code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __UpperCAmelCase ( ): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase : Optional[Any] = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , __UpperCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __UpperCAmelCase ( ): assert _test_patching.open is open __lowercase : Optional[Any] = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , __UpperCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __UpperCAmelCase ( ): # pandas.read_csv is not present in _test_patching __lowercase : Union[str, Any] = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , __UpperCamelCase ): pass def __UpperCAmelCase ( ): # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __lowercase : Any = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , __UpperCamelCase ) is None with patch_submodule(_test_patching , '''len''' , __UpperCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def __UpperCAmelCase ( ): __lowercase : str = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase : int = patch_submodule(_test_patching , '''open''' , __UpperCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __UpperCAmelCase ( ): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase : int = '''__test_patch_submodule_successive_join__''' __lowercase : Tuple = '''__test_patch_submodule_successive_dirname__''' __lowercase : Dict = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , __UpperCamelCase ): with patch_submodule(_test_patching , '''os.rename''' , __UpperCamelCase ): with patch_submodule(_test_patching , '''os.path.dirname''' , __UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , __UpperCamelCase ): with patch_submodule(_test_patching , '''os.path.join''' , __UpperCamelCase ): with patch_submodule(_test_patching , '''os.path.dirname''' , __UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __UpperCAmelCase ( ): __lowercase : Optional[Any] = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , __UpperCamelCase ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , __UpperCamelCase ): pass
249
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast a_ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): UpperCamelCase =1_00_00 UpperCamelCase =None UpperCamelCase =None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): UpperCamelCase =ParquetConfig def _lowerCamelCase ( self ) -> List[str]: return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase_ , (str, list, tuple) ): __lowercase : str = data_files if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : int = [dl_manager.iter_files(UpperCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __lowercase : int = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : Any = [dl_manager.iter_files(UpperCamelCase_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCamelCase_ ): with open(UpperCamelCase_ , '''rb''' ) as f: __lowercase : Any = datasets.Features.from_arrow_schema(pq.read_schema(UpperCamelCase_ ) ) break splits.append(datasets.SplitGenerator(name=UpperCamelCase_ , gen_kwargs={'''files''': files} ) ) return splits def _lowerCamelCase ( self , UpperCamelCase_ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowercase : Tuple = table_cast(UpperCamelCase_ , self.info.features.arrow_schema ) return pa_table def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: __lowercase : Union[str, Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase_ ) ): with open(UpperCamelCase_ , '''rb''' ) as f: __lowercase : Union[str, Any] = pq.ParquetFile(UpperCamelCase_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __lowercase : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(UpperCamelCase_ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCamelCase_ )}: {e}""" ) raise
249
1
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def a__ ( __UpperCamelCase , __UpperCamelCase = "cpu" , __UpperCamelCase = None ): SCREAMING_SNAKE_CASE_ = torch.load(__a , map_location=__a ) for k, v in tqdm(state_dict.items() ): if not isinstance(__a , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) SCREAMING_SNAKE_CASE_ = v.half() if save_path is None: # overwrite src_path SCREAMING_SNAKE_CASE_ = src_path torch.save(__a , __a ) if __name__ == "__main__": fire.Fire(convert)
350
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
0
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCAmelCase_ : """simple docstring""" lowercase = 42 # [batch_size x 3] lowercase = 42 # [batch_size x 3] lowercase = 42 # [batch_size x 3] lowercase = 42 # [batch_size x 3] lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 def lowerCamelCase ( self : Optional[Any] ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCamelCase ( self : Union[str, Any] ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCamelCase ( self : str ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCamelCase ( self : List[str] ): snake_case__ : str = torch.arange(self.height * self.width ) snake_case__ : Optional[Any] = torch.stack( [ pixel_indices % self.width, torch.div(snake_case_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def lowerCamelCase ( self : Tuple ): snake_case__ , *snake_case__ : List[Any] = self.shape snake_case__ : str = int(np.prod(snake_case_ ) ) snake_case__ : List[Any] = self.get_image_coords() snake_case__ : Tuple = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) snake_case__ : int = self.get_camera_rays(snake_case_ ) snake_case__ : Tuple = rays.view(snake_case_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCamelCase ( self : Any , snake_case_ : torch.Tensor ): snake_case__ , *snake_case__ , snake_case__ : Union[str, Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] snake_case__ : int = coords.view(snake_case_ , -1 , 2 ) snake_case__ : Dict = self.resolution() snake_case__ : List[str] = self.fov() snake_case__ : Union[str, Any] = (flat.float() / (res - 1)) * 2 - 1 snake_case__ : str = fracs * torch.tan(fov / 2 ) snake_case__ : int = fracs.view(snake_case_ , -1 , 2 ) snake_case__ : List[str] = ( self.z.view(snake_case_ , 1 , 3 ) + self.x.view(snake_case_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(snake_case_ , 1 , 3 ) * fracs[:, :, 1:] ) snake_case__ : str = directions / directions.norm(dim=-1 , keepdim=snake_case_ ) snake_case__ : Dict = torch.stack( [ torch.broadcast_to(self.origin.view(snake_case_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(snake_case_ , *snake_case_ , 2 , 3 ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : int , snake_case_ : int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=snake_case_ , height=snake_case_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __snake_case( _lowerCAmelCase ) -> DifferentiableProjectiveCamera: snake_case__ : Union[str, Any] = [] snake_case__ : int = [] snake_case__ : List[Any] = [] snake_case__ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): snake_case__ : Any = np.array([np.sin(_lowerCAmelCase ), np.cos(_lowerCAmelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) snake_case__ : Optional[int] = -z * 4 snake_case__ : List[str] = np.array([np.cos(_lowerCAmelCase ), -np.sin(_lowerCAmelCase ), 0.0] ) snake_case__ : Optional[int] = np.cross(_lowerCAmelCase , _lowerCAmelCase ) origins.append(_lowerCAmelCase ) xs.append(_lowerCAmelCase ) ys.append(_lowerCAmelCase ) zs.append(_lowerCAmelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_lowerCAmelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_lowerCAmelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_lowerCAmelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_lowerCAmelCase , axis=0 ) ).float() , width=_lowerCAmelCase , height=_lowerCAmelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_lowerCAmelCase )) , )
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _lowerCamelCase : Dict = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE_( *lowercase , **lowercase ) -> Optional[Any]: pass @is_pipeline_test @require_vision @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCamelCase_ = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Dict: lowerCamelCase_ = object_detector(examples[0] , threshold=0.0 ) lowerCamelCase_ = len(lowercase ) self.assertGreater(lowercase , 0 ) self.assertEqual( lowercase , [ { "score": ANY(lowercase ), "label": ANY(lowercase ), "box": {"xmin": ANY(lowercase ), "ymin": ANY(lowercase ), "xmax": ANY(lowercase ), "ymax": ANY(lowercase )}, } for i in range(lowercase ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: pass @require_torch def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCamelCase_ = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) lowerCamelCase_ = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [ {"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = pipeline("zero-shot-object-detection" ) lowerCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) lowerCamelCase_ = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: pass @require_torch @slow def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = 0.2 lowerCamelCase_ = pipeline("zero-shot-object-detection" ) lowerCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=lowercase , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = 2 lowerCamelCase_ = pipeline("zero-shot-object-detection" ) lowerCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=lowercase , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
352
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase_ ( lowerCamelCase__ ): if is_torch_version("<" , "2.0.0" ) or not hasattr(lowerCamelCase__ , "_dynamo" ): return False return isinstance(lowerCamelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = True ): lowerCamelCase_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCamelCase_ = is_compiled_module(lowerCamelCase__ ) if is_compiled: lowerCamelCase_ = model lowerCamelCase_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = model.module if not keep_fpaa_wrapper: lowerCamelCase_ = getattr(lowerCamelCase__ , "forward" ) lowerCamelCase_ = model.__dict__.pop("_original_forward" , lowerCamelCase__ ) if original_forward is not None: while hasattr(lowerCamelCase__ , "__wrapped__" ): lowerCamelCase_ = forward.__wrapped__ if forward == original_forward: break lowerCamelCase_ = forward if getattr(lowerCamelCase__ , "_converted_to_transformer_engine" , lowerCamelCase__ ): convert_model(lowerCamelCase__ , to_transformer_engine=lowerCamelCase__ ) if is_compiled: lowerCamelCase_ = model lowerCamelCase_ = compiled_model return model def lowerCamelCase_ ( ): PartialState().wait_for_everyone() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCamelCase__ , lowerCamelCase__ ) elif PartialState().local_process_index == 0: torch.save(lowerCamelCase__ , lowerCamelCase__ ) @contextmanager def lowerCamelCase_ ( **lowerCamelCase__ ): for key, value in kwargs.items(): lowerCamelCase_ = str(lowerCamelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase_ ( lowerCamelCase__ ): if not hasattr(lowerCamelCase__ , "__qualname__" ) and not hasattr(lowerCamelCase__ , "__name__" ): lowerCamelCase_ = getattr(lowerCamelCase__ , "__class__" , lowerCamelCase__ ) if hasattr(lowerCamelCase__ , "__qualname__" ): return obj.__qualname__ if hasattr(lowerCamelCase__ , "__name__" ): return obj.__name__ return str(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key, value in source.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = destination.setdefault(lowerCamelCase__ , {} ) merge_dicts(lowerCamelCase__ , lowerCamelCase__ ) else: lowerCamelCase_ = value return destination def lowerCamelCase_ ( lowerCamelCase__ = None ): if port is None: lowerCamelCase_ = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
47
0
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
348
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : List[Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : Dict =proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float: '''simple docstring''' return mean( function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None: '''simple docstring''' def identity_function(__lowerCAmelCase ) -> float: return x UpperCAmelCase : List[Any] =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Dict =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowercase_ = get_logger(__name__) class A_ : '''simple docstring''' def __init__( self: Any , a: Optional[str] = None ): __lowerCamelCase : Union[str, Any] = ( os.path.join(a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __lowerCamelCase : List[Any] = Extractor def _snake_case ( self: List[str] , a: str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __lowerCamelCase : Optional[Any] = os.path.abspath(a ) return os.path.join(self.extract_dir , hash_url_to_filename(a ) ) def _snake_case ( self: Dict , a: str , a: bool ): return force_extract or ( not os.path.isfile(a ) and not (os.path.isdir(a ) and os.listdir(a )) ) def _snake_case ( self: Tuple , a: str , a: bool = False ): __lowerCamelCase : Dict = self.extractor.infer_extractor_format(a ) if not extractor_format: return input_path __lowerCamelCase : Dict = self._get_output_path(a ) if self._do_extract(a , a ): self.extractor.extract(a , a , a ) return output_path class A_ ( __UpperCamelCase ): '''simple docstring''' @classmethod @abstractmethod def _snake_case ( cls: int , a: Union[Path, str] , **a: List[Any] ): ... @staticmethod @abstractmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): ... class A_ ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __snake_case = [] @staticmethod def _snake_case ( a: Union[Path, str] , a: int ): with open(a , 'rb' ) as f: return f.read(a ) @classmethod def _snake_case ( cls: str , a: Union[Path, str] , a: bytes = b"" ): if not magic_number: __lowerCamelCase : Optional[Any] = max(len(a ) for cls_magic_number in cls.magic_numbers ) try: __lowerCamelCase : Tuple = cls.read_magic_number(a , a ) except OSError: return False return any(magic_number.startswith(a ) for cls_magic_number in cls.magic_numbers ) class A_ ( __UpperCamelCase ): '''simple docstring''' @classmethod def _snake_case ( cls: List[Any] , a: Union[Path, str] , **a: Tuple ): return tarfile.is_tarfile(a ) @staticmethod def _snake_case ( a: Optional[int] , a: int ): def resolved(a: str ) -> str: return os.path.realpath(os.path.abspath(a ) ) def badpath(a: str , a: str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(a , a ) ).startswith(a ) def badlink(a: Any , a: str ) -> bool: # Links are interpreted relative to the directory containing the link __lowerCamelCase : List[str] = resolved(os.path.join(a , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=a ) __lowerCamelCase : Tuple = resolved(a ) for finfo in members: if badpath(finfo.name , a ): logger.error(F'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(a , a ): logger.error(F'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(a , a ): logger.error(F'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): os.makedirs(a , exist_ok=a ) __lowerCamelCase : List[str] = tarfile.open(a ) tar_file.extractall(a , members=TarExtractor.safemembers(a , a ) ) tar_file.close() class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [B"""\x1F\x8B"""] @staticmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): with gzip.open(a , 'rb' ) as gzip_file: with open(a , 'wb' ) as extracted_file: shutil.copyfileobj(a , a ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [ B"""PK\x03\x04""", B"""PK\x05\x06""", # empty archive B"""PK\x07\x08""", # spanned archive ] @classmethod def _snake_case ( cls: List[str] , a: Union[Path, str] , a: bytes = b"" ): if super().is_extractable(a , magic_number=a ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(a , 'rb' ) as fp: __lowerCamelCase : Dict = _EndRecData(a ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __lowerCamelCase : Dict = fp.read(a ) # CD is where we expect it to be if len(a ) == sizeCentralDir: __lowerCamelCase : Optional[int] = struct.unpack(a , a ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): os.makedirs(a , exist_ok=a ) with zipfile.ZipFile(a , 'r' ) as zip_file: zip_file.extractall(a ) zip_file.close() class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [B"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): with lzma.open(a ) as compressed_file: with open(a , 'wb' ) as extracted_file: shutil.copyfileobj(a , a ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(a , exist_ok=a ) __lowerCamelCase : Tuple = rarfile.RarFile(a ) rf.extractall(a ) rf.close() class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [B"""\x28\xb5\x2F\xFD"""] @staticmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd __lowerCamelCase : Union[str, Any] = zstd.ZstdDecompressor() with open(a , 'rb' ) as ifh, open(a , 'wb' ) as ofh: dctx.copy_stream(a , a ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [B"""\x42\x5A\x68"""] @staticmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): with bza.open(a , 'rb' ) as compressed_file: with open(a , 'wb' ) as extracted_file: shutil.copyfileobj(a , a ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [B"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(a , exist_ok=a ) with pyazr.SevenZipFile(a , 'r' ) as archive: archive.extractall(a ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [B"""\x04\x22\x4D\x18"""] @staticmethod def _snake_case ( a: Union[Path, str] , a: Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(a , 'rb' ) as compressed_file: with open(a , 'wb' ) as extracted_file: shutil.copyfileobj(a , a ) class A_ : '''simple docstring''' __snake_case = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _snake_case ( cls: Dict ): return max( len(a ) for extractor in cls.extractors.values() if issubclass(a , a ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _snake_case ( a: Union[Path, str] , a: int ): try: return MagicNumberBaseExtractor.read_magic_number(a , magic_number_length=a ) except OSError: return b"" @classmethod def _snake_case ( cls: Tuple , a: Union[Path, str] , a: bool = False ): warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=a , ) __lowerCamelCase : List[str] = cls.infer_extractor_format(a ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _snake_case ( cls: List[Any] , a: Union[Path, str] ): # <Added version="2.4.0"/> __lowerCamelCase : Optional[int] = cls._get_magic_number_max_length() __lowerCamelCase : List[Any] = cls._read_magic_number(a , a ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(a , magic_number=a ): return extractor_format @classmethod def _snake_case ( cls: int , a: Union[Path, str] , a: Union[Path, str] , a: Optional[str] = None , a: Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(a ) , exist_ok=a ) # Prevent parallel extractions __lowerCamelCase : Union[str, Any] = str(Path(a ).with_suffix('.lock' ) ) with FileLock(a ): shutil.rmtree(a , ignore_errors=a ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(a , a ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=a , ) __lowerCamelCase : Dict = extractor if extractor != 'deprecated' else extractor_format else: __lowerCamelCase : Union[str, Any] = cls.extractors[extractor_format] return extractor.extract(a , a ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(a ): return extractor.extract(a , a )
194
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[str] = np.inf def set_batch_size(SCREAMING_SNAKE_CASE__ ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and feature.dtype == "binary": __lowerCamelCase : List[str] = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None if batch_size is np.inf else batch_size class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Tuple , a: NestedDataStructureLike[PathLike] , a: Optional[NamedSplit] = None , a: Optional[Features] = None , a: str = None , a: bool = False , a: bool = False , a: Optional[int] = None , **a: Optional[Any] , ): super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) __lowerCamelCase : List[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} __lowerCamelCase : Optional[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1] __lowerCamelCase : List[str] = Parquet( cache_dir=a , data_files=a , features=a , hash=a , **a , ) def _snake_case ( self: List[str] ): # Build iterable dataset if self.streaming: __lowerCamelCase : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase : str = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : int = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) __lowerCamelCase : Tuple = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class A_ : '''simple docstring''' def __init__( self: Optional[int] , a: Dataset , a: Union[PathLike, BinaryIO] , a: Optional[int] = None , **a: List[Any] , ): __lowerCamelCase : Optional[int] = dataset __lowerCamelCase : List[Any] = path_or_buf __lowerCamelCase : List[str] = batch_size or get_writer_batch_size(dataset.features ) __lowerCamelCase : List[Any] = parquet_writer_kwargs def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Optional[int] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __lowerCamelCase : Optional[int] = self._write(file_obj=a , batch_size=a , **self.parquet_writer_kwargs ) else: __lowerCamelCase : Any = self._write(file_obj=self.path_or_buf , batch_size=a , **self.parquet_writer_kwargs ) return written def _snake_case ( self: Optional[int] , a: BinaryIO , a: int , **a: str ): __lowerCamelCase : Dict = 0 __lowerCamelCase : Union[str, Any] = parquet_writer_kwargs.pop('path_or_buf' , a ) __lowerCamelCase : str = self.dataset.features.arrow_schema __lowerCamelCase : Any = pq.ParquetWriter(a , schema=a , **a ) for offset in logging.tqdm( range(0 , len(self.dataset ) , a ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __lowerCamelCase : Any = query_table( table=self.dataset._data , key=slice(a , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(a ) written += batch.nbytes writer.close() return written
194
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Optional[int]: _A : Optional[int] = size if size is not None else {"""shortest_edge""": 18} _A : Optional[Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _A : Tuple = parent _A : int = batch_size _A : int = num_channels _A : int = image_size _A : Optional[Any] = min_resolution _A : Any = max_resolution _A : Any = do_resize _A : Any = size _A : Optional[Any] = do_center_crop _A : str = crop_size _A : Union[str, Any] = do_normalize _A : Any = image_mean _A : Dict = image_std def a__ ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = LevitImageProcessor if is_vision_available() else None def a__ ( self ) -> List[Any]: _A : Optional[Any] = LevitImageProcessingTester(self ) @property def a__ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Tuple: _A : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """do_center_crop""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Optional[Any]: _A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _A : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Tuple: # Initialize image_processing _A : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _A : Union[str, Any] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def a__ ( self ) -> str: # Initialize image_processing _A : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _A : Tuple = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
26
class A__ : def __init__( self : Optional[Any] , a : list ): '''simple docstring''' lowerCAmelCase__ : Dict = set_counts lowerCAmelCase__ : str = max(a ) lowerCAmelCase__ : Any = len(a ) lowerCAmelCase__ : List[str] = [1] * num_sets lowerCAmelCase__ : Dict = list(range(a ) ) def _lowerCamelCase ( self : Dict , a : int , a : int ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.get_parent(a ) lowerCAmelCase__ : Tuple = self.get_parent(a ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase__ : List[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Tuple = src_parent lowerCAmelCase__ : Optional[int] = self.set_counts[src_parent] lowerCAmelCase__ : Optional[Any] = max(self.max_set , a ) return True def _lowerCamelCase ( self : Any , a : int ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase__ : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
212
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( a_, a_, a_, a_, a_, ): '''simple docstring''' lowerCamelCase : Optional[int] = len(a_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(a_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col], [*diagonal_right_collisions, row - col], [*diagonal_left_collisions, row + col], a_, a_, ) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : list[list[str]] = [] depth_first_search([], [], [], a_, a_ ) # Print all the boards for board in boards: for column in board: print(a_ ) print('' ) print(len(a_ ), 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
205
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'sew-d' def __init__( self , UpperCAmelCase_=32 , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_=2 , UpperCAmelCase_=512 , UpperCAmelCase_=256 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=("p2c", "c2p") , UpperCAmelCase_="layer_norm" , UpperCAmelCase_="gelu_python" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-7 , UpperCAmelCase_=1E-5 , UpperCAmelCase_="group" , UpperCAmelCase_="gelu" , UpperCAmelCase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase_=False , UpperCAmelCase_=128 , UpperCAmelCase_=16 , UpperCAmelCase_=True , UpperCAmelCase_=0.05 , UpperCAmelCase_=10 , UpperCAmelCase_=2 , UpperCAmelCase_=0.0 , UpperCAmelCase_=10 , UpperCAmelCase_=0 , UpperCAmelCase_="mean" , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=256 , UpperCAmelCase_=0 , UpperCAmelCase_=1 , UpperCAmelCase_=2 , **UpperCAmelCase_ , ) -> Optional[Any]: super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCamelCase : Any = hidden_size lowerCamelCase : Any = feat_extract_norm lowerCamelCase : List[str] = feat_extract_activation lowerCamelCase : str = list(UpperCAmelCase_ ) lowerCamelCase : Any = list(UpperCAmelCase_ ) lowerCamelCase : str = list(UpperCAmelCase_ ) lowerCamelCase : List[Any] = conv_bias lowerCamelCase : Optional[int] = num_conv_pos_embeddings lowerCamelCase : str = num_conv_pos_embedding_groups lowerCamelCase : Optional[int] = len(self.conv_dim ) lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : str = squeeze_factor lowerCamelCase : Any = max_position_embeddings lowerCamelCase : List[Any] = position_buckets lowerCamelCase : Union[str, Any] = share_att_key lowerCamelCase : Optional[int] = relative_attention lowerCamelCase : Tuple = norm_rel_ebd lowerCamelCase : Union[str, Any] = list(UpperCAmelCase_ ) lowerCamelCase : List[Any] = hidden_act lowerCamelCase : Optional[Any] = num_attention_heads lowerCamelCase : Tuple = hidden_dropout lowerCamelCase : List[Any] = attention_dropout lowerCamelCase : Optional[Any] = activation_dropout lowerCamelCase : List[str] = feat_proj_dropout lowerCamelCase : List[str] = final_dropout lowerCamelCase : str = layer_norm_eps lowerCamelCase : int = feature_layer_norm_eps lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase : Any = apply_spec_augment lowerCamelCase : Optional[int] = mask_time_prob lowerCamelCase : Optional[Any] = mask_time_length lowerCamelCase : str = mask_time_min_masks lowerCamelCase : List[Any] = mask_feature_prob lowerCamelCase : int = mask_feature_length lowerCamelCase : List[Any] = mask_feature_min_masks # ctc loss lowerCamelCase : Optional[Any] = ctc_loss_reduction lowerCamelCase : Union[str, Any] = ctc_zero_infinity # sequence classification lowerCamelCase : Optional[Any] = use_weighted_layer_sum lowerCamelCase : Dict = classifier_proj_size @property def _UpperCamelCase ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
205
1
"""simple docstring""" from __future__ import annotations class __snake_case : def __init__( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = text, pattern _lowerCamelCase , _lowerCamelCase : Optional[int] = len(__lowerCAmelCase ), len(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCamelCase : str = self.mismatch_in_text(__lowerCAmelCase ) if mismatch_index == -1: positions.append(__lowerCAmelCase ) else: _lowerCamelCase : str = self.match_in_pattern(self.text[mismatch_index] ) _lowerCamelCase : str = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase__ = '''ABAABA''' lowerCAmelCase__ = '''AB''' lowerCAmelCase__ = BoyerMooreSearch(text, pattern) lowerCAmelCase__ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
72
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase__ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } class __snake_case ( _lowercase): snake_case__ : Any = VOCAB_FILES_NAMES snake_case__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[int] = ["input_ids", "attention_mask"] snake_case__ : Any = BartTokenizer def __init__( self : int , __lowerCAmelCase : Dict=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[Any]="replace" , __lowerCAmelCase : Any="<s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : str="</s>" , __lowerCAmelCase : Dict="<s>" , __lowerCAmelCase : Union[str, Any]="<unk>" , __lowerCAmelCase : Any="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=True , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: _lowerCamelCase : Dict = getattr(__lowerCAmelCase , pre_tok_state.pop('''type''' ) ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : int = pre_tok_class(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = '''post_processor''' _lowerCamelCase : List[str] = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: _lowerCamelCase : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : Tuple = tuple(state['''sep'''] ) if "cls" in state: _lowerCamelCase : int = tuple(state['''cls'''] ) _lowerCamelCase : Union[str, Any] = False if state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: _lowerCamelCase : Dict = add_prefix_space _lowerCamelCase : Optional[Any] = True if state.get('''trim_offsets''' , __lowerCAmelCase ) != trim_offsets: _lowerCamelCase : Any = trim_offsets _lowerCamelCase : str = True if changes_to_apply: _lowerCamelCase : List[str] = getattr(__lowerCAmelCase , state.pop('''type''' ) ) _lowerCamelCase : str = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Tuple = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value _lowerCamelCase : str = value def SCREAMING_SNAKE_CASE ( self : int , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Dict = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): """simple docstring""" _lowerCamelCase : Tuple = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" _lowerCamelCase : List[str] = [self.sep_token_id] _lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
72
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = ['pixel_values'] def __init__( self: Dict , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: bool = True , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = size if size is not None else {"""shortest_edge""": 2_24} __lowerCamelCase = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __lowerCamelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __lowerCamelCase = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ , param_name="""crop_size""" ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Union[str, Any] , ): __lowerCamelCase = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __lowerCamelCase = get_resize_output_image_size(UpperCamelCase_ , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple , ): __lowerCamelCase = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(UpperCamelCase_ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[int, float] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Optional[Any] , ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: int , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: ImageInput , UpperCamelCase_: bool = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = None , UpperCamelCase_: bool = None , UpperCamelCase_: int = None , UpperCamelCase_: bool = None , UpperCamelCase_: float = None , UpperCamelCase_: bool = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: bool = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(UpperCamelCase_ , param_name="""size""" , default_to_square=UpperCamelCase_ ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(UpperCamelCase_ , param_name="""crop_size""" , default_to_square=UpperCamelCase_ ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(UpperCamelCase_ ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
29
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowerCamelCase =logging.get_logger(__name__) @dataclass class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : int = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **__magic_name__ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCamelCase : List[str] = deprecated_arg[3:] lowerCamelCase : int = not kwargs.pop(__magic_name__ ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) lowerCamelCase : List[str] = kwargs.pop("""tpu_name""" , self.tpu_name ) lowerCamelCase : Optional[int] = kwargs.pop("""device_idx""" , self.device_idx ) lowerCamelCase : Dict = kwargs.pop("""eager_mode""" , self.eager_mode ) lowerCamelCase : str = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**__magic_name__ ) _UpperCAmelCase : str = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Name of TPU"""} , ) _UpperCAmelCase : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) _UpperCAmelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Benchmark models in eager model."""}) _UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def UpperCamelCase__ ( self ): requires_backends(self , ["""tf"""] ) lowerCamelCase : Union[str, Any] = None if self.tpu: try: if self.tpu_name: lowerCamelCase : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowerCamelCase : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowerCamelCase : List[Any] = None return tpu @cached_property def UpperCamelCase__ ( self ): requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowerCamelCase : Tuple = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowerCamelCase : Dict = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowerCamelCase : Tuple = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def UpperCamelCase__ ( self ): requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def UpperCamelCase__ ( self ): requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def UpperCamelCase__ ( self ): requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def UpperCamelCase__ ( self ): requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase__ ( self ): return self.n_gpu > 0
287
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCamelCase : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase : str = model(__magic_name__ )["""last_hidden_state"""] lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. lowerCamelCase : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
287
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Dict = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _snake_case ( snake_case ): UpperCamelCase__ = 'biogpt' def __init__( self , _a=42_384 , _a=1_024 , _a=24 , _a=16 , _a=4_096 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_024 , _a=0.02 , _a=1e-12 , _a=True , _a=True , _a=0.0 , _a=0.0 , _a=1 , _a=0 , _a=2 , **_a , ): __magic_name__ : List[str] = vocab_size __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Dict = hidden_size __magic_name__ : Optional[Any] = num_hidden_layers __magic_name__ : Optional[Any] = num_attention_heads __magic_name__ : List[str] = intermediate_size __magic_name__ : str = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : str = initializer_range __magic_name__ : int = layer_norm_eps __magic_name__ : Any = scale_embedding __magic_name__ : List[str] = use_cache __magic_name__ : int = layerdrop __magic_name__ : List[str] = activation_dropout super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
41
from __future__ import annotations snake_case : Optional[int] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class _snake_case : def __init__( self , _a , _a ): __magic_name__ : Any = graph # mapping node to its parent in resulting breadth first tree __magic_name__ : dict[str, str | None] = {} __magic_name__ : List[str] = source_vertex def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = {self.source_vertex} __magic_name__ : Optional[int] = None __magic_name__ : int = [self.source_vertex] # first in first out queue while queue: __magic_name__ : Optional[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_a ) __magic_name__ : Dict = vertex queue.append(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): if target_vertex == self.source_vertex: return self.source_vertex __magic_name__ : str = self.parent.get(_a ) if target_vertex_parent is None: __magic_name__ : Union[str, Any] = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_a ) return self.shortest_path(_a ) + f'''->{target_vertex}''' if __name__ == "__main__": snake_case : int = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
41
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __SCREAMING_SNAKE_CASE : Dict = get_logger(__name__) class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , A : Optional[str] = None ): _UpperCAmelCase : Dict = ( os.path.join(A , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCAmelCase : Union[str, Any] = Extractor def _A ( self : Tuple , A : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCAmelCase : Dict = os.path.abspath(A ) return os.path.join(self.extract_dir , hash_url_to_filename(A ) ) def _A ( self : int , A : str , A : bool ): return force_extract or ( not os.path.isfile(A ) and not (os.path.isdir(A ) and os.listdir(A )) ) def _A ( self : Optional[int] , A : str , A : bool = False ): _UpperCAmelCase : Union[str, Any] = self.extractor.infer_extractor_format(A ) if not extractor_format: return input_path _UpperCAmelCase : Optional[Any] = self._get_output_path(A ) if self._do_extract(A , A ): self.extractor.extract(A , A , A ) return output_path class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @classmethod @abstractmethod def _A ( cls : str , A : Union[Path, str] , **A : Dict ): ... @staticmethod @abstractmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): ... class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: List[bytes] = [] @staticmethod def _A ( A : Union[Path, str] , A : int ): with open(A , "rb" ) as f: return f.read(A ) @classmethod def _A ( cls : Any , A : Union[Path, str] , A : bytes = b"" ): if not magic_number: _UpperCAmelCase : Any = max(len(A ) for cls_magic_number in cls.magic_numbers ) try: _UpperCAmelCase : int = cls.read_magic_number(A , A ) except OSError: return False return any(magic_number.startswith(A ) for cls_magic_number in cls.magic_numbers ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @classmethod def _A ( cls : str , A : Union[Path, str] , **A : List[Any] ): return tarfile.is_tarfile(A ) @staticmethod def _A ( A : Union[str, Any] , A : str ): def resolved(A : str ) -> str: return os.path.realpath(os.path.abspath(A ) ) def badpath(A : str , A : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(A , A ) ).startswith(A ) def badlink(A : str , A : str ) -> bool: # Links are interpreted relative to the directory containing the link _UpperCAmelCase : List[str] = resolved(os.path.join(A , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=A ) _UpperCAmelCase : Optional[int] = resolved(A ) for finfo in members: if badpath(finfo.name , A ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(A , A ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(A , A ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): os.makedirs(A , exist_ok=A ) _UpperCAmelCase : int = tarfile.open(A ) tar_file.extractall(A , members=TarExtractor.safemembers(A , A ) ) tar_file.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = [b"\x1F\x8B"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with gzip.open(A , "rb" ) as gzip_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def _A ( cls : Dict , A : Union[Path, str] , A : bytes = b"" ): if super().is_extractable(A , magic_number=A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(A , "rb" ) as fp: _UpperCAmelCase : Tuple = _EndRecData(A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCAmelCase : Dict = fp.read(A ) # CD is where we expect it to be if len(A ) == sizeCentralDir: _UpperCAmelCase : Any = struct.unpack(A , A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): os.makedirs(A , exist_ok=A ) with zipfile.ZipFile(A , "r" ) as zip_file: zip_file.extractall(A ) zip_file.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with lzma.open(A ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(A , exist_ok=A ) _UpperCAmelCase : List[str] = rarfile.RarFile(A ) rf.extractall(A ) rf.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = [b"\x28\xb5\x2F\xFD"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd _UpperCAmelCase : Optional[Any] = zstd.ZstdDecompressor() with open(A , "rb" ) as ifh, open(A , "wb" ) as ofh: dctx.copy_stream(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = [b"\x42\x5A\x68"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with bza.open(A , "rb" ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(A , exist_ok=A ) with pyazr.SevenZipFile(A , "r" ) as archive: archive.extractall(A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = [b"\x04\x22\x4D\x18"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(A , "rb" ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _A ( cls : List[Any] ): return max( len(A ) for extractor in cls.extractors.values() if issubclass(A , A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _A ( A : Union[Path, str] , A : int ): try: return MagicNumberBaseExtractor.read_magic_number(A , magic_number_length=A ) except OSError: return b"" @classmethod def _A ( cls : Optional[Any] , A : Union[Path, str] , A : bool = False ): warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=A , ) _UpperCAmelCase : Union[str, Any] = cls.infer_extractor_format(A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _A ( cls : Dict , A : Union[Path, str] ): # <Added version="2.4.0"/> _UpperCAmelCase : Optional[int] = cls._get_magic_number_max_length() _UpperCAmelCase : str = cls._read_magic_number(A , A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(A , magic_number=A ): return extractor_format @classmethod def _A ( cls : List[str] , A : Union[Path, str] , A : Union[Path, str] , A : Optional[str] = None , A : Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(A ) , exist_ok=A ) # Prevent parallel extractions _UpperCAmelCase : Tuple = str(Path(A ).with_suffix(".lock" ) ) with FileLock(A ): shutil.rmtree(A , ignore_errors=A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(A , A ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=A , ) _UpperCAmelCase : Tuple = extractor if extractor != "deprecated" else extractor_format else: _UpperCAmelCase : Tuple = cls.extractors[extractor_format] return extractor.extract(A , A ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=A , ) for extractor in cls.extractors.values(): if extractor.is_extractable(A ): return extractor.extract(A , A )
31
0
