code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _SCREAMING_SNAKE_CASE : def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : str=4 , __lowerCamelCase : Union[str, Any]=None , ): UpperCamelCase :Dict = parent UpperCamelCase :List[Any] = batch_size UpperCamelCase :List[str] = seq_length UpperCamelCase :Optional[int] = is_training UpperCamelCase :int = use_input_mask UpperCamelCase :List[str] = use_token_type_ids UpperCamelCase :int = use_labels UpperCamelCase :int = vocab_size UpperCamelCase :Optional[Any] = hidden_size UpperCamelCase :Optional[Any] = num_hidden_layers UpperCamelCase :Dict = num_attention_heads UpperCamelCase :Optional[int] = intermediate_size UpperCamelCase :int = hidden_act UpperCamelCase :Dict = hidden_dropout_prob UpperCamelCase :int = attention_probs_dropout_prob UpperCamelCase :int = max_position_embeddings UpperCamelCase :List[str] = type_vocab_size UpperCamelCase :Union[str, Any] = type_sequence_label_size UpperCamelCase :Dict = initializer_range UpperCamelCase :Tuple = num_labels UpperCamelCase :Optional[Any] = num_choices UpperCamelCase :Optional[Any] = scope def _A ( self : Union[str, Any] ): UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :Optional[int] = None if self.use_input_mask: UpperCamelCase :Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase :str = None UpperCamelCase :Optional[Any] = None UpperCamelCase :List[Any] = None if self.use_labels: UpperCamelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase :List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Optional[Any] ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def _A ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): UpperCamelCase :Optional[Any] = LlamaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) UpperCamelCase :Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : str , ): UpperCamelCase :Optional[int] = True UpperCamelCase :Any = LlamaModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) UpperCamelCase :Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) UpperCamelCase :Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : str , ): UpperCamelCase :str = LlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , ): UpperCamelCase :str = True UpperCamelCase :List[Any] = True UpperCamelCase :Optional[Any] = LlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass UpperCamelCase :Any = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase :str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase :List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase :List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase :Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["""hidden_states"""][0] UpperCamelCase :Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["""hidden_states"""][0] # select random slice UpperCamelCase :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase :List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) def _A ( self : Any ): UpperCamelCase :Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :Tuple = config_and_inputs UpperCamelCase :Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( _a , _a , _a , unittest.TestCase ): snake_case__ : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () snake_case__ : List[str] = (LlamaForCausalLM,) if is_torch_available() else () snake_case__ : Any = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : Tuple = False def _A ( self : str ): UpperCamelCase :str = LlamaModelTester(self ) UpperCamelCase :Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _A ( self : Tuple ): self.config_tester.run_common_tests() def _A ( self : List[str] ): UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase :Any = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase , UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Union[str, Any] = 3 UpperCamelCase :Dict = input_dict["""input_ids"""] UpperCamelCase :List[Any] = input_ids.ne(1 ).to(__lowerCamelCase ) UpperCamelCase :List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase :Dict = LlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _A ( self : Optional[Any] ): UpperCamelCase , UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :List[str] = 3 UpperCamelCase :Optional[int] = """single_label_classification""" UpperCamelCase :Optional[Any] = input_dict["""input_ids"""] UpperCamelCase :Union[str, Any] = input_ids.ne(1 ).to(__lowerCamelCase ) UpperCamelCase :Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase :Union[str, Any] = LlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _A ( self : List[str] ): UpperCamelCase , UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Dict = 3 UpperCamelCase :Optional[Any] = """multi_label_classification""" UpperCamelCase :List[str] = input_dict["""input_ids"""] UpperCamelCase :str = input_ids.ne(1 ).to(__lowerCamelCase ) UpperCamelCase :Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase :Tuple = LlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Optional[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def _A ( self : Union[str, Any] ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _A ( self : Optional[int] , __lowerCamelCase : Optional[int] ): UpperCamelCase , UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :str = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase :Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase :Dict = LlamaModel(__lowerCamelCase ) original_model.to(__lowerCamelCase ) original_model.eval() UpperCamelCase :Any = original_model(__lowerCamelCase ).last_hidden_state UpperCamelCase :Union[str, Any] = original_model(__lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase :List[str] = {"""type""": scaling_type, """factor""": 10.0} UpperCamelCase :List[str] = LlamaModel(__lowerCamelCase ) scaled_model.to(__lowerCamelCase ) scaled_model.eval() UpperCamelCase :Union[str, Any] = scaled_model(__lowerCamelCase ).last_hidden_state UpperCamelCase :List[str] = scaled_model(__lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-5 ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _A ( self : List[str] ): UpperCamelCase :Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase :Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) UpperCamelCase :str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCamelCase :Dict = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase :str = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _A ( self : Tuple ): UpperCamelCase :Dict = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase :Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) UpperCamelCase :List[Any] = model(torch.tensor(__lowerCamelCase ) ) # Expected mean on dim = -1 UpperCamelCase :Tuple = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase :List[Any] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _A ( self : Optional[int] ): UpperCamelCase :Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase :Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) UpperCamelCase :Union[str, Any] = model(torch.tensor(__lowerCamelCase ) ) # Expected mean on dim = -1 UpperCamelCase :Tuple = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase :Optional[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def _A ( self : Union[str, Any] ): UpperCamelCase :Dict = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase :Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) UpperCamelCase :Optional[Any] = model(torch.tensor(__lowerCamelCase ) ) UpperCamelCase :Any = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off UpperCamelCase :str = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def _A ( self : Optional[int] ): UpperCamelCase :Optional[Any] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" UpperCamelCase :str = """Simply put, the theory of relativity states that """ UpperCamelCase :Optional[int] = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) UpperCamelCase :Union[str, Any] = tokenizer.encode(__lowerCamelCase , return_tensors="""pt""" ) UpperCamelCase :int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__lowerCamelCase ) # greedy generation outputs UpperCamelCase :Any = model.generate(__lowerCamelCase , max_new_tokens=64 , top_p=__lowerCamelCase , temperature=1 , do_sample=__lowerCamelCase ) UpperCamelCase :List[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
38
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : str=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : str=False , __lowerCamelCase : List[Any]=False , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Tuple=32 , __lowerCamelCase : Any=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : int=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]="last" , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]=None , ): UpperCamelCase :int = parent UpperCamelCase :Optional[int] = batch_size UpperCamelCase :str = seq_length UpperCamelCase :Optional[int] = is_training UpperCamelCase :Optional[int] = use_input_lengths UpperCamelCase :Union[str, Any] = use_token_type_ids UpperCamelCase :List[str] = use_labels UpperCamelCase :Dict = gelu_activation UpperCamelCase :Optional[int] = sinusoidal_embeddings UpperCamelCase :List[Any] = causal UpperCamelCase :Optional[int] = asm UpperCamelCase :List[str] = n_langs UpperCamelCase :int = vocab_size UpperCamelCase :List[Any] = n_special UpperCamelCase :List[Any] = hidden_size UpperCamelCase :List[str] = num_hidden_layers UpperCamelCase :List[Any] = num_attention_heads UpperCamelCase :Tuple = hidden_dropout_prob UpperCamelCase :List[str] = attention_probs_dropout_prob UpperCamelCase :Tuple = max_position_embeddings UpperCamelCase :List[str] = type_vocab_size UpperCamelCase :Union[str, Any] = type_sequence_label_size UpperCamelCase :int = initializer_range UpperCamelCase :List[str] = num_labels UpperCamelCase :Optional[int] = num_choices UpperCamelCase :Optional[Any] = summary_type UpperCamelCase :Tuple = use_proj UpperCamelCase :Optional[Any] = scope def _A ( self : List[str] ): UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase :List[Any] = None if self.use_input_lengths: UpperCamelCase :Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase :str = None if self.use_token_type_ids: UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase :Optional[int] = None UpperCamelCase :int = None UpperCamelCase :List[Any] = None if self.use_labels: UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :List[str] = ids_tensor([self.batch_size] , 2 ).float() UpperCamelCase :List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase :Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A ( self : List[Any] ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _A ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , ): UpperCamelCase :Tuple = FlaubertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :int = model(__lowerCamelCase , lengths=__lowerCamelCase , langs=__lowerCamelCase ) UpperCamelCase :List[Any] = model(__lowerCamelCase , langs=__lowerCamelCase ) UpperCamelCase :int = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , ): UpperCamelCase :Any = FlaubertWithLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Dict = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , ): UpperCamelCase :Any = FlaubertForQuestionAnsweringSimple(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Any = model(__lowerCamelCase ) UpperCamelCase :int = model(__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : str , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : str , ): UpperCamelCase :str = FlaubertForQuestionAnswering(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Any = model(__lowerCamelCase ) UpperCamelCase :Optional[int] = model( __lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , cls_index=__lowerCamelCase , is_impossible=__lowerCamelCase , p_mask=__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = model( __lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , cls_index=__lowerCamelCase , is_impossible=__lowerCamelCase , ) ((UpperCamelCase) , ) :int = result_with_labels.to_tuple() UpperCamelCase :int = model(__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase ) ((UpperCamelCase) , ) :List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , ): UpperCamelCase :Optional[int] = FlaubertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Tuple = model(__lowerCamelCase ) UpperCamelCase :List[str] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , ): UpperCamelCase :Dict = self.num_labels UpperCamelCase :Tuple = FlaubertForTokenClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Optional[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , ): UpperCamelCase :Union[str, Any] = self.num_choices UpperCamelCase :List[Any] = FlaubertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase :Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase :int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase :Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : str ): UpperCamelCase :List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :List[Any] = config_and_inputs UpperCamelCase :Union[str, Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case__ : Optional[int] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) snake_case__ : Tuple = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _A ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ): UpperCamelCase :Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": UpperCamelCase :Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) UpperCamelCase :List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _A ( self : str ): UpperCamelCase :List[Any] = FlaubertModelTester(self ) UpperCamelCase :Any = ConfigTester(self , config_class=__lowerCamelCase , emb_dim=37 ) def _A ( self : Optional[int] ): self.config_tester.run_common_tests() def _A ( self : List[Any] ): UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowerCamelCase ) def _A ( self : List[Any] ): UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__lowerCamelCase ) def _A ( self : Union[str, Any] ): UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowerCamelCase ) def _A ( self : Optional[Any] ): UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowerCamelCase ) def _A ( self : Tuple ): UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__lowerCamelCase ) def _A ( self : int ): UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__lowerCamelCase ) @slow def _A ( self : Any ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :Optional[int] = FlaubertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @slow @require_torch_gpu def _A ( self : Tuple ): UpperCamelCase , UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return UpperCamelCase :Optional[Any] = True UpperCamelCase :Optional[Any] = model_class(config=__lowerCamelCase ) UpperCamelCase :str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :str = torch.jit.trace( __lowerCamelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCamelCase , os.path.join(__lowerCamelCase , """traced_model.pt""" ) ) UpperCamelCase :int = torch.jit.load(os.path.join(__lowerCamelCase , """traced_model.pt""" ) , map_location=__lowerCamelCase ) loaded(inputs_dict["""input_ids"""].to(__lowerCamelCase ) , inputs_dict["""attention_mask"""].to(__lowerCamelCase ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _A ( self : Optional[Any] ): UpperCamelCase :Union[str, Any] = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) UpperCamelCase :Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): UpperCamelCase :Tuple = model(__lowerCamelCase )[0] UpperCamelCase :Union[str, Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) UpperCamelCase :int = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
38
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase ( _A : List[Any] , _A : Dict , _A : int , _A : List[str] , _A : List[Any]=True , _A : List[str]="pt" ) ->Optional[int]: """simple docstring""" lowerCamelCase_ ={"""add_prefix_space""": True} if isinstance(_A , _A ) and not line.startswith(""" """ ) else {} lowerCamelCase_ =padding_side return tokenizer( [line] , max_length=_A , padding="""max_length""" if pad_to_max_length else None , truncation=_A , return_tensors=_A , add_special_tokens=_A , **_A , ) def __UpperCamelCase ( _A : List[str] , _A : Any , _A : int=None , ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ =input_ids.ne(_A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="train" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="" , )-> Dict: super().__init__() lowerCamelCase_ =Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + """.source""" ) lowerCamelCase_ =Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + """.target""" ) lowerCamelCase_ =self.get_char_lens(self.src_file ) lowerCamelCase_ =max_source_length lowerCamelCase_ =max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' lowerCamelCase_ =tokenizer lowerCamelCase_ =prefix if n_obs is not None: lowerCamelCase_ =self.src_lens[:n_obs] lowerCamelCase_ =src_lang lowerCamelCase_ =tgt_lang def __len__( self )-> List[Any]: return len(self.src_lens ) def __getitem__( self , _SCREAMING_SNAKE_CASE )-> Dict[str, torch.Tensor]: lowerCamelCase_ =index + 1 # linecache starts at 1 lowerCamelCase_ =self.prefix + linecache.getline(str(self.src_file ) , _SCREAMING_SNAKE_CASE ).rstrip("""\n""" ) lowerCamelCase_ =linecache.getline(str(self.tgt_file ) , _SCREAMING_SNAKE_CASE ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCamelCase_ =( self.tokenizer.question_encoder if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer ) lowerCamelCase_ =self.tokenizer.generator if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer lowerCamelCase_ =encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_source_length , """right""" ) lowerCamelCase_ =encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_target_length , """right""" ) lowerCamelCase_ =source_inputs["""input_ids"""].squeeze() lowerCamelCase_ =target_inputs["""input_ids"""].squeeze() lowerCamelCase_ =source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE )-> Optional[Any]: return [len(_SCREAMING_SNAKE_CASE ) for x in Path(_SCREAMING_SNAKE_CASE ).open().readlines()] def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Dict[str, torch.Tensor]: lowerCamelCase_ =torch.stack([x["""input_ids"""] for x in batch] ) lowerCamelCase_ =torch.stack([x["""attention_mask"""] for x in batch] ) lowerCamelCase_ =torch.stack([x["""decoder_input_ids"""] for x in batch] ) lowerCamelCase_ =( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) lowerCamelCase_ =( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) lowerCamelCase_ =trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ , lowerCamelCase_ =trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={ """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __A : str = getLogger(__name__) def __UpperCamelCase ( _A : List[List] ) ->Union[str, Any]: """simple docstring""" return list(itertools.chain.from_iterable(_A ) ) def __UpperCamelCase ( _A : str ) ->None: """simple docstring""" lowerCamelCase_ =get_git_info() save_json(_A , os.path.join(_A , """git_log.json""" ) ) def __UpperCamelCase ( _A : int , _A : Union[str, Any] , _A : Union[str, Any]=4 , **_A : Union[str, Any] ) ->List[str]: """simple docstring""" with open(_A , """w""" ) as f: json.dump(_A , _A , indent=_A , **_A ) def __UpperCamelCase ( _A : Any ) ->Tuple: """simple docstring""" with open(_A ) as f: return json.load(_A ) def __UpperCamelCase ( ) ->Tuple: """simple docstring""" lowerCamelCase_ =git.Repo(search_parent_directories=_A ) lowerCamelCase_ ={ """repo_id""": str(_A ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __UpperCamelCase ( _A : Callable , _A : Iterable ) ->List: """simple docstring""" return list(map(_A , _A ) ) def __UpperCamelCase ( _A : Tuple , _A : Optional[int] ) ->Optional[int]: """simple docstring""" with open(_A , """wb""" ) as f: return pickle.dump(_A , _A ) def __UpperCamelCase ( _A : List[str] ) ->Any: """simple docstring""" def remove_articles(_A : Union[str, Any] ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , _A ) def white_space_fix(_A : Dict ): return " ".join(text.split() ) def remove_punc(_A : int ): lowerCamelCase_ =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def __UpperCamelCase ( _A : List[Any] , _A : Dict ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ =normalize_answer(_A ).split() lowerCamelCase_ =normalize_answer(_A ).split() lowerCamelCase_ =Counter(_A ) & Counter(_A ) lowerCamelCase_ =sum(common.values() ) if num_same == 0: return 0 lowerCamelCase_ =1.0 * num_same / len(_A ) lowerCamelCase_ =1.0 * num_same / len(_A ) lowerCamelCase_ =(2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase ( _A : List[Any] , _A : List[str] ) ->Union[str, Any]: """simple docstring""" return normalize_answer(_A ) == normalize_answer(_A ) def __UpperCamelCase ( _A : List[str] , _A : List[str] ) ->Dict: """simple docstring""" assert len(_A ) == len(_A ) lowerCamelCase_ =0 for hypo, pred in zip(_A , _A ): em += exact_match_score(_A , _A ) if len(_A ) > 0: em /= len(_A ) return {"em": em} def __UpperCamelCase ( _A : Tuple ) ->List[Any]: """simple docstring""" return model_prefix.startswith("""rag""" ) def __UpperCamelCase ( _A : Dict , _A : int , _A : Tuple ) ->Optional[int]: """simple docstring""" lowerCamelCase_ ={p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCamelCase_ ="""dropout_rate""" for p in extra_params: if getattr(_A , _A , _A ): if not hasattr(_A , _A ) and not hasattr(_A , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(_A ) ) delattr(_A , _A ) continue lowerCamelCase_ =p if hasattr(_A , _A ) else equivalent_param[p] setattr(_A , _A , getattr(_A , _A ) ) delattr(_A , _A ) return hparams, config
