any = getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if cached is None: SCREAMING_SNAKE_CASE : List[str] = self.fget(UpperCAmelCase_ ) setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return cached def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if is_torch_fx_proxy(lowercase ): return True if is_torch_available(): import torch if isinstance(lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(lowercase , np.ndarray ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return isinstance(lowercase , np.ndarray ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return _is_numpy(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import torch return isinstance(lowercase , torch.Tensor ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_torch_available() else _is_torch(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import torch return isinstance(lowercase , torch.device ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import torch if isinstance(lowercase , lowercase ): if hasattr(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = getattr(lowercase , lowercase ) else: return False return isinstance(lowercase , torch.dtype ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import tensorflow as tf return isinstance(lowercase , tf.Tensor ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowercase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(lowercase ) return type(lowercase ) == tf.Tensor def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(lowercase , jnp.ndarray ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_flax_available() else _is_jax(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if isinstance(lowercase , (dict, UserDict) ): return {k: to_py_obj(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return [to_py_obj(lowercase ) for o in obj] elif is_tf_tensor(lowercase ): return obj.numpy().tolist() elif is_torch_tensor(lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ).tolist() elif isinstance(lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCamelCase__ ( lowercase ): """simple docstring""" if isinstance(lowercase , (dict, UserDict) ): return {k: to_numpy(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return np.array(lowercase ) elif is_tf_tensor(lowercase ): return obj.numpy() elif is_torch_tensor(lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ) else: return obj class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Optional[int] = fields(self ) # Safety and consistency checks if not len(UpperCAmelCase_ ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) SCREAMING_SNAKE_CASE : List[str] = getattr(self , class_fields[0].name ) SCREAMING_SNAKE_CASE : Tuple = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Any = first_field.items() SCREAMING_SNAKE_CASE : List[Any] = True else: try: SCREAMING_SNAKE_CASE : str = iter(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = True except TypeError: SCREAMING_SNAKE_CASE : str = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(UpperCAmelCase_ ): if ( not isinstance(UpperCAmelCase_ , (list, tuple) ) or not len(UpperCAmelCase_ ) == 2 or not isinstance(element[0] , UpperCAmelCase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute SCREAMING_SNAKE_CASE : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = element[1] elif first_field is not None: SCREAMING_SNAKE_CASE : int = first_field else: for field in class_fields: SCREAMING_SNAKE_CASE : Any = getattr(self , field.name ) if v is not None: SCREAMING_SNAKE_CASE : Tuple = v def __delitem__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _A ( self : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _A ( self : List[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _A ( self : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : Tuple , UpperCAmelCase_ : Tuple ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Any = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(UpperCAmelCase_ , UpperCAmelCase_ ) super().__setattr__(UpperCAmelCase_ , UpperCAmelCase_ ) def __setitem__( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ): # Will raise a KeyException if needed super().__setitem__(UpperCAmelCase_ , UpperCAmelCase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): return tuple(self[k] for k in self.keys() ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' @classmethod def _A ( cls : List[str] , UpperCAmelCase_ : Tuple ): raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = '''longest''' UpperCamelCase_ : List[Any] = '''max_length''' UpperCamelCase_ : Tuple = '''do_not_pad''' class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = '''pt''' UpperCamelCase_ : Optional[Any] = '''tf''' UpperCamelCase_ : Tuple = '''np''' UpperCamelCase_ : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : List[ContextManager] ): SCREAMING_SNAKE_CASE : Optional[Any] = context_managers SCREAMING_SNAKE_CASE : List[str] = ExitStack() def __enter__( self : Union[str, Any] ): for context_manager in self.context_managers: self.stack.enter_context(UpperCAmelCase_ ) def __exit__( self : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ): self.stack.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = infer_framework(lowercase ) if framework == "tf": SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE : Any = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = model_class.__name__ SCREAMING_SNAKE_CASE : str = infer_framework(lowercase ) if framework == "tf": SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE : int = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE : Any = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCamelCase__ ( lowercase , lowercase = "" , lowercase = "." ): """simple docstring""" def _flatten_dict(lowercase , lowercase="" , lowercase="." ): for k, v in d.items(): SCREAMING_SNAKE_CASE : Any = str(lowercase ) + delimiter + str(lowercase ) if parent_key else k if v and isinstance(lowercase , lowercase ): yield from flatten_dict(lowercase , lowercase , delimiter=lowercase ).items() else: yield key, v return dict(_flatten_dict(lowercase , lowercase , lowercase ) ) @contextmanager def lowerCamelCase__ ( lowercase , lowercase = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" if is_numpy_array(lowercase ): return np.transpose(lowercase , axes=lowercase ) elif is_torch_tensor(lowercase ): return array.T if axes is None else array.permute(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.transpose(lowercase , perm=lowercase ) elif is_jax_tensor(lowercase ): return jnp.transpose(lowercase , axes=lowercase ) else: raise ValueError(F'''Type not supported for transpose: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if is_numpy_array(lowercase ): return np.reshape(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.reshape(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.reshape(lowercase , lowercase ) elif is_jax_tensor(lowercase ): return jnp.reshape(lowercase , lowercase ) else: raise ValueError(F'''Type not supported for reshape: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" if is_numpy_array(lowercase ): return np.squeeze(lowercase , axis=lowercase ) elif is_torch_tensor(lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.squeeze(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.squeeze(lowercase , axis=lowercase ) else: raise ValueError(F'''Type not supported for squeeze: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if is_numpy_array(lowercase ): return np.expand_dims(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.unsqueeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.expand_dims(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.expand_dims(lowercase , axis=lowercase ) else: raise ValueError(F'''Type not supported for expand_dims: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if is_numpy_array(lowercase ): return np.size(lowercase ) elif is_torch_tensor(lowercase ): return array.numel() elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.size(lowercase ) elif is_jax_tensor(lowercase ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" for key, value in auto_map.items(): if isinstance(lowercase , (tuple, list) ): SCREAMING_SNAKE_CASE : str = [F'''{repo_id}--{v}''' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: SCREAMING_SNAKE_CASE : str = F'''{repo_id}--{value}''' return auto_map def lowerCamelCase__ ( lowercase ): """simple docstring""" for base_class in inspect.getmro(lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = base_class.__module__ SCREAMING_SNAKE_CASE : int = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
319
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case = get_logger(__name__) snake_case = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): for processor in self: SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) SCREAMING_SNAKE_CASE : int = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : float ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) SCREAMING_SNAKE_CASE : Optional[int] = temperature def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = scores / self.temperature return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) SCREAMING_SNAKE_CASE : Optional[int] = top_p SCREAMING_SNAKE_CASE : str = filter_value SCREAMING_SNAKE_CASE : List[str] = min_tokens_to_keep def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) SCREAMING_SNAKE_CASE : str = jnp.full_like(UpperCAmelCase_ , self.filter_value ) SCREAMING_SNAKE_CASE : Optional[int] = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep SCREAMING_SNAKE_CASE : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) SCREAMING_SNAKE_CASE : List[str] = max(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = filter_value def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = scores.shape SCREAMING_SNAKE_CASE : List[str] = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE : List[str] = topk_scores.flatten() SCREAMING_SNAKE_CASE : List[Any] = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE : Dict = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = bos_token_id def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : List[str] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) SCREAMING_SNAKE_CASE : List[str] = min_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = list(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = begin_index def __call__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE : List[str] = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[Any] = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE : Any = force_token_array.at[index].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = jnp.intaa(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): def _force_token(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[str] = scores.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE : Tuple = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.eos_token_id SCREAMING_SNAKE_CASE : Tuple = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE : List[Any] = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE : List[Any] = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size def __call__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE : List[Any] = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
319
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A = '''▁''' _A = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _lowerCAmelCase ( a__ , unittest.TestCase ): _lowercase =BertGenerationTokenizer _lowercase =False _lowercase =True def __a ( self ) -> Optional[int]: super().setUp() lowerCAmelCase_ = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> int: lowerCAmelCase_ = "<s>" lowerCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __a ( self ) -> str: lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_002 ) def __a ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) lowerCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __a ( self ) -> Tuple: return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "Hello World!" lowerCAmelCase_ = [18_536, 2_260, 101] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowerCAmelCase_ = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @require_torch @slow def __a ( self ) -> Union[str, Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase_ = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ = self.big_tokenizer.encode_plus(lowerCAmelCase__ , return_tensors="pt" , return_token_type_ids=lowerCAmelCase__ ) lowerCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=lowerCAmelCase__ ) lowerCAmelCase_ = BertGenerationConfig() lowerCAmelCase_ = BertGenerationEncoder(lowerCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase__ ) model(**lowerCAmelCase__ ) @slow def __a ( self ) -> Tuple: # fmt: off lowerCAmelCase_ = {"input_ids": [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
231
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowercase , _lowercase ) ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: a : str = ( "Wrong input data's dimensions... " F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(_lowercase ) try: if dataset.shape[1] != value_array.shape[1]: a : int = ( "Wrong input data's shape... " F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(_lowercase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: a : Union[str, Any] = ( "Input data have different datatype... " F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(_lowercase ) a : str = [] for value in value_array: a : List[Any] = euclidean(_lowercase , dataset[0] ) a : str = dataset[0].tolist() for dataset_value in dataset[1:]: a : Tuple = euclidean(_lowercase , _lowercase ) if dist > temp_dist: a : Dict = temp_dist a : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->float: '''simple docstring''' return np.dot(_lowercase , _lowercase ) / (norm(_lowercase ) * norm(_lowercase )) if __name__ == "__main__": import doctest doctest.testmod()
105
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a_ ( unittest.TestCase ): def __init__( self :List[str] , _lowercase :List[str] , _lowercase :Optional[int]=7 , _lowercase :Optional[Any]=3 , _lowercase :str=18 , _lowercase :Optional[Any]=30 , _lowercase :Union[str, Any]=400 , _lowercase :Any=True , _lowercase :List[str]=None , _lowercase :Optional[Any]=True , ) -> Union[str, Any]: UpperCAmelCase_ = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = apply_ocr def __a ( self :Union[str, Any]) -> Union[str, Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Any =LayoutLMvaImageProcessor if is_pytesseract_available() else None def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = LayoutLMvaImageProcessingTester(self) @property def __a ( self :str) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''apply_ocr''')) def __a ( self :str) -> Dict: UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18}) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42}) def __a ( self :Any) -> List[str]: pass def __a ( self :List[str]) -> List[str]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , _lowercase) self.assertIsInstance(encoding.boxes , _lowercase) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __a ( self :List[Any]) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __a ( self :Dict) -> Tuple: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __a ( self :List[Any]) -> List[Any]: # with apply_OCR = True UpperCAmelCase_ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCAmelCase_ = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''') UpperCAmelCase_ = Image.open(ds[0]['''file''']).convert('''RGB''') UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCAmelCase_ = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 UpperCAmelCase_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase) self.assertListEqual(encoding.boxes , _lowercase) # with apply_OCR = False UpperCAmelCase_ = LayoutLMvaImageProcessor(apply_ocr=_lowercase) UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
368
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowerCamelCase : List[Any] =logging.get_logger(__name__) # General docstring lowerCamelCase : List[str] ='''ResNetConfig''' # Base docstring lowerCamelCase : Optional[Any] ='''microsoft/resnet-50''' lowerCamelCase : Optional[Any] =[1, 2048, 7, 7] # Image classification docstring lowerCamelCase : Optional[Any] ='''microsoft/resnet-50''' lowerCamelCase : int ='''tiger cat''' lowerCamelCase : str =[ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __a ( nn.Module ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : str = "relu" ): '''simple docstring''' super().__init__() UpperCamelCase__ : List[Any] = nn.Convad( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , kernel_size=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = nn.BatchNormad(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = ACTaFN[activation] if activation is not None else nn.Identity() def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.convolution(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = self.normalization(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.activation(SCREAMING_SNAKE_CASE ) return hidden_state class __a ( nn.Module ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : ResNetConfig ): '''simple docstring''' super().__init__() UpperCamelCase__ : Union[str, Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) UpperCamelCase__ : List[Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) UpperCamelCase__ : int = config.num_channels def __lowercase ( self : str , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : int = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) UpperCamelCase__ : Union[str, Any] = self.embedder(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.pooler(SCREAMING_SNAKE_CASE ) return embedding class __a ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int = 2 ): '''simple docstring''' super().__init__() UpperCamelCase__ : Optional[int] = nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , kernel_size=1 , stride=SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = nn.BatchNormad(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : List[str] = self.convolution(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = self.normalization(SCREAMING_SNAKE_CASE ) return hidden_state class __a ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : str = "relu" ): '''simple docstring''' super().__init__() UpperCamelCase__ : List[Any] = in_channels != out_channels or stride != 1 UpperCamelCase__ : str = ( ResNetShortCut(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : Any = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE ) , ResNetConvLayer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , activation=SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : List[str] = ACTaFN[activation] def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' UpperCamelCase__ : Optional[int] = hidden_state UpperCamelCase__ : Tuple = self.layer(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.shortcut(SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCamelCase__ : List[str] = self.activation(SCREAMING_SNAKE_CASE ) return hidden_state class __a ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : str = "relu" , SCREAMING_SNAKE_CASE : int = 4 ): '''simple docstring''' super().__init__() UpperCamelCase__ : Union[str, Any] = in_channels != out_channels or stride != 1 UpperCamelCase__ : Union[str, Any] = out_channels // reduction UpperCamelCase__ : Union[str, Any] = ( ResNetShortCut(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : Optional[Any] = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , kernel_size=1 ) , ResNetConvLayer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE ) , ResNetConvLayer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , kernel_size=1 , activation=SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : Any = ACTaFN[activation] def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Dict = hidden_state UpperCamelCase__ : str = self.layer(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.shortcut(SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCamelCase__ : Optional[int] = self.activation(SCREAMING_SNAKE_CASE ) return hidden_state class __a ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : ResNetConfig , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 2 , ): '''simple docstring''' super().