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# __snake_case : Tuple = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] __snake_case : List[str] = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] __snake_case : int = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks __snake_case : Optional[int] = f'down_blocks.{i}.resnets.{j}.' __snake_case : Union[str, Any] = f'input_blocks.{3*i + j + 1}.0.' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 __snake_case : List[str] = f'down_blocks.{i}.attentions.{j}.' __snake_case : Dict = f'input_blocks.{3*i + j + 1}.1.' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks __snake_case : Dict = f'up_blocks.{i}.resnets.{j}.' __snake_case : Union[str, Any] = f'output_blocks.{3*i + j}.0.' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 __snake_case : str = f'up_blocks.{i}.attentions.{j}.' __snake_case : str = f'output_blocks.{3*i + j}.1.' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 __snake_case : str = f'down_blocks.{i}.downsamplers.0.conv.' __snake_case : str = f'input_blocks.{3*(i+1)}.0.op.' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 __snake_case : int = f'up_blocks.{i}.upsamplers.0.' __snake_case : Optional[Any] = f'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) __snake_case : List[str] = """mid_block.attentions.0.""" __snake_case : Union[str, Any] = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): __snake_case : List[Any] = f'mid_block.resnets.{j}.' __snake_case : Optional[Any] = f'middle_block.{2*j}.' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _UpperCamelCase ( lowerCAmelCase : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCAmelCase__ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCAmelCase__ = v.replace(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase__ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCAmelCase__ = v.replace(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase__ = v lowerCAmelCase__ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# __snake_case : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): __snake_case : Any = f'encoder.down_blocks.{i}.resnets.{j}.' __snake_case : Union[str, Any] = f'encoder.down.{i}.block.{j}.' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: __snake_case : Optional[int] = f'down_blocks.{i}.downsamplers.0.' __snake_case : Optional[int] = f'down.{i}.downsample.' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) __snake_case : str = f'up_blocks.{i}.upsamplers.0.' __snake_case : Any = f'up.{3-i}.upsample.' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): __snake_case : int = f'decoder.up_blocks.{i}.resnets.{j}.' __snake_case : List[Any] = f'decoder.up.{3-i}.block.{j}.' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): __snake_case : List[str] = f'mid_block.resnets.{i}.' __snake_case : Optional[Any] = f'mid.block_{i+1}.' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) __snake_case : Tuple = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def _UpperCamelCase ( lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _UpperCamelCase ( lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCAmelCase__ = v.replace(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase__ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCAmelCase__ = v.replace(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase__ = v lowerCAmelCase__ = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCAmelCase__ = ['q', 'k', 'v', 'proj_out'] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"mid.attn_1.{weight_name}.weight" in k: print(F"Reshaping {k} for SD format" ) lowerCAmelCase__ = reshape_weight_for_sd(lowerCAmelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# __snake_case : Optional[int] = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] __snake_case : str = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} __snake_case : int = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp __snake_case : Optional[int] = {"""q""": 0, """k""": 1, """v""": 2} def _UpperCamelCase ( lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} for k, v in text_enc_dict.items(): if ( k.endswith('.self_attn.q_proj.weight' ) or k.endswith('.self_attn.k_proj.weight' ) or k.endswith('.self_attn.v_proj.weight' ) ): lowerCAmelCase__ = k[: -len('.q_proj.weight' )] lowerCAmelCase__ = k[-len('q_proj.weight' )] if k_pre not in capture_qkv_weight: lowerCAmelCase__ = [None, None, None] lowerCAmelCase__ = v continue if ( k.endswith('.self_attn.q_proj.bias' ) or k.endswith('.self_attn.k_proj.bias' ) or k.endswith('.self_attn.v_proj.bias' ) ): lowerCAmelCase__ = k[: -len('.q_proj.bias' )] lowerCAmelCase__ = k[-len('q_proj.bias' )] if k_pre not in capture_qkv_bias: lowerCAmelCase__ = [None, None, None] lowerCAmelCase__ = v continue lowerCAmelCase__ = textenc_pattern.sub(lambda lowerCAmelCase : protected[re.escape(m.group(0 ) )] , lowerCAmelCase ) lowerCAmelCase__ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) lowerCAmelCase__ = textenc_pattern.sub(lambda lowerCAmelCase : protected[re.escape(m.group(0 ) )] , lowerCAmelCase ) lowerCAmelCase__ = torch.cat(lowerCAmelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) lowerCAmelCase__ = textenc_pattern.sub(lambda lowerCAmelCase : protected[re.escape(m.group(0 ) )] , lowerCAmelCase ) lowerCAmelCase__ = torch.cat(lowerCAmelCase ) return new_state_dict def _UpperCamelCase ( lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" return text_enc_dict if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) __snake_case : List[str] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors __snake_case : int = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") __snake_case : Union[str, Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") __snake_case : Union[str, Any] = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): __snake_case : Dict = load_file(unet_path, device="""cpu""") else: __snake_case : Dict = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") __snake_case : int = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): __snake_case : Dict = load_file(vae_path, device="""cpu""") else: __snake_case : int = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") __snake_case : Tuple = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): __snake_case : Optional[int] = load_file(text_enc_path, device="""cpu""") else: __snake_case : int = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") __snake_case : Union[str, Any] = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model __snake_case : List[Any] = convert_unet_state_dict(unet_state_dict) __snake_case : int = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model __snake_case : List[Any] = convert_vae_state_dict(vae_state_dict) __snake_case : int = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper __snake_case : List[Any] = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm __snake_case : Tuple = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} __snake_case : Optional[int] = convert_text_enc_state_dict_vaa(text_enc_dict) __snake_case : Dict = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: __snake_case : List[str] = convert_text_enc_state_dict(text_enc_dict) __snake_case : Any = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint __snake_case : Optional[Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: __snake_case : Optional[int] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: __snake_case : Optional[int] = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
361
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : List[Any] = '''microsoft/speecht5_tts''' _SCREAMING_SNAKE_CASE : Any = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _SCREAMING_SNAKE_CASE : int = '''text_reader''' _SCREAMING_SNAKE_CASE : List[str] = SpeechTaProcessor _SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaForTextToSpeech _SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGan _SCREAMING_SNAKE_CASE : Optional[int] = ['''text'''] _SCREAMING_SNAKE_CASE : List[Any] = ['''audio'''] def UpperCamelCase__ ( self ): """simple docstring""" if self.post_processor is None: lowerCAmelCase__ = 'microsoft/speecht5_hifigan' super().setup() def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ = self.pre_processor(text=_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) lowerCAmelCase__ = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) lowerCAmelCase__ = torch.tensor(embeddings_dataset[73_05]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.post_processor(_UpperCamelCase ).cpu().detach()
122
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Union[str, Any]=7 , lowerCamelCase_ :Union[str, Any]=3 , lowerCamelCase_ :Union[str, Any]=30 , lowerCamelCase_ :List[str]=400 , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Dict=0.9 , lowerCamelCase_ :Dict=None , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :str=[0.5, 0.5, 0.5] , lowerCamelCase_ :str=[0.5, 0.5, 0.5] , ): """simple docstring""" lowerCamelCase__ : Tuple =size if size is not None else {'shortest_edge': 30} lowerCamelCase__ : Optional[int] =crop_size if crop_size is not None else {'height': 30, 'width': 30} lowerCamelCase__ : str =parent lowerCamelCase__ : Optional[int] =batch_size lowerCamelCase__ : int =num_channels lowerCamelCase__ : int =min_resolution lowerCamelCase__ : Optional[Any] =max_resolution lowerCamelCase__ : List[Any] =do_resize_and_center_crop lowerCamelCase__ : List[str] =size lowerCamelCase__ : Optional[Any] =crop_pct lowerCamelCase__ : Tuple =crop_size lowerCamelCase__ : List[str] =do_normalize lowerCamelCase__ : List[Any] =image_mean lowerCamelCase__ : Tuple =image_std def UpperCAmelCase__ ( self :Any ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A_ ( A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : Optional[int] =PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : Tuple =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'crop_pct' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_std' ) ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : List[str] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) lowerCamelCase__ : str =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase__ ( self :str ): """simple docstring""" pass def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input lowerCamelCase__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Dict =image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input lowerCamelCase__ : Dict =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Union[str, Any] =image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : str =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input lowerCamelCase__ : Any =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Optional[Any] =image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
126
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : List[str] ) ->List[str]: print('Loading config file...' ) def flatten_yaml_as_dict(snake_case_ : str , snake_case_ : Optional[int]="" , snake_case_ : Optional[Any]="." ): lowerCamelCase__ : Union[str, Any] =[] for k, v in d.items(): lowerCamelCase__ : Any =parent_key + sep + k if parent_key else k if isinstance(snake_case_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_ , snake_case_ , sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) lowerCamelCase__ : str =argparse.Namespace() with open(snake_case_ , 'r' ) as yaml_file: try: lowerCamelCase__ : Union[str, Any] =yaml.load(snake_case_ , Loader=yaml.FullLoader ) lowerCamelCase__ : List[Any] =flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_ , snake_case_ , snake_case_ ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(snake_case_ , str(snake_case_ ) ) ) return config def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Optional[Any] ) ->List[Any]: lowerCamelCase__ : Tuple =MobileViTVaConfig() lowerCamelCase__ : List[Any] =False # dataset if task_name.startswith('imagenet1k_' ): lowerCamelCase__ : List[str] =1_0_0_0 if int(task_name.strip().split('_' )[-1] ) == 3_8_4: lowerCamelCase__ : Optional[int] =3_8_4 else: lowerCamelCase__ : Dict =2_5_6 lowerCamelCase__ : Dict ='imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): lowerCamelCase__ : Tuple =2_1_0_0_0 if int(task_name.strip().split('_' )[-1] ) == 3_8_4: lowerCamelCase__ : Tuple =3_8_4 else: lowerCamelCase__ : List[str] =2_5_6 lowerCamelCase__ : Any ='imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): lowerCamelCase__ : int =1_5_1 lowerCamelCase__ : int =5_1_2 lowerCamelCase__ : Dict ='ade20k-id2label.json' lowerCamelCase__ : Union[str, Any] =True elif task_name.startswith('voc_' ): lowerCamelCase__ : Optional[Any] =2_1 lowerCamelCase__ : Dict =5_1_2 lowerCamelCase__ : Union[str, Any] ='pascal-voc-id2label.json' lowerCamelCase__ : int =True # orig_config lowerCamelCase__ : Union[str, Any] =load_orig_config_file(snake_case_ ) assert getattr(snake_case_ , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" lowerCamelCase__ : List[str] =getattr(snake_case_ , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(snake_case_ , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCamelCase__ : List[Any] =getattr(snake_case_ , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCamelCase__ : str =getattr(snake_case_ , 'model.segmentation.output_stride' , 1_6 ) if "_deeplabv3" in task_name: lowerCamelCase__ : Dict =getattr(snake_case_ , 'model.segmentation.deeplabv3.aspp_rates' , [1_2, 2_4, 3_6] ) lowerCamelCase__ : str =getattr(snake_case_ , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_1_2 ) lowerCamelCase__ : Dict =getattr(snake_case_ , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label lowerCamelCase__ : Union[str, Any] ='huggingface/label-files' lowerCamelCase__ : List[Any] =json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : List[str] ={int(snake_case_ ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[int] =idalabel lowerCamelCase__ : List[str] ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : List[str] , snake_case_ : Tuple ) ->Tuple: lowerCamelCase__ : List[Any] =dct.pop(snake_case_ ) lowerCamelCase__ : str =val def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Any=False ) ->str: if base_model: lowerCamelCase__ : Tuple ='' else: lowerCamelCase__ : Optional[Any] ='mobilevitv2.' lowerCamelCase__ : Tuple =[] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCamelCase__ : Tuple =k[8:] else: lowerCamelCase__ : Tuple =k if ".block." in k: lowerCamelCase__ : Optional[Any] =k_new.replace('.block.' , '.' ) if ".conv." in k: lowerCamelCase__ : Union[str, Any] =k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: lowerCamelCase__ : Dict =k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: lowerCamelCase__ : Dict =k_new.replace('conv_1.' , f"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if f"""layer_{i}.""" in k: lowerCamelCase__ : Union[str, Any] =k_new.replace(f"""layer_{i}.""" , f"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: lowerCamelCase__ : Tuple =k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: lowerCamelCase__ : Union[str, Any] =k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f"""layer_{i}.0.""" in k: lowerCamelCase__ : Tuple =k_new.replace(f"""layer_{i}.0.""" , f"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if f"""layer_{i}.1.local_rep.0.""" in k: lowerCamelCase__ : Any =k_new.replace(f"""layer_{i}.1.local_rep.0.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if f"""layer_{i}.1.local_rep.1.""" in k: lowerCamelCase__ : Any =k_new.replace(f"""layer_{i}.1.local_rep.1.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: lowerCamelCase__ : Optional[int] =[0, 1] elif i == 4: lowerCamelCase__ : int =[0, 1, 2, 3] elif i == 5: lowerCamelCase__ : List[str] =[0, 1, 2] for j in j_in: if f"""layer_{i}.1.global_rep.{j}.""" in k: lowerCamelCase__ : Any =k_new.replace( f"""layer_{i}.1.global_rep.{j}.""" , f"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if f"""layer_{i}.1.global_rep.{j+1}.""" in k: lowerCamelCase__ : Optional[Any] =k_new.replace( f"""layer_{i}.1.global_rep.{j+1}.""" , f"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if f"""layer_{i}.1.conv_proj.""" in k: lowerCamelCase__ : Any =k_new.replace(f"""layer_{i}.1.conv_proj.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: lowerCamelCase__ : int =k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: lowerCamelCase__ : Optional[int] =k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: lowerCamelCase__ : List[str] =k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: lowerCamelCase__ : Any =k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: lowerCamelCase__ : Tuple =k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: lowerCamelCase__ : List[Any] =k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: lowerCamelCase__ : int =k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: lowerCamelCase__ : List[str] =k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: lowerCamelCase__ : Optional[int] =k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase_ ( snake_case_ : Tuple ) ->str: lowerCamelCase__ : str =[] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( ) ->Optional[int]: lowerCamelCase__ : List[str] ='http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCamelCase__ : Any =Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Dict , snake_case_ : Any , snake_case_ : List[str] ) ->Optional[int]: lowerCamelCase__ : int =get_mobilevitva_config(snake_case_ , snake_case_ ) # load original state_dict lowerCamelCase__ : List[str] =torch.load(snake_case_ , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): lowerCamelCase__ : List[str] =MobileViTVaForSemanticSegmentation(snake_case_ ).eval() lowerCamelCase__ : Optional[Any] =False else: lowerCamelCase__ : Union[str, Any] =MobileViTVaForImageClassification(snake_case_ ).eval() lowerCamelCase__ : List[Any] =False # remove and rename some keys of load the original model lowerCamelCase__ : Union[str, Any] =checkpoint remove_unused_keys(snake_case_ ) lowerCamelCase__ : List[str] =create_rename_keys(snake_case_ , base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase__ : str =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) lowerCamelCase__ : int =image_processor(images=prepare_img() , return_tensors='pt' ) lowerCamelCase__ : Optional[int] =model(**snake_case_ ) # verify classification model if task_name.startswith('imagenet' ): lowerCamelCase__ : Tuple =outputs.logits lowerCamelCase__ : Optional[int] =logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCamelCase__ : Tuple =torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
126
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCAmelCase_ ( ): lowercase_ :Optional[int] = HfArgumentParser(lowerCAmelCase__ ) lowercase_ :int = parser.parse_args_into_dataclasses()[0] lowercase_ :List[Any] = TensorFlowBenchmark(args=lowerCAmelCase__ ) try: lowercase_ :Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase_ :List[str] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase_ :Dict = """ """.join(str(lowerCAmelCase__ ).split(" " )[:-1] ) lowercase_ :Any = """""" lowercase_ :List[Any] = eval(str(lowerCAmelCase__ ).split(" " )[-1] ) lowercase_ :Union[str, Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase_ :Tuple = full_error_msg + begin_error_msg + str(lowerCAmelCase__ ) raise ValueError(lowerCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
366
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : list ): if len(__lowerCamelCase ) <= 1: return lst lowercase_ :Optional[Any] = 1 while i < len(__lowerCamelCase ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase_ , lowercase_ :int = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase_ :Dict = 1 return lst if __name__ == "__main__": lowerCAmelCase : Any =input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase : List[str] =[int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
147
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } __lowercase = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class _A ( _a ): """simple docstring""" UpperCAmelCase : str = VOCAB_FILES_NAMES UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Any = ["""input_ids""", """attention_mask"""] UpperCAmelCase : int = RobertaTokenizer def __init__( self : Tuple , __UpperCAmelCase : Any=None , __UpperCAmelCase : str=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]="replace" , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : str="<s>" , __UpperCAmelCase : Dict="<unk>" , __UpperCAmelCase : Dict="<pad>" , __UpperCAmelCase : Dict="<mask>" , __UpperCAmelCase : int=False , __UpperCAmelCase : Dict=True , **__UpperCAmelCase : Dict , ): super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , ) a : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , __UpperCAmelCase) != add_prefix_space: a : Optional[Any] = getattr(__UpperCAmelCase , pre_tok_state.pop("type")) a : Optional[int] = add_prefix_space a : Dict = pre_tok_class(**__UpperCAmelCase) a : Tuple = add_prefix_space a : str = "post_processor" a : Dict = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase) if tokenizer_component_instance: a : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a : int = tuple(state["sep"]) if "cls" in state: a : Any = tuple(state["cls"]) a : Dict = False if state.get("add_prefix_space" , __UpperCAmelCase) != add_prefix_space: a : Optional[int] = add_prefix_space a : int = True if state.get("trim_offsets" , __UpperCAmelCase) != trim_offsets: a : List[str] = trim_offsets a : List[str] = True if changes_to_apply: a : str = getattr(__UpperCAmelCase , state.pop("type")) a : Optional[int] = component_class(**__UpperCAmelCase) setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase) @property def __snake_case ( self : List[Any]): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def __snake_case ( self : int , __UpperCAmelCase : Any): a : Any = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) else value a : str = value def __snake_case ( self : Dict , *__UpperCAmelCase : int , **__UpperCAmelCase : Tuple): a : Tuple = kwargs.get("is_split_into_words" , __UpperCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Optional[int] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : List[Any]): a : Dict = kwargs.get("is_split_into_words" , __UpperCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None): a : str = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase) return tuple(__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Dict=None): a : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __snake_case ( self : List[str] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None): a : Tuple = [self.sep_token_id] a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
40
"""simple docstring""" import os import sys import unittest __lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowercase = os.path.join(git_repo_path, """src""", """diffusers""") class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Any): a : List[Any] = find_backend(" if not is_torch_available():") self.assertEqual(__UpperCAmelCase , "torch") # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") a : Dict = find_backend(" if not (is_torch_available() and is_transformers_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers") # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") a : int = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers_and_onnx") def __snake_case ( self : Union[str, Any]): a : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , __UpperCAmelCase) self.assertIn("torch_and_transformers" , __UpperCAmelCase) self.assertIn("flax_and_transformers" , __UpperCAmelCase) self.assertIn("torch_and_transformers_and_onnx" , __UpperCAmelCase) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"]) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"]) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"]) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"]) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"]) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"]) def __snake_case ( self : Tuple): a : Optional[int] = create_dummy_object("CONSTANT" , "'torch'") self.assertEqual(__UpperCAmelCase , "\nCONSTANT = None\n") a : Dict = create_dummy_object("function" , "'torch'") self.assertEqual( __UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n") a : Optional[Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" a : int = create_dummy_object("FakeClass" , "'torch'") self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : List[str]): a : List[str] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" a : Tuple = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]}) self.assertEqual(dummy_files["torch"] , __UpperCAmelCase)
40
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''num_encoder_blocks''' ) ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=64 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=[2, 2, 2, 2] , _UpperCAmelCase=[8, 4, 2, 1] , _UpperCAmelCase=[16, 32, 64, 1_28] , _UpperCAmelCase=[1, 4, 8, 16] , _UpperCAmelCase=[1, 2, 4, 8] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_encoder_blocks snake_case_ = sr_ratios snake_case_ = depths snake_case_ = hidden_sizes snake_case_ = downsampling_rates snake_case_ = num_attention_heads snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope def UpperCamelCase__ ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = SegformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) snake_case_ = snake_case_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.num_labels snake_case_ = SegformerForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = 1 snake_case_ = SegformerForSemanticSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = True __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = SegformerModelTester(self ) snake_case_ = SegformerConfigTester(self , config_class=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_UpperCAmelCase ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def UpperCamelCase__ ( self ): pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.attentions snake_case_ = sum(self.model_tester.depths ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) snake_case_ = (self.model_tester.image_size // 32) ** 2 snake_case_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) snake_case_ = len(_UpperCAmelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCAmelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCamelCase__ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = self.model_tester.num_encoder_blocks self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self ): if not self.model_tester.is_training: return snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ): continue snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) snake_case_ = model(**_UpperCAmelCase ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase__ ( self ): pass @slow def UpperCamelCase__ ( self ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SegformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCAmelCase ()-> List[str]: """simple docstring""" snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_UpperCAmelCase , align=_UpperCAmelCase , do_random_crop=_UpperCAmelCase ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(_UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(_UpperCAmelCase ) snake_case_ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_UpperCAmelCase , align=_UpperCAmelCase , do_random_crop=_UpperCAmelCase ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(_UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(_UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(_UpperCAmelCase ) snake_case_ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-1 ) ) @slow def UpperCamelCase__ ( self ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_UpperCAmelCase , align=_UpperCAmelCase , do_random_crop=_UpperCAmelCase ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(_UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(_UpperCAmelCase ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(5_00, 3_00)] ) snake_case_ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) snake_case_ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
267
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None snake_case_ , snake_case_ = get_aligned_output_features_output_indices(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''c'''] ) self.assertEqual(_UpperCAmelCase , [2] ) # Out indices set to match out features snake_case_ , snake_case_ = get_aligned_output_features_output_indices(['''a''', '''c'''] , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''a''', '''c'''] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features set to match out indices snake_case_ , snake_case_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [0, 2] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''a''', '''c'''] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features selected from negative indices snake_case_ , snake_case_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [-3, -1] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''a''', '''c'''] ) self.assertEqual(_UpperCAmelCase , [-3, -1] ) def UpperCamelCase__ ( self ): # Stage names must be set with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , _UpperCAmelCase ) # Out features must be a list with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def UpperCamelCase__ ( self ): snake_case_ = BackboneMixin() snake_case_ = ['''a''', '''b''', '''c'''] snake_case_ = ['''a''', '''c'''] snake_case_ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly snake_case_ = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) snake_case_ = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
267
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __lowercase : Dict , __lowercase : Dict=13 , __lowercase : int=7 , __lowercase : Dict=False , __lowercase : List[str]=True , __lowercase : List[str]=False , __lowercase : Any=True , __lowercase : Union[str, Any]=33 , __lowercase : str=32 , __lowercase : str=5 , __lowercase : List[str]=4 , __lowercase : Any=37 , __lowercase : Dict="gelu" , __lowercase : int=0.1 , __lowercase : Tuple=0.1 , __lowercase : Dict=5_12 , __lowercase : int=16 , __lowercase : Union[str, Any]=2 , __lowercase : str=0.02 , __lowercase : Optional[Any]=3 , __lowercase : Optional[int]=4 , __lowercase : Optional[Any]=None , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : str =parent SCREAMING_SNAKE_CASE__ : List[str] =batch_size SCREAMING_SNAKE_CASE__ : Optional[Any] =seq_length SCREAMING_SNAKE_CASE__ : int =is_training SCREAMING_SNAKE_CASE__ : int =use_input_mask SCREAMING_SNAKE_CASE__ : List[str] =use_token_type_ids SCREAMING_SNAKE_CASE__ : int =use_labels SCREAMING_SNAKE_CASE__ : str =vocab_size SCREAMING_SNAKE_CASE__ : List[str] =hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_attention_heads SCREAMING_SNAKE_CASE__ : Any =intermediate_size SCREAMING_SNAKE_CASE__ : Tuple =hidden_act SCREAMING_SNAKE_CASE__ : Any =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Any =type_vocab_size SCREAMING_SNAKE_CASE__ : str =type_sequence_label_size SCREAMING_SNAKE_CASE__ : int =initializer_range SCREAMING_SNAKE_CASE__ : Dict =num_labels SCREAMING_SNAKE_CASE__ : Dict =num_choices SCREAMING_SNAKE_CASE__ : str =scope def __magic_name__ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : str =None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : str =None SCREAMING_SNAKE_CASE__ : Any =None SCREAMING_SNAKE_CASE__ : Dict =None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Tuple ) -> Union[str, Any]: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __magic_name__ ( self : str , __lowercase : Any , __lowercase : Optional[Any] , __lowercase : int , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] =EsmModel(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Any =model(__lowercase , attention_mask=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =model(__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : str , __lowercase : Tuple , __lowercase : Any , __lowercase : str , __lowercase : str , __lowercase : List[str] , __lowercase : int ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] =EsmForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] =model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[str] , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : List[str] , __lowercase : Tuple , __lowercase : int ) -> int: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.num_labels SCREAMING_SNAKE_CASE__ : Any =EsmForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Any =config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): snake_case_ = False snake_case_ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) snake_case_ = () snake_case_ = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True def __magic_name__ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ : Dict =EsmModelTester(self ) SCREAMING_SNAKE_CASE__ : Any =ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def __magic_name__ ( self : Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def __magic_name__ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __magic_name__ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ : Any =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ : Tuple =type self.model_tester.create_and_check_model(*__lowercase ) def __magic_name__ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def __magic_name__ ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) @slow def __magic_name__ ( self : Union[str, Any] ) -> Dict: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[int] =EsmModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __magic_name__ ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ : Tuple =EsmEmbeddings(config=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =torch.as_tensor([[12, 31, 13, model.padding_idx]] ) SCREAMING_SNAKE_CASE__ : Any =torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) SCREAMING_SNAKE_CASE__ : Any =create_position_ids_from_input_ids(__lowercase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowercase , __lowercase ) ) ) def __magic_name__ ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Tuple =self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ : Optional[int] =EsmEmbeddings(config=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =torch.empty(2 , 4 , 30 ) SCREAMING_SNAKE_CASE__ : List[Any] =[ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] SCREAMING_SNAKE_CASE__ : Any =torch.as_tensor([expected_single_positions, expected_single_positions] ) SCREAMING_SNAKE_CASE__ : Optional[int] =embeddings.create_position_ids_from_inputs_embeds(__lowercase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowercase , __lowercase ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def __magic_name__ ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __magic_name__ ( self : Any ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : int ) -> Optional[Any]: pass @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @slow def __magic_name__ ( self : int ) -> str: with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] =EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] =torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : str =model(__lowercase )[0] SCREAMING_SNAKE_CASE__ : Tuple =33 SCREAMING_SNAKE_CASE__ : List[Any] =torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1e-4 ) ) @slow def __magic_name__ ( self : int ) -> str: with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] =EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE__ : Dict =model(__lowercase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ : str =torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1e-4 ) )
152
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = CanineTokenizer snake_case_ = False def __magic_name__ ( self : Any ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE__ : int =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self : Optional[int] ) -> List[str]: return CanineTokenizer.from_pretrained('''google/canine-s''' ) def __magic_name__ ( self : Optional[int] , **__lowercase : int ) -> CanineTokenizer: SCREAMING_SNAKE_CASE__ : int =self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =10_24 return tokenizer @require_torch def __magic_name__ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] =[5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' ) self.assertIsInstance(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def __magic_name__ ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : str =['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertIn('''token_type_ids''' , __lowercase ) @require_torch def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[str] =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : Dict =[ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] SCREAMING_SNAKE_CASE__ : int =tokenizer( text_target=__lowercase , max_length=32 , padding='''max_length''' , truncation=__lowercase , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __magic_name__ ( self : List[str] ) -> Any: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE__ : str =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : List[str] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Dict =''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.__class__.from_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : Union[str, Any] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Union[str, Any] =''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: SCREAMING_SNAKE_CASE__ : str =chr(0xE007 ) additional_special_tokens.append(__lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.__class__.from_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn(__lowercase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.__class__.from_pretrained(__lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowercase ) def __magic_name__ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_clean_sequence(__lowercase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : Optional[int] =0xE005 SCREAMING_SNAKE_CASE__ : Any =chr(__lowercase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertEqual(len(__lowercase ) , 1 ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertEqual(__lowercase , input_encoded + special_token_id ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : Tuple =chr(0xE005 ) SCREAMING_SNAKE_CASE__ : List[Any] =chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowercase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.tokenize(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.tokenize(__lowercase ) self.assertEqual(len(__lowercase ) , 1 ) self.assertEqual(len(__lowercase ) , 1 ) self.assertEqual(token_a[0] , __lowercase ) self.assertEqual(token_a[0] , __lowercase ) @require_tokenizers def __magic_name__ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : str =0xE006 SCREAMING_SNAKE_CASE__ : int =chr(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =AddedToken(__lowercase , lstrip=__lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowercase ) tokenizer.from_pretrained(__lowercase ) def __magic_name__ ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ : int =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__ : List[Any] =json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__ : Dict =json.load(__lowercase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : Optional[Any] =0xE006 SCREAMING_SNAKE_CASE__ : Dict =chr(__lowercase ) SCREAMING_SNAKE_CASE__ : str =[new_token_a] SCREAMING_SNAKE_CASE__ : Optional[Any] =[new_token_a] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer_class.from_pretrained(__lowercase , extra_ids=0 ) self.assertIn(__lowercase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) SCREAMING_SNAKE_CASE__ : str =0xE007 SCREAMING_SNAKE_CASE__ : Optional[int] =chr(__lowercase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE__ : Tuple =[AddedToken(__lowercase , lstrip=__lowercase )] SCREAMING_SNAKE_CASE__ : Any =tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , extra_ids=0 ) self.assertIn(__lowercase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : List[str] ='''hello world''' if self.space_between_special_tokens: SCREAMING_SNAKE_CASE__ : str ='''[CLS] hello world [SEP]''' else: SCREAMING_SNAKE_CASE__ : int =input SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(__lowercase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowercase , [output, output.lower()] ) def __magic_name__ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : str =[ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE__ : Tuple ='''a''' SCREAMING_SNAKE_CASE__ : Tuple =ord(__lowercase ) for attr in attributes_list: setattr(__lowercase , attr + '''_id''' , __lowercase ) self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase ) self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase ) setattr(__lowercase , attr + '''_id''' , __lowercase ) self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase ) self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase ) setattr(__lowercase , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [] ) SCREAMING_SNAKE_CASE__ : str =0xE006 SCREAMING_SNAKE_CASE__ : List[str] =chr(__lowercase ) setattr(__lowercase , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def __magic_name__ ( self : str ) -> Dict: pass def __magic_name__ ( self : List[Any] ) -> List[Any]: pass def __magic_name__ ( self : Any ) -> int: pass def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: pass def __magic_name__ ( self : List[Any] ) -> Optional[int]: pass def __magic_name__ ( self : Tuple ) -> Optional[Any]: pass def __magic_name__ ( self : Dict ) -> Dict: pass def __magic_name__ ( self : List[str] ) -> Dict: pass
152
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __a = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" lowercase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowercase = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowercase = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase = field(default=_a , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowercase = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowercase = field( default=_a , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) lowercase = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __snake_case( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) snake_case__ = import_module("""tasks""" ) try: snake_case__ = getattr(_lowerCAmelCase , model_args.task_type ) snake_case__ = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task snake_case__ = token_classification_task.get_labels(data_args.labels ) snake_case__ = dict(enumerate(_lowerCAmelCase ) ) snake_case__ = len(_lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid={label: i for i, label in enumerate(_lowerCAmelCase )} , cache_dir=model_args.cache_dir , ) snake_case__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) snake_case__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case__ = ( TokenClassificationDataset( token_classification_task=_lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=_lowerCAmelCase , labels=_lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case__ = ( TokenClassificationDataset( token_classification_task=_lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=_lowerCAmelCase , labels=_lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_lowerCAmelCase , _lowerCAmelCase ) -> Tuple[List[int], List[int]]: snake_case__ = np.argmax(_lowerCAmelCase , axis=2 ) snake_case__ = preds.shape snake_case__ = [[] for _ in range(_lowerCAmelCase )] snake_case__ = [[] for _ in range(_lowerCAmelCase )] for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_lowerCAmelCase ) -> Dict: snake_case__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_lowerCAmelCase , _lowerCAmelCase ), "precision": precision_score(_lowerCAmelCase , _lowerCAmelCase ), "recall": recall_score(_lowerCAmelCase , _lowerCAmelCase ), "f1": fa_score(_lowerCAmelCase , _lowerCAmelCase ), } # Data collator snake_case__ = DataCollatorWithPadding(_lowerCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case__ = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , data_collator=_lowerCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case__ = trainer.evaluate() snake_case__ = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(_lowerCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , _lowerCAmelCase , _lowerCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_lowerCAmelCase ) # Predict if training_args.do_predict: snake_case__ = TokenClassificationDataset( token_classification_task=_lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=_lowerCAmelCase , labels=_lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) snake_case__ = trainer.predict(_lowerCAmelCase ) snake_case__ = align_predictions(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(_lowerCAmelCase , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , _lowerCAmelCase , _lowerCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions snake_case__ = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(_lowerCAmelCase , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return results def __snake_case( _lowerCAmelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
367
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Tuple=0 ): snake_case__ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case_ ) ) snake_case__ : List[str] = np.random.RandomState(snake_case_ ) snake_case__ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : Optional[Any] ): snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : Union[str, Any] = pipe(**snake_case_ ).images snake_case__ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case__ : int = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Dict ): snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = self.get_dummy_inputs() snake_case__ : int = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Tuple = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Optional[int] ): snake_case__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) # warmup pass to apply optimizations snake_case__ : List[Any] = pipe(**self.get_dummy_inputs() ) snake_case__ : List[str] = self.get_dummy_inputs() snake_case__ : Optional[int] = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Any = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : str ): snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = self.get_dummy_inputs() snake_case__ : List[Any] = pipe(**snake_case_ ).images snake_case__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Optional[Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : str ): snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : Tuple = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : int = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : List[str] = self.get_dummy_inputs() snake_case__ : List[str] = pipe(**snake_case_ ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : List[str] = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self : Dict ): snake_case__ : Tuple = ort.SessionOptions() snake_case__ : Optional[Any] = False return options def lowerCamelCase ( self : List[str] ): snake_case__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case__ : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = """A fantasy landscape, trending on artstation""" snake_case__ : str = np.random.RandomState(0 ) snake_case__ : Union[str, Any] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : str = output.images snake_case__ : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case__ : Optional[Any] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCamelCase ( self : int ): snake_case__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case__ : List[Any] = init_image.resize((768, 512) ) snake_case__ : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = """A fantasy landscape, trending on artstation""" snake_case__ : Optional[int] = np.random.RandomState(0 ) snake_case__ : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Any = output.images snake_case__ : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case__ : Tuple = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
43
0
from math import isqrt def UpperCamelCase ( _A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2, isqrt(_A ) + 1 ) ) def UpperCamelCase ( _A = 10**6 ): """simple docstring""" __magic_name__ : List[str] = 0 __magic_name__ : Any = 1 __magic_name__ : Optional[int] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
342
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : List[Any] = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __A( a ): snake_case_ = '''beit''' def __init__( self , _snake_case=8_192 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=224 , _snake_case=16 , _snake_case=3 , _snake_case=False , _snake_case=False , _snake_case=False , _snake_case=False , _snake_case=0.1 , _snake_case=0.1 , _snake_case=True , _snake_case=[3, 5, 7, 11] , _snake_case=[1, 2, 3, 6] , _snake_case=True , _snake_case=0.4 , _snake_case=256 , _snake_case=1 , _snake_case=False , _snake_case=255 , **_snake_case , ) -> List[str]: '''simple docstring''' super().__init__(**_snake_case ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = use_mask_token __a = use_absolute_position_embeddings __a = use_relative_position_bias __a = use_shared_relative_position_bias __a = layer_scale_init_value __a = drop_path_rate __a = use_mean_pooling # decode head attributes (semantic segmentation) __a = out_indices __a = pool_scales # auxiliary head attributes (semantic segmentation) __a = use_auxiliary_head __a = auxiliary_loss_weight __a = auxiliary_channels __a = auxiliary_num_convs __a = auxiliary_concat_input __a = semantic_loss_ignore_index class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