49
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __A : int = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' __A : Any = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' __A : Union[str, Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _SCREAMING_SNAKE_CASE ( datasets.Metric): def _snake_case ( self )-> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="auto" , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=500 , _SCREAMING_SNAKE_CASE="gpt2-large" , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=25 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=25 , )-> List[str]: lowerCamelCase_ =compute_mauve( p_text=_SCREAMING_SNAKE_CASE , q_text=_SCREAMING_SNAKE_CASE , p_features=_SCREAMING_SNAKE_CASE , q_features=_SCREAMING_SNAKE_CASE , p_tokens=_SCREAMING_SNAKE_CASE , q_tokens=_SCREAMING_SNAKE_CASE , num_buckets=_SCREAMING_SNAKE_CASE , pca_max_data=_SCREAMING_SNAKE_CASE , kmeans_explained_var=_SCREAMING_SNAKE_CASE , kmeans_num_redo=_SCREAMING_SNAKE_CASE , kmeans_max_iter=_SCREAMING_SNAKE_CASE , featurize_model_name=_SCREAMING_SNAKE_CASE , device_id=_SCREAMING_SNAKE_CASE , max_text_length=_SCREAMING_SNAKE_CASE , divergence_curve_discretization_size=_SCREAMING_SNAKE_CASE , mauve_scaling_factor=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE , ) return out
49
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) __A = BlipProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Union[str, Any] ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : List[str] ,**A : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : int ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : List[Any] ): __A = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
15
'''simple docstring''' from pathlib import Path import fire def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : List[str] = Path(lowerCAmelCase__ ) __UpperCAmelCase : str = Path(lowerCAmelCase__ ) dest_dir.mkdir(exist_ok=lowerCAmelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase : str = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase : Optional[int] = dest_dir.joinpath(path.name ) print(lowerCAmelCase__ ) dest_path.open("""w""" ).write("""\n""".join(lowerCAmelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
254
0
from __future__ import annotations from collections.abc import Callable lowerCamelCase_ : Dict = list[list[float | int]] def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = len(__lowerCamelCase ) __a = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] __a = 42 __a = 42 __a = 42 __a = 42 __a = 42 __a = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): __a = matrix[row][col] __a = vector[row][0] __a = 0 __a = 0 while row < size and col < size: # pivoting __a = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase , __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __a , __a = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCamelCase ): __a = augmented[rowa][col] / augmented[row][col] __a = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCamelCase ): for row in range(__lowerCamelCase ): __a = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCamelCase ) ] def lowerCAmelCase( __lowerCamelCase ): __a = len(__lowerCamelCase ) __a = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] __a = [[0] for _ in range(__lowerCamelCase )] __a = 42 __a = 42 __a = 42 __a = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): __a = (x_val + 1) ** (size - col - 1) __a = y_val __a = solve(__lowerCamelCase , __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def lowerCAmelCase( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase( __lowerCamelCase = question_function , __lowerCamelCase = 10 ): __a = [func(__lowerCamelCase ) for x_val in range(1 , order + 1 )] __a = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __a = 0 __a = 42 __a = 42 for poly in polynomials: __a = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
197
from ..utils import DummyObject, requires_backends class a__ ( metaclass=__snake_case ): A__ : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Dict = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Dict = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] )
197
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : Any = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean A : str = 0 A : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right A : Union[str, Any] = tuple[int, int] class A : '''simple docstring''' def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Node | None , ) -> None: """simple docstring""" A__ = pos_x A__ = pos_y A__ = (pos_y, pos_x) A__ = goal_x A__ = goal_y A__ = g_cost A__ = parent A__ = self.calculate_heuristic() A__ = self.g_cost + self.h_cost def a_ ( self : Dict ) -> float: """simple docstring""" A__ = self.pos_x - self.goal_x A__ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__lowerCAmelCase ) + abs(__lowerCAmelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : int , __lowerCAmelCase : Node ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : TPosition , __lowerCAmelCase : TPosition ) -> Tuple: """simple docstring""" A__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCAmelCase ) A__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , __lowerCAmelCase ) A__ = [self.start] A__ = [] A__ = False def a_ ( self : List[str] ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__lowerCAmelCase ) self.closed_nodes.append(__lowerCAmelCase ) A__ = self.get_successors(__lowerCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCAmelCase ) else: # retrieve the best current path A__ = self.open_nodes.pop(self.open_nodes.index(__lowerCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCAmelCase ) else: self.open_nodes.append(__lowerCAmelCase ) return [self.start.pos] def a_ ( self : Optional[Any] , __lowerCAmelCase : Node ) -> list[Node]: """simple docstring""" A__ = [] for action in delta: A__ = parent.pos_x + action[1] A__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCAmelCase , __lowerCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCAmelCase , ) ) return successors def a_ ( self : List[Any] , __lowerCAmelCase : Node | None ) -> list[TPosition]: """simple docstring""" A__ = node A__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A__ = current_node.parent path.reverse() return path class A : '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : TPosition , __lowerCAmelCase : TPosition ) -> None: """simple docstring""" A__ = AStar(__lowerCAmelCase , __lowerCAmelCase ) A__ = AStar(__lowerCAmelCase , __lowerCAmelCase ) A__ = False def a_ ( self : int ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() A__ = self.fwd_astar.open_nodes.pop(0 ) A__ = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __lowerCAmelCase , __lowerCAmelCase ) self.fwd_astar.closed_nodes.append(__lowerCAmelCase ) self.bwd_astar.closed_nodes.append(__lowerCAmelCase ) A__ = current_bwd_node A__ = current_fwd_node A__ = { self.fwd_astar: self.fwd_astar.get_successors(__lowerCAmelCase ), self.bwd_astar: self.bwd_astar.get_successors(__lowerCAmelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__lowerCAmelCase ) else: # retrieve the best current path A__ = astar.open_nodes.pop( astar.open_nodes.index(__lowerCAmelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__lowerCAmelCase ) else: astar.open_nodes.append(__lowerCAmelCase ) return [self.fwd_astar.start.pos] def a_ ( self : List[str] , __lowerCAmelCase : Node , __lowerCAmelCase : Node ) -> list[TPosition]: """simple docstring""" A__ = self.fwd_astar.retrace_path(__lowerCAmelCase ) A__ = self.bwd_astar.retrace_path(__lowerCAmelCase ) bwd_path.pop() bwd_path.reverse() A__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] A : Optional[int] = (0, 0) A : int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : Dict = time.time() A : Optional[Any] = AStar(init, goal) A : Optional[int] = a_star.search() A : Optional[int] = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') A : Dict = time.time() A : Tuple = BidirectionalAStar(init, goal) A : List[Any] = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
274
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _snake_case ( lowercase__ : bool = True , *lowercase__ : Optional[int] , **lowercase__ : str ) -> Optional[Any]: '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) lowerCAmelCase_ :Tuple = False if main_process_only: lowerCAmelCase_ :Dict = PartialState().local_process_index == 0 return _tqdm(*lowercase__ , **lowercase__ , disable=lowercase__ )
1
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : int = 16 A_ : str = 32 def UpperCamelCase (lowercase_: Optional[Any] ) -> List[Any]: return int(x / 2**20 ) class _a : '''simple docstring''' def __enter__( self ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero A__ : Any = torch.cuda.memory_allocated() return self def __exit__( self , *A__ ): gc.collect() torch.cuda.empty_cache() A__ : Optional[int] = torch.cuda.memory_allocated() A__ : str = torch.cuda.max_memory_allocated() A__ : str = bamb(self.end - self.begin ) A__ : Any = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase (lowercase_: Accelerator , lowercase_: int = 16 , lowercase_: str = "bert-base-cased" , lowercase_: int = 320 , lowercase_: int = 160 , ) -> Dict: A__ : List[Any] = AutoTokenizer.from_pretrained(lowercase_ ) A__ : List[Any] = load_dataset( """glue""" , """mrpc""" , split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} ) def tokenize_function(lowercase_: int ): # max_length=None => use the model max length (it's actually the default) A__ : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A__ : str = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_: Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. A__ : Tuple = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader def UpperCamelCase (lowercase_: Tuple , lowercase_: Optional[int] ) -> Tuple: # Initialize accelerator A__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Union[str, Any] = config["""lr"""] A__ : Any = int(config["""num_epochs"""] ) A__ : List[Any] = int(config["""seed"""] ) A__ : Optional[Any] = int(config["""batch_size"""] ) A__ : str = args.model_name_or_path set_seed(lowercase_ ) A__ , A__ : int = get_dataloaders(lowercase_ , lowercase_ , lowercase_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowercase_ , return_dict=lowercase_ ) # Instantiate optimizer A__ : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A__ : Any = optimizer_cls(params=model.parameters() , lr=lowercase_ ) if accelerator.state.deepspeed_plugin is not None: A__ : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: A__ : Optional[int] = 1 A__ : Optional[Any] = (len(lowercase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A__ : List[str] = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=0 , num_training_steps=lowercase_ , ) else: A__ : int = DummyScheduler(lowercase_ , total_num_steps=lowercase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Tuple = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over A__ : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly A__ : str = 0 # Now we train the model A__ : Tuple = {} for epoch in range(lowercase_ , lowercase_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase_ ): A__ : Optional[Any] = model(**lowercase_ ) A__ : Any = outputs.loss A__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) A__ : Dict = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) def UpperCamelCase () -> Dict: A__ : Dict = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase_ , ) parser.add_argument( """--output_dir""" , type=lowercase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowercase_ , default=lowercase_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowercase_ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowercase_ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase_ , default=1 , help="""Number of train epochs.""" , ) A__ : List[Any] = parser.parse_args() A__ : List[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
192
