code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase_ : """simple docstring""" def __init__( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any]=1_3 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[str]=3_3 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=3_7 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : str=5_1_2 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : str=None , ) -> Optional[int]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : str ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : int = False snake_case__ : List[str] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) snake_case__ : str = () snake_case__ : List[str] = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = True def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = EsmModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] __SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.as_tensor([[1_2, 3_1, 1_3, model.padding_idx]] ) __SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase__ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] __SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 3_0 ) __SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) __SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase__ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: pass @unittest.skip("Esm does not support embedding resizing" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: pass @require_torch class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @slow def UpperCAmelCase_ ( self : Dict ) -> Dict: with torch.no_grad(): __SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = 3_3 __SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: with torch.no_grad(): __SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() __SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
54
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) __SCREAMING_SNAKE_CASE = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __SCREAMING_SNAKE_CASE = 1 if upper_limit > 0: __SCREAMING_SNAKE_CASE = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowerCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: a__ : List[str] = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F"The Catalan numbers from 0 through {N} are:") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
54
1
"""simple docstring""" def __lowercase ( snake_case_ : int ) ->bool: '''simple docstring''' __A : Union[str, Any] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __lowercase ( snake_case_ : int = 5000 ) ->int: '''simple docstring''' __A : str = [(i * (3 * i - 1)) // 2 for i in range(1 ,snake_case_ )] for i, pentagonal_i in enumerate(snake_case_ ): for j in range(snake_case_ ,len(snake_case_ ) ): __A : int = pentagonal_nums[j] __A : str = pentagonal_i + pentagonal_j __A : int = pentagonal_j - pentagonal_i if is_pentagonal(snake_case_ ) and is_pentagonal(snake_case_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
291
"""simple docstring""" from math import factorial def __lowercase ( snake_case_ : int ,snake_case_ : int ) ->int: '''simple docstring''' if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", f'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", f'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
291
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __SCREAMING_SNAKE_CASE : Optional[Any] = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any]=None ) -> Tuple: """simple docstring""" if subparsers is not None: _UpperCAmelCase : List[Any] = subparsers.add_parser("tpu-config" , description=_description ) else: _UpperCAmelCase : Any = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments _UpperCAmelCase : Optional[Any] = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_UpperCAmelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_UpperCAmelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) _UpperCAmelCase : Tuple = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_UpperCAmelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def UpperCamelCase_ ( _UpperCAmelCase : int ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): _UpperCAmelCase : Optional[Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: _UpperCAmelCase : Tuple = defaults.commands if not args.tpu_name: _UpperCAmelCase : Union[str, Any] = defaults.tpu_name if not args.tpu_zone: _UpperCAmelCase : List[str] = defaults.tpu_zone if args.accelerate_version == "dev": _UpperCAmelCase : int = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": _UpperCAmelCase : List[Any] = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , _UpperCAmelCase ): _UpperCAmelCase : int = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: _UpperCAmelCase : Tuple = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _UpperCAmelCase ): _UpperCAmelCase : Tuple = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _UpperCAmelCase : Any = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command _UpperCAmelCase : int = "; ".join(_UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _UpperCAmelCase : Tuple = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {' '.join(_UpperCAmelCase )}""" ) return subprocess.run(_UpperCAmelCase ) print("Successfully setup pod." ) def UpperCamelCase_ ( ) -> Any: """simple docstring""" _UpperCAmelCase : Any = tpu_command_parser() _UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(_UpperCAmelCase )
31
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : List[str] = '''▁''' UpperCAmelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[int] = BertGenerationTokenizer UpperCamelCase : str = False UpperCamelCase : Tuple = True def UpperCAmelCase_ ( self ): super().setUp() __A : Tuple = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : str = '<s>' __A : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCAmelCase_ ( self ): __A : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(_A ) , 1002 ) def UpperCAmelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCAmelCase_ ( self ): __A : str = BertGenerationTokenizer(_A , keep_accents=_A ) __A : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) __A : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __A : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __A : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase_ ( self ): return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def UpperCAmelCase_ ( self ): __A : List[Any] = 'Hello World!' __A : Optional[Any] = [18536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCAmelCase_ ( self ): __A : Dict = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) __A : int = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCAmelCase_ ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __A : Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] __A : List[Any] = ' '.join(_A ) __A : Union[str, Any] = self.big_tokenizer.encode_plus(_A , return_tensors='pt' , return_token_type_ids=_A ) __A : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_A ) __A : int = BertGenerationConfig() __A : List[str] = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCAmelCase_ ( self ): # fmt: off __A : str = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
280
0
from math import sqrt def __UpperCamelCase ( _A : Optional[int] ) ->Tuple: """simple docstring""" assert isinstance(_A , _A ) and ( number >= 0 ), "'number' must been an int and positive" lowerCamelCase_ =True # 0 and 1 are none primes. if number <= 1: lowerCamelCase_ =False for divisor in range(2 , int(round(sqrt(_A ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCamelCase_ =False break # precondition assert isinstance(_A , _A ), "'status' must been from type bool" return status def __UpperCamelCase ( _A : Dict ) ->int: """simple docstring""" assert isinstance(_A , _A ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCamelCase_ =list(range(2 , n + 1 ) ) lowerCamelCase_ =[] # this list will be returns. # actual sieve of erathostenes for i in range(len(_A ) ): for j in range(i + 1 , len(_A ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCamelCase_ =0 # filters actual prime numbers. lowerCamelCase_ =[x for x in begin_list if x != 0] # precondition assert isinstance(_A , _A ), "'ans' must been from type list" return ans def __UpperCamelCase ( _A : Dict ) ->Tuple: """simple docstring""" assert isinstance(_A , _A ) and (n > 2), "'N' must been an int and > 2" lowerCamelCase_ =[] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_A ): ans.append(_A ) # precondition assert isinstance(_A , _A ), "'ans' must been from type list" return ans def __UpperCamelCase ( _A : List[Any] ) ->Optional[Any]: """simple docstring""" assert isinstance(_A , _A ) and number >= 0, "'number' must been an int and >= 0" lowerCamelCase_ =[] # this list will be returns of the function. # potential prime number factors. lowerCamelCase_ =2 lowerCamelCase_ =number if number == 0 or number == 1: ans.append(_A ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_A ): while quotient != 1: if is_prime(_A ) and (quotient % factor == 0): ans.append(_A ) quotient /= factor else: factor += 1 else: ans.append(_A ) # precondition assert isinstance(_A , _A ), "'ans' must been from type list" return ans def __UpperCamelCase ( _A : Optional[int] ) ->int: """simple docstring""" assert isinstance(_A , _A ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase_ =0 # prime factorization of 'number' lowerCamelCase_ =prime_factorization(_A ) lowerCamelCase_ =max(_A ) # precondition assert isinstance(_A , _A ), "'ans' must been from type int" return ans def __UpperCamelCase ( _A : Dict ) ->int: """simple docstring""" assert isinstance(_A , _A ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase_ =0 # prime factorization of 'number' lowerCamelCase_ =prime_factorization(_A ) lowerCamelCase_ =min(_A ) # precondition assert isinstance(_A , _A ), "'ans' must been from type int" return ans def __UpperCamelCase ( _A : str ) ->Tuple: """simple docstring""" assert isinstance(_A , _A ), "'number' must been an int" assert isinstance(number % 2 == 0 , _A ), "compare bust been from type bool" return number % 2 == 0 def __UpperCamelCase ( _A : List[Any] ) ->Any: """simple docstring""" assert isinstance(_A , _A ), "'number' must been an int" assert isinstance(number % 2 != 0 , _A ), "compare bust been from type bool" return number % 2 != 0 def __UpperCamelCase ( _A : List[str] ) ->Optional[Any]: """simple docstring""" assert ( isinstance(_A , _A ) and (number > 2) and is_even(_A ) ), "'number' must been an int, even and > 2" lowerCamelCase_ =[] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCamelCase_ =get_prime_numbers(_A ) lowerCamelCase_ =len(_A ) # run variable for while-loops. lowerCamelCase_ =0 lowerCamelCase_ =None # exit variable. for break up the loops lowerCamelCase_ =True while i < len_pn and loop: lowerCamelCase_ =i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCamelCase_ =False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_A , _A ) and (len(_A ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] ) ->List[Any]: """simple docstring""" assert ( isinstance(_A , _A ) and isinstance(_A , _A ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCamelCase_ =0 while numbera != 0: lowerCamelCase_ =numbera % numbera lowerCamelCase_ =numbera lowerCamelCase_ =rest # precondition assert isinstance(_A , _A ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __UpperCamelCase ( _A : int , _A : Optional[Any] ) ->Any: """simple docstring""" assert ( isinstance(_A , _A ) and isinstance(_A , _A ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCamelCase_ =1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCamelCase_ =prime_factorization(_A ) lowerCamelCase_ =prime_factorization(_A ) elif numbera == 1 or numbera == 1: lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =max(_A , _A ) lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =[] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCamelCase_ =prime_fac_a.count(_A ) lowerCamelCase_ =prime_fac_a.count(_A ) for _ in range(max(_A , _A ) ): ans *= n else: lowerCamelCase_ =prime_fac_a.count(_A ) for _ in range(_A ): ans *= n done.append(_A ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCamelCase_ =prime_fac_a.count(_A ) for _ in range(_A ): ans *= n done.append(_A ) # precondition assert isinstance(_A , _A ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __UpperCamelCase ( _A : int ) ->List[str]: """simple docstring""" assert isinstance(_A , _A ) and (n >= 0), "'number' must been a positive int" lowerCamelCase_ =0 lowerCamelCase_ =2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_A ): ans += 1 # precondition assert isinstance(_A , _A ) and is_prime( _A ), "'ans' must been a prime number and from type int" return ans def __UpperCamelCase ( _A : str , _A : Union[str, Any] ) ->Tuple: """simple docstring""" assert ( is_prime(_A ) and is_prime(_A ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCamelCase_ =p_number_a + 1 # jump to the next number lowerCamelCase_ =[] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_A ): number += 1 while number < p_number_a: ans.append(_A ) number += 1 # fetch the next prime number. while not is_prime(_A ): number += 1 # precondition assert ( isinstance(_A , _A ) and ans[0] != p_number_a and ans[len(_A ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __UpperCamelCase ( _A : Tuple ) ->int: """simple docstring""" assert isinstance(_A , _A ) and (n >= 1), "'n' must been int and >= 1" lowerCamelCase_ =[] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_A ) # precondition assert ans[0] == 1 and ans[len(_A ) - 1] == n, "Error in function getDivisiors(...)" return ans def __UpperCamelCase ( _A : Optional[Any] ) ->Optional[int]: """simple docstring""" assert isinstance(_A , _A ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCamelCase_ =get_divisors(_A ) # precondition assert ( isinstance(_A , _A ) and (divisors[0] == 1) and (divisors[len(_A ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __UpperCamelCase ( _A : Dict , _A : Optional[Any] ) ->Union[str, Any]: """simple docstring""" assert ( isinstance(_A , _A ) and isinstance(_A , _A ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCamelCase_ =gcd(abs(_A ) , abs(_A ) ) # precondition assert ( isinstance(_A , _A ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __UpperCamelCase ( _A : Any ) ->str: """simple docstring""" assert isinstance(_A , _A ) and (n >= 0), "'n' must been a int and >= 0" lowerCamelCase_ =1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def __UpperCamelCase ( _A : List[str] ) ->Optional[int]: """simple docstring""" assert isinstance(_A , _A ) and (n >= 0), "'n' must been an int and >= 0" lowerCamelCase_ =0 lowerCamelCase_ =1 lowerCamelCase_ =1 # this will be return for _ in range(n - 1 ): lowerCamelCase_ =ans ans += fiba lowerCamelCase_ =tmp return ans
359
import unittest from knapsack import greedy_knapsack as kp class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =[10, 20, 30, 40, 50, 60] lowerCamelCase_ =[2, 4, 6, 8, 10, 12] lowerCamelCase_ =100 self.assertEqual(kp.calc_profit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 210 ) def _snake_case ( self )-> Any: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """max_weight must greater than zero.""" ) def _snake_case ( self )-> Dict: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """Weight can not be negative.""" ) def _snake_case ( self )-> Dict: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """Profit can not be negative.""" ) def _snake_case ( self )-> Tuple: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """max_weight must greater than zero.""" ) def _snake_case ( self )-> Any: self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
49
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = TaConfig.from_json_file(A_ ) print(f'''Building PyTorch model from configuration: {config}''' ) __magic_name__ = TaForConditionalGeneration(A_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(A_, A_, A_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A_ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
88
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCAmelCase : int = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __lowerCAmelCase : Any = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('utf-8').split() ) __lowerCAmelCase : str = '|'.join(sys.argv[1:]) __lowerCAmelCase : Tuple = re.compile(RF'''^({joined_dirs}).*?\.py$''') __lowerCAmelCase : Union[str, Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
88
1
def __UpperCamelCase ( lowercase__ : list ) -> list: '''simple docstring''' lowerCAmelCase_ : Any = len(lowercase__ ) for i in range(1 , lowercase__ ): lowerCAmelCase_ : List[str] = collection[i] lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Dict = i - 1 while low <= high: lowerCAmelCase_ : Optional[Any] = (low + high) // 2 if val < collection[mid]: lowerCAmelCase_ : Optional[int] = mid - 1 else: lowerCAmelCase_ : List[Any] = mid + 1 for j in range(lowercase__ , lowercase__ , -1 ): lowerCAmelCase_ : List[Any] = collection[j - 1] lowerCAmelCase_ : List[Any] = val return collection if __name__ == "__main__": __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
28
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : str = 1.5 lowerCAmelCase__ : Any = int(factor * num_class_images ) lowerCAmelCase__ : Optional[Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_lowerCamelCase , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=_lowerCamelCase ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: lowerCAmelCase__ : Dict = client.query(text=_lowerCamelCase ) if len(_lowerCamelCase ) >= factor * num_class_images or num_images > 1e4: break else: lowerCAmelCase__ : List[Any] = int(factor * num_images ) lowerCAmelCase__ : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_lowerCamelCase , aesthetic_weight=0.1 , ) lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : int = tqdm(desc='''downloading real regularization images''' , total=_lowerCamelCase ) with open(f'{class_data_dir}/caption.txt' , '''w''' ) as fa, open(f'{class_data_dir}/urls.txt' , '''w''' ) as fa, open( f'{class_data_dir}/images.txt' , '''w''' ) as fa: while total < num_class_images: lowerCAmelCase__ : List[str] = class_images[count] count += 1 try: lowerCAmelCase__ : Union[str, Any] = requests.get(images['''url'''] ) if img.status_code == 2_00: lowerCAmelCase__ : List[str] = Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'{class_data_dir}/images/{total}.jpg' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser('''''' , add_help=_lowerCamelCase ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=_lowerCamelCase , type=_lowerCamelCase ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=_lowerCamelCase , type=_lowerCamelCase ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=_lowerCamelCase ) return parser.parse_args() if __name__ == "__main__": __UpperCamelCase : Any = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
106
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class snake_case_ ( unittest.TestCase ): def __init__( self : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=56 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : int=True , lowercase_ : Any=99 , lowercase_ : int=32 , lowercase_ : str=2 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=7 , lowercase_ : Dict="gelu_new" , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : Optional[Any]=16 , lowercase_ : List[Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : int=4 , lowercase_ : Tuple="block_sparse" , lowercase_ : Dict=True , lowercase_ : Optional[int]=False , lowercase_ : Dict=2 , lowercase_ : int=3 , ) -> Union[str, Any]: lowercase__ : Dict = parent lowercase__ : Dict = batch_size lowercase__ : Tuple = seq_length lowercase__ : Dict = is_training lowercase__ : Dict = use_attention_mask lowercase__ : Tuple = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : Any = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : int = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : Dict = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : List[str] = num_choices lowercase__ : str = rescale_embeddings lowercase__ : Optional[Any] = attention_type lowercase__ : Optional[int] = use_bias lowercase__ : Optional[int] = block_size lowercase__ : str = num_random_blocks def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None if self.use_token_type_ids: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : int = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Union[str, Any] ) -> int: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __A : List[str] = False __A : Any = False def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Optional[int] ) -> Dict: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : List[str] ) -> Any: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Tuple ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: super().test_hidden_states_output() @slow def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for model_class_name in self.all_model_classes: lowercase__ : Optional[Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[int]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : str ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : Tuple , lowercase_ : int=None , **lowercase_ : Dict ): return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ ) with self.subTest("JIT Enabled" ): lowercase__ : int = model_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowercase__ : Any = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCamelCase ( self : List[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[Any]=1E-5 , lowercase_ : Any="outputs" , lowercase_ : List[str]=None ) -> List[Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
87
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : int = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCamelCase : Dict = F'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : Tuple = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCamelCase : Tuple = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCamelCase : Optional[Any] = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
74
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __UpperCamelCase : Union[str, Any] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Dict = _TestCommandArgs(dataset=A_ , all_configs=A_ , save_infos=A_ ) lowerCAmelCase__ : Optional[int] = TestCommand(*A_ ) test_command.run() lowerCAmelCase__ : int = os.path.join(A_ , '''README.md''' ) assert os.path.exists(A_ ) lowerCAmelCase__ : List[Any] = DatasetInfosDict.from_directory(A_ ) lowerCAmelCase__ : List[str] = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2_35_15_63, '''num_examples''': 1_00_00, }, { '''name''': '''validation''', '''num_bytes''': 23_84_18, '''num_examples''': 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = getattr(dataset_infos['''default'''] , A_ ), getattr(expected_dataset_infos['''default'''] , A_ ) if key == "num_bytes": assert is_apercent_close(A_ , A_ ) elif key == "splits": assert list(A_ ) == list(A_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
74
1
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCAmelCase__ ( ): '''simple docstring''' _a : int = 9 _a : List[str] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] _a : Optional[Any] = kruskal(UpperCamelCase__ , UpperCamelCase__ ) _a : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(UpperCamelCase__ ) == sorted(UpperCamelCase__ )
294
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=-1 ) -> Tuple: # in NER datasets, the last column is usually reserved for NER label _a : Optional[int] = label_idx def _lowercase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Any = mode.value _a : Optional[int] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : int = 1 _a : int = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: _a : str = [] _a : str = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 _a : List[str] = [] _a : str = [] else: _a : List[Any] = line.split(""" """ ) words.append(splits[0] ) if len(UpperCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) return examples def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Union[str, Any]: _a : List[str] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _a : int = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : List[Any] = f.read().splitlines() if "O" not in labels: _a : Union[str, Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] ) -> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : Optional[int] = f.read().splitlines() if "O" not in labels: _a : Optional[Any] = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : List[Any] = mode.value _a : Union[str, Any] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : List[str] = 1 _a : Optional[Any] = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCAmelCase__ ): _a : List[Any] = [] _a : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 return examples def _lowercase ( self : Tuple , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Dict: _a : Optional[Any] = 0 for sentence in parse_incr(UpperCAmelCase__ ): _a : List[str] = preds_list[example_id] _a : str = """""" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(UpperCAmelCase__ ) example_id += 1 def _lowercase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
294
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Union[str, Any] = BioGptTokenizer lowerCAmelCase : List[str] = False def __lowercase ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _a : List[str] = dict(zip(_UpperCAmelCase ,range(len(_UpperCAmelCase ) ) ) ) _a : int = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] _a : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) with open(self.merges_file ,'w' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def __lowercase ( self : Tuple ,_UpperCAmelCase : List[str] ): _a : str = 'lower newer' _a : Tuple = 'lower newer' return input_text, output_text def __lowercase ( self : List[str] ): _a : List[str] = BioGptTokenizer(self.vocab_file ,self.merges_file ) _a : Any = 'lower' _a : List[Any] = ['low', 'er</w>'] _a : List[str] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict = tokens + ['<unk>'] _a : Any = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,_UpperCAmelCase ) @slow def __lowercase ( self : Union[str, Any] ): _a : List[Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _a : List[Any] = tokenizer.encode('sequence builders' ,add_special_tokens=_UpperCAmelCase ) _a : Union[str, Any] = tokenizer.encode('multi-sequence build' ,add_special_tokens=_UpperCAmelCase ) _a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _a : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ,_UpperCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
107
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) set_seed(770) __lowerCAmelCase = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } __lowerCAmelCase = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } __lowerCAmelCase = os.path.dirname(os.path.abspath(__file__)) __lowerCAmelCase = os.path.join(os.path.expanduser('''~'''), '''.cache''') __lowerCAmelCase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]: _a : int = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase_ , REMOTE_MODEL_PATHS[key]['file_name'] ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) hf_hub_download(repo_id=lowerCAmelCase_ , filename=lowerCAmelCase_ , local_dir=lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_="text" ) -> List[str]: if model_type == "text": _a : List[str] = BarkSemanticModel _a : Optional[Any] = BarkSemanticConfig _a : Any = BarkSemanticGenerationConfig elif model_type == "coarse": _a : Tuple = BarkCoarseModel _a : str = BarkCoarseConfig _a : str = BarkCoarseGenerationConfig elif model_type == "fine": _a : List[str] = BarkFineModel _a : Optional[Any] = BarkFineConfig _a : str = BarkFineGenerationConfig else: raise NotImplementedError() _a : Dict = f"""{model_type}_small""" if use_small else model_type _a : Union[str, Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase_ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['repo_id'] , model_info['file_name'] ) _a : int = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) # this is a hack _a : List[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: _a : Dict = model_args['vocab_size'] _a : Dict = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _a : List[Any] = model_args.pop('n_head' ) _a : Any = model_args.pop('n_embd' ) _a : List[Any] = model_args.pop('n_layer' ) _a : Optional[int] = ConfigClass(**checkpoint['model_args'] ) _a : List[str] = ModelClass(config=lowerCAmelCase_ ) _a : Tuple = GenerationConfigClass() _a : Optional[Any] = model_generation_config _a : Optional[Any] = checkpoint['model'] # fixup checkpoint _a : int = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase_ ): # replace part of the key with corresponding layer name in HF implementation _a : str = k[len(lowerCAmelCase_ ) :] for old_layer_name in new_layer_name_dict: _a : List[Any] = new_k.replace(lowerCAmelCase_ , new_layer_name_dict[old_layer_name] ) _a : List[Any] = state_dict.pop(lowerCAmelCase_ ) _a : List[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) _a : Tuple = {k for k in extra_keys if not k.endswith('.attn.bias' )} _a : Tuple = set(model.state_dict().keys() ) - set(state_dict.keys() ) _a : Optional[Any] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCAmelCase_ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(lowerCAmelCase_ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) _a : Dict = model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) _a : Tuple = checkpoint['best_val_loss'].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowerCAmelCase_ , 3 )} loss""" ) model.eval() model.to(lowerCAmelCase_ ) del checkpoint, state_dict return model def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_="text" ) -> List[Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _a : Optional[int] = 'cpu' # do conversion on cpu _a : Tuple = _get_ckpt_path(lowerCAmelCase_ , use_small=lowerCAmelCase_ ) _a : List[Any] = _load_model(lowerCAmelCase_ , lowerCAmelCase_ , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) # load bark initial model _a : Any = _bark_load_model(lowerCAmelCase_ , 'cpu' , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) if model_type == "text": _a : int = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model _a : Any = 5 _a : List[str] = 10 if model_type in ["text", "coarse"]: _a : Dict = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _a : Dict = bark_model(lowerCAmelCase_ )[0] _a : Tuple = model(lowerCAmelCase_ ) # take last logits _a : Optional[int] = output_new_model_total.logits[:, [-1], :] else: _a : List[str] = 3 _a : List[Any] = 8 _a : Tuple = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _a : Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = bark_model(lowerCAmelCase_ , lowerCAmelCase_ ) _a : List[str] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> Any: _a : Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : Any = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : List[Any] = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : List[str] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) _a : str = BarkSemanticModel.from_pretrained(lowerCAmelCase_ ) _a : Dict = BarkCoarseModel.from_pretrained(lowerCAmelCase_ ) _a : int = BarkFineModel.from_pretrained(lowerCAmelCase_ ) _a : List[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) _a : Any = BarkConfig.from_sub_model_configs( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a : List[str] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _a : Optional[Any] = BarkModel(lowerCAmelCase_ ) _a : List[str] = semantic _a : Union[str, Any] = coarseAcoustic _a : Optional[int] = fineAcoustic _a : Optional[Any] = codec _a : List[Any] = bark_generation_config Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) bark.save_pretrained(lowerCAmelCase_ , repo_id=lowerCAmelCase_ , push_to_hub=lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') __lowerCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
107
1
'''simple docstring''' import torch from torch import nn class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=1 , snake_case_ : Tuple=False ): super().__init__() snake_case__ : List[str] = n_token snake_case__ : Optional[int] = d_embed snake_case__ : Any = d_proj snake_case__ : Any = cutoffs + [n_token] snake_case__ : Optional[int] = [0] + self.cutoffs snake_case__ : Union[str, Any] = div_val snake_case__ : Optional[Any] = self.cutoffs[0] snake_case__ : int = len(self.cutoffs ) - 1 snake_case__ : int = self.shortlist_size + self.n_clusters if self.n_clusters > 0: snake_case__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) snake_case__ : List[str] = nn.Parameter(torch.zeros(self.n_clusters ) ) snake_case__ : Any = nn.ModuleList() snake_case__ : List[str] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(snake_case_ , snake_case_ ) ) ) else: self.out_projs.append(snake_case_ ) self.out_layers.append(nn.Linear(snake_case_ , snake_case_ ) ) else: for i in range(len(self.cutoffs ) ): snake_case__ , snake_case__ : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case__ : List[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(snake_case_ , snake_case_ ) ) ) self.out_layers.append(nn.Linear(snake_case_ , r_idx - l_idx ) ) snake_case__ : int = keep_order def lowerCamelCase ( self : Dict , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : List[str] ): if proj is None: snake_case__ : List[str] = nn.functional.linear(snake_case_ , snake_case_ , bias=snake_case_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: snake_case__ : int = nn.functional.linear(snake_case_ , proj.t().contiguous() ) snake_case__ : Optional[Any] = nn.functional.linear(snake_case_ , snake_case_ , bias=snake_case_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCamelCase ( self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Tuple=None , snake_case_ : str=False ): if labels is not None: # Shift so that tokens < n predict n snake_case__ : Dict = hidden[..., :-1, :].contiguous() snake_case__ : Any = labels[..., 1:].contiguous() snake_case__ : Tuple = hidden.view(-1 , hidden.size(-1 ) ) snake_case__ : Optional[Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: snake_case__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: snake_case__ : str = self._compute_logit(snake_case_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: snake_case__ : Dict = labels != -100 snake_case__ : Any = torch.zeros_like(snake_case_ , dtype=hidden.dtype , device=hidden.device ) snake_case__ : int = ( -nn.functional.log_softmax(snake_case_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: snake_case__ : str = nn.functional.log_softmax(snake_case_ , dim=-1 ) else: # construct weights and biases snake_case__ , snake_case__ : Optional[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: snake_case__ , snake_case__ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case__ : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] snake_case__ : int = self.out_layers[0].bias[l_idx:r_idx] else: snake_case__ : Any = self.out_layers[i].weight snake_case__ : Optional[int] = self.out_layers[i].bias if i == 0: snake_case__ : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) snake_case__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(snake_case_ ) biases.append(snake_case_ ) snake_case__ , snake_case__ , snake_case__ : Any = weights[0], biases[0], self.out_projs[0] snake_case__ : Dict = self._compute_logit(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : List[str] = nn.functional.log_softmax(snake_case_ , dim=1 ) if labels is None: snake_case__ : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: snake_case__ : Optional[int] = torch.zeros_like(snake_case_ , dtype=hidden.dtype , device=hidden.device ) snake_case__ : List[str] = 0 snake_case__ : Dict = [0] + self.cutoffs for i in range(len(snake_case_ ) - 1 ): snake_case__ , snake_case__ : int = cutoff_values[i], cutoff_values[i + 1] if labels is not None: snake_case__ : str = (labels >= l_idx) & (labels < r_idx) snake_case__ : Union[str, Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue snake_case__ : List[Any] = labels.index_select(0 , snake_case_ ) - l_idx snake_case__ : Dict = head_logprob.index_select(0 , snake_case_ ) snake_case__ : List[str] = hidden.index_select(0 , snake_case_ ) else: snake_case__ : List[str] = hidden if i == 0: if labels is not None: snake_case__ : str = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: snake_case__ : Tuple = head_logprob[:, : self.cutoffs[0]] else: snake_case__ , snake_case__ , snake_case__ : Dict = weights[i], biases[i], self.out_projs[i] snake_case__ : Optional[Any] = self._compute_logit(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = nn.functional.log_softmax(snake_case_ , dim=1 ) snake_case__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: snake_case__ : str = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: snake_case__ : List[str] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i snake_case__ : List[Any] = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , snake_case_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Dict ): if self.n_clusters == 0: snake_case__ : int = self._compute_logit(snake_case_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(snake_case_ , dim=-1 ) else: # construct weights and biases snake_case__ , snake_case__ : Union[str, Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: snake_case__ , snake_case__ : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case__ : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] snake_case__ : int = self.out_layers[0].bias[l_idx:r_idx] else: snake_case__ : List[Any] = self.out_layers[i].weight snake_case__ : List[str] = self.out_layers[i].bias if i == 0: snake_case__ : Union[str, Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) snake_case__ : Tuple = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(snake_case_ ) biases.append(snake_case_ ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = weights[0], biases[0], self.out_projs[0] snake_case__ : List[str] = self._compute_logit(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) snake_case__ : Optional[Any] = nn.functional.log_softmax(snake_case_ , dim=1 ) snake_case__ : Tuple = [0] + self.cutoffs for i in range(len(snake_case_ ) - 1 ): snake_case__ , snake_case__ : Optional[int] = cutoff_values[i], cutoff_values[i + 1] if i == 0: snake_case__ : int = head_logprob[:, : self.cutoffs[0]] else: snake_case__ , snake_case__ , snake_case__ : Optional[int] = weights[i], biases[i], self.out_projs[i] snake_case__ : str = self._compute_logit(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Optional[int] = nn.functional.log_softmax(snake_case_ , dim=1 ) snake_case__ : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i snake_case__ : int = logprob_i return out
35
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : Tuple , snake_case_ : List[str]=3 , snake_case_ : Tuple=32 , snake_case_ : List[Any]=3 , snake_case_ : List[str]=10 , snake_case_ : List[str]=[10, 20, 30, 40] , snake_case_ : Tuple=[1, 1, 2, 1] , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : int="relu" , snake_case_ : List[Any]=3 , snake_case_ : str=None , ): snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : int = image_size snake_case__ : List[Any] = num_channels snake_case__ : Optional[Any] = embeddings_size snake_case__ : Optional[int] = hidden_sizes snake_case__ : Tuple = depths snake_case__ : Any = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[int] = num_labels snake_case__ : int = scope snake_case__ : Tuple = len(snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : int ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[int] ): snake_case__ : Optional[Any] = TFResNetModel(config=snake_case_ ) snake_case__ : int = model(snake_case_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] ): snake_case__ : str = self.num_labels snake_case__ : Optional[int] = TFResNetForImageClassification(snake_case_ ) snake_case__ : Tuple = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = TFResNetModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCamelCase ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase ( self : int ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase ( self : List[Any] ): pass def lowerCamelCase ( self : List[Any] ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(snake_case_ ) snake_case__ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : List[str] ): def check_hidden_states_output(snake_case_ : Any , snake_case_ : Any , snake_case_ : List[str] ): snake_case__ : List[Any] = model_class(snake_case_ ) snake_case__ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Dict = layer_type snake_case__ : Optional[int] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFResNetModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __snake_case( ) -> Optional[int]: snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : List[Any] = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : List[str] = image_processor(images=snake_case_ , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[Any] = model(**snake_case_ ) # verify the logits snake_case__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : List[str] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case_ , atol=1E-4 ) )
35
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase : int ): _A : Optional[int] = [True] * limit _A : Any = False _A : Optional[int] = False _A : Tuple = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): _A : Dict = i * 2 while index < limit: _A : List[Any] = False _A : Optional[int] = index + i _A : Optional[int] = [2] for i in range(3 ,lowerCamelCase ,2 ): if is_prime[i]: primes.append(lowerCamelCase ) return primes def lowerCAmelCase__ ( lowerCamelCase : int = 1000000 ): _A : List[str] = prime_sieve(lowerCamelCase ) _A : Any = 0 _A : str = 0 for i in range(len(lowerCamelCase ) ): for j in range(i + length ,len(lowerCamelCase ) ): _A : List[str] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _A : Tuple = j - i _A : Any = sol return largest if __name__ == "__main__": print(f"""{solution() = }""")
370
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : int = 10 ): if not isinstance(lowerCamelCase ,lowerCamelCase ) or n < 0: raise ValueError('Invalid input' ) _A : Optional[Any] = 10**n _A : List[str] = 28433 * (pow(2 ,7830457 ,lowerCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
227
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml UpperCAmelCase : Optional[int] = NewType("""DataClass""", Any) UpperCAmelCase : int = NewType("""DataClassType""", Any) def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" a__ : str ={str(SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda SCREAMING_SNAKE_CASE : str_to_choice.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _A ( *, SCREAMING_SNAKE_CASE : Union[str, List[str]] = None , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : Any = dataclasses.MISSING , SCREAMING_SNAKE_CASE : Callable[[], Any] = dataclasses.MISSING , SCREAMING_SNAKE_CASE : dict = None , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls a__ : Tuple ={} if aliases is not None: a__ : List[Any] =aliases if help is not None: a__ : Optional[Any] =help return dataclasses.field(metadata=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , default_factory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Iterable[DataClassType] def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' if "formatter_class" not in kwargs: a__ : str =ArgumentDefaultsHelpFormatter super().__init__(**lowerCAmelCase__ ) if dataclasses.is_dataclass(lowerCAmelCase__ ): a__ : Tuple =[dataclass_types] a__ : Dict =list(lowerCAmelCase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCAmelCase__ ) @staticmethod def _lowercase ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : List[Any] =F'''--{field.name}''' a__ : Optional[int] =field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCAmelCase__ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) a__ : int =kwargs.pop("aliases" , [] ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Tuple =[aliases] a__ : Optional[Any] =getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(lowerCAmelCase__ , "UnionType" ) and isinstance(lowerCAmelCase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCAmelCase__ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F''' Problem encountered in field \'{field.name}\'.''' ) if type(lowerCAmelCase__ ) not in field.type.__args__: # filter `str` in Union a__ : Optional[Any] =field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] a__ : int =getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) a__ : Any =( field.type.__args__[0] if isinstance(lowerCAmelCase__ , field.type.__args__[1] ) else field.type.__args__[1] ) a__ : int =getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) a__ : Dict ={} if origin_type is Literal or (isinstance(field.type , lowerCAmelCase__ ) and issubclass(field.type , lowerCAmelCase__ )): if origin_type is Literal: a__ : Tuple =field.type.__args__ else: a__ : Tuple =[x.value for x in field.type] a__ : int =make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: a__ : Optional[Any] =field.default else: a__ : Optional[int] =True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument a__ : List[str] =copy(lowerCAmelCase__ ) # Hack because type=bool in argparse does not behave as we want. a__ : Optional[int] =string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. a__ : Optional[int] =False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way a__ : Tuple =default # This tells argparse we accept 0 or 1 value after --field_name a__ : str ="?" # This is the value that will get picked if we do --field_name (without value) a__ : Any =True elif isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Optional[Any] =field.type.__args__[0] a__ : Union[str, Any] ="+" if field.default_factory is not dataclasses.MISSING: a__ : str =field.default_factory() elif field.default is dataclasses.MISSING: a__ : Any =True else: a__ : str =field.type if field.default is not dataclasses.MISSING: a__ : Union[str, Any] =field.default elif field.default_factory is not dataclasses.MISSING: a__ : str =field.default_factory() else: a__ : Optional[Any] =True parser.add_argument(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): a__ : Optional[int] =False parser.add_argument(F'''--no_{field.name}''' , action="store_false" , dest=field.name , **lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' if hasattr(lowerCAmelCase__ , "_argument_group_name" ): a__ : Union[str, Any] =self.add_argument_group(dtype._argument_group_name ) else: a__ : int =self try: a__ : Dict[str, type] =get_type_hints(lowerCAmelCase__ ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(lowerCAmelCase__ ): a__ : Union[str, Any] =".".join(map(lowerCAmelCase__ , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(lowerCAmelCase__ ): if not field.init: continue a__ : Any =type_hints[field.name] self._parse_dataclass_field(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Tuple[DataClass, ...]: '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): a__ : str =[] if args_filename: args_files.append(Path(lowerCAmelCase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values a__ : List[Any] =ArgumentParser() args_file_parser.add_argument(lowerCAmelCase__ , type=lowerCAmelCase__ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) a__ , a__ : Union[str, Any] =args_file_parser.parse_known_args(args=lowerCAmelCase__ ) a__ : Optional[Any] =vars(lowerCAmelCase__ ).get(args_file_flag.lstrip("-" ) , lowerCAmelCase__ ) if cmd_args_file_paths: args_files.extend([Path(lowerCAmelCase__ ) for p in cmd_args_file_paths] ) a__ : int =[] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last a__ : Dict =file_args + args if args is not None else file_args + sys.argv[1:] a__ , a__ : str =self.parse_known_args(args=lowerCAmelCase__ ) a__ : int =[] for dtype in self.dataclass_types: a__ : Tuple ={f.name for f in dataclasses.fields(lowerCAmelCase__ ) if f.init} a__ : Any ={k: v for k, v in vars(lowerCAmelCase__ ).items() if k in keys} for k in keys: delattr(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[Any] =dtype(**lowerCAmelCase__ ) outputs.append(lowerCAmelCase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCAmelCase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Tuple[DataClass, ...]: '''simple docstring''' a__ : Optional[Any] =set(args.keys() ) a__ : str =[] for dtype in self.dataclass_types: a__ : List[str] ={f.name for f in dataclasses.fields(lowerCAmelCase__ ) if f.init} a__ : Tuple ={k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) a__ : Any =dtype(**lowerCAmelCase__ ) outputs.append(lowerCAmelCase__ ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(lowerCAmelCase__ )}''' ) return tuple(lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Tuple[DataClass, ...]: '''simple docstring''' with open(Path(lowerCAmelCase__ ) , encoding="utf-8" ) as open_json_file: a__ : Tuple =json.loads(open_json_file.read() ) a__ : Dict =self.parse_dict(lowerCAmelCase__ , allow_extra_keys=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Tuple[DataClass, ...]: '''simple docstring''' a__ : List[str] =self.parse_dict(yaml.safe_load(Path(lowerCAmelCase__ ).read_text() ) , allow_extra_keys=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