__init__() UpperCamelCase__ : Tuple = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer UpperCamelCase__ : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , *[layer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : str = input for layer in self.layers: UpperCamelCase__ : Any = layer(SCREAMING_SNAKE_CASE ) return hidden_state class __a ( nn.Module ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE : ResNetConfig ): '''simple docstring''' super().__init__() UpperCamelCase__ : List[Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase__ : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(ResNetStage(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , depth=SCREAMING_SNAKE_CASE ) ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tensor , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' UpperCamelCase__ : List[str] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase__ : Union[str, Any] = hidden_states + (hidden_state,) UpperCamelCase__ : int = stage_module(SCREAMING_SNAKE_CASE ) if output_hidden_states: UpperCamelCase__ : List[str] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE , hidden_states=SCREAMING_SNAKE_CASE , ) class __a ( A__ ): _lowerCAmelCase : List[str] = ResNetConfig _lowerCAmelCase : Optional[Any] = '''resnet''' _lowerCAmelCase : Tuple = '''pixel_values''' _lowerCAmelCase : List[str] = True def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Tuple = value lowerCamelCase : Any =R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase : Optional[int] =R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , A__ , ) class __a ( A__ ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = config UpperCamelCase__ : List[Any] = ResNetEmbeddings(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = ResNetEncoder(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tensor , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : int = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Tuple = self.embedder(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = self.encoder( SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = encoder_outputs[0] UpperCamelCase__ : Optional[Any] = self.pooler(SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE , pooler_output=SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A__ , ) class __a ( A__ ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = config.num_labels UpperCamelCase__ : Any = ResNetModel(SCREAMING_SNAKE_CASE ) # classification head UpperCamelCase__ : str = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Tuple = self.resnet(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ : str = self.classifier(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ : Dict = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ : List[str] = "single_label_classification" else: UpperCamelCase__ : Tuple = "multi_label_classification" if self.config.problem_type == "regression": UpperCamelCase__ : Dict = MSELoss() if self.num_labels == 1: UpperCamelCase__ : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase__ : Any = loss_fct(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ : List[str] = CrossEntropyLoss() UpperCamelCase__ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ : str = BCEWithLogitsLoss() UpperCamelCase__ : str = loss_fct(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not return_dict: UpperCamelCase__ : Dict = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , A__ , ) class __a ( A__ , A__ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) super()._init_backbone(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = [config.embedding_size] + config.hidden_sizes UpperCamelCase__ : str = ResNetEmbeddings(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = ResNetEncoder(SCREAMING_SNAKE_CASE ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Tensor , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : int = self.embedder(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.encoder(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = outputs.hidden_states UpperCamelCase__ : int = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCamelCase__ : List[str] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=SCREAMING_SNAKE_CASE , )
189
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowerCamelCase : int ={ '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] =[ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] =['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowerCamelCase : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __UpperCamelCase : Optional[Any] = '''.''' if __name__ == "__main__": __UpperCamelCase : Optional[Any] = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __UpperCamelCase : int = [] __UpperCamelCase : str = [] with open(doctest_file_path) as fp: for line in fp: __UpperCamelCase : Union[str, Any] = line.strip() __UpperCamelCase : Optional[Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __UpperCamelCase : Union[str, Any] = '''\n'''.join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
350
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Any = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) UpperCamelCase__ : Union[str, Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : List[Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCamelCase__ : Dict = DDPMScheduler() UpperCamelCase__ : List[Any] = AudioDiffusionPipeline(vqvae=lowerCamelCase__ , unet=self.dummy_unet , mel=lowerCamelCase__ , scheduler=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(42 ) UpperCamelCase__ : List[str] = pipe(generator=lowerCamelCase__ , steps=4 ) UpperCamelCase__ : Union[str, Any] = output.audios[0] UpperCamelCase__ : Any = output.images[0] UpperCamelCase__ : Optional[int] = torch.Generator(device=lowerCamelCase__ ).manual_seed(42 ) UpperCamelCase__ : int = pipe(generator=lowerCamelCase__ , steps=4 , return_dict=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCamelCase__ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : Any = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : str = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ : List[str] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCamelCase__ : Optional[Any] = DDIMScheduler() UpperCamelCase__ : Union[str, Any] = self.dummy_vqvae_and_unet UpperCamelCase__ : Union[str, Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowerCamelCase__ , scheduler=lowerCamelCase__ ) UpperCamelCase__ : str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) np.random.seed(0 ) UpperCamelCase__ : Optional[int] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCamelCase__ : Optional[int] = torch.Generator(device=lowerCamelCase__ ).manual_seed(42 ) UpperCamelCase__ : Union[str, Any] = pipe(raw_audio=lowerCamelCase__ , generator=lowerCamelCase__ , start_step=5 , steps=10 ) UpperCamelCase__ : int = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCamelCase__ : List[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : Union[str, Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ : Any = self.dummy_unet_condition UpperCamelCase__ : str = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowerCamelCase__ , mel=lowerCamelCase__ , scheduler=lowerCamelCase__ ) UpperCamelCase__ : Any = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) np.random.seed(0 ) UpperCamelCase__ : Union[str, Any] = torch.rand((1, 1, 10) ) UpperCamelCase__ : int = pipe(generator=lowerCamelCase__ , encoding=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = output.images[0] UpperCamelCase__ : List[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : str = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = torch_device UpperCamelCase__ : Dict = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) UpperCamelCase__ : Optional[int] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = torch.Generator(device=lowerCamelCase__ ).manual_seed(42 ) UpperCamelCase__ : Optional[Any] = pipe(generator=lowerCamelCase__ ) UpperCamelCase__ : Dict = output.audios[0] UpperCamelCase__ : Optional[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCamelCase__ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : List[Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
51
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : int = BertJapaneseTokenizer snake_case__ : Optional[int] = False snake_case__ : Union[str, Any] = True def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: super().setUp() a_ : Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] a_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: a_ : Optional[int] = 'こんにちは、世界。 \nこんばんは、世界。' a_ : Optional[Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> int: a_ , a_ : int = self.get_input_output_texts(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) return text, ids def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) a_ : str = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) a_ : str = 'こんにちは、世界。\nこんばんは、世界。' a_ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) a_ : Optional[int] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as handle: pickle.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'rb' ) as handle: a_ : Union[str, Any] = pickle.load(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = tokenizer_new.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: a_ : List[str] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: try: a_ : List[str] = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: try: a_ : Union[str, Any] = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = MecabTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: try: a_ : Any = MecabTokenizer( do_lower_case=SCREAMING_SNAKE_CASE__ , normalize_text=SCREAMING_SNAKE_CASE__ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: a_ : int = MecabTokenizer(normalize_text=SCREAMING_SNAKE_CASE__ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: a_ : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = 'こんにちは、世界。\nこんばんは、世界。' a_ : Dict = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) a_ : int = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as handle: pickle.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'rb' ) as handle: a_ : Union[str, Any] = pickle.load(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = tokenizer_new.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: a_ : List[str] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: a_ : List[Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : Tuple = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Union[str, Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : Dict = SudachiTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: a_ : Any = SudachiTokenizer(normalize_text=SCREAMING_SNAKE_CASE__ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: a_ : int = SudachiTokenizer(trim_whitespace=SCREAMING_SNAKE_CASE__ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: a_ : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) a_ : Any = 'こんにちは、世界。\nこんばんは、世界。' a_ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) a_ : Optional[int] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as handle: pickle.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'rb' ) as handle: a_ : Optional[Any] = pickle.load(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = tokenizer_new.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: a_ : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Union[str, Any] = JumanppTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: a_ : Optional[int] = JumanppTokenizer(normalize_text=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Any ) -> int: a_ : Dict = JumanppTokenizer(trim_whitespace=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: a_ : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: a_ : Tuple = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] a_ : List[Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : List[str] = i a_ : Dict = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: a_ : List[str] = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) a_ : List[str] = tokenizer.subword_tokenizer a_ : Optional[int] = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) a_ : Optional[int] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: a_ : Optional[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) a_ : int = tokenizer.encode('ありがとう。' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) a_ : Dict = tokenizer.encode('どういたしまして。' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) a_ : int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : Optional[int] = BertJapaneseTokenizer snake_case__ : str = False def SCREAMING_SNAKE_CASE ( self : str ) -> Any: super().setUp() a_ : int = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: a_ : List[Any] = 'こんにちは、世界。 \nこんばんは、世界。' a_ : Optional[Any] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: a_ : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) a_ : Any = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Dict = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a_ : Dict = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : str = i a_ : Optional[Any] = CharacterTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Union[str, Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) a_ : Optional[Any] = tokenizer.encode('ありがとう。' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : int = 'cl-tohoku/bert-base-japanese' a_ : Optional[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : List[str] = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) a_ : Tuple = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
32
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __A : int = imread(R'''digital_image_processing/image_data/lena_small.jpg''') __A : Tuple = cvtColor(img, COLOR_BGR2GRAY) def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = cn.convert_to_negative(_UpperCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCAmelCase, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : List[Any] = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Any = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase : Dict = canny.canny(_UpperCAmelCase ) # assert canny array for at least one True assert canny_array.any() def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' assert gg.gaussian_filter(_UpperCAmelCase, 5, sigma=0.9 ).all() def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' lowerCAmelCase : Any = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) lowerCAmelCase : List[Any] = conv.img_convolve(_UpperCAmelCase, _UpperCAmelCase ).astype(_UpperCAmelCase ) assert res.any() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' assert med.median_filter(_UpperCAmelCase, 3 ).any() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Any = sob.sobel_filter(_UpperCAmelCase ) assert grad.any() and theta.any() def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : List[Any] = sp.make_sepia(_UpperCAmelCase, 20 ) assert sepia.all() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = bs.Burkes(imread(_UpperCAmelCase, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg", ) -> str: '''simple docstring''' lowerCAmelCase : int = rs.NearestNeighbour(imread(_UpperCAmelCase, 1 ), 400, 200 ) nn.process() assert nn.output.any() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Dict = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase : Dict = imread(_UpperCAmelCase, 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase : Any = 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = image[x_coordinate][y_coordinate] lowerCAmelCase : List[Any] = lbp.get_neighbors_pixel( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase : str = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): lowerCAmelCase : Tuple = lbp.local_binary_value(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) assert lbp_image.any()
138
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "xlnet" _a = ["mems"] _a = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _a=3_2000 , _a=1024 , _a=24 , _a=16 , _a=4096 , _a="gelu" , _a=True , _a="bi" , _a=0.02 , _a=1e-12 , _a=0.1 , _a=512 , _a=None , _a=True , _a=False , _a=False , _a=-1 , _a=False , _a="last" , _a=True , _a="tanh" , _a=0.1 , _a=5 , _a=5 , _a=5 , _a=1 , _a=2 , **_a , ) -> Union[str, Any]: _A : str = vocab_size _A : List[Any] = d_model _A : Union[str, Any] = n_layer _A : List[Any] = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A : List[Any] = d_model // n_head _A : str = ff_activation _A : Any = d_inner _A : List[Any] = untie_r _A : str = attn_type _A : Any = initializer_range _A : Optional[Any] = layer_norm_eps _A : Dict = dropout _A : int = mem_len _A : Optional[Any] = reuse_len _A : Tuple = bi_data _A : List[Any] = clamp_len _A : Tuple = same_length _A : str = summary_type _A : int = summary_use_proj _A : Optional[int] = summary_activation _A : List[str] = summary_last_dropout _A : Optional[int] = start_n_top _A : int = end_n_top _A : Optional[int] = bos_token_id _A : Optional[int] = pad_token_id _A : int = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , _a , ) _A : Dict = kwargs["""use_cache"""] _A : List[str] = use_mems_eval _A : str = use_mems_train super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) @property def a__ ( self ) -> int: logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def a__ ( self , _a ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
355
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _A : Optional[Any] = parser.parse_args() return args.f class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> None: _A : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): _A : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: _A : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) _A : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) _A : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
343