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A_ : List[Any] = logging.get_logger(__name__) class _a : '''simple docstring''' def __init__( self , A__ = None , A__ = None , A__=None , A__=None ): if not conversation_id: A__ : List[Any] = uuid.uuida() if past_user_inputs is None: A__ : Dict = [] if generated_responses is None: A__ : int = [] A__ : uuid.UUID = conversation_id A__ : List[str] = past_user_inputs A__ : List[str] = generated_responses A__ : Optional[str] = text def __eq__( self , A__ ): if not isinstance(A__ , A__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __A ( self , A__ , A__ = False ): if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) A__ : str = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: A__ : Tuple = text def __A ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A__ : Tuple = None def __A ( self , A__ ): self.generated_responses.append(A__ ) def __A ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): A__ : Optional[Any] = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): A__ : str = """user""" if is_user else """bot""" output += F"""{name} >> {text} \n""" return output @add_end_docstrings( __magic_name__ , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , *A__ , **A__ ): super().__init__(*A__ , **A__ ) if self.tokenizer.pad_token_id is None: A__ : Tuple = self.tokenizer.eos_token def __A ( self , A__=None , A__=None , A__=None , **A__ ): A__ : Tuple = {} A__ : List[str] = {} A__ : Union[str, Any] = {} if min_length_for_response is not None: A__ : str = min_length_for_response if minimum_tokens is not None: A__ : List[str] = minimum_tokens if "max_length" in generate_kwargs: A__ : List[Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A__ : Optional[int] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A__ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A__ , A__=0 , **A__ ): A__ : Optional[Any] = super().__call__(A__ , num_workers=A__ , **A__ ) if isinstance(A__ , A__ ) and len(A__ ) == 1: return outputs[0] return outputs def __A ( self , A__ , A__=32 ): if not isinstance(A__ , A__ ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): A__ : List[str] = self.tokenizer._build_conversation_input_ids(A__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version A__ : Tuple = self._legacy_parse_and_tokenize(A__ ) if self.framework == "pt": A__ : List[str] = torch.LongTensor([input_ids] ) elif self.framework == "tf": A__ : Optional[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __A ( self , A__ , A__=10 , **A__ ): A__ : List[Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) A__ : Optional[int] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) A__ : Dict = max_length - minimum_tokens A__ : Optional[int] = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: A__ : str = model_inputs["""attention_mask"""][:, -trim:] A__ : List[str] = model_inputs.pop("""conversation""" ) A__ : Dict = max_length A__ : str = self.model.generate(**A__ , **A__ ) if self.model.config.is_encoder_decoder: A__ : Union[str, Any] = 1 else: A__ : Optional[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __A ( self , A__ , A__=True ): A__ : Dict = model_outputs["""output_ids"""] A__ : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ , ) A__ : Optional[int] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(A__ ) return conversation def __A ( self , A__ ): A__ : str = self.tokenizer.eos_token_id A__ : Tuple = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A__ , add_special_tokens=A__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A__ , add_special_tokens=A__ ) ) if len(A__ ) > self.tokenizer.model_max_length: A__ : str = input_ids[-self.tokenizer.model_max_length :] return input_ids
192
1
A : int = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A : int = [{"type": "code", "content": INSTALL_CONTENT}] A : List[Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
"""simple docstring""" import numpy # List of input, output pairs __UpperCAmelCase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __UpperCAmelCase = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) __UpperCAmelCase = [2, 4, 1, 5] __UpperCAmelCase = len(train_data) __UpperCAmelCase = 0.009 def _snake_case ( lowercase__ : List[str] , lowercase__ : str="train" ) -> Optional[int]: '''simple docstring''' return calculate_hypothesis_value(lowercase__ , lowercase__ ) - output( lowercase__ , lowercase__ ) def _snake_case ( lowercase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = 0 for i in range(len(lowercase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _snake_case ( lowercase__ : str , lowercase__ : List[str] ) -> Optional[Any]: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _snake_case ( lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _snake_case ( lowercase__ : int , lowercase__ : int=m ) -> str: '''simple docstring''' lowerCAmelCase_ :str = 0 for i in range(lowercase__ ): if index == -1: summation_value += _error(lowercase__ ) else: summation_value += _error(lowercase__ ) * train_data[i][0][index] return summation_value def _snake_case ( lowercase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ :List[Any] = summation_of_cost_derivative(lowercase__ , lowercase__ ) / m return cost_derivative_value def _snake_case ( ) -> List[Any]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCAmelCase_ :Union[str, Any] = 0.000002 lowerCAmelCase_ :Optional[Any] = 0 lowerCAmelCase_ :int = 0 while True: j += 1 lowerCAmelCase_ :List[Any] = [0, 0, 0, 0] for i in range(0 , len(lowercase__ ) ): lowerCAmelCase_ :Any = get_cost_derivative(i - 1 ) lowerCAmelCase_ :Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowercase__ , lowercase__ , atol=lowercase__ , rtol=lowercase__ , ): break lowerCAmelCase_ :Optional[int] = temp_parameter_vector print(("""Number of iterations:""", j) ) def _snake_case ( ) -> Dict: '''simple docstring''' for i in range(len(lowercase__ ) ): print(("""Actual output value:""", output(lowercase__ , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(lowercase__ , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
84
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCAmelCase_ :int = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :List[Any] = jax.device_count() lowerCAmelCase_ :Optional[Any] = num_samples * [prompt] lowerCAmelCase_ :int = sd_pipe.prepare_inputs(__A ) lowerCAmelCase_ :Optional[Any] = replicate(__A ) lowerCAmelCase_ :Union[str, Any] = shard(__A ) lowerCAmelCase_ :Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ :Tuple = jax.random.split(__A , jax.device_count() ) lowerCAmelCase_ :Union[str, Any] = sd_pipe(__A , __A , __A , num_inference_steps=25 , jit=__A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCAmelCase_ :Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ :List[str] = images[0, 253:256, 253:256, -1] lowerCAmelCase_ :Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ :Optional[int] = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Union[str, Any] = """stabilityai/stable-diffusion-2""" lowerCAmelCase_ , lowerCAmelCase_ :Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(__A , subfolder="""scheduler""" ) lowerCAmelCase_ , lowerCAmelCase_ :List[str] = FlaxStableDiffusionPipeline.from_pretrained( __A , scheduler=__A , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCAmelCase_ :Optional[int] = scheduler_params lowerCAmelCase_ :List[Any] = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :Tuple = jax.device_count() lowerCAmelCase_ :str = num_samples * [prompt] lowerCAmelCase_ :Union[str, Any] = sd_pipe.prepare_inputs(__A ) lowerCAmelCase_ :Tuple = replicate(__A ) lowerCAmelCase_ :Optional[int] = shard(__A ) lowerCAmelCase_ :List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase_ :List[Any] = jax.random.split(__A , jax.device_count() ) lowerCAmelCase_ :Optional[Any] = sd_pipe(__A , __A , __A , num_inference_steps=25 , jit=__A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCAmelCase_ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ :List[str] = images[0, 253:256, 253:256, -1] lowerCAmelCase_ :Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ :Dict = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