95
from __future__ import annotations import math lowerCamelCase : Optional[int] = '2020.9.26' lowerCamelCase : int = 'xcodz-dot, cclaus, dhruvmanila' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float]: if not all(isinstance(lowercase ,(float, int) ) for val in locals().values() ): snake_case : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(lowercase ) snake_case : List[str] = ((x * distance) / (z + distance)) * scale snake_case : Dict = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float, float]: if not isinstance(lowercase ,lowercase ): raise TypeError("""Axis must be a str""" ) snake_case : Tuple = locals() del input_variables["axis"] if not all(isinstance(lowercase ,(float, int) ) for val in input_variables.values() ): snake_case : int = ( """Input values except axis must either be float or int: """ f"""{list(input_variables.values() )}""" ) raise TypeError(lowercase ) snake_case : int = (angle % 360) / 450 * 180 / math.pi if axis == "z": snake_case : str = x * math.cos(lowercase ) - y * math.sin(lowercase ) snake_case : List[Any] = y * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = z elif axis == "x": snake_case : Optional[Any] = y * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Optional[int] = z * math.cos(lowercase ) + y * math.sin(lowercase ) snake_case : Optional[int] = x elif axis == "y": snake_case : List[str] = x * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Tuple = z * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
124
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase_ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ) -> Dict: '''simple docstring''' require_version(deps[pkg] , UpperCamelCase__ )
295
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: for attribute in key.split('''.''' ): __lowercase : Optional[int] = getattr(_snake_case , _snake_case ) if weight_type is not None: __lowercase : Dict = getattr(_snake_case , _snake_case ).shape else: __lowercase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowercase : int = value elif weight_type == "weight_g": __lowercase : Optional[Any] = value elif weight_type == "weight_v": __lowercase : str = value elif weight_type == "bias": __lowercase : Union[str, Any] = value else: __lowercase : List[str] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: __lowercase : List[Any] = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : Optional[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Any = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __lowercase : int = True else: for key, mapped_key in MAPPING.items(): __lowercase : Dict = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): __lowercase : Any = True if "*" in mapped_key: __lowercase : Union[str, Any] = name.split(_snake_case )[0].split('''.''' )[-2] __lowercase : Any = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __lowercase : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __lowercase : Optional[int] = '''weight_v''' elif "weight" in name: __lowercase : Tuple = '''weight''' elif "bias" in name: __lowercase : Union[str, Any] = '''bias''' else: __lowercase : List[Any] = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: __lowercase : str = full_name.split('''conv_layers.''' )[-1] __lowercase : List[Any] = name.split('''.''' ) __lowercase : Tuple = int(items[0] ) __lowercase : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowercase : str = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowercase : Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __lowercase : Optional[int] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowercase : str = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True ) -> List[str]: if config_path is not None: __lowercase : Any = HubertConfig.from_pretrained(_snake_case ) else: __lowercase : Any = HubertConfig() if is_finetuned: if dict_path: __lowercase : str = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : Any = target_dict.pad_index __lowercase : Optional[Any] = target_dict.bos_index __lowercase : Optional[int] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Optional[int] = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) __lowercase : str = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __lowercase : List[str] = True if config.feat_extract_norm == '''layer''' else False __lowercase : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __lowercase : Optional[Any] = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __lowercase : Union[str, Any] = HubertForCTC(_snake_case ) else: __lowercase : List[Any] = HubertModel(_snake_case ) if is_finetuned: __lowercase , __lowercase , __lowercase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __lowercase , __lowercase , __lowercase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __lowercase : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __lowerCAmelCase : Dict = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
156
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[-1] * len(_snake_case ) def dfs(_snake_case : Dict , _snake_case : Any ): __a =True __a =c for u in graph[v]: if not visited[u]: dfs(_snake_case , 1 - c ) for i in range(len(_snake_case ) ): if not visited[i]: dfs(_snake_case , 0 ) for i in range(len(_snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCAmelCase : int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
218
0
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( snake_case_ : str = "AAPL" ) -> str: __snake_case = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __snake_case = BeautifulSoup(requests.get(a__ ).text , '''html.parser''' ) __snake_case = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
360
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : int = XLMTokenizer A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(a__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(a__ ) ) def a (self : int , a__ : Any ): """simple docstring""" __snake_case = '''lower newer''' __snake_case = '''lower newer''' return input_text, output_text def a (self : Optional[Any] ): """simple docstring""" __snake_case = XLMTokenizer(self.vocab_file , self.merges_file ) __snake_case = '''lower''' __snake_case = ['''low''', '''er</w>'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + ['''<unk>'''] __snake_case = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) @slow def a (self : Union[str, Any] ): """simple docstring""" __snake_case = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __snake_case = tokenizer.encode('''sequence builders''' , add_special_tokens=a__ ) __snake_case = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
238
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowercase : Dict = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> Dict: '''simple docstring''' with open(_lowerCamelCase , "rb") as f: __UpperCamelCase : List[str] = Image.open(_lowerCamelCase) return im.convert("RGB") @dataclass class lowerCamelCase__ : '''simple docstring''' _A = field( default=__lowercase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) _A = field( default=__lowercase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _A = field(default=__lowercase , metadata={'help': 'A folder containing the training data.'}) _A = field(default=__lowercase , metadata={'help': 'A folder containing the validation data.'}) _A = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'}) _A = field( default=__lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _A = field( default=__lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowerCamelCase ( self :Optional[int] ) -> Any: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCamelCase__ : '''simple docstring''' _A = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _A = field( default=__lowercase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__lowercase)} , ) _A = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _A = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'}) _A = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _A = field(default=__lowercase , metadata={'help': 'Name or path of preprocessor config.'}) _A = field( default=__lowercase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _A = field( default=__lowercase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = torch.stack([example["pixel_values"] for example in examples]) __UpperCamelCase : Optional[Any] = torch.tensor([example["labels"] for example in examples]) return {"pixel_values": pixel_values, "labels": labels} def _SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' __UpperCamelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , _lowerCamelCase , _lowerCamelCase) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCamelCase : Tuple = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase) transformers.utils.logging.set_verbosity(_lowerCamelCase) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}') logger.info(F'Training/evaluation parameters {training_args}') # Detecting last checkpoint. __UpperCamelCase : int = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCamelCase : Tuple = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Set seed before initializing model. set_seed(training_args.seed) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __UpperCamelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: __UpperCamelCase : Union[str, Any] = {} if data_args.train_dir is not None: __UpperCamelCase : List[str] = os.path.join(data_args.train_dir , "**") if data_args.validation_dir is not None: __UpperCamelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**") __UpperCamelCase : int = load_dataset( "imagefolder" , data_files=_lowerCamelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. __UpperCamelCase : Dict = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowerCamelCase) and data_args.train_val_split > 0.0: __UpperCamelCase : Union[str, Any] = dataset["train"].train_test_split(data_args.train_val_split) __UpperCamelCase : List[str] = split["train"] __UpperCamelCase : Optional[int] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __UpperCamelCase : Union[str, Any] = dataset["train"].features["labels"].names __UpperCamelCase , __UpperCamelCase : Union[str, Any] = {}, {} for i, label in enumerate(_lowerCamelCase): __UpperCamelCase : List[str] = str(_lowerCamelCase) __UpperCamelCase : List[Any] = label # Load the accuracy metric from the datasets package __UpperCamelCase : int = evaluate.load("accuracy") # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase : Dict): return metric.compute(predictions=np.argmax(p.predictions , axis=1) , references=p.label_ids) __UpperCamelCase : Any = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCamelCase) , labelaid=_lowerCamelCase , idalabel=_lowerCamelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCamelCase : List[Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __UpperCamelCase : str = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __UpperCamelCase : Dict = image_processor.size["shortest_edge"] else: __UpperCamelCase : str = (image_processor.size["height"], image_processor.size["width"]) __UpperCamelCase : Union[str, Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std) __UpperCamelCase : List[Any] = Compose( [ RandomResizedCrop(_lowerCamelCase), RandomHorizontalFlip(), ToTensor(), normalize, ]) __UpperCamelCase : List[str] = Compose( [ Resize(_lowerCamelCase), CenterCrop(_lowerCamelCase), ToTensor(), normalize, ]) def train_transforms(_lowerCamelCase : Tuple): __UpperCamelCase : Optional[int] = [ _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"] ] return example_batch def val_transforms(_lowerCamelCase : int): __UpperCamelCase : List[Any] = [_val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") if data_args.max_train_samples is not None: __UpperCamelCase : List[str] = ( dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) ) # Set the training transforms dataset["train"].set_transform(_lowerCamelCase) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset") if data_args.max_eval_samples is not None: __UpperCamelCase : Tuple = ( dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms dataset["validation"].set_transform(_lowerCamelCase) # Initalize our trainer __UpperCamelCase : Union[str, Any] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: __UpperCamelCase : Tuple = None if training_args.resume_from_checkpoint is not None: __UpperCamelCase : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCamelCase : Optional[Any] = last_checkpoint __UpperCamelCase : str = trainer.train(resume_from_checkpoint=_lowerCamelCase) trainer.save_model() trainer.log_metrics("train" , train_result.metrics) trainer.save_metrics("train" , train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCamelCase : str = trainer.evaluate() trainer.log_metrics("eval" , _lowerCamelCase) trainer.save_metrics("eval" , _lowerCamelCase) # Write model card and (optionally) push to hub __UpperCamelCase : Tuple = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase) else: trainer.create_model_card(**_lowerCamelCase) if __name__ == "__main__": main()
232
class lowerCamelCase__ : '''simple docstring''' def __init__( self :int ) -> Dict: __UpperCamelCase : Union[str, Any] = {} def _lowerCamelCase ( self :str ) -> None: print(self.vertex ) for i in self.vertex: print(a , " -> " , " -> ".join([str(a ) for j in self.vertex[i]] ) ) def _lowerCamelCase ( self :List[Any] , a :int , a :int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(a ) else: # else make a new vertex __UpperCamelCase : Optional[Any] = [to_vertex] def _lowerCamelCase ( self :Tuple ) -> None: # visited array for storing already visited nodes __UpperCamelCase : Dict = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(a , a ) def _lowerCamelCase ( self :Any , a :int , a :list ) -> None: # mark start vertex as visited __UpperCamelCase : int = True print(a , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(a , a ) if __name__ == "__main__": lowercase : Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
232
1
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class __lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : list[tuple[float, float]]): _A : List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _A : Optional[int] = len(SCREAMING_SNAKE_CASE) - 1 def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." _A : list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree , SCREAMING_SNAKE_CASE) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(SCREAMING_SNAKE_CASE) , 5) == 1 return output_values def A ( self : str , SCREAMING_SNAKE_CASE : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." _A : Tuple = self.basis_function(SCREAMING_SNAKE_CASE) _A : List[str] = 0.0 _A : List[str] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A ( self : Any , SCREAMING_SNAKE_CASE : float = 0.01): from matplotlib import pyplot as plt # type: ignore _A : list[float] = [] # x coordinates of points to plot _A : list[float] = [] # y coordinates of points to plot _A : Optional[int] = 0.0 while t <= 1: _A : Union[str, Any] = self.bezier_curve_function(SCREAMING_SNAKE_CASE) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size _A : List[str] = [i[0] for i in self.list_of_points] _A : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , color='blue' , label='Curve of Degree ' + str(self.degree) , ) plt.scatter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , color='red' , label='Control Points') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
227
'''simple docstring''' class __lowerCamelCase : # Public class to implement a graph """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): _A : List[Any] = row _A : Union[str, Any] = col _A : List[str] = graph def A ( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): # Checking all 8 elements surrounding nth element _A : Tuple = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _A : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] _A : List[Any] = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE): self.diffs(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE) def A ( self : int): # And finally, count all islands. _A : Dict = [[False for j in range(self.COL)] for i in range(self.ROW)] _A : Union[str, Any] = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) count += 1 return count
227
1
"""simple docstring""" from __future__ import annotations import pandas as pd def lowercase ( A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' a : Optional[int] = [0] * no_of_processes a : str = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowerCAmelCase_ ): a : int = burst_time[i] a : Union[str, Any] = 0 a : Union[str, Any] = 0 a : str = 999_999_999 a : List[Any] = 0 a : List[str] = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowerCAmelCase_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: a : Any = remaining_time[j] a : Optional[int] = j a : Dict = True if not check: increment_time += 1 continue remaining_time[short] -= 1 a : Dict = remaining_time[short] if minm == 0: a : int = 999_999_999 if remaining_time[short] == 0: complete += 1 a : Tuple = False # Find finish time of current process a : Any = increment_time + 1 # Calculate waiting time a : str = finish_time - arrival_time[short] a : Optional[int] = finar - burst_time[short] if waiting_time[short] < 0: a : List[str] = 0 # Increment time increment_time += 1 return waiting_time def lowercase ( A_ , A_ , A_ )-> Union[str, Any]: '''simple docstring''' a : str = [0] * no_of_processes for i in range(lowerCAmelCase_ ): a : Optional[Any] = burst_time[i] + waiting_time[i] return turn_around_time def lowercase ( A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' a : Any = 0 a : Optional[Any] = 0 for i in range(lowerCAmelCase_ ): a : str = total_waiting_time + waiting_time[i] a : Union[str, Any] = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") __lowercase = int(input()) __lowercase = [0] * no_of_processes __lowercase = [0] * no_of_processes __lowercase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) __lowercase = map(int, input().split()) __lowercase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowercase = burst_time __lowercase = no_of_processes __lowercase = waiting_time __lowercase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __lowercase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
40
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return x + 2 class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Any ) -> Any: __SCREAMING_SNAKE_CASE = "x = 3" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result == 3 self.assertDictEqual(UpperCAmelCase__ , {"x": 3} ) __SCREAMING_SNAKE_CASE = "x = y" __SCREAMING_SNAKE_CASE = {"y": 5} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 5, "y": 5} ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: __SCREAMING_SNAKE_CASE = "y = add_two(x)" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = "x = 3" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result == 3 self.assertDictEqual(UpperCAmelCase__ , {"x": 3} ) def UpperCAmelCase_ ( self : str ) -> Any: __SCREAMING_SNAKE_CASE = "test_dict = {'x': x, 'y': add_two(x)}" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 5} ) self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = "x = 3\ny = 5" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 5} ) def UpperCAmelCase_ ( self : Any ) -> Any: __SCREAMING_SNAKE_CASE = "text = f'This is x: {x}.'" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "text": "This is x: 3."} ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = "if x <= 3:\n y = 2\nelse:\n y = 5" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 2} ) __SCREAMING_SNAKE_CASE = {"x": 8} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 8, "y": 5} ) def UpperCAmelCase_ ( self : Tuple ) -> str: __SCREAMING_SNAKE_CASE = "test_list = [x, add_two(x)]" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [3, 5] ) self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_list": [3, 5]} ) def UpperCAmelCase_ ( self : Any ) -> int: __SCREAMING_SNAKE_CASE = "y = x" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result == 3 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 3} ) def UpperCAmelCase_ ( self : Tuple ) -> int: __SCREAMING_SNAKE_CASE = "test_list = [x, add_two(x)]\ntest_list[1]" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_list": [3, 5]} ) __SCREAMING_SNAKE_CASE = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = "x = 0\nfor i in range(3):\n x = i" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"range": range} , state=UpperCAmelCase__ ) assert result == 2 self.assertDictEqual(UpperCAmelCase__ , {"x": 2, "i": 2} )
54
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class A_ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = BlenderbotSmallTokenizer lowerCAmelCase__ = False def _lowerCAmelCase (self :Optional[Any] )-> int: super().setUp() __A = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] __A = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) __A = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] __A = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCamelCase ) ) def _lowerCAmelCase (self :Tuple , **_UpperCamelCase :List[Any] )-> int: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> Optional[int]: __A = '''adapt act apte''' __A = '''adapt act apte''' return input_text, output_text def _lowerCAmelCase (self :Dict )-> Union[str, Any]: __A = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __A = '''adapt act apte''' __A = ['''adapt''', '''act''', '''ap@@''', '''te'''] __A = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) __A = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __A = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCAmelCase (self :Tuple )-> Any: __A = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] __A = '''I am a small frog.''' __A = tok([src_text] , padding=_UpperCamelCase , truncation=_UpperCamelCase )['''input_ids'''] __A = tok.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowerCAmelCase (self :List[str] )-> int: __A = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) __A = '''I am a small frog .''' __A = '''.''' __A = tok(_UpperCamelCase )['''input_ids'''] __A = tok(_UpperCamelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
356
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @slow def _lowerCAmelCase (self :Dict )-> Dict: __A = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_UpperCamelCase ).to(_UpperCamelCase ) __A = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __A = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __A = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __A = model(input_ids.to(_UpperCamelCase ) , labels=labels.to(_UpperCamelCase ) ).loss __A = -(labels.shape[-1] * loss.item()) __A = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
250
0
"""simple docstring""" class snake_case : '''simple docstring''' def __init__( self : List[str], _lowerCamelCase : list[int] ): '''simple docstring''' __A = len(_lowerCamelCase ) __A = [0] * len_array if len_array > 0: __A = array[0] for i in range(1, _lowerCamelCase ): __A = self.prefix_sum[i - 1] + array[i] def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : int, _lowerCamelCase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : int ): '''simple docstring''' __A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_lowerCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
266
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowercase_ = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase ( ): """simple docstring""" __A = '''https://pypi.org/pypi/diffusers/json''' __A = json.loads(request.urlopen(__UpperCamelCase ).read() )['''releases'''].keys() return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : version.Version(__UpperCamelCase ) ) def lowerCAmelCase ( ): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__UpperCamelCase ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) __A = Path(__UpperCamelCase ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" init_hf_modules() __A = Path(__UpperCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) __A = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: __A = f.read() # Imports of the form `import .xxx` __A = re.findall('''^\s*import\s+\.(\S+)\s*$''' , __UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __UpperCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__UpperCamelCase ) ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = False __A = [module_file] __A = [] # Let's recurse through all relative imports while not no_change: __A = [] for f in files_to_check: new_imports.extend(get_relative_imports(__UpperCamelCase ) ) __A = Path(__UpperCamelCase ).parent __A = [str(module_path / m ) for m in new_imports] __A = [f for f in new_import_files if f not in all_relative_imports] __A = [f'{f}.py' for f in new_import_files] __A = len(__UpperCamelCase ) == 0 all_relative_imports.extend(__UpperCamelCase ) return all_relative_imports def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: __A = f.read() # Imports of the form `import xxx` __A = re.findall('''^\s*import\s+(\S+)\s*$''' , __UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __UpperCamelCase , flags=re.MULTILINE ) # Only keep the top-level module __A = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all __A = list(set(__UpperCamelCase ) ) __A = [] for imp in imports: try: importlib.import_module(__UpperCamelCase ) except ImportError: missing_packages.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' f'{", ".join(__UpperCamelCase )}. Run `pip install {" ".join(__UpperCamelCase )}`' ) return get_relative_imports(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = module_path.replace(os.path.sep , '''.''' ) __A = importlib.import_module(__UpperCamelCase ) if class_name is None: return find_pipeline_class(__UpperCamelCase ) return getattr(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" from ..pipelines import DiffusionPipeline __A = dict(inspect.getmembers(__UpperCamelCase , inspect.isclass ) ) __A = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __UpperCamelCase ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' f' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' f' {loaded_module}.' ) __A = cls return pipeline_class def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , ): """simple docstring""" __A = str(__UpperCamelCase ) __A = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): __A = module_file_or_url __A = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: __A = get_diffusers_versions() # cut ".dev0" __A = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: __A = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(f'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: __A = f'v{revision}' elif revision == "main": __A = revision else: raise ValueError( f'`custom_revision`: {revision} does not exist. Please make sure to choose one of' f' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub __A = COMMUNITY_PIPELINES_URL.format(revision=__UpperCamelCase , pipeline=__UpperCamelCase ) try: __A = cached_download( __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , ) __A = '''git''' __A = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached __A = hf_hub_download( __UpperCamelCase , __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , ) __A = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment __A = check_imports(__UpperCamelCase ) # Now we move the module inside our cached dynamic modules. __A = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__UpperCamelCase ) __A = Path(__UpperCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__UpperCamelCase , submodule_path / module_file ) for module_needed in modules_needed: __A = f'{module_needed}.py' shutil.copy(os.path.join(__UpperCamelCase , __UpperCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__UpperCamelCase , __UpperCamelCase ): __A = use_auth_token elif use_auth_token is True: __A = HfFolder.get_token() else: __A = None __A = model_info(__UpperCamelCase , revision=__UpperCamelCase , token=__UpperCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __A = submodule_path / commit_hash __A = full_submodule + os.path.sep + commit_hash create_dynamic_module(__UpperCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__UpperCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __UpperCamelCase , f'{module_needed}.py' , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , resume_download=__UpperCamelCase , proxies=__UpperCamelCase , use_auth_token=__UpperCamelCase , revision=__UpperCamelCase , local_files_only=__UpperCamelCase , ) return os.path.join(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , **__UpperCamelCase , ): """simple docstring""" __A = get_cached_module_file( __UpperCamelCase , __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , resume_download=__UpperCamelCase , proxies=__UpperCamelCase , use_auth_token=__UpperCamelCase , revision=__UpperCamelCase , local_files_only=__UpperCamelCase , ) return get_class_in_module(__UpperCamelCase , final_module.replace('''.py''' , '''''' ) )
266
1
'''simple docstring''' import numpy as np def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray ): '''simple docstring''' return vector * sigmoid(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
61
'''simple docstring''' import enum import shutil import sys UpperCAmelCase_ , UpperCAmelCase_ = shutil.get_terminal_size() UpperCAmelCase_ = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase_ ( enum.Enum ): '''simple docstring''' lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Union[str, Any] = 1 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any]="" ): '''simple docstring''' sys.stdout.write(str(SCREAMING_SNAKE_CASE__ ) + end ) sys.stdout.flush() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int="" ): '''simple docstring''' forceWrite(F'''\u001b[{color}m{content}\u001b[0m''' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' forceWrite("""\r""" ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' forceWrite(F'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def _UpperCamelCase ( ): '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def _UpperCamelCase ( ): '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
61
1
import re from filelock import FileLock try: import nltk lowercase__ : List[str] = True except (ImportError, ModuleNotFoundError): lowercase__ : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def A_ ( snake_case : str ) -> str: '''simple docstring''' re.sub('''<n>''' , '''''' , snake_case ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case ) )
328
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
1
"""simple docstring""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _UpperCamelCase : List[str] = 8 def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str=BITS ): '''simple docstring''' lowercase__ : List[Any] = x.device lowercase__ : List[str] = (x * 255).int().clamp(0 , 255 ) lowercase__ : Union[str, Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCAmelCase ) lowercase__ : Dict = rearrange(_lowerCAmelCase , 'd -> d 1 1' ) lowercase__ : List[Any] = rearrange(_lowerCAmelCase , 'b c h w -> b c 1 h w' ) lowercase__ : Any = ((x & mask) != 0).float() lowercase__ : Optional[int] = rearrange(_lowerCAmelCase , 'b c d h w -> b (c d) h w' ) lowercase__ : int = bits * 2 - 1 return bits def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]=BITS ): '''simple docstring''' lowercase__ : Dict = x.device lowercase__ : str = (x > 0).int() lowercase__ : str = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCAmelCase , dtype=torch.intaa ) lowercase__ : Union[str, Any] = rearrange(_lowerCAmelCase , 'd -> d 1 1' ) lowercase__ : Tuple = rearrange(_lowerCAmelCase , 'b (c d) h w -> b c d h w' , d=8 ) lowercase__ : Union[str, Any] = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def a_ ( self : List[Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowercase__ : Union[str, Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowercase__ : Optional[Any] = self.alphas_cumprod[timestep] lowercase__ : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowercase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowercase__ : str = self.bit_scale if self.config.clip_sample: lowercase__ : Tuple = torch.clamp(_lowerCAmelCase , -scale , _lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowercase__ : int = self._get_variance(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[str] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowercase__ : str = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Tuple = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowercase__ : Optional[Any] = model_output.device if torch.is_tensor(_lowerCAmelCase ) else 'cpu' lowercase__ : Tuple = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) lowercase__ : Tuple = self._get_variance(_lowerCAmelCase , _lowerCAmelCase ) ** 0.5 * eta * noise lowercase__ : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def a_ ( self : List[str] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : int="epsilon" , _lowerCAmelCase : int=None , _lowerCAmelCase : bool = True , ): '''simple docstring''' lowercase__ : Dict = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ : List[Any] = torch.split(_lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowercase__ : Tuple = None # 1. compute alphas, betas lowercase__ : int = self.alphas_cumprod[t] lowercase__ : Union[str, Any] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowercase__ : Optional[int] = 1 - alpha_prod_t lowercase__ : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowercase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowercase__ : Optional[Any] = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" lowercase__ : Optional[int] = self.bit_scale if self.config.clip_sample: lowercase__ : Any = torch.clamp(_lowerCAmelCase , -scale , _lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowercase__ : Tuple = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : Optional[int] = 0 if t > 0: lowercase__ : Dict = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_lowerCAmelCase ).to(model_output.device ) lowercase__ : List[str] = (self._get_variance(_lowerCAmelCase , predicted_variance=_lowerCAmelCase ) ** 0.5) * noise lowercase__ : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) class UpperCAmelCase_ ( _a): def __init__( self , a , a , a = 1.0 , ) -> str: super().__init__() lowercase__ : Any = bit_scale lowercase__ : str = ( ddim_bit_scheduler_step if isinstance(a , a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a = 2_5_6 , a = 2_5_6 , a = 5_0 , a = None , a = 1 , a = "pil" , a = True , **a , ) -> Union[Tuple, ImagePipelineOutput]: lowercase__ : Optional[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=a , ) lowercase__ : Optional[int] = decimal_to_bits(a ) * self.bit_scale lowercase__ : Dict = latents.to(self.device ) self.scheduler.set_timesteps(a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowercase__ : str = self.unet(a , a ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Tuple = self.scheduler.step(a , a , a ).prev_sample lowercase__ : List[str] = bits_to_decimal(a ) if output_type == "pil": lowercase__ : Optional[int] = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
77
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
0
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __A : List[str] = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCamelCase_ ( A__ : Any ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : Any ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase_ : Any = False elif args.student_type == "gpt2": lowerCAmelCase_ : List[Any] = False def UpperCamelCase_ ( A__ : Any , A__ : Dict ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase_ : Optional[int] = False def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[str] = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=A__ , required=A__ , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=A__ , required=A__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=A__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=A__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=A__ , required=A__ , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=A__ , type=A__ , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=A__ , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=A__ , required=A__ , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=A__ , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=A__ , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=A__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=A__ , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=A__ , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=A__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=A__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=A__ , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=A__ , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=A__ , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=A__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=A__ , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=A__ , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=A__ , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=A__ , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=A__ , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=A__ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=A__ , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=A__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=A__ , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=A__ , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=A__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=A__ , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=A__ , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=A__ , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=A__ , default=5_00 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=A__ , default=40_00 , help="""Checkpoint interval.""" ) lowerCAmelCase_ : List[str] = parser.parse_args() sanity_checks(A__ ) # ARGS # init_gpu_params(A__ ) set_seed(A__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(f'Param: {args}' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(A__ ) , A__ , indent=4 ) git_log(args.dump_path ) lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Tuple = MODEL_CLASSES[args.student_type] lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCAmelCase_ : Union[str, Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowerCAmelCase_ : str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCAmelCase_ : Optional[Any] = tokenizer.all_special_tokens.index(A__ ) lowerCAmelCase_ : List[Any] = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}' ) lowerCAmelCase_ : Optional[Any] = special_tok_ids lowerCAmelCase_ : Union[str, Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'Loading data from {args.data_file}' ) with open(args.data_file , """rb""" ) as fp: lowerCAmelCase_ : Union[str, Any] = pickle.load(A__ ) if args.mlm: logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , """rb""" ) as fp: lowerCAmelCase_ : Union[str, Any] = pickle.load(A__ ) lowerCAmelCase_ : Any = np.maximum(A__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCAmelCase_ : Union[str, Any] = 0.0 # do not predict special tokens lowerCAmelCase_ : str = torch.from_numpy(A__ ) else: lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Union[str, Any] = LmSeqsDataset(params=A__ , data=A__ ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'Loading student config from {args.student_config}' ) lowerCAmelCase_ : str = student_config_class.from_pretrained(args.student_config ) lowerCAmelCase_ : Dict = True if args.student_pretrained_weights is not None: logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}' ) lowerCAmelCase_ : List[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=A__ ) else: lowerCAmelCase_ : Dict = student_model_class(A__ ) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}' ) logger.info("""Student loaded.""" ) # TEACHER # lowerCAmelCase_ : List[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A__ ) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}' ) logger.info(f'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A__ , A__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A__ , A__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCAmelCase_ : Optional[int] = Distiller( params=A__ , dataset=A__ , token_probs=A__ , student=A__ , teacher=A__ ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
89
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : List[str] ): '''simple docstring''' print("""Loading config file...""" ) def flatten_yaml_as_dict(A__ : int , A__ : str="" , A__ : Dict="." ): lowerCAmelCase_ : int = [] for k, v in d.items(): lowerCAmelCase_ : Any = parent_key + sep + k if parent_key else k if isinstance(A__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(A__ , A__ , sep=A__ ).items() ) else: items.append((new_key, v) ) return dict(A__ ) lowerCAmelCase_ : Optional[int] = argparse.Namespace() with open(A__ , """r""" ) as yaml_file: try: lowerCAmelCase_ : Any = yaml.load(A__ , Loader=yaml.FullLoader ) lowerCAmelCase_ : Any = flatten_yaml_as_dict(A__ ) for k, v in flat_cfg.items(): setattr(A__ , A__ , A__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(A__ , str(A__ ) ) ) return config def UpperCamelCase_ ( A__ : Optional[int] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : List[str] = MobileViTVaConfig() lowerCAmelCase_ : Any = False # dataset if task_name.startswith("""imagenet1k_""" ): lowerCAmelCase_ : Tuple = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: lowerCAmelCase_ : List[str] = 3_84 else: lowerCAmelCase_ : Optional[int] = 2_56 lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): lowerCAmelCase_ : int = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: lowerCAmelCase_ : int = 3_84 else: lowerCAmelCase_ : int = 2_56 lowerCAmelCase_ : Optional[Any] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): lowerCAmelCase_ : Dict = 1_51 lowerCAmelCase_ : Any = 5_12 lowerCAmelCase_ : int = """ade20k-id2label.json""" lowerCAmelCase_ : Union[str, Any] = True elif task_name.startswith("""voc_""" ): lowerCAmelCase_ : Any = 21 lowerCAmelCase_ : List[str] = 5_12 lowerCAmelCase_ : Union[str, Any] = """pascal-voc-id2label.json""" lowerCAmelCase_ : int = True # orig_config lowerCAmelCase_ : Optional[int] = load_orig_config_file(A__ ) assert getattr(A__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" lowerCAmelCase_ : Union[str, Any] = getattr(A__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(A__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCAmelCase_ : List[Any] = getattr(A__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCAmelCase_ : List[str] = getattr(A__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: lowerCAmelCase_ : Optional[int] = getattr(A__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) lowerCAmelCase_ : Optional[Any] = getattr(A__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) lowerCAmelCase_ : Optional[int] = getattr(A__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label lowerCAmelCase_ : Any = """huggingface/label-files""" lowerCAmelCase_ : Any = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Any = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = idalabel lowerCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_ ( A__ : int , A__ : Dict , A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : List[Any] = dct.pop(A__ ) lowerCAmelCase_ : Optional[int] = val def UpperCamelCase_ ( A__ : int , A__ : int=False ): '''simple docstring''' if base_model: lowerCAmelCase_ : List[Any] = """""" else: lowerCAmelCase_ : Any = """mobilevitv2.""" lowerCAmelCase_ : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCAmelCase_ : List[Any] = k[8:] else: lowerCAmelCase_ : Optional[Any] = k if ".block." in k: lowerCAmelCase_ : Dict = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: lowerCAmelCase_ : Any = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: lowerCAmelCase_ : List[Any] = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: lowerCAmelCase_ : Any = k_new.replace("""conv_1.""" , f'{model_prefix}conv_stem.' ) for i in [1, 2]: if f'layer_{i}.' in k: lowerCAmelCase_ : Optional[Any] = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: lowerCAmelCase_ : Optional[int] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: lowerCAmelCase_ : List[str] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if f'layer_{i}.0.' in k: lowerCAmelCase_ : Optional[int] = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if f'layer_{i}.1.local_rep.0.' in k: lowerCAmelCase_ : str = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if f'layer_{i}.1.local_rep.1.' in k: lowerCAmelCase_ : Optional[Any] = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: lowerCAmelCase_ : Optional[Any] = [0, 1] elif i == 4: lowerCAmelCase_ : Any = [0, 1, 2, 3] elif i == 5: lowerCAmelCase_ : Any = [0, 1, 2] for j in j_in: if f'layer_{i}.1.global_rep.{j}.' in k: lowerCAmelCase_ : Optional[int] = k_new.replace( f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if f'layer_{i}.1.global_rep.{j+1}.' in k: lowerCAmelCase_ : Optional[Any] = k_new.replace( f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if f'layer_{i}.1.conv_proj.' in k: lowerCAmelCase_ : str = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: lowerCAmelCase_ : Dict = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: lowerCAmelCase_ : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: lowerCAmelCase_ : Any = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: lowerCAmelCase_ : int = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: lowerCAmelCase_ : List[Any] = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: lowerCAmelCase_ : Optional[int] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: lowerCAmelCase_ : Optional[Any] = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: lowerCAmelCase_ : Dict = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: lowerCAmelCase_ : List[Any] = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCamelCase_ ( A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(A__ ) for k in keys_to_ignore: state_dict.pop(A__ , A__ ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( A__ : Dict , A__ : Union[str, Any] , A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : int = get_mobilevitva_config(A__ , A__ ) # load original state_dict lowerCAmelCase_ : int = torch.load(A__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): lowerCAmelCase_ : Union[str, Any] = MobileViTVaForSemanticSegmentation(A__ ).eval() lowerCAmelCase_ : Union[str, Any] = False else: lowerCAmelCase_ : List[Any] = MobileViTVaForImageClassification(A__ ).eval() lowerCAmelCase_ : Optional[int] = False # remove and rename some keys of load the original model lowerCAmelCase_ : Tuple = checkpoint remove_unused_keys(A__ ) lowerCAmelCase_ : List[Any] = create_rename_keys(A__ , base_model=A__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A__ , A__ , A__ ) # load modified state_dict model.load_state_dict(A__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase_ : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCAmelCase_ : Dict = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : int = model(**A__ ) # verify classification model if task_name.startswith("""imagenet""" ): lowerCAmelCase_ : Optional[Any] = outputs.logits lowerCAmelCase_ : Tuple = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCAmelCase_ : int = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ) assert torch.allclose(logits[0, :3] , A__ , atol=1E-4 ) Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __A : Union[str, Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