33
import os import numpy import onnx def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = a.name __a = b.name __a = '''''' __a = '''''' __a = a == b __a = name_a __a = name_b return res def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> Union[str, Any]: __a = list(model.graph.initializer ) __a = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a = inits[i].name __a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def __lowerCAmelCase ( a__ ) -> str: __a = os.path.dirname(a__ ) __a = os.path.basename(a__ ) __a = onnx.load(os.path.join(a__ , a__ ) ) __a = list(model.graph.initializer ) __a = set() __a = {} __a = [] __a = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) __a = inits[j].data_type __a = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a__ ) total_reduced_size += mem_size __a = inits[i].name __a = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: __a = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) __a = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) __a = '''optimized_''' + model_file_name __a = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
33
1
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class SCREAMING_SNAKE_CASE ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : float , UpperCamelCase__ : Callable , UpperCamelCase__ : int , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : str = None , ): """simple docstring""" super().__init__() UpperCamelCase = initial_learning_rate UpperCamelCase = warmup_steps UpperCamelCase = power UpperCamelCase = decay_schedule_fn UpperCamelCase = name def __call__( self : List[str] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCamelCase = tf.cast(UpperCamelCase__ , tf.floataa ) UpperCamelCase = tf.cast(self.warmup_steps , tf.floataa ) UpperCamelCase = global_step_float / warmup_steps_float UpperCamelCase = self.initial_learning_rate * tf.math.pow(UpperCamelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase__ , ) def A ( self : List[Any] ): """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __lowerCamelCase ( A__ , A__ , A__ , A__ = 0.0 , A__ = 0.9 , A__ = 0.999 , A__ = 1e-8 , A__ = None , A__ = None , A__ = 0.0 , A__ = 1.0 , A__ = None , ) -> str: """simple docstring""" UpperCamelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=A__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=A__ , ) if num_warmup_steps: UpperCamelCase = WarmUp( initial_learning_rate=A__ , decay_schedule_fn=A__ , warmup_steps=A__ , ) if weight_decay_rate > 0.0: UpperCamelCase = AdamWeightDecay( learning_rate=A__ , weight_decay_rate=A__ , beta_a=A__ , beta_a=A__ , epsilon=A__ , clipnorm=A__ , global_clipnorm=A__ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=A__ , ) else: UpperCamelCase = tf.keras.optimizers.Adam( learning_rate=A__ , beta_a=A__ , beta_a=A__ , epsilon=A__ , clipnorm=A__ , global_clipnorm=A__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : str , UpperCamelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_0_1 , UpperCamelCase__ : float = 0.9 , UpperCamelCase__ : float = 0.9_9_9 , UpperCamelCase__ : float = 1E-7 , UpperCamelCase__ : bool = False , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "AdamWeightDecay" , **UpperCamelCase__ : Union[str, Any] , ): """simple docstring""" super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) UpperCamelCase = weight_decay_rate UpperCamelCase = include_in_weight_decay UpperCamelCase = exclude_from_weight_decay @classmethod def A ( cls : Tuple , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = {'WarmUp': WarmUp} return super(UpperCamelCase__ , cls ).from_config(UpperCamelCase__ , custom_objects=UpperCamelCase__ ) def A ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" super(UpperCamelCase__ , self )._prepare_local(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def A ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def A ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = list(zip(*UpperCamelCase__ ) ) return super(UpperCamelCase__ , self ).apply_gradients(zip(UpperCamelCase__ , UpperCamelCase__ ) , name=UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Dict ): """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCamelCase = apply_state or {} UpperCamelCase = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCamelCase = self._fallback_apply_state(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def A ( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=None ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase__ ) UpperCamelCase = self._decay_weights_op(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase__ , self )._resource_apply_dense(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any=None ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase__ ) UpperCamelCase = self._decay_weights_op(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase__ , self )._resource_apply_sparse(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def A ( self : Any , UpperCamelCase__ : Dict ): """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase__ , UpperCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase__ , UpperCamelCase__ ) is not None: return False return True class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : int ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = None @property def A ( self : List[str] ): """simple docstring""" if self._accum_steps is None: UpperCamelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def A ( self : Dict ): """simple docstring""" if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[int] , UpperCamelCase__ : List[str] ): """simple docstring""" if not self._gradients: UpperCamelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase__ ) , trainable=UpperCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase__ ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase__ )}""" ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase__ ) self._accum_steps.assign_add(1 ) def A ( self : str ): """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase__ ) )
28
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
28
1
"""simple docstring""" from math import factorial, pi def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 30 ) -> float: if not isinstance(__lowerCamelCase , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) lowercase__ : Union[str, Any] = float(__lowerCamelCase ) lowercase__ : Any = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__lowerCamelCase ) ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 30 ) -> float: if not isinstance(__lowerCamelCase , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) lowercase__ : int = float(__lowerCamelCase ) lowercase__ : Tuple = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
370
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Tuple =CycleDiffusionPipeline UpperCamelCase__ : Any =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } UpperCamelCase__ : Any =PipelineTesterMixin.required_optional_params - {"""latents"""} UpperCamelCase__ : Union[str, Any] =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) UpperCamelCase__ : Optional[Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ : Union[str, Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : List[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __UpperCamelCase : int =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __UpperCamelCase : Any =CLIPTextModel(lowerCamelCase__ ) __UpperCamelCase : Any =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase : str ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : Optional[int] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : List[str] =image / 2 + 0.5 if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : int =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Tuple =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] ={ 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase : Tuple =self.get_dummy_components() __UpperCamelCase : Optional[Any] =CycleDiffusionPipeline(**lowerCamelCase__ ) __UpperCamelCase : int =pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : Dict =pipe(**lowerCamelCase__ ) __UpperCamelCase : int =output.images __UpperCamelCase : Optional[int] =images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCamelCase : Any =np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCamelCase__ , 'half' ): __UpperCamelCase : List[str] =module.half() __UpperCamelCase : int =CycleDiffusionPipeline(**lowerCamelCase__ ) __UpperCamelCase : Any =pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : int =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =pipe(**lowerCamelCase__ ) __UpperCamelCase : Dict =output.images __UpperCamelCase : int =images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCamelCase : Optional[int] =np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowercase ( self ): """simple docstring""" return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def __lowercase ( self ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def __lowercase ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def __lowercase ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def __lowercase ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __UpperCamelCase : Union[str, Any] =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) __UpperCamelCase : Union[str, Any] =init_image.resize((512, 512) ) __UpperCamelCase : Dict ='CompVis/stable-diffusion-v1-4' __UpperCamelCase : Optional[int] =DDIMScheduler.from_pretrained(lowerCamelCase__ , subfolder='scheduler' ) __UpperCamelCase : List[str] =CycleDiffusionPipeline.from_pretrained( lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __UpperCamelCase : str ='A black colored car' __UpperCamelCase : Optional[int] ='A blue colored car' __UpperCamelCase : Optional[int] =torch.manual_seed(0 ) __UpperCamelCase : Dict =pipe( prompt=lowerCamelCase__ , source_prompt=lowerCamelCase__ , image=lowerCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCamelCase__ , output_type='np' , ) __UpperCamelCase : str =output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __UpperCamelCase : int =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) __UpperCamelCase : Optional[int] =init_image.resize((512, 512) ) __UpperCamelCase : Optional[int] ='CompVis/stable-diffusion-v1-4' __UpperCamelCase : Any =DDIMScheduler.from_pretrained(lowerCamelCase__ , subfolder='scheduler' ) __UpperCamelCase : Optional[Any] =CycleDiffusionPipeline.from_pretrained(lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __UpperCamelCase : Union[str, Any] ='A black colored car' __UpperCamelCase : Optional[Any] ='A blue colored car' __UpperCamelCase : str =torch.manual_seed(0 ) __UpperCamelCase : List[Any] =pipe( prompt=lowerCamelCase__ , source_prompt=lowerCamelCase__ , image=lowerCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCamelCase__ , output_type='np' , ) __UpperCamelCase : Any =output.images assert np.abs(image - expected_image ).max() < 2E-2
71
def A ( a_ ) -> int: __UpperCamelCase : Any =len(a_ ) while cur > 1: # Find the maximum number in arr __UpperCamelCase : Any =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __UpperCamelCase : Any =arr[mi::-1] + arr[mi + 1 : len(a_ )] # Reverse whole list __UpperCamelCase : str =arr[cur - 1 :: -1] + arr[cur : len(a_ )] cur -= 1 return arr if __name__ == "__main__": A_ :Dict = input('''Enter numbers separated by a comma:\n''').strip() A_ :Any = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
71
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a : Optional[Any] = logging.get_logger(__name__) @dataclass class _a : A = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) A = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __snake_case (self ) -> int: UpperCAmelCase_: Union[str, Any] = self.task_name.lower() class _a ( a__ ): A = "train" A = "dev" A = "test" class _a ( a__ ): A = 42 A = 42 A = 42 def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = Split.train, SCREAMING_SNAKE_CASE_ = None, ) -> Tuple: warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""", SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Tuple = args UpperCAmelCase_: Tuple = glue_processors[args.task_name]() UpperCAmelCase_: Any = glue_output_modes[args.task_name] if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): try: UpperCAmelCase_: List[Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file UpperCAmelCase_: Union[str, Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}', ) UpperCAmelCase_: Dict = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_: Optional[Any] = label_list[2], label_list[1] UpperCAmelCase_: Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_: Dict = cached_features_file + '.lock' with FileLock(SCREAMING_SNAKE_CASE_ ): if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not args.overwrite_cache: UpperCAmelCase_: Tuple = time.time() UpperCAmelCase_: Optional[int] = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]', time.time() - start ) else: logger.info(f'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: UpperCAmelCase_: Optional[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase_: str = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase_: Any = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase_: Union[str, Any] = examples[:limit_length] UpperCAmelCase_: List[Any] = glue_convert_examples_to_features( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, max_length=args.max_seq_length, label_list=SCREAMING_SNAKE_CASE_, output_mode=self.output_mode, ) UpperCAmelCase_: List[Any] = time.time() torch.save(self.features, SCREAMING_SNAKE_CASE_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__(self ) -> Dict: return len(self.features ) def __getitem__(self, SCREAMING_SNAKE_CASE_ ) -> InputFeatures: return self.features[i] def __snake_case (self ) -> Optional[Any]: return self.label_list
364
from typing import TYPE_CHECKING from ....utils import _LazyModule a : Tuple = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
82
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') SCREAMING_SNAKE_CASE__ : Dict = {'target_lang': 'fi', 'source_lang': 'en'} SCREAMING_SNAKE_CASE__ : Any = '>>zh<<' SCREAMING_SNAKE_CASE__ : int = 'Helsinki-NLP/' if is_torch_available(): SCREAMING_SNAKE_CASE__ : Optional[int] = 'pt' elif is_tf_available(): SCREAMING_SNAKE_CASE__ : str = 'tf' else: SCREAMING_SNAKE_CASE__ : Dict = 'jax' @require_sentencepiece class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Any = MarianTokenizer lowerCamelCase_ : Tuple = False lowerCamelCase_ : List[str] = True def _lowercase ( self ) -> Union[str, Any]: super().setUp() lowerCamelCase : Tuple = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowerCamelCase : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase : int = Path(self.tmpdirname ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["target_spm"] ) lowerCamelCase : Optional[int] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self , **UpperCamelCase__ ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Optional[Any]: return ( "This is a test", "This is a test", ) def _lowercase ( self ) -> Any: lowerCamelCase : Dict = "</s>" lowerCamelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(UpperCamelCase__ ) , 9 ) def _lowercase ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _lowercase ( self ) -> str: lowerCamelCase : Any = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) lowerCamelCase : Union[str, Any] = en_de_tokenizer(["I am a small frog"] , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(UpperCamelCase__ , batch.input_ids[0] ) lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase : Tuple = [x.name for x in Path(UpperCamelCase__ ).glob("*" )] self.assertIn("source.spm" , UpperCamelCase__ ) MarianTokenizer.from_pretrained(UpperCamelCase__ ) def _lowercase ( self ) -> Any: lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : Optional[Any] = tok( ["I am a small frog" * 1000, "I am a small frog"] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : List[Any] = self.get_tokenizer() lowerCamelCase : Any = tok(["I am a tiny frog", "I am a small frog"] , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def _lowercase ( self ) -> List[str]: # fmt: off lowerCamelCase : Dict = {"input_ids": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def _lowercase ( self ) -> int: lowerCamelCase : Optional[int] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) lowerCamelCase : int = "Tämä on testi" lowerCamelCase : List[str] = "This is a test" lowerCamelCase : Optional[int] = [76, 7, 2047, 2] lowerCamelCase : List[str] = [69, 12, 11, 940, 2] lowerCamelCase : Optional[int] = tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : int = tokenizer(text_target=UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : List[str] = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
48
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
0
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): snake_case_ : List[str] = True from torch.cuda.amp import autocast snake_case_ : Tuple = logging.getLogger(__name__) def A__ ( UpperCAmelCase_=None , UpperCAmelCase_=None ): return field(default_factory=lambda: default , metadata=UpperCAmelCase_ ) @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) lowercase__ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) lowercase__ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) lowercase__ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) lowercase__ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) lowercase__ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) lowercase__ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class lowercase__ : lowercase__ = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase__ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to \'train\'""" } , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) lowercase__ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """\'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class lowercase__ : lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None def __call__( self : Optional[Any] ,lowerCamelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = [{'input_values': feature['input_values']} for feature in features] _UpperCamelCase : Optional[int] = [{'input_ids': feature['labels']} for feature in features] _UpperCamelCase : List[Any] = self.processor.pad( A_ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) _UpperCamelCase : Optional[int] = self.processor.pad( labels=A_ ,padding=self.padding ,max_length=self.max_length_labels ,pad_to_multiple_of=self.pad_to_multiple_of_labels ,return_tensors='pt' ,) # replace padding with -100 to ignore loss correctly _UpperCamelCase : Any = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) ,-100 ) _UpperCamelCase : Optional[int] = labels return batch class lowercase__ ( lowercase ): def UpperCamelCase_ ( self : int ,lowerCamelCase__ : nn.Module ,lowerCamelCase__ : Dict[str, Union[torch.Tensor, Any]] ): '''simple docstring''' model.train() _UpperCamelCase : int = self._prepare_inputs(A_ ) if self.use_amp: with autocast(): _UpperCamelCase : str = self.compute_loss(A_ ,A_ ) else: _UpperCamelCase : str = self.compute_loss(A_ ,A_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase : Optional[Any] = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(A_ ).backward() elif self.use_apex: with amp.scale_loss(A_ ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(A_ ) else: loss.backward() return loss.detach() def A__ ( ): _UpperCamelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , UpperCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase : Tuple = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase : str = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer _UpperCamelCase : int = f'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = re.sub(UpperCAmelCase_ , '' , batch['sentence'] ).lower() + ' ' return batch _UpperCamelCase : List[Any] = train_dataset.map(UpperCAmelCase_ , remove_columns=['sentence'] ) _UpperCamelCase : Any = eval_dataset.map(UpperCAmelCase_ , remove_columns=['sentence'] ) def extract_all_chars(UpperCAmelCase_ ): _UpperCamelCase : str = ' '.join(batch['text'] ) _UpperCamelCase : List[Any] = list(set(UpperCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase : Union[str, Any] = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , batch_size=-1 , keep_in_memory=UpperCAmelCase_ , remove_columns=train_dataset.column_names , ) _UpperCamelCase : str = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , batch_size=-1 , keep_in_memory=UpperCAmelCase_ , remove_columns=eval_dataset.column_names , ) _UpperCamelCase : Union[str, Any] = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) _UpperCamelCase : int = {v: k for k, v in enumerate(UpperCAmelCase_ )} _UpperCamelCase : Optional[int] = vocab_dict[' '] del vocab_dict[" "] _UpperCamelCase : Optional[int] = len(UpperCAmelCase_ ) _UpperCamelCase : Any = len(UpperCAmelCase_ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase : Dict = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) _UpperCamelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ ) _UpperCamelCase : Any = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) _UpperCamelCase : Dict = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase : int = min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) _UpperCamelCase : Dict = train_dataset.select(range(UpperCAmelCase_ ) ) if data_args.max_val_samples is not None: _UpperCamelCase : Any = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase : Any = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Dict = torchaudio.load(batch['path'] ) _UpperCamelCase : Dict = resampler(UpperCAmelCase_ ).squeeze().numpy() _UpperCamelCase : int = 1_6_0_0_0 _UpperCamelCase : Optional[Any] = batch['text'] return batch _UpperCamelCase : Any = train_dataset.map( UpperCAmelCase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase : Tuple = eval_dataset.map( UpperCAmelCase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(UpperCAmelCase_ ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), f'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' _UpperCamelCase : List[str] = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(UpperCAmelCase_ ) return batch _UpperCamelCase : Any = train_dataset.map( UpperCAmelCase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase : Any = eval_dataset.map( UpperCAmelCase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase : str = datasets.load_metric('wer' ) def compute_metrics(UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = pred.predictions _UpperCamelCase : int = np.argmax(UpperCAmelCase_ , axis=-1 ) _UpperCamelCase : Optional[Any] = processor.tokenizer.pad_token_id _UpperCamelCase : str = processor.batch_decode(UpperCAmelCase_ ) # we do not want to group tokens when computing the metrics _UpperCamelCase : str = processor.batch_decode(pred.label_ids , group_tokens=UpperCAmelCase_ ) _UpperCamelCase : Dict = wer_metric.compute(predictions=UpperCAmelCase_ , references=UpperCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase : Dict = DataCollatorCTCWithPadding(processor=UpperCAmelCase_ , padding=UpperCAmelCase_ ) # Initialize our Trainer _UpperCamelCase : List[str] = CTCTrainer( model=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase : List[str] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase : int = model_args.model_name_or_path else: _UpperCamelCase : str = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase : Dict = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() _UpperCamelCase : Optional[Any] = train_result.metrics _UpperCamelCase : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) _UpperCamelCase : int = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('train' , UpperCAmelCase_ ) trainer.save_metrics('train' , UpperCAmelCase_ ) trainer.save_state() # Evaluation _UpperCamelCase : List[str] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCamelCase : Dict = trainer.evaluate() _UpperCamelCase : Dict = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('eval' , UpperCAmelCase_ ) trainer.save_metrics('eval' , UpperCAmelCase_ ) return results if __name__ == "__main__": main()
83
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : str = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
0
from ...processing_utils import ProcessorMixin class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : List[str] = """SpeechT5FeatureExtractor""" lowerCAmelCase : Any = """SpeechT5Tokenizer""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ): super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __call__( self , *UpperCAmelCase__ , **UpperCAmelCase__ ): A__ = kwargs.pop("audio" , UpperCAmelCase__ ) A__ = kwargs.pop("text" , UpperCAmelCase__ ) A__ = kwargs.pop("text_target" , UpperCAmelCase__ ) A__ = kwargs.pop("audio_target" , UpperCAmelCase__ ) A__ = kwargs.pop("sampling_rate" , UpperCAmelCase__ ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__ ) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__ ) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = targets["input_values"] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = targets["input_ids"] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get("attention_mask" ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def __A ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ): A__ = kwargs.pop("input_values" , UpperCAmelCase__ ) A__ = kwargs.pop("input_ids" , UpperCAmelCase__ ) A__ = kwargs.pop("labels" , UpperCAmelCase__ ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__ ) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = targets["input_ids"] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = feature_size_hack A__ = targets["input_values"] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get("attention_mask" ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def __A ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ): return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ): return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ )
198
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( _A : List[Any] , _A : List[str]=7 )-> Optional[Any]: """simple docstring""" A__ = None if token is not None: A__ = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) A__ = "636036" A__ = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" A__ = requests.get(_A , headers=_A ).json() return result["workflow_runs"] def UpperCamelCase ( _A : str )-> Dict: """simple docstring""" A__ = get_daily_ci_runs(_A ) A__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": A__ = workflow_run["id"] break return workflow_run_id def UpperCamelCase ( _A : int , _A : List[str] , _A : str )-> Any: """simple docstring""" A__ = get_last_daily_ci_runs(_A ) if workflow_run_id is not None: A__ = get_artifacts_links(worflow_run_id=_A , token=_A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: A__ = artifacts_links[artifact_name] download_artifact( artifact_name=_A , artifact_url=_A , output_dir=_A , token=_A ) def UpperCamelCase ( _A : Optional[Any] , _A : Any , _A : List[Any] )-> Optional[int]: """simple docstring""" get_last_daily_ci_artifacts(_A , _A , _A ) A__ = {} for artifact_name in artifact_names: A__ = os.path.join(_A , f"""{artifact_name}.zip""" ) if os.path.isfile(_A ): A__ = {} with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file with z.open(_A ) as f: A__ = f.read().decode("UTF-8" ) return results
198
1
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): __A = [] for k, v in d.items(): __A = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase , sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) __A = argparse.Namespace() with open(__UpperCamelCase , '''r''' ) as yaml_file: try: __A = yaml.load(__UpperCamelCase , Loader=yaml.FullLoader ) __A = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(__UpperCamelCase , str(__UpperCamelCase ) ) ) return config def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = MobileViTVaConfig() __A = False # dataset if task_name.startswith('''imagenet1k_''' ): __A = 1_0_0_0 if int(task_name.strip().split('''_''' )[-1] ) == 3_8_4: __A = 3_8_4 else: __A = 2_5_6 __A = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): __A = 2_1_0_0_0 if int(task_name.strip().split('''_''' )[-1] ) == 3_8_4: __A = 3_8_4 else: __A = 2_5_6 __A = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): __A = 1_5_1 __A = 5_1_2 __A = '''ade20k-id2label.json''' __A = True elif task_name.startswith('''voc_''' ): __A = 2_1 __A = 5_1_2 __A = '''pascal-voc-id2label.json''' __A = True # orig_config __A = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" __A = getattr(__UpperCamelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(__UpperCamelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __A = getattr(__UpperCamelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __A = getattr(__UpperCamelCase , '''model.segmentation.output_stride''' , 1_6 ) if "_deeplabv3" in task_name: __A = getattr(__UpperCamelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [1_2, 2_4, 3_6] ) __A = getattr(__UpperCamelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 5_1_2 ) __A = getattr(__UpperCamelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label __A = '''huggingface/label-files''' __A = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __A = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = dct.pop(__UpperCamelCase ) __A = val def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if base_model: __A = '''''' else: __A = '''mobilevitv2.''' __A = [] for k in state_dict.keys(): if k[:8] == "encoder.": __A = k[8:] else: __A = k if ".block." in k: __A = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: __A = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: __A = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: __A = k_new.replace('''conv_1.''' , f'{model_prefix}conv_stem.' ) for i in [1, 2]: if f'layer_{i}.' in k: __A = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: __A = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: __A = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'layer_{i}.0.' in k: __A = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if f'layer_{i}.1.local_rep.0.' in k: __A = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if f'layer_{i}.1.local_rep.1.' in k: __A = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: __A = [0, 1] elif i == 4: __A = [0, 1, 2, 3] elif i == 5: __A = [0, 1, 2] for j in j_in: if f'layer_{i}.1.global_rep.{j}.' in k: __A = k_new.replace( f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if f'layer_{i}.1.global_rep.{j+1}.' in k: __A = k_new.replace( f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if f'layer_{i}.1.conv_proj.' in k: __A = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: __A = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: __A = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: __A = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __A = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __A = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: __A = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: __A = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: __A = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: __A = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase ( ): """simple docstring""" __A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __A = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = get_mobilevitva_config(__UpperCamelCase , __UpperCamelCase ) # load original state_dict __A = torch.load(__UpperCamelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __A = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() __A = False else: __A = MobileViTVaForImageClassification(__UpperCamelCase ).eval() __A = False # remove and rename some keys of load the original model __A = checkpoint remove_unused_keys(__UpperCamelCase ) __A = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor __A = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) __A = image_processor(images=prepare_img() , return_tensors='''pt''' ) __A = model(**__UpperCamelCase ) # verify classification model if task_name.startswith('''imagenet''' ): __A = outputs.logits __A = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __A = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1e-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) lowercase_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
266
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : int = ["input_features", "attention_mask"] def __init__( self : Optional[Any], _lowerCamelCase : Union[str, Any]=80, _lowerCamelCase : int=1_60_00, _lowerCamelCase : Any=80, _lowerCamelCase : List[str]=0.0, _lowerCamelCase : int=True, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : Optional[int]=True, **_lowerCamelCase : List[str], ): '''simple docstring''' super().__init__(feature_size=_lowerCamelCase, sampling_rate=_lowerCamelCase, padding_value=_lowerCamelCase, **_lowerCamelCase ) __A = num_mel_bins __A = do_ceptral_normalize __A = normalize_means __A = normalize_vars __A = True def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : np.ndarray, ): '''simple docstring''' __A = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __A = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) __A = ta_kaldi.fbank(_lowerCamelCase, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray, _lowerCamelCase : int, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : float = 0.0, ): '''simple docstring''' # make sure we normalize float32 arrays if normalize_means: __A = x[:input_length].mean(axis=0 ) __A = np.subtract(_lowerCamelCase, _lowerCamelCase ) if normalize_vars: __A = x[:input_length].std(axis=0 ) __A = np.divide(_lowerCamelCase, _lowerCamelCase ) if input_length < x.shape[0]: __A = padding_value # make sure array is in float32 __A = x.astype(np.floataa ) return x def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[np.ndarray], _lowerCamelCase : Optional[np.ndarray] = None ): '''simple docstring''' __A = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_lowerCamelCase, _lowerCamelCase, self.normalize_means, self.normalize_vars, self.padding_value ) for x, n in zip(_lowerCamelCase, _lowerCamelCase ) ] def __call__( self : Optional[Any], _lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], _lowerCamelCase : Union[bool, str, PaddingStrategy] = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : bool = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[Union[str, TensorType]] = None, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[bool] = None, **_lowerCamelCase : Optional[Any], ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __A = isinstance(_lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __A = is_batched_numpy or ( isinstance(_lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCamelCase, np.ndarray ): __A = np.asarray(_lowerCamelCase, dtype=np.floataa ) elif isinstance(_lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __A = [raw_speech] # extract fbank features __A = [self._extract_fbank_features(_lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding __A = BatchFeature({'''input_features''': features} ) __A = self.pad( _lowerCamelCase, padding=_lowerCamelCase, max_length=_lowerCamelCase, truncation=_lowerCamelCase, pad_to_multiple_of=_lowerCamelCase, return_attention_mask=_lowerCamelCase, **_lowerCamelCase, ) # make sure list is in array format __A = padded_inputs.get('''input_features''' ) if isinstance(input_features[0], _lowerCamelCase ): __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for feature in input_features] __A = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __A = [np.asarray(_lowerCamelCase, dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __A = ( np.array(_lowerCamelCase, dtype=np.intaa ) if self._get_padding_strategies(_lowerCamelCase, max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __A = self.normalize( padded_inputs['''input_features'''], attention_mask=_lowerCamelCase ) if return_tensors is not None: __A = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs
266
1
def a__ ( A__, A__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (boundary[1] - boundary[0]) / steps SCREAMING_SNAKE_CASE_ : List[Any] = boundary[0] SCREAMING_SNAKE_CASE_ : Any = boundary[1] SCREAMING_SNAKE_CASE_ : Optional[int] = make_points(A__, A__, A__ ) SCREAMING_SNAKE_CASE_ : List[str] = 0.0 y += (h / 2.0) * f(A__ ) for i in x_i: # print(i) y += h * f(A__ ) y += (h / 2.0) * f(A__ ) return y def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = a + h while x < (b - h): yield x SCREAMING_SNAKE_CASE_ : Optional[Any] = x + h def a__ ( A__ ): # enter your function here SCREAMING_SNAKE_CASE_ : List[str] = (x - 0) * (x - 0) return y def a__ ( ): SCREAMING_SNAKE_CASE_ : List[Any] = 0.0 # Lower bound of integration SCREAMING_SNAKE_CASE_ : Optional[int] = 1.0 # Upper bound of integration SCREAMING_SNAKE_CASE_ : Union[str, Any] = 10.0 # define number of steps or resolution SCREAMING_SNAKE_CASE_ : str = [a, b] # define boundary of integration SCREAMING_SNAKE_CASE_ : int = method_a(A__, A__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
162
import numpy # List of input, output pairs lowerCAmelCase__ : int =( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase__ : Any =(((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) lowerCAmelCase__ : List[str] =[2, 4, 1, 5] lowerCAmelCase__ : Dict =len(train_data) lowerCAmelCase__ : Union[str, Any] =0.0_0_9 def a__ ( A__, A__="train" ): return calculate_hypothesis_value(A__, A__ ) - output( A__, A__ ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Tuple = 0 for i in range(len(A__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( A__, A__ ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( A__, A__ ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( A__, A__=m ): SCREAMING_SNAKE_CASE_ : Tuple = 0 for i in range(A__ ): if index == -1: summation_value += _error(A__ ) else: summation_value += _error(A__ ) * train_data[i][0][index] return summation_value def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Any = summation_of_cost_derivative(A__, A__ ) / m return cost_derivative_value def a__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output SCREAMING_SNAKE_CASE_ : str = 0.00_00_02 SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Any = 0 while True: j += 1 SCREAMING_SNAKE_CASE_ : int = [0, 0, 0, 0] for i in range(0, len(A__ ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_cost_derivative(i - 1 ) SCREAMING_SNAKE_CASE_ : str = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( A__, A__, atol=A__, rtol=A__, ): break SCREAMING_SNAKE_CASE_ : Optional[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def a__ ( ): for i in range(len(A__ ) ): print(('Actual output value:', output(A__, 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(A__, 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
162
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated UpperCAmelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ UpperCAmelCase = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def __UpperCamelCase ( lowercase__ : str ): '''simple docstring''' __lowercase =numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ), dtype=lowercase__ )[0] @deprecated(lowercase__, 'Please use tf.data to implement this functionality.' ) def __UpperCamelCase ( lowercase__ : List[str] ): '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=lowercase__ ) as bytestream: __lowercase =_readaa(lowercase__ ) if magic != 20_51: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) __lowercase =_readaa(lowercase__ ) __lowercase =_readaa(lowercase__ ) __lowercase =_readaa(lowercase__ ) __lowercase =bytestream.read(rows * cols * num_images ) __lowercase =numpy.frombuffer(lowercase__, dtype=numpy.uinta ) __lowercase =data.reshape(lowercase__, lowercase__, lowercase__, 1 ) return data @deprecated(lowercase__, 'Please use tf.one_hot on tensors.' ) def __UpperCamelCase ( lowercase__ : Union[str, Any], lowercase__ : List[Any] ): '''simple docstring''' __lowercase =labels_dense.shape[0] __lowercase =numpy.arange(lowercase__ ) * num_classes __lowercase =numpy.zeros((num_labels, num_classes) ) __lowercase =1 return labels_one_hot @deprecated(lowercase__, 'Please use tf.data to implement this functionality.' ) def __UpperCamelCase ( lowercase__ : Dict, lowercase__ : Optional[Any]=False, lowercase__ : Tuple=10 ): '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=lowercase__ ) as bytestream: __lowercase =_readaa(lowercase__ ) if magic != 20_49: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) __lowercase =_readaa(lowercase__ ) __lowercase =bytestream.read(lowercase__ ) __lowercase =numpy.frombuffer(lowercase__, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowercase__, lowercase__ ) return labels class lowerCAmelCase : @deprecated( __lowercase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Optional[int] , __lowercase : List[str] , __lowercase : Dict , __lowercase : Tuple=False , __lowercase : List[Any]=False , __lowercase : int=dtypes.floataa , __lowercase : str=True , __lowercase : Optional[int]=None , ): """simple docstring""" __lowercase , __lowercase =random_seed.get_seed(__lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowercase =dtypes.as_dtype(__lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: __lowercase =10000 __lowercase =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowercase =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowercase =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowercase =images.astype(numpy.floataa ) __lowercase =numpy.multiply(__lowercase , 1.0 / 2_5_5.0 ) __lowercase =images __lowercase =labels __lowercase =0 __lowercase =0 @property def snake_case ( self : List[str] ): """simple docstring""" return self._images @property def snake_case ( self : int ): """simple docstring""" return self._labels @property def snake_case ( self : List[str] ): """simple docstring""" return self._num_examples @property def snake_case ( self : Union[str, Any] ): """simple docstring""" return self._epochs_completed def snake_case ( self : Optional[int] , __lowercase : Optional[int] , __lowercase : Dict=False , __lowercase : Dict=True ): """simple docstring""" if fake_data: __lowercase =[1] * 784 __lowercase =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowercase )], [fake_label for _ in range(__lowercase )], ) __lowercase =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowercase =numpy.arange(self._num_examples ) numpy.random.shuffle(__lowercase ) __lowercase =self.images[perma] __lowercase =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowercase =self._num_examples - start __lowercase =self._images[start : self._num_examples] __lowercase =self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowercase =numpy.arange(self._num_examples ) numpy.random.shuffle(__lowercase ) __lowercase =self.images[perm] __lowercase =self.labels[perm] # Start next epoch __lowercase =0 __lowercase =batch_size - rest_num_examples __lowercase =self._index_in_epoch __lowercase =self._images[start:end] __lowercase =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowercase =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowercase__, 'Please write your own downloading logic.' ) def __UpperCamelCase ( lowercase__ : Optional[Any], lowercase__ : Tuple, lowercase__ : Tuple ): '''simple docstring''' if not gfile.Exists(lowercase__ ): gfile.MakeDirs(lowercase__ ) __lowercase =os.path.join(lowercase__, lowercase__ ) if not gfile.Exists(lowercase__ ): urllib.request.urlretrieve(lowercase__, lowercase__ ) # noqa: S310 with gfile.GFile(lowercase__ ) as f: __lowercase =f.size() print('Successfully downloaded', lowercase__, lowercase__, 'bytes.' ) return filepath @deprecated( lowercase__, 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def __UpperCamelCase ( lowercase__ : List[Any], lowercase__ : Any=False, lowercase__ : List[Any]=False, lowercase__ : Dict=dtypes.floataa, lowercase__ : List[str]=True, lowercase__ : Tuple=50_00, lowercase__ : List[str]=None, lowercase__ : int=DEFAULT_SOURCE_URL, ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [], [], fake_data=lowercase__, one_hot=lowercase__, dtype=lowercase__, seed=lowercase__ ) __lowercase =fake() __lowercase =fake() __lowercase =fake() return _Datasets(train=lowercase__, validation=lowercase__, test=lowercase__ ) if not source_url: # empty string check __lowercase =DEFAULT_SOURCE_URL __lowercase ='train-images-idx3-ubyte.gz' __lowercase ='train-labels-idx1-ubyte.gz' __lowercase ='t10k-images-idx3-ubyte.gz' __lowercase ='t10k-labels-idx1-ubyte.gz' __lowercase =_maybe_download( lowercase__, lowercase__, source_url + train_images_file ) with gfile.Open(lowercase__, 'rb' ) as f: __lowercase =_extract_images(lowercase__ ) __lowercase =_maybe_download( lowercase__, lowercase__, source_url + train_labels_file ) with gfile.Open(lowercase__, 'rb' ) as f: __lowercase =_extract_labels(lowercase__, one_hot=lowercase__ ) __lowercase =_maybe_download( lowercase__, lowercase__, source_url + test_images_file ) with gfile.Open(lowercase__, 'rb' ) as f: __lowercase =_extract_images(lowercase__ ) __lowercase =_maybe_download( lowercase__, lowercase__, source_url + test_labels_file ) with gfile.Open(lowercase__, 'rb' ) as f: __lowercase =_extract_labels(lowercase__, one_hot=lowercase__ ) if not 0 <= validation_size <= len(lowercase__ ): __lowercase =( 'Validation size should be between 0 and ' F'''{len(lowercase__ )}. Received: {validation_size}.''' ) raise ValueError(lowercase__ ) __lowercase =train_images[:validation_size] __lowercase =train_labels[:validation_size] __lowercase =train_images[validation_size:] __lowercase =train_labels[validation_size:] __lowercase ={'dtype': dtype, 'reshape': reshape, 'seed': seed} __lowercase =_DataSet(lowercase__, lowercase__, **lowercase__ ) __lowercase =_DataSet(lowercase__, lowercase__, **lowercase__ ) __lowercase =_DataSet(lowercase__, lowercase__, **lowercase__ ) return _Datasets(train=lowercase__, validation=lowercase__, test=lowercase__ )
141