84
1
"""simple docstring""" from __future__ import annotations import queue class UpperCamelCase : """simple docstring""" def __init__( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = data lowercase_ : str = None lowercase_ : Union[str, Any] = None def lowercase__( ): print('\n********Press N to stop entering at any point of time********\n' ) lowercase_ : Union[str, Any] = input('Enter the value of the root node: ' ).strip().lower() lowercase_ : queue.Queue = queue.Queue() lowercase_ : Optional[int] = TreeNode(int(_A ) ) q.put(_A ) while not q.empty(): lowercase_ : str = q.get() lowercase_ : Any = F'''Enter the left node of {node_found.data}: ''' lowercase_ : Optional[Any] = input(_A ).strip().lower() or 'n' if check == "n": return tree_node lowercase_ : Optional[int] = TreeNode(int(_A ) ) lowercase_ : Optional[int] = left_node q.put(_A ) lowercase_ : List[Any] = F'''Enter the right node of {node_found.data}: ''' lowercase_ : int = input(_A ).strip().lower() or 'n' if check == "n": return tree_node lowercase_ : int = TreeNode(int(_A ) ) lowercase_ : Union[str, Any] = right_node q.put(_A ) raise def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): if not isinstance(_A , _A ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): if not isinstance(_A , _A ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowercase__( __SCREAMING_SNAKE_CASE : Any ): if not isinstance(_A , _A ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowercase__( __SCREAMING_SNAKE_CASE : int ): if not isinstance(_A , _A ) or not node: return lowercase_ : queue.Queue = queue.Queue() q.put(_A ) while not q.empty(): lowercase_ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __SCREAMING_SNAKE_CASE : Any ): if not isinstance(_A , _A ) or not node: return lowercase_ : queue.Queue = queue.Queue() q.put(_A ) while not q.empty(): lowercase_ : Dict = [] while not q.empty(): lowercase_ : List[Any] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_A ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): if not isinstance(_A , _A ) or not node: return lowercase_ : list[TreeNode] = [] lowercase_ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_A ) lowercase_ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowercase_ : Optional[Any] = stack.pop() # start to traverse its right child lowercase_ : List[Any] = n.right def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): if not isinstance(_A , _A ) or not node: return lowercase_ : list[TreeNode] = [] lowercase_ : Union[str, Any] = node while n or stack: while n: stack.append(_A ) lowercase_ : Optional[int] = n.left lowercase_ : str = stack.pop() print(n.data , end=',' ) lowercase_ : Union[str, Any] = n.right def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): if not isinstance(_A , _A ) or not node: return lowercase_ : str = [], [] lowercase_ : List[Any] = node stacka.append(_A ) while stacka: # to find the reversed order of post order, store it in stack2 lowercase_ : List[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_A ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowercase__( __SCREAMING_SNAKE_CASE : Dict = "" , __SCREAMING_SNAKE_CASE : Optional[int]=50 , __SCREAMING_SNAKE_CASE : Dict="*" ): if not s: return "\n" + width * char lowercase_ : str = divmod(width - len(_A ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) __SCREAMING_SNAKE_CASE =build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
353
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
0
def __lowerCamelCase ( UpperCAmelCase_ : int = 5000_0000 ): """simple docstring""" a :Any = set() a :Optional[int] = int((limit - 24) ** (1 / 2) ) a :Dict = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , UpperCAmelCase_ ) ) ) for primea in primes: a :int = primea * primea for primea in primes: a :List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: a :List[Any] = primea * primea * primea * primea a :str = square + cube + tetr if total >= limit: break ret.add(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) if __name__ == "__main__": print(F"""{solution() = }""")
94
def __lowerCamelCase ( UpperCAmelCase_ : int = 100_0000 ): """simple docstring""" a :Any = set(range(3 , UpperCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCAmelCase_ , UpperCAmelCase_ ) ) ) a :Union[str, Any] = [float(UpperCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
94
1
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCamelCase (lowercase_: Dict , lowercase_: Union[str, Any] , lowercase_: Tuple , lowercase_: Dict=5 ) -> Optional[int]: assert masked_input.count("""<mask>""" ) == 1 A__ : Tuple = torch.tensor(tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1 A__ : Tuple = model(_UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple A__ : List[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() A__ : str = logits[0, masked_index, :] A__ : Optional[int] = logits.softmax(dim=0 ) A__ , A__ : List[str] = prob.topk(k=_UpperCamelCase , dim=0 ) A__ : Union[str, Any] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_UpperCamelCase ) )] ) A__ : Optional[Any] = tokenizer.mask_token A__ : Union[str, Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): A__ : int = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(_UpperCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(_UpperCamelCase ) , _UpperCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_UpperCamelCase , _UpperCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs A_ : str = CamembertTokenizer.from_pretrained('camembert-base') A_ : List[str] = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() A_ : Optional[Any] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
359
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Tuple = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Any = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Union[str, Any] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : Tuple = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Any = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : List[str] = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : List[str] = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : Optional[Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Optional[Any] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: str = FLAX_MODEL_MAPPING A_ : Any = auto_class_update(FlaxAutoModel) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: List[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Any = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Optional[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: str = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : List[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _a (_BaseAutoModelClass ): '''simple docstring''' UpperCAmelCase__: int = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : List[str] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