89
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = PegasusConfig __lowerCAmelCase = {} __lowerCAmelCase = """gelu""" def __init__( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : str=13 , lowerCamelCase_ : Union[str, Any]=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=99 , lowerCamelCase_ : int=32 , lowerCamelCase_ : int=2 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Dict=37 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Optional[Any]=0.1 , lowerCamelCase_ : List[Any]=40 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : str=1 , lowerCamelCase_ : Any=0 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase = prepare_pegasus_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = TFPegasusModel(config=A_ ).get_decoder() UpperCamelCase = inputs_dict['''input_ids'''] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] UpperCamelCase = inputs_dict['''head_mask'''] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(A_ , attention_mask=A_ )[0] UpperCamelCase = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1E-3 ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __lowerCAmelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __lowerCAmelCase = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFPegasusModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __lowerCAmelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __lowerCAmelCase = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __lowerCAmelCase = """google/pegasus-xsum""" @cached_property def lowerCamelCase_ ( self : str ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase_ ( self : Dict , **lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.translate_src_text(**A_ ) assert self.expected_text == generated_words def lowerCamelCase_ ( self : Tuple , **lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = self.tokenizer(self.src_text , **A_ , padding=A_ , return_tensors="""tf""" ) UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A_ , ) UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ ) return generated_words @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" self._assert_generated_batch_equal_expected()
343
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = None class __lowercase (_UpperCAmelCase , _UpperCAmelCase ): _UpperCamelCase = 2 @register_to_config def __init__( self , A_ = 0.02 , A_ = 100 , A_ = 1.007 , A_ = 80 , A_ = 0.05 , A_ = 50 , ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = sigma_max # setable values __lowerCAmelCase : int = None __lowerCAmelCase : np.IntTensor = None __lowerCAmelCase : torch.FloatTensor = None # sigma(t_i) def UpperCamelCase__ ( self , A_ , A_ = None ) ->torch.FloatTensor: '''simple docstring''' return sample def UpperCamelCase__ ( self , A_ , A_ = None ) ->List[str]: '''simple docstring''' __lowerCAmelCase : str = num_inference_steps __lowerCAmelCase : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() __lowerCAmelCase : Optional[Any] = torch.from_numpy(A_ ).to(A_ ) __lowerCAmelCase : Tuple = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __lowerCAmelCase : Optional[int] = torch.tensor(A_ , dtype=torch.floataa , device=A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ = None ) ->Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: __lowerCAmelCase : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __lowerCAmelCase : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) __lowerCAmelCase : int = self.config.s_noise * randn_tensor(sample.shape , generator=A_ ).to(sample.device ) __lowerCAmelCase : str = sigma + gamma * sigma __lowerCAmelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ = True , ) ->Union[KarrasVeOutput, Tuple]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = sample_hat + sigma_hat * model_output __lowerCAmelCase : int = (sample_hat - pred_original_sample) / sigma_hat __lowerCAmelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A_ , derivative=A_ , pred_original_sample=A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ = True , ) ->Union[KarrasVeOutput, Tuple]: '''simple docstring''' __lowerCAmelCase : str = sample_prev + sigma_prev * model_output __lowerCAmelCase : List[Any] = (sample_prev - pred_original_sample) / sigma_prev __lowerCAmelCase : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A_ , derivative=A_ , pred_original_sample=A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Any: '''simple docstring''' raise NotImplementedError()
275
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = ["input_values", "padding_mask"] def __init__( self : Optional[Any] , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 2_40_00 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = None , __lowerCamelCase : float = None , **__lowerCamelCase : Any , ) -> Optional[int]: super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase ) A : Dict = chunk_length_s A : Tuple = overlap @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : str , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[int] = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs A : Optional[Any] = True A : Union[str, Any] = bool( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: A : Dict = [np.asarray(__lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): A : int = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): A : Dict = raw_audio.astype(np.floataa ) # always return batch if not is_batched: A : int = [np.asarray(__lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__lowerCamelCase ): if example.ndim > 2: raise ValueError(F"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F"""Expected stereo audio but example has {example.shape[-1]} channels""" ) A : Union[str, Any] = None A : Tuple = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: A : Union[str, Any] = min(array.shape[0] for array in raw_audio ) A : List[Any] = int(np.floor(max_length / self.chunk_stride ) ) A : str = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: A : Optional[Any] = max(array.shape[0] for array in raw_audio ) A : Union[str, Any] = int(np.ceil(max_length / self.chunk_stride ) ) A : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length A : Any = "max_length" else: A : int = input_values # normal padding on batch if padded_inputs is None: A : List[Any] = self.pad( __lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , padding=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) if padding: A : Tuple = padded_inputs.pop("attention_mask" ) A : Any = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: A : Union[str, Any] = example[..., None] input_values.append(example.T ) A : Union[str, Any] = input_values if return_tensors is not None: A : List[Any] = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
256
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase ( _lowerCamelCase ): A : Any = [] for line in lines: A : List[str] = re.sub(R"#.*" , "" , _lowerCamelCase ) # remove comments if line: filtered_lines.append(_lowerCamelCase ) A : str = "\n".join(_lowerCamelCase ) # Make a hash from all this code A : Any = full_str.encode("utf-8" ) return shaaaa(_lowerCamelCase ).hexdigest() # get importable module names and hash for caching __SCREAMING_SNAKE_CASE = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __SCREAMING_SNAKE_CASE = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __SCREAMING_SNAKE_CASE = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __SCREAMING_SNAKE_CASE = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
256
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : Union[str, Any] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = "vit_mae" def __init__( self : Dict , A : List[str]=7_68 , A : Any=12 , A : Union[str, Any]=12 , A : Tuple=30_72 , A : Any="gelu" , A : Tuple=0.0 , A : List[str]=0.0 , A : Tuple=0.02 , A : Tuple=1e-12 , A : int=2_24 , A : Dict=16 , A : int=3 , A : Tuple=True , A : Tuple=16 , A : Optional[Any]=5_12 , A : Union[str, Any]=8 , A : List[Any]=20_48 , A : Dict=0.75 , A : Any=False , **A : Optional[int] , ) -> Union[str, Any]: super().__init__(**A ) lowercase_ : List[Any] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : int = initializer_range lowercase_ : Dict = layer_norm_eps lowercase_ : Optional[Any] = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : Any = qkv_bias lowercase_ : Union[str, Any] = decoder_num_attention_heads lowercase_ : Optional[Any] = decoder_hidden_size lowercase_ : List[str] = decoder_num_hidden_layers lowercase_ : List[Any] = decoder_intermediate_size lowercase_ : Optional[Any] = mask_ratio lowercase_ : Optional[Any] = norm_pix_loss
33
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : Union[str, Any] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = "vit_mae" def __init__( self : Dict , A : List[str]=7_68 , A : Any=12 , A : Union[str, Any]=12 , A : Tuple=30_72 , A : Any="gelu" , A : Tuple=0.0 , A : List[str]=0.0 , A : Tuple=0.02 , A : Tuple=1e-12 , A : int=2_24 , A : Dict=16 , A : int=3 , A : Tuple=True , A : Tuple=16 , A : Optional[Any]=5_12 , A : Union[str, Any]=8 , A : List[Any]=20_48 , A : Dict=0.75 , A : Any=False , **A : Optional[int] , ) -> Union[str, Any]: super().__init__(**A ) lowercase_ : List[Any] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : int = initializer_range lowercase_ : Dict = layer_norm_eps lowercase_ : Optional[Any] = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : Any = qkv_bias lowercase_ : Union[str, Any] = decoder_num_attention_heads lowercase_ : Optional[Any] = decoder_hidden_size lowercase_ : List[str] = decoder_num_hidden_layers lowercase_ : List[Any] = decoder_intermediate_size lowercase_ : Optional[Any] = mask_ratio lowercase_ : Optional[Any] = norm_pix_loss
33
1
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = XLMTokenizer _lowerCamelCase = False def UpperCamelCase__( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __A : Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __A : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = '''lower newer''' __A : int = '''lower newer''' return input_text, output_text def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = XLMTokenizer(self.vocab_file , self.merges_file ) __A : Optional[Any] = '''lower''' __A : Any = ['''low''', '''er</w>'''] __A : Tuple = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = tokens + ['''<unk>'''] __A : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) @slow def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __A : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCamelCase ) __A : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCamelCase ) __A : int = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) __A : List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
371
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a_ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } a_ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" a_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowercase ( snake_case_ : str ) ->dict[str, int]: '''simple docstring''' __A : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __lowercase ( snake_case_ : tuple ) ->str: '''simple docstring''' return x[0] def __lowercase ( snake_case_ : str ) ->str: '''simple docstring''' __A : Union[str, Any] = get_letter_count(snake_case_ ) __A : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(snake_case_ ) __A : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find ,reverse=snake_case_ ) __A : Optional[int] = ''''''.join(freq_to_letter[freq] ) __A : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=snake_case_ ,reverse=snake_case_ ) __A : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(snake_case_ ) def __lowercase ( snake_case_ : str ) ->int: '''simple docstring''' __A : Any = get_frequency_order(snake_case_ ) __A : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
291
0
import argparse a_ = '''docs/source/_static/js/custom.js''' def _a ( UpperCamelCase_ : List[Any] ) -> Any: """simple docstring""" with open(UpperCamelCase_ , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 lowerCAmelCase__ = F"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F" \"v{version}\": \"v{version}\",\n" with open(UpperCamelCase_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') a_ = parser.parse_args() update_custom_js(args.version)
340
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" if "cls_token" in name: a__ : int =name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: a__ : Any =name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: a__ : Dict =name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: a__ : Any =name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: a__ : Union[str, Any] =name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a__ : Union[str, Any] =name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: a__ : int =name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: a__ : Optional[Any] =name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: a__ : Dict =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a__ : int =name.replace("attn" , "attention.self" ) if "norm1" in name: a__ : Union[str, Any] =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a__ : Optional[Any] =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a__ : Any =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a__ : Optional[int] =name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: a__ : Tuple =name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: a__ : Any =name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: a__ : Optional[int] =name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: a__ : Union[str, Any] =name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: a__ : Dict =name.replace("norm.bias" , "vit.layernorm.bias" ) return name def _A ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for key in orig_state_dict.copy().keys(): a__ : List[str] =orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: a__ : Union[str, Any] =key.split("." ) a__ : Union[str, Any] =int(key_split[1] ) if "decoder_blocks" in key: a__ : int =config.decoder_hidden_size a__ : List[str] ="decoder.decoder_layers." if "weight" in key: a__ : Dict =val[:dim, :] a__ : int =val[dim : dim * 2, :] a__ : List[str] =val[-dim:, :] elif "bias" in key: a__ : Union[str, Any] =val[:dim] a__ : Tuple =val[dim : dim * 2] a__ : Dict =val[-dim:] else: a__ : Union[str, Any] =config.hidden_size a__ : str ="vit.encoder.layer." if "weight" in key: a__ : Tuple =val[:dim, :] a__ : Any =val[dim : dim * 2, :] a__ : Tuple =val[-dim:, :] elif "bias" in key: a__ : Optional[int] =val[:dim] a__ : Optional[int] =val[dim : dim * 2] a__ : Any =val[-dim:] else: a__ : int =val return orig_state_dict def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Optional[Any] =ViTMAEConfig() if "large" in checkpoint_url: a__ : int =1_024 a__ : Optional[Any] =4_096 a__ : Union[str, Any] =24 a__ : Union[str, Any] =16 elif "huge" in checkpoint_url: a__ : int =14 a__ : Tuple =1_280 a__ : Tuple =5_120 a__ : int =32 a__ : Optional[int] =16 a__ : int =ViTMAEForPreTraining(SCREAMING_SNAKE_CASE ) a__ : Optional[int] =torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] a__ : Union[str, Any] =ViTMAEImageProcessor(size=config.image_size ) a__ : Tuple =convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() a__ : List[str] ="https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" a__ : List[Any] =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) a__ : Optional[int] =ViTMAEImageProcessor(size=config.image_size ) a__ : List[str] =image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) a__ : Tuple =model(**SCREAMING_SNAKE_CASE ) a__ : Optional[int] =outputs.logits if "large" in checkpoint_url: a__ : Union[str, Any] =torch.tensor( [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] ) elif "huge" in checkpoint_url: a__ : List[str] =torch.tensor( [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] ) else: a__ : Optional[int] =torch.tensor( [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCAmelCase : List[str] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
368
from __future__ import annotations import math def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if num <= 0: a__ : List[str] =f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] =[True] * (num + 1) a__ : Union[str, Any] =[] a__ : str =2 a__ : Any =int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: a__ : Optional[int] =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
148
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: # Base Case if curr_ind == len(UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCAmelCase ) ): if valid_connection(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # Insert current vertex into path as next transition snake_case_ = next_ver # Validate created path if util_hamilton_cycle(UpperCAmelCase , UpperCAmelCase , curr_ind + 1 ): return True # Backtrack snake_case_ = -1 return False def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 0 ) -> list[int]: snake_case_ = [-1] * (len(UpperCAmelCase ) + 1) # initialize start and end of path with starting index snake_case_ = snake_case_ = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCAmelCase , UpperCAmelCase , 1 ) else []
69
"""simple docstring""" def A ( snake_case__ = 50 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
165
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ : Optional[Any] = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
210
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> List[Any]: # vision encoder if "img_encoder.pos_embed" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: SCREAMING_SNAKE_CASE_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: SCREAMING_SNAKE_CASE_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: SCREAMING_SNAKE_CASE_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: SCREAMING_SNAKE_CASE_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: SCREAMING_SNAKE_CASE_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: SCREAMING_SNAKE_CASE_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: SCREAMING_SNAKE_CASE_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: SCREAMING_SNAKE_CASE_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: SCREAMING_SNAKE_CASE_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: SCREAMING_SNAKE_CASE_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: SCREAMING_SNAKE_CASE_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> List[str]: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE_ = key.split('.' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(key_split[2] ), int(key_split[4] ) SCREAMING_SNAKE_CASE_ = config.vision_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE_ = val[:dim, :] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ = val[-dim:, :] else: SCREAMING_SNAKE_CASE_ = val[:dim] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE_ = key.split('.' ) SCREAMING_SNAKE_CASE_ = int(key_split[3] ) SCREAMING_SNAKE_CASE_ = config.text_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE_ = val[:dim, :] SCREAMING_SNAKE_CASE_ = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE_ = val[-dim:, :] else: SCREAMING_SNAKE_CASE_ = val[:dim] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ = val[-dim:] else: SCREAMING_SNAKE_CASE_ = rename_key(__UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): SCREAMING_SNAKE_CASE_ = val.squeeze_() else: SCREAMING_SNAKE_CASE_ = val return orig_state_dict def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Dict="groupvit-gcc-yfcc" , __UpperCAmelCase : Any=False ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = GroupViTConfig() SCREAMING_SNAKE_CASE_ = GroupViTModel(__UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = torch.load(__UpperCAmelCase , map_location='cpu' )['model'] SCREAMING_SNAKE_CASE_ = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__UpperCAmelCase ) == 0) # verify result SCREAMING_SNAKE_CASE_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": SCREAMING_SNAKE_CASE_ = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": SCREAMING_SNAKE_CASE_ = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , __UpperCAmelCase , atol=1E-3 ) processor.save_pretrained(__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) print('Successfully saved processor and model to' , __UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(__UpperCAmelCase , organization='nielsr' ) model.push_to_hub(__UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) lowerCamelCase__ : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
210
1
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Dict: if hor == 128: _lowerCAmelCase : Any = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _lowerCAmelCase : Optional[int] = (32, 128, 256) _lowerCAmelCase : Any = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: _lowerCAmelCase : Tuple = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _lowerCAmelCase : int = (32, 64, 128, 256) _lowerCAmelCase : List[Any] = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") _lowerCAmelCase : Tuple = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) _lowerCAmelCase : Union[str, Any] = model.state_dict() _lowerCAmelCase : Dict = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 65536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } _lowerCAmelCase : Optional[int] = UNetaDModel(**_lowerCamelCase ) print(f"length of state dict: {len(state_dict.keys() )}" ) print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) _lowerCAmelCase : int = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) hf_value_function.load_state_dict(_lowerCamelCase ) torch.save(hf_value_function.state_dict() ,f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json" ,"""w""" ) as f: json.dump(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: _lowerCAmelCase : List[str] = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 65536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } _lowerCAmelCase : Union[str, Any] = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) _lowerCAmelCase : Any = model _lowerCAmelCase : int = UNetaDModel(**_lowerCamelCase ) print(f"length of state dict: {len(state_dict.keys() )}" ) print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) _lowerCAmelCase : Optional[Any] = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) hf_value_function.load_state_dict(_lowerCamelCase ) torch.save(hf_value_function.state_dict() ,"""hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" ,"""w""" ) as f: json.dump(_lowerCamelCase ,_lowerCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
44
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : lowercase__ = field( default=A_, metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(A_ )} ) lowercase__ = field( default=A_, metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) lowercase__ = field( default=1_28, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) lowercase__ = field( default=1_28, metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''}, ) lowercase__ = field( default=64, metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) }, ) lowercase__ = field( default=30, metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) }, ) lowercase__ = field( default=A_, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) lowercase__ = field( default=0.0, metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowercase__ = field( default=20, metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowercase__ = field( default=0, metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) }, ) lowercase__ = field(default=1, metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( A_ ): lowercase__ = '''train''' lowercase__ = '''dev''' class UpperCAmelCase_ ( A_ ): lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 def __init__( self : List[Any] , snake_case_ : SquadDataTrainingArguments , snake_case_ : PreTrainedTokenizer , snake_case_ : Optional[int] = None , snake_case_ : Union[str, Split] = Split.train , snake_case_ : Optional[bool] = False , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = "pt" , ) -> Union[str, Any]: '''simple docstring''' A__ = args A__ = is_language_sensitive A__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(snake_case_ , snake_case_ ): try: A__ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) A__ = mode # Load data features from cache or dataset file A__ = "v2" if args.version_2_with_negative else "v1" A__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ = cached_features_file + ".lock" with FileLock(snake_case_ ): if os.path.exists(snake_case_ ) and not args.overwrite_cache: A__ = time.time() A__ = torch.load(snake_case_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A__ = self.old_features["features"] A__ = self.old_features.get("dataset" , snake_case_ ) A__ = self.old_features.get("examples" , snake_case_ ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: A__ = self.processor.get_dev_examples(args.data_dir ) else: A__ = self.processor.get_train_examples(args.data_dir ) A__, A__ = squad_convert_examples_to_features( examples=self.examples , tokenizer=snake_case_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=snake_case_ , ) A__ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , snake_case_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.features ) def __getitem__( self : Union[str, Any] , snake_case_ : Any ) -> Dict[str, torch.Tensor]: '''simple docstring''' A__ = self.features[i] A__ = torch.tensor(feature.input_ids , dtype=torch.long ) A__ = torch.tensor(feature.attention_mask , dtype=torch.long ) A__ = torch.tensor(feature.token_type_ids , dtype=torch.long ) A__ = torch.tensor(feature.cls_index , dtype=torch.long ) A__ = torch.tensor(feature.p_mask , dtype=torch.float ) A__ = torch.tensor(feature.is_impossible , dtype=torch.float ) A__ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A__ = torch.tensor(feature.start_position , dtype=torch.long ) A__ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
247
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) UpperCAmelCase : int =DetaConfig( backbone_config=__lowerCAmelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__lowerCAmelCase , with_box_refine=__lowerCAmelCase , two_stage=__lowerCAmelCase , ) # set labels UpperCAmelCase : Optional[int] ='''huggingface/label-files''' if "o365" in model_name: UpperCAmelCase : Tuple =3_66 UpperCAmelCase : Union[str, Any] ='''object365-id2label.json''' else: UpperCAmelCase : Optional[Any] =91 UpperCAmelCase : List[Any] ='''coco-detection-id2label.json''' UpperCAmelCase : Union[str, Any] =num_labels UpperCAmelCase : Optional[int] =json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Tuple ={int(__lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int =idalabel UpperCAmelCase : int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __lowerCAmelCase )-> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] =[] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =dct.pop(__lowerCAmelCase ) UpperCAmelCase : int =val def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Tuple =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase : Optional[Any] =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase : Optional[int] =state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) UpperCAmelCase : str =state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict =in_proj_weight[:dim, :] UpperCAmelCase : Union[str, Any] =in_proj_bias[: dim] UpperCAmelCase : Optional[Any] =in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase : Dict =in_proj_bias[ dim : dim * 2 ] UpperCAmelCase : str =in_proj_weight[ -dim :, : ] UpperCAmelCase : Tuple =in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: '''simple docstring''' UpperCAmelCase : str =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase : int =state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : int =state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Optional[Any] =in_proj_weight[:hidden_size, :] UpperCAmelCase : str =in_proj_bias[:hidden_size] UpperCAmelCase : Optional[int] =in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCAmelCase : Optional[Any] =in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase : Dict =in_proj_weight[-hidden_size:, :] UpperCAmelCase : List[str] =in_proj_bias[-hidden_size:] def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict ='''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[Any] =Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Dict =get_deta_config(__lowerCAmelCase ) # load original state dict if model_name == "deta-swin-large": UpperCAmelCase : Optional[Any] =hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": UpperCAmelCase : str =hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) UpperCAmelCase : List[Any] =torch.load(__lowerCAmelCase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__lowerCAmelCase , param.shape ) # rename keys UpperCAmelCase : Tuple =create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCAmelCase : Union[str, Any] =state_dict.pop(__lowerCAmelCase ) UpperCAmelCase : str =val if "input_proj" in key: UpperCAmelCase : Tuple =state_dict.pop(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCAmelCase : int =state_dict.pop(__lowerCAmelCase ) UpperCAmelCase : str =val # finally, create HuggingFace model and load state dict UpperCAmelCase : Any =DetaForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() UpperCAmelCase : Tuple ='''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__lowerCAmelCase ) # load image processor UpperCAmelCase : Tuple =DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image UpperCAmelCase : List[str] =prepare_img() UpperCAmelCase : Optional[int] =processor(images=__lowerCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] =encoding['''pixel_values'''] UpperCAmelCase : Tuple =model(pixel_values.to(__lowerCAmelCase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCAmelCase : Union[str, Any] =torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) UpperCAmelCase : List[str] =torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": UpperCAmelCase : str =torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) UpperCAmelCase : List[str] =torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowerCAmelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowerCAmelCase ) , atol=1e-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
359
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""pixel_values"""] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = True , **snake_case__ , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase : List[str] =size if size is not None else {'''height''': 384, '''width''': 384} UpperCAmelCase : List[str] =get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase : List[str] =do_resize UpperCAmelCase : Tuple =size UpperCAmelCase : Optional[Any] =resample UpperCAmelCase : Optional[Any] =do_rescale UpperCAmelCase : Dict =rescale_factor UpperCAmelCase : Union[str, Any] =do_normalize UpperCAmelCase : Dict =image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase : Any =image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase : List[Any] =do_convert_rgb def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : int =get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) UpperCAmelCase : Union[str, Any] =(size['''height'''], size['''width''']) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> Optional[int]: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: '''simple docstring''' return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase : List[str] =do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Union[str, Any] =resample if resample is not None else self.resample UpperCAmelCase : Any =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : int =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Union[str, Any] =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : List[str] =image_mean if image_mean is not None else self.image_mean UpperCAmelCase : List[Any] =image_std if image_std is not None else self.image_std UpperCAmelCase : Optional[Any] =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase : List[Any] =size if size is not None else self.size UpperCAmelCase : Tuple =get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase : int =make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase : Optional[int] =[convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase : str =[to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCAmelCase : List[Any] =[self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: UpperCAmelCase : int =[self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: UpperCAmelCase : Dict =[self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] UpperCAmelCase : Optional[int] =[to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCAmelCase : str =BatchFeature(data={'''pixel_values''': images} , tensor_type=snake_case__ ) return encoded_outputs
78
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowercase : Optional[Any] = """ Human: <<task>> Assistant: """ lowercase : Tuple = """huggingface-tools/default-prompts""" lowercase : str = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="run" ) -> Optional[int]: if prompt_or_repo_id is None: lowercase : str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , _a ) is not None: return prompt_or_repo_id lowercase : Dict = cached_file( _a , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(_a , """r""" , encoding="""utf-8""" ) as f: return f.read()
20
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( _a): '''simple docstring''' def __get__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCamelCase : List[Any] = '''__cached_''' + self.fget.__name__ UpperCamelCase : Tuple = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if cached is None: UpperCamelCase : Optional[Any] = self.fget(__SCREAMING_SNAKE_CASE ) setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cached def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" if is_torch_fx_proxy(UpperCamelCase__ ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase__ , np.ndarray ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return isinstance(UpperCamelCase__ , np.ndarray ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" return _is_numpy(UpperCamelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" import torch return isinstance(UpperCamelCase__ , torch.Tensor ) def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" return False if not is_torch_available() else _is_torch(UpperCamelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" import torch return isinstance(UpperCamelCase__ , torch.device ) def a ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(UpperCamelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" import torch if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) else: return False return isinstance(UpperCamelCase__ , torch.dtype ) def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" import tensorflow as tf return isinstance(UpperCamelCase__ , tf.Tensor ) def a ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(UpperCamelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCamelCase__ ) return type(UpperCamelCase__ ) == tf.Tensor def a ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase__ , jnp.ndarray ) def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" return False if not is_flax_available() else _is_jax(UpperCamelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_py_obj(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return [to_py_obj(UpperCamelCase__ ) for o in obj] elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ).tolist() elif isinstance(UpperCamelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_numpy(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return np.array(UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ) else: return obj class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__SCREAMING_SNAKE_CASE ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) UpperCamelCase : Union[str, Any] = getattr(self , class_fields[0].name ) UpperCamelCase : List[Any] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = first_field.items() UpperCamelCase : Any = True else: try: UpperCamelCase : int = iter(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = True except TypeError: UpperCamelCase : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__SCREAMING_SNAKE_CASE ): if ( not isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) or not len(__SCREAMING_SNAKE_CASE ) == 2 or not isinstance(element[0] , __SCREAMING_SNAKE_CASE ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCamelCase : str = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCamelCase : Any = element[1] elif first_field is not None: UpperCamelCase : Any = first_field else: for field in class_fields: UpperCamelCase : Dict = getattr(self , field.name ) if v is not None: UpperCamelCase : Optional[Any] = v def __delitem__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def _lowercase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def _lowercase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def _lowercase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __setitem__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class UpperCAmelCase_ ( _a, _a): '''simple docstring''' @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE ): """simple docstring""" raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = "longest" __UpperCamelCase : List[Any] = "max_length" __UpperCamelCase : List[str] = "do_not_pad" class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = "pt" __UpperCamelCase : str = "tf" __UpperCamelCase : int = "np" __UpperCamelCase : Union[str, Any] = "jax" class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = context_managers UpperCamelCase : Optional[int] = ExitStack() def __enter__( self ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(__SCREAMING_SNAKE_CASE ) def __exit__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" self.stack.__exit__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : List[str] = infer_framework(UpperCamelCase__ ) if framework == "tf": UpperCamelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCamelCase : Any = inspect.signature(model_class.forward ) # PyTorch models else: UpperCamelCase : int = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : Union[str, Any] = model_class.__name__ UpperCamelCase : Union[str, Any] = infer_framework(UpperCamelCase__ ) if framework == "tf": UpperCamelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCamelCase : Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCamelCase : List[str] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a ( SCREAMING_SNAKE_CASE_ : MutableMapping , SCREAMING_SNAKE_CASE_ : str = "" , SCREAMING_SNAKE_CASE_ : str = "." ): """simple docstring""" def _flatten_dict(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int="" , SCREAMING_SNAKE_CASE_ : Optional[Any]="." ): for k, v in d.items(): UpperCamelCase : Tuple = str(UpperCamelCase__ ) + delimiter + str(UpperCamelCase__ ) if parent_key else k if v and isinstance(UpperCamelCase__ , UpperCamelCase__ ): yield from flatten_dict(UpperCamelCase__ , UpperCamelCase__ , delimiter=UpperCamelCase__ ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) @contextmanager def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : bool = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str]=None ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.T if axes is None else array.permute(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.transpose(UpperCamelCase__ , perm=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) else: raise ValueError(F"""Type not supported for transpose: {type(UpperCamelCase__ )}.""" ) def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.reshape(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.reshape(UpperCamelCase__ , UpperCamelCase__ ) else: raise ValueError(F"""Type not supported for reshape: {type(UpperCamelCase__ )}.""" ) def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any=None ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(UpperCamelCase__ )}.""" ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.expand_dims(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.unsqueeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase__ )}.""" ) def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.size(UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.numel() elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.size(UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase__ )}.""" ) def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" for key, value in auto_map.items(): if isinstance(UpperCamelCase__ , (tuple, list) ): UpperCamelCase : List[Any] = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCamelCase : str = F"""{repo_id}--{value}""" return auto_map def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" for base_class in inspect.getmro(UpperCamelCase__ ): UpperCamelCase : List[Any] = base_class.__module__ UpperCamelCase : Union[str, Any] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
352
def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): """simple docstring""" UpperCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE_ ) ) return data_lists def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" UpperCamelCase : list[list[float]] = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = max(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: UpperCamelCase : Dict = F"""Invalid weight of {weight:f} provided""" raise ValueError(SCREAMING_SNAKE_CASE_ ) score_lists.append(SCREAMING_SNAKE_CASE_ ) return score_lists def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): """simple docstring""" UpperCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = final_scores[j] + ele return final_scores def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" UpperCamelCase : str = get_data(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = calculate_each_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = generate_final_scores(SCREAMING_SNAKE_CASE_ ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE_ ): source_data[i].append(SCREAMING_SNAKE_CASE_ ) return source_data
315