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : int ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=__lowercase , ) assert hasattr(self , 'env' ) def snake_case ( self : Tuple , __lowercase : List[str] ): """simple docstring""" __lowercase =f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings __lowercase ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowercase , instance_count=__lowercase , instance_type=self.instance_type , debugger_hook_config=__lowercase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowercase , py_version='py36' , ) def snake_case ( self : int , __lowercase : List[str] ): """simple docstring""" TrainingJobAnalytics(__lowercase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def snake_case ( self : Tuple , __lowercase : List[Any] ): """simple docstring""" __lowercase =self.create_estimator(__lowercase ) # run training estimator.fit() # result dataframe __lowercase =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __lowercase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __lowercase )
141
1
"""simple docstring""" def snake_case_(_UpperCamelCase ) -> bool: """simple docstring""" _snake_case = set() # To detect a back edge, keep track of vertices currently in the recursion stack _snake_case = set() return any( node not in visited and depth_first_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for node in graph ) def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" visited.add(_UpperCamelCase ) rec_stk.add(_UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
357
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = CLIPTokenizer UpperCamelCase_ : Optional[int] = CLIPTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Optional[Any] = False def UpperCamelCase_ ( self : Union[str, Any] ) -> Dict: super().setUp() # fmt: off _snake_case = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on _snake_case = dict(zip(A__ , range(len(A__ ) ) ) ) _snake_case = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] _snake_case = {'''unk_token''': '''<unk>'''} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A__ ) ) def UpperCamelCase_ ( self : List[Any] , **A__ : int ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase_ ( self : Any , **A__ : Tuple ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase_ ( self : Optional[Any] , A__ : str ) -> str: _snake_case = '''lower newer''' _snake_case = '''lower newer''' return input_text, output_text def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[int]: _snake_case = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = '''lower newer''' _snake_case = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] _snake_case = tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ ) @require_ftfy def UpperCamelCase_ ( self : Any ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case = self.tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' _snake_case = tokenizer_s.tokenize(A__ ) _snake_case = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _snake_case = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' _snake_case = tokenizer_s.tokenize(A__ ) _snake_case = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Test that the tokenization is identical on unicode of space type _snake_case = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _snake_case = tokenizer_s.tokenize(A__ ) _snake_case = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Test that the tokenization is identical on unicode of line break type _snake_case = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _snake_case = tokenizer_s.tokenize(A__ ) _snake_case = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case = f"""{text_of_1_token} {text_of_1_token}""" _snake_case = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , ) _snake_case = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )) , ) _snake_case = f""" {text}""" _snake_case = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , ) _snake_case = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A__ ) + 1, 1 + len(A__ ) + 1 + len(A__ )) , ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(A__ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def UpperCamelCase_ ( self : Dict ) -> Union[str, Any]: super().test_tokenization_python_rust_equals() def UpperCamelCase_ ( self : str ) -> Optional[int]: # CLIP always lower cases letters pass
278
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Any = ["image_processor", "tokenizer"] __snake_case : str = "AutoImageProcessor" __snake_case : Optional[int] = "AutoTokenizer" def __init__( self : Tuple ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Optional[int]=None ,**lowerCamelCase__ : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.image_processor SCREAMING_SNAKE_CASE = False def __call__( self : Union[str, Any] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = kwargs.pop("""images""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = kwargs.pop("""text""" ,lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: SCREAMING_SNAKE_CASE = args[0] SCREAMING_SNAKE_CASE = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: SCREAMING_SNAKE_CASE = self.image_processor(lowerCamelCase__ ,*lowerCamelCase__ ,**lowerCamelCase__ ) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase__ ,**lowerCamelCase__ ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE = encodings["""input_ids"""] return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,*lowerCamelCase__ : Union[str, Any] ,**lowerCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : Any ) -> int: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ ,**lowerCamelCase__ ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer yield SCREAMING_SNAKE_CASE = self.image_processor SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any]=False ,lowerCamelCase__ : Optional[int]=None ) -> List[str]: '''simple docstring''' if added_vocab is None: SCREAMING_SNAKE_CASE = self.tokenizer.get_added_vocab() SCREAMING_SNAKE_CASE = {} while tokens: SCREAMING_SNAKE_CASE = re.search(R"""<s_(.*?)>""" ,lowerCamelCase__ ,re.IGNORECASE ) if start_token is None: break SCREAMING_SNAKE_CASE = start_token.group(1 ) SCREAMING_SNAKE_CASE = re.search(RF"""</s_{key}>""" ,lowerCamelCase__ ,re.IGNORECASE ) SCREAMING_SNAKE_CASE = start_token.group() if end_token is None: SCREAMING_SNAKE_CASE = tokens.replace(lowerCamelCase__ ,"""""" ) else: SCREAMING_SNAKE_CASE = end_token.group() SCREAMING_SNAKE_CASE = re.escape(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = re.escape(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" ,lowerCamelCase__ ,re.IGNORECASE ) if content is not None: SCREAMING_SNAKE_CASE = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node SCREAMING_SNAKE_CASE = self.tokenajson(lowerCamelCase__ ,is_inner_value=lowerCamelCase__ ,added_vocab=lowerCamelCase__ ) if value: if len(lowerCamelCase__ ) == 1: SCREAMING_SNAKE_CASE = value[0] SCREAMING_SNAKE_CASE = value else: # leaf nodes SCREAMING_SNAKE_CASE = [] for leaf in content.split(R"""<sep/>""" ): SCREAMING_SNAKE_CASE = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": SCREAMING_SNAKE_CASE = leaf[1:-2] # for categorical special tokens output[key].append(lowerCamelCase__ ) if len(output[key] ) == 1: SCREAMING_SNAKE_CASE = output[key][0] SCREAMING_SNAKE_CASE = tokens[tokens.find(lowerCamelCase__ ) + len(lowerCamelCase__ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] ,is_inner_value=lowerCamelCase__ ,added_vocab=lowerCamelCase__ ) if len(lowerCamelCase__ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase__ ,) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase__ ,) return self.image_processor
296
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[str] = TextToVideoSDPipeline __snake_case : int = TEXT_TO_IMAGE_PARAMS __snake_case : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Dict = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") ,up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") ,cross_attention_dim=32 ,attention_head_dim=4 ,) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int=0 ) -> List[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """np""" SCREAMING_SNAKE_CASE = sd_pipe(**lowerCamelCase__ ).frames SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) SCREAMING_SNAKE_CASE = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) SCREAMING_SNAKE_CASE = """Spiderman is surfing""" SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=25 ,output_type="""pt""" ).frames SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) SCREAMING_SNAKE_CASE = """Spiderman is surfing""" SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type="""pt""" ).frames SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
296
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase : List[str] = random.Random() def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=None ) -> Any: """simple docstring""" if rng is None: _SCREAMING_SNAKE_CASE =global_rng _SCREAMING_SNAKE_CASE =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): def __init__( self : List[Any] , _a : Tuple , _a : Dict=7 , _a : List[Any]=400 , _a : List[str]=2000 , _a : Optional[Any]=10 , _a : Dict=160 , _a : Tuple=8 , _a : Any=0.0 , _a : Optional[Any]=4000 , _a : List[Any]=False , _a : Dict=True , ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =min_seq_length _SCREAMING_SNAKE_CASE =max_seq_length _SCREAMING_SNAKE_CASE =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _SCREAMING_SNAKE_CASE =padding_value _SCREAMING_SNAKE_CASE =sampling_rate _SCREAMING_SNAKE_CASE =return_attention_mask _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =feature_size _SCREAMING_SNAKE_CASE =chunk_length _SCREAMING_SNAKE_CASE =hop_length def A ( self : Any ) -> Optional[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : Optional[Any] , _a : Any=False , _a : Union[str, Any]=False ) -> Optional[Any]: '''simple docstring''' def _flatten(_a : Union[str, Any] ): return list(itertools.chain(*_a ) ) if equal_length: _SCREAMING_SNAKE_CASE =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _SCREAMING_SNAKE_CASE =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( A__ , unittest.TestCase ): A__ = WhisperFeatureExtractor if is_speech_available() else None def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =WhisperFeatureExtractionTester(self ) def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : Tuple ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =os.path.join(_a , 'feat_extract.json' ) feat_extract_first.to_json_file(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_json_file(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _SCREAMING_SNAKE_CASE =feature_extractor(_a , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _SCREAMING_SNAKE_CASE =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in (800, 800, 800)] _SCREAMING_SNAKE_CASE =np.asarray(_a ) _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] _SCREAMING_SNAKE_CASE =[x[: feature_extractor.n_samples] for x in speech_inputs] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs_truncated] _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def A ( self : Any ) -> List[Any]: '''simple docstring''' import torch _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =np.random.rand(100 , 32 ).astype(np.floataa ) _SCREAMING_SNAKE_CASE =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A ( self : Tuple , _a : str ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _SCREAMING_SNAKE_CASE =ds.sort('id' ).select(range(_a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _SCREAMING_SNAKE_CASE =self._load_datasamples(1 ) _SCREAMING_SNAKE_CASE =WhisperFeatureExtractor() _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =self._load_datasamples(1 )[0] _SCREAMING_SNAKE_CASE =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _SCREAMING_SNAKE_CASE =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
114
1
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) lowerCAmelCase__ : Tuple = -1 lowerCAmelCase__ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) lowerCAmelCase__ : List[Any] = model.generate(__lowerCAmelCase ,max_new_tokens=1_0 ,do_sample=__lowerCAmelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase__ : Union[str, Any] = TextStreamer(__lowerCAmelCase ) model.generate(__lowerCAmelCase ,max_new_tokens=1_0 ,do_sample=__lowerCAmelCase ,streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase__ : int = cs.out[:-1] self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) lowerCAmelCase__ : Tuple = -1 lowerCAmelCase__ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) lowerCAmelCase__ : Optional[int] = model.generate(__lowerCAmelCase ,max_new_tokens=1_0 ,do_sample=__lowerCAmelCase ) lowerCAmelCase__ : List[str] = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase__ : Tuple = TextIteratorStreamer(__lowerCAmelCase ) lowerCAmelCase__ : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase__ : List[Any] = Thread(target=model.generate ,kwargs=__lowerCAmelCase ) thread.start() lowerCAmelCase__ : int = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) lowerCAmelCase__ : Tuple = -1 lowerCAmelCase__ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) lowerCAmelCase__ : int = model.generate(__lowerCAmelCase ,max_new_tokens=1_0 ,do_sample=__lowerCAmelCase ) lowerCAmelCase__ : Optional[Any] = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase__ : int = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase__ : Any = TextStreamer(__lowerCAmelCase ,skip_prompt=__lowerCAmelCase ) model.generate(__lowerCAmelCase ,max_new_tokens=1_0 ,do_sample=__lowerCAmelCase ,streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase__ : Union[str, Any] = cs.out[:-1] self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__lowerCAmelCase ) lowerCAmelCase__ : str = -1 lowerCAmelCase__ : Any = torch.ones((1, 5) ,device=__lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase__ : List[Any] = TextStreamer(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) model.generate(__lowerCAmelCase ,max_new_tokens=1 ,do_sample=__lowerCAmelCase ,streamer=__lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase__ : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase__ : int = tokenizer(__lowerCAmelCase ,return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) lowerCAmelCase__ : Union[str, Any] = -1 lowerCAmelCase__ : Any = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) lowerCAmelCase__ : List[str] = TextIteratorStreamer(__lowerCAmelCase ,timeout=0.001 ) lowerCAmelCase__ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase__ : List[Any] = Thread(target=model.generate ,kwargs=__lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCAmelCase ): lowerCAmelCase__ : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text
106
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __snake_case ( _lowercase): snake_case__ : int = "retribert" def __init__( self : Optional[int] , __lowerCAmelCase : str=3_0_5_2_2 , __lowerCAmelCase : Tuple=7_6_8 , __lowerCAmelCase : Union[str, Any]=8 , __lowerCAmelCase : Any=1_2 , __lowerCAmelCase : Optional[int]=3_0_7_2 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=5_1_2 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Optional[Any]=1E-12 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Any=1_2_8 , __lowerCAmelCase : Optional[int]=0 , **__lowerCAmelCase : str , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : int = hidden_act _lowerCamelCase : str = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : int = share_encoders _lowerCamelCase : Optional[Any] = projection_dim
72
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __magic_name__ : def __init__( self , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case="resnet50" , snake_case=3 , snake_case=3_2 , snake_case=3 , snake_case=True , snake_case=True , ) -> str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =parent _UpperCAmelCase : List[str] =out_indices if out_indices is not None else [4] _UpperCAmelCase : Tuple =stage_names _UpperCAmelCase : Any =out_features _UpperCAmelCase : List[Any] =backbone _UpperCAmelCase : Any =batch_size _UpperCAmelCase : Optional[Any] =image_size _UpperCAmelCase : Optional[int] =num_channels _UpperCAmelCase : Tuple =use_pretrained_backbone _UpperCAmelCase : Optional[Any] =is_training def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase : Optional[Any] =self.get_config() return config, pixel_values def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self , snake_case , snake_case) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str =TimmBackbone(config=snake_case) model.to(snake_case) model.eval() with torch.no_grad(): _UpperCAmelCase : Any =model(snake_case) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.prepare_config_and_inputs() _UpperCAmelCase : List[Any] =config_and_inputs _UpperCAmelCase : str ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class __magic_name__ ( lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =(TimmBackbone,) if is_torch_available() else () UpperCAmelCase ={"feature-extraction": TimmBackbone} if is_torch_available() else {} UpperCAmelCase =False UpperCAmelCase =False UpperCAmelCase =False UpperCAmelCase =False def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] =TimmBackboneModelTester(self) _UpperCAmelCase : Dict =ConfigTester(self , config_class=snake_case , has_text_modality=snake_case) def lowerCAmelCase ( self) -> str: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int ='resnet18' _UpperCAmelCase : Optional[Any] ='microsoft/resnet-18' _UpperCAmelCase : List[str] =AutoBackbone.from_pretrained(snake_case , use_timm_backbone=snake_case) _UpperCAmelCase : str =AutoBackbone.from_pretrained(snake_case) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) _UpperCAmelCase : str =AutoBackbone.from_pretrained(snake_case , use_timm_backbone=snake_case , out_indices=[1, 2, 3]) _UpperCAmelCase : int =AutoBackbone.from_pretrained(snake_case , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def lowerCAmelCase ( self) -> Dict: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def lowerCAmelCase ( self) -> str: '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def lowerCAmelCase ( self) -> str: '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def lowerCAmelCase ( self) -> str: '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def lowerCAmelCase ( self) -> int: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def lowerCAmelCase ( self) -> int: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def lowerCAmelCase ( self) -> str: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def lowerCAmelCase ( self) -> Dict: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @unittest.skip('Safetensors is not supported by timm.') def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[int] =model_class(snake_case) _UpperCAmelCase : Dict =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Any =[*signature.parameters.keys()] _UpperCAmelCase : int =['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[Any] =True _UpperCAmelCase : Union[str, Any] =self.has_attentions # no need to test all models as different heads yield the same functionality _UpperCAmelCase : Union[str, Any] =self.all_model_classes[0] _UpperCAmelCase : int =model_class(snake_case) model.to(snake_case) _UpperCAmelCase : List[str] =self._prepare_for_class(snake_case , snake_case) _UpperCAmelCase : Optional[Any] =model(**snake_case) _UpperCAmelCase : Optional[int] =outputs[0][-1] # Encoder-/Decoder-only models _UpperCAmelCase : Any =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _UpperCAmelCase : Dict =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Dict =model_class(snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : Optional[Any] =model(**snake_case) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None _UpperCAmelCase : str =copy.deepcopy(snake_case) _UpperCAmelCase : List[Any] =None _UpperCAmelCase : Any =model_class(snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : int =model(**snake_case) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights _UpperCAmelCase : str =copy.deepcopy(snake_case) _UpperCAmelCase : Any =False _UpperCAmelCase : Tuple =model_class(snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : Optional[Any] =model(**snake_case)
351
'''simple docstring''' from typing import Any def lowerCamelCase__ ( __lowerCamelCase : list , __lowerCamelCase : list , __lowerCamelCase : dict , __lowerCamelCase : dict , __lowerCamelCase : dict , ): '''simple docstring''' _validation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # Creates data structures and fill initial step _UpperCAmelCase : dict ={} _UpperCAmelCase : dict ={} for state in states_space: _UpperCAmelCase : int =observations_space[0] _UpperCAmelCase : int =( initial_probabilities[state] * emission_probabilities[state][observation] ) _UpperCAmelCase : int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowerCamelCase ) ): _UpperCAmelCase : List[Any] =observations_space[o] _UpperCAmelCase : Optional[int] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _UpperCAmelCase : List[str] ='' _UpperCAmelCase : Dict =-1 for k_state in states_space: _UpperCAmelCase : List[str] =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _UpperCAmelCase : int =probability _UpperCAmelCase : List[Any] =k_state # Update probabilities and pointers dicts _UpperCAmelCase : str =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _UpperCAmelCase : List[Any] =arg_max # The final observation _UpperCAmelCase : int =observations_space[len(__lowerCamelCase ) - 1] # argmax for given final observation _UpperCAmelCase : Any ='' _UpperCAmelCase : Union[str, Any] =-1 for k_state in states_space: _UpperCAmelCase : Optional[int] =probabilities[(k_state, final_observation)] if probability > max_probability: _UpperCAmelCase : Union[str, Any] =probability _UpperCAmelCase : int =k_state _UpperCAmelCase : int =arg_max # Process pointers backwards _UpperCAmelCase : List[str] =last_state _UpperCAmelCase : Optional[int] =[] for o in range(len(__lowerCamelCase ) - 1 , -1 , -1 ): result.append(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): '''simple docstring''' _validate_not_empty( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _validate_lists(__lowerCamelCase , __lowerCamelCase ) _validate_dicts( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any ): '''simple docstring''' _validate_list(__lowerCamelCase , 'observations_space' ) _validate_list(__lowerCamelCase , 'states_space' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str ): '''simple docstring''' if not isinstance(_object , __lowerCamelCase ): _UpperCAmelCase : Any =f"{var_name} must be a list" raise ValueError(__lowerCamelCase ) else: for x in _object: if not isinstance(__lowerCamelCase , __lowerCamelCase ): _UpperCAmelCase : Optional[int] =f"{var_name} must be a list of strings" raise ValueError(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): '''simple docstring''' _validate_dict(__lowerCamelCase , 'initial_probabilities' , __lowerCamelCase ) _validate_nested_dict(__lowerCamelCase , 'transition_probabilities' ) _validate_nested_dict(__lowerCamelCase , 'emission_probabilities' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str ): '''simple docstring''' _validate_dict(_object , __lowerCamelCase , __lowerCamelCase ) for x in _object.values(): _validate_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : type , __lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(_object , __lowerCamelCase ): _UpperCAmelCase : List[str] =f"{var_name} must be a dict" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object ): _UpperCAmelCase : str =f"{var_name} all keys must be strings" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object.values() ): _UpperCAmelCase : int ='nested dictionary ' if nested else '' _UpperCAmelCase : Optional[int] =f"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
242
0
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): _a = True from torch.cuda.amp import autocast _a = logging.getLogger(__name__) def lowerCamelCase__ ( __snake_case=None, __snake_case=None ) -> List[str]: """simple docstring""" return field(default_factory=lambda: default, metadata=__snake_case ) @dataclass class _UpperCAmelCase: lowercase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowercase__ = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowercase__ = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowercase__ = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) lowercase__ = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) lowercase__ = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) lowercase__ = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class _UpperCAmelCase: lowercase__ = field( default=lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase__ = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) lowercase__ = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class _UpperCAmelCase: lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None def __call__( self , __a) -> Dict[str, torch.Tensor]: '''simple docstring''' # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( __a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=__a , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1) , -1_00) _UpperCamelCase = labels return batch class _UpperCAmelCase( lowerCamelCase ): def UpperCAmelCase ( self , __a , __a) -> torch.Tensor: '''simple docstring''' model.train() _UpperCamelCase = self._prepare_inputs(__a) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(__a , __a) else: _UpperCamelCase = self.compute_loss(__a , __a) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''') if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() return loss.detach() def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''', __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''', data_args.dataset_config_name, split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''', data_args.dataset_config_name, split='''test''' ) # Create and save tokenizer _UpperCamelCase = F'''[{"".join(data_args.chars_to_ignore )}]''' def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case, '''''', batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case, remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case, remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case, batched=__snake_case, batch_size=-1, keep_in_memory=__snake_case, remove_columns=train_dataset.column_names, ) _UpperCamelCase = train_dataset.map( __snake_case, batched=__snake_case, batch_size=-1, keep_in_memory=__snake_case, remove_columns=eval_dataset.column_names, ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''', '''w''' ) as vocab_file: json.dump(__snake_case, __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''', unk_token='''[UNK]''', pad_token='''[PAD]''', word_delimiter_token='''|''', ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_60_00, padding_value=0.0, do_normalize=__snake_case, return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case, tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='''mean''', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ), data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(4_80_00, 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 1_60_00 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) _UpperCamelCase = eval_dataset.map( __snake_case, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _UpperCamelCase = processor( audio=batch['''speech'''], text=batch['''target_text'''], sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=__snake_case, num_proc=data_args.preprocessing_num_workers, ) _UpperCamelCase = eval_dataset.map( __snake_case, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=__snake_case, num_proc=data_args.preprocessing_num_workers, ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case, axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids, group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case, references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case, padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case, data_collator=__snake_case, args=__snake_case, compute_metrics=__snake_case, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case, len(__snake_case ) ) trainer.log_metrics('''train''', __snake_case ) trainer.save_metrics('''train''', __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case, len(__snake_case ) ) trainer.log_metrics('''eval''', __snake_case ) trainer.save_metrics('''eval''', __snake_case ) return results if __name__ == "__main__": main()
194
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" with open(__snake_case ) as metadata_file: _UpperCamelCase = json.load(__snake_case ) _UpperCamelCase = LukeConfig(use_entity_aware_attention=__snake_case, **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCamelCase = torch.load(__snake_case, map_location='''cpu''' ) # Load the entity vocab file _UpperCamelCase = load_entity_vocab(__snake_case ) _UpperCamelCase = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase = AddedToken('''<ent>''', lstrip=__snake_case, rstrip=__snake_case ) _UpperCamelCase = AddedToken('''<ent2>''', lstrip=__snake_case, rstrip=__snake_case ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__snake_case ) with open(os.path.join(__snake_case, LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ), '''w''' ) as f: json.dump(__snake_case, __snake_case ) _UpperCamelCase = LukeTokenizer.from_pretrained(__snake_case ) # Initialize the embeddings of the special tokens _UpperCamelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) _UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) _UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase = state_dict[prefix + matrix_name] _UpperCamelCase = state_dict[prefix + matrix_name] _UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCamelCase = entity_emb[entity_vocab['''[MASK]''']] _UpperCamelCase = LukeModel(config=__snake_case ).eval() _UpperCamelCase , _UpperCamelCase = model.load_state_dict(__snake_case, strict=__snake_case ) if not (len(__snake_case ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {", ".join(__snake_case )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' F''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs _UpperCamelCase = LukeTokenizer.from_pretrained(__snake_case, task='''entity_classification''' ) _UpperCamelCase = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) _UpperCamelCase = (39, 42) _UpperCamelCase = tokenizer(__snake_case, entity_spans=[span], add_prefix_space=__snake_case, return_tensors='''pt''' ) _UpperCamelCase = model(**__snake_case ) # Verify word hidden states if model_size == "large": _UpperCamelCase = torch.Size((1, 42, 10_24) ) _UpperCamelCase = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base _UpperCamelCase = torch.Size((1, 42, 7_68) ) _UpperCamelCase = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], __snake_case, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _UpperCamelCase = torch.Size((1, 1, 10_24) ) _UpperCamelCase = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base _UpperCamelCase = torch.Size((1, 1, 7_68) ) _UpperCamelCase = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], __snake_case, atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__snake_case ) ) model.save_pretrained(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = {} with open(__snake_case, '''r''', encoding='''utf-8''' ) as f: for index, line in enumerate(__snake_case ): _UpperCamelCase , _UpperCamelCase = line.rstrip().split('''\t''' ) _UpperCamelCase = index return entity_vocab if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _a = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
194
1
'''simple docstring''' from collections.abc import Sequence def _snake_case ( _SCREAMING_SNAKE_CASE : Sequence[float] , _SCREAMING_SNAKE_CASE : bool = False ) -> float: """simple docstring""" if not arr: return 0 lowerCAmelCase = 0 if allow_empty_subarrays else float("""-inf""" ) lowerCAmelCase = 0.0 for num in arr: lowerCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase = max(snake_case__ , snake_case__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
365
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.0_2 , A_=3 , A_=4 , A_=None , ) -> Dict: lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 384 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = """gelu""" lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 512 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.0_2 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = 128 lowerCAmelCase = 2 lowerCAmelCase = 9 lowerCAmelCase = 1 lowerCAmelCase = None def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: lowerCAmelCase = TFConvBertModel(config=A_ ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(A_ ) lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: lowerCAmelCase = TFConvBertForMaskedLM(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFConvBertForSequenceClassification(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: lowerCAmelCase = self.num_choices lowerCAmelCase = TFConvBertForMultipleChoice(config=A_ ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFConvBertForTokenClassification(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = TFConvBertForQuestionAnswering(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase : Union[str, Any] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Dict = False def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = TFConvBertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def __snake_case ( self ) -> Any: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = True if hasattr(A_ , """use_cache""" ): lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) for model_class in self.all_model_classes: lowerCAmelCase = self._prepare_for_class(A_ , A_ ) lowerCAmelCase = model_class(A_ ) lowerCAmelCase = len(model(A_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) lowerCAmelCase = os.path.join(A_ , """saved_model""" , """1""" ) lowerCAmelCase = tf.keras.models.load_model(A_ ) lowerCAmelCase = model(A_ ) if self.is_encoder_decoder: lowerCAmelCase = outputs["""encoder_hidden_states"""] lowerCAmelCase = outputs["""encoder_attentions"""] else: lowerCAmelCase = outputs["""hidden_states"""] lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(A_ ) , A_ ) lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(A_ ) def __snake_case ( self ) -> str: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) def check_decoder_attentions_output(A_ ): lowerCAmelCase = len(A_ ) self.assertEqual(out_len % 2 , 0 ) lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A_ ): lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) lowerCAmelCase = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @require_tf class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> Any: lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(A_ )[0] lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , A_ ) lowerCAmelCase = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 )
187
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BeitFeatureExtractor'] __UpperCAmelCase = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
84
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _lowerCAmelCase ( A__: str ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __magic_name__ = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class lowercase ( __A ): '''simple docstring''' @staticmethod def snake_case_ ( _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=__lowercase , required=__lowercase , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=__lowercase , required=__lowercase , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=__lowercase , required=__lowercase , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=__lowercase , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=__lowercase , default=__lowercase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=__lowercase ) def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case , ) -> List[Any]: """simple docstring""" UpperCAmelCase = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f"""Loading model {model_type}""" ) UpperCAmelCase = model_type UpperCAmelCase = tf_checkpoint UpperCAmelCase = pytorch_dump_output UpperCAmelCase = config UpperCAmelCase = finetuning_task_name def snake_case_ ( self ) -> List[Any]: """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase = self._tf_checkpoint UpperCAmelCase = '''''' else: UpperCAmelCase = self._tf_checkpoint UpperCAmelCase = '''''' convert_transfo_xl_checkpoint_to_pytorch( __lowercase , self._config , self._pytorch_dump_output , __lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
0
'''simple docstring''' import mpmath # for roots of unity import numpy as np class a_ : '''simple docstring''' def __init__( self , A=None , A=None ) -> Optional[int]: # Input as list _SCREAMING_SNAKE_CASE = list(poly_a or [0] )[:] _SCREAMING_SNAKE_CASE = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _SCREAMING_SNAKE_CASE = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _SCREAMING_SNAKE_CASE = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _SCREAMING_SNAKE_CASE = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _SCREAMING_SNAKE_CASE = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _SCREAMING_SNAKE_CASE = self.__multiply() def snake_case_( self , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(A ) <= 1: return dft[0] # _SCREAMING_SNAKE_CASE = self.c_max_length // 2 while next_ncol > 0: _SCREAMING_SNAKE_CASE = [[] for i in range(A )] _SCREAMING_SNAKE_CASE = self.root**next_ncol # First half of next step _SCREAMING_SNAKE_CASE = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(A ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _SCREAMING_SNAKE_CASE = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(A ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _SCREAMING_SNAKE_CASE = new_dft _SCREAMING_SNAKE_CASE = next_ncol // 2 return dft[0] def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.__dft("""A""" ) _SCREAMING_SNAKE_CASE = self.__dft("""B""" ) _SCREAMING_SNAKE_CASE = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _SCREAMING_SNAKE_CASE = 2 while next_ncol <= self.c_max_length: _SCREAMING_SNAKE_CASE = [[] for i in range(A )] _SCREAMING_SNAKE_CASE = self.root ** (next_ncol // 2) _SCREAMING_SNAKE_CASE = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _SCREAMING_SNAKE_CASE = new_inverse_c next_ncol *= 2 # Unpack _SCREAMING_SNAKE_CASE = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ) -> Tuple: _SCREAMING_SNAKE_CASE = """A = """ + """ + """.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _SCREAMING_SNAKE_CASE = """B = """ + """ + """.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _SCREAMING_SNAKE_CASE = """A*B = """ + """ + """.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
58
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __UpperCAmelCase = { '''b0''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1_408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1_536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1_792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2_304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2_560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def UpperCamelCase ( snake_case__ : int ) -> Optional[int]: UpperCamelCase : str = EfficientNetConfig() UpperCamelCase : Union[str, Any] = CONFIG_MAP[model_name]['hidden_dim'] UpperCamelCase : Union[str, Any] = CONFIG_MAP[model_name]['width_coef'] UpperCamelCase : str = CONFIG_MAP[model_name]['depth_coef'] UpperCamelCase : List[str] = CONFIG_MAP[model_name]['image_size'] UpperCamelCase : List[str] = CONFIG_MAP[model_name]['dropout_rate'] UpperCamelCase : str = CONFIG_MAP[model_name]['dw_padding'] UpperCamelCase : str = 'huggingface/label-files' UpperCamelCase : Optional[Any] = 'imagenet-1k-id2label.json' UpperCamelCase : Optional[Any] = 1000 UpperCamelCase : Dict = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : Tuple = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : Optional[int] = idalabel UpperCamelCase : Tuple = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im def UpperCamelCase ( snake_case__ : List[str] ) -> List[Any]: UpperCamelCase : int = CONFIG_MAP[model_name]['image_size'] UpperCamelCase : List[str] = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=snake_case__ , ) return preprocessor def UpperCamelCase ( snake_case__ : Optional[int] ) -> Dict: UpperCamelCase : int = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] UpperCamelCase : str = sorted(set(snake_case__ ) ) UpperCamelCase : int = len(snake_case__ ) UpperCamelCase : str = {b: str(snake_case__ ) for b, i in zip(snake_case__ , range(snake_case__ ) )} UpperCamelCase : Optional[int] = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: UpperCamelCase : Union[str, Any] = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) UpperCamelCase : List[str] = {} for item in rename_keys: if item[0] in original_param_names: UpperCamelCase : Dict = 'efficientnet.' + item[1] UpperCamelCase : Dict = 'classifier.weight' UpperCamelCase : Dict = 'classifier.bias' return key_mapping def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : int ) -> Dict: for key, value in tf_params.items(): if "normalization" in key: continue UpperCamelCase : Any = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCamelCase : str = torch.from_numpy(snake_case__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCamelCase : Any = torch.from_numpy(snake_case__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCamelCase : str = torch.from_numpy(np.transpose(snake_case__ ) ) else: UpperCamelCase : str = torch.from_numpy(snake_case__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(snake_case__ ) @torch.no_grad() def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] ) -> Any: UpperCamelCase : Union[str, Any] = model_classes[model_name]( include_top=snake_case__ , weights='imagenet' , input_tensor=snake_case__ , input_shape=snake_case__ , pooling=snake_case__ , classes=1000 , classifier_activation='softmax' , ) UpperCamelCase : Optional[int] = original_model.trainable_variables UpperCamelCase : Optional[int] = original_model.non_trainable_variables UpperCamelCase : Tuple = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCamelCase : List[Any] = param.numpy() UpperCamelCase : List[str] = list(tf_params.keys() ) # Load HuggingFace model UpperCamelCase : str = get_efficientnet_config(snake_case__ ) UpperCamelCase : Any = EfficientNetForImageClassification(snake_case__ ).eval() UpperCamelCase : Tuple = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) UpperCamelCase : List[Any] = rename_keys(snake_case__ ) replace_params(snake_case__ , snake_case__ , snake_case__ ) # Initialize preprocessor and preprocess input image UpperCamelCase : List[Any] = convert_image_processor(snake_case__ ) UpperCamelCase : Dict = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCamelCase : Optional[int] = hf_model(**snake_case__ ) UpperCamelCase : Dict = outputs.logits.detach().numpy() # Original model inference UpperCamelCase : Optional[int] = False UpperCamelCase : int = CONFIG_MAP[model_name]['image_size'] UpperCamelCase : List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCamelCase : List[Any] = image.img_to_array(snake_case__ ) UpperCamelCase : str = np.expand_dims(snake_case__ , axis=0 ) UpperCamelCase : Any = original_model.predict(snake_case__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(snake_case__ , snake_case__ , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(snake_case__ ): os.mkdir(snake_case__ ) # Save converted model and image processor hf_model.save_pretrained(snake_case__ ) preprocessor.save_pretrained(snake_case__ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) UpperCamelCase : List[str] = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(snake_case__ ) hf_model.push_to_hub(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __UpperCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
119
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase__ :Optional[int] = logging.get_logger(__name__) lowercase__ :Any = {"vocab_file": "vocab.txt"} lowercase__ :Any = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } lowercase__ :List[Any] = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } lowercase__ :Optional[Any] = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Tuple =VOCAB_FILES_NAMES lowercase_ : Any =PRETRAINED_VOCAB_FILES_MAP lowercase_ : List[str] =PRETRAINED_INIT_CONFIGURATION lowercase_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : int =ConvBertTokenizer def __init__( self ,A__=None ,A__=None ,A__=True ,A__="[UNK]" ,A__="[SEP]" ,A__="[PAD]" ,A__="[CLS]" ,A__="[MASK]" ,A__=True ,A__=None ,**A__ ,): super().__init__( A__ ,tokenizer_file=A__ ,do_lower_case=A__ ,unk_token=A__ ,sep_token=A__ ,pad_token=A__ ,cls_token=A__ ,mask_token=A__ ,tokenize_chinese_chars=A__ ,strip_accents=A__ ,**A__ ,) lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' ,A__) != do_lower_case or normalizer_state.get('''strip_accents''' ,A__) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,A__) != tokenize_chinese_chars ): lowercase = getattr(A__ ,normalizer_state.pop('''type''')) lowercase = do_lower_case lowercase = strip_accents lowercase = tokenize_chinese_chars lowercase = normalizer_class(**A__) lowercase = do_lower_case def A__ ( self ,A__ ,A__=None): lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self ,A__ ,A__ = None): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def A__ ( self ,A__ ,A__ = None): lowercase = self._tokenizer.model.save(A__ ,name=A__) return tuple(A__)