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[str]=13 ,lowerCamelCase__ : str=32 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : Tuple=3 ,lowerCamelCase__ : str=16 ,lowerCamelCase__ : List[Any]=[1, 2, 1] ,lowerCamelCase__ : int=[2, 2, 4] ,lowerCamelCase__ : Dict=2 ,lowerCamelCase__ : str=2.0 ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : List[Any]=0.0 ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : Tuple="gelu" ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : Tuple=1e-5 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : int=10 ,lowerCamelCase__ : Tuple=8 ,lowerCamelCase__ : List[Any]=["stage1", "stage2", "stage3"] ,lowerCamelCase__ : str=[1, 2, 3] ,): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride UpperCAmelCase__ = out_features UpperCAmelCase__ = out_indices def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : List[Any] ): return MaskFormerSwinConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict ): UpperCAmelCase__ = MaskFormerSwinModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ = model(_lowerCamelCase ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ): UpperCAmelCase__ = MaskFormerSwinBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,[16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCamelCase ): UpperCAmelCase__ = ["""stem"""] UpperCAmelCase__ = MaskFormerSwinBackbone(config=_lowerCamelCase ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) snake_case__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = MaskFormerSwinModelTester(self ) UpperCAmelCase__ = ConfigTester(self ,config_class=_lowerCamelCase ,embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def __lowerCAmelCase ( self : Dict ): pass def __lowerCAmelCase ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : str ): return def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def __lowerCAmelCase ( self : Any ): pass @unittest.skip('Swin does not support feedforward chunking' ) def __lowerCAmelCase ( self : Optional[int] ): pass def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase ,nn.Linear ) ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_lowerCamelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCamelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def __lowerCAmelCase ( self : Any ): pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def __lowerCAmelCase ( self : int ): pass def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Dict ): UpperCAmelCase__ = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) ,_lowerCamelCase ) # Swin has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,(padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def __lowerCAmelCase ( self : str ): pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def __lowerCAmelCase ( self : List[str] ): pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def __lowerCAmelCase ( self : Tuple ): pass def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCamelCase__ : int ): UpperCAmelCase__ = 0 return t def check_equivalence(lowerCamelCase__ : int ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any]={} ): with torch.no_grad(): UpperCAmelCase__ = model(**_lowerCamelCase ,return_dict=_lowerCamelCase ,**_lowerCamelCase ) UpperCAmelCase__ = model(**_lowerCamelCase ,return_dict=_lowerCamelCase ,**_lowerCamelCase ).to_tuple() def recursive_check(lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any] ): if isinstance(_lowerCamelCase ,(List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase ,_lowerCamelCase ): recursive_check(_lowerCamelCase ,_lowerCamelCase ) elif isinstance(_lowerCamelCase ,_lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() ,dict_object.values() ): recursive_check(_lowerCamelCase ,_lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCamelCase ) ,set_nan_tensor_to_zero(_lowerCamelCase ) ,atol=1e-5 ) ,msg=( 'Tuple and dict output are not equal. Difference:' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}. Dict has''' f''' `nan`: {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}.''' ) ,) recursive_check(_lowerCamelCase ,_lowerCamelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) UpperCAmelCase__ = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) check_equivalence(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) UpperCAmelCase__ = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ,return_labels=_lowerCamelCase ) UpperCAmelCase__ = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ,return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) UpperCAmelCase__ = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) UpperCAmelCase__ = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) check_equivalence(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,{'output_hidden_states': True} ) UpperCAmelCase__ = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ,return_labels=_lowerCamelCase ) UpperCAmelCase__ = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ,return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,{'output_hidden_states': True} ) @require_torch class snake_case ( unittest.TestCase , lowerCAmelCase__ ): """simple docstring""" snake_case__ = (MaskFormerSwinBackbone,) if is_torch_available() else () snake_case__ = MaskFormerSwinConfig def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = MaskFormerSwinModelTester(self ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: UpperCAmelCase__ = backbone_class(_lowerCamelCase ) backbone.to(_lowerCamelCase ) backbone.eval() UpperCAmelCase__ = backbone(**_lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps ,_lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps ,backbone.channels ): self.assertTrue(feature_map.shape[:2] ,(batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCAmelCase__ = backbone(**_lowerCamelCase ,output_hidden_states=_lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) ,len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] ,backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCAmelCase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) ,(batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCAmelCase__ = backbone(**_lowerCamelCase ,output_attentions=_lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
98
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=99 , _lowerCamelCase=13 , _lowerCamelCase=16 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=30 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=None , ): """simple docstring""" UpperCAmelCase__ : int = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Union[str, Any] = decoder_seq_length # For common tests UpperCAmelCase__ : int = self.decoder_seq_length UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : Optional[Any] = use_attention_mask UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : List[Any] = d_model UpperCAmelCase__ : List[str] = d_model UpperCAmelCase__ : Dict = decoder_layers UpperCAmelCase__ : Any = decoder_layers UpperCAmelCase__ : Tuple = decoder_ffn_dim UpperCAmelCase__ : Any = decoder_attention_heads UpperCAmelCase__ : List[str] = decoder_attention_heads UpperCAmelCase__ : List[str] = eos_token_id UpperCAmelCase__ : int = bos_token_id UpperCAmelCase__ : Optional[int] = pad_token_id UpperCAmelCase__ : Any = decoder_start_token_id UpperCAmelCase__ : Dict = use_cache UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Dict = decoder_seq_length UpperCAmelCase__ : str = 2 UpperCAmelCase__ : List[str] = 1 def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase__ : List[str] = None if self.use_attention_mask: UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase__ : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : str = TrOCRDecoder(config=_lowerCamelCase ).to(_lowerCamelCase ).eval() UpperCAmelCase__ : Any = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCAmelCase__ : str = model(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase , use_cache=_lowerCamelCase ) self.parent.assertTrue(len(_lowerCamelCase ) == len(_lowerCamelCase ) ) self.parent.assertTrue(len(_lowerCamelCase ) == len(_lowerCamelCase ) + 1 ) UpperCAmelCase__ : List[Any] = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCAmelCase__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ : int = model(_lowerCamelCase )["""last_hidden_state"""] UpperCAmelCase__ : Dict = model(_lowerCamelCase , past_key_values=_lowerCamelCase )["""last_hidden_state"""] # select random slice UpperCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ : int = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCAmelCase__ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE = (TrOCRForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" self.config_tester.run_common_tests() def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowerCamelCase ) def _a (self ): """simple docstring""" return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _a (self ): """simple docstring""" pass
171
0
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ = logging.get_logger(__name__) a_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __snake_case : a__ = field( default=__lowerCAmelCase , metadata={"""help""": """Model type selected in the list: """ + """, """.join(__lowerCAmelCase )} ) a__ = field( default=__lowerCAmelCase , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a__ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a__ = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a__ = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a__ = field( default=__lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a__ = field( default=__lowerCAmelCase , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a__ = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a__ = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a__ = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a__ = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class __snake_case ( __lowerCAmelCase ): a__ = """train""" a__ = """dev""" class __snake_case ( __lowerCAmelCase ): a__ = 42 a__ = 42 a__ = 42 a__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> Optional[int]: '''simple docstring''' a__: Optional[Any] = args a__: str = is_language_sensitive a__: Union[str, Any] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_a , _a): try: a__: int = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') a__: List[str] = mode # Load data features from cache or dataset file a__: Union[str, Any] = "v2" if args.version_2_with_negative else "v1" a__: List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a__: Optional[Any] = cached_features_file + ".lock" with FileLock(_a): if os.path.exists(_a) and not args.overwrite_cache: a__: List[Any] = time.time() a__: Dict = torch.load(_a) # Legacy cache files have only features, while new cache files # will have dataset and examples also. a__: Dict = self.old_features["features"] a__: Optional[Any] = self.old_features.get('dataset' , _a) a__: str = self.old_features.get('examples' , _a) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' ' future run') else: if mode == Split.dev: a__: Optional[int] = self.processor.get_dev_examples(args.data_dir) else: a__: Optional[Any] = self.processor.get_train_examples(args.data_dir) a__: List[Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=_a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_a , ) a__: Any = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , _a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]') def __len__( self) -> Optional[Any]: '''simple docstring''' return len(self.features) def __getitem__( self , lowercase) -> Any: '''simple docstring''' a__: List[Any] = self.features[i] a__: Union[str, Any] = torch.tensor(feature.input_ids , dtype=torch.long) a__: Dict = torch.tensor(feature.attention_mask , dtype=torch.long) a__: List[str] = torch.tensor(feature.token_type_ids , dtype=torch.long) a__: Tuple = torch.tensor(feature.cls_index , dtype=torch.long) a__: str = torch.tensor(feature.p_mask , dtype=torch.float) a__: Dict = torch.tensor(feature.is_impossible , dtype=torch.float) a__: Union[str, Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask}) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible}) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa) * self.args.lang_id)}) if self.mode == Split.train: a__: Optional[int] = torch.tensor(feature.start_position , dtype=torch.long) a__: List[Any] = torch.tensor(feature.end_position , dtype=torch.long) inputs.update({'start_positions': start_positions, 'end_positions': end_positions}) return inputs
369
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __snake_case : def __init__( self , lowercase , lowercase=13 , lowercase=10 , lowercase=3 , lowercase=2 , lowercase=2 , lowercase=2 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=0.9 , lowercase=None , ) -> Optional[Any]: '''simple docstring''' a__: int = parent a__: int = batch_size a__: int = image_size a__: Optional[int] = num_channels a__: List[str] = patch_size a__: List[str] = tubelet_size a__: Any = num_frames a__: Any = is_training a__: Dict = use_labels a__: Optional[Any] = hidden_size a__: Optional[int] = num_hidden_layers a__: Optional[Any] = num_attention_heads a__: Optional[Any] = intermediate_size a__: Any = hidden_act a__: Dict = hidden_dropout_prob a__: Union[str, Any] = attention_probs_dropout_prob a__: List[Any] = type_sequence_label_size a__: Optional[Any] = initializer_range a__: List[str] = mask_ratio a__: Union[str, Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame a__: Dict = (image_size // patch_size) ** 2 a__: Tuple = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos a__: Tuple = int(mask_ratio * self.seq_length) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: List[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) a__: Any = None if self.use_labels: a__: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__: Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__: Any = VideoMAEModel(config=lowercase) model.to(lowercase) model.eval() a__: Optional[Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__: List[str] = VideoMAEForPreTraining(lowercase) model.to(lowercase) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__: int = torch.ones((self.num_masks,)) a__: Any = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) a__: int = mask.expand(self.batch_size , -1).bool() a__: Union[str, Any] = model(lowercase , lowercase) # model only returns predictions for masked patches a__: List[str] = mask.sum().item() a__: str = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Dict = self.prepare_config_and_inputs() a__ , a__ , a__: Dict = config_and_inputs a__: Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a__ = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: List[str] = VideoMAEModelTester(self) a__: str = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase=False) -> Any: '''simple docstring''' a__: Optional[int] = copy.deepcopy(lowercase) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__: List[Any] = torch.ones((self.model_tester.num_masks,)) a__: List[Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) a__: Optional[int] = mask.expand(self.model_tester.batch_size , -1).bool() a__: Union[str, Any] = bool_masked_pos.to(lowercase) if return_labels: if model_class in [ *get_values(lowercase), ]: a__: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase) return inputs_dict def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds') def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' pass def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__ , a__: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Union[str, Any] = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__: str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__ , a__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Any = model_class(lowercase) a__: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: Optional[Any] = [*signature.parameters.keys()] a__: Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase) @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: int = VideoMAEModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' if not self.has_attentions: pass else: a__ , a__: Any = self.model_tester.prepare_config_and_inputs_for_common() a__: str = True for model_class in self.all_model_classes: a__: Optional[int] = self.model_tester.seq_length - self.model_tester.num_masks a__: List[str] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) a__: Tuple = True a__: str = False a__: Dict = True a__: List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: int = model(**self._prepare_for_class(lowercase , lowercase)) a__: Any = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__: Tuple = True a__: List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: str = model(**self._prepare_for_class(lowercase , lowercase)) a__: int = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a__: Optional[Any] = len(lowercase) # Check attention is always last and order is fine a__: str = True a__: Dict = True a__: Tuple = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + 1 , len(lowercase)) a__: int = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__: Union[str, Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: Tuple = model(**self._prepare_for_class(lowercase , lowercase)) a__: Dict = outputs.hidden_states a__: Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase) , lowercase) a__: Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks a__: Optional[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) a__ , a__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Dict = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__: List[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCamelCase_ ( self) -> int: '''simple docstring''' pass def __a ( ) ->List[Any]: a__: List[str] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) a__: Dict = np.load(_SCREAMING_SNAKE_CASE ) return list(_SCREAMING_SNAKE_CASE ) @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics').to( lowercase) a__: Dict = self.default_image_processor a__: str = prepare_video() a__: Tuple = image_processor(lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__: List[Any] = model(**lowercase) # verify the logits a__: str = torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape , lowercase) a__: Optional[Any] = torch.tensor([0.3669, -0.0688, -0.2421]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4)) @slow def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short').to(lowercase) a__: Optional[Any] = self.default_image_processor a__: List[Any] = prepare_video() a__: Union[str, Any] = image_processor(lowercase , return_tensors='pt').to(lowercase) # add boolean mask, indicating which patches to mask a__: Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt') a__: Any = torch.load(lowercase) # forward pass with torch.no_grad(): a__: Any = model(**lowercase) # verify the logits a__: Union[str, Any] = torch.Size([1, 14_08, 15_36]) a__: Union[str, Any] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=lowercase) self.assertEqual(outputs.logits.shape , lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) a__: Optional[int] = torch.tensor([0.5142] , device=lowercase) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) a__: int = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=lowercase).to( lowercase) with torch.no_grad(): a__: Union[str, Any] = model(**lowercase) a__: Optional[int] = torch.tensor(torch.tensor([0.6469]) , device=lowercase) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4))
203
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = FileLock(str(tmpdir / '''foo.lock''' ) ) A__ = FileLock(str(tmpdir / '''foo.lock''' ) ) A__ = 0.01 with locka.acquire(): with pytest.raises(lowercase_ ): A__ = time.time() locka.acquire(lowercase_ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = '''a''' * 1_000 + '''.lock''' A__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(lowercase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase_ ): locka.acquire(0 )
14
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git_vision_model''' def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git''' def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings SCREAMING_SNAKE_CASE : int = num_image_with_embedding SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : str = eos_token_id def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
323
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : List[Any] =RoCBertTokenizer a : Any =None a : List[Any] =False a : int =True a : List[Any] =filter_non_english def _a ( self ): super().setUp() UpperCamelCase_: Dict = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] UpperCamelCase_: str = {} UpperCamelCase_: List[str] = {} for i, value in enumerate(_lowerCamelCase ): UpperCamelCase_: str = i UpperCamelCase_: Tuple = i UpperCamelCase_: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) UpperCamelCase_: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(_lowerCamelCase , _lowerCamelCase , ensure_ascii=_lowerCamelCase ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(_lowerCamelCase , _lowerCamelCase , ensure_ascii=_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase_: Tuple = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(_lowerCamelCase , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ): UpperCamelCase_: Optional[int] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ): UpperCamelCase_: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ): UpperCamelCase_: List[Any] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ): UpperCamelCase_: str = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ): UpperCamelCase_: str = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ): UpperCamelCase_: Optional[Any] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ): UpperCamelCase_: Optional[Any] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ): UpperCamelCase_: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ): UpperCamelCase_: List[str] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ): UpperCamelCase_: Any = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] UpperCamelCase_: Union[str, Any] = {} for i, token in enumerate(_lowerCamelCase ): UpperCamelCase_: str = i UpperCamelCase_: Optional[int] = RoCBertWordpieceTokenizer(vocab=_lowerCamelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ): UpperCamelCase_: str = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCamelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: UpperCamelCase_: Any = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_lowerCamelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Optional[int] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: int = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' UpperCamelCase_: Optional[int] = tokenizer_r.encode_plus( _lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase , ) UpperCamelCase_: Optional[int] = tokenizer_r.do_lower_case if hasattr(_lowerCamelCase , 'do_lower_case' ) else False UpperCamelCase_: Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ): UpperCamelCase_: Any = ['的', '人', '有'] UpperCamelCase_: List[str] = ''.join(_lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Dict = True UpperCamelCase_: List[Any] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Dict = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: int = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Dict = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Optional[int] = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) UpperCamelCase_: Any = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[int] = False UpperCamelCase_: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Any = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Optional[int] = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Optional[int] = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Optional[int] = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) UpperCamelCase_: List[str] = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase_: str = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_lowerCamelCase ) ] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: List[str] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase_: Optional[Any] = tokenizer.encode('你好' , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = tokenizer.encode('你是谁' , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: List[str] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) UpperCamelCase_: Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ): UpperCamelCase_: Any = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCamelCase_: Union[str, Any] = '你好,你是谁' UpperCamelCase_: List[Any] = tokenizer.tokenize(_lowerCamelCase ) UpperCamelCase_: Optional[int] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) UpperCamelCase_: List[Any] = tokenizer.convert_tokens_to_shape_ids(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(_lowerCamelCase ) UpperCamelCase_: Any = tokenizer.prepare_for_model( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Tuple = tokenizer.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase )