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = 'Hello world! cécé herlolip' def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : int = FairseqRobertaModel.from_pretrained(_snake_case ) roberta.eval() # disable dropout _A : Any = roberta.model.encoder.sentence_encoder _A : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings,hidden_size=roberta.cfg.model.encoder_embed_dim,num_hidden_layers=roberta.cfg.model.encoder_layers,num_attention_heads=roberta.cfg.model.encoder_attention_heads,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim,max_position_embeddings=514,type_vocab_size=1,layer_norm_eps=1e-5,) if classification_head: _A : Dict = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""",_snake_case ) _A : Union[str, Any] = XLMRobertaXLForSequenceClassification(_snake_case ) if classification_head else XLMRobertaXLForMaskedLM(_snake_case ) model.eval() # Now let's copy all the weights. # Embeddings _A : Optional[int] = roberta_sent_encoder.embed_tokens.weight _A : int = roberta_sent_encoder.embed_positions.weight _A : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _A : Optional[int] = roberta_sent_encoder.layer_norm.weight _A : Dict = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _A : BertLayer = model.roberta.encoder.layer[i] _A : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] _A : RobertaAttention = layer.attention _A : List[str] = roberta_layer.self_attn_layer_norm.weight _A : List[Any] = roberta_layer.self_attn_layer_norm.bias # self attention _A : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _A : List[str] = roberta_layer.self_attn.q_proj.weight _A : Tuple = roberta_layer.self_attn.q_proj.bias _A : Tuple = roberta_layer.self_attn.k_proj.weight _A : int = roberta_layer.self_attn.k_proj.bias _A : List[str] = roberta_layer.self_attn.v_proj.weight _A : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output _A : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _A : Union[str, Any] = roberta_layer.self_attn.out_proj.weight _A : List[str] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _A : Tuple = roberta_layer.final_layer_norm.weight _A : Optional[int] = roberta_layer.final_layer_norm.bias # intermediate _A : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _A : List[Any] = roberta_layer.fca.weight _A : Tuple = roberta_layer.fca.bias # output _A : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _A : Tuple = roberta_layer.fca.weight _A : Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: _A : List[Any] = roberta.model.classification_heads["""mnli"""].dense.weight _A : Optional[Any] = roberta.model.classification_heads["""mnli"""].dense.bias _A : Optional[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight _A : Union[str, Any] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head _A : str = roberta.model.encoder.lm_head.dense.weight _A : List[Any] = roberta.model.encoder.lm_head.dense.bias _A : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight _A : Dict = roberta.model.encoder.lm_head.layer_norm.bias _A : Optional[int] = roberta.model.encoder.lm_head.weight _A : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _A : torch.Tensor = roberta.encode(_snake_case ).unsqueeze(0 ) # batch of size 1 _A : Tuple = model(_snake_case )[0] if classification_head: _A : Dict = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_snake_case ) ) else: _A : Tuple = roberta.model(_snake_case )[0] print(our_output.shape,their_output.shape ) _A : Optional[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _A : Tuple = torch.allclose(_snake_case,_snake_case,atol=1e-3 ) print("""Do both models output the same tensors?""","""🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(_snake_case ).mkdir(parents=_snake_case,exist_ok=_snake_case ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) _snake_case = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
26
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(poly_a or [0] )[:] SCREAMING_SNAKE_CASE__ : Tuple = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() SCREAMING_SNAKE_CASE__ : int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() SCREAMING_SNAKE_CASE__ : List[str] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 SCREAMING_SNAKE_CASE__ : Optional[int] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform SCREAMING_SNAKE_CASE__ : List[str] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product SCREAMING_SNAKE_CASE__ : Tuple = self.__multiply() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(SCREAMING_SNAKE_CASE__ ) <= 1: return dft[0] # SCREAMING_SNAKE_CASE__ : Optional[Any] = self.c_max_length // 2 while next_ncol > 0: SCREAMING_SNAKE_CASE__ : Any = [[] for i in range(SCREAMING_SNAKE_CASE__ )] SCREAMING_SNAKE_CASE__ : Tuple = self.root**next_ncol # First half of next step SCREAMING_SNAKE_CASE__ : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step SCREAMING_SNAKE_CASE__ : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_dft SCREAMING_SNAKE_CASE__ : Tuple = next_ncol // 2 return dft[0] def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.__dft("""A""" ) SCREAMING_SNAKE_CASE__ : Dict = self.__dft("""B""" ) SCREAMING_SNAKE_CASE__ : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 while next_ncol <= self.c_max_length: SCREAMING_SNAKE_CASE__ : List[str] = [[] for i in range(SCREAMING_SNAKE_CASE__ )] SCREAMING_SNAKE_CASE__ : Tuple = self.root ** (next_ncol // 2) SCREAMING_SNAKE_CASE__ : Any = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Optional[Any] = new_inverse_c next_ncol *= 2 # Unpack SCREAMING_SNAKE_CASE__ : Optional[Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """A = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) SCREAMING_SNAKE_CASE__ : int = """A*B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
25
0
from __future__ import annotations SCREAMING_SNAKE_CASE__ : Any = list[list[int]] # assigning initial values to the grid SCREAMING_SNAKE_CASE__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution SCREAMING_SNAKE_CASE__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __magic_name__ ( __lowerCAmelCase : Matrix , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __magic_name__ ( __lowerCAmelCase : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __magic_name__ ( __lowerCAmelCase : Matrix ) -> Matrix | None: if location := find_empty_location(__lowerCAmelCase ): __lowerCamelCase , __lowerCamelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = digit if sudoku(__lowerCAmelCase ) is not None: return grid __lowerCamelCase = 0 return None def __magic_name__ ( __lowerCAmelCase : Matrix ) -> None: for row in grid: for cell in row: print(__lowerCAmelCase , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") SCREAMING_SNAKE_CASE__ : Dict = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
339
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
1
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[Any] = RobertaPreLayerNormConfig.from_pretrained( lowercase__ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict _lowerCamelCase : str = torch.load(hf_hub_download(repo_id=lowercase__ , filename='pytorch_model.bin' ) ) _lowerCamelCase : Dict = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): _lowerCamelCase : Any = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue _lowerCamelCase : Dict = tensor_value _lowerCamelCase : List[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowercase__ , config=lowercase__ , state_dict=lowercase__ ) model.save_pretrained(lowercase__ ) # convert tokenizer _lowerCamelCase : Dict = AutoTokenizer.from_pretrained(lowercase__ ) tokenizer.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
96
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Optional[Any] , a_ : int , a_ : Optional[int]=13 , a_ : Optional[Any]=7 , a_ : Tuple=True , a_ : Optional[int]=True , a_ : List[str]=True , a_ : Union[str, Any]=True , a_ : List[Any]=99 , a_ : List[Any]=32 , a_ : Dict=5 , a_ : Tuple=4 , a_ : Any=37 , a_ : int="gelu" , a_ : Any=0.1 , a_ : Union[str, Any]=0.1 , a_ : Dict=5_12 , a_ : Union[str, Any]=16 , a_ : Optional[int]=2 , a_ : Dict=0.02 , a_ : List[str]=False , a_ : str=True , a_ : Any="None" , a_ : Dict=3 , a_ : List[str]=4 , a_ : Optional[Any]=None , ): lowerCAmelCase_ : str = parent lowerCAmelCase_ : Optional[Any] = batch_size lowerCAmelCase_ : Any = seq_length lowerCAmelCase_ : int = is_training lowerCAmelCase_ : List[Any] = use_input_mask lowerCAmelCase_ : str = use_token_type_ids lowerCAmelCase_ : Dict = use_labels lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : Dict = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[Any] = num_labels lowerCAmelCase_ : List[Any] = num_choices lowerCAmelCase_ : Optional[Any] = relative_attention lowerCAmelCase_ : Optional[int] = position_biased_input lowerCAmelCase_ : Union[str, Any] = pos_att_type lowerCAmelCase_ : Tuple = scope def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase_ : int = None if self.use_token_type_ids: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Dict = None if self.use_labels: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : int ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Union[str, Any] = self.get_config() lowerCAmelCase_ : Tuple = 3_00 return config def lowerCamelCase ( self : List[Any] , a_ : Optional[Any] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase ( self : Optional[Any] , a_ : List[str] , a_ : Union[str, Any] , a_ : Dict , a_ : str , a_ : int , a_ : Any , a_ : Tuple ): lowerCAmelCase_ : Union[str, Any] = DebertaModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : str = model(a_ , attention_mask=a_ , token_type_ids=a_ )[0] lowerCAmelCase_ : List[str] = model(a_ , token_type_ids=a_ )[0] lowerCAmelCase_ : Optional[Any] = model(a_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase ( self : Optional[Any] , a_ : Optional[int] , a_ : int , a_ : List[str] , a_ : int , a_ : Tuple , a_ : int , a_ : List[Any] ): lowerCAmelCase_ : List[Any] = DebertaForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Dict = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : str , a_ : List[str] , a_ : Tuple , a_ : Any , a_ : str , a_ : List[Any] , a_ : Tuple , a_ : Union[str, Any] ): lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : List[str] = DebertaForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : str = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a_ ) def lowerCamelCase ( self : Any , a_ : Union[str, Any] , a_ : Any , a_ : str , a_ : int , a_ : Dict , a_ : int , a_ : Tuple ): lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : Any = DebertaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : int = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self : Dict , a_ : Dict , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Any , a_ : List[Any] , a_ : int , a_ : str ): lowerCAmelCase_ : Optional[int] = DebertaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Tuple = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : List[Any] = config_and_inputs lowerCAmelCase_ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : int = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) a_ : Dict = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) a_ : List[Any] = True a_ : Dict = False a_ : int = False a_ : str = False a_ : List[Any] = False def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Union[str, Any] = DebertaModelTester(self ) lowerCAmelCase_ : List[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def lowerCamelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a_ ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a_ ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = DebertaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def lowerCamelCase ( self : Union[str, Any] ): pass @slow def lowerCamelCase ( self : str ): lowerCAmelCase_ : int = DebertaModel.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase_ : str = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowerCAmelCase_ : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ : Dict = model(a_ , attention_mask=a_ )[0] # compare the actual values for a slice. lowerCAmelCase_ : Optional[Any] = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
241
0
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __lowerCAmelCase : Tuple =Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __lowerCAmelCase : List[str] ={"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} __lowerCAmelCase : List[str] ="zero2" __lowerCAmelCase : Union[str, Any] ="zero3" __lowerCAmelCase : List[Any] =[ZEROa, ZEROa] def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param A__ = parameterized.to_safe_name("_".join(str(_lowerCamelCase ) for x in param.args ) ) return F"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test __lowerCAmelCase : List[Any] =list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCAmelCase ( UpperCamelCase__ ): @parameterized.expand(lowercase_ , name_func=lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :Dict )-> Optional[Any]: self.run_and_check( stage=lowercase_ , model=lowercase_ , distributed=lowercase_ , fpaa=lowercase_ , ) @require_torch_multi_gpu @parameterized.expand(lowercase_ , name_func=lowercase_ ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :int , lowercase_ :Any )-> Optional[int]: self.run_and_check( stage=lowercase_ , model=lowercase_ , distributed=lowercase_ , fpaa=lowercase_ , ) @parameterized.expand(lowercase_ , name_func=lowercase_ ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :str , lowercase_ :Tuple )-> List[Any]: self.run_and_check( stage=lowercase_ , model=lowercase_ , distributed=lowercase_ , fpaa=lowercase_ , ) @require_torch_multi_gpu @parameterized.expand(lowercase_ , name_func=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :List[Any] , lowercase_ :Union[str, Any] )-> Tuple: self.run_and_check( stage=lowercase_ , model=lowercase_ , distributed=lowercase_ , fpaa=lowercase_ , ) def UpperCAmelCase_ ( self :Dict , lowercase_ :Union[str, Any] )-> int: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :str , lowercase_ :str , lowercase_ :int = 10 , lowercase_ :bool = True , lowercase_ :bool = True , lowercase_ :bool = True , )-> List[str]: A__ = models[model] A__ = self.run_trainer( stage=lowercase_ , model_name=lowercase_ , eval_steps=lowercase_ , num_train_epochs=1 , distributed=lowercase_ , fpaa=lowercase_ , ) self.do_checks(lowercase_ ) return output_dir def UpperCAmelCase_ ( self :Dict , lowercase_ :str , lowercase_ :str , lowercase_ :int = 10 , lowercase_ :int = 1 , lowercase_ :bool = True , lowercase_ :bool = True , )-> int: A__ = self.get_auto_remove_tmp_dir("./xxx" , after=lowercase_ ) A__ = F"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowercase_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A__ = F"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A__ = [F"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A__ = self.get_launcher(lowercase_ ) A__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase_ , env=self.get_env() ) return output_dir def UpperCAmelCase_ ( self :Tuple , lowercase_ :int=False )-> str: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) A__ = min(2 , get_gpu_count() ) if distributed else 1 return F"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
123
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def UpperCamelCase ( _lowerCamelCase : bool = True , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Optional[Any] ): if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) A__ = False if main_process_only: A__ = PartialState().local_process_index == 0 return _tqdm(*_lowerCamelCase , **_lowerCamelCase , disable=_lowerCamelCase )
123
1
def __lowerCamelCase ( __a :list[int] , __a :str ) -> list[int]: """simple docstring""" A__ = int(__a ) # Initialize Result A__ = [] # Traverse through all denomination for denomination in reversed(__a ): # Find denominations while int(__a ) >= int(__a ): total_value -= int(__a ) answer.append(__a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A : Optional[Any] = [] A : Union[str, Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): A : List[str] = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) A : Dict = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter A : List[str] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] A : List[str] = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') A : Dict = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
274
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __lowerCamelCase ( __a :Dict ) -> Any: """simple docstring""" A__ = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__a , __a ) def __lowerCamelCase ( __a :str ) -> Union[str, Any]: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(__a , __a , bias=__a ) A__ = emb.weight.data return lin_layer def __lowerCamelCase ( __a :str ) -> List[str]: """simple docstring""" A__ = torch.load(__a , map_location="""cpu""" ) A__ = Namespace(**checkpoint["""cfg"""]["""model"""] ) A__ = checkpoint["""model"""] remove_ignore_keys_(__a ) A__ = state_dict["""decoder.embed_tokens.weight"""].shape[0] A__ = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} A__ = XGLMConfig( vocab_size=__a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) A__ = XGLMForCausalLM(__a ) A__ = model.load_state_dict(__a , strict=__a ) print(__a ) A__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A : str = parser.parse_args() A : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
274
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( a_ ): def __init__( self , *snake_case__ , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[int]: """simple docstring""" super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def UpperCamelCase_ ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = "eval" ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(_lowerCAmelCase ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( _lowerCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , output.predictions ) UpperCAmelCase = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCAmelCase ) return metrics def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__ = "test" ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_test_dataloader(_lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( _lowerCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , output.predictions , """predict""" ) UpperCAmelCase = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCAmelCase )
354
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class UpperCamelCase_ ( a_ ): _A : List[Any] = 'layoutlmv3' def __init__( self , snake_case__=5_02_65 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=5_12 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=10_24 , snake_case__=1_28 , snake_case__=1_28 , snake_case__=True , snake_case__=32 , snake_case__=1_28 , snake_case__=64 , snake_case__=2_56 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=2_24 , snake_case__=3 , snake_case__=16 , snake_case__=None , **snake_case__ , ) -> Tuple: """simple docstring""" super().__init__( vocab_size=snake_case__ , hidden_size=snake_case__ , num_hidden_layers=snake_case__ , num_attention_heads=snake_case__ , intermediate_size=snake_case__ , hidden_act=snake_case__ , hidden_dropout_prob=snake_case__ , attention_probs_dropout_prob=snake_case__ , max_position_embeddings=snake_case__ , type_vocab_size=snake_case__ , initializer_range=snake_case__ , layer_norm_eps=snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , ) UpperCAmelCase = max_ad_position_embeddings UpperCAmelCase = coordinate_size UpperCAmelCase = shape_size UpperCAmelCase = has_relative_attention_bias UpperCAmelCase = rel_pos_bins UpperCAmelCase = max_rel_pos UpperCAmelCase = has_spatial_attention_bias UpperCAmelCase = rel_ad_pos_bins UpperCAmelCase = max_rel_ad_pos UpperCAmelCase = text_embed UpperCAmelCase = visual_embed UpperCAmelCase = input_size UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = classifier_dropout class UpperCamelCase_ ( a_ ): _A : str = version.parse('1.12' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1e-5 @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 12 def UpperCamelCase_ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 40 , snake_case__ = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , snake_case__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(snake_case__ ) UpperCAmelCase = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase = dict( processor( snake_case__ , text=snake_case__ , boxes=snake_case__ , return_tensors=snake_case__ , ) ) return inputs
248
0
"""simple docstring""" def lowercase ( A_ , A_ )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) a : Optional[Any] = str(bin(A_ ) ) binary_number += "0" * shift_amount return binary_number def lowercase ( A_ , A_ )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) a : Tuple = str(bin(A_ ) )[2:] if shift_amount >= len(A_ ): return "0b0" a : Tuple = binary_number[: len(A_ ) - shift_amount] return "0b" + shifted_binary_number def lowercase ( A_ , A_ )-> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number a : str = "0" + str(bin(A_ ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number a : int = len(bin(A_ )[3:] ) # Find 2's complement of number a : List[str] = bin(abs(A_ ) - (1 << binary_number_length) )[3:] a : Dict = ( "1" + "0" * (binary_number_length - len(A_ )) + binary_number ) if shift_amount >= len(A_ ): return "0b" + binary_number[0] * len(A_ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(A_ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
40
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Union[str, Any] = 'upernet' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : str=5_1_2 , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : Optional[Any]=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Tuple=0.4 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_8_4 , SCREAMING_SNAKE_CASE_ : str=2_5_6 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : str=2_5_5 , **SCREAMING_SNAKE_CASE_ : str , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = backbone_config.get('''model_type''' ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) lowercase_ = backbone_config lowercase_ = hidden_size lowercase_ = initializer_range lowercase_ = pool_scales lowercase_ = use_auxiliary_head lowercase_ = auxiliary_loss_weight lowercase_ = auxiliary_in_channels lowercase_ = auxiliary_channels lowercase_ = auxiliary_num_convs lowercase_ = auxiliary_concat_input lowercase_ = loss_ignore_index def _lowercase ( self : List[str] ) -> List[str]: lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
30
0
"""simple docstring""" def a_ ( _lowercase = 100 ): _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
128
"""simple docstring""" UpperCamelCase_ =[ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
128
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : int ) -> float: '''simple docstring''' UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(snake_case_ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( snake_case_ : float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def lowerCAmelCase_ ( snake_case_ : float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(snake_case_ , 1 , 1 ) ) def lowerCAmelCase_ ( snake_case_ : int = 8_00 , snake_case_ : int = 6_00 , snake_case_ : float = -0.6 , snake_case_ : float = 0 , snake_case_ : float = 3.2 , snake_case_ : int = 50 , snake_case_ : bool = True , ) -> Image.Image: '''simple docstring''' UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(snake_case_ ): for image_y in range(snake_case_ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(snake_case_ , snake_case_ , snake_case_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(snake_case_ ) else: UpperCAmelCase_ = get_black_and_white_rgb(snake_case_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure SCREAMING_SNAKE_CASE_: Tuple =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
1
'''simple docstring''' from typing import Any class lowercase__ : '''simple docstring''' def __init__( self , __snake_case ): _SCREAMING_SNAKE_CASE : Dict = data _SCREAMING_SNAKE_CASE : Optional[int] = None def __repr__( self ): return f"""Node({self.data})""" class lowercase__ : '''simple docstring''' def __init__( self ): _SCREAMING_SNAKE_CASE : Any = None def __iter__( self ): _SCREAMING_SNAKE_CASE : Any = self.head while node: yield node.data _SCREAMING_SNAKE_CASE : List[Any] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(__snake_case ) for item in self] ) def __getitem__( self , __snake_case ): if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , __snake_case , __snake_case ): if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) _SCREAMING_SNAKE_CASE : Any = self.head for _ in range(__snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = current.next _SCREAMING_SNAKE_CASE : Dict = data def UpperCAmelCase_ ( self , __snake_case ): self.insert_nth(len(self ) , __snake_case ) def UpperCAmelCase_ ( self , __snake_case ): self.insert_nth(0 , __snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) _SCREAMING_SNAKE_CASE : Optional[int] = Node(__snake_case ) if self.head is None: _SCREAMING_SNAKE_CASE : str = new_node elif index == 0: _SCREAMING_SNAKE_CASE : Tuple = self.head # link new_node to head _SCREAMING_SNAKE_CASE : str = new_node else: _SCREAMING_SNAKE_CASE : Tuple = self.head for _ in range(index - 1 ): _SCREAMING_SNAKE_CASE : List[str] = temp.next _SCREAMING_SNAKE_CASE : Tuple = temp.next _SCREAMING_SNAKE_CASE : Dict = new_node def UpperCAmelCase_ ( self ): # print every node data print(self ) def UpperCAmelCase_ ( self ): return self.delete_nth(0 ) def UpperCAmelCase_ ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self , __snake_case = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) _SCREAMING_SNAKE_CASE : Tuple = self.head # default first node if index == 0: _SCREAMING_SNAKE_CASE : List[Any] = self.head.next else: _SCREAMING_SNAKE_CASE : Tuple = self.head for _ in range(index - 1 ): _SCREAMING_SNAKE_CASE : Any = temp.next _SCREAMING_SNAKE_CASE : Any = temp.next _SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next.next return delete_node.data def UpperCAmelCase_ ( self ): return self.head is None def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = None _SCREAMING_SNAKE_CASE : int = self.head while current: # Store the current node's next node. _SCREAMING_SNAKE_CASE : List[Any] = current.next # Make the current node's next point backwards _SCREAMING_SNAKE_CASE : Tuple = prev # Make the previous node be the current node _SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) _SCREAMING_SNAKE_CASE : Any = next_node # Return prev in order to put the head at the end _SCREAMING_SNAKE_CASE : Union[str, Any] = prev def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(SCREAMING_SNAKE_CASE__ ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE__ , i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(SCREAMING_SNAKE_CASE__ ) == 9 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _SCREAMING_SNAKE_CASE : List[str] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(-8 , 1 ) ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = [ -9, 100, Node(7734_5112 ), """dlrow olleH""", 7, 5555, 0, -1_9_2.5_5_5_5_5, """Hello, world!""", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] _SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _SCREAMING_SNAKE_CASE : Any = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _SCREAMING_SNAKE_CASE : List[Any] = linked_list.delete_tail() assert result == 1_2.2 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _SCREAMING_SNAKE_CASE : Optional[int] = linked_list.delete_nth(10 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def snake_case_ ( ): """simple docstring""" from doctest import testmod testmod() _SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(SCREAMING_SNAKE_CASE__ ) print("""\nReading/changing Node data using indexing:""" ) print(f"""Element at Position 1: {linked_list[1]}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(SCREAMING_SNAKE_CASE__ ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE__ )}""" ) if __name__ == "__main__": main()
200
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'speech_to_text_2' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : int,lowercase_ : Tuple=1_0_0_0_0,lowercase_ : Tuple=6,lowercase_ : Optional[Any]=2_0_4_8,lowercase_ : Dict=4,lowercase_ : List[Any]=0.0,lowercase_ : str=True,lowercase_ : Any="relu",lowercase_ : Optional[int]=2_5_6,lowercase_ : int=0.1,lowercase_ : Any=0.0,lowercase_ : Tuple=0.0,lowercase_ : Union[str, Any]=0.02,lowercase_ : List[Any]=2,lowercase_ : Optional[Any]=True,lowercase_ : str=1,lowercase_ : Any=0,lowercase_ : Optional[Any]=2,lowercase_ : Optional[Any]=1_0_2_4,**lowercase_ : int,)-> Optional[Any]: '''simple docstring''' A__ = vocab_size A__ = d_model A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = decoder_layerdrop A__ = use_cache A__ = decoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True A__ = max_target_positions super().__init__( pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,decoder_start_token_id=lowercase_,**lowercase_,)
368
import argparse import struct import unittest class A : """simple docstring""" def __init__( self : Any,lowercase_ : bytes )-> None: '''simple docstring''' A__ = data # Initialize hash values A__ = [ 0X6_a_0_9_e_6_6_7, 0Xb_b_6_7_a_e_8_5, 0X3_c_6_e_f_3_7_2, 0Xa_5_4_f_f_5_3_a, 0X5_1_0_e_5_2_7_f, 0X9_b_0_5_6_8_8_c, 0X1_f_8_3_d_9_a_b, 0X5_b_e_0_c_d_1_9, ] # Initialize round constants A__ = [ 0X4_2_8_a_2_f_9_8, 0X7_1_3_7_4_4_9_1, 0Xb_5_c_0_f_b_c_f, 0Xe_9_b_5_d_b_a_5, 0X3_9_5_6_c_2_5_b, 0X5_9_f_1_1_1_f_1, 0X9_2_3_f_8_2_a_4, 0Xa_b_1_c_5_e_d_5, 0Xd_8_0_7_a_a_9_8, 0X1_2_8_3_5_b_0_1, 0X2_4_3_1_8_5_b_e, 0X5_5_0_c_7_d_c_3, 0X7_2_b_e_5_d_7_4, 0X8_0_d_e_b_1_f_e, 0X9_b_d_c_0_6_a_7, 0Xc_1_9_b_f_1_7_4, 0Xe_4_9_b_6_9_c_1, 0Xe_f_b_e_4_7_8_6, 0X0_f_c_1_9_d_c_6, 0X2_4_0_c_a_1_c_c, 0X2_d_e_9_2_c_6_f, 0X4_a_7_4_8_4_a_a, 0X5_c_b_0_a_9_d_c, 0X7_6_f_9_8_8_d_a, 0X9_8_3_e_5_1_5_2, 0Xa_8_3_1_c_6_6_d, 0Xb_0_0_3_2_7_c_8, 0Xb_f_5_9_7_f_c_7, 0Xc_6_e_0_0_b_f_3, 0Xd_5_a_7_9_1_4_7, 0X0_6_c_a_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_b_7_0_a_8_5, 0X2_e_1_b_2_1_3_8, 0X4_d_2_c_6_d_f_c, 0X5_3_3_8_0_d_1_3, 0X6_5_0_a_7_3_5_4, 0X7_6_6_a_0_a_b_b, 0X8_1_c_2_c_9_2_e, 0X9_2_7_2_2_c_8_5, 0Xa_2_b_f_e_8_a_1, 0Xa_8_1_a_6_6_4_b, 0Xc_2_4_b_8_b_7_0, 0Xc_7_6_c_5_1_a_3, 0Xd_1_9_2_e_8_1_9, 0Xd_6_9_9_0_6_2_4, 0Xf_4_0_e_3_5_8_5, 0X1_0_6_a_a_0_7_0, 0X1_9_a_4_c_1_1_6, 0X1_e_3_7_6_c_0_8, 0X2_7_4_8_7_7_4_c, 0X3_4_b_0_b_c_b_5, 0X3_9_1_c_0_c_b_3, 0X4_e_d_8_a_a_4_a, 0X5_b_9_c_c_a_4_f, 0X6_8_2_e_6_f_f_3, 0X7_4_8_f_8_2_e_e, 0X7_8_a_5_6_3_6_f, 0X8_4_c_8_7_8_1_4, 0X8_c_c_7_0_2_0_8, 0X9_0_b_e_f_f_f_a, 0Xa_4_5_0_6_c_e_b, 0Xb_e_f_9_a_3_f_7, 0Xc_6_7_1_7_8_f_2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__ ( lowercase_ : bytes )-> bytes: '''simple docstring''' A__ = B'\x80' + (B'\x00' * (6_3 - (len(lowercase_ ) + 8) % 6_4)) A__ = struct.pack('>Q',(len(lowercase_ ) * 8) ) return data + padding + big_endian_integer def snake_case__ ( self : Optional[int] )-> None: '''simple docstring''' A__ = [ self.preprocessed_data[x : x + 6_4] for x in range(0,len(self.preprocessed_data ),6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L',lowercase_ ) ) # add 48 0-ed integers words += [0] * 4_8 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0,6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 1_5],7 ) ^ self.ror(words[index - 1_5],1_8 ) ^ (words[index - 1_5] >> 3) ) A__ = ( self.ror(words[index - 2],1_7 ) ^ self.ror(words[index - 2],1_9 ) ^ (words[index - 2] >> 1_0) ) A__ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A__ = self.ror(lowercase_,6 ) ^ self.ror(lowercase_,1_1 ) ^ self.ror(lowercase_,2_5 ) A__ = (e & f) ^ ((~e & 0Xf_f_f_f_f_f_f_f) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A__ = self.ror(lowercase_,2 ) ^ self.ror(lowercase_,1_3 ) ^ self.ror(lowercase_,2_2 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(lowercase_ )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__ ( self : Union[str, Any],lowercase_ : int,lowercase_ : int )-> int: '''simple docstring''' return 0Xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> None: '''simple docstring''' import hashlib A__ = bytes('Test String','utf-8' ) self.assertEqual(SHAaaa(lowercase_ ).hash,hashlib.shaaaa(lowercase_ ).hexdigest() ) def _snake_case( ) -> None: '''simple docstring''' import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(SCREAMING_SNAKE_CASE__ , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
282
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger() @dataclass class _a : _a : nn.Module _a : List[nn.Module] = field(default_factory=_lowercase) _a : list = field(default_factory=_lowercase) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple )-> List[Any]: lowerCAmelCase__ : Tuple = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] )-> List[Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def UpperCAmelCase__( self : str )-> Tuple: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _a : _a : nn.Module _a : nn.Module _a : int = 0 _a : List = field(default_factory=_lowercase) _a : List = field(default_factory=_lowercase) def __call__( self : Dict , _SCREAMING_SNAKE_CASE : List[Any] )-> Any: lowerCAmelCase__ : Tuple = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized lowerCAmelCase__ : List[Any] = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized lowerCAmelCase__ : Optional[Any] = list(filter(lambda _SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : Dict = list(filter(lambda _SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( F'Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while' F' destination module has {len(SCREAMING_SNAKE_CASE_ )}.' ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def lowerCamelCase_ ( _a , _a , _a , _a = True ): """simple docstring""" print(f'Converting {name}...' ) with torch.no_grad(): lowerCAmelCase__ : int = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ).eval() lowerCAmelCase__ : Tuple = ResNetForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() lowerCAmelCase__ : List[Any] = ModuleTransfer(src=SCREAMING_SNAKE_CASE__ , dest=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Tuple = torch.randn((1, 3, 224, 224) ) module_transfer(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(from_model(SCREAMING_SNAKE_CASE__ ) , our_model(SCREAMING_SNAKE_CASE__ ).logits ), "The model logits don't match the original one." lowerCAmelCase__ : int = f'resnet{"-".join(name.split("resnet" ) )}' print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) # we can use the convnext one lowerCAmelCase__ : Dict = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) print(f'Pushed {checkpoint_name}' ) def lowerCamelCase_ ( _a , _a = None , _a = True ): """simple docstring""" lowerCAmelCase__ : Optional[int] = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : int = 1_000 lowerCAmelCase__ : str = (1, num_labels) lowerCAmelCase__ : Any = '''huggingface/label-files''' lowerCAmelCase__ : Union[str, Any] = num_labels lowerCAmelCase__ : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase__ : int = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : List[str] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Dict = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCamelCase = parser.parse_args() lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
131
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = """https://openaipublic.azureedge.net/jukebox/models/""" __snake_case = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def _A ( SCREAMING_SNAKE_CASE__ : List[Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :int = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Union[str, Any] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Optional[Any] = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Optional[int] = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: UpperCamelCase :Any = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: UpperCamelCase :int = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCamelCase :Any = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: UpperCamelCase :str = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Optional[int] = {} import re UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :str = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Tuple = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :int = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Optional[int] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Optional[Any] = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :int = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Tuple = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = re_encoder_block_conv_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = regex_match.groups() UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase :List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :int = re_encoder_block_conv_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_encoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_encoder_block_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[Any] = regex_match.groups() UpperCamelCase :Any = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase :Any = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :str = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' UpperCamelCase :List[str] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Union[str, Any] = prefix + resnet_block UpperCamelCase :str = re_encoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_encoder_block_proj_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[int] = re_encoder_block_proj_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = regex_match.groups() UpperCamelCase :int = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' UpperCamelCase :str = re_encoder_block_proj_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_decoder_block_conv_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = regex_match.groups() UpperCamelCase :str = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :Union[str, Any] = re_decoder_block_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_decoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_decoder_block_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = regex_match.groups() UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase :Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :Any = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' UpperCamelCase :Optional[int] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Any = prefix + resnet_block UpperCamelCase :Optional[int] = re_decoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_decoder_block_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[int] = re_decoder_block_proj_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[Any] = regex_match.groups() UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' UpperCamelCase :Any = re_decoder_block_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_prior_cond_conv_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = regex_match.groups() UpperCamelCase :str = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :int = re_prior_cond_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_prior_cond_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = re_prior_cond_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = regex_match.groups() UpperCamelCase :Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase :int = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' UpperCamelCase :List[Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Any = prefix + resnet_block UpperCamelCase :Dict = re_prior_cond_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_prior_cond_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :List[str] = re_prior_cond_proj_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = regex_match.groups() UpperCamelCase :Dict = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' UpperCamelCase :Any = re_prior_cond_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # keep original key else: UpperCamelCase :List[str] = original_key UpperCamelCase :Any = replace_key(SCREAMING_SNAKE_CASE__ ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: UpperCamelCase :Union[str, Any] = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) UpperCamelCase :List[Any] = original_key UpperCamelCase :Any = original_key UpperCamelCase :Optional[int] = value return new_dict @torch.no_grad() def _A ( SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): UpperCamelCase :Dict = requests.get(F'''{PREFIX}{file}''' , allow_redirects=SCREAMING_SNAKE_CASE__ ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=SCREAMING_SNAKE_CASE__ ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , '''wb''' ).write(r.content ) UpperCamelCase :Optional[int] = MODEL_MAPPING[model_name.split('''/''' )[-1]] UpperCamelCase :Any = JukeboxConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = JukeboxModel(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = [] UpperCamelCase :List[Any] = {} for i, dict_name in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] UpperCamelCase :Tuple = {} for k in old_dic.keys(): if k.endswith('''.b''' ): UpperCamelCase :Optional[int] = old_dic[k] elif k.endswith('''.w''' ): UpperCamelCase :Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCamelCase :Optional[Any] = old_dic[k] else: UpperCamelCase :Any = old_dic[k] UpperCamelCase :Any = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' UpperCamelCase :Dict = fix_jukebox_keys(SCREAMING_SNAKE_CASE__ , model.state_dict() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) weight_dict.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = weight_dict.pop(0 ) model.vqvae.load_state_dict(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) return weight_dict if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) __snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
259
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
import copy import re class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 'hp' lowerCAmelCase__ = {} lowerCAmelCase__ = None @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = prefix lowerCamelCase_ = defaults cls.build_naming_info() @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]: if len(lowercase ) == 0: return "" lowerCamelCase_ = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowercase ) + 1 ): lowerCamelCase_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowerCamelCase_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowercase ): lowerCamelCase_ = "" while integer != 0: lowerCamelCase_ = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s lowerCamelCase_ = 0 while True: lowerCamelCase_ = word + "#" + int_to_alphabetic(lowercase ) if sword in info["reverse_short_word"]: continue else: lowerCamelCase_ = sword break lowerCamelCase_ = short_word lowerCamelCase_ = word return short_word @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> int: lowerCamelCase_ = param_name.split("_" ) lowerCamelCase_ = [TrialShortNamer.shortname_for_word(lowercase , lowercase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowerCamelCase_ = ["", "_"] for separator in separators: lowerCamelCase_ = separator.join(lowercase ) if shortname not in info["reverse_short_param"]: lowerCamelCase_ = shortname lowerCamelCase_ = param_name return shortname return param_name @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]: lowerCamelCase_ = TrialShortNamer.shortname_for_key(lowercase , lowercase ) lowerCamelCase_ = short_name lowerCamelCase_ = param_name @classmethod def SCREAMING_SNAKE_CASE_( cls ) -> Dict: if cls.NAMING_INFO is not None: return lowerCamelCase_ = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } lowerCamelCase_ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowercase , lowercase ) lowerCamelCase_ = info @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> Optional[int]: cls.build_naming_info() assert cls.PREFIX is not None lowerCamelCase_ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowerCamelCase_ = cls.NAMING_INFO["short_param"][k] if isinstance(lowercase , lowercase ): lowerCamelCase_ = 1 if v else 0 lowerCamelCase_ = "" if isinstance(lowercase , (int, float) ) else "-" lowerCamelCase_ = f'{key}{sep}{v}' name.append(lowercase ) return "_".join(lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> List[Any]: lowerCamelCase_ = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowerCamelCase_ = [] else: lowerCamelCase_ = repr.split("_" ) lowerCamelCase_ = {} for value in values: if "-" in value: lowerCamelCase_ , lowerCamelCase_ = value.split("-" ) else: lowerCamelCase_ = re.sub("[0-9.]" , "" , lowercase ) lowerCamelCase_ = float(re.sub("[^0-9.]" , "" , lowercase ) ) lowerCamelCase_ = cls.NAMING_INFO["reverse_short_param"][p_k] lowerCamelCase_ = p_v for k in cls.DEFAULTS: if k not in parameters: lowerCamelCase_ = cls.DEFAULTS[k] return parameters
47
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase_ = n_correct / len(__a ) return { "accuracy": accuracy, }
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : int , *__a : Dict , **__a : str ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig A__ : Tuple = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''tapas''' def __init__( self : Optional[int] , __a : List[Any]=30522 , __a : int=768 , __a : int=12 , __a : Tuple=12 , __a : List[Any]=3072 , __a : str="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=1024 , __a : int=[3, 256, 256, 2, 256, 256, 10] , __a : Dict=0.0_2 , __a : int=1e-12 , __a : str=0 , __a : Dict=1_0.0 , __a : Tuple=0 , __a : Dict=1.0 , __a : str=None , __a : List[Any]=1.0 , __a : Union[str, Any]=False , __a : Any=None , __a : Optional[Any]=1.0 , __a : Dict=1.0 , __a : Dict=False , __a : List[str]=False , __a : List[Any]="ratio" , __a : Tuple=None , __a : str=None , __a : Dict=64 , __a : str=32 , __a : List[Any]=False , __a : int=True , __a : List[str]=False , __a : Any=False , __a : Dict=True , __a : Dict=False , __a : int=None , __a : Optional[int]=None , **__a : List[Any] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __snake_case : Optional[int] = vocab_size __snake_case : str = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : str = intermediate_size __snake_case : Tuple = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : List[str] = type_vocab_sizes __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps # Fine-tuning task hyperparameters __snake_case : Optional[Any] = positive_label_weight __snake_case : Dict = num_aggregation_labels __snake_case : Optional[int] = aggregation_loss_weight __snake_case : List[str] = use_answer_as_supervision __snake_case : int = answer_loss_importance __snake_case : List[Any] = use_normalized_answer_loss __snake_case : Tuple = huber_loss_delta __snake_case : Union[str, Any] = temperature __snake_case : Optional[Any] = aggregation_temperature __snake_case : Tuple = use_gumbel_for_cells __snake_case : List[str] = use_gumbel_for_aggregation __snake_case : str = average_approximation_function __snake_case : Optional[int] = cell_selection_preference __snake_case : Union[str, Any] = answer_loss_cutoff __snake_case : Dict = max_num_rows __snake_case : int = max_num_columns __snake_case : Optional[Any] = average_logits_per_cell __snake_case : Any = select_one_column __snake_case : Any = allow_empty_column_selection __snake_case : str = init_cell_selection_weights_to_zero __snake_case : Union[str, Any] = reset_position_index_per_cell __snake_case : Optional[Any] = disable_per_token_loss # Aggregation hyperparameters __snake_case : Any = aggregation_labels __snake_case : int = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): __snake_case : int = {int(__a ): v for k, v in aggregation_labels.items()}