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ :Dict = logging.get_logger(__name__) lowercase__ :Optional[Any] = "▁" lowercase__ :str = {"vocab_file": "prophetnet.tokenizer"} lowercase__ :List[str] = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } lowercase__ :Optional[Any] = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } lowercase__ :List[Any] = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = collections.OrderedDict() with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase = reader.readlines() for index, token in enumerate(lowerCAmelCase__ ): lowercase = token.rstrip('''\n''' ) lowercase = index return vocab class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[Any] =VOCAB_FILES_NAMES lowercase_ : Any =PRETRAINED_VOCAB_FILES_MAP lowercase_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str =['''input_ids''', '''attention_mask'''] def __init__( self ,A__ ,A__="[SEP]" ,A__="[SEP]" ,A__="[SEP]" ,A__="[UNK]" ,A__="[PAD]" ,A__="[CLS]" ,A__="[MASK]" ,A__ = None ,**A__ ,): lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ ,eos_token=A__ ,sep_token=A__ ,unk_token=A__ ,pad_token=A__ ,cls_token=A__ ,mask_token=A__ ,sp_model_kwargs=self.sp_model_kwargs ,**A__ ,) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''') raise lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(A__)) lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowercase = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(1_0): lowercase = f'[unused{i}]' lowercase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowercase = 1_2 lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A__) def __getstate__( self): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self ,A__): lowercase = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''') raise # for backward compatibility if not hasattr(self ,'''sp_model_kwargs'''): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A__ ( self ,A__ ,A__ = None ,A__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ ,token_ids_a=A__ ,already_has_special_tokens=A__) if token_ids_a is None: return ([0] * len(A__)) + [1] return ([0] * len(A__)) + [1] + ([0] * len(A__)) + [1] def A__ ( self ,A__ ,A__ = None): lowercase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset def A__ ( self): lowercase = {self.convert_ids_to_tokens(A__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self ,A__): return self.sp_model.encode(A__ ,out_type=A__) def A__ ( self ,A__): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(A__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self ,A__): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self ,A__): lowercase = ''''''.join(A__).replace(A__ ,''' ''').strip() return out_string def A__ ( self ,A__ ,A__ = None): if not os.path.isdir(A__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return lowercase = os.path.join( A__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(A__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,A__) elif not os.path.isfile(self.vocab_file): with open(A__ ,'''wb''') as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(A__) return (out_vocab_file,) def A__ ( self ,A__ ,A__ = None): if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowercase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
97
0
from typing import TYPE_CHECKING from ....utils import _LazyModule __snake_case :Any = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __snake_case :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
49
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase = take_from _UpperCAmelCase = () if not isinstance(args[0] , a__ ): _UpperCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) _UpperCAmelCase = None if isinstance(a__ , a__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(a__ ),) _UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(a__ , a__ ): values += (getattr(a__ , a__ ),) _UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: _UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: _UpperCAmelCase = warning + ' ' if standard_warn else '' warnings.warn(warning + message , a__ , stacklevel=a__ ) if isinstance(a__ , a__ ) and len(a__ ) > 0: _UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase = call_frame.filename _UpperCAmelCase = call_frame.lineno _UpperCAmelCase = call_frame.function _UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(a__ ) == 0: return elif len(a__ ) == 1: return values[0] return values
329
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __a = random.Random() def __snake_case( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[int]: if rng is None: snake_case__ : Union[str, Any] = global_rng snake_case__ : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , snake_case_ : Optional[Any] , snake_case_ : List[Any]=7 , snake_case_ : Union[str, Any]=400 , snake_case_ : Optional[Any]=2_000 , snake_case_ : List[str]=10 , snake_case_ : List[str]=160 , snake_case_ : str=8 , snake_case_ : Any=0.0 , snake_case_ : str=4_000 , snake_case_ : Union[str, Any]=False , snake_case_ : int=True , ): snake_case__ : str = parent snake_case__ : List[str] = batch_size snake_case__ : Any = min_seq_length snake_case__ : Tuple = max_seq_length snake_case__ : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ : Any = padding_value snake_case__ : Optional[Any] = sampling_rate snake_case__ : Optional[int] = return_attention_mask snake_case__ : Optional[Any] = do_normalize snake_case__ : Optional[int] = feature_size snake_case__ : Tuple = chunk_length snake_case__ : Optional[int] = hop_length def lowerCamelCase ( self : Any ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase ( self : Tuple , snake_case_ : List[str]=False , snake_case_ : List[str]=False ): def _flatten(snake_case_ : Tuple ): return list(itertools.chain(*snake_case_ ) ) if equal_length: snake_case__ : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ : Tuple = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" lowercase = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = WhisperFeatureExtractionTester(self ) def lowerCamelCase ( self : str ): snake_case__ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Optional[int] = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) snake_case__ : List[Any] = self.feature_extraction_class.from_pretrained(snake_case_ ) snake_case__ : int = feat_extract_first.to_dict() snake_case__ : str = feat_extract_second.to_dict() snake_case__ : str = feat_extract_first.mel_filters snake_case__ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Dict ): snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : List[str] = os.path.join(snake_case_ , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case_ ) snake_case__ : Union[str, Any] = self.feature_extraction_class.from_json_file(snake_case_ ) snake_case__ : Dict = feat_extract_first.to_dict() snake_case__ : List[str] = feat_extract_second.to_dict() snake_case__ : int = feat_extract_first.mel_filters snake_case__ : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ : str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] snake_case__ : Union[str, Any] = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test feature size snake_case__ : Tuple = feature_extractor(snake_case_ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case__ : List[str] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features snake_case__ : str = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test batched snake_case__ : Tuple = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features snake_case__ : int = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case__ : int = np.asarray(snake_case_ ) snake_case__ : Union[str, Any] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features snake_case__ : Tuple = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test truncation required snake_case__ : Optional[int] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] snake_case__ : List[str] = [np.asarray(snake_case_ ) for speech_input in speech_inputs] snake_case__ : str = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case__ : List[str] = [np.asarray(snake_case_ ) for speech_input in speech_inputs_truncated] snake_case__ : Optional[Any] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features snake_case__ : Any = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def lowerCamelCase ( self : Dict ): import torch snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Optional[Any] = np.random.rand(100 , 32 ).astype(np.floataa ) snake_case__ : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ : List[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case__ : List[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase ( self : List[Any] , snake_case_ : Optional[Any] ): snake_case__ : Any = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech snake_case__ : str = ds.sort("""id""" ).select(range(snake_case_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase ( self : List[Any] ): snake_case__ : Union[str, Any] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on snake_case__ : List[str] = self._load_datasamples(1 ) snake_case__ : List[str] = WhisperFeatureExtractor() snake_case__ : int = feature_extractor(snake_case_ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case_ , atol=1E-4 ) ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : str = self._load_datasamples(1 )[0] snake_case__ : int = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue snake_case__ : List[str] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case_ )[0] self.assertTrue(np.all(np.mean(snake_case_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case_ ) - 1 ) < 1E-3 ) )
363
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = CycleDiffusionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } lowercase = PipelineTesterMixin.required_optional_params - {"latents"} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self : Dict ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case__ : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_000 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) snake_case__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case__ : Union[str, Any] = CLIPTextModel(snake_case_ ) snake_case__ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case__ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase ( self : Optional[int] , snake_case_ : Any , snake_case_ : str=0 ): snake_case__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : List[str] = image / 2 + 0.5 if str(snake_case_ ).startswith("""mps""" ): snake_case__ : Tuple = torch.manual_seed(snake_case_ ) else: snake_case__ : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : str = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : Tuple ): snake_case__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[Any] = self.get_dummy_components() snake_case__ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) snake_case__ : List[str] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs(snake_case_ ) snake_case__ : Any = pipe(**snake_case_ ) snake_case__ : Tuple = output.images snake_case__ : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase ( self : List[str] ): snake_case__ : List[str] = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case_ , """half""" ): snake_case__ : Optional[int] = module.half() snake_case__ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) snake_case__ : Union[str, Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : int = self.get_dummy_inputs(snake_case_ ) snake_case__ : List[Any] = pipe(**snake_case_ ) snake_case__ : Any = output.images snake_case__ : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCamelCase ( self : List[Any] ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def lowerCamelCase ( self : int ): return super().test_inference_batch_single_identical() @skip_mps def lowerCamelCase ( self : Dict ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCamelCase ( self : int ): return super().test_save_load_optional_components() @skip_mps def lowerCamelCase ( self : Optional[int] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : str ): snake_case__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) snake_case__ : Tuple = init_image.resize((512, 512) ) snake_case__ : List[Any] = """CompVis/stable-diffusion-v1-4""" snake_case__ : Tuple = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) snake_case__ : Optional[int] = CycleDiffusionPipeline.from_pretrained( snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() snake_case__ : int = """A black colored car""" snake_case__ : int = """A blue colored car""" snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Dict = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Union[str, Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCamelCase ( self : int ): snake_case__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) snake_case__ : Dict = init_image.resize((512, 512) ) snake_case__ : Tuple = """CompVis/stable-diffusion-v1-4""" snake_case__ : List[Any] = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) snake_case__ : str = CycleDiffusionPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() snake_case__ : Tuple = """A black colored car""" snake_case__ : List[Any] = """A blue colored car""" snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Any = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : List[Any] = output.images assert np.abs(image - expected_image ).max() < 2E-2
43
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _lowerCAmelCase ( UpperCamelCase_ = 200_0000 ): __SCREAMING_SNAKE_CASE = [0] __SCREAMING_SNAKE_CASE = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __SCREAMING_SNAKE_CASE = 0 # the area corresponding to the grid that gives the product closest to target __SCREAMING_SNAKE_CASE = 0 # an estimate of b, using the quadratic formula __SCREAMING_SNAKE_CASE = 42 # the largest integer less than b_estimate __SCREAMING_SNAKE_CASE = 42 # the largest integer less than b_estimate __SCREAMING_SNAKE_CASE = 42 # the triangle number corresponding to b_floor __SCREAMING_SNAKE_CASE = 42 # the triangle number corresponding to b_ceil __SCREAMING_SNAKE_CASE = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __SCREAMING_SNAKE_CASE = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __SCREAMING_SNAKE_CASE = floor(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = ceil(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = triangle_numbers[b_floor] __SCREAMING_SNAKE_CASE = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __SCREAMING_SNAKE_CASE = triangle_b_first_guess * triangle_a __SCREAMING_SNAKE_CASE = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __SCREAMING_SNAKE_CASE = triangle_b_second_guess * triangle_a __SCREAMING_SNAKE_CASE = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
100
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' if isinstance(__a , __a): _UpperCamelCase = [label.strip() for label in labels.split(''',''') if label.strip()] return labels def __call__( self , __a , __a , __a) -> Optional[int]: '''simple docstring''' if len(__a) == 0 or len(__a) == 0: raise ValueError('''You must include at least one label and at least one sequence.''') if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(__a)) if isinstance(__a , __a): _UpperCamelCase = [sequences] _UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase ) class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a=ZeroShotClassificationArgumentHandler() , *__a , **__a) -> List[str]: '''simple docstring''' _UpperCamelCase = args_parser super().__init__(*__a , **__a) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''') @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail'''): return ind return -1 def UpperCAmelCase ( self , __a , __a=True , __a=True , __a=TruncationStrategy.ONLY_FIRST , **__a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''') _UpperCamelCase = self.tokenizer.eos_token try: _UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase ( self , **__a) -> Any: '''simple docstring''' if kwargs.get('''multi_class''' , __a) is not None: _UpperCamelCase = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''') _UpperCamelCase = {} if "candidate_labels" in kwargs: _UpperCamelCase = self._args_parser._parse_labels(kwargs['''candidate_labels''']) if "hypothesis_template" in kwargs: _UpperCamelCase = kwargs['''hypothesis_template'''] _UpperCamelCase = {} if "multi_label" in kwargs: _UpperCamelCase = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self , __a , *__a , **__a , ) -> int: '''simple docstring''' if len(__a) == 0: pass elif len(__a) == 1 and "candidate_labels" not in kwargs: _UpperCamelCase = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''') return super().__call__(__a , **__a) def UpperCAmelCase ( self , __a , __a=None , __a="This example is {}.") -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self._args_parser(__a , __a , __a) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a)): _UpperCamelCase = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a) - 1, **model_input, } def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = inputs['''candidate_label'''] _UpperCamelCase = inputs['''sequence'''] _UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCamelCase = self.model(**__a) _UpperCamelCase = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def UpperCAmelCase ( self , __a , __a=False) -> Dict: '''simple docstring''' _UpperCamelCase = [outputs['''candidate_label'''] for outputs in model_outputs] _UpperCamelCase = [outputs['''sequence'''] for outputs in model_outputs] _UpperCamelCase = np.concatenate([output['''logits'''].numpy() for output in model_outputs]) _UpperCamelCase = logits.shape[0] _UpperCamelCase = len(__a) _UpperCamelCase = N // n _UpperCamelCase = logits.reshape((num_sequences, n, -1)) if multi_label or len(__a) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCamelCase = self.entailment_id _UpperCamelCase = -1 if entailment_id == 0 else 0 _UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCamelCase = np.exp(__a) / np.exp(__a).sum(-1 , keepdims=__a) _UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCamelCase = reshaped_outputs[..., self.entailment_id] _UpperCamelCase = np.exp(__a) / np.exp(__a).sum(-1 , keepdims=__a) _UpperCamelCase = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
194
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : Union[str, Any] = logging.get_logger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""pixel_values"""] def __init__( self ,a_ = True ,a_ = None ,a_ = PILImageResampling.BICUBIC ,a_ = True ,a_ = True ,a_ = 1 / 255 ,a_ = None ,a_ = True ,a_ = None ,a_ = None ,**a_ ,) -> None: super().__init__(**a_ ) _UpperCAmelCase : Tuple = size if size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase : Optional[Any] = get_size_dict(a_ ) _UpperCAmelCase : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase : Optional[int] = get_size_dict(a_ ,default_to_square=a_ ,param_name="""crop_size""" ) _UpperCAmelCase : List[Any] = do_resize _UpperCAmelCase : str = do_rescale _UpperCAmelCase : str = do_normalize _UpperCAmelCase : Any = do_center_crop _UpperCAmelCase : List[str] = crop_size _UpperCAmelCase : Any = size _UpperCAmelCase : List[str] = resample _UpperCAmelCase : Union[str, Any] = rescale_factor _UpperCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self ,a_ ,a_ ,a_ = PILImageResampling.BILINEAR ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : Optional[Any] = get_size_dict(a_ ) if "shortest_edge" in size: _UpperCAmelCase : Any = get_resize_output_image_size(a_ ,size=size["""shortest_edge"""] ,default_to_square=a_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase : str = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(a_ ,size=a_ ,resample=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : Any = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(a_ ,size=(size["""height"""], size["""width"""]) ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ) -> np.ndarray: return rescale(a_ ,scale=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: return normalize(a_ ,mean=a_ ,std=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = ChannelDimension.FIRST ,**a_ ,) -> BatchFeature: _UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Any = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[Any] = get_size_dict(a_ ,param_name="""crop_size""" ,default_to_square=a_ ) _UpperCAmelCase : Tuple = resample if resample is not None else self.resample _UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : int = image_std if image_std is not None else self.image_std _UpperCAmelCase : List[str] = size if size is not None else self.size _UpperCAmelCase : Tuple = get_size_dict(a_ ) if not is_batched(a_ ): _UpperCAmelCase : Optional[int] = [images] if not valid_images(a_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : str = [to_numpy_array(a_ ) for image in images] if do_resize: _UpperCAmelCase : Tuple = [self.resize(image=a_ ,size=a_ ,resample=a_ ) for image in images] if do_center_crop: _UpperCAmelCase : Optional[Any] = [self.center_crop(image=a_ ,size=a_ ) for image in images] if do_rescale: _UpperCAmelCase : Optional[int] = [self.rescale(image=a_ ,scale=a_ ) for image in images] if do_normalize: _UpperCAmelCase : Optional[int] = [self.normalize(image=a_ ,mean=a_ ,std=a_ ) for image in images] _UpperCAmelCase : Any = [to_channel_dimension_format(a_ ,a_ ) for image in images] _UpperCAmelCase : List[str] = {"""pixel_values""": images} return BatchFeature(data=a_ ,tensor_type=a_ )
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class a ( _lowerCamelCase, _lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self: str , UpperCamelCase: int = 1_28 , UpperCamelCase: int = 2_56 , UpperCamelCase: float = 2_000.0 , UpperCamelCase: int = 7_68 , UpperCamelCase: int = 12 , UpperCamelCase: int = 12 , UpperCamelCase: int = 64 , UpperCamelCase: int = 20_48 , UpperCamelCase: float = 0.1 , ): """simple docstring""" super().__init__() A__ = nn.Sequential( nn.Linear(UpperCamelCase , d_model * 4 , bias=UpperCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase ) , nn.SiLU() , ) A__ = nn.Embedding(UpperCamelCase , UpperCamelCase ) A__ = False A__ = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) A__ = nn.Dropout(p=UpperCamelCase ) A__ = nn.ModuleList() for lyr_num in range(UpperCamelCase ): # FiLM conditional T5 decoder A__ = DecoderLayer(d_model=UpperCamelCase , d_kv=UpperCamelCase , num_heads=UpperCamelCase , d_ff=UpperCamelCase , dropout_rate=UpperCamelCase ) self.decoders.append(UpperCamelCase ) A__ = TaLayerNorm(UpperCamelCase ) A__ = nn.Dropout(p=UpperCamelCase ) A__ = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) def UpperCamelCase ( self: Dict , UpperCamelCase: int , UpperCamelCase: int ): """simple docstring""" A__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any ): """simple docstring""" A__ , A__ , A__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A__ = self.conditioning_emb(UpperCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A__ = torch.broadcast_to( torch.arange(UpperCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A__ = self.position_encoding(UpperCamelCase ) A__ = self.continuous_inputs_projection(UpperCamelCase ) inputs += position_encodings A__ = self.dropout(UpperCamelCase ) # decoder: No padding present. A__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A__ = [(x, self.encoder_decoder_mask(UpperCamelCase , UpperCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings A__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A__ = lyr( UpperCamelCase , conditioning_emb=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , )[0] A__ = self.decoder_norm(UpperCamelCase ) A__ = self.post_dropout(UpperCamelCase ) A__ = self.spec_out(UpperCamelCase ) return spec_out class a ( nn.Module ): """simple docstring""" def __init__( self: int , UpperCamelCase: Any , UpperCamelCase: Optional[int] , UpperCamelCase: str , UpperCamelCase: str , UpperCamelCase: Any , UpperCamelCase: Tuple=1e-6 ): """simple docstring""" super().__init__() A__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase , d_kv=UpperCamelCase , num_heads=UpperCamelCase , dropout_rate=UpperCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase , d_kv=UpperCamelCase , num_heads=UpperCamelCase , dropout_rate=UpperCamelCase , layer_norm_epsilon=UpperCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase , d_ff=UpperCamelCase , dropout_rate=UpperCamelCase , layer_norm_epsilon=UpperCamelCase ) ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any]=None , UpperCamelCase: Any=None , UpperCamelCase: Tuple=None , UpperCamelCase: List[Any]=None , UpperCamelCase: List[Any]=None , ): """simple docstring""" A__ = self.layer[0]( UpperCamelCase , conditioning_emb=UpperCamelCase , attention_mask=UpperCamelCase , ) if encoder_hidden_states is not None: A__ = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A__ = self.layer[1]( UpperCamelCase , key_value_states=UpperCamelCase , attention_mask=UpperCamelCase , ) # Apply Film Conditional Feed Forward layer A__ = self.layer[-1](UpperCamelCase , UpperCamelCase ) return (hidden_states,) class a ( nn.Module ): """simple docstring""" def __init__( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] ): """simple docstring""" super().__init__() A__ = TaLayerNorm(UpperCamelCase ) A__ = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase ) A__ = Attention(query_dim=UpperCamelCase , heads=UpperCamelCase , dim_head=UpperCamelCase , out_bias=UpperCamelCase , scale_qk=UpperCamelCase ) A__ = nn.Dropout(UpperCamelCase ) def UpperCamelCase ( self: int , UpperCamelCase: Optional[int] , UpperCamelCase: str=None , UpperCamelCase: str=None , ): """simple docstring""" A__ = self.layer_norm(UpperCamelCase ) if conditioning_emb is not None: A__ = self.FiLMLayer(UpperCamelCase , UpperCamelCase ) # Self-attention block A__ = self.attention(UpperCamelCase ) A__ = hidden_states + self.dropout(UpperCamelCase ) return hidden_states class a ( nn.Module ): """simple docstring""" def __init__( self: Any , UpperCamelCase: int , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[str] , UpperCamelCase: int ): """simple docstring""" super().__init__() A__ = Attention(query_dim=UpperCamelCase , heads=UpperCamelCase , dim_head=UpperCamelCase , out_bias=UpperCamelCase , scale_qk=UpperCamelCase ) A__ = TaLayerNorm(UpperCamelCase , eps=UpperCamelCase ) A__ = nn.Dropout(UpperCamelCase ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: str , UpperCamelCase: List[Any]=None , UpperCamelCase: List[Any]=None , ): """simple docstring""" A__ = self.layer_norm(UpperCamelCase ) A__ = self.attention( UpperCamelCase , encoder_hidden_states=UpperCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) A__ = hidden_states + self.dropout(UpperCamelCase ) return layer_output class a ( nn.Module ): """simple docstring""" def __init__( self: int , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple , UpperCamelCase: Any , UpperCamelCase: List[str] ): """simple docstring""" super().__init__() A__ = TaDenseGatedActDense(d_model=UpperCamelCase , d_ff=UpperCamelCase , dropout_rate=UpperCamelCase ) A__ = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase ) A__ = TaLayerNorm(UpperCamelCase , eps=UpperCamelCase ) A__ = nn.Dropout(UpperCamelCase ) def UpperCamelCase ( self: Dict , UpperCamelCase: Tuple , UpperCamelCase: Optional[Any]=None ): """simple docstring""" A__ = self.layer_norm(UpperCamelCase ) if conditioning_emb is not None: A__ = self.film(UpperCamelCase , UpperCamelCase ) A__ = self.DenseReluDense(UpperCamelCase ) A__ = hidden_states + self.dropout(UpperCamelCase ) return hidden_states class a ( nn.Module ): """simple docstring""" def __init__( self: str , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Tuple ): """simple docstring""" super().__init__() A__ = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) A__ = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) A__ = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) A__ = nn.Dropout(UpperCamelCase ) A__ = NewGELUActivation() def UpperCamelCase ( self: Any , UpperCamelCase: Any ): """simple docstring""" A__ = self.act(self.wi_a(UpperCamelCase ) ) A__ = self.wi_a(UpperCamelCase ) A__ = hidden_gelu * hidden_linear A__ = self.dropout(UpperCamelCase ) A__ = self.wo(UpperCamelCase ) return hidden_states class a ( nn.Module ): """simple docstring""" def __init__( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any]=1e-6 ): """simple docstring""" super().__init__() A__ = nn.Parameter(torch.ones(UpperCamelCase ) ) A__ = eps def UpperCamelCase ( self: Any , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase ) A__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class a ( nn.Module ): """simple docstring""" def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: torch.Tensor ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase , 3.0 )) )) class a ( nn.Module ): """simple docstring""" def __init__( self: Dict , UpperCamelCase: int , UpperCamelCase: Optional[Any] ): """simple docstring""" super().__init__() A__ = nn.Linear(UpperCamelCase , out_features * 2 , bias=UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: List[str] ): """simple docstring""" A__ = self.scale_bias(UpperCamelCase ) A__ , A__ = torch.chunk(UpperCamelCase , 2 , -1 ) A__ = x * (1 + scale) + shift return x
335
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(UpperCAmelCase_ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): A__ = _distribute_shards(**UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ): A__ = _split_gen_kwargs(UpperCAmelCase_ , UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ): if expected is RuntimeError: with pytest.raises(UpperCAmelCase_ ): _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) else: A__ = _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) assert out == expected
335
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A = logging.get_logger(__name__) # General docstring __A = """MobileNetV1Config""" # Base docstring __A = """google/mobilenet_v1_1.0_224""" __A = [1, 1_0_2_4, 7, 7] # Image classification docstring __A = """google/mobilenet_v1_1.0_224""" __A = """tabby, tabby cat""" __A = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> str: lowercase__: str = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = model.mobilenet_va else: lowercase__: Any = model lowercase__: Any = 'MobilenetV1/Conv2d_0/' lowercase__: List[Any] = backbone.conv_stem.convolution.weight lowercase__: int = backbone.conv_stem.normalization.bias lowercase__: List[Any] = backbone.conv_stem.normalization.weight lowercase__: Tuple = backbone.conv_stem.normalization.running_mean lowercase__: Tuple = backbone.conv_stem.normalization.running_var for i in range(1_3 ): lowercase__: List[str] = i + 1 lowercase__: int = i * 2 lowercase__: Optional[int] = backbone.layer[pt_index] lowercase__: List[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" lowercase__: Optional[int] = pointer.convolution.weight lowercase__: Any = pointer.normalization.bias lowercase__: Union[str, Any] = pointer.normalization.weight lowercase__: Dict = pointer.normalization.running_mean lowercase__: Optional[Any] = pointer.normalization.running_var lowercase__: Union[str, Any] = backbone.layer[pt_index + 1] lowercase__: Tuple = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" lowercase__: Any = pointer.convolution.weight lowercase__: List[Any] = pointer.normalization.bias lowercase__: int = pointer.normalization.weight lowercase__: str = pointer.normalization.running_mean lowercase__: Optional[int] = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = 'MobilenetV1/Logits/Conv2d_1c_1x1/' lowercase__: Any = model.classifier.weight lowercase__: int = model.classifier.bias return tf_to_pt_map def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model lowercase__: List[str] = tf.train.list_variables(_UpperCAmelCase ) lowercase__: Tuple = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) lowercase__: Optional[int] = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = array # Build TF to PyTorch weights loading map lowercase__: int = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue lowercase__: Optional[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) lowercase__: Any = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer lowercase__: Optional[int] = array.squeeze().transpose() else: lowercase__: Tuple = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) lowercase__: List[str] = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + '''/RMSProp''' , _UpperCAmelCase ) tf_weights.pop(name + '''/RMSProp_1''' , _UpperCAmelCase ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , _UpperCAmelCase ) logger.info(F"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> torch.Tensor: lowercase__: Dict = features.shape[-2:] lowercase__: str = conv_layer.stride lowercase__: Any = conv_layer.kernel_size if in_height % stride_height == 0: lowercase__: str = max(kernel_height - stride_height , 0 ) else: lowercase__: Dict = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowercase__: int = max(kernel_width - stride_width , 0 ) else: lowercase__: Tuple = max(kernel_width - (in_width % stride_width) , 0 ) lowercase__: Any = pad_along_width // 2 lowercase__: Optional[Any] = pad_along_width - pad_left lowercase__: Any = pad_along_height // 2 lowercase__: Optional[int] = pad_along_height - pad_top lowercase__: str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , '''constant''' , 0.0 ) class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = True , ): super().__init__() lowercase__: Dict = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) lowercase__: List[str] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowercase__: Any = nn.Convad( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=_UpperCAmelCase , groups=_UpperCAmelCase , bias=_UpperCAmelCase , padding_mode='''zeros''' , ) if use_normalization: lowercase__: Optional[int] = nn.BatchNormad( num_features=_UpperCAmelCase , eps=config.layer_norm_eps , momentum=0.9_997 , affine=_UpperCAmelCase , track_running_stats=_UpperCAmelCase , ) else: lowercase__: Tuple = None if use_activation: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act , _UpperCAmelCase ): lowercase__: Any = ACTaFN[config.hidden_act] else: lowercase__: Dict = config.hidden_act else: lowercase__: Optional[int] = None def _snake_case ( self , _UpperCAmelCase ): if self.config.tf_padding: lowercase__: Dict = apply_tf_padding(_UpperCAmelCase , self.convolution ) lowercase__: Union[str, Any] = self.convolution(_UpperCAmelCase ) if self.normalization is not None: lowercase__: Union[str, Any] = self.normalization(_UpperCAmelCase ) if self.activation is not None: lowercase__: List[str] = self.activation(_UpperCAmelCase ) return features class UpperCAmelCase (__UpperCamelCase ): """simple docstring""" _UpperCAmelCase :int = MobileNetVaConfig _UpperCAmelCase :Any = load_tf_weights_in_mobilenet_va _UpperCAmelCase :Optional[Any] = "mobilenet_v1" _UpperCAmelCase :List[Any] = "pixel_values" _UpperCAmelCase :Tuple = False def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_UpperCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __A = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __A = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,__UpperCamelCase ,) class UpperCAmelCase (__UpperCamelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = True ): super().__init__(_UpperCAmelCase ) lowercase__: Optional[Any] = config lowercase__: Dict = 32 lowercase__: List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowercase__: str = MobileNetVaConvLayer( _UpperCAmelCase , in_channels=config.num_channels , out_channels=_UpperCAmelCase , kernel_size=3 , stride=2 , ) lowercase__: List[str] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowercase__: Any = nn.ModuleList() for i in range(13 ): lowercase__: Tuple = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowercase__: List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=3 , stride=strides[i] , groups=_UpperCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( _UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=1 , ) ) lowercase__: Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _snake_case ( self , _UpperCAmelCase ): raise NotImplementedError @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowercase__: Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__: int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowercase__: Tuple = self.conv_stem(_UpperCAmelCase ) lowercase__: Optional[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowercase__: Any = layer_module(_UpperCAmelCase ) if output_hidden_states: lowercase__: Union[str, Any] = all_hidden_states + (hidden_states,) lowercase__: List[Any] = hidden_states if self.pooler is not None: lowercase__: Tuple = torch.flatten(self.pooler(_UpperCAmelCase ) , start_dim=1 ) else: lowercase__: Any = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=_UpperCAmelCase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,__UpperCamelCase ,) class UpperCAmelCase (__UpperCamelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) lowercase__: List[str] = config.num_labels lowercase__: Dict = MobileNetVaModel(_UpperCAmelCase ) lowercase__: Optional[int] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowercase__: str = nn.Dropout(config.classifier_dropout_prob , inplace=_UpperCAmelCase ) lowercase__: str = nn.Linear(_UpperCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowercase__: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__: List[str] = self.mobilenet_va(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) lowercase__: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] lowercase__: List[Any] = self.classifier(self.dropout(_UpperCAmelCase ) ) lowercase__: Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__: Dict = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__: Tuple = 'single_label_classification' else: lowercase__: Dict = 'multi_label_classification' if self.config.problem_type == "regression": lowercase__: Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__: int = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__: Dict = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": lowercase__: Optional[int] = CrossEntropyLoss() lowercase__: List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__: Union[str, Any] = BCEWithLogitsLoss() lowercase__: int = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: lowercase__: Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states , )
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
from manim import * class __A ( a ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =Rectangle(height=0.5 , width=0.5 ) __UpperCamelCase : Dict =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCamelCase : Union[str, Any] =[mem.copy() for i in range(6 )] __UpperCamelCase : List[str] =[mem.copy() for i in range(6 )] __UpperCamelCase : int =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : int =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : List[Any] =VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : str =Text('CPU' , font_size=24 ) __UpperCamelCase : Dict =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =[mem.copy() for i in range(4 )] __UpperCamelCase : List[str] =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : str =Text('GPU' , font_size=24 ) __UpperCamelCase : List[str] =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =[mem.copy() for i in range(6 )] __UpperCamelCase : Dict =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Optional[int] =Text('Model' , font_size=24 ) __UpperCamelCase : Tuple =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : List[Any] =[] for i, rect in enumerate(lowerCamelCase__ ): rect.set_stroke(lowerCamelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __UpperCamelCase : List[Any] =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase__ , buff=0.0 ) self.add(lowerCamelCase__ ) cpu_targs.append(lowerCamelCase__ ) __UpperCamelCase : Tuple =[mem.copy() for i in range(6 )] __UpperCamelCase : List[str] =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : List[str] =Text('Loaded Checkpoint' , font_size=24 ) __UpperCamelCase : Union[str, Any] =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , aligned_edge=lowerCamelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __UpperCamelCase : List[Any] =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCamelCase : List[str] =MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __UpperCamelCase : int =MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.play(Write(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) ) __UpperCamelCase : str =[] __UpperCamelCase : Tuple =[] for i, rect in enumerate(lowerCamelCase__ ): __UpperCamelCase : List[Any] =fill.copy().set_fill(lowerCamelCase__ , opacity=0.7 ) target.move_to(lowerCamelCase__ ) first_animations.append(GrowFromCenter(lowerCamelCase__ , run_time=1 ) ) __UpperCamelCase : Dict =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
71
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase ) , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
39
0
from __future__ import annotations from collections.abc import Callable __lowerCamelCase : Optional[int] = list[list[float | int]] def SCREAMING_SNAKE_CASE ( snake_case_ : Matrix , snake_case_ : Matrix ): snake_case__ : Dict = len(__A ) snake_case__ : Tuple = [[0 for _ in range(size + 1 )] for _ in range(__A )] snake_case__ : Optional[int] = 42 snake_case__ : List[str] = 42 snake_case__ : int = 42 snake_case__ : int = 42 snake_case__ : int = 42 snake_case__ : Union[str, Any] = 42 for row in range(__A ): for col in range(__A ): snake_case__ : List[Any] = matrix[row][col] snake_case__ : Optional[Any] = vector[row][0] snake_case__ : Tuple = 0 snake_case__ : str = 0 while row < size and col < size: # pivoting snake_case__ : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__A , __A ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: snake_case__, snake_case__ : Any = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __A ): snake_case__ : Dict = augmented[rowa][col] / augmented[row][col] snake_case__ : Optional[int] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __A ): for row in range(__A ): snake_case__ : Dict = augmented[row][col] / augmented[col][col] for cola in range(__A , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__A ) ] def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] ): snake_case__ : List[Any] = len(__A ) snake_case__ : List[Any] = [[0 for _ in range(__A )] for _ in range(__A )] snake_case__ : Tuple = [[0] for _ in range(__A )] snake_case__ : Tuple = 42 snake_case__ : Union[str, Any] = 42 snake_case__ : str = 42 snake_case__ : int = 42 for x_val, y_val in enumerate(__A ): for col in range(__A ): snake_case__ : List[Any] = (x_val + 1) ** (size - col - 1) snake_case__ : Tuple = y_val snake_case__ : Optional[int] = solve(__A , __A ) def interpolated_func(snake_case_ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__A ) ) return interpolated_func def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def SCREAMING_SNAKE_CASE ( snake_case_ : Callable[[int], int] = question_function , snake_case_ : int = 10 ): snake_case__ : Optional[Any] = [func(__A ) for x_val in range(1 , order + 1 )] snake_case__ : Any = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] snake_case__ : List[str] = 0 snake_case__ : List[str] = 42 snake_case__ : str = 42 for poly in polynomials: snake_case__ : Tuple = 1 while func(__A ) == poly(__A ): x_val += 1 ret += poly(__A ) return ret if __name__ == "__main__": print(f"{solution() = }")
357
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , __A : int , __A : str=7 , __A : Union[str, Any]=3 , __A : Union[str, Any]=3_0 , __A : Optional[int]=4_0_0 , __A : Optional[Any]=True , __A : Optional[int]=None , __A : Union[str, Any]=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : Any=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : Optional[Any]=1 / 2_5_5 , __A : Union[str, Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : Optional[Any] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : List[Any] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = min_resolution snake_case__ : Optional[Any] = max_resolution snake_case__ : str = do_resize snake_case__ : List[str] = size snake_case__ : List[Any] = do_normalize snake_case__ : Dict = image_mean snake_case__ : List[Any] = image_std snake_case__ : int = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : str = do_pad def _lowercase ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : Dict , __A : Union[str, Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Any = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : List[str] = int(self.size["shortest_edge"] * h / w ) snake_case__ : Tuple = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Optional[Any] = self.size["shortest_edge"] snake_case__ : List[Any] = self.size["shortest_edge"] else: snake_case__ : Union[str, Any] = [] for image in image_inputs: snake_case__, snake_case__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Any = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Optional[int] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : Optional[int] ): snake_case__ : str = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Union[str, Any] ): snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Tuple ): snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Any ): pass def _lowercase ( self : Optional[int] ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : Union[str, Any] = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Any ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Union[str, Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[int] ): # prepare image and target snake_case__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : List[str] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Optional[Any] = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : int = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Union[str, Any] ): # prepare image, target and masks_path snake_case__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Optional[int] = json.loads(f.read() ) snake_case__ : Any = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : List[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Dict = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Optional[Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Dict = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
286
0
'''simple docstring''' import math import qiskit def a__ ( lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(lowerCAmelCase__ ) != input_a) or (math.floor(lowerCAmelCase__ ) != input_a) or (math.floor(lowerCAmelCase__ ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase__ : Union[str, Any] = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase__ : Tuple = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase__ : Any = [input_a, input_a, carry_in] UpperCAmelCase__ : int = qiskit.QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCAmelCase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCAmelCase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCAmelCase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCAmelCase__ ) # measure the last two qbits UpperCAmelCase__ : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase__ : List[str] = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=10_00 ) return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