292
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase_: Any = mock.Mock() UpperCamelCase_: Dict = 5_0_0 UpperCamelCase_: Any = {} UpperCamelCase_: Tuple = HTTPError UpperCamelCase_: List[str] = {} # Download this model to make sure it's in the cache. UpperCamelCase_: int = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: UpperCamelCase_: Optional[int] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _a ( self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase_: Union[str, Any] = mock.Mock() UpperCamelCase_: Union[str, Any] = 5_0_0 UpperCamelCase_: str = {} UpperCamelCase_: List[str] = HTTPError UpperCamelCase_: Optional[int] = {} # Download this model to make sure it's in the cache. UpperCamelCase_: List[str] = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: UpperCamelCase_: str = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self ): # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase_: Optional[int] = tempfile.mktemp() with open(_lowerCamelCase , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , _lowerCamelCase ) UpperCamelCase_: Tuple = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , _lowerCamelCase ) UpperCamelCase_: List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _a ( self ): # This test is for deprecated behavior and can be removed in v5 UpperCamelCase_: Any = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _a ( cls ): UpperCamelCase_: Optional[int] = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls ): try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _a ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: List[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: int = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: Union[str, Any] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase , repo_id='test-tokenizer' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) UpperCamelCase_: List[str] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _a ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Union[str, Any] = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase_: Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) UpperCamelCase_: Optional[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _a ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Optional[int] = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: str = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Dict = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) UpperCamelCase_: List[str] = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: Tuple = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase_: int = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=_lowerCamelCase , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Dict = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _a ( self ): UpperCamelCase_: Optional[int] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def _a ( self ): UpperCamelCase_: int = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def _a ( self ): UpperCamelCase_: str = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _a ( self ): UpperCamelCase_: Union[str, Any] = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _a ( self ): UpperCamelCase_: List[str] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def _a ( self ): UpperCamelCase_: List[str] = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def _a ( self ): # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase_: Union[str, Any] = Trie() UpperCamelCase_: Any = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase , ['AB', 'C'] )
292
1
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : int ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , snake_case__ ) A = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A = dataset_size < in_memory_max_size else: A = False A = is_small_dataset(snake_case__ ) assert result == expected
74
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''DeiTFeatureExtractor'''] _lowercase = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : Dict =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[Any] =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : Tuple =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : Tuple =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : Dict =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : Optional[Any] =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : Union[str, Any] =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : Union[str, Any] =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[Any] =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""flax"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""flax"""] )
46
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int = logging.get_logger(__name__) _a : List[str] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""decision_transformer""" a : List[Any] =["""past_key_values"""] a : Dict ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=17,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=1_28,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=10_24,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="relu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
46
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _lowerCamelCase =logging.getLogger(__name__) _lowerCamelCase =list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _lowerCamelCase =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__SCREAMING_SNAKE_CASE)} , ) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) _UpperCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def UpperCamelCase__ ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class A__ : _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""}) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) _UpperCAmelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The input training data file (a text file)."""}) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) _UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""}) _UpperCAmelCase : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) _UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) _UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _UpperCAmelCase : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""}) _UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def UpperCamelCase__ ( self ): if self.train_file is not None: lowerCamelCase : Any = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase : Union[str, Any] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _a ( lowerCamelCase, lowerCamelCase ): with open(lowerCamelCase, """r""", encoding="""utf-8""" ) as f: lowerCamelCase : Optional[int] = [json.loads(lowerCamelCase ) for line in f.read().splitlines() if (len(lowerCamelCase ) > 0 and not line.isspace())] assert len(lowerCamelCase ) == len(lowerCamelCase ) lowerCamelCase : Any = {c: dataset[c] for c in dataset.column_names} lowerCamelCase : Dict = refs return Dataset.from_dict(lowerCamelCase ) def _a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase , lowerCamelCase , lowerCamelCase : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""", lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : Dict = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCamelCase : Tuple = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F'''train[:{data_args.validation_split_percentage}%]''', ) lowerCamelCase : Tuple = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F'''train[{data_args.validation_split_percentage}%:]''', ) else: lowerCamelCase : Any = {} if data_args.train_file is not None: lowerCamelCase : List[str] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase : int = data_args.validation_file lowerCamelCase : List[str] = data_args.train_file.split(""".""" )[-1] if extension == "txt": lowerCamelCase : Tuple = """text""" lowerCamelCase : Optional[int] = load_dataset(lowerCamelCase, data_files=lowerCamelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase : List[str] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase : Any = AutoConfig.from_pretrained(model_args.config_name, **lowerCamelCase ) elif model_args.model_name_or_path: lowerCamelCase : Dict = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCamelCase ) else: lowerCamelCase : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) lowerCamelCase : str = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCamelCase ) elif model_args.model_name_or_path: lowerCamelCase : Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCamelCase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: lowerCamelCase : Optional[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(""".ckpt""" in model_args.model_name_or_path ), config=lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("""Training new model from scratch""" ) lowerCamelCase : Dict = AutoModelForMaskedLM.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase : Union[str, Any] = datasets["""train"""].column_names else: lowerCamelCase : List[Any] = datasets["""validation"""].column_names lowerCamelCase : Dict = """text""" if """text""" in column_names else column_names[0] lowerCamelCase : Dict = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(lowerCamelCase ): # Remove empty lines lowerCamelCase : List[Any] = [line for line in examples["""text"""] if len(lowerCamelCase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""], padding=lowerCamelCase, truncation=lowerCamelCase, max_length=data_args.max_seq_length ) lowerCamelCase : Any = datasets.map( lowerCamelCase, batched=lowerCamelCase, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase : Optional[int] = add_chinese_references(tokenized_datasets["""train"""], data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCamelCase : Union[str, Any] = add_chinese_references( tokenized_datasets["""validation"""], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCamelCase : Optional[int] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase : Optional[Any] = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase : List[str] = DataCollatorForWholeWordMask(tokenizer=lowerCamelCase, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase : int = Trainer( model=lowerCamelCase, args=lowerCamelCase, train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None, eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None, tokenizer=lowerCamelCase, data_collator=lowerCamelCase, ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase : Any = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCamelCase : List[str] = model_args.model_name_or_path else: lowerCamelCase : str = None lowerCamelCase : str = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase : Tuple = os.path.join(training_args.output_dir, """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase, """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, """trainer_state.json""" ) ) # Evaluation lowerCamelCase : Optional[int] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase : List[str] = trainer.evaluate() lowerCamelCase : List[Any] = math.exp(eval_output["""eval_loss"""] ) lowerCamelCase : int = perplexity lowerCamelCase : List[str] = os.path.join(training_args.output_dir, """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase, """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) return results def _a ( lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
287
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase =logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Union[str, Any] = ["""pixel_values"""] def __init__( self , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = PILImageResampling.BILINEAR , __magic_name__ = True , __magic_name__ = 1 / 2_5_5 , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase : Dict = size if size is not None else {"""shortest_edge""": 3_8_4} lowerCamelCase : Tuple = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : Dict = do_resize lowerCamelCase : List[Any] = size # Default value set here for backwards compatibility where the value in config is None lowerCamelCase : Any = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 lowerCamelCase : Union[str, Any] = resample lowerCamelCase : str = do_rescale lowerCamelCase : Union[str, Any] = rescale_factor lowerCamelCase : Tuple = do_normalize lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = None , **__magic_name__ , ): lowerCamelCase : Union[str, Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) lowerCamelCase : str = size["""shortest_edge"""] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCamelCase : List[str] = int(shortest_edge / crop_pct ) lowerCamelCase : Optional[Any] = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : Optional[int] = resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__magic_name__ , size=(shortest_edge, shortest_edge) , data_format=__magic_name__ , **__magic_name__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __magic_name__ , size=(shortest_edge, shortest_edge) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = ChannelDimension.FIRST , **__magic_name__ , ): lowerCamelCase : str = do_resize if do_resize is not None else self.do_resize lowerCamelCase : Optional[Any] = crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase : Optional[int] = resample if resample is not None else self.resample lowerCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase : Tuple = image_std if image_std is not None else self.image_std lowerCamelCase : Dict = size if size is not None else self.size lowerCamelCase : str = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : List[str] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase : Optional[Any] = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCamelCase : List[Any] = [self.resize(image=__magic_name__ , size=__magic_name__ , crop_pct=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: lowerCamelCase : Union[str, Any] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCamelCase : List[Any] = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCamelCase : Optional[int] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCamelCase : List[str] = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
287
1
"""simple docstring""" from math import factorial UpperCAmelCase : Tuple = {str(d): factorial(d) for d in range(10)} def lowerCamelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(_UpperCamelCase ) ) def lowerCamelCase ( ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[int] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _UpperCamelCase ) if sum_of_digit_factorial(_UpperCamelCase ) == i ) if __name__ == "__main__": print(F"{solution() = }")
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _UpperCamelCase ( snake_case__ ) -> int: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False def _UpperCamelCase ( snake_case__ ) -> Dict: # word like '180' or '身高' or '神' for char in word: __UpperCAmelCase : Union[str, Any] = ord(snake_case__ ) if not _is_chinese_char(snake_case__ ): return 0 return 1 def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : str = set() for token in tokens: __UpperCAmelCase : Optional[int] = len(snake_case__ ) > 1 and is_chinese(snake_case__ ) if chinese_word: word_set.add(snake_case__ ) __UpperCAmelCase : Any = list(snake_case__ ) return word_list def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]: if not chinese_word_set: return bert_tokens __UpperCAmelCase : List[str] = max([len(snake_case__ ) for w in chinese_word_set] ) __UpperCAmelCase : int = bert_tokens __UpperCAmelCase , __UpperCAmelCase : Optional[int] = 0, len(snake_case__ ) while start < end: __UpperCAmelCase : Tuple = True if is_chinese(bert_word[start] ): __UpperCAmelCase : str = min(end - start, snake_case__ ) for i in range(snake_case__, 1, -1 ): __UpperCAmelCase : Any = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): __UpperCAmelCase : str = "##" + bert_word[j] __UpperCAmelCase : Tuple = start + i __UpperCAmelCase : List[Any] = False break if single_word: start += 1 return bert_word def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> str: __UpperCAmelCase : Tuple = [] for i in range(0, len(snake_case__ ), 100 ): __UpperCAmelCase : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] __UpperCAmelCase : Optional[int] = [get_chinese_word(snake_case__ ) for r in res] ltp_res.extend(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) __UpperCAmelCase : Any = [] for i in range(0, len(snake_case__ ), 100 ): __UpperCAmelCase : str = bert_tokenizer(lines[i : i + 100], add_special_tokens=snake_case__, truncation=snake_case__, max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(snake_case__ ) == len(snake_case__ ) __UpperCAmelCase : int = [] for input_ids, chinese_word in zip(snake_case__, snake_case__ ): __UpperCAmelCase : str = [] for id in input_ids: __UpperCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(snake_case__ ) input_tokens.append(snake_case__ ) __UpperCAmelCase : int = add_sub_symbol(snake_case__, snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case__ ): if token[:2] == "##": __UpperCAmelCase : str = token[2:] # save chinese tokens' pos if len(snake_case__ ) == 1 and _is_chinese_char(ord(snake_case__ ) ): ref_id.append(snake_case__ ) ref_ids.append(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) return ref_ids def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, "r", encoding="utf-8" ) as f: __UpperCAmelCase : Union[str, Any] = f.readlines() __UpperCAmelCase : Dict = [line.strip() for line in data if len(snake_case__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __UpperCAmelCase : Union[str, Any] = LTP(args.ltp ) # faster in GPU device __UpperCAmelCase : int = BertTokenizer.from_pretrained(args.bert ) __UpperCAmelCase : List[str] = prepare_ref(snake_case__, snake_case__, snake_case__ ) with open(args.save_path, "w", encoding="utf-8" ) as f: __UpperCAmelCase : Any = [json.dumps(snake_case__ ) + "\n" for ref in ref_ids] f.writelines(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') _snake_case = parser.parse_args() main(args)
157
def _UpperCamelCase ( snake_case__ ) -> bool: if not isinstance(snake_case__, snake_case__ ): raise ValueError("check_bouncy() accepts only integer arguments" ) __UpperCAmelCase : Optional[int] = str(snake_case__ ) __UpperCAmelCase : Any = "".join(sorted(snake_case__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _UpperCamelCase ( snake_case__ = 99 ) -> int: if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : int = 1 while True: if check_bouncy(snake_case__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(99)}')
157