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A__ : Tuple = pytest.mark.integration @require_faiss class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : Dict = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__a ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' import faiss __snake_case : Dataset = self._create_dummy_dataset() __snake_case : Dict = dset.map( lambda __a , __a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a ) __snake_case : List[Any] = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __snake_case , __snake_case : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Tuple ) -> Any: '''simple docstring''' import faiss __snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[Any] ) -> Dict: '''simple docstring''' import faiss __snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __snake_case , __snake_case : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' __snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(__a , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' from elasticsearch import Elasticsearch __snake_case : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __snake_case : Any = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __snake_case : Dict = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __snake_case : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=__a ) __snake_case , __snake_case : str = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : str ) -> int: '''simple docstring''' import faiss __snake_case : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __snake_case : Dict = np.zeros(5 , dtype=np.floataa ) __snake_case : List[str] = 1 __snake_case , __snake_case : List[Any] = index.search(__a ) self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __snake_case : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __snake_case , __snake_case : Dict = index.search_batch(__a ) self.assertRaises(__a , index.search_batch , queries[0] ) __snake_case : Any = [scores[0] for scores in total_scores] __snake_case : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __a ) def A_ ( self : int ) -> int: '''simple docstring''' import faiss __snake_case : int = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __snake_case : List[str] = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__a ): __snake_case : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : str ) -> Dict: '''simple docstring''' import faiss __snake_case : Tuple = faiss.IndexFlat(5 ) __snake_case : List[Any] = FaissIndex(custom_index=__a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : List[Any] ) -> int: '''simple docstring''' import faiss __snake_case : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: index.save(tmp_file.name ) __snake_case : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __snake_case : List[Any] = np.zeros(5 , dtype=np.floataa ) __snake_case : Any = 1 __snake_case , __snake_case : int = index.search(__a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def a_ ( _UpperCAmelCase : str ) -> Optional[int]: import faiss __snake_case : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) __snake_case : Dict = 'index.faiss' __snake_case : Any = f'''mock://{index_name}''' index.save(_UpperCAmelCase ,storage_options=mockfs.storage_options ) __snake_case : Any = FaissIndex.load(_UpperCAmelCase ,storage_options=mockfs.storage_options ) __snake_case : Any = np.zeros(5 ,dtype=np.floataa ) __snake_case : Any = 1 __snake_case , __snake_case : Tuple = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __snake_case : int = Elasticsearch() __snake_case : Dict = {'acknowledged': True} __snake_case : List[Any] = ElasticSearchIndex(es_client=__a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __snake_case : Optional[Any] = 'foo' __snake_case : int = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case : List[Any] = index.search(__a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __snake_case : Dict = 'foo' __snake_case : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case : Optional[Any] = index.search(__a , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __snake_case : List[Any] = ['foo', 'bar', 'foobar'] __snake_case : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case : Any = index.search_batch(__a ) __snake_case : Any = [scores[0] for scores in total_scores] __snake_case : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a ) # batched queries with timeout __snake_case : Tuple = ['foo', 'bar', 'foobar'] __snake_case : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case : int = index.search_batch(__a , request_timeout=30 ) __snake_case : Any = [scores[0] for scores in total_scores] __snake_case : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a )
0
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __magic_name__ = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __magic_name__ = concatenate_datasets __magic_name__ = DownloadConfig __magic_name__ = DownloadManager __magic_name__ = DownloadMode __magic_name__ = DownloadConfig __magic_name__ = DownloadMode __magic_name__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
100
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : List[Any] = ['''image_processor''', '''tokenizer'''] __lowercase : List[Any] = '''BridgeTowerImageProcessor''' __lowercase : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , lowerCAmelCase__ , lowerCAmelCase__): super().__init__(lowerCAmelCase__ , lowerCAmelCase__) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel_values + pixel_mask __SCREAMING_SNAKE_CASE = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_center_crop=lowerCAmelCase__ , **lowerCAmelCase__) encoding.update(lowerCAmelCase__) return encoding def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__) @property def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
100
1
"""simple docstring""" from __future__ import annotations from random import random class lowercase__ : def __init__( self : Any , snake_case__ : int | None = None ): lowerCamelCase_ : str =value lowerCamelCase_ : List[str] =random() lowerCamelCase_ : Node | None =None lowerCamelCase_ : Node | None =None def __repr__( self : Union[str, Any] ): from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Tuple ): lowerCamelCase_ : Optional[Any] =str(self.value ) + " " lowerCamelCase_ : Optional[int] =str(self.left or "" ) lowerCamelCase_ : List[Any] =str(self.right or "" ) return value + left + right def _snake_case ( lowerCamelCase__ : Node | None , lowerCamelCase__ : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCamelCase_ , lowerCamelCase_ : List[str] =split(root.left , lowerCamelCase__ ) return left, root else: lowerCamelCase_ , lowerCamelCase_ : List[str] =split(root.right , lowerCamelCase__ ) return root, right def _snake_case ( lowerCamelCase__ : Node | None , lowerCamelCase__ : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCamelCase_ : str =merge(left.right , lowerCamelCase__ ) return left else: lowerCamelCase_ : Tuple =merge(lowerCamelCase__ , right.left ) return right def _snake_case ( lowerCamelCase__ : Node | None , lowerCamelCase__ : int ) -> Node | None: lowerCamelCase_ : Any =Node(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] =split(lowerCamelCase__ , lowerCamelCase__ ) return merge(merge(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) def _snake_case ( lowerCamelCase__ : Node | None , lowerCamelCase__ : int ) -> Node | None: lowerCamelCase_ , lowerCamelCase_ : str =split(lowerCamelCase__ , value - 1 ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] =split(lowerCamelCase__ , lowerCamelCase__ ) return merge(lowerCamelCase__ , lowerCamelCase__ ) def _snake_case ( lowerCamelCase__ : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def _snake_case ( lowerCamelCase__ : Node | None , lowerCamelCase__ : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": lowerCamelCase_ : Optional[int] =insert(lowerCamelCase__ , int(arg[1:] ) ) elif arg[0] == "-": lowerCamelCase_ : Optional[Any] =erase(lowerCamelCase__ , int(arg[1:] ) ) else: print("Unknown command" ) return root def _snake_case ( ) -> None: lowerCamelCase_ : Optional[int] =None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) lowerCamelCase_ : str =input() while args != "q": lowerCamelCase_ : List[str] =interact_treap(lowerCamelCase__ , lowerCamelCase__ ) print(lowerCamelCase__ ) lowerCamelCase_ : List[str] =input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
209
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule A__ : Tuple = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :Optional[int] = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 'mask2former' _SCREAMING_SNAKE_CASE = ['swin'] _SCREAMING_SNAKE_CASE = {'hidden_size': 'hidden_dim'} def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[Dict] = None , _lowerCAmelCase : int = 2_5_6 , _lowerCAmelCase : int = 2_5_6 , _lowerCAmelCase : int = 2_5_6 , _lowerCAmelCase : int = 1_0_2_4 , _lowerCAmelCase : str = "relu" , _lowerCAmelCase : int = 6 , _lowerCAmelCase : int = 1_0 , _lowerCAmelCase : int = 8 , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : int = 2_0_4_8 , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 2_5_5 , _lowerCAmelCase : int = 1_0_0 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 2.0 , _lowerCAmelCase : float = 5.0 , _lowerCAmelCase : float = 5.0 , _lowerCAmelCase : int = 1_2_5_4_4 , _lowerCAmelCase : float = 3.0 , _lowerCAmelCase : float = 0.75 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : bool = True , _lowerCAmelCase : List[int] = [4, 8, 1_6, 3_2] , _lowerCAmelCase : bool = None , **_lowerCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) snake_case_ = CONFIG_MAPPING['''swin''']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__A , __A ): snake_case_ = backbone_config.pop("model_type" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) snake_case_ = backbone_config snake_case_ = feature_size snake_case_ = mask_feature_size snake_case_ = hidden_dim snake_case_ = encoder_feedforward_dim snake_case_ = activation_function snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = num_attention_heads snake_case_ = dropout snake_case_ = dim_feedforward snake_case_ = pre_norm snake_case_ = enforce_input_projection snake_case_ = common_stride snake_case_ = ignore_value snake_case_ = num_queries snake_case_ = no_object_weight snake_case_ = class_weight snake_case_ = mask_weight snake_case_ = dice_weight snake_case_ = train_num_points snake_case_ = oversample_ratio snake_case_ = importance_sample_ratio snake_case_ = init_std snake_case_ = init_xavier_std snake_case_ = use_auxiliary_loss snake_case_ = feature_strides snake_case_ = output_auxiliary_logits snake_case_ = decoder_layers super().__init__(**__A ) @classmethod def lowerCAmelCase__ ( cls : str , _lowerCAmelCase : PretrainedConfig , **_lowerCAmelCase : Any ) -> List[str]: """simple docstring""" return cls( backbone_config=__A , **__A , ) def lowerCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
159
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0
'''simple docstring''' def _snake_case ( A ) -> str: return "".join(chr(ord(A ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
228
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A , A , A ) -> Optional[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = to_pil_image(A ) lowerCAmelCase__ , lowerCAmelCase__ = pil_image.size lowerCAmelCase__ = pytesseract.image_to_data(A , lang=A , output_type='''dict''' , config=A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase__ = [idx for idx, word in enumerate(A ) if not word.strip()] lowerCAmelCase__ = [word for idx, word in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ = [] for x, y, w, h in zip(A , A , A , A ): lowerCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(A ) # finally, normalize the bounding boxes lowerCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A , A , A ) ) assert len(A ) == len(A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = ["pixel_values"] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = True , lowerCamelCase_ = 1 / 2_55 , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = "" , **lowerCamelCase_ , ) -> None: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_value lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ = apply_ocr lowerCAmelCase__ = ocr_lang lowerCAmelCase__ = tesseract_config def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase__ = (size['''height'''], size['''width''']) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowerCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ = apply_tesseract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) words_batch.append(lowerCamelCase_ ) boxes_batch.append(lowerCamelCase_ ) if do_resize: lowerCAmelCase__ = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCAmelCase__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase_ ) if apply_ocr: lowerCAmelCase__ = words_batch lowerCAmelCase__ = boxes_batch return data
228
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a_ ( _lowerCAmelCase ) -> int: __lowerCamelCase : Optional[int] = 384 __lowerCamelCase : List[str] = 7 if "tiny" in model_name: __lowerCamelCase : List[str] = 96 __lowerCamelCase : Optional[int] = (2, 2, 6, 2) __lowerCamelCase : List[str] = (3, 6, 12, 24) elif "small" in model_name: __lowerCamelCase : str = 96 __lowerCamelCase : Tuple = (2, 2, 18, 2) __lowerCamelCase : List[str] = (3, 6, 12, 24) elif "base" in model_name: __lowerCamelCase : Tuple = 128 __lowerCamelCase : int = (2, 2, 18, 2) __lowerCamelCase : Any = (4, 8, 16, 32) __lowerCamelCase : List[str] = 12 __lowerCamelCase : Optional[Any] = 512 elif "large" in model_name: __lowerCamelCase : Union[str, Any] = 192 __lowerCamelCase : List[Any] = (2, 2, 18, 2) __lowerCamelCase : Tuple = (6, 12, 24, 48) __lowerCamelCase : Optional[Any] = 12 __lowerCamelCase : List[str] = 768 # set label information __lowerCamelCase : Union[str, Any] = 150 __lowerCamelCase : List[Any] = 'huggingface/label-files' __lowerCamelCase : Optional[int] = 'ade20k-id2label.json' __lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCAmelCase ,_lowerCAmelCase ,repo_type='dataset' ) ,'r' ) ) __lowerCamelCase : List[str] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowerCamelCase : str = {v: k for k, v in idalabel.items()} __lowerCamelCase : Optional[Any] = SwinConfig( embed_dim=_lowerCAmelCase ,depths=_lowerCAmelCase ,num_heads=_lowerCAmelCase ,window_size=_lowerCAmelCase ,out_features=['stage1', 'stage2', 'stage3', 'stage4'] ,) __lowerCamelCase : Dict = UperNetConfig( backbone_config=_lowerCAmelCase ,auxiliary_in_channels=_lowerCAmelCase ,num_labels=_lowerCAmelCase ,idalabel=_lowerCAmelCase ,labelaid=_lowerCAmelCase ,) return config def a_ ( _lowerCAmelCase ) -> Union[str, Any]: __lowerCamelCase : List[str] = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm1.weight', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm1.bias', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', F'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', F'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', F'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', F'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm2.weight', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm2.bias', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', F'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', F'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', F'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', F'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.stages.{i}.downsample.reduction.weight', F'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.stages.{i}.downsample.norm.weight', F'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.stages.{i}.downsample.norm.bias', F'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[str]: __lowerCamelCase : Dict = dct.pop(_lowerCAmelCase ) __lowerCamelCase : List[Any] = val def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: __lowerCamelCase : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCamelCase : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCamelCase : Optional[int] = state_dict.pop(F'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) __lowerCamelCase : Union[str, Any] = state_dict.pop(F'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : Union[str, Any] = in_proj_weight[:dim, :] __lowerCamelCase : str = in_proj_bias[: dim] __lowerCamelCase : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] __lowerCamelCase : List[str] = in_proj_bias[ dim : dim * 2 ] __lowerCamelCase : Optional[Any] = in_proj_weight[ -dim :, : ] __lowerCamelCase : str = in_proj_bias[-dim :] # fmt: on def a_ ( _lowerCAmelCase ) -> Dict: __lowerCamelCase ,__lowerCamelCase : List[Any] = x.shape __lowerCamelCase : Any = x.reshape(_lowerCAmelCase ,4 ,in_channel // 4 ) __lowerCamelCase : str = x[:, [0, 2, 1, 3], :].transpose(1 ,2 ).reshape(_lowerCAmelCase ,_lowerCAmelCase ) return x def a_ ( _lowerCAmelCase ) -> int: __lowerCamelCase ,__lowerCamelCase : str = x.shape __lowerCamelCase : Optional[int] = x.reshape(_lowerCAmelCase ,in_channel // 4 ,4 ) __lowerCamelCase : int = x[:, :, [0, 2, 1, 3]].transpose(1 ,2 ).reshape(_lowerCAmelCase ,_lowerCAmelCase ) return x def a_ ( _lowerCAmelCase ) -> int: __lowerCamelCase : int = x.shape[0] __lowerCamelCase : int = x.reshape(4 ,in_channel // 4 ) __lowerCamelCase : Union[str, Any] = x[[0, 2, 1, 3], :].transpose(0 ,1 ).reshape(_lowerCAmelCase ) return x def a_ ( _lowerCAmelCase ) -> List[str]: __lowerCamelCase : List[str] = x.shape[0] __lowerCamelCase : Any = x.reshape(in_channel // 4 ,4 ) __lowerCamelCase : List[Any] = x[:, [0, 2, 1, 3]].transpose(0 ,1 ).reshape(_lowerCAmelCase ) return x def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[int]: __lowerCamelCase : Tuple = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } __lowerCamelCase : Optional[Any] = model_name_to_url[model_name] __lowerCamelCase : str = torch.hub.load_state_dict_from_url(_lowerCAmelCase ,map_location='cpu' ,file_name=_lowerCAmelCase )[ 'state_dict' ] for name, param in state_dict.items(): print(_lowerCAmelCase ,param.shape ) __lowerCamelCase : str = get_upernet_config(_lowerCAmelCase ) __lowerCamelCase : int = UperNetForSemanticSegmentation(_lowerCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowerCamelCase : str = state_dict.pop(_lowerCAmelCase ) if "bn" in key: __lowerCamelCase : List[str] = key.replace('bn' ,'batch_norm' ) __lowerCamelCase : Any = val # rename keys __lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase ,config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowerCamelCase : int = reverse_correct_unfold_reduction_order(_lowerCAmelCase ) if "norm" in key: __lowerCamelCase : Optional[Any] = reverse_correct_unfold_norm_order(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # verify on image __lowerCamelCase : int = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' __lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ).raw ).convert('RGB' ) __lowerCamelCase : str = SegformerImageProcessor() __lowerCamelCase : List[Any] = processor(_lowerCAmelCase ,return_tensors='pt' ).pixel_values with torch.no_grad(): __lowerCamelCase : Dict = model(_lowerCAmelCase ) __lowerCamelCase : Tuple = outputs.logits print(logits.shape ) print('First values of logits:' ,logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowerCamelCase : Union[str, Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": __lowerCamelCase : Optional[Any] = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": __lowerCamelCase : Dict = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": __lowerCamelCase : List[Any] = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' ,outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[f'''upernet-swin-{size}''' for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _UpperCamelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
208
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[int]: if "xprophetnet" in prophetnet_checkpoint_path: __lowerCamelCase : Union[str, Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(_lowerCAmelCase ) __lowerCamelCase ,__lowerCamelCase : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( _lowerCAmelCase ,output_loading_info=_lowerCAmelCase ) else: __lowerCamelCase : Optional[int] = ProphetNetForConditionalGenerationOld.from_pretrained(_lowerCAmelCase ) __lowerCamelCase ,__lowerCamelCase : List[str] = ProphetNetForConditionalGeneration.from_pretrained( _lowerCAmelCase ,output_loading_info=_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = ['key_proj', 'value_proj', 'query_proj'] __lowerCamelCase : Optional[Any] = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: __lowerCamelCase : Optional[int] = key.split('.' ) if attributes[0] == "lm_head": __lowerCamelCase : Dict = prophet __lowerCamelCase : List[Any] = prophet_old else: __lowerCamelCase : Any = prophet.prophetnet __lowerCamelCase : Any = prophet_old.model __lowerCamelCase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowerCamelCase : Any = mapping[attribute] if not hasattr(_lowerCAmelCase ,_lowerCAmelCase ) and len(_lowerCAmelCase ) > 0: __lowerCamelCase : int = attribute elif hasattr(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowerCamelCase : List[Any] = old_model.weight logger.info(F'{attribute} is initialized.' ) __lowerCamelCase : List[Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowerCamelCase : List[Any] = old_model.bias logger.info(F'{attribute} is initialized' ) __lowerCamelCase : Dict = True break elif attribute in special_keys and hasattr(_lowerCAmelCase ,'in_proj_weight' ): __lowerCamelCase : Optional[Any] = old_model.in_proj_weight.shape[0] // 3 __lowerCamelCase : Optional[Any] = getattr(_lowerCAmelCase ,_lowerCAmelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowerCamelCase : Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowerCamelCase : Dict = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowerCamelCase : List[str] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowerCamelCase : Dict = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowerCamelCase : str = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowerCamelCase : Optional[int] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowerCamelCase : Optional[int] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowerCamelCase : Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowerCamelCase : Dict = True break if attribute.isdigit(): __lowerCamelCase : List[str] = model[int(_lowerCAmelCase )] __lowerCamelCase : Union[str, Any] = old_model[int(_lowerCAmelCase )] else: __lowerCamelCase : Union[str, Any] = getattr(_lowerCAmelCase ,_lowerCAmelCase ) if old_attribute == "": __lowerCamelCase : str = old_model else: if not hasattr(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError(F'{old_model} does not have {old_attribute}' ) __lowerCamelCase : str = getattr(_lowerCAmelCase ,_lowerCAmelCase ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
208
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCamelCase = sys.version_info >= (3, 10) def lowercase_ ( _lowerCamelCase : Tuple=None , _lowerCamelCase : int=None): return field(default_factory=lambda: default , metadata=_lowerCamelCase) @dataclass class snake_case_ : __A : int __A : float __A : str __A : bool @dataclass class snake_case_ : __A : int = 42 __A : str = field(default="toto" ,metadata={"help": "help message"} ) @dataclass class snake_case_ : __A : bool = False __A : bool = True __A : Optional[bool] = None class snake_case_ ( __A ): __A : str = "titi" __A : List[str] = "toto" class snake_case_ ( __A ): __A : Optional[int] = "titi" __A : Union[str, Any] = "toto" __A : str = 42 @dataclass class snake_case_ : __A : BasicEnum = "toto" def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : str = BasicEnum(self.foo ) @dataclass class snake_case_ : __A : MixedTypeEnum = "toto" def __UpperCamelCase ( self : str ) -> str: lowercase__ : int = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : __A : Optional[int] = None __A : Optional[float] = field(default=__A ,metadata={"help": "help message"} ) __A : Optional[str] = None __A : Optional[List[str]] = list_field(default=[] ) __A : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : __A : List[int] = list_field(default=[] ) __A : List[int] = list_field(default=[1, 2, 3] ) __A : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) __A : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : __A : List[int] = field() __A : str = field() __A : BasicEnum = field() def __UpperCamelCase ( self : Any ) -> int: lowercase__ : int = BasicEnum(self.required_enum ) @dataclass class snake_case_ : __A : int __A : "BasicEnum" = field() __A : "Optional[bool]" = None __A : "str" = field(default="toto" ,metadata={"help": "help message"} ) __A : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : __A : bool = False __A : bool = True __A : bool | None = None @dataclass class snake_case_ : __A : int | None = None __A : float | None = field(default=__A ,metadata={"help": "help message"} ) __A : str | None = None __A : list[str] | None = list_field(default=[] ) __A : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : int , lowercase_ : argparse.ArgumentParser , lowercase_ : argparse.ArgumentParser ) -> Tuple: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase__ : Dict = {k: v for k, v in vars(lowercase_ ).items() if k != "container"} lowercase__ : List[str] = {k: v for k, v in vars(lowercase_ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , lowercase_ ) and yy.get("choices" , lowercase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](lowercase_ ) , yy["type"](lowercase_ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> Dict: lowercase__ : Any = HfArgumentParser(lowercase_ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--bar" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--baz" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--flag" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="?" ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] (lowercase__ ) : str = parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_ ) self.assertFalse(example.flag ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Optional[Any] = HfArgumentParser(lowercase_ ) lowercase__ : List[str] = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=lowercase_ ) expected.add_argument("--baz" , default="toto" , type=lowercase_ , help="help message" ) self.argparsersEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Dict: lowercase__ : Tuple = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="?" ) expected.add_argument("--baz" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=lowercase_ , dest="baz" ) expected.add_argument("--opt" , type=lowercase_ , default=lowercase_ ) lowercase__ : Union[str, Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: lowercase__ : str = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Tuple = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Union[str, Any] = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Dict = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Optional[int] = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: lowercase__ : List[Any] = HfArgumentParser(lowercase_ ) lowercase__ : Dict = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowercase__ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase__ : Any = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowercase__ : int = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase__ : Dict = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowercase__ : Dict = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __UpperCamelCase ( self : Tuple ) -> List[str]: @dataclass class snake_case_ : __A : Literal["titi", "toto", 42] = "toto" lowercase__ : Union[str, Any] = HfArgumentParser(lowercase_ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowercase__ : int = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowercase__ : Tuple = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __UpperCamelCase ( self : int ) -> Optional[Any]: lowercase__ : int = HfArgumentParser(lowercase_ ) lowercase__ : Dict = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=lowercase_ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=lowercase_ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=lowercase_ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : Any = parser.parse_args([] ) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase__ : List[Any] = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : Any = argparse.ArgumentParser() expected.add_argument("--foo" , default=lowercase_ , type=lowercase_ ) expected.add_argument("--bar" , default=lowercase_ , type=lowercase_ , help="help message" ) expected.add_argument("--baz" , default=lowercase_ , type=lowercase_ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=lowercase_ ) expected.add_argument("--des" , nargs="+" , default=[] , type=lowercase_ ) lowercase__ : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: lowercase__ : Any = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[] ) ) lowercase__ : Dict = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: lowercase__ : List[str] = HfArgumentParser(lowercase_ ) lowercase__ : Any = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--required_str" , type=lowercase_ , required=lowercase_ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : Optional[int] = HfArgumentParser(lowercase_ ) lowercase__ : Dict = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowercase_ , required=lowercase_ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=lowercase_ , ) expected.add_argument("--opt" , type=lowercase_ , default=lowercase_ ) expected.add_argument("--baz" , default="toto" , type=lowercase_ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Dict ) -> str: lowercase__ : str = HfArgumentParser(lowercase_ ) lowercase__ : List[Any] = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowercase__ : Optional[Any] = parser.parse_dict(lowercase_ )[0] lowercase__ : Dict = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : List[Any] = HfArgumentParser(lowercase_ ) lowercase__ : Any = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: lowercase__ : Tuple = HfArgumentParser(lowercase_ ) lowercase__ : int = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Any = os.path.join(lowercase_ , "temp_json" ) os.mkdir(lowercase_ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(lowercase_ , lowercase_ ) lowercase__ : Any = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowercase__ : Optional[Any] = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : str ) -> int: lowercase__ : Tuple = HfArgumentParser(lowercase_ ) lowercase__ : Dict = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[int] = os.path.join(lowercase_ , "temp_yaml" ) os.mkdir(lowercase_ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(lowercase_ , lowercase_ ) lowercase__ : Any = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowercase__ : int = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> int: lowercase__ : List[str] = HfArgumentParser(lowercase_ ) self.assertIsNotNone(lowercase_ )
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A: Optional[int] = logging.get_logger(__name__) A: Union[str, Any] = {"vocab_file": "spiece.model"} A: Optional[Any] = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } A: List[str] = {"bert_for_seq_generation": 5_1_2} class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Any = [] __lowerCAmelCase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<::::>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Dict = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = self.__dict__.copy() UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : List[Any] = {} UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) return token def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Any: '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase : int = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , """wb""" ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
109
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Union[str, Any] = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
0
'''simple docstring''' def a_ ( _UpperCAmelCase : int = 10 ,_UpperCAmelCase : int = 22 ) -> int: __snake_case : List[str] = range(1 ,_UpperCAmelCase ) __snake_case : Optional[int] = range(1 ,_UpperCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(1_0, 2_2) = }""")
360
'''simple docstring''' from __future__ import annotations A__ : List[Any] = list[list[int]] # assigning initial values to the grid A__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a_ ( _UpperCAmelCase : Matrix ,_UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a_ ( _UpperCAmelCase : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a_ ( _UpperCAmelCase : Matrix ) -> Matrix | None: if location := find_empty_location(_UpperCAmelCase ): __snake_case , __snake_case : Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 ,10 ): if is_safe(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ): __snake_case : Union[str, Any] = digit if sudoku(_UpperCAmelCase ) is not None: return grid __snake_case : Optional[Any] = 0 return None def a_ ( _UpperCAmelCase : Matrix ) -> None: for row in grid: for cell in row: print(_UpperCAmelCase ,end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 2_0) print_solution(example_grid) print('''\nExample grid solution:''') A__ : List[str] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
0
0
from collections.abc import Sequence def A ( a_ ,a_ ) -> float: return sum(c * (x**i) for i, c in enumerate(a_ ) ) def A ( a_ ,a_ ) -> float: __UpperCamelCase : str =0.0 for coeff in reversed(a_ ): __UpperCamelCase : Any =result * x + coeff return result if __name__ == "__main__": A_ :str = (0.0, 0.0, 5.0, 9.3, 7.0) A_ :Tuple = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
71
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Optional[Any] =StableDiffusionDiffEditPipeline UpperCamelCase__ : str =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} UpperCamelCase__ : Optional[Any] =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} UpperCamelCase__ : Dict =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ : Any =frozenset([] ) def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Dict =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase__ , ) __UpperCamelCase : List[str] =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) __UpperCamelCase : Union[str, Any] =DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase__ , set_alpha_to_zero=lowerCamelCase__ , ) torch.manual_seed(0 ) __UpperCamelCase : Optional[int] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCamelCase : Tuple =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __UpperCamelCase : Any =CLIPTextModel(lowerCamelCase__ ) __UpperCamelCase : int =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase : Union[str, Any] ={ 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : int =floats_tensor((1, 16, 16) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : Any =floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : Any =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Optional[int] =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Dict ={ 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : Tuple =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : Optional[Any] =Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ) if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : List[Any] =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Any =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Optional[int] ={ 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : str =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : int =Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ) if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : Any =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : int =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Optional[int] ={ 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __lowercase ( self ): """simple docstring""" if not hasattr(self.pipeline_class , '_optional_components' ): return __UpperCamelCase : Optional[Any] =self.get_dummy_components() __UpperCamelCase : List[str] =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __UpperCamelCase : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : List[Any] =pipe(**lowerCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : Tuple =self.pipeline_class.from_pretrained(lowerCamelCase__ ) pipe_loaded.to(lowerCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase__ , lowerCamelCase__ ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) __UpperCamelCase : str =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =pipe_loaded(**lowerCamelCase__ )[0] __UpperCamelCase : Tuple =np.abs(output - output_loaded ).max() self.assertLess(lowerCamelCase__ , 1E-4 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any ='cpu' __UpperCamelCase : Union[str, Any] =self.get_dummy_components() __UpperCamelCase : Any =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : int =self.get_dummy_mask_inputs(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =pipe.generate_mask(**lowerCamelCase__ ) __UpperCamelCase : int =mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __UpperCamelCase : Tuple =np.array([0] * 9 ) __UpperCamelCase : str =np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int ='cpu' __UpperCamelCase : Union[str, Any] =self.get_dummy_components() __UpperCamelCase : Optional[Any] =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Dict =self.get_dummy_inversion_inputs(lowerCamelCase__ ) __UpperCamelCase : List[Any] =pipe.invert(**lowerCamelCase__ ).images __UpperCamelCase : Optional[Any] =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __UpperCamelCase : List[str] =np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) __UpperCamelCase : int =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) def __lowercase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] ='cpu' __UpperCamelCase : int =self.get_dummy_components() __UpperCamelCase : str ={'beta_start': 0.00_085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} __UpperCamelCase : str =DPMSolverMultistepScheduler(**lowerCamelCase__ ) __UpperCamelCase : Dict =DPMSolverMultistepInverseScheduler(**lowerCamelCase__ ) __UpperCamelCase : Any =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Tuple =self.get_dummy_inversion_inputs(lowerCamelCase__ ) __UpperCamelCase : str =pipe.invert(**lowerCamelCase__ ).images __UpperCamelCase : List[Any] =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __UpperCamelCase : List[str] =np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) __UpperCamelCase : Optional[Any] =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __lowercase ( cls ): """simple docstring""" __UpperCamelCase : Optional[int] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) __UpperCamelCase : Union[str, Any] =raw_image.convert('RGB' ).resize((768, 768) ) __UpperCamelCase : List[Any] =raw_image def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =torch.manual_seed(0 ) __UpperCamelCase : Dict =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) __UpperCamelCase : List[str] =DDIMScheduler.from_config(pipe.scheduler.config ) __UpperCamelCase : List[str] =DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : List[str] ='a bowl of fruit' __UpperCamelCase : Dict ='a bowl of pears' __UpperCamelCase : Tuple =pipe.generate_mask( image=self.raw_image , source_prompt=lowerCamelCase__ , target_prompt=lowerCamelCase__ , generator=lowerCamelCase__ , ) __UpperCamelCase : int =pipe.invert( prompt=lowerCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCamelCase__ ).latents __UpperCamelCase : Dict =pipe( prompt=lowerCamelCase__ , mask_image=lowerCamelCase__ , image_latents=lowerCamelCase__ , generator=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , inpaint_strength=0.7 , output_type='numpy' , ).images[0] __UpperCamelCase : str =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =torch.manual_seed(0 ) __UpperCamelCase : List[Any] =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) __UpperCamelCase : Optional[Any] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __UpperCamelCase : Optional[int] =DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] ='a bowl of fruit' __UpperCamelCase : int ='a bowl of pears' __UpperCamelCase : str =pipe.generate_mask( image=self.raw_image , source_prompt=lowerCamelCase__ , target_prompt=lowerCamelCase__ , generator=lowerCamelCase__ , ) __UpperCamelCase : List[str] =pipe.invert( prompt=lowerCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCamelCase__ , num_inference_steps=25 , ).latents __UpperCamelCase : List[str] =pipe( prompt=lowerCamelCase__ , mask_image=lowerCamelCase__ , image_latents=lowerCamelCase__ , generator=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] __UpperCamelCase : Tuple =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
71
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __lowerCAmelCase ( lowercase : str , lowercase : str=False ) -> Optional[int]: """simple docstring""" snake_case : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __lowerCAmelCase ( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[Any]=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: snake_case : Tuple = "" else: snake_case : Optional[int] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case : Tuple = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) snake_case : Optional[int] = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case : List[str] = in_proj_weight[ : config.hidden_size, : ] snake_case : str = in_proj_bias[: config.hidden_size] snake_case : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case : Any = in_proj_weight[ -config.hidden_size :, : ] snake_case : List[Any] = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def __lowerCAmelCase ( lowercase : Tuple ) -> Optional[Any]: """simple docstring""" snake_case : List[str] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def __lowerCAmelCase ( lowercase : Tuple , lowercase : Any , lowercase : Any ) -> Optional[int]: """simple docstring""" snake_case : List[Any] = dct.pop(lowercase ) snake_case : Dict = val def __lowerCAmelCase ( lowercase : Tuple , lowercase : Tuple ) -> List[str]: """simple docstring""" snake_case : Optional[int] = ViTMSNConfig() snake_case : Any = 1000 snake_case : Any = "datasets/huggingface/label-files" snake_case : List[str] = "imagenet-1k-id2label.json" snake_case : Optional[int] = json.load(open(hf_hub_download(lowercase , lowercase ) , "r" ) ) snake_case : Any = {int(lowercase ): v for k, v in idalabel.items()} snake_case : List[Any] = idalabel snake_case : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: snake_case : Union[str, Any] = 384 snake_case : List[Any] = 1536 snake_case : Optional[Any] = 6 elif "l16" in checkpoint_url: snake_case : List[Any] = 1024 snake_case : Optional[int] = 4096 snake_case : Union[str, Any] = 24 snake_case : Dict = 16 snake_case : Optional[int] = 0.1 elif "b4" in checkpoint_url: snake_case : Dict = 4 elif "l7" in checkpoint_url: snake_case : Union[str, Any] = 7 snake_case : str = 1024 snake_case : Dict = 4096 snake_case : Optional[int] = 24 snake_case : Optional[int] = 16 snake_case : Any = 0.1 snake_case : List[Any] = ViTMSNModel(lowercase ) snake_case : int = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" )["target_encoder"] snake_case : Dict = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowercase ) snake_case : List[Any] = create_rename_keys(lowercase , base_model=lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , lowercase , base_model=lowercase ) model.load_state_dict(lowercase ) model.eval() snake_case : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case : Dict = Image.open(requests.get(lowercase , stream=lowercase ).raw ) snake_case : int = ViTImageProcessor( size=config.image_size , image_mean=lowercase , image_std=lowercase ) snake_case : Optional[int] = image_processor(images=lowercase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) snake_case : Optional[Any] = model(**lowercase ) snake_case : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: snake_case : str = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: snake_case : Dict = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: snake_case : Union[str, Any] = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: snake_case : int = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: snake_case : Optional[int] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowercase , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __snake_case = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
112
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""ConditionalDetrFeatureExtractor"""] __snake_case = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
112
1
"""simple docstring""" import os import sys import unittest _a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a = os.path.join(git_repo_path, 'src', 'transformers') _a = '\n{0} = None\n' _a = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' _a = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): __lowercase = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(UpperCAmelCase__ ) __lowercase = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(UpperCAmelCase__, "tokenizers" ) __lowercase = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(UpperCAmelCase__, "tensorflow_text" ) __lowercase = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(UpperCAmelCase__, "sentencepiece_and_tokenizers" ) __lowercase = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(UpperCAmelCase__, "sentencepiece_and_tensorflow_text" ) __lowercase = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(UpperCAmelCase__, "sentencepiece_and_tokenizers_and_vision" ) def _lowercase ( self : Tuple ): __lowercase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch", UpperCAmelCase__ ) self.assertIn("tensorflow_text", UpperCAmelCase__ ) self.assertIn("sentencepiece_and_tokenizers", UpperCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel", objects["torch"] ) self.assertIn("TFBertModel", objects["tf"] ) self.assertIn("FlaxBertModel", objects["flax"] ) self.assertIn("BertModel", objects["torch"] ) self.assertIn("TFBertTokenizer", objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer", objects["sentencepiece_and_tokenizers"] ) def _lowercase ( self : Optional[Any] ): __lowercase = create_dummy_object("CONSTANT", "'torch'" ) self.assertEqual(UpperCAmelCase__, "\nCONSTANT = None\n" ) __lowercase = create_dummy_object("function", "'torch'" ) self.assertEqual( UpperCAmelCase__, "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) __lowercase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" __lowercase = create_dummy_object("FakeClass", "'torch'" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : List[Any] ): __lowercase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" __lowercase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"], UpperCAmelCase__ )
17