181
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def a__ ( lowerCAmelCase__ = 1_00 ) -> int: UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase__ : Tuple = pre_numerator UpperCAmelCase__ : Tuple = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase__ : str = cur_numerator UpperCAmelCase__ : List[str] = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
181
1
import os from datetime import datetime as dt from github import Github UpperCamelCase__ = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCamelCase__ = g.get_repo("""huggingface/diffusers""" ) UpperCamelCase__ = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCamelCase__ = sorted(issue.get_comments() , key=lambda a__ : i.created_at , reverse=a__ ) UpperCamelCase__ = comments[0] if len(a__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
87
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : str = """token-classification""" def __init__( self , __lowerCAmelCase ): if type(__lowerCAmelCase ) == dict: UpperCamelCase__ = Namespace(**__lowerCAmelCase ) UpperCamelCase__ = import_module("""tasks""" ) try: UpperCamelCase__ = getattr(__lowerCAmelCase , hparams.task_type ) UpperCamelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) UpperCamelCase__ = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase__ = CrossEntropyLoss().ignore_index super().__init__(__lowerCAmelCase , len(self.labels ) , self.mode ) def _lowerCamelCase ( self , **__lowerCAmelCase ): return self.model(**__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ = self(**__lowerCAmelCase ) UpperCamelCase__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self ): UpperCamelCase__ = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase__ = self._feature_file(__lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __lowerCAmelCase ) UpperCamelCase__ = torch.load(__lowerCAmelCase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) UpperCamelCase__ = self.token_classification_task.read_examples_from_file(args.data_dir , __lowerCAmelCase ) UpperCamelCase__ = self.token_classification_task.convert_examples_to_features( __lowerCAmelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowerCAmelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , __lowerCAmelCase ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ): UpperCamelCase__ = self._feature_file(__lowerCAmelCase ) logger.info("""Loading features from cached file %s""" , __lowerCAmelCase ) UpperCamelCase__ = torch.load(__lowerCAmelCase ) UpperCamelCase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , batch_size=__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): """Compute validation""" "" UpperCamelCase__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ = self(**__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = outputs[:2] UpperCamelCase__ = logits.detach().cpu().numpy() UpperCamelCase__ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = torch.stack([x["""val_loss"""] for x in outputs] ).mean() UpperCamelCase__ = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) UpperCamelCase__ = np.argmax(__lowerCAmelCase , axis=2 ) UpperCamelCase__ = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) UpperCamelCase__ = dict(enumerate(self.labels ) ) UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase__ = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(__lowerCAmelCase , __lowerCAmelCase ), """precision""": precision_score(__lowerCAmelCase , __lowerCAmelCase ), """recall""": recall_score(__lowerCAmelCase , __lowerCAmelCase ), """f1""": fa_score(__lowerCAmelCase , __lowerCAmelCase ), } UpperCamelCase__ = dict(results.items() ) UpperCamelCase__ = results return ret, preds_list, out_label_list def _lowerCamelCase ( self , __lowerCAmelCase ): # when stable UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(__lowerCAmelCase ) UpperCamelCase__ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self , __lowerCAmelCase ): # updating to test_epoch_end instead of deprecated test_end UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(__lowerCAmelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase__ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): # Add NER specific options BaseTransformer.add_model_specific_args(__lowerCAmelCase , __lowerCAmelCase ) parser.add_argument( """--task_type""" , default="""NER""" , type=__lowerCAmelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__lowerCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=__lowerCAmelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=__lowerCAmelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase__ = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = NERTransformer(args) UpperCamelCase__ = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase__ = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) UpperCamelCase__ = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
87
1
from __future__ import annotations def A (__A : list[int | str] ) -> None: """simple docstring""" create_state_space_tree(__A , [] , 0 , [0 for i in range(len(__A ) )] ) def A (__A : list[int | str] , __A : list[int | str] , __A : int , __A : list[int] , ) -> None: """simple docstring""" if index == len(__A ): print(__A ) return for i in range(len(__A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCAmelCase_ = True create_state_space_tree(__A , __A , index + 1 , __A ) current_sequence.pop() UpperCAmelCase_ = False snake_case_ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) snake_case_ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
51
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def A (__A : Optional[int] , __A : int , __A : str=None ) -> List[Any]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" UpperCAmelCase_ = nn.Parameter(__A ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" UpperCAmelCase_ = nn.Parameter(__A ) def A (__A : Tuple , __A : Dict , __A : str ) -> Tuple: """simple docstring""" UpperCAmelCase_ = np.asarray(weights[0] ) UpperCAmelCase_ = np.asarray(weights[1] ) UpperCAmelCase_ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.output.dense , torch.tensor(__A ).view(-1 , __A ).contiguous().transpose(0 , 1 ) , ) def A (__A : Optional[Any] , __A : Any , __A : List[Any] ) -> int: """simple docstring""" UpperCAmelCase_ = np.asarray(weights[0] ) UpperCAmelCase_ = np.asarray(weights[1] ) UpperCAmelCase_ = np.asarray(weights[2] ) UpperCAmelCase_ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.output.dense , torch.tensor(__A ).view(-1 , __A ).contiguous().transpose(0 , 1 ) , ) def A (__A : int , __A : Union[str, Any] , __A : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = weights[0][0][0] UpperCAmelCase_ = np.asarray(layer_norm_a[0] ) UpperCAmelCase_ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__A ) , torch.tensor(__A ) , ) # lsh weights + output UpperCAmelCase_ = weights[0][1] if len(__A ) < 4: set_layer_weights_in_torch_lsh(__A , torch_block.attention , __A ) else: set_layer_weights_in_torch_local(__A , torch_block.attention , __A ) # intermediate weighs UpperCAmelCase_ = weights[2][0][1][2] # Chunked Feed Forward if len(__A ) == 4: UpperCAmelCase_ = intermediate_weights[2] # layernorm 2 UpperCAmelCase_ = np.asarray(intermediate_weights[0][0] ) UpperCAmelCase_ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__A ) , torch.tensor(__A ) , ) # intermediate dense UpperCAmelCase_ = np.asarray(intermediate_weights[1][0] ) UpperCAmelCase_ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__A ).transpose(0 , 1 ).contiguous() , torch.tensor(__A ) , ) # intermediate out UpperCAmelCase_ = np.asarray(intermediate_weights[4][0] ) UpperCAmelCase_ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__A ).transpose(0 , 1 ).contiguous() , torch.tensor(__A ) , ) def A (__A : Optional[int] , __A : Tuple , __A : Any ) -> Tuple: """simple docstring""" UpperCAmelCase_ = torch_model.reformer # word embeds UpperCAmelCase_ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__A ) , ) if isinstance(weights[3] , __A ): UpperCAmelCase_ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCAmelCase_ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" UpperCAmelCase_ = nn.Parameter(torch.tensor(__A ) ) UpperCAmelCase_ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __A ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCAmelCase_ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__A , __A , __A ) # output layer norm UpperCAmelCase_ = np.asarray(weights[7][0] ) UpperCAmelCase_ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__A ) , torch.tensor(__A ) , ) # output embeddings UpperCAmelCase_ = np.asarray(weights[9][0] ) UpperCAmelCase_ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__A ).transpose(0 , 1 ).contiguous() , torch.tensor(__A ) , ) def A (__A : Tuple , __A : int , __A : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = ReformerConfig.from_json_file(__A ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = ReformerModelWithLMHead(__A ) with open(__A , '''rb''' ) as f: UpperCAmelCase_ = pickle.load(__A )['''weights'''] set_model_weights_in_torch(__A , __A , config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": snake_case_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) snake_case_ : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
51
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowercase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str, lowerCamelCase : bool, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None )-> Any: super().__init__() lowerCamelCase__ : Optional[int] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowerCamelCase__ : Tuple =torch.zeros(lowerCamelCase, lowerCamelCase ) else: lowerCamelCase__ : List[str] =None lowerCamelCase__ : str =torch.nn.Parameter(lowerCamelCase ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 4_2 _a = 4_2 _a = 4_2 _a = 4_2 _a = 4_2 _a = 4_2 def __init__( self : List[str], lowerCamelCase : VQModel, lowerCamelCase : CLIPTextModel, lowerCamelCase : CLIPTokenizer, lowerCamelCase : TransformeraDModel, lowerCamelCase : VQDiffusionScheduler, lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings, )-> List[str]: super().__init__() self.register_modules( vqvae=lowerCamelCase, transformer=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, scheduler=lowerCamelCase, learned_classifier_free_sampling_embeddings=lowerCamelCase, ) def snake_case ( self : List[str], lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : List[Any] )-> int: lowerCamelCase__ : Optional[int] =len(lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) else 1 # get prompt text embeddings lowerCamelCase__ : Tuple =self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowerCamelCase__ : Any =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase__ : List[Any] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase__ : List[str] =text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase__ : Tuple =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowerCamelCase__ : Any =prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=lowerCamelCase ) # duplicate text embeddings for each generation per prompt lowerCamelCase__ : Dict =prompt_embeds.repeat_interleave(lowerCamelCase, dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowerCamelCase__ : Dict =self.learned_classifier_free_sampling_embeddings.embeddings lowerCamelCase__ : Union[str, Any] =negative_prompt_embeds.unsqueeze(0 ).repeat(lowerCamelCase, 1, 1 ) else: lowerCamelCase__ : Optional[Any] =[''''''] * batch_size lowerCamelCase__ : Union[str, Any] =text_input_ids.shape[-1] lowerCamelCase__ : List[str] =self.tokenizer( lowerCamelCase, padding='''max_length''', max_length=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''', ) lowerCamelCase__ : Optional[int] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowerCamelCase__ : List[Any] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ : int =negative_prompt_embeds.shape[1] lowerCamelCase__ : Optional[Any] =negative_prompt_embeds.repeat(1, lowerCamelCase, 1 ) lowerCamelCase__ : int =negative_prompt_embeds.view(batch_size * num_images_per_prompt, lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ : Union[str, Any] =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : str, lowerCamelCase : Union[str, List[str]], lowerCamelCase : int = 100, lowerCamelCase : float = 5.0, lowerCamelCase : float = 1.0, lowerCamelCase : int = 1, lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None, lowerCamelCase : Optional[torch.FloatTensor] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCamelCase : int = 1, )-> Union[ImagePipelineOutput, Tuple]: if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Union[str, Any] =1 elif isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : List[Any] =len(lowerCamelCase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}''' ) lowerCamelCase__ : Tuple =batch_size * num_images_per_prompt lowerCamelCase__ : Optional[Any] =guidance_scale > 1.0 lowerCamelCase__ : Dict =self._encode_prompt(lowerCamelCase, lowerCamelCase, lowerCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase, lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowerCamelCase )}.''' ) # get the initial completely masked latents unless the user supplied it lowerCamelCase__ : Any =(batch_size, self.transformer.num_latent_pixels) if latents is None: lowerCamelCase__ : Union[str, Any] =self.transformer.num_vector_embeds - 1 lowerCamelCase__ : Optional[Any] =torch.full(lowerCamelCase, lowerCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) lowerCamelCase__ : List[Any] =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase, device=self.device ) lowerCamelCase__ : Optional[int] =self.scheduler.timesteps.to(self.device ) lowerCamelCase__ : int =latents for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the sample if we are doing classifier free guidance lowerCamelCase__ : Dict =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowerCamelCase__ : Optional[int] =self.transformer(lowerCamelCase, encoder_hidden_states=lowerCamelCase, timestep=lowerCamelCase ).sample if do_classifier_free_guidance: lowerCamelCase__ : str =model_output.chunk(2 ) lowerCamelCase__ : Any =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowerCamelCase, dim=1, keepdim=lowerCamelCase ) lowerCamelCase__ : str =self.truncate(lowerCamelCase, lowerCamelCase ) # remove `log(0)`'s (`-inf`s) lowerCamelCase__ : Dict =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : List[str] =self.scheduler.step(lowerCamelCase, timestep=lowerCamelCase, sample=lowerCamelCase, generator=lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Any =self.vqvae.config.vq_embed_dim lowerCamelCase__ : int =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowerCamelCase__ : Tuple =self.vqvae.quantize.get_codebook_entry(lowerCamelCase, shape=lowerCamelCase ) lowerCamelCase__ : str =self.vqvae.decode(lowerCamelCase, force_not_quantize=lowerCamelCase ).sample lowerCamelCase__ : Optional[Any] =(image / 2 + 0.5).clamp(0, 1 ) lowerCamelCase__ : Dict =image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCamelCase__ : Dict =self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase ) def snake_case ( self : List[Any], lowerCamelCase : torch.FloatTensor, lowerCamelCase : float )-> torch.FloatTensor: lowerCamelCase__ : Optional[Any] =torch.sort(lowerCamelCase, 1, descending=lowerCamelCase ) lowerCamelCase__ : Optional[Any] =torch.exp(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowerCamelCase__ : int =torch.full_like(keep_mask[:, 0:1, :], lowerCamelCase ) lowerCamelCase__ : Any =torch.cat((all_true, keep_mask), dim=1 ) lowerCamelCase__ : str =keep_mask[:, :-1, :] lowerCamelCase__ : List[str] =keep_mask.gather(1, indices.argsort(1 ) ) lowerCamelCase__ : Optional[int] =log_p_x_0.clone() lowerCamelCase__ : Union[str, Any] =-torch.inf # -inf = log(0) return rv
367
"""simple docstring""" import numpy as np from PIL import Image def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : int =0 lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Union[str, Any] =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase__ : Union[str, Any] =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase__ : str =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : Optional[int] =0 return updated_arr def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : str =0 lowerCamelCase__ : List[Any] =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Dict =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase__ : Optional[Any] =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase__ : Optional[int] =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[Any] =0 lowerCamelCase__ : int =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image _lowercase : int = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
272
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''data2vec-vision''' def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__=3 , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=True , lowerCamelCase__=[3, 5, 7, 11] , lowerCamelCase__=[1, 2, 3, 6] , lowerCamelCase__=True , lowerCamelCase__=0.4 , lowerCamelCase__=256 , lowerCamelCase__=1 , lowerCamelCase__=False , lowerCamelCase__=255 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = use_mask_token __lowerCamelCase = use_absolute_position_embeddings __lowerCamelCase = use_relative_position_bias __lowerCamelCase = use_shared_relative_position_bias __lowerCamelCase = layer_scale_init_value __lowerCamelCase = drop_path_rate __lowerCamelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCamelCase = out_indices __lowerCamelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCamelCase = use_auxiliary_head __lowerCamelCase = auxiliary_loss_weight __lowerCamelCase = auxiliary_channels __lowerCamelCase = auxiliary_num_convs __lowerCamelCase = auxiliary_concat_input __lowerCamelCase = semantic_loss_ignore_index class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = version.parse('''1.11''' ) @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-4
90
from math import pi, sqrt, tan def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowerCamelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(UpperCamelCase__ , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowerCamelCase = (sidea + sidea + sidea) / 2 __lowerCamelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : float ) -> float: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print("\nSurface Areas of various geometric shapes: \n") print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
90
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : int = '' lowerCamelCase__ : int = '' lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = 2_5_6 lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : int = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ : List[Any] = copy.deepcopy(self.img ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = plt.hist(self.img.ravel(), 2_5_6, [0, 2_5_6], label='x' ) lowerCamelCase__ : str = np.sum(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ : List[str] = x[i] / self.k self.sk += prk lowerCamelCase__ : List[str] = (self.L - 1) * self.sk if self.rem != 0: lowerCamelCase__ : Tuple = int(last % last ) lowerCamelCase__ : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase_ ) lowerCamelCase__ : str = int(np.ma.count(self.img ) / self.img[1].size ) lowerCamelCase__ : Any = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCamelCase__ : int = self.img[j][i] if num != self.last_list[num]: lowerCamelCase__ : Any = self.last_list[num] cva.imwrite('output_data/output.jpg', self.img ) def a__ (self ): '''simple docstring''' plt.hist(self.img.ravel(), 2_5_6, [0, 2_5_6] ) def a__ (self ): '''simple docstring''' cva.imshow('Output-Image', self.img ) cva.imshow('Input-Image', self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": A_ : List[Any] = os.path.join(os.path.basename(__file__), "image_data/input.jpg") A_ : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
316
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[int] = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } A : Tuple = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } A : int = '</w>' A : Dict = '@@ ' def __lowerCAmelCase ( a__ ) -> Any: __a = set() __a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __a = char return pairs # Speech2Text2 has no max input length A : Optional[Any] = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , _snake_case , _snake_case="<s>" , _snake_case="<pad>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case=False , _snake_case=None , **_snake_case , ) -> List[Any]: '''simple docstring''' super().__init__( unk_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , do_lower_case=_snake_case , **_snake_case , ) __a = do_lower_case with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __a = json.load(_snake_case ) __a = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) __a = None __a = None else: with open(_snake_case , encoding='''utf-8''' ) as merges_handle: __a = merges_handle.read().split('''\n''' )[:-1] __a = [tuple(merge.split()[:2] ) for merge in merges] __a = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __a = {} @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return len(self.decoder ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Any: '''simple docstring''' __a = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __a = get_pairs(_snake_case ) if not pairs: return token while True: __a = min(_snake_case , key=lambda _snake_case : self.bpe_ranks.get(_snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __a , __a = bigram __a = [] __a = 0 while i < len(_snake_case ): try: __a = word.index(_snake_case , _snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __a = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __a = tuple(_snake_case ) __a = new_word if len(_snake_case ) == 1: break else: __a = get_pairs(_snake_case ) __a = ''' '''.join(_snake_case ) if word == "\n " + BPE_TOKEN_MERGES: __a = '''\n''' + BPE_TOKEN_MERGES if word.endswith(_snake_case ): __a = word.replace(_snake_case , '''''' ) __a = word.replace(''' ''' , _snake_case ) __a = word return word def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: __a = text.lower() __a = text.split() __a = [] for token in text: if token: split_tokens.extend(list(self.bpe(_snake_case ).split(''' ''' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' return self.encoder.get(_snake_case , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' __a = self.decoder.get(_snake_case , self.unk_token ) return result def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' __a = ''' '''.join(_snake_case ) # make sure @@ tokens are concatenated __a = ''''''.join(string.split(_snake_case ) ) return string def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __a = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case ) + '''\n''' ) __a = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __a = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
6
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Dict = ["""pixel_values"""] def __init__( self : List[str] , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Optional[int] , ): super().__init__(**__lowerCamelCase ) UpperCamelCase :Any = size if size is not None else {"""shortest_edge""": 224} UpperCamelCase :Optional[int] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) UpperCamelCase :Dict = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCamelCase :List[Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="""crop_size""" ) UpperCamelCase :Union[str, Any] = do_resize UpperCamelCase :Any = size UpperCamelCase :Dict = resample UpperCamelCase :Union[str, Any] = do_center_crop UpperCamelCase :int = crop_size UpperCamelCase :Optional[int] = do_rescale UpperCamelCase :str = rescale_factor UpperCamelCase :Union[str, Any] = do_normalize UpperCamelCase :Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase :Dict = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase :Union[str, Any] = do_convert_rgb def _A ( self : int , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Union[str, Any] , ): UpperCamelCase :Union[str, Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase :Union[str, Any] = get_resize_output_image_size(__lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ): UpperCamelCase :Optional[int] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Union[str, Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Union[str, Any] , ): return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : int , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[str] , ): return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : int , ): UpperCamelCase :Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCamelCase :Union[str, Any] = size if size is not None else self.size UpperCamelCase :List[str] = get_size_dict(__lowerCamelCase , param_name="""size""" , default_to_square=__lowerCamelCase ) UpperCamelCase :Dict = resample if resample is not None else self.resample UpperCamelCase :Dict = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase :List[str] = crop_size if crop_size is not None else self.crop_size UpperCamelCase :Any = get_size_dict(__lowerCamelCase , param_name="""crop_size""" , default_to_square=__lowerCamelCase ) UpperCamelCase :Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :str = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase :Any = image_mean if image_mean is not None else self.image_mean UpperCamelCase :Optional[Any] = image_std if image_std is not None else self.image_std UpperCamelCase :List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase :Any = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase :str = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCamelCase :str = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: UpperCamelCase :int = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: UpperCamelCase :Tuple = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase :List[str] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase :Dict = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] UpperCamelCase :str = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] UpperCamelCase :str = {"""pixel_values""": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
62
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] ) -> Any: """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : dict[int, list[int]] ) -> list[tuple[int, int]]: """simple docstring""" UpperCamelCase :Any = 0 UpperCamelCase :int = len(__magic_name__ ) # No of vertices in graph UpperCamelCase :int = [0] * n UpperCamelCase :Union[str, Any] = [False] * n def dfs(__magic_name__ : str , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] ): UpperCamelCase :Any = True UpperCamelCase :str = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__magic_name__ , __magic_name__ , __magic_name__ , id_ ) UpperCamelCase :Dict = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCamelCase :int = min(low[at] , low[to] ) UpperCamelCase :list[tuple[int, int]] = [] for i in range(__magic_name__ ): if not visited[i]: dfs(__magic_name__ , -1 , __magic_name__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
62
1
def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
32
from __future__ import annotations UpperCAmelCase_ : Tuple = [] def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int , __A : int ) -> bool: """simple docstring""" for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int ) -> bool: """simple docstring""" if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): a_ : Any = 1 solve(__A , row + 1 ) a_ : Tuple = 0 return False def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCAmelCase_ : List[str] = 8 UpperCAmelCase_ : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
32
1
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCAmelCase = HfApi() UpperCAmelCase = {} # fmt: off UpperCAmelCase = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) UpperCAmelCase = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) UpperCAmelCase = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) UpperCAmelCase = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) UpperCAmelCase = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) UpperCAmelCase = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) UpperCAmelCase = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) UpperCAmelCase = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) UpperCAmelCase = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) UpperCAmelCase = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) UpperCAmelCase = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) UpperCAmelCase = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) UpperCAmelCase = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) UpperCAmelCase = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) UpperCAmelCase = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on UpperCAmelCase = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCAmelCase = '/home/patrick/google_checkpoints/' + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): UpperCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: UpperCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
368
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''BlipImageProcessor''' snake_case__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ) -> int: _UpperCamelCase = False super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = self.image_processor def __call__( self : Any , __UpperCamelCase : ImageInput = None , __UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Union[bool, str, TruncationStrategy] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : List[str] , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase = self.tokenizer _UpperCamelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) return text_encoding # add pixel_values _UpperCamelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase ) if text is not None: _UpperCamelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) else: _UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(__UpperCamelCase ) return encoding_image_processor def _UpperCamelCase ( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Any ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : str ) -> str: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def _UpperCamelCase ( self : List[str] ) -> Dict: _UpperCamelCase = self.tokenizer.model_input_names _UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
54
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''pixel_values'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : Union[str, Any] = size if size is not None else {'shortest_edge': 224} __A : str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase) __A : Optional[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __A : Optional[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name='crop_size') __A : Optional[int] = do_resize __A : int = size __A : Optional[Any] = resample __A : List[str] = do_center_crop __A : Any = crop_size __A : List[Any] = do_rescale __A : Dict = rescale_factor __A : Any = do_normalize __A : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __A : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD __A : Optional[int] = do_convert_rgb def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}') __A : Optional[int] = get_resize_output_image_size(_UpperCAmelCase , size=size['shortest_edge'] , default_to_square=_UpperCAmelCase) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Any = get_size_dict(_UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}') return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): '''simple docstring''' __A : List[Any] = do_resize if do_resize is not None else self.do_resize __A : int = size if size is not None else self.size __A : Optional[Any] = get_size_dict(_UpperCAmelCase , param_name='size' , default_to_square=_UpperCAmelCase) __A : Dict = resample if resample is not None else self.resample __A : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : Dict = get_size_dict(_UpperCAmelCase , param_name='crop_size' , default_to_square=_UpperCAmelCase) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : str = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Any = do_normalize if do_normalize is not None else self.do_normalize __A : int = image_mean if image_mean is not None else self.image_mean __A : Optional[Any] = image_std if image_std is not None else self.image_std __A : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __A : Dict = make_list_of_images(_UpperCAmelCase) if not valid_images(_UpperCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: __A : Any = [convert_to_rgb(_UpperCAmelCase) for image in images] # All transformations expect numpy arrays. __A : Optional[Any] = [to_numpy_array(_UpperCAmelCase) for image in images] if do_resize: __A : int = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase) for image in images] if do_center_crop: __A : Optional[int] = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase) for image in images] if do_rescale: __A : Dict = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase) for image in images] if do_normalize: __A : List[str] = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase) for image in images] __A : Any = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase) for image in images] __A : List[str] = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase)
190
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(__snake_case ), magnitude * sin(__snake_case )] return [magnitude * cos(radians(__snake_case ) ), magnitude * sin(radians(__snake_case ) )] def _lowerCAmelCase ( __snake_case : NDArray[floataa] , __snake_case : NDArray[floataa] , __snake_case : float = 10**-1 ) -> bool: __A : NDArray[floataa] = cross(__snake_case , __snake_case ) __A : float = sum(__snake_case ) return abs(__snake_case ) < eps if __name__ == "__main__": # Test to check if it works lowercase__ : List[Any] = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase__ : Dict = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase__ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase__ : Optional[int] = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
190
1
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE = logging.getLogger() def _lowerCAmelCase ( ): __lowercase = argparse.ArgumentParser() parser.add_argument('''-f''' ) __lowercase = parser.parse_args() return args.f class __lowercase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = logging.StreamHandler(sys.stdout ) logger.addHandler(A__ ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'''run_glue_deebert.py''' ) with patch.object(A__ ,'''argv''' ,A__ ): __lowercase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(A__ ,0.6_6_6 ) @slow @require_torch_non_multi_gpu def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(A__ ) __lowercase = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(A__ ) __lowercase = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(A__ )
359
'''simple docstring''' import heapq def _lowerCAmelCase ( lowerCamelCase_ : dict ): __lowercase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase_ , [-1 * len(lowerCamelCase_ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowercase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowercase = heapq.heappop(lowerCamelCase_ )[1][0] chosen_vertices.add(lowerCamelCase_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowercase = elem[1][1].index(lowerCamelCase_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
217
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit' def __init__( self : int ,snake_case : Any=768 ,snake_case : List[Any]=12 ,snake_case : str=12 ,snake_case : Union[str, Any]=3072 ,snake_case : Optional[Any]="gelu" ,snake_case : str=0.0 ,snake_case : Tuple=0.0 ,snake_case : List[str]=0.02 ,snake_case : Optional[int]=1e-12 ,snake_case : Any=224 ,snake_case : List[Any]=16 ,snake_case : List[str]=3 ,snake_case : int=True ,snake_case : Union[str, Any]=16 ,**snake_case : Union[str, Any] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =encoder_stride class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = version.parse('1.11' ) @property def _lowerCAmelCase ( self : List[str] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowerCAmelCase ( self : Union[str, Any] ): return 1e-4
334
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowercase__ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowercase__ = concatenate_datasets lowercase__ = DownloadConfig lowercase__ = DownloadManager lowercase__ = DownloadMode lowercase__ = DownloadConfig lowercase__ = DownloadMode lowercase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
203
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = DebertaTokenizer a__ = True a__ = DebertaTokenizerFast def lowerCamelCase_ ( self) -> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__: List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] a__: List[str] = dict(zip(lowercase , range(len(lowercase)))) a__: Any = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a__: Optional[Any] = {'unk_token': '[UNK]'} a__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowercase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowercase)) def lowerCamelCase_ ( self , **lowercase) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase) def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' a__: Tuple = 'lower newer' a__: int = 'lower newer' return input_text, output_text def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Optional[int] = self.get_tokenizer() a__: List[Any] = 'lower newer' a__: Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] a__: Optional[Any] = tokenizer.tokenize(lowercase) self.assertListEqual(lowercase , lowercase) a__: int = tokens + [tokenizer.unk_token] a__: Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase) , lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: int = self.get_tokenizer() a__: Any = tokenizer('Hello' , 'World') a__: Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , lowercase) @slow def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Dict = self.tokenizer_class.from_pretrained('microsoft/deberta-base') a__: Union[str, Any] = tokenizer.encode('sequence builders' , add_special_tokens=lowercase) a__: Optional[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase) a__: List[str] = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase) a__: Any = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase) a__: Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase) a__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: List[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: a__: int = tokenizer_class.from_pretrained('microsoft/deberta-base') a__: List[str] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] a__: Dict = tokenizer(lowercase , padding=lowercase) a__: Union[str, Any] = [tokenizer.decode(lowercase , skip_special_tokens=lowercase) for seq in encoding['input_ids']] # fmt: off a__: Any = { 'input_ids': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on a__: str = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , lowercase) for expected, decoded in zip(lowercase , lowercase): self.assertEqual(lowercase , lowercase)
203
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ (__A , __A ): __magic_name__ = '''maskformer-swin''' __magic_name__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Any , lowerCAmelCase_ : Dict=224 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : List[str]=96 , lowerCAmelCase_ : List[Any]=[2, 2, 6, 2] , lowerCAmelCase_ : str=[3, 6, 12, 24] , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Union[str, Any]=4.0 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Tuple=0.0_2 , lowerCAmelCase_ : str=1e-5 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : List[Any] , ) -> Tuple: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = embed_dim UpperCAmelCase_ : List[Any] = depths UpperCAmelCase_ : Dict = len(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = num_heads UpperCAmelCase_ : List[str] = window_size UpperCAmelCase_ : Any = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = drop_path_rate UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Optional[int] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : Union[str, Any] = int(embed_dim * 2 ** (len(lowerCAmelCase_ ) - 1) ) UpperCAmelCase_ : Union[str, Any] = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
268
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCamelCase_ (__A ): def __init__( self : int , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[str] ) -> Optional[Any]: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[int]=None ) -> List[Any]: UpperCAmelCase_ : str = {} if top_k is not None: UpperCAmelCase_ : List[str] = top_k return {}, {}, postprocess_params def __call__( self : str , lowerCAmelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase_ : Any ) -> Tuple: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : str ) -> Any: UpperCAmelCase_ : Tuple = load_image(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = self.image_processor(images=lowerCAmelCase_ , return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Dict ) -> str: UpperCAmelCase_ : Any = self.model(**lowerCAmelCase_ ) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=5 ) -> Any: if top_k > self.model.config.num_labels: UpperCAmelCase_ : int = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : str = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = probs.topk(lowerCAmelCase_ ) elif self.framework == "tf": UpperCAmelCase_ : str = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase_ : Union[str, Any] = tf.math.top_k(lowerCAmelCase_ , k=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCAmelCase_ : int = scores.tolist() UpperCAmelCase_ : Optional[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase_ , lowerCAmelCase_ )]
268
1
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase ( ) ->Optional[int]: """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__() __snake_case : Optional[int] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : List[str] = nn.Linear(4 , 5 ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(a_ ) ) ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(a_ ): nonlocal batch_sizes batch_sizes.append(a_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(a_ , [1_28, 64, 32, 16, 8] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(a_ , a_ ): nonlocal batch_sizes batch_sizes.append(a_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __snake_case , __snake_case : Optional[int] = mock_training_loop_function('''hello''' ) self.assertListEqual(a_ , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(a_ ): pass with self.assertRaises(a_ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(a_ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(a_ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(a_ , a_ , a_ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(a_ ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(a_ ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(a_ ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = torch.cuda.memory_allocated() __snake_case : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , a_ ) __snake_case : List[str] = release_memory(a_ ) self.assertEqual(torch.cuda.memory_allocated() , a_ )
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase (_snake_case ): _lowercase = (DDPMParallelScheduler,) def snake_case_ ( self: Union[str, Any],**A_: List[Any] ): '''simple docstring''' __UpperCamelCase = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**UpperCamelCase__ ) return config def snake_case_ ( self: int ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1],[0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase__,beta_end=UpperCamelCase__ ) def snake_case_ ( self: Any ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase__,prediction_type=UpperCamelCase__,sample_max_value=UpperCamelCase__,) def snake_case_ ( self: int ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def snake_case_ ( self: str ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCamelCase__ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**UpperCamelCase__ ) __UpperCamelCase = len(UpperCamelCase__ ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter __UpperCamelCase = self.dummy_sample_deter + 0.1 __UpperCamelCase = self.dummy_sample_deter - 0.1 __UpperCamelCase = samplea.shape[0] __UpperCamelCase = torch.stack([samplea, samplea, samplea],dim=0 ) __UpperCamelCase = torch.arange(UpperCamelCase__ )[0:3, None].repeat(1,UpperCamelCase__ ) __UpperCamelCase = model(samples.flatten(0,1 ),timesteps.flatten(0,1 ) ) __UpperCamelCase = scheduler.batch_step_no_noise(UpperCamelCase__,timesteps.flatten(0,1 ),samples.flatten(0,1 ) ) __UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) __UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1E-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1E-3 def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**UpperCamelCase__ ) __UpperCamelCase = len(UpperCamelCase__ ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter __UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase__ ) ): # 1. predict noise residual __UpperCamelCase = model(UpperCamelCase__,UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 __UpperCamelCase = scheduler.step(UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,generator=UpperCamelCase__ ).prev_sample __UpperCamelCase = pred_prev_sample __UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) __UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) __UpperCamelCase = scheduler_class(**UpperCamelCase__ ) __UpperCamelCase = len(UpperCamelCase__ ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter __UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase__ ) ): # 1. predict noise residual __UpperCamelCase = model(UpperCamelCase__,UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 __UpperCamelCase = scheduler.step(UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,generator=UpperCamelCase__ ).prev_sample __UpperCamelCase = pred_prev_sample __UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) __UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**UpperCamelCase__ ) __UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase__ ) __UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase__ ): if i == len(UpperCamelCase__ ) - 1: __UpperCamelCase = -1 else: __UpperCamelCase = timesteps[i + 1] __UpperCamelCase = scheduler.previous_timestep(UpperCamelCase__ ) __UpperCamelCase = prev_t.item() self.assertEqual(UpperCamelCase__,UpperCamelCase__ ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**UpperCamelCase__ ) __UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(UpperCamelCase__,msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCamelCase__ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**UpperCamelCase__ ) __UpperCamelCase = [100, 87, 50, 1, 0] __UpperCamelCase = len(UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__,msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase__,timesteps=UpperCamelCase__ ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**UpperCamelCase__ ) __UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase__,msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}',): scheduler.set_timesteps(timesteps=UpperCamelCase__ )