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Optional[Any] = ['pixel_values'] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PIL.Image.BICUBIC , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 / 2_5_5 , lowerCamelCase__ = True , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) _lowerCamelCase = size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} _lowerCamelCase = get_size_dict(lowerCamelCase__ ) _lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = resample _lowerCamelCase = do_center_crop _lowerCamelCase = crop_size _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_normalize _lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PIL.Image.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ): _lowerCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( lowerCamelCase__ , size=(size['''height'''], size['''width''']) , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): _lowerCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase = image_mean if image_mean is not None else self.image_mean _lowerCamelCase = image_std if image_std is not None else self.image_std _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(lowerCamelCase__ ) _lowerCamelCase = crop_size if crop_size is not None else self.crop_size _lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) _lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: _lowerCamelCase = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: _lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: _lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] _lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
73
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : Optional[int] ) -> int: _lowerCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : List[str] ) -> List[str]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _lowerCamelCase = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _lowerCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _lowerCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase_( lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict ) -> str: _lowerCamelCase = dct.pop(lowercase_ ) _lowerCamelCase = val def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> Union[str, Any]: if "handwritten" in checkpoint_url: _lowerCamelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _lowerCamelCase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase_( lowercase_ : Any , lowercase_ : Dict ) -> List[str]: _lowerCamelCase = ViTConfig(image_size=3_84 , qkv_bias=lowercase_ ) _lowerCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _lowerCamelCase = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _lowerCamelCase = 10_24 _lowerCamelCase = 40_96 _lowerCamelCase = 24 _lowerCamelCase = 16 _lowerCamelCase = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase = False _lowerCamelCase = '''relu''' _lowerCamelCase = 10_24 _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False # load HuggingFace model _lowerCamelCase = ViTModel(lowercase_ , add_pooling_layer=lowercase_ ) _lowerCamelCase = TrOCRForCausalLM(lowercase_ ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() # load state_dict of original model, rename some keys _lowerCamelCase = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' , check_hash=lowercase_ )['''model'''] _lowerCamelCase = create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _lowerCamelCase = state_dict.pop(lowercase_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: _lowerCamelCase = val else: _lowerCamelCase = val # load state dict model.load_state_dict(lowercase_ ) # Check outputs on an image _lowerCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _lowerCamelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) _lowerCamelCase = TrOCRProcessor(lowercase_ , lowercase_ ) _lowerCamelCase = processor(images=prepare_img(lowercase_ ) , return_tensors='''pt''' ).pixel_values # verify logits _lowerCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _lowerCamelCase = model(pixel_values=lowercase_ , decoder_input_ids=lowercase_ ) _lowerCamelCase = outputs.logits _lowerCamelCase = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _lowerCamelCase = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: _lowerCamelCase = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: _lowerCamelCase = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: _lowerCamelCase = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowercase_ , atol=1e-3 ), "First elements of logits not as expected" Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
73
1
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _UpperCAmelCase : str = 1 _UpperCAmelCase : int = 1 while repunit: _UpperCAmelCase : List[Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase_ ( _UpperCAmelCase : Tuple = 1_000_000 ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
31
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __lowerCAmelCase ( ) -> Tuple: __a = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) __a = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go __a = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __a = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : int = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ['MobileViTFeatureExtractor'] A : str = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a : int = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' config.addinivalue_line( '''markers''', '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''', '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''', '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''', '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''', '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''', '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase, id=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if exitstatus == 5: snake_case_ = 0 # Doctest custom flag to ignore output. a : Union[str, Any] = doctest.register_optionflag('IGNORE_RESULT') a : Optional[int] = doctest.OutputChecker class a ( _lowerCamelCase ): def A_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[int] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase_ , lowercase_ , lowercase_ ) a : List[Any] = CustomOutputChecker a : Optional[int] = HfDoctestModule a : Tuple = HfDocTestParser
56
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: lowercase__ = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) lowercase__ = '''''' lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) lowercase__ = pt_model.state_dict() # keep track of unexpected & missing keys lowercase__ = [] lowercase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) lowercase__ = '''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowercase__ = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowercase__ = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
110
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A ( _a ): lowercase_ = (DDPMParallelScheduler,) def __lowerCAmelCase ( self : int , **lowerCAmelCase_ : Any ) -> Optional[Any]: """simple docstring""" _a = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5 def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = len(lowerCAmelCase_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _a = torch.sum(torch.abs(lowerCAmelCase_ ) ) _a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = len(lowerCAmelCase_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _a = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(lowerCAmelCase_ ) ) _a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type='''v_prediction''' ) _a = scheduler_class(**lowerCAmelCase_ ) _a = len(lowerCAmelCase_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _a = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(lowerCAmelCase_ ) ) _a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _a = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _a = -1 else: _a = timesteps[i + 1] _a = scheduler.previous_timestep(lowerCAmelCase_ ) _a = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = [1_00, 87, 50, 51, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = [1_00, 87, 50, 1, 0] _a = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
179
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
179
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") SCREAMING_SNAKE_CASE__ = f"""https://www.google.com/search?q={query}&num=100""" SCREAMING_SNAKE_CASE__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: SCREAMING_SNAKE_CASE__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: SCREAMING_SNAKE_CASE__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )['url'][0] webbrowser.open(link)
150
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self , __a , __a=2 , __a=3 , __a=4 , __a=2 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=36 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=6 , __a=6 , __a=3 , __a=4 , __a=None , __a=1000 , ): '''simple docstring''' __a : Optional[Any] = parent __a : int = batch_size __a : Any = num_channels __a : Optional[int] = image_size __a : Dict = patch_size __a : int = is_training __a : Union[str, Any] = use_input_mask __a : Optional[int] = use_token_type_ids __a : Dict = use_labels __a : str = vocab_size __a : List[Any] = hidden_size __a : Union[str, Any] = num_hidden_layers __a : str = num_attention_heads __a : Union[str, Any] = intermediate_size __a : Any = hidden_act __a : List[str] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : List[Any] = max_position_embeddings __a : Tuple = type_vocab_size __a : Any = type_sequence_label_size __a : Optional[int] = initializer_range __a : Any = coordinate_size __a : List[Any] = shape_size __a : Optional[int] = num_labels __a : Dict = num_choices __a : Union[str, Any] = scope __a : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __a : Optional[int] = text_seq_length __a : Any = (image_size // patch_size) ** 2 + 1 __a : Dict = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __a : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __a : Any = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __a : List[Any] = bbox[i, j, 3] __a : Tuple = bbox[i, j, 1] __a : str = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __a : int = bbox[i, j, 2] __a : Dict = bbox[i, j, 0] __a : int = tmp_coordinate __a : Optional[int] = tf.constant(__a ) __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : str = None if self.use_input_mask: __a : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __a : str = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __a : Optional[Any] = None __a : Optional[int] = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __a : int = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Dict = TFLayoutLMvaModel(config=__a ) # text + image __a : List[Any] = model(__a , pixel_values=__a , training=__a ) __a : Any = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , training=__a , ) __a : Optional[int] = model(__a , bbox=__a , pixel_values=__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __a : Any = model(__a , training=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __a : str = model({'pixel_values': pixel_values} , training=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Any = self.num_labels __a : Dict = TFLayoutLMvaForSequenceClassification(config=__a ) __a : List[str] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : str = self.num_labels __a : Optional[Any] = TFLayoutLMvaForTokenClassification(config=__a ) __a : List[str] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : List[Any] = 2 __a : Any = TFLayoutLMvaForQuestionAnswering(config=__a ) __a : Any = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , training=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Dict = config_and_inputs __a : Any = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) A_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) A_ = False A_ = False A_ = False def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ): '''simple docstring''' return True def __UpperCAmelCase ( self , __a , __a , __a=False ): '''simple docstring''' __a : str = copy.deepcopy(__a ) if model_class in get_values(__a ): __a : str = { k: tf.tile(tf.expand_dims(__a , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__a , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a ): __a : Optional[int] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __a : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = TFLayoutLMvaModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=__a , hidden_size=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = model_class(__a ) if getattr(__a , 'hf_compute_loss' , __a ): # The number of elements in the loss should be the same as the number of elements in the label __a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__a )[0] ] __a : Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : Dict = prepared_for_class.pop('input_ids' ) __a : Tuple = model(__a , **__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __a : Union[str, Any] = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __a : List[Any] = -100 __a : List[str] = tf.convert_to_tensor(__a ) __a : Any = model(__a , **__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = model(__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __a : Tuple = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) # Get keys that were added with the _prepare_for_class function __a : Dict = prepared_for_class.keys() - inputs_dict.keys() __a : Any = inspect.signature(model.call ).parameters __a : str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __a : List[Any] = {0: 'input_ids'} for label_key in label_keys: __a : List[Any] = signature_names.index(__a ) __a : Union[str, Any] = label_key __a : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __a : Union[str, Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __a : Optional[Any] = prepared_for_class[value] __a : str = tuple(__a ) # Send to model __a : Tuple = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a : Any = type self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __a , __a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __a , __a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __a , __a , __a , __a , __a , __a , __a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : List[Any] = TFLayoutLMvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase (): __a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __a : Tuple = self.default_image_processor __a : List[Any] = prepare_img() __a : int = image_processor(images=__a , return_tensors='tf' ).pixel_values __a : Union[str, Any] = tf.constant([[1, 2]] ) __a : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __a : Tuple = model(input_ids=__a , bbox=__a , pixel_values=__a , training=__a ) # verify the logits __a : List[Any] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , __a ) __a : Optional[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) )
27
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase__ : str = '''pt''' elif is_tf_available(): lowercase__ : Optional[Any] = '''tf''' else: lowercase__ : Optional[Any] = '''jax''' class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = PerceiverTokenizer lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().setUp() __A : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver') def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5): '''simple docstring''' __A : Dict = [] for i in range(len(_UpperCAmelCase)): try: __A : Optional[int] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase) except UnicodeDecodeError: pass toks.append((i, tok)) __A : Tuple = list(filter(lambda _UpperCAmelCase: re.match(R'^[ a-zA-Z]+$' , t[1]) , _UpperCAmelCase)) __A : Tuple = list(filter(lambda _UpperCAmelCase: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase) , _UpperCAmelCase)) if max_length is not None and len(_UpperCAmelCase) > max_length: __A : Any = toks[:max_length] if min_length is not None and len(_UpperCAmelCase) < min_length and len(_UpperCAmelCase) > 0: while len(_UpperCAmelCase) < min_length: __A : Dict = toks + toks # toks_str = [t[1] for t in toks] __A : Optional[int] = [t[0] for t in toks] # Ensure consistency __A : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase) if " " not in output_txt and len(_UpperCAmelCase) > 1: __A : List[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase) ) if with_prefix_space: __A : str = ' ' + output_txt __A : int = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) return output_txt, output_ids def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.perceiver_tokenizer __A : int = 'Unicode €.' __A : Any = tokenizer(_UpperCAmelCase) __A : Optional[Any] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase) # decoding __A : Union[str, Any] = tokenizer.decode(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]') __A : Optional[int] = tokenizer('e è é ê ë') __A : List[str] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase) # decoding __A : List[Any] = tokenizer.decode(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë')) , '[CLS]e è é ê ë[SEP]') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.perceiver_tokenizer __A : Optional[int] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __A : Optional[int] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __A : int = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) if FRAMEWORK != "jax": __A : str = list(batch.input_ids.numpy()[0]) else: __A : Union[str, Any] = list(batch.input_ids.tolist()[0]) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual((2, 38) , batch.input_ids.shape) self.assertEqual((2, 38) , batch.attention_mask.shape) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.perceiver_tokenizer __A : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __A : int = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase) self.assertIn('attention_mask' , _UpperCAmelCase) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.perceiver_tokenizer __A : Optional[int] = [ 'Summary of the text.', 'Another summary.', ] __A : str = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase) self.assertEqual(32 , targets['input_ids'].shape[1]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test __A : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc __A : Any = tempfile.mkdtemp() __A : Any = ' He is very happy, UNwant\u00E9d,running' __A : Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) __A : int = tokenizer.__class__.from_pretrained(_UpperCAmelCase) __A : Optional[int] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) shutil.rmtree(_UpperCAmelCase) __A : List[str] = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc __A : str = tempfile.mkdtemp() __A : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam']) __A : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token') tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens}) __A : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) __A : Tuple = tokenizer.__class__.from_pretrained(_UpperCAmelCase) __A : Dict = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) __A : int = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json') , encoding='utf-8') as json_file: __A : str = json.load(_UpperCAmelCase) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json') , encoding='utf-8') as json_file: __A : int = json.load(_UpperCAmelCase) __A : Dict = [F'<extra_id_{i}>' for i in range(125)] __A : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] __A : Optional[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json') , 'w' , encoding='utf-8') as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json') , 'w' , encoding='utf-8') as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __A : Dict = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __A : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase)] __A : Any = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'])) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178]) , '�') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): __A : int = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __A : Dict = tokenizer.convert_tokens_to_string(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase)
190
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowercase__ : List[Any] = HfArgumentParser(InitializationArguments) lowercase__ : List[Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowercase__ : List[str] = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) lowercase__ : Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowercase__ : Optional[int] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
190
1