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record UpperCAmelCase_ : int = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' UpperCAmelCase_ : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' UpperCAmelCase_ : int = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Any="binary" ) -> Dict: """simple docstring""" UpperCamelCase :List[str] = simple_accuracy(__magic_name__ , __magic_name__ ) UpperCamelCase :Dict = float(fa_score(y_true=__magic_name__ , y_pred=__magic_name__ , average=__magic_name__ ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase :Optional[Any] = {} for id_pred, label in zip(__magic_name__ , __magic_name__ ): UpperCamelCase :str = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" UpperCamelCase :Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase :Dict = [(pred, label)] UpperCamelCase , UpperCamelCase :Optional[int] = [], [] for question, preds_labels in question_map.items(): UpperCamelCase , UpperCamelCase :Optional[Any] = zip(*__magic_name__ ) UpperCamelCase :Optional[int] = fa_score(y_true=__magic_name__ , y_pred=__magic_name__ , average="""macro""" ) fas.append(__magic_name__ ) UpperCamelCase :int = int(sum(pred == label for pred, label in preds_labels ) == len(__magic_name__ ) ) ems.append(__magic_name__ ) UpperCamelCase :Optional[int] = float(sum(__magic_name__ ) / len(__magic_name__ ) ) UpperCamelCase :str = sum(__magic_name__ ) / len(__magic_name__ ) UpperCamelCase :Tuple = float(fa_score(y_true=__magic_name__ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def _A ( self : str ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _A ( self : Optional[Any] ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _A ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : str ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__lowerCamelCase , __lowerCamelCase )} elif self.config_name == "cb": return acc_and_fa(__lowerCamelCase , __lowerCamelCase , fa_avg="""macro""" ) elif self.config_name == "record": UpperCamelCase :Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] UpperCamelCase :Tuple = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__lowerCamelCase , __lowerCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__lowerCamelCase , __lowerCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
38
0
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Tuple = u for i in range(1 , lowerCAmelCase ): __magic_name__ : Any = temp * (u - i) return temp def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Union[str, Any] = int(input('enter the numbers of values: ' ) ) __magic_name__ : list[list[float]] = [] for _ in range(lowerCAmelCase ): y.append([] ) for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): y[i].append(lowerCAmelCase ) __magic_name__ : Tuple = 0 print('enter the values of parameters in a list: ' ) __magic_name__ : Union[str, Any] = list(map(lowerCAmelCase , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(lowerCAmelCase ): __magic_name__ : List[Any] = float(input() ) __magic_name__ : List[str] = int(input('enter the value to interpolate: ' ) ) __magic_name__ : Optional[int] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCAmelCase ): for j in range(n - i ): __magic_name__ : Dict = y[j + 1][i - 1] - y[j][i - 1] __magic_name__ : Dict = y[0][0] for i in range(1 , lowerCAmelCase ): summ += (ucal(lowerCAmelCase , lowerCAmelCase ) * y[0][i]) / math.factorial(lowerCAmelCase ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
368
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :Optional[int] = logging.get_logger(__name__) set_seed(7_7_0) lowerCAmelCase :str = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCAmelCase :Any = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCAmelCase :List[Any] = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase :List[Any] = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCAmelCase :List[str] = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=False ): """simple docstring""" __magic_name__ : str = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) hf_hub_download(repo_id=lowerCAmelCase , filename=lowerCAmelCase , local_dir=lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : str="text" ): """simple docstring""" if model_type == "text": __magic_name__ : Tuple = BarkSemanticModel __magic_name__ : Optional[int] = BarkSemanticConfig __magic_name__ : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": __magic_name__ : List[str] = BarkCoarseModel __magic_name__ : Dict = BarkCoarseConfig __magic_name__ : Tuple = BarkCoarseGenerationConfig elif model_type == "fine": __magic_name__ : Optional[Any] = BarkFineModel __magic_name__ : Dict = BarkFineConfig __magic_name__ : Tuple = BarkFineGenerationConfig else: raise NotImplementedError() __magic_name__ : int = f'{model_type}_small' if use_small else model_type __magic_name__ : List[str] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase ): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info['repo_id'] , model_info['file_name'] ) __magic_name__ : Optional[Any] = torch.load(lowerCAmelCase , map_location=lowerCAmelCase ) # this is a hack __magic_name__ : Optional[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: __magic_name__ : Dict = model_args['vocab_size'] __magic_name__ : Optional[int] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __magic_name__ : Optional[Any] = model_args.pop('n_head' ) __magic_name__ : List[str] = model_args.pop('n_embd' ) __magic_name__ : List[Any] = model_args.pop('n_layer' ) __magic_name__ : Optional[Any] = ConfigClass(**checkpoint['model_args'] ) __magic_name__ : Any = ModelClass(config=lowerCAmelCase ) __magic_name__ : List[str] = GenerationConfigClass() __magic_name__ : List[Any] = model_generation_config __magic_name__ : str = checkpoint['model'] # fixup checkpoint __magic_name__ : str = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase ): # replace part of the key with corresponding layer name in HF implementation __magic_name__ : Tuple = k[len(lowerCAmelCase ) :] for old_layer_name in new_layer_name_dict: __magic_name__ : int = new_k.replace(lowerCAmelCase , new_layer_name_dict[old_layer_name] ) __magic_name__ : Union[str, Any] = state_dict.pop(lowerCAmelCase ) __magic_name__ : Optional[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) __magic_name__ : Any = {k for k in extra_keys if not k.endswith('.attn.bias' )} __magic_name__ : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) __magic_name__ : Dict = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCAmelCase ) != 0: raise ValueError(f'extra keys found: {extra_keys}' ) if len(lowerCAmelCase ) != 0: raise ValueError(f'missing keys: {missing_keys}' ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) __magic_name__ : Union[str, Any] = model.num_parameters(exclude_embeddings=lowerCAmelCase ) __magic_name__ : Optional[Any] = checkpoint['best_val_loss'].item() logger.info(f'model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCAmelCase , 3 )} loss' ) model.eval() model.to(lowerCAmelCase ) del checkpoint, state_dict return model def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Tuple="text" ): """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __magic_name__ : List[str] = 'cpu' # do conversion on cpu __magic_name__ : int = _get_ckpt_path(lowerCAmelCase , use_small=lowerCAmelCase ) __magic_name__ : Any = _load_model(lowerCAmelCase , lowerCAmelCase , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) # load bark initial model __magic_name__ : List[str] = _bark_load_model(lowerCAmelCase , 'cpu' , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) if model_type == "text": __magic_name__ : int = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCAmelCase ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model __magic_name__ : Union[str, Any] = 5 __magic_name__ : Optional[int] = 10 if model_type in ["text", "coarse"]: __magic_name__ : Optional[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __magic_name__ : List[str] = bark_model(lowerCAmelCase )[0] __magic_name__ : Optional[int] = model(lowerCAmelCase ) # take last logits __magic_name__ : int = output_new_model_total.logits[:, [-1], :] else: __magic_name__ : Tuple = 3 __magic_name__ : List[str] = 8 __magic_name__ : List[str] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __magic_name__ : str = model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = bark_model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str , ): """simple docstring""" __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Dict = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : str = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : int = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : List[Any] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Optional[int] = BarkSemanticModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Dict = BarkCoarseModel.from_pretrained(lowerCAmelCase ) __magic_name__ : List[str] = BarkFineModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Optional[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Dict = BarkConfig.from_sub_model_configs( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __magic_name__ : int = BarkModel(lowerCAmelCase ) __magic_name__ : List[str] = semantic __magic_name__ : Optional[int] = coarseAcoustic __magic_name__ : List[str] = fineAcoustic __magic_name__ : int = codec __magic_name__ : Union[str, Any] = bark_generation_config Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) bark.save_pretrained(lowerCAmelCase , repo_id=lowerCAmelCase , push_to_hub=lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCAmelCase :Union[str, Any] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
275
0
from __future__ import annotations class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Optional[Any] =TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(lowerCAmelCase__ ) != 0: a__ : str =len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise error a__ : Union[str, Any] =rows else: a__ : List[Any] =[] def _lowercase ( self ) -> list[list[int]]: '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.rows ) @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.rows[0] ) @property def _lowercase ( self ) -> tuple[int, int]: '''simple docstring''' return (self.num_rows, self.num_columns) @property def _lowercase ( self ) -> bool: '''simple docstring''' return self.order[0] == self.order[1] def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : Any =[ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowercase ( self ) -> bool: '''simple docstring''' return bool(self.determinant() ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : int =[ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase__ ).determinant() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) return -1 * self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowercase ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : Tuple =[ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : List[Any] =self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: '''simple docstring''' return str(self.rows ) def __str__( self ) -> str: '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(lowerCAmelCase__ ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> None: '''simple docstring''' a__ : Union[str, Any] =TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(lowerCAmelCase__ ) else: a__ : Optional[int] =self.rows[0:position] + [row] + self.rows[position:] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> None: '''simple docstring''' a__ : Tuple =TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in column: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: a__ : Union[str, Any] =[self.rows[i] + [column[i]] for i in range(self.num_rows )] else: a__ : Dict =[ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' return not self == other def __neg__( self ) -> Matrix: '''simple docstring''' return self * -1 def __add__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if isinstance(lowerCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase__ , lowerCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) a__ : List[str] =self for _ in range(other - 1 ): result *= self return result @classmethod def _lowercase ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' return sum(row[i] * column[i] for i in range(len(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
95
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Union[str, Any] , _A :List[Any]=0.01 , _A :Optional[Any]=1_000 ) -> Tuple: '''simple docstring''' __A = p_stop __A = max_length def __iter__( self :List[Any] ) -> Optional[Any]: '''simple docstring''' __A = 0 __A = False while not stop and count < self.max_length: yield count count += 1 __A = random.random() < self.p_stop class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :List[Any] , _A :Tuple , _A :int , _A :Tuple=False , _A :str=True ) -> Optional[int]: '''simple docstring''' __A = [ BatchSamplerShard(_A , 2 , _A , split_batches=_A , even_batches=_A ) for i in range(2 ) ] __A = [list(_A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_A ) for shard in batch_sampler_shards] , [len(_A ) for e in expected] ) self.assertListEqual(_A , _A ) def lowercase_ ( self :Any ) -> int: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A ) def lowercase_ ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) def lowercase_ ( self :Tuple ) -> List[str]: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) def lowercase_ ( self :Optional[Any] ) -> Tuple: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) def lowercase_ ( self :Tuple ) -> Dict: '''simple docstring''' __A = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __A = [BatchSamplerShard(_A , 2 , _A , even_batches=_A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase_ ( self :int , _A :Optional[Any] , _A :List[str] , _A :Dict , _A :Any=False , _A :str=2 , _A :Any=False ) -> Dict: '''simple docstring''' random.seed(_A ) __A = list(_A ) __A = [ IterableDatasetShard( _A , batch_size=_A , drop_last=_A , num_processes=_A , process_index=_A , split_batches=_A , ) for i in range(_A ) ] __A = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_A ) iterable_dataset_lists.append(list(_A ) ) __A = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __A = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_A ) , len(_A ) ) self.assertTrue(len(_A ) % shard_batch_size == 0 ) __A = [] for idx in range(0 , len(_A ) , _A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_A ) < len(_A ): reference += reference self.assertListEqual(_A , reference[: len(_A )] ) def lowercase_ ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' __A = 42 __A = RandomIterableDataset() self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) # Edge case with a very small dataset __A = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) def lowercase_ ( self :Optional[Any] ) -> List[str]: '''simple docstring''' __A = BatchSampler(range(16 ) , batch_size=4 , drop_last=_A ) __A = SkipBatchSampler(_A , 2 ) self.assertListEqual(list(_A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :List[str] ) -> Any: '''simple docstring''' __A = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :Any ) -> Dict: '''simple docstring''' __A = DataLoader(list(range(16 ) ) , batch_size=4 ) __A = skip_first_batches(_A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :Tuple ) -> Optional[Any]: '''simple docstring''' __A = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase_ ( self :Dict ) -> Any: '''simple docstring''' Accelerator() __A = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
161
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =logging.get_logger() # the current default level is logging.WARNING __a =logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_a ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =logging.get_verbosity() __a =logging.get_logger('transformers.models.bart.tokenization_bart' ) __a ='''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_a ) as cl: logger.warning(_a ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_a ) as cl: logger.warning(_a ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_a ) as cl: logger.warning(_a ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_a ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __a =logging.get_logger('transformers.models.bart.tokenization_bart' ) __a =os.getenv('TRANSFORMERS_VERBOSITY' , _a ) __a =logging.log_levels[env_level_str] __a =logging.get_verbosity() self.assertEqual( _a , _a , f'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level __a ='''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __magic_name__ ( self ) -> Any: '''simple docstring''' # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __a =logging.logging.getLogger() with CaptureLogger(_a ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __magic_name__ ( self ) -> int: '''simple docstring''' # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __a =logging.get_logger('transformers.models.bart.tokenization_bart' ) __a ='''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_a ) as cl: logger.warning_advice(_a ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_a ) as cl: logger.warning_advice(_a ) self.assertEqual(cl.out , msg + '\n' ) def UpperCamelCase_( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
365
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ = (("""num_inference_steps""", 50),) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**UpperCamelCase_ ) return config def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop("""num_inference_steps""" , UpperCamelCase_ ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config(**UpperCamelCase_ ) UpperCamelCase__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) UpperCamelCase__ = scheduler_class.from_pretrained(UpperCamelCase_ ) new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[:] UpperCamelCase__ = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCamelCase__ = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCamelCase__ = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCamelCase__ = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop("""num_inference_steps""" , UpperCamelCase_ ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) UpperCamelCase__ = scheduler_class.from_pretrained(UpperCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[:] UpperCamelCase__ = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCamelCase__ = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCamelCase__ = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCamelCase__ = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(**UpperCamelCase_ ) UpperCamelCase__ = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ = 10 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCamelCase__ = model(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCamelCase__ = model(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def UpperCAmelCase_ (self ): UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop("""num_inference_steps""" , UpperCamelCase_ ) for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase_ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase_ , """set_timesteps""" ): UpperCamelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase__ = dummy_past_residuals[:] UpperCamelCase__ = scheduler.step_prk(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCamelCase__ = scheduler.step_prk(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase__ = scheduler.step_plms(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCamelCase__ = scheduler.step_plms(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ (self ): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def UpperCAmelCase_ (self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def UpperCAmelCase_ (self ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def UpperCAmelCase_ (self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def UpperCAmelCase_ (self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def UpperCAmelCase_ (self ): for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCamelCase_ ) def UpperCAmelCase_ (self ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=UpperCamelCase_ ) def UpperCAmelCase_ (self ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCamelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCamelCase__ = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample def UpperCAmelCase_ (self ): with self.assertRaises(UpperCamelCase_ ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**UpperCamelCase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase_ (self ): UpperCamelCase__ = self.full_loop() UpperCamelCase__ = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase__ = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def UpperCAmelCase_ (self ): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) UpperCamelCase__ = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def UpperCAmelCase_ (self ): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) UpperCamelCase__ = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
244
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=snake_case ) class UpperCAmelCase_ ( snake_case ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase =field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCamelCase =Features({"question": Value("string" ), "context": Value("string" )} ) UpperCamelCase =Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) UpperCamelCase ="question" UpperCamelCase ="context" UpperCamelCase ="answers" @property def _lowerCamelCase ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
249
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCamelCase__ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowerCamelCase__ = subprocess.check_output(F"git diff --name-only {fork_point_sha}".split()).decode('''utf-8''').split() lowerCamelCase__ = '''|'''.join(sys.argv[1:]) lowerCamelCase__ = re.compile(RF"^({joined_dirs}).*?\.py$") lowerCamelCase__ = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
63
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] lowerCamelCase__ = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase__ = {F"funnel-transformer/{name}": 512 for name in _model_names} lowerCamelCase__ = {F"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_INIT_CONFIGURATION __A = FunnelTokenizer __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = 2 def __init__( self : Tuple , lowercase_ : Any=None , lowercase_ : List[Any]=None , lowercase_ : List[str]=True , lowercase_ : List[str]="<unk>" , lowercase_ : List[Any]="<sep>" , lowercase_ : int="<pad>" , lowercase_ : Dict="<cls>" , lowercase_ : int="<mask>" , lowercase_ : Any="<s>" , lowercase_ : Tuple="</s>" , lowercase_ : List[str]=True , lowercase_ : Any=True , lowercase_ : str=None , lowercase_ : Dict="##" , **lowercase_ : Optional[int] , ) -> Dict: """simple docstring""" super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , clean_text=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , wordpieces_prefix=lowercase_ , **lowercase_ , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , lowercase_) != do_lower_case or normalizer_state.get("strip_accents" , lowercase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase_) != tokenize_chinese_chars ): _UpperCamelCase = getattr(lowercase_ , normalizer_state.pop("type")) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**lowercase_) _UpperCamelCase = do_lower_case def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=None) -> str: """simple docstring""" _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCamelCase = self._tokenizer.model.save(lowercase_ , name=lowercase_) return tuple(lowercase_)
63
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Optional[Any] =OpenAIGPTTokenizer UpperCamelCase__ : Any =OpenAIGPTTokenizerFast UpperCamelCase__ : Dict =True UpperCamelCase__ : List[str] =False def __lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase : Any =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase : Optional[Any] =dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __UpperCamelCase : List[str] =['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __UpperCamelCase : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return "lower newer", "lower newer" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __UpperCamelCase : Any ='lower' __UpperCamelCase : Any =['low', 'er</w>'] __UpperCamelCase : Optional[int] =tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =tokens + ['<unk>'] __UpperCamelCase : Optional[Any] =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase : str =self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) # Simple input __UpperCamelCase : str ='This is a simple input' __UpperCamelCase : str =['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase : Union[str, Any] =('This is a simple input', 'This is a pair') __UpperCamelCase : List[Any] =[ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' ) # Simple input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' ) # Simple input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' , ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' ) # Pair input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' , ) def __lowercase ( self ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class __A ( a ): """simple docstring""" pass
71
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A_ :List[str] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A_ :Any = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A_ :Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A_ :List[str] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A_ :Tuple = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __lowercase ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=[1, 10, 100] , lowerCamelCase__=4 , lowerCamelCase__=3.0 ): """simple docstring""" if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: __UpperCamelCase : List[str] =[] __UpperCamelCase : Any =Counter() __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): for candidate in candidates: __UpperCamelCase : str =candidate + '\n' + test_case __UpperCamelCase : Any =(test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase : Optional[Any] =executor.submit(lowerCamelCase__ , *lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): __UpperCamelCase : str =future.result() results[result["task_id"]].append((result['completion_id'], result) ) __UpperCamelCase , __UpperCamelCase : int =[], [] for result in results.values(): result.sort() __UpperCamelCase : str =[r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =np.array(lowerCamelCase__ ) __UpperCamelCase : List[str] =np.array(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =k __UpperCamelCase : List[Any] ={f'pass@{k}': estimate_pass_at_k(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A ( a_ ,a_ ,a_ ) -> Optional[int]: def estimator(a_ ,a_ ,a_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(a_ ,a_ ): __UpperCamelCase : Optional[int] =itertools.repeat(a_ ,len(a_ ) ) else: assert len(a_ ) == len(a_ ) __UpperCamelCase : List[Any] =iter(a_ ) return np.array([estimator(int(a_ ) ,int(a_ ) ,a_ ) for n, c in zip(a_ ,a_ )] )
71
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ :List[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def lowerCAmelCase__ ( a__: Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = list(s_dict.keys() ) for key in keys: _UpperCAmelCase = R'.*/layers_(\d+)' _UpperCAmelCase = key if re.match(a__ , a__ ): _UpperCAmelCase = re.sub(R'layers_(\d+)' , R'block/\1/layer' , a__ ) _UpperCAmelCase = R'(encoder|decoder)\/' if re.match(a__ , a__ ): _UpperCAmelCase = re.match(a__ , a__ ).groups() if groups[0] == "encoder": _UpperCAmelCase = re.sub(R'/mlp/' , R'/1/mlp/' , a__ ) _UpperCAmelCase = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , a__ ) elif groups[0] == "decoder": _UpperCAmelCase = re.sub(R'/mlp/' , R'/2/mlp/' , a__ ) _UpperCAmelCase = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , a__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _UpperCAmelCase = new_key.replace(a__ , a__ ) print(F'''{key} -> {new_key}''' ) _UpperCAmelCase = s_dict.pop(a__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCAmelCase = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCAmelCase = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _UpperCAmelCase = s_dict[key].shape[0] _UpperCAmelCase = s_dict[key] for idx in range(a__ ): _UpperCAmelCase = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(a__ ) return s_dict lowerCAmelCase__ :Tuple = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def lowerCAmelCase__ ( a__: str , a__: List[Any] ) -> Optional[Any]: '''simple docstring''' import regex as re with open(a__ , 'r' ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase = re.findall(R'(.*) = ([0-9.]*)' , a__ ) _UpperCAmelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _UpperCAmelCase = float(a__ ) if '.' in value else int(a__ ) _UpperCAmelCase = re.findall(R'(.*activations) = \(\'(.*)\',\)' , a__ )[0] _UpperCAmelCase = str(activation[1] ) _UpperCAmelCase = num_experts _UpperCAmelCase = SwitchTransformersConfig(**a__ ) return config def lowerCAmelCase__ ( a__: str , a__: List[str] , a__: Any=None , a__: List[Any]="./" , a__: List[str]=8 ) -> List[str]: '''simple docstring''' print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) _UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ ) if gin_file is not None: _UpperCAmelCase = convert_gin_to_config(a__ , a__ ) else: _UpperCAmelCase = SwitchTransformersConfig.from_pretrained(a__ ) _UpperCAmelCase = SwitchTransformersForConditionalGeneration(a__ ) _UpperCAmelCase = flax_params['target'] _UpperCAmelCase = flatten_dict(a__ , sep='/' ) _UpperCAmelCase = rename_keys(a__ ) _UpperCAmelCase = unflatten_dict(a__ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(a__ , a__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') lowerCAmelCase__ :Optional[Any] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
356
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCAmelCase__ :Tuple = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowerCAmelCase__ :Optional[int] = parser.parse_args() if args.model_type == "bert": lowerCAmelCase__ :Tuple = BertForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase__ :Optional[int] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') lowerCAmelCase__ :Any = model.state_dict() lowerCAmelCase__ :Dict = {} for w in ["word_embeddings", "position_embeddings"]: lowerCAmelCase__ :List[Any] = state_dict[f'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: lowerCAmelCase__ :Union[str, Any] = state_dict[f'''{prefix}.embeddings.LayerNorm.{w}'''] lowerCAmelCase__ :str = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: lowerCAmelCase__ :Any = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] lowerCAmelCase__ :List[str] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] lowerCAmelCase__ :int = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 lowerCAmelCase__ :Optional[int] = state_dict['''cls.predictions.decoder.weight'''] lowerCAmelCase__ :List[str] = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase__ :Any = state_dict[f'''cls.predictions.transform.dense.{w}'''] lowerCAmelCase__ :List[str] = state_dict[f'''cls.predictions.transform.LayerNorm.{w}'''] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
185
0
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase : str = 6 ): lowerCAmelCase = None lowerCAmelCase = None self.create_linked_list(lowerCAmelCase ) def __lowercase ( self : List[str] , lowerCAmelCase : List[str] ): lowerCAmelCase = Node() lowerCAmelCase = current_node lowerCAmelCase = current_node lowerCAmelCase = current_node for _ in range(1 , lowerCAmelCase ): lowerCAmelCase = Node() lowerCAmelCase = current_node lowerCAmelCase = previous_node lowerCAmelCase = current_node lowerCAmelCase = self.front lowerCAmelCase = previous_node def __lowercase ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowercase ( self : Tuple ): self.check_can_perform_operation() return self.front.data if self.front else None def __lowercase ( self : Dict , lowerCAmelCase : List[str] ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase = self.rear.next if self.rear: lowerCAmelCase = data def __lowercase ( self : Union[str, Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase = self.front.data lowerCAmelCase = None return data lowerCAmelCase = self.front lowerCAmelCase = old_front.next lowerCAmelCase = old_front.data lowerCAmelCase = None return data def __lowercase ( self : Dict ): if self.is_empty(): raise Exception("""Empty Queue""" ) def __lowercase ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class SCREAMING_SNAKE_CASE__ : def __init__( self : str ): lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if __name__ == "__main__": import doctest doctest.testmod()
155
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=64 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> str: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = vocab_size - 1 def _UpperCamelCase ( self ) -> Tuple: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self ) -> int: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self , a , a , a ) -> Optional[int]: snake_case_ = GPTNeoXModel(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) snake_case_ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a ) -> List[str]: snake_case_ = True snake_case_ = GPTNeoXModel(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a , a ) -> int: snake_case_ = GPTNeoXForCausalLM(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , a , a , a , a ) -> Optional[int]: snake_case_ = self.num_labels snake_case_ = GPTNeoXForQuestionAnswering(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , a , a , a , a ) -> List[str]: snake_case_ = self.num_labels snake_case_ = GPTNeoXForSequenceClassification(a ) model.to(a ) model.eval() snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , a , a , a , a ) -> str: snake_case_ = self.num_labels snake_case_ = GPTNeoXForTokenClassification(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , a , a , a ) -> List[Any]: snake_case_ = True snake_case_ = GPTNeoXForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass snake_case_ = model(a , attention_mask=a , use_cache=a ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(a , attention_mask=a , output_hidden_states=a ) snake_case_ = output_from_no_past['hidden_states'][0] snake_case_ = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _UpperCamelCase ( self ) -> str: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _UpperCamelCase ( self ) -> str: snake_case_ = GPTNeoXModelTester(self ) snake_case_ = ConfigTester(self , config_class=a , hidden_size=64 , num_attention_heads=8 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def _UpperCamelCase ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> Dict: # This regression test was failing with PyTorch < 1.3 snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> str: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def _UpperCamelCase ( self ) -> List[str]: pass @parameterized.expand([('linear',), ('dynamic',)] ) def _UpperCamelCase ( self , a ) -> int: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ids_tensor([1, 10] , config.vocab_size ) snake_case_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = GPTNeoXModel(a ) original_model.to(a ) original_model.eval() snake_case_ = original_model(a ).last_hidden_state snake_case_ = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = {'type': scaling_type, 'factor': 10.0} snake_case_ = GPTNeoXModel(a ) scaled_model.to(a ) scaled_model.eval() snake_case_ = scaled_model(a ).last_hidden_state snake_case_ = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> List[str]: snake_case_ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: snake_case_ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(a ) snake_case_ = tokenizer('My favorite food is' , return_tensors='pt' ).to(a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case_ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' snake_case_ = model.generate(**a , do_sample=a , max_new_tokens=20 ) snake_case_ = tokenizer.batch_decode(a )[0] self.assertEqual(a , a )
178
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __UpperCAmelCase : Any = random.Random() def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None) -> Any: if rng is None: __snake_case: Dict = global_rng __snake_case: str = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , A : List[str] , A : List[Any]=7 , A : Optional[int]=400 , A : List[Any]=2_000 , A : Dict=2_048 , A : Tuple=128 , A : List[Any]=1 , A : Tuple=512 , A : str=30 , A : Optional[Any]=44_100 , ): __snake_case: Dict = parent __snake_case: Optional[Any] = batch_size __snake_case: Optional[int] = min_seq_length __snake_case: Optional[Any] = max_seq_length __snake_case: List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case: Any = spectrogram_length __snake_case: Any = feature_size __snake_case: Union[str, Any] = num_audio_channels __snake_case: Any = hop_length __snake_case: List[str] = chunk_length __snake_case: Any = sampling_rate def UpperCAmelCase__ ( self : List[Any] ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCAmelCase__ ( self : List[str] , A : str=False , A : int=False ): def _flatten(A : Dict ): return list(itertools.chain(*A ) ) if equal_length: __snake_case: List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __snake_case: int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case: Tuple = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = TvltFeatureExtractor def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: str = TvltFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : int ): __snake_case: Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A , """spectrogram_length""" ) ) self.assertTrue(hasattr(A , """feature_size""" ) ) self.assertTrue(hasattr(A , """num_audio_channels""" ) ) self.assertTrue(hasattr(A , """hop_length""" ) ) self.assertTrue(hasattr(A , """chunk_length""" ) ) self.assertTrue(hasattr(A , """sampling_rate""" ) ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case: Tuple = feat_extract_first.save_pretrained(A )[0] check_json_file_has_correct_format(A ) __snake_case: int = self.feature_extraction_class.from_pretrained(A ) __snake_case: List[str] = feat_extract_first.to_dict() __snake_case: str = feat_extract_second.to_dict() __snake_case: List[Any] = dict_first.pop("""mel_filters""" ) __snake_case: str = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case: str = os.path.join(A , """feat_extract.json""" ) feat_extract_first.to_json_file(A ) __snake_case: List[Any] = self.feature_extraction_class.from_json_file(A ) __snake_case: Dict = feat_extract_first.to_dict() __snake_case: Any = feat_extract_second.to_dict() __snake_case: int = dict_first.pop("""mel_filters""" ) __snake_case: int = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase__ ( self : Any ): # Initialize feature_extractor __snake_case: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __snake_case: Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case: str = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input __snake_case: int = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __snake_case: Optional[int] = feature_extractor(A , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __snake_case: Union[str, Any] = feature_extractor( A , return_tensors="""np""" , sampling_rate=44_100 , mask_audio=A ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __snake_case: Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] __snake_case: Union[str, Any] = np.asarray(A ) __snake_case: List[Any] = feature_extractor(A , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCAmelCase__ ( self : Union[str, Any] , A : List[str] ): __snake_case: Tuple = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __snake_case: List[Any] = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Dict = self._load_datasamples(1 ) __snake_case: Optional[int] = TvltFeatureExtractor() __snake_case: Optional[Any] = feature_extractor(A , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __snake_case: str = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A , atol=1E-4 ) )
359
from __future__ import annotations from decimal import Decimal from numpy import array def A__ ( SCREAMING_SNAKE_CASE__) -> list[list[float]]: __snake_case: Any = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE__) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2: # Calculate the determinant of the matrix __snake_case: Tuple = float( d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])) if determinant == 0: raise ValueError("""This matrix has no inverse.""") # Creates a copy of the matrix with swapped positions of the elements __snake_case: Optional[int] = [[0.0, 0.0], [0.0, 0.0]] __snake_case , __snake_case: Optional[Any] = matrix[1][1], matrix[0][0] __snake_case , __snake_case: Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE__)) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE__) == 3 and len(matrix[0]) == 3 and len(matrix[1]) == 3 and len(matrix[2]) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __snake_case: Any = float( ( (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2])) + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0])) + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1])) ) - ( (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0])) + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2])) + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1])) )) if determinant == 0: raise ValueError("""This matrix has no inverse.""") # Creating cofactor matrix __snake_case: Tuple = [ [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], ] __snake_case: Dict = (d(matrix[1][1]) * d(matrix[2][2])) - ( d(matrix[1][2]) * d(matrix[2][1]) ) __snake_case: Tuple = -( (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0])) ) __snake_case: Optional[int] = (d(matrix[1][0]) * d(matrix[2][1])) - ( d(matrix[1][1]) * d(matrix[2][0]) ) __snake_case: Union[str, Any] = -( (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1])) ) __snake_case: str = (d(matrix[0][0]) * d(matrix[2][2])) - ( d(matrix[0][2]) * d(matrix[2][0]) ) __snake_case: List[Any] = -( (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0])) ) __snake_case: Optional[Any] = (d(matrix[0][1]) * d(matrix[1][2])) - ( d(matrix[0][2]) * d(matrix[1][1]) ) __snake_case: List[str] = -( (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0])) ) __snake_case: Optional[int] = (d(matrix[0][0]) * d(matrix[1][1])) - ( d(matrix[0][1]) * d(matrix[1][0]) ) # Transpose the cofactor matrix (Adjoint matrix) __snake_case: List[Any] = array(SCREAMING_SNAKE_CASE__) for i in range(3): for j in range(3): __snake_case: Tuple = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __snake_case: List[Any] = array(SCREAMING_SNAKE_CASE__) for i in range(3): for j in range(3): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE__) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE__)) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""")
293
0
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(SCREAMING_SNAKE_CASE__ ) == 1: return True lowercase : Any = series[1] - series[0] for index in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _snake_case( SCREAMING_SNAKE_CASE__ ) -> float: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) lowercase : List[str] = 0 for val in series: answer += val return answer / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "microsoft/speecht5_tts" _a : Tuple= ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _a : Dict= "text_reader" _a : Optional[Any]= SpeechTaProcessor _a : Tuple= SpeechTaForTextToSpeech _a : Optional[int]= SpeechTaHifiGan _a : Union[str, Any]= ["text"] _a : Optional[int]= ["audio"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.post_processor is None: lowercase : Any = """microsoft/speecht5_hifigan""" super().setup() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = self.pre_processor(text=snake_case ,return_tensors="""pt""" ,truncation=snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) lowercase : Tuple = load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) lowercase : List[str] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.post_processor(snake_case ).cpu().detach()
20
1
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ): if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) lowerCAmelCase : Tuple = number_of_bytes // partitions lowerCAmelCase : str = [] for i in range(_snake_case ): lowerCAmelCase : List[str] = i * bytes_per_partition + 1 lowerCAmelCase : str = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
314
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
1
def a ( snake_case__: float , snake_case__: int ): '''simple docstring''' if digit_amount > 0: return round(number - int(snake_case__ ) , snake_case__ ) return number - int(snake_case__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
30