310
'''simple docstring''' import math import unittest def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def snake_case_ ( self ) -> int: '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
162
0
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __magic_name__( lowerCamelCase): return getitem, k def __magic_name__( lowerCamelCase, lowerCamelCase): return setitem, k, v def __magic_name__( lowerCamelCase): return delitem, k def __magic_name__( lowerCamelCase, lowerCamelCase, *lowerCamelCase): try: return fun(lowerCamelCase, *lowerCamelCase), None except Exception as e: return None, e _UpperCAmelCase : Dict = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) _UpperCAmelCase : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] _UpperCAmelCase : Union[str, Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] _UpperCAmelCase : Tuple = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] _UpperCAmelCase : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _UpperCAmelCase : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( '''operations''', ( pytest.param(_add_items, id='''add items'''), pytest.param(_overwrite_items, id='''overwrite items'''), pytest.param(_delete_items, id='''delete items'''), pytest.param(_access_absent_items, id='''access absent items'''), pytest.param(_add_with_resize_up, id='''add with resize up'''), pytest.param(_add_with_resize_down, id='''add with resize down'''), ), ) def __magic_name__( lowerCamelCase): __lowerCAmelCase = HashMap(initial_block_size=4) __lowerCAmelCase = {} for _, (fun, *args) in enumerate(lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = _run_operation(lowerCamelCase, lowerCamelCase, *lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = _run_operation(lowerCamelCase, lowerCamelCase, *lowerCamelCase) assert my_res == py_res assert str(lowerCamelCase) == str(lowerCamelCase) assert set(lowerCamelCase) == set(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) assert set(my.items()) == set(py.items()) def __magic_name__( ): def is_public(lowerCamelCase) -> bool: return not name.startswith('''_''') __lowerCAmelCase = {name for name in dir({}) if is_public(lowerCamelCase)} __lowerCAmelCase = {name for name in dir(HashMap()) if is_public(lowerCamelCase)} assert dict_public_names > hash_public_names
353
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __a: int = logging.get_logger(__name__) __a: List[Any] = {"""vocab_file""": """spiece.model"""} __a: Union[str, Any] = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<sep>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<cls>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=["<eop>", "<eod>"] , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> None: lowercase__ : Union[str, Any] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token lowercase__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) lowercase__ : List[Any] = 3 lowercase__ : Any = do_lower_case lowercase__ : List[Any] = remove_space lowercase__ : Tuple = keep_accents lowercase__ : Optional[int] = vocab_file lowercase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) lowercase__ : Tuple = jieba lowercase__ : Union[str, Any] = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCAmelCase( self ) -> Union[str, Any]: return len(self.sp_model ) def _lowerCAmelCase( self ) -> Any: lowercase__ : List[Any] = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: lowercase__ : str = self.__dict__.copy() lowercase__ : Union[str, Any] = None return state def __setstate__( self , __lowerCAmelCase ) -> List[Any]: lowercase__ : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ : List[Any] = {} lowercase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Any: if self.remove_space: lowercase__ : int = ''' '''.join(inputs.strip().split() ) else: lowercase__ : Union[str, Any] = inputs lowercase__ : Any = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowercase__ : Dict = unicodedata.normalize('''NFKD''' , __lowerCAmelCase ) lowercase__ : List[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(__lowerCAmelCase )] ) if self.do_lower_case: lowercase__ : Any = outputs.lower() return outputs def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : Tuple = self.preprocess_text(__lowerCAmelCase ) lowercase__ : Optional[int] = self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) lowercase__ : Tuple = [] for piece in pieces: if len(__lowerCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowercase__ : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase__ : int = cur_pieces[1:] else: lowercase__ : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCAmelCase ) else: new_pieces.append(__lowerCAmelCase ) return new_pieces def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: return self.sp_model.PieceToId(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: return self.sp_model.IdToPiece(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : Any = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Dict = [self.sep_token_id] lowercase__ : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] return ([0] * len(__lowerCAmelCase )) + [1, 1] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Optional[Any] = [self.sep_token_id] lowercase__ : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : int = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: lowercase__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Dict: lowercase__ : Dict = super()._decode(*__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Union[str, Any] = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
198
'''simple docstring''' import doctest from collections import deque import numpy as np class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> None: lowercase__ : str = [2, 1, 2, -1] lowercase__ : str = [1, 2, 3, 4] def _lowerCAmelCase( self ) -> list[float]: lowercase__ : Optional[Any] = len(self.first_signal ) lowercase__ : Union[str, Any] = len(self.second_signal ) lowercase__ : int = max(__lowerCAmelCase , __lowerCAmelCase ) # create a zero matrix of max_length x max_length lowercase__ : List[str] = [[0] * max_length for i in range(__lowerCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCAmelCase ): lowercase__ : int = deque(self.second_signal ) rotated_signal.rotate(__lowerCAmelCase ) for j, item in enumerate(__lowerCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal lowercase__ : Optional[int] = np.matmul(np.transpose(__lowerCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowerCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
198
1
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
270
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig __lowerCAmelCase = logging.getLogger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "masked_bert" def __init__(self , UpperCAmelCase=30522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=0 , UpperCAmelCase="topK" , UpperCAmelCase="constant" , UpperCAmelCase=0.0 , **UpperCAmelCase , ) -> int: super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = pruning_method _snake_case = mask_init _snake_case = mask_scale
270
1
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase , UpperCAmelCase : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = controlnet_params UpperCAmelCase : int = """bird""" UpperCAmelCase : Tuple = jax.device_count() UpperCAmelCase : Optional[int] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) UpperCAmelCase : Tuple = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCAmelCase : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : str = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCAmelCase : int = replicate(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCAmelCase : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase : Optional[Any] = images[0, 253:256, 253:256, -1] UpperCAmelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase : Union[str, Any] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase , UpperCAmelCase : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase : int = controlnet_params UpperCAmelCase : List[Any] = """Chef in the kitchen""" UpperCAmelCase : Dict = jax.device_count() UpperCAmelCase : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) UpperCAmelCase : List[str] = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCAmelCase : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCAmelCase : Tuple = replicate(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCAmelCase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase : int = images[0, 253:256, 253:256, -1] UpperCAmelCase : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase : Any = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
109
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
0
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): # load base model UpperCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCAmelCase = load_file(lowercase_ ) UpperCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCAmelCase = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) UpperCAmelCase = pipeline.text_encoder else: UpperCAmelCase = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) UpperCAmelCase = pipeline.unet # find the target layer UpperCAmelCase = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: UpperCAmelCase = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCAmelCase = layer_infos.pop(0 ) UpperCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) UpperCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") snake_case_ = parser.parse_args() snake_case_ = args.base_model_path snake_case_ = args.checkpoint_path snake_case_ = args.dump_path snake_case_ = args.lora_prefix_unet snake_case_ = args.lora_prefix_text_encoder snake_case_ = args.alpha snake_case_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) snake_case_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
181
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowerCAmelCase ( lowercase_ ): random.seed(lowercase_ ) np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # ^^ safe to call this function even if cuda is not available class A_ : """simple docstring""" def __init__( self :Any , lowercase_ :Iterable[torch.nn.Parameter] , lowercase_ :float = 0.9999 , lowercase_ :float = 0.0 , lowercase_ :int = 0 , lowercase_ :bool = False , lowercase_ :Union[float, int] = 1.0 , lowercase_ :Union[float, int] = 2 / 3 , lowercase_ :Optional[Any] = None , lowercase_ :Dict[str, Any] = None , **lowercase_ :Dict , ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCAmelCase = True if kwargs.get('max_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['max_value'] if kwargs.get('min_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['min_value'] UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('device' , lowercase_ ) is not None: UpperCAmelCase = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) self.to(device=kwargs['device'] ) UpperCAmelCase = None UpperCAmelCase = decay UpperCAmelCase = min_decay UpperCAmelCase = update_after_step UpperCAmelCase = use_ema_warmup UpperCAmelCase = inv_gamma UpperCAmelCase = power UpperCAmelCase = 0 UpperCAmelCase = None # set in `step()` UpperCAmelCase = model_cls UpperCAmelCase = model_config @classmethod def UpperCAmelCase__ ( cls :int , lowercase_ :Union[str, Any] , lowercase_ :Any ) -> "EMAModel": UpperCAmelCase , UpperCAmelCase = model_cls.load_config(lowercase_ , return_unused_kwargs=lowercase_ ) UpperCAmelCase = model_cls.from_pretrained(lowercase_ ) UpperCAmelCase = cls(model.parameters() , model_cls=lowercase_ , model_config=model.config ) ema_model.load_state_dict(lowercase_ ) return ema_model def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str] ) -> int: if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) UpperCAmelCase = self.model_cls.from_config(self.model_config ) UpperCAmelCase = self.state_dict() state_dict.pop('shadow_params' , lowercase_ ) model.register_to_config(**lowercase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :int ) -> float: UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCAmelCase = (1 + step) / (10 + step) UpperCAmelCase = min(lowercase_ , self.decay ) # make sure decay is not smaller than min_decay UpperCAmelCase = max(lowercase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() UpperCAmelCase = list(lowercase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCAmelCase = self.get_decay(self.optimization_step ) UpperCAmelCase = decay UpperCAmelCase = 1 - decay UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowercase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCAmelCase = deepspeed.zero.GatheredParameters(lowercase_ , modifier_rank=lowercase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowercase_ ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = list(lowercase_ ) for s_param, param in zip(self.shadow_params , lowercase_ ): param.data.copy_(s_param.to(param.device ).data ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Tuple=None , lowercase_ :Union[str, Any]=None ) -> None: UpperCAmelCase = [ p.to(device=lowercase_ , dtype=lowercase_ ) if p.is_floating_point() else p.to(device=lowercase_ ) for p in self.shadow_params ] def UpperCAmelCase__ ( self :Union[str, Any] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , lowercase_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCAmelCase = None def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :dict ) -> None: UpperCAmelCase = copy.deepcopy(lowercase_ ) UpperCAmelCase = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) UpperCAmelCase = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , lowercase_ ): raise ValueError('Invalid min_decay' ) UpperCAmelCase = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , lowercase_ ): raise ValueError('Invalid optimization_step' ) UpperCAmelCase = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , lowercase_ ): raise ValueError('Invalid update_after_step' ) UpperCAmelCase = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowercase_ ): raise ValueError('Invalid use_ema_warmup' ) UpperCAmelCase = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) UpperCAmelCase = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) UpperCAmelCase = state_dict.get('shadow_params' , lowercase_ ) if shadow_params is not None: UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , lowercase_ ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(lowercase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
181
1
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : str = int(__UpperCamelCase ) assert noofclusters < len(__UpperCamelCase ) # Find out the dimensionality __lowercase : Optional[Any] = len(vectors[0] ) # Will help select random centroids from among the available vectors __lowercase : Optional[Any] = list(range(len(__UpperCamelCase ) ) ) shuffle(__UpperCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __lowercase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __lowercase : Tuple = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __lowercase : Optional[Any] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__UpperCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values __lowercase : Union[str, Any] = tf.placeholder('''float64''' , [dim] ) __lowercase : Any = [] for centroid in centroids: cent_assigns.append(tf.assign(__UpperCamelCase , __UpperCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __lowercase : Dict = [tf.Variable(0 ) for i in range(len(__UpperCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value __lowercase : int = tf.placeholder('''int32''' ) __lowercase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(__UpperCamelCase , __UpperCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __lowercase : Optional[Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __lowercase : Dict = tf.reduce_mean(__UpperCamelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input __lowercase : int = tf.placeholder('''float''' , [dim] ) __lowercase : Optional[Any] = tf.placeholder('''float''' , [dim] ) __lowercase : Optional[int] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__UpperCamelCase , __UpperCamelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __lowercase : Dict = tf.placeholder('''float''' , [noofclusters] ) __lowercase : Dict = tf.argmin(__UpperCamelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __lowercase : Dict = tf.initialize_all_variables() # Initialize all variables sess.run(__UpperCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __lowercase : str = 1_00 for _ in range(__UpperCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__UpperCamelCase ) ): __lowercase : List[Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __lowercase : Tuple = [ sess.run(__UpperCamelCase , feed_dict={va: vect, va: sess.run(__UpperCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __lowercase : Tuple = sess.run( __UpperCamelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__UpperCamelCase ): # Collect all the vectors assigned to this cluster __lowercase : List[Any] = [ vectors[i] for i in range(len(__UpperCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __lowercase : Optional[Any] = sess.run( __UpperCamelCase , feed_dict={mean_input: array(__UpperCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __lowercase : Any = sess.run(__UpperCamelCase ) __lowercase : Any = sess.run(__UpperCamelCase ) return centroids, assignments
249
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Optional[int] = 3_84 __lowercase : str = 7 if "tiny" in model_name: __lowercase : List[str] = 96 __lowercase : Any = (2, 2, 6, 2) __lowercase : Dict = (3, 6, 12, 24) elif "small" in model_name: __lowercase : str = 96 __lowercase : Optional[int] = (2, 2, 18, 2) __lowercase : Tuple = (3, 6, 12, 24) elif "base" in model_name: __lowercase : Tuple = 1_28 __lowercase : Tuple = (2, 2, 18, 2) __lowercase : int = (4, 8, 16, 32) __lowercase : str = 12 __lowercase : Any = 5_12 elif "large" in model_name: __lowercase : List[str] = 1_92 __lowercase : List[Any] = (2, 2, 18, 2) __lowercase : Optional[Any] = (6, 12, 24, 48) __lowercase : Optional[int] = 12 __lowercase : Optional[Any] = 7_68 # set label information __lowercase : Any = 1_50 __lowercase : Tuple = '''huggingface/label-files''' __lowercase : int = '''ade20k-id2label.json''' __lowercase : Union[str, Any] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase : Union[str, Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} __lowercase : Any = SwinConfig( embed_dim=__UpperCamelCase , depths=__UpperCamelCase , num_heads=__UpperCamelCase , window_size=__UpperCamelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) __lowercase : List[Any] = UperNetConfig( backbone_config=__UpperCamelCase , auxiliary_in_channels=__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase , ) return config def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : str = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Any = dct.pop(__UpperCamelCase ) __lowercase : Any = val def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase : Dict = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) __lowercase : int = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase : List[Any] = in_proj_weight[:dim, :] __lowercase : Tuple = in_proj_bias[: dim] __lowercase : List[Any] = in_proj_weight[ dim : dim * 2, : ] __lowercase : int = in_proj_bias[ dim : dim * 2 ] __lowercase : str = in_proj_weight[ -dim :, : ] __lowercase : List[Any] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __UpperCamelCase ): __lowercase ,__lowercase : str = x.shape __lowercase : List[str] = x.reshape(__UpperCamelCase , 4 , in_channel // 4 ) __lowercase : Dict = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__UpperCamelCase , __UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase ): __lowercase ,__lowercase : Optional[int] = x.shape __lowercase : Union[str, Any] = x.reshape(__UpperCamelCase , in_channel // 4 , 4 ) __lowercase : int = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__UpperCamelCase , __UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : int = x.shape[0] __lowercase : List[str] = x.reshape(4 , in_channel // 4 ) __lowercase : Any = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Union[str, Any] = x.shape[0] __lowercase : List[str] = x.reshape(in_channel // 4 , 4 ) __lowercase : Union[str, Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[Any] = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } __lowercase : Any = model_name_to_url[model_name] __lowercase : Any = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='''cpu''' , file_name=__UpperCamelCase )[ '''state_dict''' ] for name, param in state_dict.items(): print(__UpperCamelCase , param.shape ) __lowercase : Tuple = get_upernet_config(__UpperCamelCase ) __lowercase : List[Any] = UperNetForSemanticSegmentation(__UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowercase : Optional[Any] = state_dict.pop(__UpperCamelCase ) if "bn" in key: __lowercase : List[Any] = key.replace('''bn''' , '''batch_norm''' ) __lowercase : Optional[Any] = val # rename keys __lowercase : Tuple = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowercase : Optional[Any] = reverse_correct_unfold_reduction_order(__UpperCamelCase ) if "norm" in key: __lowercase : Optional[Any] = reverse_correct_unfold_norm_order(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # verify on image __lowercase : Any = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __lowercase : str = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('''RGB''' ) __lowercase : Union[str, Any] = SegformerImageProcessor() __lowercase : int = processor(__UpperCamelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __lowercase : List[Any] = model(__UpperCamelCase ) __lowercase : Union[str, Any] = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowercase : Tuple = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": __lowercase : Optional[Any] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": __lowercase : Optional[int] = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": __lowercase : Any = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"upernet-swin-{size}" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
249
1
def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase_( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
370
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"facebook/bart-base": BartForConditionalGeneration} _SCREAMING_SNAKE_CASE : Union[str, Any] = {"facebook/bart-base": BartTokenizer} def UpperCamelCase_( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case , default=snake_case , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case , default=snake_case , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case , ) parser.add_argument( "--config_name" , type=snake_case , default=snake_case , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case , default=snake_case , help="Where to store the final ONNX file." ) snake_case_ = parser.parse_args() return args def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str]="cpu" ): '''simple docstring''' snake_case_ = model_dict[model_name].from_pretrained(snake_case ).to(snake_case ) snake_case_ = tokenizer_dict[model_name].from_pretrained(snake_case ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def UpperCamelCase_( snake_case : int , snake_case : Tuple , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(snake_case ) ) with torch.no_grad(): snake_case_ = "My friends are cool but they eat too many carbs." snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="pt" ).to(model.device ) snake_case_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case , max_length=snake_case , early_stopping=snake_case , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case , opset_version=1_4 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case , ) logger.info("Model exported to {}".format(snake_case ) ) snake_case_ = remove_dup_initializers(os.path.abspath(snake_case ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case ) ) snake_case_ = onnxruntime.InferenceSession(snake_case ) snake_case_ = ort_sess.run( snake_case , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case ), "max_length": np.array(snake_case ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ , snake_case_ = load_model_tokenizer(args.model_name_or_path , snake_case ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case , snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
92
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' return abs(_lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. lowercase__ , lowercase__ : Optional[int] = y, x % y return abs(_lowerCAmelCase ) def a_ ( ): '''simple docstring''' try: lowercase__ : int = input('Enter two integers separated by comma (,): ' ).split(',' ) lowercase__ : Tuple = int(nums[0] ) lowercase__ : str = int(nums[1] ) print( f"""greatest_common_divisor({num_a}, {num_a}) = """ f"""{greatest_common_divisor(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowerCAmelCase , _lowerCAmelCase )}""" ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
77
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase__ : '''simple docstring''' UpperCamelCase = None def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase : Optional[int] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = os.path.join(a_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(a_ ) __UpperCAmelCase : Any = self.feature_extraction_class.from_json_file(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : List[str] = feat_extract_first.save_pretrained(a_ )[0] check_json_file_has_correct_format(a_ ) __UpperCAmelCase : Optional[Any] = self.feature_extraction_class.from_pretrained(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : int = self.feature_extraction_class() self.assertIsNotNone(a_ )
226
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : Dict = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): lowerCamelCase_ : Any = 'rwkv' lowerCamelCase_ : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , lowerCamelCase=50277 , lowerCamelCase=1024 , lowerCamelCase=4096 , lowerCamelCase=32 , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=1e-5 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=6 , lowerCamelCase=False , lowerCamelCase=True , **lowerCamelCase , ) -> Any: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
361
import numpy as np def UpperCamelCase( lowercase_ ) -> np.array: '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
34
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) class a__ ( _UpperCamelCase ): A = ['pixel_values'] def __init__( self : Union[str, Any],_A : bool = True,_A : Optional[Dict[str, int]] = None,_A : PILImageResampling = PILImageResampling.BICUBIC,_A : bool = True,_A : bool = True,_A : Union[int, float] = 1 / 255,_A : Dict[str, int] = None,_A : bool = True,_A : Optional[Union[float, List[float]]] = None,_A : Optional[Union[float, List[float]]] = None,**_A : int,): """simple docstring""" super().__init__(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ : Optional[int] = get_size_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ : int = get_size_dict(_UpperCAmelCase,default_to_square=_UpperCAmelCase,param_name="crop_size" ) SCREAMING_SNAKE_CASE_ : Any = do_resize SCREAMING_SNAKE_CASE_ : str = do_rescale SCREAMING_SNAKE_CASE_ : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE_ : Optional[Any] = do_center_crop SCREAMING_SNAKE_CASE_ : Any = crop_size SCREAMING_SNAKE_CASE_ : Optional[Any] = size SCREAMING_SNAKE_CASE_ : Optional[int] = resample SCREAMING_SNAKE_CASE_ : str = rescale_factor SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE_ : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase ( self : List[str],_A : np.ndarray,_A : Dict[str, int],_A : PILImageResampling = PILImageResampling.BILINEAR,_A : Optional[Union[str, ChannelDimension]] = None,**_A : Optional[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(_UpperCAmelCase ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_resize_output_image_size(_UpperCAmelCase,size=size["shortest_edge"],default_to_square=_UpperCAmelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE_ : str = (size['height'], size['width']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(_UpperCAmelCase,size=_UpperCAmelCase,resample=_UpperCAmelCase,data_format=_UpperCAmelCase,**_UpperCAmelCase ) def __UpperCamelCase ( self : List[str],_A : np.ndarray,_A : Dict[str, int],_A : Optional[Union[str, ChannelDimension]] = None,**_A : Any,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_UpperCAmelCase,size=(size["height"], size["width"]),data_format=_UpperCAmelCase,**_UpperCAmelCase ) def __UpperCamelCase ( self : Optional[Any],_A : np.ndarray,_A : float,_A : Optional[Union[str, ChannelDimension]] = None,**_A : str ): """simple docstring""" return rescale(_UpperCAmelCase,scale=_UpperCAmelCase,data_format=_UpperCAmelCase,**_UpperCAmelCase ) def __UpperCamelCase ( self : List[Any],_A : np.ndarray,_A : Union[float, List[float]],_A : Union[float, List[float]],_A : Optional[Union[str, ChannelDimension]] = None,**_A : List[Any],): """simple docstring""" return normalize(_UpperCAmelCase,mean=_UpperCAmelCase,std=_UpperCAmelCase,data_format=_UpperCAmelCase,**_UpperCAmelCase ) def __UpperCamelCase ( self : Optional[int],_A : ImageInput,_A : Optional[bool] = None,_A : Dict[str, int] = None,_A : PILImageResampling = None,_A : bool = None,_A : int = None,_A : Optional[bool] = None,_A : Optional[float] = None,_A : Optional[bool] = None,_A : Optional[Union[float, List[float]]] = None,_A : Optional[Union[float, List[float]]] = None,_A : Optional[Union[str, TensorType]] = None,_A : Union[str, ChannelDimension] = ChannelDimension.FIRST,**_A : Any,): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : Dict = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(_UpperCAmelCase,param_name="crop_size",default_to_square=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Optional[int] = get_size_dict(_UpperCAmelCase ) if not is_batched(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = [images] if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : int = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Dict = [self.resize(image=_UpperCAmelCase,size=_UpperCAmelCase,resample=_UpperCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : Tuple = [self.center_crop(image=_UpperCAmelCase,size=_UpperCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.rescale(image=_UpperCAmelCase,scale=_UpperCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : str = [self.normalize(image=_UpperCAmelCase,mean=_UpperCAmelCase,std=_UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Optional[Any] = [to_channel_dimension_format(_UpperCAmelCase,_UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Optional[Any] = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase,tensor_type=_UpperCAmelCase )
18
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) __lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _a : List[Any] = model_type_to_module_name(lowerCAmelCase_ ) _a : Optional[Any] = importlib.import_module(f""".{module_name}""" , 'transformers.models' ) try: return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase_ , '__name__' , lowerCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _a : Dict = importlib.import_module('transformers' ) if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) return None def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , **lowerCAmelCase_ , ) -> Tuple: _a : List[str] = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(lowerCAmelCase_ , encoding='utf-8' ) as reader: return json.load(lowerCAmelCase_ ) class __magic_name__ : def __init__( self : List[str] ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_UpperCAmelCase ) def __lowercase ( cls : Dict ,_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : Optional[Any] ): _a : Any = kwargs.pop('config' ,_UpperCAmelCase ) _a : Dict = kwargs.pop('trust_remote_code' ,_UpperCAmelCase ) _a : Any = True _a , _a : Tuple = ImageProcessingMixin.get_image_processor_dict(_UpperCAmelCase ,**_UpperCAmelCase ) _a : List[Any] = config_dict.get('image_processor_type' ,_UpperCAmelCase ) _a : int = None if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ): _a : Any = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _a : List[Any] = config_dict.pop('feature_extractor_type' ,_UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _a : Optional[int] = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ): _a : List[Any] = config_dict['auto_map']['AutoFeatureExtractor'] _a : List[str] = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Dict = AutoConfig.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) # It could be in `config.image_processor_type`` _a : Optional[int] = getattr(_UpperCAmelCase ,'image_processor_type' ,_UpperCAmelCase ) if hasattr(_UpperCAmelCase ,'auto_map' ) and "AutoImageProcessor" in config.auto_map: _a : Union[str, Any] = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _a : Optional[int] = image_processor_class_from_name(_UpperCAmelCase ) _a : List[str] = image_processor_auto_map is not None _a : Optional[int] = image_processor_class is not None or type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING _a : Optional[int] = resolve_trust_remote_code( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if has_remote_code and trust_remote_code: _a : Dict = get_class_from_dynamic_module( _UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) _a : int = kwargs.pop('code_revision' ,_UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: _a : Dict = IMAGE_PROCESSOR_MAPPING[type(_UpperCAmelCase )] return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowercase ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Dict ): IMAGE_PROCESSOR_MAPPING.register(_UpperCAmelCase ,_UpperCAmelCase )
89
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : int = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "mobilenet_v2" def __init__( self : Dict , lowercase_ : Any=3 , lowercase_ : Optional[int]=224 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : List[Any]=8 , lowercase_ : Optional[int]=8 , lowercase_ : str=6 , lowercase_ : Optional[int]=32 , lowercase_ : List[str]=True , lowercase_ : Dict=True , lowercase_ : Optional[int]="relu6" , lowercase_ : Any=True , lowercase_ : Any=0.8 , lowercase_ : Any=0.02 , lowercase_ : List[str]=0.0_01 , lowercase_ : Any=255 , **lowercase_ : List[str] , ): '''simple docstring''' super().__init__(**lowercase_) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''') SCREAMING_SNAKE_CASE_ : List[Any] = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Dict = depth_multiplier SCREAMING_SNAKE_CASE_ : Optional[int] = depth_divisible_by SCREAMING_SNAKE_CASE_ : List[Any] = min_depth SCREAMING_SNAKE_CASE_ : Optional[int] = expand_ratio SCREAMING_SNAKE_CASE_ : int = output_stride SCREAMING_SNAKE_CASE_ : Optional[int] = first_layer_is_expansion SCREAMING_SNAKE_CASE_ : List[str] = finegrained_output SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[Any] = tf_padding SCREAMING_SNAKE_CASE_ : Tuple = classifier_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = semantic_loss_ignore_index class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})]) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})]) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return 1e-4
318
"""simple docstring""" from __future__ import annotations import queue class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = data SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Dict = None def _A () -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower() SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Optional[int] = q.get() SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node q.put(__a ) SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : int = right_node q.put(__a ) raise def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Tuple = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : str = [] while not q.empty(): SCREAMING_SNAKE_CASE_ : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE_ : Tuple = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE_ : str = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Any = node while n or stack: while n: stack.append(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left SCREAMING_SNAKE_CASE_ : Any = stack.pop() print(n.data , end=''',''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], [] SCREAMING_SNAKE_CASE_ : List[Any] = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _A (__a = "" , __a=50 , __a="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) UpperCAmelCase_ : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
318
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict=5 ) ->Any: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('<mask>' ) == 1 lowerCamelCase__ : List[str] =torch.tensor(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ).unsqueeze(0 ) # Batch size 1 lowerCamelCase__ : Tuple =model(snake_case_ )[0] # The last hidden-state is the first element of the output tuple lowerCamelCase__ : Dict =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCamelCase__ : str =logits[0, masked_index, :] lowerCamelCase__ : Optional[int] =logits.softmax(dim=0 ) lowerCamelCase__ , lowerCamelCase__ : int =prob.topk(k=snake_case_ , dim=0 ) lowerCamelCase__ : Any =' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(snake_case_ ) )] ) lowerCamelCase__ : List[Any] =tokenizer.mask_token lowerCamelCase__ : List[Any] =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): lowerCamelCase__ : Dict =predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(snake_case_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(snake_case_ ) , snake_case_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(snake_case_ , snake_case_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCAmelCase = CamembertTokenizer.from_pretrained("""camembert-base""") lowerCAmelCase = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() lowerCAmelCase = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
126
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A_ : """simple docstring""" def __init__( self :str , lowerCamelCase_ :int , lowerCamelCase_ :List[str]=13 , lowerCamelCase_ :List[Any]=7 , lowerCamelCase_ :str=True , lowerCamelCase_ :int=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Any=99 , lowerCamelCase_ :Optional[int]=32 , lowerCamelCase_ :Dict=5 , lowerCamelCase_ :Any=4 , lowerCamelCase_ :Tuple=37 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :List[str]=512 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :List[str]=0.02 , lowerCamelCase_ :List[Any]=3 , lowerCamelCase_ :Dict=4 , lowerCamelCase_ :Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Any =parent lowerCamelCase__ : Union[str, Any] =batch_size lowerCamelCase__ : Dict =seq_length lowerCamelCase__ : List[str] =is_training lowerCamelCase__ : List[Any] =use_token_type_ids lowerCamelCase__ : Union[str, Any] =use_labels lowerCamelCase__ : Optional[Any] =vocab_size lowerCamelCase__ : List[Any] =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : Optional[Any] =intermediate_size lowerCamelCase__ : Optional[int] =hidden_act lowerCamelCase__ : List[Any] =hidden_dropout_prob lowerCamelCase__ : str =attention_probs_dropout_prob lowerCamelCase__ : Tuple =max_position_embeddings lowerCamelCase__ : Union[str, Any] =type_vocab_size lowerCamelCase__ : Dict =type_sequence_label_size lowerCamelCase__ : str =initializer_range lowerCamelCase__ : Any =num_labels lowerCamelCase__ : int =num_choices lowerCamelCase__ : List[str] =scope lowerCamelCase__ : List[str] =self.vocab_size - 1 def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Union[str, Any] =None if self.use_token_type_ids: lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any =None lowerCamelCase__ : Any =None lowerCamelCase__ : str =None if self.use_labels: lowerCamelCase__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Any =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : int =OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : List[str] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] , *lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : Any =OpenAIGPTModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : int =OpenAIGPTLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :str , *lowerCamelCase_ :Dict ): """simple docstring""" lowerCamelCase__ : Tuple =OpenAIGPTDoubleHeadsModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : List[str] =self.num_labels lowerCamelCase__ : Tuple =OpenAIGPTForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : str =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Dict =config_and_inputs lowerCamelCase__ : Tuple ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class A_ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any]=False ): """simple docstring""" lowerCamelCase__ : str =super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Dict =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Union[str, Any] =inputs_dict['labels'] lowerCamelCase__ : Tuple =inputs_dict['labels'] lowerCamelCase__ : int =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Optional[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : List[str] =OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] =ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def UpperCAmelCase__ ( self :int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCamelCase_ ) @slow def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] =OpenAIGPTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCamelCase_ ) lowerCamelCase__ : List[str] =torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCamelCase_ ) # the president is lowerCamelCase__ : List[Any] =[ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : Tuple =model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCamelCase_ )
126
1
from __future__ import annotations import math def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase ( _lowerCAmelCase ) -> list[int]: """simple docstring""" A : Dict = str(_lowerCAmelCase ) A : List[Any] = [n] for i in range(1 , len(_lowerCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" if len(str(_lowerCAmelCase ) ) > 3: if not is_prime(int(str(_lowerCAmelCase )[-3:] ) ) or not is_prime(int(str(_lowerCAmelCase )[:3] ) ): return False return True def __UpperCamelCase ( _lowerCAmelCase = 11 ) -> list[int]: """simple docstring""" A : list[int] = [] A : Any = 13 while len(_lowerCAmelCase ) != count: if validate(_lowerCAmelCase ): A : str = list_truncated_nums(_lowerCAmelCase ) if all(is_prime(_lowerCAmelCase ) for i in list_nums ): list_truncated_primes.append(_lowerCAmelCase ) num += 2 return list_truncated_primes def __UpperCamelCase ( ) -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
363
from argparse import ArgumentParser from .env import EnvironmentCommand def __UpperCamelCase ( ) -> Dict: """simple docstring""" A : str = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) A : int = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(_lowerCAmelCase ) # Let's go A : str = parser.parse_args() if not hasattr(_lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run A : Any = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
115
0
def A_ ( _lowerCAmelCase ) -> List[Any]: UpperCamelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr UpperCamelCase : Any = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCamelCase : Optional[int] = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list UpperCamelCase : str = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": __lowerCamelCase : List[str] = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : List[Any] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
52
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_SCREAMING_SNAKE_CASE ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": __A : Dict = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
260
0
def lowerCAmelCase_ ( )-> int: '''simple docstring''' return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(__lowerCAmelCase , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
78