def __magic_name__ ( __a : int = 10 , __a : int = 22 ): '''simple docstring''' UpperCamelCase__ = range(1 , __a ) UpperCamelCase__ = range(1 , __a ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(10, 22) = }')
244
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCAmelCase_ (self ): UpperCamelCase__ = 10 UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps[0] UpperCamelCase__ = scheduler.timesteps[1] UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ (self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [1_06, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 1, 0] UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
244
1
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): if not isinstance(_A, _A ): raise TypeError("only integers accepted as input" ) else: __UpperCAmelCase : List[str] = str(abs(_A ) ) __UpperCAmelCase : Optional[int] = [list(_A ) for char in range(len(_A ) )] for index in range(len(_A ) ): num_transpositions[index].pop(_A ) return max( int("".join(list(_A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
357
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __UpperCamelCase ( *_UpperCAmelCase ): with open(_UpperCAmelCase, "r" ) as fh: fcntl.flock(_UpperCAmelCase, fcntl.LOCK_EX ) try: print(*_UpperCAmelCase ) finally: fcntl.flock(_UpperCAmelCase, fcntl.LOCK_UN ) lowerCAmelCase__ : Dict = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) lowerCAmelCase__ : Optional[int] = torch.device("cuda", local_rank) lowerCAmelCase__ : List[str] = socket.gethostname() lowerCAmelCase__ : Optional[Any] = f"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCAmelCase__ : Tuple = dist.get_rank() lowerCAmelCase__ : Optional[int] = dist.get_world_size() printflock(f"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(f"{gpu} is broken") raise
37
0
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if num <= 0: __SCREAMING_SNAKE_CASE = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [True] * (num + 1) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: __SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
54
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : Tuple = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCamelCase : Optional[int] = F'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : Optional[Any] = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCamelCase : Union[str, Any] = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCamelCase : str = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
106
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed A_ :Dict = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def A ( a_ ) -> Optional[Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def A ( a_ ,a_ ) -> int: if args.student_type == "roberta": __UpperCamelCase : Tuple =False elif args.student_type == "gpt2": __UpperCamelCase : str =False def A ( a_ ,a_ ) -> str: if args.student_type == "roberta": __UpperCamelCase : Optional[int] =False def A ( ) -> List[str]: __UpperCamelCase : List[Any] =argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' ,action='store_true' ,help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' ,type=a_ ,required=a_ ,help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' ,type=a_ ,required=a_ ,help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' ,) parser.add_argument( '--student_type' ,type=a_ ,choices=['distilbert', 'roberta', 'gpt2'] ,required=a_ ,help='The student type (DistilBERT, RoBERTa).' ,) parser.add_argument('--student_config' ,type=a_ ,required=a_ ,help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' ,default=a_ ,type=a_ ,help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' ,choices=['bert', 'roberta', 'gpt2'] ,required=a_ ,help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' ,type=a_ ,required=a_ ,help='The teacher model.' ) parser.add_argument('--temperature' ,default=2.0 ,type=a_ ,help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' ,default=0.5 ,type=a_ ,help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' ,default=0.0 ,type=a_ ,help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' ,) parser.add_argument('--alpha_clm' ,default=0.5 ,type=a_ ,help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' ,default=0.0 ,type=a_ ,help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' ,default=0.0 ,type=a_ ,help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' ,action='store_true' ,help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' ,default=0.15 ,type=a_ ,help='Proportion of tokens for which we need to make a prediction.' ,) parser.add_argument('--word_mask' ,default=0.8 ,type=a_ ,help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' ,default=0.1 ,type=a_ ,help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' ,default=0.1 ,type=a_ ,help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' ,default=0.7 ,type=a_ ,help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' ,) parser.add_argument('--token_counts' ,type=a_ ,help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' ,action='store_true' ,help='If true, compute the distillation loss only the [MLM] prediction distribution.' ,) parser.add_argument( '--freeze_pos_embs' ,action='store_true' ,help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' ,) parser.add_argument( '--freeze_token_type_embds' ,action='store_true' ,help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' ,) parser.add_argument('--n_epoch' ,type=a_ ,default=3 ,help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' ,type=a_ ,default=5 ,help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' ,action='store_false' ,help='If true, group sequences that have similar length into the same batch. Default is true.' ,) parser.add_argument( '--gradient_accumulation_steps' ,type=a_ ,default=50 ,help='Gradient accumulation for larger training batches.' ,) parser.add_argument('--warmup_prop' ,default=0.05 ,type=a_ ,help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' ,default=0.0 ,type=a_ ,help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' ,default=5e-4 ,type=a_ ,help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' ,default=1e-6 ,type=a_ ,help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' ,default=5.0 ,type=a_ ,help='Max gradient norm.' ) parser.add_argument('--initializer_range' ,default=0.02 ,type=a_ ,help='Random initialization range.' ) parser.add_argument( '--fp16' ,action='store_true' ,help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' ,) parser.add_argument( '--fp16_opt_level' ,type=a_ ,default='O1' ,help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) ,) parser.add_argument('--n_gpu' ,type=a_ ,default=1 ,help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' ,type=a_ ,default=-1 ,help='Distributed training - Local rank' ) parser.add_argument('--seed' ,type=a_ ,default=56 ,help='Random seed' ) parser.add_argument('--log_interval' ,type=a_ ,default=500 ,help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' ,type=a_ ,default=4_000 ,help='Checkpoint interval.' ) __UpperCamelCase : List[str] =parser.parse_args() sanity_checks(a_ ) # ARGS # init_gpu_params(a_ ) set_seed(a_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(F'Param: {args}' ) with open(os.path.join(args.dump_path ,'parameters.json' ) ,'w' ) as f: json.dump(vars(a_ ) ,a_ ,indent=4 ) git_log(args.dump_path ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] =MODEL_CLASSES[args.student_type] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict =MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCamelCase : int =teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCamelCase : Union[str, Any] ={} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCamelCase : Optional[int] =tokenizer.all_special_tokens.index(a_ ) __UpperCamelCase : Dict =tokenizer.all_special_ids[idx] logger.info(F'Special tokens {special_tok_ids}' ) __UpperCamelCase : int =special_tok_ids __UpperCamelCase : List[Any] =tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'Loading data from {args.data_file}' ) with open(args.data_file ,'rb' ) as fp: __UpperCamelCase : Dict =pickle.load(a_ ) if args.mlm: logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts ,'rb' ) as fp: __UpperCamelCase : Dict =pickle.load(a_ ) __UpperCamelCase : Dict =np.maximum(a_ ,1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCamelCase : str =0.0 # do not predict special tokens __UpperCamelCase : Union[str, Any] =torch.from_numpy(a_ ) else: __UpperCamelCase : Any =None __UpperCamelCase : Dict =LmSeqsDataset(params=a_ ,data=a_ ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'Loading student config from {args.student_config}' ) __UpperCamelCase : List[str] =student_config_class.from_pretrained(args.student_config ) __UpperCamelCase : Any =True if args.student_pretrained_weights is not None: logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' ) __UpperCamelCase : Optional[int] =student_model_class.from_pretrained(args.student_pretrained_weights ,config=a_ ) else: __UpperCamelCase : Optional[Any] =student_model_class(a_ ) if args.n_gpu > 0: student.to(F'cuda:{args.local_rank}' ) logger.info('Student loaded.' ) # TEACHER # __UpperCamelCase : List[Any] =teacher_model_class.from_pretrained(args.teacher_name ,output_hidden_states=a_ ) if args.n_gpu > 0: teacher.to(F'cuda:{args.local_rank}' ) logger.info(F'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(a_ ,a_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(a_ ,a_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCamelCase : Union[str, Any] =Distiller( params=a_ ,dataset=a_ ,token_probs=a_ ,student=a_ ,teacher=a_ ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
245
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Union[str, Any] = logging.get_logger(__name__) A_ :Tuple = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class __A ( a ): """simple docstring""" UpperCamelCase__ : Any ="""xlnet""" UpperCamelCase__ : Tuple =["""mems"""] UpperCamelCase__ : Any ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=32000 , lowerCamelCase__=1024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4096 , lowerCamelCase__="gelu" , lowerCamelCase__=True , lowerCamelCase__="bi" , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=-1 , lowerCamelCase__=False , lowerCamelCase__="last" , lowerCamelCase__=True , lowerCamelCase__="tanh" , lowerCamelCase__=0.1 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[int] =vocab_size __UpperCamelCase : int =d_model __UpperCamelCase : Optional[Any] =n_layer __UpperCamelCase : str =n_head if d_model % n_head != 0: raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) __UpperCamelCase : Optional[Any] =d_model // n_head __UpperCamelCase : List[Any] =ff_activation __UpperCamelCase : Tuple =d_inner __UpperCamelCase : List[Any] =untie_r __UpperCamelCase : List[Any] =attn_type __UpperCamelCase : Dict =initializer_range __UpperCamelCase : List[str] =layer_norm_eps __UpperCamelCase : List[str] =dropout __UpperCamelCase : int =mem_len __UpperCamelCase : List[Any] =reuse_len __UpperCamelCase : Union[str, Any] =bi_data __UpperCamelCase : Optional[Any] =clamp_len __UpperCamelCase : Tuple =same_length __UpperCamelCase : int =summary_type __UpperCamelCase : Dict =summary_use_proj __UpperCamelCase : Dict =summary_activation __UpperCamelCase : str =summary_last_dropout __UpperCamelCase : Dict =start_n_top __UpperCamelCase : Optional[Any] =end_n_top __UpperCamelCase : int =bos_token_id __UpperCamelCase : Union[str, Any] =pad_token_id __UpperCamelCase : Dict =eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , lowerCamelCase__ , ) __UpperCamelCase : Dict =kwargs['use_cache'] __UpperCamelCase : Optional[int] =use_mems_eval __UpperCamelCase : Any =use_mems_train super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
245
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule A__ : Tuple ={'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys A__ : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCAmelCase__ = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] UpperCAmelCase__ = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = ' Hello world! cécé herlolip' UpperCAmelCase__ = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] ) -> Optional[int]: _snake_case = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ) -> int: _snake_case = dct.pop(__lowerCamelCase ) _snake_case = val def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> str: _snake_case = torch.load(__lowerCamelCase , map_location='''cpu''' ) _snake_case = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> Union[str, Any]: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _snake_case = emb.weight.data return lin_layer @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any]=None ) -> List[Any]: if not os.path.exists(__lowerCamelCase ): _snake_case = torch.hub.load('''pytorch/fairseq''' , __lowerCamelCase ).eval() else: _snake_case = load_xsum_checkpoint(__lowerCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case = checkpoint_path.replace('''.''' , '''-''' ) _snake_case = BartConfig.from_pretrained(__lowerCamelCase ) _snake_case = bart.encode(__lowerCamelCase ).unsqueeze(0 ) _snake_case = BartTokenizer.from_pretrained(__lowerCamelCase ).encode(__lowerCamelCase , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(__lowerCamelCase , __lowerCamelCase ).all(): raise ValueError( f'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case = bart.state_dict() remove_ignore_keys_(__lowerCamelCase ) _snake_case = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = BartForSequenceClassification(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) _snake_case = bart.predict('''mnli''' , __lowerCamelCase , return_logits=__lowerCamelCase ) _snake_case = model(__lowerCamelCase )[0] # logits else: # no classification heads to worry about _snake_case = bart.model.state_dict() remove_ignore_keys_(__lowerCamelCase ) _snake_case = state_dict['''decoder.embed_tokens.weight'''] _snake_case = bart.extract_features(__lowerCamelCase ) if hf_checkpoint_name == "facebook/bart-large": _snake_case = BartModel(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) _snake_case = model(__lowerCamelCase ).model[0] else: _snake_case = BartForConditionalGeneration(__lowerCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(__lowerCamelCase ) if hasattr(__lowerCamelCase , '''lm_head''' ): _snake_case = make_linear_from_emb(model.model.shared ) _snake_case = model.model(__lowerCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) UpperCAmelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
288
0
UpperCamelCase = 'Tobias Carryer' from time import time class __lowerCamelCase : """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any=int(time() ) ) -> List[Any]: # noqa: B008 lowerCAmelCase__ = multiplier lowerCAmelCase__ = increment lowerCAmelCase__ = modulo lowerCAmelCase__ = seed def a ( self : Any ) -> Any: lowerCAmelCase__ = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCamelCase = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
366
from statistics import mean, stdev def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = min(lowerCAmelCase_ ) lowerCAmelCase__ = max(lowerCAmelCase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase_ ) for x in data] def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = mean(lowerCAmelCase_ ) lowerCAmelCase__ = stdev(lowerCAmelCase_ ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase_ ) for x in data]
221
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple =logging.get_logger(__name__) a__ : Union[str, Any] ={'''vocab_file''': '''sentencepiece.model'''} a__ : Dict ={ '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } a__ : Optional[Any] ={ '''google/rembert''': 256, } class snake_case ( __a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] , __A : List[str] , __A : str=False , __A : List[Any]=True , __A : Optional[int]=True , __A : int="[CLS]" , __A : int="[SEP]" , __A : List[str]="[UNK]" , __A : str="[SEP]" , __A : Any="[PAD]" , __A : int="[CLS]" , __A : List[Any]="[MASK]" , **__A : str , ): super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , **_A , ) __UpperCamelCase = do_lower_case __UpperCamelCase = remove_space __UpperCamelCase = keep_accents __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor() self.sp_model.Load(_A ) @property def _lowerCamelCase ( self : Optional[int] ): return len(self.sp_model ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self : Tuple , __A : Any ): __UpperCamelCase = d __UpperCamelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self : Optional[int] , __A : str , __A : str=False ): __UpperCamelCase = self.sp_model.EncodeAsPieces(_A ) return pieces def _lowerCamelCase ( self : Dict , __A : Optional[int] ): return self.sp_model.PieceToId(_A ) def _lowerCamelCase ( self : Any , __A : Union[str, Any] ): return self.sp_model.IdToPiece(_A ) def _lowerCamelCase ( self : Optional[Any] , __A : Any ): __UpperCamelCase = self.sp_model.decode_pieces(_A ) return out_string def _lowerCamelCase ( self : Optional[int] , __A : Union[str, Any] , __A : str = None ): __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self : Tuple , __A : Optional[int] , __A : Dict = None , __A : Tuple = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def _lowerCamelCase ( self : List[Any] , __A : int , __A : List[Any] = None ): __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self : Optional[int] , __A : Optional[int] , __A : List[Any] = None ): if not os.path.isdir(_A ): logger.error('Vocabulary path ({}) should be a directory'.format(_A ) ) return __UpperCamelCase = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
53
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( _lowerCAmelCase : List[str] ) -> Any: _UpperCAmelCase : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase, _lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase : str = emb.weight.shape _UpperCAmelCase : Union[str, Any] = nn.Linear(_lowerCAmelCase, _lowerCAmelCase, bias=_lowerCAmelCase ) _UpperCAmelCase : List[str] = emb.weight.data return lin_layer def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : Dict="facebook/mbart-large-en-ro", _lowerCAmelCase : Optional[int]=False, _lowerCAmelCase : Union[str, Any]=False ) -> Optional[Any]: _UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase, map_location="""cpu""" )["""model"""] remove_ignore_keys_(_lowerCAmelCase ) _UpperCAmelCase : int = state_dict["""encoder.embed_tokens.weight"""].shape[0] _UpperCAmelCase : str = MBartConfig.from_pretrained(_lowerCAmelCase, vocab_size=_lowerCAmelCase ) if mbart_aa and finetuned: _UpperCAmelCase : Any = """relu""" _UpperCAmelCase : Union[str, Any] = state_dict["""decoder.embed_tokens.weight"""] _UpperCAmelCase : Any = MBartForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase ) if finetuned: _UpperCAmelCase : List[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCamelCase__ : str = parser.parse_args() lowerCamelCase__ : Optional[int] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
246