'''simple docstring''' from math import sqrt def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase__ : int = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase__ : Optional[Any] = False for divisor in range(2 , int(round(sqrt(UpperCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase__ : Any = False break # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'status' must been from type bool" return status def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase__ : List[str] = list(range(2 , n + 1 ) ) lowerCAmelCase__ : str = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(UpperCamelCase ) ): for j in range(i + 1 , len(UpperCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase__ : List[Any] = 0 # filters actual prime numbers. lowerCAmelCase__ : List[Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type list" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase__ : List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(UpperCamelCase ): ans.append(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type list" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase__ : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase__ : Dict = 2 lowerCAmelCase__ : Dict = number if number == 0 or number == 1: ans.append(UpperCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(UpperCamelCase ): while quotient != 1: if is_prime(UpperCamelCase ) and (quotient % factor == 0): ans.append(UpperCamelCase ) quotient /= factor else: factor += 1 else: ans.append(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type list" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase__ : Optional[int] = 0 # prime factorization of 'number' lowerCAmelCase__ : List[str] = prime_factorization(UpperCamelCase ) lowerCAmelCase__ : Any = max(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type int" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase__ : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase__ : List[str] = prime_factorization(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = min(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type int" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , UpperCamelCase ), "compare bust been from type bool" return number % 2 == 0 def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , UpperCamelCase ), "compare bust been from type bool" return number % 2 != 0 def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert ( isinstance(UpperCamelCase , UpperCamelCase ) and (number > 2) and is_even(UpperCamelCase ) ), "'number' must been an int, even and > 2" lowerCAmelCase__ : Dict = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase__ : Dict = get_prime_numbers(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = len(UpperCamelCase ) # run variable for while-loops. lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[Any] = None # exit variable. for break up the loops lowerCAmelCase__ : Any = True while i < len_pn and loop: lowerCAmelCase__ : List[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase__ : Optional[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(UpperCamelCase , UpperCamelCase ) and (len(UpperCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" assert ( isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase__ : int = 0 while numbera != 0: lowerCAmelCase__ : Any = numbera % numbera lowerCAmelCase__ : str = numbera lowerCAmelCase__ : List[str] = rest # precondition assert isinstance(UpperCamelCase , UpperCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" assert ( isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase__ : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase__ : int = prime_factorization(UpperCamelCase ) lowerCAmelCase__ : Any = prime_factorization(UpperCamelCase ) elif numbera == 1 or numbera == 1: lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[str] = max(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase__ : int = prime_fac_a.count(UpperCamelCase ) lowerCAmelCase__ : Any = prime_fac_a.count(UpperCamelCase ) for _ in range(max(UpperCamelCase , UpperCamelCase ) ): ans *= n else: lowerCAmelCase__ : Any = prime_fac_a.count(UpperCamelCase ) for _ in range(UpperCamelCase ): ans *= n done.append(UpperCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase__ : Optional[int] = prime_fac_a.count(UpperCamelCase ) for _ in range(UpperCamelCase ): ans *= n done.append(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(UpperCamelCase ): ans += 1 # precondition assert isinstance(UpperCamelCase , UpperCamelCase ) and is_prime( UpperCamelCase ), "'ans' must been a prime number and from type int" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" assert ( is_prime(UpperCamelCase ) and is_prime(UpperCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase__ : Dict = p_number_a + 1 # jump to the next number lowerCAmelCase__ : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(UpperCamelCase ): number += 1 while number < p_number_a: ans.append(UpperCamelCase ) number += 1 # fetch the next prime number. while not is_prime(UpperCamelCase ): number += 1 # precondition assert ( isinstance(UpperCamelCase , UpperCamelCase ) and ans[0] != p_number_a and ans[len(UpperCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase__ : List[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(UpperCamelCase ) # precondition assert ans[0] == 1 and ans[len(UpperCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase__ : Optional[int] = get_divisors(UpperCamelCase ) # precondition assert ( isinstance(UpperCamelCase , UpperCamelCase ) and (divisors[0] == 1) and (divisors[len(UpperCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" assert ( isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase__ : int = gcd(abs(UpperCamelCase ) , abs(UpperCamelCase ) ) # precondition assert ( isinstance(UpperCamelCase , UpperCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase__ : str = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Optional[Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase__ : Dict = ans ans += fiba lowerCAmelCase__ : str = tmp return ans
37
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = '''vit_mae''' def __init__( self : str , __a : Optional[Any]=768 , __a : Tuple=12 , __a : Any=12 , __a : Optional[Any]=3072 , __a : Union[str, Any]="gelu" , __a : Optional[Any]=0.0 , __a : Optional[Any]=0.0 , __a : str=0.02 , __a : int=1E-12 , __a : int=224 , __a : List[str]=16 , __a : Any=3 , __a : Any=True , __a : Union[str, Any]=16 , __a : int=512 , __a : List[str]=8 , __a : Optional[Any]=2048 , __a : Union[str, Any]=0.75 , __a : Dict=False , **__a : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) __lowercase : Optional[Any] = hidden_size __lowercase : Any = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : Optional[int] = intermediate_size __lowercase : Dict = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : str = attention_probs_dropout_prob __lowercase : List[str] = initializer_range __lowercase : int = layer_norm_eps __lowercase : List[str] = image_size __lowercase : Dict = patch_size __lowercase : Union[str, Any] = num_channels __lowercase : Optional[int] = qkv_bias __lowercase : Union[str, Any] = decoder_num_attention_heads __lowercase : List[str] = decoder_hidden_size __lowercase : Optional[int] = decoder_num_hidden_layers __lowercase : List[str] = decoder_intermediate_size __lowercase : Optional[Any] = mask_ratio __lowercase : Any = norm_pix_loss
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _snake_case ( UpperCamelCase : Optional[int] ): UpperCAmelCase : int = int(UpperCamelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = t // 3600, (t // 60) % 60, t % 60 return F"{h}:{m:02d}:{s:02d}" if h != 0 else F"{m:02d}:{s:02d}" def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : int=300 ): # docstyle-ignore return F"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def _snake_case ( UpperCamelCase : Dict ): UpperCAmelCase : str = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: UpperCAmelCase : Optional[Any] = F"{elt:.6f}" if isinstance(UpperCamelCase , UpperCamelCase ) else str(UpperCamelCase ) html_code += F" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Optional[int] = 5 __lowerCAmelCase : Tuple = 0.2 def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 300 , ) -> Dict: '''simple docstring''' UpperCAmelCase : str = total UpperCAmelCase : Optional[int] = """""" if prefix is None else prefix UpperCAmelCase : Union[str, Any] = leave UpperCAmelCase : List[Any] = parent UpperCAmelCase : Dict = width UpperCAmelCase : int = None UpperCAmelCase : List[Any] = None UpperCAmelCase : Dict = None def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int = value if comment is not None: UpperCAmelCase : Dict = comment if self.last_value is None: UpperCAmelCase : List[str] = time.time() UpperCAmelCase : int = value UpperCAmelCase : List[Any] = None UpperCAmelCase : Union[str, Any] = self.warmup UpperCAmelCase : Any = 1 self.update_bar(_SCREAMING_SNAKE_CASE ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 UpperCAmelCase : int = time.time() UpperCAmelCase : Dict = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: UpperCAmelCase : Any = self.elapsed_time / (value - self.start_value) else: UpperCAmelCase : Any = None if value >= self.total: UpperCAmelCase : Tuple = self.total UpperCAmelCase : Dict = None if not self.leave: self.close() elif self.average_time_per_item is not None: UpperCAmelCase : Dict = self.average_time_per_item * (self.total - value) self.update_bar(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = value UpperCAmelCase : Union[str, Any] = current_time if self.average_time_per_item is None: UpperCAmelCase : List[Any] = 1 else: UpperCAmelCase : Dict = max(int(self.update_every / self.average_time_per_item ) , 1 ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any = """ """ * (len(str(self.total ) ) - len(str(_SCREAMING_SNAKE_CASE ) )) + str(_SCREAMING_SNAKE_CASE ) if self.elapsed_time is None: UpperCAmelCase : List[Any] = F"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: UpperCAmelCase : Union[str, Any] = F"[{spaced_value}/{self.total} {format_time(self.elapsed_time )}" else: UpperCAmelCase : Optional[int] = ( F"[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <" F" {format_time(self.predicted_remaining )}" ) self.label += F", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F", {self.comment}]" self.display() def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: UpperCAmelCase : Dict = disp.display(disp.HTML(self.html_code ) , display_id=_SCREAMING_SNAKE_CASE ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = None if column_names is None else [column_names] UpperCAmelCase : List[Any] = None def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: UpperCAmelCase : Any = disp.display(disp.HTML(self.html_code ) , display_id=_SCREAMING_SNAKE_CASE ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if self.inner_table is None: UpperCAmelCase : Tuple = [list(values.keys() ), list(values.values() )] else: UpperCAmelCase : str = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = columns self.inner_table.append([values[c] for c in columns] ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=300 ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple = NotebookProgressBar(_SCREAMING_SNAKE_CASE , prefix=_SCREAMING_SNAKE_CASE , parent=self , width=_SCREAMING_SNAKE_CASE ) return self.child_bar def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Tuple = None self.display() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = None UpperCAmelCase : Any = None UpperCAmelCase : Any = False def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : int = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) UpperCAmelCase : int = NotebookTrainingTracker(state.max_steps , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 , comment=F"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , ) UpperCAmelCase : int = False def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if not has_length(_SCREAMING_SNAKE_CASE ): return if self.prediction_bar is None: if self.training_tracker is not None: UpperCAmelCase : int = self.training_tracker.add_child(len(_SCREAMING_SNAKE_CASE ) ) else: UpperCAmelCase : Union[str, Any] = NotebookProgressBar(len(_SCREAMING_SNAKE_CASE ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() UpperCAmelCase : int = None def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: UpperCAmelCase : List[Any] = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy UpperCAmelCase : Optional[Any] = state.global_step self.training_tracker.write_line(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if self.training_tracker is not None: UpperCAmelCase : Any = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: UpperCAmelCase : Optional[int] = log["""loss"""] break if self.first_column == "Epoch": UpperCAmelCase : Dict = int(state.epoch ) else: UpperCAmelCase : int = state.global_step UpperCAmelCase : Union[str, Any] = """eval""" for k in metrics: if k.endswith("""_loss""" ): UpperCAmelCase : Optional[Any] = re.sub(r"""\_loss$""" , """""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = metrics.pop("""total_flos""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = metrics.pop("""epoch""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = metrics.pop(F"{metric_key_prefix}_runtime" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = metrics.pop(F"{metric_key_prefix}_samples_per_second" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = metrics.pop(F"{metric_key_prefix}_steps_per_second" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = metrics.pop(F"{metric_key_prefix}_jit_compilation_time" , _SCREAMING_SNAKE_CASE ) for k, v in metrics.items(): if k == F"{metric_key_prefix}_loss": UpperCAmelCase : Tuple = v else: UpperCAmelCase : Union[str, Any] = k.split("""_""" ) UpperCAmelCase : List[str] = """ """.join([part.capitalize() for part in splits[1:]] ) UpperCAmelCase : List[str] = v self.training_tracker.write_line(_SCREAMING_SNAKE_CASE ) self.training_tracker.remove_child() UpperCAmelCase : Union[str, Any] = None # Evaluation takes a long time so we should force the next update. UpperCAmelCase : Union[str, Any] = True def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' self.training_tracker.update( state.global_step , comment=F"Epoch {int(state.epoch )}/{state.num_train_epochs}" , force_update=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = None
109
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A: Optional[int] = logging.get_logger(__name__) A: Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } A: List[str] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Any ): for attribute in key.split(""".""" ): UpperCAmelCase : Optional[Any] = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: UpperCAmelCase : List[Any] = getattr(UpperCamelCase , UpperCamelCase ).shape else: UpperCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Union[str, Any] = value elif weight_type == "bias": UpperCAmelCase : str = value else: UpperCAmelCase : Union[str, Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] ): UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = fairseq_model.state_dict() UpperCAmelCase : Tuple = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase : Dict = True if "*" in mapped_key: UpperCAmelCase : str = name.split(UpperCamelCase )[0].split(""".""" )[-2] UpperCAmelCase : Tuple = mapped_key.replace("""*""" , UpperCamelCase ) if "weight_g" in name: UpperCAmelCase : Any = """weight_g""" elif "weight_v" in name: UpperCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCAmelCase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : str = """weight""" else: UpperCAmelCase : Optional[Any] = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Any ): UpperCAmelCase : str = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Dict = name.split(""".""" ) UpperCAmelCase : List[str] = int(items[0] ) UpperCAmelCase : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase : Optional[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCAmelCase : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def _snake_case ( UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : List[Any]=None ): # load the pre-trained checkpoints UpperCAmelCase : List[Any] = torch.load(UpperCamelCase ) UpperCAmelCase : List[str] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCAmelCase : Optional[int] = WavLMOrig(UpperCamelCase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCAmelCase : List[str] = WavLMConfig.from_pretrained(UpperCamelCase ) else: UpperCAmelCase : List[Any] = WavLMConfig() UpperCAmelCase : Any = WavLMModel(UpperCamelCase ) recursively_load_weights(UpperCamelCase , UpperCamelCase ) hf_wavlm.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A: Tuple = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
109
1
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("Input must be a positive integer" ) lowercase__ : List[str] = [True] * (num + 1) lowercase__ : Union[str, Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCamelCase__ ): lowercase__ : Any = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
359
from math import ceil, sqrt def __lowerCamelCase ( lowerCamelCase__ = 1_000_000 ): """simple docstring""" lowercase__ : int = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase__ : List[str] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase__ : List[str] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
121
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[int] = logging.get_logger(__name__) lowercase_ : Union[str, Any] = '▁' lowercase_ : Optional[Any] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowercase_ : List[Any] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowercase_ : Optional[int] = { 'facebook/s2t-small-librispeech-asr': 10_24, } lowercase_ : Dict = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowercase_ : int = {'mustc': MUSTC_LANGS} class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : List[str] = VOCAB_FILES_NAMES snake_case_ : Dict = PRETRAINED_VOCAB_FILES_MAP snake_case_ : str = MAX_MODEL_INPUT_SIZES snake_case_ : List[str] = ["input_ids", "attention_mask"] snake_case_ : List[int] = [] def __init__( self : List[Any] , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Dict="<s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<pad>" , snake_case__ : Any="<unk>" , snake_case__ : List[Any]=False , snake_case__ : Optional[Any]=False , snake_case__ : str=None , snake_case__ : List[str]=None , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[Any] , ): """simple docstring""" _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , do_upper_case=snake_case__ , do_lower_case=snake_case__ , tgt_lang=snake_case__ , lang_codes=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) _UpperCAmelCase = do_upper_case _UpperCAmelCase = do_lower_case _UpperCAmelCase = load_json(snake_case__ ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = spm_file _UpperCAmelCase = load_spm(snake_case__ , self.sp_model_kwargs ) if lang_codes is not None: _UpperCAmelCase = lang_codes _UpperCAmelCase = LANGUAGES[lang_codes] _UpperCAmelCase = [F"""<lang:{lang}>""" for lang in self.langs] _UpperCAmelCase = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} _UpperCAmelCase = self.lang_tokens _UpperCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _UpperCAmelCase = {} @property def UpperCamelCase ( self : int ): """simple docstring""" return len(self.encoder ) @property def UpperCamelCase ( self : List[str] ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" _UpperCAmelCase = new_tgt_lang self.set_tgt_lang_special_tokens(snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = self.lang_code_to_id[tgt_lang] _UpperCAmelCase = [lang_code_id] def UpperCamelCase ( self : Tuple , snake_case__ : str ): """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : Tuple ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder[self.unk_token] ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : int ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def UpperCamelCase ( self : List[Any] , snake_case__ : List[str] ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _UpperCAmelCase = self.sp_model.decode(snake_case__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _UpperCAmelCase = [] else: current_sub_tokens.append(snake_case__ ) _UpperCAmelCase = self.sp_model.decode(snake_case__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCamelCase ( self : List[Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(snake_case__ )) + suffix_ones return prefix_ones + ([0] * len(snake_case__ )) + ([0] * len(snake_case__ )) + suffix_ones def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Tuple , snake_case__ : Dict ): """simple docstring""" _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase ( self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" _UpperCAmelCase = Path(snake_case__ ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" _UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , snake_case__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case__ ) elif not os.path.isfile(self.spm_file ): with open(snake_case__ , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (str(snake_case__ ), str(snake_case__ )) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = sentencepiece.SentencePieceProcessor(**snake_case_ ) spm.Load(str(snake_case_ ) ) return spm def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' with open(snake_case_ , "r" ) as f: return json.load(snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ , indent=2 )
133
def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000 ): '''simple docstring''' _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
133
1
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A ( UpperCAmelCase_ ): def lowercase_ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = 5 # Realm tok UpperCAmelCase__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase__ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCAmelCase__ = os.path.join(__UpperCAmelCase , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase__ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) def lowercase_ (self : int ) -> RealmTokenizer: """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def lowercase_ (self : Dict ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = RealmConfig(num_block_records=self.num_block_records ) return config def lowercase_ (self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase__ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__UpperCAmelCase , ) return block_records def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowercase_ (self : int ) -> int: """simple docstring""" UpperCAmelCase__ = self.get_config() UpperCAmelCase__ = self.get_dummy_retriever() UpperCAmelCase__ = retriever.tokenizer UpperCAmelCase__ = np.array([0, 3] , dtype="long" ) UpperCAmelCase__ = tokenizer(["Test question"] ).input_ids UpperCAmelCase__ = tokenizer( ["the fourth"] , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ).input_ids UpperCAmelCase__ = config.reader_seq_len UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = retriever( __UpperCAmelCase , __UpperCAmelCase , answer_ids=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors="np" ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def lowercase_ (self : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = self.get_config() UpperCAmelCase__ = self.get_dummy_retriever() UpperCAmelCase__ = retriever.tokenizer UpperCAmelCase__ = np.array([0, 3, 5] , dtype="long" ) UpperCAmelCase__ = tokenizer(["Test question"] ).input_ids UpperCAmelCase__ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ).input_ids UpperCAmelCase__ = config.reader_seq_len UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = retriever( __UpperCAmelCase , __UpperCAmelCase , answer_ids=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors="np" ) self.assertEqual([False, True, True] , __UpperCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __UpperCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __UpperCAmelCase ) def lowercase_ (self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path UpperCAmelCase__ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: UpperCAmelCase__ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase__ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
350
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = 'facebook/bart-large-mnli' __UpperCAmelCase : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __UpperCAmelCase : Optional[int] = 'text_classifier' __UpperCAmelCase : int = AutoTokenizer __UpperCAmelCase : Dict = AutoModelForSequenceClassification __UpperCAmelCase : int = ['text', ['text']] __UpperCAmelCase : Optional[int] = ['text'] def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" super().setup() UpperCAmelCase__ = self.model.config UpperCAmelCase__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCAmelCase__ = int(__UpperCAmelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = labels return self.pre_processor( [text] * len(__UpperCAmelCase ) , [f"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
143
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any): return (abs(source - target) / target) < 0.01 @pytest.mark.integration def lowercase_ ( _lowerCamelCase : Any): lowercase__ : Optional[int] = _TestCommandArgs(dataset=_lowerCamelCase , all_configs=_lowerCamelCase , save_infos=_lowerCamelCase) lowercase__ : int = TestCommand(*_lowerCamelCase) test_command.run() lowercase__ : Dict = os.path.join(_lowerCamelCase , "README.md") assert os.path.exists(_lowerCamelCase) lowercase__ : str = DatasetInfosDict.from_directory(_lowerCamelCase) lowercase__ : Dict = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string")), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"])), "langs": Sequence(Value("string")), "spans": Sequence(Value("string")), }) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) }) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase__ , lowercase__ : Union[str, Any] = getattr(dataset_infos["default"] , _lowerCamelCase), getattr(expected_dataset_infos["default"] , _lowerCamelCase) if key == "num_bytes": assert is_apercent_close(_lowerCamelCase , _lowerCamelCase) elif key == "splits": assert list(_lowerCamelCase) == list(_lowerCamelCase) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes) else: result == expected
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ) -> Tuple: assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ = tmp_path / 'cache' UpperCAmelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_A , keep_in_memory=_A ).read() _check_sql_dataset(_A , _A ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) -> Any: UpperCAmelCase_ = tmp_path / 'cache' UpperCAmelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase_ = features.copy() if features else default_expected_features UpperCAmelCase_ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=_A , cache_dir=_A ).read() _check_sql_dataset(_A , _A ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Tuple: with contextlib.closing(sqlitea.connect(_A ) ) as con: UpperCAmelCase_ = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : str ) -> Optional[Any]: UpperCAmelCase_ = tmp_path / 'cache' UpperCAmelCase_ = os.path.join(_A , '''tmp.sql''' ) UpperCAmelCase_ = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_A ).read() SqlDatasetWriter(_A , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() UpperCAmelCase_ = iter_sql_file(_A ) UpperCAmelCase_ = iter_sql_file(_A ) for rowa, rowa in zip(_A , _A ): assert rowa == rowa @require_sqlalchemy def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ) -> List[str]: UpperCAmelCase_ = tmp_path / 'cache' UpperCAmelCase_ = os.path.join(_A , '''tmp.sql''' ) UpperCAmelCase_ = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_A ).read() SqlDatasetWriter(_A , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() UpperCAmelCase_ = iter_sql_file(_A ) UpperCAmelCase_ = iter_sql_file(_A ) for rowa, rowa in zip(_A , _A ): assert rowa == rowa @require_sqlalchemy def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : str ) -> List[Any]: UpperCAmelCase_ = tmp_path / 'cache' UpperCAmelCase_ = os.path.join(_A , '''tmp.sql''' ) UpperCAmelCase_ = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_A ).read() with pytest.raises(_A ): SqlDatasetWriter(_A , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
353
from __future__ import annotations import os from collections.abc import Mapping _lowerCamelCase = tuple[int, int] class a : '''simple docstring''' def __init__( self : str , __snake_case : set[int] , __snake_case : Mapping[EdgeT, int] ): UpperCAmelCase_ = vertices UpperCAmelCase_ = { (min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items() } def lowerCamelCase_ ( self : Any , __snake_case : EdgeT , __snake_case : int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCAmelCase_ = weight def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = Graph({min(self.vertices )} , {} ) UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCAmelCase_ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCAmelCase_ = edge UpperCAmelCase_ = weight subgraph.add_edge(__snake_case , __snake_case ) return subgraph def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "p107_network.txt" ) -> int: UpperCAmelCase_ = os.path.abspath(os.path.dirname(__UpperCamelCase ) ) UpperCAmelCase_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase_ = {} UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 with open(__UpperCamelCase ) as f: UpperCAmelCase_ = f.read().strip().split('''\n''' ) UpperCAmelCase_ = [line.split(''',''' ) for line in data] for edgea in range(1 , len(__UpperCamelCase ) ): for edgea in range(__UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": UpperCAmelCase_ = int(adjaceny_matrix[edgea][edgea] ) UpperCAmelCase_ = Graph(set(range(len(__UpperCamelCase ) ) ) , __UpperCamelCase ) UpperCAmelCase_ = graph.prims_algorithm() UpperCAmelCase_ = sum(graph.edges.values() ) UpperCAmelCase_ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
177
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def __lowerCAmelCase ( a__ ) -> Optional[Any]: __a = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"""{test_file} instead.""" ) __a = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __a = components[:-1] + [test_fn.replace('''.py''' , '''''' )] __a = '''.'''.join(a__ ) return test_module_path def __lowerCAmelCase ( a__ ) -> List[str]: __a = get_module_path(a__ ) __a = importlib.import_module(a__ ) return test_module def __lowerCAmelCase ( a__ ) -> List[str]: __a = [] __a = get_test_module(a__ ) for attr in dir(a__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(a__ , a__ ) ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: __a = [] __a = get_test_module(a__ ) for attr in dir(a__ ): __a = getattr(a__ , a__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a = getattr(a__ , '''all_model_classes''' , [] ) if len(a__ ) > 0: test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ ) -> Optional[int]: __a = get_test_classes(a__ ) __a = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ ) -> List[Any]: __a = test_class() if hasattr(a__ , '''setUp''' ): test.setUp() __a = None if hasattr(a__ , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a = test.model_tester.__class__ return model_tester def __lowerCAmelCase ( a__ , a__ ) -> Optional[Any]: __a = get_test_classes(a__ ) __a = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ , a__ ) -> Optional[int]: __a = get_test_classes_for_model(a__ , a__ ) __a = [] for test_class in test_classes: __a = get_model_tester_from_test_class(a__ ) if tester_class is not None: tester_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: __a = get_test_classes(a__ ) __a = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes} return test_tester_mapping def __lowerCAmelCase ( a__ ) -> List[str]: __a = get_model_classes(a__ ) __a = { model_class: get_test_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_test_mapping def __lowerCAmelCase ( a__ ) -> Union[str, Any]: __a = get_model_classes(a__ ) __a = { model_class: get_tester_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_to_tester_mapping def __lowerCAmelCase ( a__ ) -> Union[str, Any]: if isinstance(a__ , a__ ): return o elif isinstance(a__ , a__ ): return o.__name__ elif isinstance(a__ , (list, tuple) ): return [to_json(a__ ) for x in o] elif isinstance(a__ , a__ ): return {to_json(a__ ): to_json(a__ ) for k, v in o.items()} else: return o
6
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __UpperCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def lowercase__ ( __snake_case : str , __snake_case : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: UpperCAmelCase_ : List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(__snake_case ) UpperCAmelCase_ : Any = XLMProphetNetForConditionalGeneration.from_pretrained( __snake_case , output_loading_info=__snake_case ) else: UpperCAmelCase_ : Tuple = ProphetNetForConditionalGenerationOld.from_pretrained(__snake_case ) UpperCAmelCase_ : str = ProphetNetForConditionalGeneration.from_pretrained( __snake_case , output_loading_info=__snake_case ) UpperCAmelCase_ : Tuple = ['key_proj', 'value_proj', 'query_proj'] UpperCAmelCase_ : int = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: UpperCAmelCase_ : List[str] = key.split('.' ) if attributes[0] == "lm_head": UpperCAmelCase_ : Union[str, Any] = prophet UpperCAmelCase_ : Dict = prophet_old else: UpperCAmelCase_ : Optional[Any] = prophet.prophetnet UpperCAmelCase_ : int = prophet_old.model UpperCAmelCase_ : List[str] = False for attribute in attributes: if attribute in mapping: UpperCAmelCase_ : Optional[int] = mapping[attribute] if not hasattr(__snake_case , __snake_case ) and len(__snake_case ) > 0: UpperCAmelCase_ : Any = attribute elif hasattr(__snake_case , __snake_case ): UpperCAmelCase_ : List[str] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" UpperCAmelCase_ : Optional[int] = old_model.weight logger.info(F"{attribute} is initialized." ) UpperCAmelCase_ : str = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" UpperCAmelCase_ : str = old_model.bias logger.info(F"{attribute} is initialized" ) UpperCAmelCase_ : Optional[int] = True break elif attribute in special_keys and hasattr(__snake_case , 'in_proj_weight' ): UpperCAmelCase_ : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3 UpperCAmelCase_ : List[Any] = getattr(__snake_case , __snake_case ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": UpperCAmelCase_ : int = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) UpperCAmelCase_ : Dict = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": UpperCAmelCase_ : Tuple = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) UpperCAmelCase_ : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": UpperCAmelCase_ : int = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) UpperCAmelCase_ : List[str] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) UpperCAmelCase_ : Optional[Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." UpperCAmelCase_ : Tuple = nn.Parameter(old_model.embed_positions.weight[:512, :] ) UpperCAmelCase_ : List[Any] = True break if attribute.isdigit(): UpperCAmelCase_ : Optional[Any] = model[int(__snake_case )] UpperCAmelCase_ : Tuple = old_model[int(__snake_case )] else: UpperCAmelCase_ : Union[str, Any] = getattr(__snake_case , __snake_case ) if old_attribute == "": UpperCAmelCase_ : Any = old_model else: if not hasattr(__snake_case , __snake_case ): raise ValueError(F"{old_model} does not have {old_attribute}" ) UpperCAmelCase_ : Tuple = getattr(__snake_case , __snake_case ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
352
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None ) -> int: super().__init__() UpperCAmelCase_ : str = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase_ : Optional[Any] = torch.zeros(_UpperCamelCase , _UpperCamelCase ) else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = torch.nn.Parameter(_UpperCamelCase ) class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : VQModel _snake_case : CLIPTextModel _snake_case : CLIPTokenizer _snake_case : TransformeraDModel _snake_case : LearnedClassifierFreeSamplingEmbeddings _snake_case : VQDiffusionScheduler def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> List[Any]: super().__init__() self.register_modules( vqvae=_UpperCamelCase , transformer=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , scheduler=_UpperCamelCase , learned_classifier_free_sampling_embeddings=_UpperCamelCase , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = len(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else 1 # get prompt text embeddings UpperCAmelCase_ : str = self.tokenizer( _UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCAmelCase_ : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase_ : str = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase_ : Dict = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_UpperCamelCase ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ : Dict = prompt_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase_ : List[str] = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase_ : List[str] = negative_prompt_embeds.unsqueeze(0 ).repeat(_UpperCamelCase , 1 , 1 ) else: UpperCAmelCase_ : List[Any] = [''] * batch_size UpperCAmelCase_ : List[Any] = text_input_ids.shape[-1] UpperCAmelCase_ : Dict = self.tokenizer( _UpperCamelCase , padding='max_length' , max_length=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='pt' , ) UpperCAmelCase_ : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase_ : Dict = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ : List[Any] = negative_prompt_embeds.shape[1] UpperCAmelCase_ : Dict = negative_prompt_embeds.repeat(1 , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Union[str, Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _UpperCamelCase , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 5.0 , _UpperCamelCase = 1.0 , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Any = 1 elif isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Tuple = len(_UpperCamelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : Union[str, Any] = batch_size * num_images_per_prompt UpperCAmelCase_ : Optional[int] = guidance_scale > 1.0 UpperCAmelCase_ : Any = self._encode_prompt(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCamelCase , _UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(_UpperCamelCase )}." ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase_ : Optional[int] = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase_ : Tuple = self.transformer.num_vector_embeds - 1 UpperCAmelCase_ : List[Any] = torch.full(_UpperCamelCase , _UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) UpperCAmelCase_ : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_UpperCamelCase , device=self.device ) UpperCAmelCase_ : List[str] = self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ : Union[str, Any] = latents for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase_ : Union[str, Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase_ : Dict = self.transformer(_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , timestep=_UpperCamelCase ).sample if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_output.chunk(2 ) UpperCAmelCase_ : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_UpperCamelCase , dim=1 , keepdim=_UpperCamelCase ) UpperCAmelCase_ : str = self.truncate(_UpperCamelCase , _UpperCamelCase ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase_ : Optional[int] = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(_UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , generator=_UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : str = self.vqvae.config.vq_embed_dim UpperCAmelCase_ : Optional[int] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase_ : int = self.vqvae.quantize.get_codebook_entry(_UpperCamelCase , shape=_UpperCamelCase ) UpperCAmelCase_ : Dict = self.vqvae.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase ).sample UpperCAmelCase_ : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : int = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> torch.FloatTensor: UpperCAmelCase_ , UpperCAmelCase_ : int = torch.sort(_UpperCamelCase , 1 , descending=_UpperCamelCase ) UpperCAmelCase_ : Dict = torch.exp(_UpperCamelCase ) UpperCAmelCase_ : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase_ : Tuple = torch.full_like(keep_mask[:, 0:1, :] , _UpperCamelCase ) UpperCAmelCase_ : List[str] = torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase_ : int = keep_mask[:, :-1, :] UpperCAmelCase_ : Any = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase_ : str = log_p_x_0.clone() UpperCAmelCase_ : Any = -torch.inf # -inf = log(0) return rv
145
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class A__ ( __snake_case ): _UpperCAmelCase :Dict = 'bart' _UpperCAmelCase :str = ['past_key_values'] _UpperCAmelCase :Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A_=5_0265 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=3 , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , **A_ , ): '''simple docstring''' UpperCamelCase : int = vocab_size UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Any = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = encoder_attention_heads UpperCamelCase : Optional[int] = decoder_ffn_dim UpperCamelCase : List[str] = decoder_layers UpperCamelCase : Optional[int] = decoder_attention_heads UpperCamelCase : int = dropout UpperCamelCase : int = attention_dropout UpperCamelCase : Tuple = activation_dropout UpperCamelCase : Tuple = activation_function UpperCamelCase : int = init_std UpperCamelCase : List[Any] = encoder_layerdrop UpperCamelCase : List[str] = decoder_layerdrop UpperCamelCase : Dict = classifier_dropout UpperCamelCase : Optional[int] = use_cache UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , A_ ): UpperCamelCase : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." ) class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase : List[str] = {0: "batch"} UpperCamelCase : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase : Dict = {0: "batch", 1: "decoder_sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(A_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase : Optional[int] = self.num_layers for i in range(A_ ): UpperCamelCase : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCamelCase : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Tuple = super().outputs else: UpperCamelCase : Dict = super(A_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase : int = self.num_layers for i in range(A_ ): UpperCamelCase : int = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Tuple = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs UpperCamelCase : List[Any] = seq_length if not self.use_past else 1 UpperCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) UpperCamelCase : Optional[int] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase : List[Any] = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Optional[Any] = common_inputs["input_ids"].shape UpperCamelCase : List[Any] = common_inputs["decoder_input_ids"].shape[1] UpperCamelCase , UpperCamelCase : List[str] = self.num_attention_heads UpperCamelCase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : List[Any] = decoder_seq_length + 3 UpperCamelCase : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase : int = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(A_ , A_ )] , dim=1 ) UpperCamelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase : Union[str, Any] = self.num_layers UpperCamelCase : Any = min(A_ , A_ ) UpperCamelCase : List[str] = max(A_ , A_ ) - min_num_layers UpperCamelCase : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. UpperCamelCase : Optional[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase : Optional[Any] = seqlen + 2 UpperCamelCase , UpperCamelCase : List[Any] = self.num_layers UpperCamelCase , UpperCamelCase : Optional[int] = self.num_attention_heads UpperCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : Optional[Any] = common_inputs["attention_mask"].dtype UpperCamelCase : int = torch.cat( [common_inputs["attention_mask"], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) UpperCamelCase : Optional[Any] = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : Optional[Any] = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add(A_ ) UpperCamelCase : int = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase : Dict = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) elif self.task == "causal-lm": UpperCamelCase : List[str] = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: UpperCamelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[Any] = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: UpperCamelCase : Optional[Any] = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ )
52
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __UpperCAmelCase : Tuple = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__, metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) __UpperCamelCase : bool = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "Whether tp freeze the encoder."}) __UpperCamelCase : bool = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "Whether to freeze the embeddings."}) @dataclass class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}) __UpperCamelCase : Optional[str] = field( default="summarization", metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, ) __UpperCamelCase : Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __UpperCamelCase : Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __UpperCamelCase : Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) __UpperCamelCase : Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __UpperCamelCase : Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) __UpperCamelCase : Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) __UpperCamelCase : Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) __UpperCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "Source language id for translation."}) __UpperCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "Target language id for translation."}) __UpperCamelCase : Optional[int] = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "# num_beams to use for evaluation."}) __UpperCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__, metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , F"""{split}_results.json""" ) ) def _UpperCAmelCase ( ): """simple docstring""" UpperCamelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = parser.parse_args_into_dataclasses() check_output_dir(lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase : str = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): assert hasattr(lowerCAmelCase__ , lowerCAmelCase__ ), F"""({config.__class__.__name__}) doesn\'t have a `{p}` attribute""" setattr(lowerCAmelCase__ , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCAmelCase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase : int = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCAmelCase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCamelCase : List[str] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCAmelCase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase : str = SeqaSeqDataset # Get datasets UpperCamelCase : Any = ( dataset_class( lowerCAmelCase__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) UpperCamelCase : Optional[Any] = ( dataset_class( lowerCAmelCase__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase : Optional[int] = ( dataset_class( lowerCAmelCase__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase : str = ( build_compute_metrics_fn(data_args.task , lowerCAmelCase__ ) if training_args.predict_with_generate else None ) UpperCamelCase : Optional[int] = SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , data_args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , data_collator=SeqaSeqDataCollator( lowerCAmelCase__ , lowerCAmelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) UpperCamelCase : Optional[int] = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) UpperCamelCase : Union[str, Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase : List[Any] = train_result.metrics UpperCamelCase : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCamelCase : int = trainer.evaluate(metric_key_prefix='''val''' ) UpperCamelCase : List[str] = data_args.n_val UpperCamelCase : Any = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) UpperCamelCase : Union[str, Any] = trainer.predict(test_dataset=lowerCAmelCase__ , metric_key_prefix='''test''' ) UpperCamelCase : Tuple = test_output.metrics UpperCamelCase : List[str] = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase : Union[str, Any] = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) if training_args.predict_with_generate: UpperCamelCase : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) UpperCamelCase : Dict = lmap(str.strip , lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(lowerCAmelCase__ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" main() if __name__ == "__main__": main()