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] = KandinskyVaaControlnetPipeline __lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase : Dict = False @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 100 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any ={ '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase : List[Any] =UNetaDConditionModel(**snake_case__ ) return model @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =self.dummy_unet UpperCAmelCase : Tuple =self.dummy_movq UpperCAmelCase : Union[str, Any] =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) UpperCAmelCase : Tuple ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> Any: '''simple docstring''' UpperCAmelCase : str =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase : Tuple =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create hint UpperCAmelCase : Tuple =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Optional[int] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : int =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : List[str] ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] ='''cpu''' UpperCAmelCase : List[Any] =self.get_dummy_components() UpperCAmelCase : Tuple =self.pipeline_class(**snake_case__ ) UpperCAmelCase : Tuple =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Optional[int] =pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase : str =output.images UpperCAmelCase : List[str] =pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] UpperCAmelCase : Union[str, Any] =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Union[str, Any] =np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) UpperCAmelCase : int =torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 UpperCAmelCase : List[str] =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase : Dict =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) UpperCAmelCase : int =KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) UpperCAmelCase : str =pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : int ='''A robot, 4k photo''' UpperCAmelCase : int =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : List[str] =pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase : List[str] =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase : Dict =pipeline( image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , output_type='''np''' , ) UpperCAmelCase : List[Any] =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
78
1
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _a : str = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ,_lowerCamelCase : Dict ,_lowerCamelCase : str=None ) -> List[str]: # Initialise PyTorch model _lowerCAmelCase : str = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : int = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : str = finetuning_task _lowerCAmelCase : Optional[int] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Any = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Optional[int] = finetuning_task _lowerCAmelCase : List[str] = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : List[str] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : str = os.path.join(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Any = os.path.join(_lowerCamelCase ,_lowerCamelCase ) print(f"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() ,_lowerCamelCase ) print(f"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) _a : List[Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
44
from sklearn.metrics import mean_squared_error import datasets lowerCamelCase = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' lowerCamelCase = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' lowerCamelCase = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def lowerCamelCase ( self : List[Any] , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : List[str]=None , lowercase_ : Union[str, Any]="uniform_average" , lowercase_ : Tuple=True ) -> Any: """simple docstring""" _lowerCamelCase : List[str] =mean_squared_error( lowercase_ , lowercase_ , sample_weight=lowercase_ , multioutput=lowercase_ , squared=lowercase_ ) return {"mse": mse}
199
0
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __UpperCamelCase : def __init__( self , __a , __a=99 , __a=13 , __a=16 , __a=7 , __a=True , __a=True , __a=True , __a=False , __a=True , __a=2 , __a=32 , __a=4 , __a=4 , __a=30 , __a=0 , __a=1 , __a=2 , __a=None , ): '''simple docstring''' __a : Optional[Any] = parent __a : Optional[int] = batch_size __a : List[Any] = decoder_seq_length # For common tests __a : Tuple = self.decoder_seq_length __a : Any = is_training __a : Dict = use_attention_mask __a : Any = use_labels __a : Tuple = vocab_size __a : List[str] = d_model __a : Optional[int] = d_model __a : int = decoder_layers __a : int = decoder_layers __a : Optional[Any] = decoder_ffn_dim __a : Union[str, Any] = decoder_attention_heads __a : Dict = decoder_attention_heads __a : Optional[Any] = eos_token_id __a : Optional[Any] = bos_token_id __a : str = pad_token_id __a : Tuple = decoder_start_token_id __a : Tuple = use_cache __a : Optional[Any] = max_position_embeddings __a : List[str] = None __a : int = decoder_seq_length __a : Dict = 2 __a : Dict = 1 def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __a : Any = None if self.use_attention_mask: __a : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __a : int = None if self.use_labels: __a : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __a : Any = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __UpperCAmelCase ( self , __a , __a , __a , __a , ): '''simple docstring''' __a : Optional[Any] = True __a : str = TrOCRDecoder(config=__a ).to(__a ).eval() __a : List[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __a : Any = model(__a , use_cache=__a ) __a : List[Any] = model(__a ) __a : Optional[Any] = model(__a , use_cache=__a ) self.parent.assertTrue(len(__a ) == len(__a ) ) self.parent.assertTrue(len(__a ) == len(__a ) + 1 ) __a : Tuple = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids __a : Any = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __a : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __a : Tuple = model(__a )['last_hidden_state'] __a : Dict = model(__a , past_key_values=__a )['last_hidden_state'] # select random slice __a : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a : Union[str, Any] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __a : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__a , __a , atol=1E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.prepare_config_and_inputs() __a , __a , __a , __a : int = config_and_inputs __a : Dict = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A_ = (TrOCRForCausalLM,) if is_torch_available() else () A_ = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A_ = True A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=__a ) __a : str = ConfigTester(self , config_class=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __UpperCAmelCase ( self ): '''simple docstring''' pass
294
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
294
1
def lowerCamelCase_ ( _a : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = len(_lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = sum(_lowerCAmelCase ) UpperCAmelCase_ : int = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[Any] = True for i in range(1 , s + 1 ): UpperCAmelCase_ : Tuple = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): UpperCAmelCase_ : Dict = dp[i][j - 1] if arr[i - 1] <= j: UpperCAmelCase_ : Optional[Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: UpperCAmelCase_ : int = s - 2 * j break return diff
345
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
0
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = (IPNDMScheduler,) __lowerCamelCase = (('num_inference_steps', 50),) def UpperCAmelCase ( self :Optional[int] , **_lowercase :Dict ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 10_00} config.update(**_lowercase ) return config def UpperCAmelCase ( self :Optional[Any] , _lowercase :Dict=0 , **_lowercase :Optional[Any] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps" , _lowercase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_lowercase ) lowercase__ = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase__ = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' pass def UpperCAmelCase ( self :Tuple , _lowercase :Any=0 , **_lowercase :Any ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps" , _lowercase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase__ = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self :Optional[Any] , **_lowercase :List[str] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_lowercase ) lowercase__ = scheduler_class(**_lowercase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_lowercase , _lowercase ) lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_lowercase , _lowercase ) lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample return sample def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps" , _lowercase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_lowercase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , "set_timesteps" ): scheduler.set_timesteps(_lowercase ) elif num_inference_steps is not None and not hasattr(_lowercase , "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase ( self :int ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase , time_step=_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_lowercase , time_step=_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
364
def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if height >= 1: move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) move_disk(__magic_name__ , __magic_name__ ) move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) def _A ( __magic_name__ , __magic_name__ ): print("moving disk from" , __magic_name__ , "to" , __magic_name__ ) def _A ( ): lowercase__ = int(input("Height of hanoi: " ).strip() ) move_tower(__magic_name__ , "A" , "B" , "C" ) if __name__ == "__main__": main()
201
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): A__ : List[str] =["""pixel_values"""] def __init__( self : Dict , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int=PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Any , ): SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = size_divisor SCREAMING_SNAKE_CASE__ = resample super().__init__(**UpperCAmelCase_ ) def A_ ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[ChannelDimension] = None , **UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_image_size(UpperCAmelCase_ ) # Rounds the height and width down to the closest multiple of size_divisor SCREAMING_SNAKE_CASE__ = height // size_divisor * size_divisor SCREAMING_SNAKE_CASE__ = width // size_divisor * size_divisor SCREAMING_SNAKE_CASE__ = resize(UpperCAmelCase_ , (new_h, new_w) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) return image def A_ ( self : Any , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[ChannelDimension] = None , **UpperCAmelCase_ : List[str] ): return rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[TensorType, str]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : List[Any] , ): SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = size_divisor if size_divisor is not None else self.size_divisor SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) SCREAMING_SNAKE_CASE__ = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(UpperCAmelCase_ ) for img in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(UpperCAmelCase_ , size_divisor=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(UpperCAmelCase_ , scale=1 / 255 ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
176
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __snake_case = NewType("""DataClass""", Any) __snake_case = NewType("""DataClassType""", Any) def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def _lowercase ( UpperCamelCase_ ) -> Callable[[str], Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {str(UpperCamelCase_ ): choice for choice in choices} return lambda UpperCamelCase_ : str_to_choice.get(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( *, UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE__ = {} if aliases is not None: SCREAMING_SNAKE_CASE__ = aliases if help is not None: SCREAMING_SNAKE_CASE__ = help return dataclasses.field(metadata=UpperCamelCase_ , default=UpperCamelCase_ , default_factory=UpperCamelCase_ , **UpperCamelCase_ ) class lowercase__ ( _UpperCAmelCase ): A__ : Iterable[DataClassType] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase_ : Optional[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE__ = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_ ) if dataclasses.is_dataclass(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [dataclass_types] SCREAMING_SNAKE_CASE__ = list(UpperCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_ ) @staticmethod def A_ ( UpperCAmelCase_ : ArgumentParser , UpperCAmelCase_ : dataclasses.Field ): SCREAMING_SNAKE_CASE__ = F'--{field.name}' SCREAMING_SNAKE_CASE__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) SCREAMING_SNAKE_CASE__ = kwargs.pop('aliases' , [] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [aliases] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase_ , 'UnionType' ) and isinstance(UpperCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(UpperCAmelCase_ ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE__ = ( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE__ = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_ ) and issubclass(field.type , UpperCAmelCase_ )): if origin_type is Literal: SCREAMING_SNAKE_CASE__ = field.type.__args__ else: SCREAMING_SNAKE_CASE__ = [x.value for x in field.type] SCREAMING_SNAKE_CASE__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default else: SCREAMING_SNAKE_CASE__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE__ = copy(UpperCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE__ = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE__ = '?' # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE__ = True elif isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = field.type.__args__[0] SCREAMING_SNAKE_CASE__ = '+' if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() else: SCREAMING_SNAKE_CASE__ = True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE__ = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : DataClassType ): if hasattr(UpperCAmelCase_ , '_argument_group_name' ): SCREAMING_SNAKE_CASE__ = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE__ = self try: SCREAMING_SNAKE_CASE__ = get_type_hints(UpperCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '.'.join(map(UpperCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(UpperCAmelCase_ ): if not field.init: continue SCREAMING_SNAKE_CASE__ = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE__ = [] if args_filename: args_files.append(Path(UpperCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE__ = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = args_file_parser.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = vars(UpperCAmelCase_ ).get(args_file_flag.lstrip('-' ) , UpperCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_ ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE__ = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def A_ ( self : str , UpperCAmelCase_ : Dict[str, Any] , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = set(args.keys() ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_ )}' ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): with open(Path(UpperCAmelCase_ ) , encoding='utf-8' ) as open_json_file: SCREAMING_SNAKE_CASE__ = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE__ = self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_ ).read_text() ) , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
176
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : str = mock.Mock() _snake_case : List[str] = 5_00 _snake_case : Any = {} _snake_case : str = HTTPError _snake_case : List[Any] = {} # Download this model to make sure it's in the cache. _snake_case : Optional[Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=UpperCamelCase ) as mock_head: _snake_case : Any = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = mock.Mock() _snake_case : Union[str, Any] = 5_00 _snake_case : Any = {} _snake_case : Any = HTTPError _snake_case : Optional[int] = {} # Download this model to make sure it's in the cache. _snake_case : Optional[int] = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=UpperCamelCase ) as mock_head: _snake_case : int = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' try: _snake_case : Optional[int] = tempfile.mktemp() with open(UpperCamelCase , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , UpperCamelCase ) _snake_case : Optional[Any] = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , UpperCamelCase ) _snake_case : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' a_ : Dict =["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def UpperCamelCase_ ( cls : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Tuple ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : Tuple = os.path.join(UpperCamelCase , 'vocab.txt' ) with open(UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _snake_case : int = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) _snake_case : Any = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase , repo_id='test-tokenizer' , push_to_hub=UpperCamelCase , use_auth_token=self._token ) _snake_case : Optional[Any] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : int = os.path.join(UpperCamelCase , 'vocab.txt' ) with open(UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _snake_case : Tuple = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) _snake_case : Optional[int] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=UpperCamelCase , use_auth_token=self._token ) _snake_case : int = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : Dict = os.path.join(UpperCamelCase , 'vocab.txt' ) with open(UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _snake_case : Union[str, Any] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) _snake_case : int = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : Tuple = os.path.join(UpperCamelCase , 'vocab.txt' ) with open(UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _snake_case : Union[str, Any] = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) _snake_case : List[str] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) _snake_case : Optional[int] = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) _snake_case : List[str] = AutoTokenizer.from_pretrained( f"""{USER}/test-dynamic-tokenizer""" , use_fast=UpperCamelCase , trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Tuple = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : int = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[Any] = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : int = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Dict = Trie() _snake_case : Any = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase , ['AB', 'C'] )
260
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""naver-clova-ix/donut-base-finetuned-docvqa""" a_ : Dict =( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) a_ : Optional[Any] ="""document_qa""" a_ : str =AutoProcessor a_ : Union[str, Any] =VisionEncoderDecoderModel a_ : List[Any] =["""image""", """text"""] a_ : List[Any] =["""text"""] def __init__( self : Any , *UpperCamelCase : List[Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : "Image" , UpperCamelCase : str ): '''simple docstring''' _snake_case : Dict = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' _snake_case : int = task_prompt.replace('{user_input}' , UpperCamelCase ) _snake_case : Union[str, Any] = self.pre_processor.tokenizer( UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors='pt' ).input_ids _snake_case : Dict = self.pre_processor(UpperCamelCase , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase , ).sequences def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[Any] = self.pre_processor.batch_decode(UpperCamelCase )[0] _snake_case : int = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) _snake_case : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) _snake_case : int = re.sub(R'<.*?>' , '' , UpperCamelCase , count=1 ).strip() # remove first task start token _snake_case : str = self.pre_processor.tokenajson(UpperCamelCase ) return sequence["answer"]
260
1
"""simple docstring""" import enum import shutil import sys SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ : str = shutil.get_terminal_size() SCREAMING_SNAKE_CASE_ : Dict = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class a ( enum.Enum ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 1 def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any="" ): sys.stdout.write(str(UpperCAmelCase_ ) + end ) sys.stdout.flush() def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]="" ): forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , UpperCAmelCase_ ) def _snake_case ( ): forceWrite("""\r""" ) def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ): forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def _snake_case ( ): forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def _snake_case ( ): reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
335
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , *UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple=None , UpperCamelCase: Tuple=None , **UpperCamelCase: Dict ): """simple docstring""" super().__init__(*UpperCamelCase , **UpperCamelCase ) A__ = eval_examples A__ = post_process_function def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: Optional[Dataset] = None , UpperCamelCase: List[Any]=None , UpperCamelCase: Optional[List[str]] = None , UpperCamelCase: str = "eval" , **UpperCamelCase: Optional[int] , ): """simple docstring""" A__ = gen_kwargs.copy() A__ = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) A__ = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) A__ = gen_kwargs A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) else: A__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase ) return metrics def UpperCamelCase ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: List[str] , UpperCamelCase: Dict=None , UpperCamelCase: str = "test" , **UpperCamelCase: Optional[int] ): """simple docstring""" A__ = gen_kwargs.copy() A__ = self.get_test_dataloader(UpperCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase , """predict""" ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase )
335
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=13, UpperCamelCase__=32, UpperCamelCase__=2, UpperCamelCase__=3, UpperCamelCase__=16, UpperCamelCase__=[32, 64, 128], UpperCamelCase__=[1, 2, 1], UpperCamelCase__=[2, 2, 4], UpperCamelCase__=2, UpperCamelCase__=2.0, UpperCamelCase__=True, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.1, UpperCamelCase__="gelu", UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=0.02, UpperCamelCase__=1E-5, UpperCamelCase__=True, UpperCamelCase__=None, UpperCamelCase__=True, UpperCamelCase__=10, UpperCamelCase__=8, UpperCamelCase__=["stage1", "stage2"], UpperCamelCase__=[1, 2], ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = depths lowerCAmelCase_ = num_heads lowerCAmelCase_ = window_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = use_absolute_embeddings lowerCAmelCase_ = patch_norm lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range lowerCAmelCase_ = is_training lowerCAmelCase_ = scope lowerCAmelCase_ = use_labels lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = encoder_stride lowerCAmelCase_ = out_features lowerCAmelCase_ = out_indices def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return FocalNetConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, hidden_sizes=self.hidden_sizes, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = FocalNetModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__ ) lowerCAmelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCAmelCase_ = None lowerCAmelCase_ = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = FocalNetForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase_ = 1 lowerCAmelCase_ = FocalNetForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.type_sequence_label_size lowerCAmelCase_ = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__, labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase_ = 1 lowerCAmelCase_ = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __snake_case = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = FocalNetModelTester(self ) lowerCAmelCase_ = ConfigTester(self, config_class=UpperCamelCase__, embed_dim=37, has_text_modality=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCAmelCase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__, nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = getattr( self.model_tester, '''expected_num_hidden_layers''', len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) # FocalNet has a different seq_length lowerCAmelCase_ = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) lowerCAmelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = reshaped_hidden_states[0].shape lowerCAmelCase_ = ( reshaped_hidden_states[0].view(UpperCamelCase__, UpperCamelCase__, height * width ).permute(0, 2, 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCAmelCase_ = True self.check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True self.check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase_ = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCAmelCase_ = True self.check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True self.check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = FocalNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @require_vision @require_torch class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(UpperCamelCase__ ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase_ = image_processor(images=UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], UpperCamelCase__, atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(), 281 ) @require_torch class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = (FocalNetBackbone,) if is_torch_available() else () __snake_case = FocalNetConfig __snake_case = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = FocalNetModelTester(self )
167
import string def __UpperCamelCase ( _A ): for key in range(len(string.ascii_uppercase ) ): lowerCAmelCase_ = '''''' for symbol in message: if symbol in string.ascii_uppercase: lowerCAmelCase_ = string.ascii_uppercase.find(_A ) lowerCAmelCase_ = num - key if num < 0: lowerCAmelCase_ = num + len(string.ascii_uppercase ) lowerCAmelCase_ = translated + string.ascii_uppercase[num] else: lowerCAmelCase_ = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def __UpperCamelCase ( ): lowerCAmelCase_ = input('''Encrypted message: ''' ) lowerCAmelCase_ = message.upper() decrypt(_A ) if __name__ == "__main__": import doctest doctest.testmod() main()
167
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 200 ) -> int: '''simple docstring''' snake_case_ = [1, 2, 5, 10, 20, 50, 100, 200] snake_case_ = [0] * (pence + 1) snake_case_ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__UpperCAmelCase, pence + 1, 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
56
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a : int = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' config.addinivalue_line( '''markers''', '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''', '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''', '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''', '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''', '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''', '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase, id=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if exitstatus == 5: snake_case_ = 0 # Doctest custom flag to ignore output. a : Union[str, Any] = doctest.register_optionflag('IGNORE_RESULT') a : Optional[int] = doctest.OutputChecker class a ( _lowerCamelCase ): def A_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[int] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase_ , lowercase_ , lowercase_ ) a : List[Any] = CustomOutputChecker a : Optional[int] = HfDoctestModule a : Tuple = HfDocTestParser
56
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Dict , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] ) -> List[str]: for attribute in key.split("." ): _UpperCAmelCase : Optional[int] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: _UpperCAmelCase : str = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: _UpperCAmelCase : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase : List[Any] = value elif weight_type == "weight_g": _UpperCAmelCase : int = value elif weight_type == "weight_v": _UpperCAmelCase : Optional[int] = value elif weight_type == "bias": _UpperCAmelCase : int = value else: _UpperCAmelCase : Any = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: int , lowerCAmelCase: Any ) -> Optional[int]: _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Optional[Any] = fairseq_model.state_dict() _UpperCAmelCase : Optional[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : List[str] = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase : List[str] = True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase : List[Any] = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): _UpperCAmelCase : List[Any] = True if "*" in mapped_key: _UpperCAmelCase : List[Any] = name.split(__UpperCAmelCase )[0].split("." )[-2] _UpperCAmelCase : Tuple = mapped_key.replace("*" , __UpperCAmelCase ) if "weight_g" in name: _UpperCAmelCase : List[str] = "weight_g" elif "weight_v" in name: _UpperCAmelCase : Union[str, Any] = "weight_v" elif "weight" in name: _UpperCAmelCase : List[str] = "weight" elif "bias" in name: _UpperCAmelCase : Optional[Any] = "bias" else: _UpperCAmelCase : Any = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Any , lowerCAmelCase: Tuple , lowerCAmelCase: List[Any] , lowerCAmelCase: str ) -> Optional[int]: _UpperCAmelCase : Optional[int] = full_name.split("conv_layers." )[-1] _UpperCAmelCase : str = name.split("." ) _UpperCAmelCase : List[Any] = int(items[0] ) _UpperCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase : List[str] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase : Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _UpperCAmelCase : Optional[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase : List[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Any , lowerCAmelCase: Tuple=None , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: List[str]=True ) -> Optional[int]: if config_path is not None: _UpperCAmelCase : Optional[Any] = HubertConfig.from_pretrained(__UpperCAmelCase ) else: _UpperCAmelCase : Any = HubertConfig() if is_finetuned: if dict_path: _UpperCAmelCase : Optional[Any] = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase : Dict = target_dict.pad_index _UpperCAmelCase : str = target_dict.bos_index _UpperCAmelCase : str = target_dict.eos_index _UpperCAmelCase : Optional[Any] = len(target_dict.symbols ) _UpperCAmelCase : Union[str, Any] = os.path.join(__UpperCAmelCase , "vocab.json" ) if not os.path.isdir(__UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , __UpperCAmelCase ) _UpperCAmelCase : str = WavaVecaCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__UpperCAmelCase , ) _UpperCAmelCase : List[Any] = True if config.feat_extract_norm == "layer" else False _UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) _UpperCAmelCase : List[Any] = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) _UpperCAmelCase : Any = HubertForCTC(__UpperCAmelCase ) else: _UpperCAmelCase : str = HubertModel(__UpperCAmelCase ) if is_finetuned: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _UpperCAmelCase : Union[str, Any] = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_wavavec.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
356
from __future__ import annotations class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = order # a_{0} ... a_{k} _UpperCAmelCase : Tuple = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase : Optional[Any] = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase : Dict = [0.0] * self.order def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if len(A_ ) < self.order: _UpperCAmelCase : List[str] = [1.0, *a_coeffs] if len(A_ ) != self.order + 1: _UpperCAmelCase : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) if len(A_ ) != self.order + 1: _UpperCAmelCase : int = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) _UpperCAmelCase : Optional[Any] = a_coeffs _UpperCAmelCase : Union[str, Any] = b_coeffs def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase : Optional[Any] = self.input_history[:-1] _UpperCAmelCase : Optional[int] = self.output_history[:-1] _UpperCAmelCase : Optional[Any] = sample _UpperCAmelCase : str = result return result
189
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class snake_case : """simple docstring""" def __init__( self : List[Any] , __A : List[Any] , __A : Any=1_3 , __A : Any=2 , __A : Tuple=2_4 , __A : Dict=1_6 , __A : List[str]=True , __A : List[Any]=True , __A : Any=3_2 , __A : List[str]=5 , __A : Optional[int]=4 , __A : List[str]=3_7 , __A : Optional[Any]="gelu" , __A : Optional[int]=0.1 , __A : Any=0.1 , __A : Union[str, Any]=1_0 , __A : List[Any]=0.02 , __A : Union[str, Any]=None , __A : Tuple=2 , __A : Any=2 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = patch_size __UpperCamelCase = max_length __UpperCamelCase = num_mel_bins __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = frequency_stride __UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 __UpperCamelCase = frequency_out_dimension * time_out_dimension __UpperCamelCase = num_patches + 2 def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, input_values, labels def _lowerCamelCase ( self : Dict ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowerCamelCase ( self : Optional[Any] , __A : Any , __A : str , __A : str ): __UpperCamelCase = ASTModel(config=__A ) model.to(__A ) model.eval() __UpperCamelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] =( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : int =( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] =False SCREAMING_SNAKE_CASE_ : str =False SCREAMING_SNAKE_CASE_ : str =False SCREAMING_SNAKE_CASE_ : Union[str, Any] =False def _lowerCamelCase ( self : Tuple , __A : int , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : List[Any] ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = ASTModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowerCamelCase ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def _lowerCamelCase ( self : Tuple ): pass def _lowerCamelCase ( self : str ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , __A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @slow def _lowerCamelCase ( self : Dict ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = ASTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowercase__ ( ) -> Optional[int]: """simple docstring""" __UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) __UpperCamelCase , __UpperCamelCase = torchaudio.load(__lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCamelCase ( self : int ): return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.default_feature_extractor __UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(__A ) __UpperCamelCase = self.default_feature_extractor __UpperCamelCase , __UpperCamelCase = prepare_audio() __UpperCamelCase = audio.squeeze().numpy() __UpperCamelCase = feature_extractor(__A , sampling_rate=__A , return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__A ) # verify the logits __UpperCamelCase = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , __A ) __UpperCamelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
53
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="naver-clova-ix/donut-base-finetuned-docvqa" SCREAMING_SNAKE_CASE_ : Dict =( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) SCREAMING_SNAKE_CASE_ : List[str] ="document_qa" SCREAMING_SNAKE_CASE_ : Union[str, Any] =AutoProcessor SCREAMING_SNAKE_CASE_ : Union[str, Any] =VisionEncoderDecoderModel SCREAMING_SNAKE_CASE_ : List[Any] =["image", "text"] SCREAMING_SNAKE_CASE_ : Any =["text"] def __init__( self : Optional[int] , *__A : List[str] , **__A : List[Any] ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*__A , **__A ) def _lowerCamelCase ( self : Any , __A : "Image" , __A : str ): __UpperCamelCase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __UpperCamelCase = task_prompt.replace('{user_input}' , __A ) __UpperCamelCase = self.pre_processor.tokenizer( __A , add_special_tokens=__A , return_tensors='pt' ).input_ids __UpperCamelCase = self.pre_processor(__A , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _lowerCamelCase ( self : Union[str, Any] , __A : Optional[Any] ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__A , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__A , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__A , ).sequences def _lowerCamelCase ( self : Tuple , __A : List[Any] ): __UpperCamelCase = self.pre_processor.batch_decode(__A )[0] __UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) __UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) __UpperCamelCase = re.sub(R'<.*?>' , '' , __A , count=1 ).strip() # remove first task start token __UpperCamelCase = self.pre_processor.tokenajson(__A ) return sequence["answer"]
53
1
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : float _lowercase : TreeNode | None = None _lowercase : TreeNode | None = None def A (__lowerCamelCase :TreeNode | None ): # Validation def is_valid_tree(__lowerCamelCase :TreeNode | None ) -> bool: if node is None: return True if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__lowerCamelCase ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( __lowerCamelCase :TreeNode | None , __lowerCamelCase :float , __lowerCamelCase :float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __lowerCamelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __lowerCamelCase ) ) return is_binary_search_tree_recursive_check(__lowerCamelCase , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowerCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = None , _lowercase = 0.0 , _lowercase = 50 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ): """simple docstring""" if isinstance(self.unet.config.sample_size , _lowercase ): _lowerCAmelCase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowerCAmelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _lowerCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase ).prev_sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
229
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self,__lowerCamelCase,__lowerCamelCase=7,__lowerCamelCase=3,__lowerCamelCase=18,__lowerCamelCase=30,__lowerCamelCase=400,__lowerCamelCase=True,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase=[0.5, 0.5, 0.5],__lowerCamelCase=[0.5, 0.5, 0.5],): A__ = size if size is not None else {'''height''': 18, '''width''': 18} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std def UpperCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = DPTImageProcessor if is_vision_available() else None def UpperCamelCase ( self ): A__ = DPTImageProcessingTester(self ) @property def UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ): A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase,'''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase,'''size''' ) ) def UpperCamelCase ( self ): A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size,{'''height''': 18, '''width''': 18} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict,size=42 ) self.assertEqual(image_processor.size,{'''height''': 42, '''width''': 42} ) def UpperCamelCase ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase,Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ),) # Test batched A__ = image_processing(__lowerCamelCase,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ),) def UpperCamelCase ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=__lowerCamelCase,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase,np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ),) # Test batched A__ = image_processing(__lowerCamelCase,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ),) def UpperCamelCase ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=__lowerCamelCase,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase,torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ),) # Test batched A__ = image_processing(__lowerCamelCase,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ),)
193
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) __SCREAMING_SNAKE_CASE = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def UpperCamelCase ( self,**__lowerCamelCase ): A__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**__lowerCamelCase ) return config def UpperCamelCase ( self,**__lowerCamelCase ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) A__ , A__ = 10, 0.0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: A__ = model(__lowerCamelCase,__lowerCamelCase ) A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ).prev_sample return sample def UpperCamelCase ( self ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCamelCase ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1 ) A__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps,torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1],[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase,beta_end=__lowerCamelCase ) def UpperCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCamelCase ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCamelCase ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCamelCase ( self ): self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase,prediction_type=__lowerCamelCase,sample_max_value=__lowerCamelCase,) def UpperCamelCase ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCamelCase ( self ): for t, num_inference_steps in zip([1, 10, 50],[10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase,num_inference_steps=__lowerCamelCase ) def UpperCamelCase ( self ): for t, eta in zip([1, 10, 49],[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase,eta=__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420,400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980,960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487,486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999,998 ) - 0.02 ) ) < 1E-5 def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) A__ , A__ = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = self.dummy_sample_deter + 0.1 A__ = self.dummy_sample_deter - 0.1 A__ = samplea.shape[0] A__ = torch.stack([samplea, samplea, samplea],dim=0 ) A__ = torch.arange(__lowerCamelCase )[0:3, None].repeat(1,__lowerCamelCase ) A__ = model(samples.flatten(0,1 ),timesteps.flatten(0,1 ) ) A__ = scheduler.batch_step_no_noise(__lowerCamelCase,timesteps.flatten(0,1 ),samples.flatten(0,1 ),__lowerCamelCase ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop() A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop(prediction_type='''v_prediction''' ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=__lowerCamelCase,beta_start=0.01 ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=__lowerCamelCase,beta_start=0.01 ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
193
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> int: """simple docstring""" a : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): a : Any = n - k # Calculate C(n,k) for i in range(snake_case ): result *= n - i result //= i + 1 return result def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , snake_case ) // (node_count + 1) def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> int: """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) a : Dict = 1 for i in range(1 , n + 1 ): result *= i return result def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> int: """simple docstring""" return catalan_number(snake_case ) * factorial(snake_case ) if __name__ == "__main__": UpperCamelCase : Tuple = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
0
"""simple docstring""" import math import unittest def lowerCamelCase__ ( _lowerCamelCase : int ) -> bool: assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class a ( unittest.TestCase ): def UpperCamelCase ( self : Optional[Any] ) -> int: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def UpperCamelCase ( self : List[str] ) -> str: with self.assertRaises(__SCREAMING_SNAKE_CASE ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
183
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase : int ) -> list[int]: lowerCamelCase_ = [True] * limit lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCamelCase_ = i * 2 while index < limit: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def lowerCamelCase__ ( _lowerCamelCase : int = 1000000 ) -> int: lowerCamelCase_ = prime_sieve(_lowerCamelCase ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length , len(_lowerCamelCase ) ): lowerCamelCase_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCamelCase_ = j - i lowerCamelCase_ = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
183
1
lowerCAmelCase_ = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCAmelCase_ = concatenate_datasets lowerCAmelCase_ = DownloadConfig lowerCAmelCase_ = DownloadManager lowerCAmelCase_ = DownloadMode lowerCAmelCase_ = DownloadConfig lowerCAmelCase_ = DownloadMode lowerCAmelCase_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
362
from __future__ import annotations lowerCAmelCase_ = """#""" class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any ): '''simple docstring''' _snake_case : dict = {} def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[Any] = self._trie for char in text: if char not in trie: _snake_case : int = {} _snake_case : int = trie[char] _snake_case : Optional[Any] = True def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[int] = self._trie for char in prefix: if char in trie: _snake_case : Optional[Any] = trie[char] else: return [] return self._elements(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : dict ): '''simple docstring''' _snake_case : int = [] for c, v in d.items(): _snake_case : Dict = [' '] if c == END else [(c + s) for s in self._elements(UpperCamelCase )] result.extend(UpperCamelCase ) return tuple(UpperCamelCase ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCamelCase_ ( lowerCAmelCase: str )-> tuple: _snake_case : List[Any] = trie.find_word(lowerCAmelCase ) return tuple(string + word for word in suffixes ) def lowerCamelCase_ ( )-> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
260
0