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class UpperCAmelCase ( UpperCAmelCase__ ): def __init__( self : Optional[int] , __snake_case : List[str] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : int , ) -> List[Any]: super().__init__() _lowerCAmelCase = value_function _lowerCAmelCase = unet _lowerCAmelCase = scheduler _lowerCAmelCase = env _lowerCAmelCase = env.get_dataset() _lowerCAmelCase = {} for key in self.data.keys(): try: _lowerCAmelCase = self.data[key].mean() except: # noqa: E722 pass _lowerCAmelCase = {} for key in self.data.keys(): try: _lowerCAmelCase = self.data[key].std() except: # noqa: E722 pass _lowerCAmelCase = env.observation_space.shape[0] _lowerCAmelCase = env.action_space.shape[0] def lowercase__ ( self : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> Tuple: return (x_in - self.means[key]) / self.stds[key] def lowercase__ ( self : Optional[Any] , __snake_case : List[str] , __snake_case : List[Any] ) -> Union[str, Any]: return x_in * self.stds[key] + self.means[key] def lowercase__ ( self : List[Any] , __snake_case : Union[str, Any] ) -> Optional[Any]: if type(_SCREAMING_SNAKE_CASE ) is dict: return {k: self.to_torch(_SCREAMING_SNAKE_CASE ) for k, v in x_in.items()} elif torch.is_tensor(_SCREAMING_SNAKE_CASE ): return x_in.to(self.unet.device ) return torch.tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) def lowercase__ ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : List[Any] ) -> str: for key, val in cond.items(): _lowerCAmelCase = val.clone() return x_in def lowercase__ ( self : List[str] , __snake_case : int , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : int ) -> int: _lowerCAmelCase = x.shape[0] _lowerCAmelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _lowerCAmelCase = torch.full((batch_size,) , _SCREAMING_SNAKE_CASE , device=self.unet.device , dtype=torch.long ) for _ in range(_SCREAMING_SNAKE_CASE ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _lowerCAmelCase = self.value_function(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample _lowerCAmelCase = torch.autograd.grad([y.sum()] , [x] )[0] _lowerCAmelCase = self.scheduler._get_variance(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = torch.exp(0.5 * posterior_variance ) _lowerCAmelCase = model_std * grad _lowerCAmelCase = 0 _lowerCAmelCase = x.detach() _lowerCAmelCase = x + scale * grad _lowerCAmelCase = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) _lowerCAmelCase = self.unet(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _lowerCAmelCase = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , predict_epsilon=_SCREAMING_SNAKE_CASE )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) _lowerCAmelCase = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) _lowerCAmelCase = self.to_torch(_SCREAMING_SNAKE_CASE ) return x, y def __call__( self : Tuple , __snake_case : List[Any] , __snake_case : Tuple=64 , __snake_case : Union[str, Any]=32 , __snake_case : Union[str, Any]=2 , __snake_case : Any=0.1 ) -> Tuple: _lowerCAmelCase = self.normalize(_SCREAMING_SNAKE_CASE , """observations""" ) _lowerCAmelCase = obs[None].repeat(_SCREAMING_SNAKE_CASE , axis=0 ) _lowerCAmelCase = {0: self.to_torch(_SCREAMING_SNAKE_CASE )} _lowerCAmelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _lowerCAmelCase = randn_tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) _lowerCAmelCase = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) _lowerCAmelCase = self.to_torch(_SCREAMING_SNAKE_CASE ) # run the diffusion process _lowerCAmelCase = self.run_diffusion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # sort output trajectories by value _lowerCAmelCase = y.argsort(0 , descending=_SCREAMING_SNAKE_CASE ).squeeze() _lowerCAmelCase = x[sorted_idx] _lowerCAmelCase = sorted_values[:, :, : self.action_dim] _lowerCAmelCase = actions.detach().cpu().numpy() _lowerCAmelCase = self.de_normalize(_SCREAMING_SNAKE_CASE , key="""actions""" ) # select the action with the highest value if y is not None: _lowerCAmelCase = 0 else: # if we didn't run value guiding, select a random action _lowerCAmelCase = np.random.randint(0 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = denorm_actions[selected_index, 0] return denorm_actions
360
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase = 4_00_00_00 ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase , _lowerCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = b, a + b return sum(lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
220
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
import argparse import os import re _snake_case = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _snake_case = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings _snake_case = re.compile(r'''\s*\(\s*"(\S[^"]+)"''') def _UpperCamelCase ( snake_case__, snake_case__ = False ) -> List[Any]: with open(snake_case__, "r", encoding="utf-8" ) as f: __UpperCAmelCase : Dict = f.read() __UpperCAmelCase : Optional[Any] = content.split("\n" ) __UpperCAmelCase : int = [] __UpperCAmelCase : Optional[int] = 0 while line_idx < len(snake_case__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __UpperCAmelCase : str = len(re.search(r"^(\s*)\S", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 __UpperCAmelCase : Dict = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __UpperCAmelCase : str = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __UpperCAmelCase : Dict = sorted(snake_case__, key=lambda snake_case__ : _re_identifier.search(snake_case__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(snake_case__, "w", encoding="utf-8" ) as f: f.write("\n".join(snake_case__ ) ) elif "\n".join(snake_case__ ) != content: return True def _UpperCamelCase ( snake_case__ = False ) -> Any: __UpperCAmelCase : str = [os.path.join(snake_case__, snake_case__ ) for f in os.listdir(snake_case__ ) if f.endswith(".py" )] __UpperCAmelCase : Optional[Any] = [sort_auto_mapping(snake_case__, overwrite=snake_case__ ) for fname in fnames] if not overwrite and any(snake_case__ ): __UpperCAmelCase : List[Any] = [f for f, d in zip(snake_case__, snake_case__ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(snake_case__ )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _snake_case = parser.parse_args() sort_all_auto_mappings(not args.check_only)
157
1
from __future__ import annotations UpperCamelCase__ = 1.6021E-19 # units = C def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
102
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__ : _a : str = field( default=snake_case__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(snake_case__ )} ) _a : str = field( default=snake_case__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) _a : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a : int = field( default=1_2_8 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) _a : int = field( default=6_4 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) _a : int = field( default=3_0 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) _a : bool = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) _a : bool = field( default=snake_case__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) _a : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=2_0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) _a : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class a__ ( snake_case__ ): _a : Any = """train""" _a : Union[str, Any] = """dev""" class a__ ( snake_case__ ): _a : SquadDataTrainingArguments _a : List[SquadFeatures] _a : Split _a : bool def __init__( self , _A , _A , _A = None , _A = Split.train , _A = False , _A = None , _A = "pt" , ): """simple docstring""" __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_A , _A ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = "v2" if args.version_2_with_negative else "v1" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + ".lock" with FileLock(_A ): if os.path.exists(_A ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(_A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["features"] __lowerCAmelCase = self.old_features.get("dataset" , _A ) __lowerCAmelCase = self.old_features.get("examples" , _A ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_A , ) __lowerCAmelCase = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , _A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _A ): """simple docstring""" __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
102
1
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" def get_matched_characters(lowercase ,lowercase ) -> str: _UpperCAmelCase = [] _UpperCAmelCase = min(len(_stra ) ,len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCAmelCase = int(max(0 ,i - limit ) ) _UpperCAmelCase = int(min(i + limit + 1 ,len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase ) _UpperCAmelCase = f'''{_stra[0:_stra.index(lowercase )]} {_stra[_stra.index(lowercase ) + 1:]}''' return "".join(lowercase ) # matching characters _UpperCAmelCase = get_matched_characters(lowercase ,lowercase ) _UpperCAmelCase = get_matched_characters(lowercase ,lowercase ) _UpperCAmelCase = len(lowercase ) # transposition _UpperCAmelCase = ( len([(ca, ca) for ca, ca in zip(lowercase ,lowercase ) if ca != ca] ) // 2 ) if not match_count: _UpperCAmelCase = 0.0 else: _UpperCAmelCase = ( 1 / 3 * ( match_count / len(lowercase ) + match_count / len(lowercase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCAmelCase = 0 for ca, ca in zip(stra[:4] ,stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
289
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } UpperCAmelCase__ = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = EfficientNetConfig() _UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""] _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = 10_00 _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} ,image_mean=[0.4_85, 0.4_56, 0.4_06] ,image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] ,do_center_crop=lowercase ,) return preprocessor def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] _UpperCAmelCase = sorted(set(lowercase ) ) _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = {b: str(lowercase ) for b, i in zip(lowercase ,range(lowercase ) )} _UpperCAmelCase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: _UpperCAmelCase = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) _UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: _UpperCAmelCase = """efficientnet.""" + item[1] _UpperCAmelCase = """classifier.weight""" _UpperCAmelCase = """classifier.bias""" return key_mapping def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue _UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCAmelCase = torch.from_numpy(lowercase ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: _UpperCAmelCase = torch.from_numpy(lowercase ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: _UpperCAmelCase = torch.from_numpy(np.transpose(lowercase ) ) else: _UpperCAmelCase = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = model_classes[model_name]( include_top=lowercase ,weights="""imagenet""" ,input_tensor=lowercase ,input_shape=lowercase ,pooling=lowercase ,classes=10_00 ,classifier_activation="""softmax""" ,) _UpperCAmelCase = original_model.trainable_variables _UpperCAmelCase = original_model.non_trainable_variables _UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCAmelCase = param.numpy() _UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model _UpperCAmelCase = get_efficientnet_config(lowercase ) _UpperCAmelCase = EfficientNetForImageClassification(lowercase ).eval() _UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) _UpperCAmelCase = rename_keys(lowercase ) replace_params(lowercase ,lowercase ,lowercase ) # Initialize preprocessor and preprocess input image _UpperCAmelCase = convert_image_processor(lowercase ) _UpperCAmelCase = preprocessor(images=prepare_img() ,return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCAmelCase = hf_model(**lowercase ) _UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference _UpperCAmelCase = False _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) _UpperCAmelCase = image.img_to_array(lowercase ) _UpperCAmelCase = np.expand_dims(lowercase ,axis=0 ) _UpperCAmelCase = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase ,lowercase ,atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) _UpperCAmelCase = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") UpperCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
289
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __snake_case = 50_00_00 __snake_case ,__snake_case = os.path.split(__file__) __snake_case = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.map(**UpperCamelCase_ ) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.filter(**UpperCamelCase_ ) def _lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) SCREAMING_SNAKE_CASE__ = generate_example_dataset( os.path.join(UpperCamelCase_ , 'dataset.arrow' ) , UpperCamelCase_ , num_examples=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=UpperCamelCase_ ) def tokenize(UpperCamelCase_ ): return tokenizer(examples['text'] ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='numpy' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='pandas' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='torch' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = filter(UpperCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase_ , 'wb' ) as f: f.write(json.dumps(UpperCamelCase_ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
169
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : List[str] = '''donut-swin''' __UpperCAmelCase : Optional[Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict ,_a : Optional[Any]=224 ,_a : List[str]=4 ,_a : Union[str, Any]=3 ,_a : Any=96 ,_a : str=[2, 2, 6, 2] ,_a : str=[3, 6, 12, 24] ,_a : Union[str, Any]=7 ,_a : int=4.0 ,_a : Optional[Any]=True ,_a : Optional[Any]=0.0 ,_a : List[Any]=0.0 ,_a : Dict=0.1 ,_a : List[Any]="gelu" ,_a : str=False ,_a : List[Any]=0.02 ,_a : Dict=1E-5 ,**_a : List[Any] ,): '''simple docstring''' super().__init__(**_a ) _a : Any = image_size _a : Any = patch_size _a : str = num_channels _a : int = embed_dim _a : Union[str, Any] = depths _a : Union[str, Any] = len(_a ) _a : Optional[int] = num_heads _a : Optional[int] = window_size _a : List[str] = mlp_ratio _a : str = qkv_bias _a : int = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : str = drop_path_rate _a : List[str] = hidden_act _a : List[str] = use_absolute_embeddings _a : int = layer_norm_eps _a : List[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a : Optional[int] = int(embed_dim * 2 ** (len(_a ) - 1) )
271
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[int] ,_a : Optional[Any]=None ,_a : Dict=None ,*_a : int ,**_a : str ): '''simple docstring''' super().__init__(*_a ,**_a ) if config is None: assert isinstance(self.model ,_a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) _a : List[Any] = self.model.config else: _a : Optional[int] = config _a : List[str] = data_args _a : List[Any] = self.config.tgt_vocab_size if isinstance(self.config ,_a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: _a : List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _a : Tuple = label_smoothed_nll_loss def __lowercase ( self : List[str] ,_a : int ): '''simple docstring''' if self.optimizer is None: _a : Union[str, Any] = ['bias', 'LayerNorm.weight'] _a : Tuple = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] _a : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _a : Any = Adafactor _a : Dict = {'scale_parameter': False, 'relative_step': False} else: _a : Union[str, Any] = AdamW _a : str = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } _a : Union[str, Any] = self.args.learning_rate if self.sharded_ddp: _a : str = OSS( params=_a ,optim=_a ,**_a ,) else: _a : Tuple = optimizer_cls(_a ,**_a ) if self.lr_scheduler is None: _a : List[Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def __lowercase ( self : List[Any] ,_a : List[Any] ): '''simple docstring''' _a : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _a : int = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _a : List[str] = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: _a : Optional[int] = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=_a ) return scheduler def __lowercase ( self : Tuple ): '''simple docstring''' if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __lowercase ( self : Dict ,_a : Dict ,_a : Any ,_a : Dict ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _a : List[Any] = model(**_a ,use_cache=_a )[0] _a : Union[str, Any] = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models _a, _a : Union[str, Any] = model(**_a ,labels=_a ,use_cache=_a )[:2] else: # compute label smoothed loss _a : List[Any] = model(**_a ,use_cache=_a )[0] _a : Any = torch.nn.functional.log_softmax(_a ,dim=-1 ) _a, _a : List[str] = self.loss_fn(_a ,_a ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def __lowercase ( self : Optional[int] ,_a : Union[str, Any] ,_a : List[Any] ): '''simple docstring''' _a : Optional[int] = inputs.pop('labels' ) _a, _a : int = self._compute_loss(_a ,_a ,_a ) return loss def __lowercase ( self : Optional[Any] ,_a : nn.Module ,_a : Dict[str, Union[torch.Tensor, Any]] ,_a : bool ,_a : Optional[List[str]] = None ,): '''simple docstring''' _a : int = self._prepare_inputs(_a ) _a : Any = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _a : int = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**_a ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _a : int = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) _a : Union[str, Any] = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data _a, _a : Optional[int] = self._compute_loss(_a ,_a ,_a ) _a : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _a : Optional[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _a : Dict = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) return (loss, logits, labels) def __lowercase ( self : str ,_a : Tuple ,_a : Tuple ): '''simple docstring''' _a : List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F""" padded to `max_length`={max_length}""" ) _a : int = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) _a : Union[str, Any] = tensor return padded_tensor
271
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _UpperCAmelCase : def __init__( self : Optional[Any] , _lowercase : Tuple , _lowercase : str=13 , _lowercase : Tuple=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Any=True , _lowercase : Any=True , _lowercase : int=99 , _lowercase : Tuple=32 , _lowercase : str=2 , _lowercase : Union[str, Any]=4 , _lowercase : List[str]=37 , _lowercase : Optional[Any]="gelu" , _lowercase : List[str]=0.1 , _lowercase : List[str]=0.1 , _lowercase : Optional[int]=5_12 , _lowercase : Tuple=16 , _lowercase : Dict=2 , _lowercase : Union[str, Any]=0.02 , _lowercase : Any=3 , _lowercase : Dict=4 , _lowercase : str=None , ): __UpperCAmelCase = parent __UpperCAmelCase = 13 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = 99 __UpperCAmelCase = 32 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 37 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_12 __UpperCAmelCase = 16 __UpperCAmelCase = 2 __UpperCAmelCase = 0.02 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def a ( self : Tuple ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self : Optional[int] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : int , _lowercase : List[Any] , _lowercase : Dict ): __UpperCAmelCase = TFRoFormerModel(config=_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : List[str] , _lowercase : int , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Tuple ): __UpperCAmelCase = True __UpperCAmelCase = TFRoFormerForCausalLM(config=_lowercase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(_lowercase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def a ( self : Optional[Any] , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : str , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[str] ): __UpperCAmelCase = TFRoFormerForMaskedLM(config=_lowercase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : List[str] , _lowercase : List[str] , _lowercase : int , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFRoFormerForSequenceClassification(config=_lowercase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : int , _lowercase : str , _lowercase : List[str] , _lowercase : str , _lowercase : List[str] , _lowercase : List[str] ): __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFRoFormerForMultipleChoice(config=_lowercase ) __UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self : Dict , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFRoFormerForTokenClassification(config=_lowercase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self : List[str] , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : str , _lowercase : Tuple , _lowercase : Tuple ): __UpperCAmelCase = TFRoFormerForQuestionAnswering(config=_lowercase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self : int ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) a__ : Any = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) a__ : List[str] = False a__ : List[Any] = False def a ( self : Union[str, Any] , _lowercase : int , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : int ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def a ( self : str ): __UpperCAmelCase = TFRoFormerModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def a ( self : List[str] ): self.config_tester.run_common_tests() def a ( self : List[str] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def a ( self : List[str] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_lowercase ) def a ( self : str ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def a ( self : List[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def a ( self : List[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def a ( self : List[Any] ): __UpperCAmelCase = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(_lowercase ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : Dict ): __UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(_lowercase )[0] # TODO Replace vocab size __UpperCAmelCase = 5_00_00 __UpperCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , _lowercase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCAmelCase = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4 ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): a__ : List[str] = 1E-4 def a ( self : Optional[int] ): __UpperCAmelCase = tf.constant([[4, 10]] ) __UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCAmelCase = emba(input_ids.shape ) __UpperCAmelCase = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(_lowercase , _lowercase , atol=self.tolerance ) def a ( self : Dict ): __UpperCAmelCase = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) __UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) __UpperCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(_lowercase , _lowercase , atol=self.tolerance ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): a__ : Optional[Any] = 1E-4 def a ( self : List[str] ): # 2,12,16,64 __UpperCAmelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __UpperCAmelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCAmelCase = embed_positions([2, 16, 7_68] )[None, None, :, :] __UpperCAmelCase , __UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _lowercase , _lowercase , _lowercase ) __UpperCAmelCase = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) __UpperCAmelCase = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _lowercase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _lowercase , atol=self.tolerance )