359
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
315
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _lowercase (unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=18 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=[0.5, 0.5, 0.5] , snake_case__=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size if size is not None else {"height": 18, "width": 20} UpperCamelCase_ = do_thumbnail UpperCamelCase_ = do_align_axis UpperCamelCase_ = do_pad UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std def _lowerCamelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _lowercase (a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_thumbnail" ) ) self.assertTrue(hasattr(snake_case__ , "do_align_long_axis" ) ) self.assertTrue(hasattr(snake_case__ , "do_pad" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def _lowerCamelCase ( self ): '''simple docstring''' pass @is_flaky() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
128
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowercase (a_ ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("""num_inference_steps""", 50),) def _lowerCamelCase ( self , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = {"num_train_timesteps": 1000} config.update(**snake_case__ ) return config def _lowerCamelCase ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config(**snake_case__ ) UpperCamelCase_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCamelCase_ = dummy_past_residuals[:] if time_step is None: UpperCamelCase_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCamelCase_ = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self ): '''simple docstring''' pass def _lowerCamelCase ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase_ = dummy_past_residuals[:] if time_step is None: UpperCamelCase_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCamelCase_ = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config(**snake_case__ ) UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = 10 UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = model(snake_case__ , snake_case__ ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = model(snake_case__ , snake_case__ ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): UpperCamelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.timesteps[5] UpperCamelCase_ = scheduler.timesteps[6] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCamelCase ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ , time_step=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case__ , time_step=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.full_loop() UpperCamelCase_ = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
128
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
183
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a_ ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Any: """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_pad def A__ ( self ) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: """simple docstring""" if not batched: UpperCamelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase ,UpperCamelCase = image.size else: UpperCamelCase ,UpperCamelCase = image.shape[1], image.shape[2] if w < h: UpperCamelCase = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase = self.size["""shortest_edge"""] elif w > h: UpperCamelCase = self.size["""shortest_edge"""] UpperCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase = self.size["""shortest_edge"""] UpperCamelCase = self.size["""shortest_edge"""] else: UpperCamelCase = [] for image in image_inputs: UpperCamelCase ,UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( lowerCamelCase , unittest.TestCase ): lowercase = ConditionalDetrImageProcessor if is_vision_available() else None def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = ConditionalDetrImageProcessingTester(self ) @property def A__ ( self ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """size""" ) ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" pass def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"""image_id""": 39769, """annotations""": target} # encode them UpperCamelCase = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) UpperCamelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _SCREAMING_SNAKE_CASE ) ) @slow def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} UpperCamelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _SCREAMING_SNAKE_CASE ) ) # verify masks UpperCamelCase = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _SCREAMING_SNAKE_CASE ) )
183
1
from pathlib import Path import numpy as np from PIL import Image def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ , lowercase__ , lowercase__ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return (gray > 127) & (gray <= 255) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = np.zeros_like(lowerCamelCase__ ) lowercase__ : str = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowercase__ : str = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowercase__ : str = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowercase__ : Union[str, Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCAmelCase__ = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' lowerCAmelCase__ = np.array(Image.open(lena_path)) # kernel to be applied lowerCAmelCase__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCAmelCase__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCAmelCase__ = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
130
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) _UpperCAmelCase = '''''' while len(_SCREAMING_SNAKE_CASE ) % 3 != 0: _UpperCAmelCase = '''0''' + bin_string _UpperCAmelCase = [ bin_string[index : index + 3] for index in range(len(_SCREAMING_SNAKE_CASE ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase = 0 for index, val in enumerate(_SCREAMING_SNAKE_CASE ): oct_val += int(2 ** (2 - index) * int(_SCREAMING_SNAKE_CASE ) ) oct_string += str(_SCREAMING_SNAKE_CASE ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
326
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
1
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Dict = '''T5Config''' def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->jnp.ndarray: """simple docstring""" A = jnp.zeros_like(UpperCAmelCase ) A = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) A = shifted_input_ids.at[:, 0].set(UpperCAmelCase ) A = jnp.where(shifted_input_ids == -100 , UpperCAmelCase , UpperCAmelCase ) return shifted_input_ids class __UpperCAmelCase ( _a ): '''simple docstring''' __lowerCAmelCase = """mt5""" __lowerCAmelCase = MTaConfig class __UpperCAmelCase ( _a ): '''simple docstring''' __lowerCAmelCase = """mt5""" __lowerCAmelCase = MTaConfig class __UpperCAmelCase ( _a ): '''simple docstring''' __lowerCAmelCase = """mt5""" __lowerCAmelCase = MTaConfig
258
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(__magic_name__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) UpperCamelCase :int = QuantumRegister(__magic_name__ , """qr""" ) UpperCamelCase :str = ClassicalRegister(__magic_name__ , """cr""" ) UpperCamelCase :str = QuantumCircuit(__magic_name__ , __magic_name__ ) UpperCamelCase :List[Any] = number_of_qubits for i in range(__magic_name__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__magic_name__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __magic_name__ , __magic_name__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__magic_name__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__magic_name__ , __magic_name__ ) # simulate with 10000 shots UpperCamelCase :str = Aer.get_backend("""qasm_simulator""" ) UpperCamelCase :Dict = execute(__magic_name__ , __magic_name__ , shots=1_0000 ) return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
38
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : List[Any] ,__lowercase : Optional[Any] ,__lowercase : Any=10_24 ): '''simple docstring''' A_ , A_ : Tuple = [], [] A_ : Dict = list(zip(__lowercase ,__lowercase ) ) A_ , A_ : List[Any] = sorted_examples[0] def is_too_big(__lowercase : Optional[Any] ): return tok(__lowercase ,return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): A_ : Optional[Any] = new_src + ' ' + src A_ : Optional[Any] = new_tgt + ' ' + tgt if is_too_big(__lowercase ) or is_too_big(__lowercase ): # cant fit, finalize example finished_src.append(__lowercase ) finished_tgt.append(__lowercase ) A_ , A_ : List[str] = src, tgt else: # can fit, keep adding A_ , A_ : str = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowercase ) finished_tgt.append(__lowercase ) return finished_src, finished_tgt def UpperCamelCase ( __lowercase : Any ,__lowercase : Path ,__lowercase : str ,__lowercase : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = Path(__lowercase ) save_path.mkdir(exist_ok=__lowercase ) for split in ["train"]: A_ , A_ : List[str] = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' A_ : Any = [x.rstrip() for x in Path(__lowercase ).open().readlines()] A_ : List[Any] = [x.rstrip() for x in Path(__lowercase ).open().readlines()] A_ , A_ : str = pack_examples(__lowercase ,__lowercase ,__lowercase ,__lowercase ) print(f'''packed {split} split from {len(__lowercase )} examples -> {len(__lowercase )}.''' ) Path(save_path / f'''{split}.source''' ).open('w' ).write('\n'.join(__lowercase ) ) Path(save_path / f'''{split}.target''' ).open('w' ).write('\n'.join(__lowercase ) ) for split in ["val", "test"]: A_ , A_ : str = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(__lowercase ,save_path / f'''{split}.source''' ) shutil.copyfile(__lowercase ,save_path / f'''{split}.target''' ) def UpperCamelCase ( ): '''simple docstring''' A_ : Tuple = argparse.ArgumentParser() parser.add_argument('--tok_name' ,type=__lowercase ,help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' ,type=__lowercase ,default=1_28 ) parser.add_argument('--data_dir' ,type=__lowercase ) parser.add_argument('--save_path' ,type=__lowercase ) A_ : List[Any] = parser.parse_args() A_ : Dict = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowercase ,Path(args.data_dir ) ,args.max_seq_len ,args.save_path ) if __name__ == "__main__": packer_cli()
192
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 42 class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , ): """simple docstring""" super().__init__() self.register_modules( prior=lowercase , image_encoder=lowercase , image_processor=lowercase , scheduler=lowercase , renderer=lowercase , ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if latents is None: A_ : Optional[Any] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) A_ : Optional[int] = latents.to(lowercase ) A_ : List[Any] = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A_ : Tuple = torch.device(F'''cuda:{gpu_id}''' ) A_ : Dict = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , ): """simple docstring""" if isinstance(lowercase , lowercase ) and isinstance(image[0] , torch.Tensor ): A_ : Tuple = torch.cat(lowercase , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase , axis=0 ) if not isinstance(lowercase , torch.Tensor ): A_ : Dict = self.image_processor(lowercase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) A_ : List[str] = image.to(dtype=self.image_encoder.dtype , device=lowercase ) A_ : Tuple = self.image_encoder(lowercase )['last_hidden_state'] A_ : Dict = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A_ : List[str] = image_embeds.repeat_interleave(lowercase , dim=0 ) if do_classifier_free_guidance: A_ : str = torch.zeros_like(lowercase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase = 1 , lowercase = 2_5 , lowercase = None , lowercase = None , lowercase = 4.0 , lowercase = 6_4 , lowercase = "pil" , lowercase = True , ): """simple docstring""" if isinstance(lowercase , PIL.Image.Image ): A_ : int = 1 elif isinstance(lowercase , torch.Tensor ): A_ : int = image.shape[0] elif isinstance(lowercase , lowercase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A_ : List[str] = len(lowercase ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase )}''' ) A_ : Any = self._execution_device A_ : List[Any] = batch_size * num_images_per_prompt A_ : int = guidance_scale > 1.0 A_ : Optional[int] = self._encode_image(lowercase , lowercase , lowercase , lowercase ) # prior self.scheduler.set_timesteps(lowercase , device=lowercase ) A_ : Dict = self.scheduler.timesteps A_ : int = self.prior.config.num_embeddings A_ : int = self.prior.config.embedding_dim A_ : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A_ : Union[str, Any] = latents.reshape(latents.shape[0] , lowercase , lowercase ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : List[Any] = self.scheduler.scale_model_input(lowercase , lowercase ) A_ : Any = self.prior( lowercase , timestep=lowercase , proj_embedding=lowercase , ).predicted_image_embedding # remove the variance A_ , A_ : int = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A_ , A_ : List[Any] = noise_pred.chunk(2 ) A_ : str = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A_ : Optional[int] = self.scheduler.step( lowercase , timestep=lowercase , sample=lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase ) A_ : str = [] for i, latent in enumerate(lowercase ): print() A_ : Optional[Any] = self.renderer.decode( latent[None, :] , lowercase , size=lowercase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(lowercase ) A_ : Dict = torch.stack(lowercase ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) A_ : Dict = images.cpu().numpy() if output_type == "pil": A_ : str = [self.numpy_to_pil(lowercase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase )
192
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __magic_name__ ( datasets.BeamBasedBuilder ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=_a , ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_a ) class __magic_name__ ( datasets.BeamBasedBuilder ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=_a , ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_a ) def a__ ( ) -> Dict: return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def a__ ( ) -> Optional[int]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class __magic_name__ ( __lowercase ): '''simple docstring''' @require_beam def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase = DummyBeamDataset(cache_dir=_a , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_a , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowerCamelCase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _a ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _a ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_a , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _lowerCAmelCase ( self ): """simple docstring""" import apache_beam as beam lowerCamelCase = beam.io.parquetio.WriteToParquet lowerCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase = DummyBeamDataset(cache_dir=_a , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: lowerCamelCase = partial(_a , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _a , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( _a , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowerCamelCase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _a ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _a ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(_a , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase = DummyBeamDataset(cache_dir=_a ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase = NestedBeamDataset(cache_dir=_a , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_a , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) lowerCamelCase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _a ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _a ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_a , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
291
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = KandinskyVaaPriorPipeline _A = ['prompt'] _A = ['prompt', 'negative_prompt'] _A = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] _A = False @property def _lowerCamelCase ( self :Tuple ) -> Optional[Any]: return 3_2 @property def _lowerCamelCase ( self :List[str] ) -> List[str]: return 3_2 @property def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: return self.time_input_dim @property def _lowerCamelCase ( self :Union[str, Any] ) -> Any: return self.time_input_dim * 4 @property def _lowerCamelCase ( self :Tuple ) -> str: return 1_0_0 @property def _lowerCamelCase ( self :Union[str, Any] ) -> Any: __UpperCamelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowerCamelCase ( self :str ) -> int: torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self :int ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } __UpperCamelCase : List[Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __UpperCamelCase : Optional[int] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _lowerCamelCase ( self :Dict ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) __UpperCamelCase : int = CLIPVisionModelWithProjection(a ) return model @property def _lowerCamelCase ( self :Dict ) -> Optional[Any]: __UpperCamelCase : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_2_4 , ) return image_processor def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : str = self.dummy_prior __UpperCamelCase : int = self.dummy_image_encoder __UpperCamelCase : Tuple = self.dummy_text_encoder __UpperCamelCase : int = self.dummy_tokenizer __UpperCamelCase : Optional[Any] = self.dummy_image_processor __UpperCamelCase : int = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) __UpperCamelCase : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def _lowerCamelCase ( self :Optional[Any] , a :int , a :Union[str, Any]=0 ) -> Any: if str(a ).startswith("mps" ): __UpperCamelCase : int = torch.manual_seed(a ) else: __UpperCamelCase : List[Any] = torch.Generator(device=a ).manual_seed(a ) __UpperCamelCase : int = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _lowerCamelCase ( self :List[Any] ) -> Dict: __UpperCamelCase : int = "cpu" __UpperCamelCase : List[str] = self.get_dummy_components() __UpperCamelCase : List[str] = self.pipeline_class(**a ) __UpperCamelCase : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __UpperCamelCase : int = pipe(**self.get_dummy_inputs(a ) ) __UpperCamelCase : int = output.image_embeds __UpperCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] __UpperCamelCase : Union[str, Any] = image[0, -1_0:] __UpperCamelCase : List[str] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) __UpperCamelCase : List[Any] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self :int ) -> Union[str, Any]: __UpperCamelCase : str = torch_device == "cpu" __UpperCamelCase : List[str] = True __UpperCamelCase : List[Any] = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def _lowerCamelCase ( self :Any ) -> int: __UpperCamelCase : Optional[Any] = torch_device == "cpu" __UpperCamelCase : Dict = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
232
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class _lowerCamelCase( __UpperCamelCase ): lowercase_ : Union[str, Any] = """levit""" def __init__( self, lowerCamelCase=2_24, lowerCamelCase=3, lowerCamelCase=3, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=16, lowerCamelCase=[1_28, 2_56, 3_84], lowerCamelCase=[4, 8, 12], lowerCamelCase=[4, 4, 4], lowerCamelCase=[16, 16, 16], lowerCamelCase=0, lowerCamelCase=[2, 2, 2], lowerCamelCase=[2, 2, 2], lowerCamelCase=0.0_2, **lowerCamelCase, ) -> Dict: """simple docstring""" super().__init__(**lowerCamelCase) _lowercase : Tuple = image_size _lowercase : Optional[Any] = num_channels _lowercase : Union[str, Any] = kernel_size _lowercase : Optional[int] = stride _lowercase : str = padding _lowercase : int = hidden_sizes _lowercase : Union[str, Any] = num_attention_heads _lowercase : Union[str, Any] = depths _lowercase : Optional[int] = key_dim _lowercase : Dict = drop_path_rate _lowercase : Dict = patch_size _lowercase : str = attention_ratio _lowercase : Tuple = mlp_ratio _lowercase : Tuple = initializer_range _lowercase : str = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _lowerCamelCase( __UpperCamelCase ): lowercase_ : Optional[Any] = version.parse("""1.11""" ) @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def UpperCamelCase ( self) -> float: """simple docstring""" return 1E-4
351
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE : Optional[int] = 299792458 # Symbols SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = symbols("ct x y z") def UpperCamelCase_( lowerCamelCase_ ) -> float: if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def UpperCamelCase_( lowerCamelCase_ ) -> float: return 1 / sqrt(1 - beta(lowerCamelCase_ ) ** 2 ) def UpperCamelCase_( lowerCamelCase_ ) -> np.ndarray: return np.array( [ [gamma(lowerCamelCase_ ), -gamma(lowerCamelCase_ ) * beta(lowerCamelCase_ ), 0, 0], [-gamma(lowerCamelCase_ ) * beta(lowerCamelCase_ ), gamma(lowerCamelCase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = None ) -> np.ndarray: # Ensure event is not empty if event is None: _lowercase : Union[str, Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowerCamelCase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE : Optional[int] = transform(29979245) print("Example of four vector: ") print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE : Tuple = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
84
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a : int = logging.get_logger(__name__) a : int = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class _a ( __lowerCAmelCase , __lowerCAmelCase ): A = '''convnextv2''' def __init__(self, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=1E-12, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Dict: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_: Dict = num_channels UpperCAmelCase_: Any = patch_size UpperCAmelCase_: str = num_stages UpperCAmelCase_: List[Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCAmelCase_: Any = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase_: int = hidden_act UpperCAmelCase_: str = initializer_range UpperCAmelCase_: List[str] = layer_norm_eps UpperCAmelCase_: Any = drop_path_rate UpperCAmelCase_: Optional[int] = image_size UpperCAmelCase_: Dict = ["""stem"""] + [f'stage{idx}' for idx in range(1, len(self.depths ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_: List[Any] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_, out_indices=lowerCAmelCase_, stage_names=self.stage_names )
147
import collections import importlib.util import os import re from pathlib import Path _SCREAMING_SNAKE_CASE = 'src/transformers' # Matches is_xxx_available() _SCREAMING_SNAKE_CASE = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*try:') # Catches a line with else: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*else:') def snake_case ( snake_case__ :Optional[Any]) -> List[str]: if _re_test_backend.search(snake_case__) is None: return None _A = [b[0] for b in _re_backend.findall(snake_case__)] backends.sort() return "_and_".join(snake_case__) def snake_case ( snake_case__ :Any) -> Any: with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""") as f: _A = f.readlines() _A = 0 while line_index < len(snake_case__) and not lines[line_index].startswith("""_import_structure = {"""): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case__): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith("""if TYPE_CHECKING""") and find_backend(lines[line_index]) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case__): _A = _re_one_line_import_struct.search(snake_case__).groups()[0] _A = re.findall("""\[([^\]]+)\]""" , snake_case__) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """)]) line_index += 1 continue _A = _re_import_struct_key_value.search(snake_case__) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """) if len(snake_case__) > 0] objects.extend(snake_case__) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING"""): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 4): _A = lines[line_index] if _re_import_struct_add_one.search(snake_case__) is not None: objects.append(_re_import_struct_add_one.search(snake_case__).groups()[0]) elif _re_import_struct_add_many.search(snake_case__) is not None: _A = _re_import_struct_add_many.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_between_brackets.search(snake_case__) is not None: _A = _re_between_brackets.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_quote_object.search(snake_case__) is not None: objects.append(_re_quote_object.search(snake_case__).groups()[0]) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) elif line.startswith(""" """ * 12 + """\""""): objects.append(line[13:-3]) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(snake_case__) and find_backend(lines[line_index]) is None and not lines[line_index].startswith("""else""") ): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 8): objects.append(line[8:-2]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(snake_case__): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 8): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 12): objects.append(line[12:-2]) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case ( snake_case__ :Dict , snake_case__ :int) -> List[Any]: def find_duplicates(snake_case__ :Union[str, Any]): return [k for k, v in collections.Counter(snake_case__).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''') _A = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''') if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): _A = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''') for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''') for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''') return errors def snake_case ( ) -> int: _A = [] for root, _, files in os.walk(snake_case__): if "__init__.py" in files: _A = os.path.join(snake_case__ , """__init__.py""") _A = parse_init(snake_case__) if objects is not None: _A = analyze_results(*snake_case__) if len(snake_case__) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(snake_case__)) if len(snake_case__) > 0: raise ValueError("""\n\n""".join(snake_case__)) def snake_case ( ) -> Optional[Any]: _A = [] for path, directories, files in os.walk(snake_case__): for folder in directories: # Ignore private modules if folder.startswith("""_"""): directories.remove(snake_case__) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case__) / folder).glob("""*.py"""))) == 0: continue _A = str((Path(snake_case__) / folder).relative_to(snake_case__)) _A = short_path.replace(os.path.sep , """.""") submodules.append(snake_case__) for fname in files: if fname == "__init__.py": continue _A = str((Path(snake_case__) / fname).relative_to(snake_case__)) _A = short_path.replace(""".py""" , """""").replace(os.path.sep , """.""") if len(submodule.split(""".""")) == 1: submodules.append(snake_case__) return submodules _SCREAMING_SNAKE_CASE = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def snake_case ( ) -> Union[str, Any]: # This is to make sure the transformers module imported is the one in the repo. _A = importlib.util.spec_from_file_location( """transformers""" , os.path.join(snake_case__ , """__init__.py""") , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _A = spec.loader.load_module() _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case__) > 0: _A = """\n""".join(F'''- {module}''' for module in module_not_registered) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""") if __name__ == "__main__": check_all_inits() check_submodules()
180
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ =logging.get_logger(__name__) UpperCamelCase_ ={ """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class _a ( _lowerCAmelCase ): UpperCamelCase = '''gpt_bigcode''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : int, lowerCAmelCase__ : List[Any]=5_0_2_5_7, lowerCAmelCase__ : Optional[int]=1_0_2_4, lowerCAmelCase__ : Union[str, Any]=7_6_8, lowerCAmelCase__ : List[str]=1_2, lowerCAmelCase__ : List[str]=1_2, lowerCAmelCase__ : Optional[Any]=None, lowerCAmelCase__ : List[Any]="gelu_pytorch_tanh", lowerCAmelCase__ : List[Any]=0.1, lowerCAmelCase__ : Tuple=0.1, lowerCAmelCase__ : int=0.1, lowerCAmelCase__ : List[str]=1e-5, lowerCAmelCase__ : Union[str, Any]=0.02, lowerCAmelCase__ : str=True, lowerCAmelCase__ : Dict=True, lowerCAmelCase__ : Tuple=5_0_2_5_6, lowerCAmelCase__ : int=5_0_2_5_6, lowerCAmelCase__ : int=True, lowerCAmelCase__ : Tuple=True, lowerCAmelCase__ : List[str]=True, **lowerCAmelCase__ : Any, ) -> Dict: '''simple docstring''' _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Dict = n_positions _UpperCamelCase : Tuple = n_embd _UpperCamelCase : str = n_layer _UpperCamelCase : Optional[Any] = n_head _UpperCamelCase : Any = n_inner _UpperCamelCase : Any = activation_function _UpperCamelCase : Any = resid_pdrop _UpperCamelCase : List[str] = embd_pdrop _UpperCamelCase : Optional[Any] = attn_pdrop _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : str = initializer_range _UpperCamelCase : str = scale_attn_weights _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : int = attention_softmax_in_fpaa _UpperCamelCase : int = scale_attention_softmax_in_fpaa _UpperCamelCase : List[str] = multi_query _UpperCamelCase : List[str] = bos_token_id _UpperCamelCase : str = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__ )
128
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _a : def __init__( self : Dict, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Optional[int]=1_3, lowerCAmelCase__ : Optional[Any]=7, lowerCAmelCase__ : Optional[Any]=True, lowerCAmelCase__ : Any=True, lowerCAmelCase__ : str=True, lowerCAmelCase__ : Any=9_9, lowerCAmelCase__ : Dict=3_2, lowerCAmelCase__ : List[Any]=5, lowerCAmelCase__ : Tuple=4, lowerCAmelCase__ : List[Any]=3_7, lowerCAmelCase__ : Tuple="gelu", lowerCAmelCase__ : Any=0.1, lowerCAmelCase__ : Optional[Any]=0.1, lowerCAmelCase__ : Dict=5_1_2, lowerCAmelCase__ : List[str]=1_6, lowerCAmelCase__ : Tuple=2, lowerCAmelCase__ : int=0.02, lowerCAmelCase__ : int=3, lowerCAmelCase__ : Optional[Any]=4, lowerCAmelCase__ : Dict=None, ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : Tuple = use_token_type_ids _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : int = type_vocab_size _UpperCamelCase : List[str] = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : int = num_labels _UpperCamelCase : List[str] = num_choices _UpperCamelCase : str = scope _UpperCamelCase : Optional[int] = self.vocab_size - 1 def snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _UpperCamelCase : List[str] = None if self.use_token_type_ids: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _UpperCamelCase : Optional[int] = None _UpperCamelCase : str = None _UpperCamelCase : List[str] = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _UpperCamelCase : Dict = ids_tensor([self.batch_size], self.num_choices ) _UpperCamelCase : str = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) _UpperCamelCase : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], *lowerCAmelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : List[str] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, head_mask=lowerCAmelCase__ ) _UpperCamelCase : Any = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__ ) _UpperCamelCase : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Any, lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase : Any = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Tuple = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Optional[int], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[Any], *lowerCAmelCase__ : Any ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[int] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : List[str], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Dict, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Optional[int] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Union[str, Any] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Tuple = config_and_inputs _UpperCamelCase : Tuple = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[str], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case ( self : str, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[int]=False ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = super()._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__, return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCamelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Tuple = inputs_dict['''labels'''] _UpperCamelCase : List[str] = inputs_dict['''labels'''] _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase__ ) return inputs_dict def snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = OpenAIGPTModelTester(self ) _UpperCamelCase : int = ConfigTester(self, config_class=lowerCAmelCase__, n_embd=3_7 ) def snake_case ( self : Optional[int] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def snake_case ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : int ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _a ( unittest.TestCase ): @slow def snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) _UpperCamelCase : str = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=lowerCAmelCase__ ) # the president is _UpperCamelCase : Optional[int] = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCamelCase : Union[str, Any] = model.generate(lowerCAmelCase__, do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist(), lowerCAmelCase__ )
128
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json'''} _lowercase = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } _lowercase = {'''mgp-str''': 27} class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = VOCAB_FILES_NAMES _lowerCamelCase: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] ,A_ : str ,A_ : List[Any]="[GO]" ,A_ : Any="[GO]" ,A_ : Union[str, Any]="[s]" ,A_ : Dict="[GO]" ,**A_ : Any ) -> str: super().__init__( unk_token=A_ ,bos_token=A_ ,eos_token=A_ ,pad_token=A_ ,**A_ ,) with open(A_ ,encoding='utf-8' ) as vocab_handle: A = json.load(A_ ) A = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: return len(self.vocab ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return dict(self.vocab ,**self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : List[Any] ) -> Union[str, Any]: A = [] for s in text: char_tokens.extend(A_ ) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ) -> List[Any]: return self.vocab.get(A_ ,self.vocab.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[int] ) -> str: return self.decoder.get(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(A_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=A_ ,ensure_ascii=A_ ) + '\n' ) return (vocab_file,)
74
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCamelCase : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase : str = model(__magic_name__ )["""last_hidden_state"""] lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. lowerCamelCase : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
287
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {} class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """llama""" lowerCamelCase = ["""past_key_values"""] def __init__( self : Optional[int] , UpperCamelCase__ : Dict=3_2000 , UpperCamelCase__ : Union[str, Any]=4096 , UpperCamelCase__ : int=1_1008 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Any="silu" , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : str=1e-6 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : int=1 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" snake_case : str = vocab_size snake_case : Any = max_position_embeddings snake_case : int = hidden_size snake_case : Union[str, Any] = intermediate_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case : Dict = num_attention_heads snake_case : List[str] = num_key_value_heads snake_case : str = hidden_act snake_case : Tuple = initializer_range snake_case : str = rms_norm_eps snake_case : Dict = pretraining_tp snake_case : Optional[Any] = use_cache snake_case : List[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ , ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'got {self.rope_scaling}' ) snake_case : str = self.rope_scaling.get('''type''' , UpperCamelCase__ ) snake_case : Union[str, Any] = self.rope_scaling.get('''factor''' , UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
83
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 1000 ) -> int: '''simple docstring''' snake_case : Dict = 1 snake_case : str = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE__ , digit + 1 ): snake_case : list[int] = [] snake_case : Optional[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE__ ): snake_case : Dict = len(SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE__ ) snake_case : Any = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
83
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _snake_case = "bart" _snake_case = True @st.cache(allow_output_mutation=snake_case_ ) def lowerCAmelCase_ ( ): if LOAD_DENSE_INDEX: _A : Optional[int] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) _A : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) _A : str = qar_model.eval() else: _A , _A : Dict = (None, None) if MODEL_TYPE == "bart": _A : Tuple = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) _A : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) _A : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) _A : Tuple = sas_model.eval() else: _A , _A : Optional[int] = make_qa_sas_model( model_name="""t5-small""",from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""",device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowerCAmelCase_ ( ): if LOAD_DENSE_INDEX: _A : int = faiss.StandardGpuResources() _A : int = datasets.load_dataset(path="""wiki_snippets""",name="""wiki40b_en_100_0""" )["""train"""] _A : List[str] = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""",dtype="""float32""",mode="""r""",shape=(wikiaab_passages.num_rows, 128),) _A : Any = faiss.IndexFlatIP(128 ) _A : Union[str, Any] = faiss.index_cpu_to_gpu(snake_case_,1,snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: _A , _A : List[str] = (None, None) _A : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowerCAmelCase_ ( ): _A : Tuple = datasets.load_dataset("""eli5""",name="""LFQA_reddit""" ) _A : Optional[int] = elia["""train_eli5"""] _A : int = np.memmap( """eli5_questions_reps.dat""",dtype="""float32""",mode="""r""",shape=(elia_train.num_rows, 128) ) _A : int = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _snake_case , _snake_case , _snake_case = load_indexes() _snake_case , _snake_case , _snake_case , _snake_case = load_models() _snake_case , _snake_case = load_train_data() def lowerCAmelCase_ ( snake_case_,snake_case_=10 ): _A : Union[str, Any] = embed_questions_for_retrieval([question],snake_case_,snake_case_ ) _A , _A : Optional[Any] = eli5_train_q_index.search(snake_case_,snake_case_ ) _A : int = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowerCAmelCase_ ( snake_case_,snake_case_="wiki40b",snake_case_="dense",snake_case_=10 ): if source == "none": _A , _A : List[str] = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A : int = query_qa_dense_index( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ) else: _A , _A : Union[str, Any] = query_es_index( snake_case_,snake_case_,index_name="""english_wiki40b_snippets_100w""",n_results=snake_case_,) _A : Tuple = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] _A : Dict = """question: {} context: {}""".format(snake_case_,snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=64,snake_case_=256,snake_case_=False,snake_case_=2,snake_case_=0.95,snake_case_=0.8 ): with torch.no_grad(): _A : Union[str, Any] = qa_sas_generate( snake_case_,snake_case_,snake_case_,num_answers=1,num_beams=snake_case_,min_len=snake_case_,max_len=snake_case_,do_sample=snake_case_,temp=snake_case_,top_p=snake_case_,top_k=snake_case_,max_input_length=1024,device="""cuda:0""",)[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar _snake_case = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" _snake_case = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _snake_case = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) _snake_case = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] _snake_case = st.sidebar.checkbox("Demo options") if demo_options: _snake_case = st.sidebar.selectbox( "", action_list, index=3, ) _snake_case = action_list.index(action_st) _snake_case = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) _snake_case = show_type == "Show full text of passages" else: _snake_case = 3 _snake_case = True _snake_case = st.sidebar.checkbox("Retrieval options") if retrieval_options: _snake_case = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) _snake_case = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) _snake_case = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: _snake_case = "wiki40b" _snake_case = "dense" _snake_case = "beam" _snake_case = 2 _snake_case = 64 _snake_case = 256 _snake_case = None _snake_case = None _snake_case = st.sidebar.checkbox("Generation options") if generate_options: _snake_case = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) _snake_case = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) _snake_case = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _snake_case = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _snake_case = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _snake_case = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) _snake_case = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) _snake_case = None # start main text _snake_case = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] _snake_case = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": _snake_case = st.text_input("Enter your question here:", "") else: _snake_case = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": _snake_case , _snake_case = make_support(question, source=wiki_source, method="dense", n_results=10) _snake_case , _snake_case = make_support(question, source=wiki_source, method="sparse", n_results=10) _snake_case = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _snake_case = support_list[:10] _snake_case = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: _snake_case , _snake_case = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _snake_case , _snake_case = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): _snake_case = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) _snake_case = res[1].strip() if sec_titles == "": _snake_case = "[{}]({})".format(res[0], wiki_url) else: _snake_case = sec_titles.split(" & ") _snake_case = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: _snake_case = find_nearest_training(question) _snake_case = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) _snake_case = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) _snake_case = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
30
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : str = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class snake_case ( _lowerCamelCase ): __magic_name__ = '''funnel''' __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : str , A : List[Any]=3_0_5_2_2 , A : Any=[4, 4, 4] , A : Dict=None , A : Dict=2 , A : Optional[int]=7_6_8 , A : List[str]=1_2 , A : Optional[Any]=6_4 , A : str=3_0_7_2 , A : Any="gelu_new" , A : Optional[Any]=0.1 , A : Any=0.1 , A : List[str]=0.0 , A : Tuple=0.1 , A : Union[str, Any]=None , A : Tuple=1E-9 , A : Tuple="mean" , A : str="relative_shift" , A : Any=True , A : List[Any]=True , A : int=True , **A : List[str] , ): '''simple docstring''' a : Optional[Any] = vocab_size a : List[str] = block_sizes a : Dict = [1] * len(A ) if block_repeats is None else block_repeats assert len(A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." a : Union[str, Any] = num_decoder_layers a : Union[str, Any] = d_model a : Union[str, Any] = n_head a : Optional[Any] = d_head a : Any = d_inner a : Union[str, Any] = hidden_act a : List[Any] = hidden_dropout a : List[str] = attention_dropout a : int = activation_dropout a : Union[str, Any] = initializer_range a : Dict = initializer_std a : Any = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' a : List[str] = attention_type a : Dict = separate_cls a : List[str] = truncate_seq a : List[str] = pool_q_only super().__init__(**A ) @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCamelCase__ ( self : Union[str, Any] , A : Tuple ): '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def lowerCamelCase__ ( self : Any , A : Dict ): '''simple docstring''' raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
353
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class snake_case ( UpperCAmelCase ): __magic_name__ = '''beit''' def __init__( self : int , A : int=8_1_9_2 , A : List[Any]=7_6_8 , A : str=1_2 , A : str=1_2 , A : Dict=3_0_7_2 , A : Optional[int]="gelu" , A : List[Any]=0.0 , A : Union[str, Any]=0.0 , A : Optional[Any]=0.02 , A : Optional[int]=1E-12 , A : Dict=2_2_4 , A : str=1_6 , A : Optional[Any]=3 , A : List[Any]=False , A : Union[str, Any]=False , A : Optional[Any]=False , A : int=False , A : List[str]=0.1 , A : Union[str, Any]=0.1 , A : str=True , A : Tuple=[3, 5, 7, 1_1] , A : List[str]=[1, 2, 3, 6] , A : Optional[Any]=True , A : Union[str, Any]=0.4 , A : Any=2_5_6 , A : List[Any]=1 , A : Optional[Any]=False , A : Any=2_5_5 , **A : List[Any] , ): '''simple docstring''' super().__init__(**A ) a : Optional[int] = vocab_size a : Dict = hidden_size a : Optional[int] = num_hidden_layers a : Tuple = num_attention_heads a : Optional[int] = intermediate_size a : Optional[Any] = hidden_act a : Optional[int] = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Optional[Any] = initializer_range a : Union[str, Any] = layer_norm_eps a : Union[str, Any] = image_size a : str = patch_size a : Optional[Any] = num_channels a : List[str] = use_mask_token a : Optional[Any] = use_absolute_position_embeddings a : Any = use_relative_position_bias a : Any = use_shared_relative_position_bias a : Dict = layer_scale_init_value a : Optional[int] = drop_path_rate a : Dict = use_mean_pooling # decode head attributes (semantic segmentation) a : Optional[Any] = out_indices a : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) a : Tuple = use_auxiliary_head a : Dict = auxiliary_loss_weight a : Any = auxiliary_channels a : Dict = auxiliary_num_convs a : List[str] = auxiliary_concat_input a : List[Any] = semantic_loss_ignore_index class snake_case ( UpperCAmelCase ): __magic_name__ = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return 1E-4
186
0