86
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Tuple = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowercase__ ( _UpperCAmelCase ): a_ ='''efficientformer''' def __init__( self , __UpperCAmelCase = [3, 2, 6, 4] , __UpperCAmelCase = [48, 96, 224, 448] , __UpperCAmelCase = [True, True, True, True] , __UpperCAmelCase = 448 , __UpperCAmelCase = 32 , __UpperCAmelCase = 4 , __UpperCAmelCase = 7 , __UpperCAmelCase = 5 , __UpperCAmelCase = 8 , __UpperCAmelCase = 4 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 16 , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = 2 , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 1 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = 1E-5 , __UpperCAmelCase = "gelu" , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 1E-1_2 , __UpperCAmelCase = 224 , __UpperCAmelCase = 1E-0_5 , **__UpperCAmelCase , )-> None: '''simple docstring''' super().__init__(**__lowerCAmelCase ) lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = depths lowerCAmelCase__ = mlp_expansion_ratio lowerCAmelCase__ = downsamples lowerCAmelCase__ = dim lowerCAmelCase__ = key_dim lowerCAmelCase__ = attention_ratio lowerCAmelCase__ = resolution lowerCAmelCase__ = pool_size lowerCAmelCase__ = downsample_patch_size lowerCAmelCase__ = downsample_stride lowerCAmelCase__ = downsample_pad lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = num_metaad_blocks lowerCAmelCase__ = distillation lowerCAmelCase__ = use_layer_scale lowerCAmelCase__ = layer_scale_init_value lowerCAmelCase__ = image_size lowerCAmelCase__ = batch_norm_eps
340
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: A : Tuple = None A : Optional[Any] = logging.get_logger(__name__) A : Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A : List[str] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } A : List[str] = { '''albert-base-v1''': 5_1_2, '''albert-large-v1''': 5_1_2, '''albert-xlarge-v1''': 5_1_2, '''albert-xxlarge-v1''': 5_1_2, '''albert-base-v2''': 5_1_2, '''albert-large-v2''': 5_1_2, '''albert-xlarge-v2''': 5_1_2, '''albert-xxlarge-v2''': 5_1_2, } A : Optional[int] = '''▁''' class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = AlbertTokenizer def __init__( self : Tuple , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : str=False , __lowerCAmelCase : Union[str, Any]="[CLS]" , __lowerCAmelCase : int="[SEP]" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Dict="[SEP]" , __lowerCAmelCase : Union[str, Any]="<pad>" , __lowerCAmelCase : str="[CLS]" , __lowerCAmelCase : int="[MASK]" , **__lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" A__ = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = False if not self.vocab_file else True def a_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self : Union[str, Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
274
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[int] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class A (__lowerCamelCase ): '''simple docstring''' __lowerCamelCase : Tuple = 'luke' def __init__( self : Any , __lowerCAmelCase : Optional[int]=5_02_67 , __lowerCAmelCase : List[str]=50_00_00 , __lowerCAmelCase : List[Any]=7_68 , __lowerCAmelCase : List[Any]=2_56 , __lowerCAmelCase : str=12 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Dict=30_72 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : int=5_12 , __lowerCAmelCase : str=2 , __lowerCAmelCase : Optional[int]=0.0_2 , __lowerCAmelCase : Dict=1e-12 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Tuple=0 , __lowerCAmelCase : Optional[Any]=2 , **__lowerCAmelCase : Optional[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) A__ = vocab_size A__ = entity_vocab_size A__ = hidden_size A__ = entity_emb_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = use_entity_aware_attention A__ = classifier_dropout
357
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( __a :str ) -> Optional[int]: """simple docstring""" A__ = {} A__ = job["""started_at"""] A__ = job["""completed_at"""] A__ = date_parser.parse(__a ) A__ = date_parser.parse(__a ) A__ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) A__ = start A__ = end A__ = duration_in_min return job_info def __lowerCamelCase ( __a :Optional[Any] , __a :List[str]=None ) -> List[Any]: """simple docstring""" A__ = None if token is not None: A__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'Bearer {token}'} A__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' A__ = requests.get(__a , headers=__a ).json() A__ = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(__a ) for job in result["""jobs"""]} ) A__ = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(__a ): A__ = requests.get(url + F'&page={i + 2}' , headers=__a ).json() job_time.update({job["""name"""]: extract_time_from_single_job(__a ) for job in result["""jobs"""]} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') A : Dict = parser.parse_args() A : List[Any] = get_job_time(args.workflow_run_id) A : int = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
276
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : def __init__( self :List[Any] , _A :Union[str, Any] , _A :str=13 , _A :int=30 , _A :Dict=2 , _A :List[Any]=3 , _A :Union[str, Any]=True , _A :Optional[Any]=True , _A :Optional[int]=32 , _A :Any=5 , _A :int=4 , _A :int=37 , _A :int="gelu" , _A :str=0.1 , _A :Optional[Any]=0.1 , _A :str=10 , _A :str=0.02 , _A :List[Any]=3 , _A :Tuple=0.6 , _A :Tuple=None , ) -> int: '''simple docstring''' __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = mask_ratio __A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __A = (image_size // patch_size) ** 2 __A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase_ ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def lowercase_ ( self :List[Any] ) -> str: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowercase_ ( self :Any , _A :List[str] , _A :int , _A :List[Any] ) -> Any: '''simple docstring''' __A = ViTMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __A = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self :Optional[Any] , _A :int , _A :Union[str, Any] , _A :int ) -> List[Any]: '''simple docstring''' __A = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __A = model(lowerCAmelCase_ ) __A = (self.image_size // self.patch_size) ** 2 __A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __A = 1 __A = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(lowerCAmelCase_ ) __A = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowercase_ ( self :str ) -> Dict: '''simple docstring''' __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCAmelCase__ : List[Any] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = False UpperCAmelCase__ : Any = False def lowercase_ ( self :Dict ) -> str: '''simple docstring''' __A = ViTMAEModelTester(self ) __A = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowercase_ ( self :Optional[int] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowercase_ ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' pass def lowercase_ ( self :Any ) -> str: '''simple docstring''' __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase_ ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(lowerCAmelCase_ ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase_ ( self :Dict ) -> Union[str, Any]: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase_ ( self :Tuple ) -> Dict: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) def lowercase_ ( self :List[str] , _A :int , _A :Tuple , _A :Optional[Any] ) -> Any: '''simple docstring''' np.random.seed(2 ) __A = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __A = torch.from_numpy(lowerCAmelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __A = pt_noise super().check_pt_tf_models(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase_ ( self :List[Any] ) -> Any: '''simple docstring''' __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __A = outputs[0].cpu().numpy() __A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) __A = model_class.from_pretrained(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Make sure we don't have nans __A = after_outputs[0].cpu().numpy() __A = 0 __A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase_ ( self :List[Any] ) -> Tuple: '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowercase_ ( self :Optional[Any] ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self :List[str] ) -> str: '''simple docstring''' pass @slow def lowercase_ ( self :str ) -> Optional[Any]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = ViTMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( )-> List[str]: """simple docstring""" __A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase): @cached_property def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowercase_ ( self :int ) -> Any: '''simple docstring''' np.random.seed(2 ) __A = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(lowerCAmelCase_ ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __A = ViTMAEConfig() __A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __A = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __A = model(**lowerCAmelCase_ , noise=torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) ) # verify the logits __A = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __A = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCAmelCase_ ) , atol=1E-4 ) )
161
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = 'sshleifer/student_marian_en_ro_6_1' _SCREAMING_SNAKE_CASE = 'sshleifer/tiny-mbart' @require_torch class a ( __lowerCAmelCase ): """simple docstring""" def UpperCAmelCase ( self , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , ) -> int: _A = self.run_trainer( eval_steps=1 , max_len=12 , model_name=lowerCAmelCase_ , num_train_epochs=1 , distributed=lowerCAmelCase_ , extra_args_str=lowerCAmelCase_ , predict_with_generate=lowerCAmelCase_ , do_train=lowerCAmelCase_ , do_eval=lowerCAmelCase_ , do_predict=lowerCAmelCase_ , ) _A = TrainerState.load_from_json(os.path.join(lowerCAmelCase_ , """trainer_state.json""" ) ).log_history if not do_eval: return _A = [log for log in logs if """eval_loss""" in log.keys()] _A = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _A = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , lowerCAmelCase_ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCAmelCase ( self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCAmelCase ( self ) -> Dict: self.run_seqaseq_quick(distributed=lowerCAmelCase_ ) @require_torch_multi_gpu def UpperCAmelCase ( self ) -> Dict: self.run_seqaseq_quick(distributed=lowerCAmelCase_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase ( self ) -> str: self.run_seqaseq_quick(distributed=lowerCAmelCase_ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase ( self ) -> Dict: self.run_seqaseq_quick(distributed=lowerCAmelCase_ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=lowerCAmelCase_ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=lowerCAmelCase_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase ( self ) -> Tuple: self.run_seqaseq_quick( distributed=lowerCAmelCase_ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=lowerCAmelCase_ ) @require_apex @require_torch_gpu def UpperCAmelCase ( self ) -> int: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=lowerCAmelCase_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=lowerCAmelCase_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _A = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } _A = experiments[experiment_id] _A = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} _A = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**lowerCAmelCase_ , extra_args_str=data["""extra_args_str"""] ) _A = len(re.findall(lowerCAmelCase_ , cl.err ) ) self.assertEqual(lowerCAmelCase_ , data["""n_matches"""] ) @slow def UpperCAmelCase ( self ) -> Dict: _A = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=lowerCAmelCase_ , learning_rate=3E-4 , num_train_epochs=10 , distributed=lowerCAmelCase_ , ) # Check metrics _A = TrainerState.load_from_json(os.path.join(lowerCAmelCase_ , """trainer_state.json""" ) ).log_history _A = [log for log in logs if """eval_loss""" in log.keys()] _A = eval_metrics[0] _A = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , lowerCAmelCase_ ) # test if do_predict saves generations and metrics _A = os.listdir(lowerCAmelCase_ ) _A = {os.path.basename(lowerCAmelCase_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCAmelCase ( self ) -> Optional[Any]: from transformers.training_args import OptimizerNames def train_and_return_metrics(lowerCAmelCase_ ) -> Tuple[int, float]: _A = """--skip_memory_metrics 0""" _A = self.run_trainer( max_len=1_28 , model_name=lowerCAmelCase_ , learning_rate=3E-4 , num_train_epochs=1 , optim=lowerCAmelCase_ , distributed=lowerCAmelCase_ , extra_args_str=lowerCAmelCase_ , do_eval=lowerCAmelCase_ , do_predict=lowerCAmelCase_ , n_gpus_to_use=1 , ) # Check metrics _A = TrainerState.load_from_json(Path(lowerCAmelCase_ , """trainer_state.json""" ) ).log_history _A = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) _A = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) _A = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _A , _A , _A = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _A , _A , _A = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _A = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _A = gpu_peak_mem_orig + gpu_alloc_mem_orig _A = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _A = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _A = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( lowerCAmelCase_ , lowerCAmelCase_ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( lowerCAmelCase_ , lowerCAmelCase_ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( lowerCAmelCase_ , lowerCAmelCase_ , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3E-3 , lowerCAmelCase_ = "adafactor" , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = None , ) -> str: _A = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" _A = self.get_auto_remove_tmp_dir() _A = F''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(lowerCAmelCase_ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(lowerCAmelCase_ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() _A = F''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(lowerCAmelCase_ )} '''.split() _A = """ --do_predict """.split() _A = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _A = get_gpu_count() _A = get_torch_dist_unique_port() _A = F''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() _A = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) else: _A = ["""run_translation.py"""] + args with patch.object(lowerCAmelCase_ , """argv""" , lowerCAmelCase_ ): main() return output_dir
180
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = ["""input_features"""] def __init__( self : str , SCREAMING_SNAKE_CASE : Tuple=80 , SCREAMING_SNAKE_CASE : Optional[int]=16_000 , SCREAMING_SNAKE_CASE : Optional[int]=160 , SCREAMING_SNAKE_CASE : str=30 , SCREAMING_SNAKE_CASE : List[Any]=400 , SCREAMING_SNAKE_CASE : str=0.0 , SCREAMING_SNAKE_CASE : int=False , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): super().__init__( feature_size=SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , padding_value=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) lowercase__ : Union[str, Any] = n_fft lowercase__ : Optional[Any] = hop_length lowercase__ : Union[str, Any] = chunk_length lowercase__ : Any = chunk_length * sampling_rate lowercase__ : Optional[Any] = self.n_samples // hop_length lowercase__ : Any = sampling_rate lowercase__ : List[str] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=SCREAMING_SNAKE_CASE , norm="slaney" , mel_scale="slaney" , ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : np.array ): lowercase__ : Any = spectrogram( SCREAMING_SNAKE_CASE , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowercase__ : Optional[int] = log_spec[:, :-1] lowercase__ : List[Any] = np.maximum(SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) lowercase__ : Tuple = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case ( SCREAMING_SNAKE_CASE : List[np.ndarray] , SCREAMING_SNAKE_CASE : List[np.ndarray] , SCREAMING_SNAKE_CASE : float = 0.0 ): if attention_mask is not None: lowercase__ : Union[str, Any] = np.array(SCREAMING_SNAKE_CASE , np.intaa ) lowercase__ : Optional[int] = [] for vector, length in zip(SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): lowercase__ : int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase__ : str = padding_value normed_input_values.append(SCREAMING_SNAKE_CASE ) else: lowercase__ : int = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : List[str] , SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[str] = "max_length" , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , **SCREAMING_SNAKE_CASE : Optional[int] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ : Optional[Any] = isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ : List[str] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ : str = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): lowercase__ : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ : Union[str, Any] = [np.asarray([raw_speech] ).T] lowercase__ : str = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowercase__ : Union[str, Any] = self.pad( SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase__ : List[str] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowercase__ : Optional[Any] = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowercase__ : Optional[Any] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowercase__ : Any = [self._np_extract_fbank_features(SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , SCREAMING_SNAKE_CASE ): lowercase__ : str = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: lowercase__ : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase__ : Union[str, Any] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowercase__ : Union[str, Any] = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE ) return padded_inputs def snake_case ( self : Tuple ): lowercase__ : str = copy.deepcopy(self.__dict__ ) lowercase__ : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
362
def __lowerCamelCase ( lowerCamelCase__ = 1_000 ): """simple docstring""" lowercase__ , lowercase__ : int = 1, 1 lowercase__ : List[Any] = [] for i in range(1 , n + 1 ): lowercase__ : Dict = prev_numerator + 2 * prev_denominator lowercase__ : Tuple = prev_numerator + prev_denominator if len(str(lowerCamelCase__ ) ) > len(str(lowerCamelCase__ ) ): result.append(lowerCamelCase__ ) lowercase__ : int = numerator lowercase__ : int = denominator return len(lowerCamelCase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
121
0