141
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[int] = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
222
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _UpperCAmelCase : Optional[int] = HUGGINGFACE_HUB_CACHE _UpperCAmelCase : List[str] = "config.json" _UpperCAmelCase : Union[str, Any] = "diffusion_pytorch_model.bin" _UpperCAmelCase : List[Any] = "diffusion_flax_model.msgpack" _UpperCAmelCase : Optional[Any] = "model.onnx" _UpperCAmelCase : int = "diffusion_pytorch_model.safetensors" _UpperCAmelCase : Optional[Any] = "weights.pb" _UpperCAmelCase : Tuple = "https://huggingface.co" _UpperCAmelCase : Union[str, Any] = default_cache_path _UpperCAmelCase : Optional[Any] = "diffusers_modules" _UpperCAmelCase : List[Any] = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) _UpperCAmelCase : Tuple = ["fp16", "non-ema"] _UpperCAmelCase : Any = ".self_attn"
222
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _lowerCamelCase : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self : str ): '''simple docstring''' return 12 @property def A ( self : Optional[Any] ): '''simple docstring''' return 12 @property def A ( self : Dict ): '''simple docstring''' return 32 @property def A ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def A ( self : List[Any] ): '''simple docstring''' _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase ) @property def A ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = 12 _snake_case = 12 _snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } _snake_case = TransformeraDModel(**lowercase ) return model def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = 'cpu' _snake_case = self.dummy_vqvae _snake_case = self.dummy_text_encoder _snake_case = self.dummy_tokenizer _snake_case = self.dummy_transformer _snake_case = VQDiffusionScheduler(self.num_embed ) _snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase ) _snake_case = VQDiffusionPipeline( vqvae=lowercase , text_encoder=lowercase , tokenizer=lowercase , transformer=lowercase , scheduler=lowercase , learned_classifier_free_sampling_embeddings=lowercase , ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = 'teddy bear playing in the pool' _snake_case = torch.Generator(device=lowercase ).manual_seed(0 ) _snake_case = pipe([prompt] , generator=lowercase , num_inference_steps=2 , output_type='np' ) _snake_case = output.images _snake_case = torch.Generator(device=lowercase ).manual_seed(0 ) _snake_case = pipe( [prompt] , generator=lowercase , output_type='np' , return_dict=lowercase , num_inference_steps=2 )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _snake_case = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Optional[int] ): '''simple docstring''' _snake_case = 'cpu' _snake_case = self.dummy_vqvae _snake_case = self.dummy_text_encoder _snake_case = self.dummy_tokenizer _snake_case = self.dummy_transformer _snake_case = VQDiffusionScheduler(self.num_embed ) _snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _snake_case = VQDiffusionPipeline( vqvae=lowercase , text_encoder=lowercase , tokenizer=lowercase , transformer=lowercase , scheduler=lowercase , learned_classifier_free_sampling_embeddings=lowercase , ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = 'teddy bear playing in the pool' _snake_case = torch.Generator(device=lowercase ).manual_seed(0 ) _snake_case = pipe([prompt] , generator=lowercase , num_inference_steps=2 , output_type='np' ) _snake_case = output.images _snake_case = torch.Generator(device=lowercase ).manual_seed(0 ) _snake_case = pipe( [prompt] , generator=lowercase , output_type='np' , return_dict=lowercase , num_inference_steps=2 )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _snake_case = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) _snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) _snake_case = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _snake_case = torch.Generator(device=lowercase ).manual_seed(0 ) _snake_case = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowercase , output_type='np' , ) _snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
367
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a_ ( __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : str , __lowercase : Optional[int] , __lowercase : str ) -> Union[str, Any]: # Load configuration defined in the metadata file with open(__lowercase ) as metadata_file: _snake_case = json.load(__lowercase ) _snake_case = LukeConfig(use_entity_aware_attention=__lowercase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _snake_case = torch.load(__lowercase , map_location='cpu' )['module'] # Load the entity vocab file _snake_case = load_original_entity_vocab(__lowercase ) # add an entry for [MASK2] _snake_case = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _snake_case = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _snake_case = AddedToken('<ent>' , lstrip=__lowercase , rstrip=__lowercase ) _snake_case = AddedToken('<ent2>' , lstrip=__lowercase , rstrip=__lowercase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , 'tokenizer_config.json' ) , 'r' ) as f: _snake_case = json.load(__lowercase ) _snake_case = 'MLukeTokenizer' with open(os.path.join(__lowercase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(__lowercase , __lowercase ) _snake_case = MLukeTokenizer.from_pretrained(__lowercase ) # Initialize the embeddings of the special tokens _snake_case = tokenizer.convert_tokens_to_ids(['@'] )[0] _snake_case = tokenizer.convert_tokens_to_ids(['#'] )[0] _snake_case = state_dict['embeddings.word_embeddings.weight'] _snake_case = word_emb[ent_init_index].unsqueeze(0 ) _snake_case = word_emb[enta_init_index].unsqueeze(0 ) _snake_case = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _snake_case = state_dict[bias_name] _snake_case = decoder_bias[ent_init_index].unsqueeze(0 ) _snake_case = decoder_bias[enta_init_index].unsqueeze(0 ) _snake_case = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _snake_case = f'''encoder.layer.{layer_index}.attention.self.''' _snake_case = state_dict[prefix + matrix_name] _snake_case = state_dict[prefix + matrix_name] _snake_case = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _snake_case = state_dict['entity_embeddings.entity_embeddings.weight'] _snake_case = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) _snake_case = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _snake_case = state_dict['entity_predictions.bias'] _snake_case = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) _snake_case = torch.cat([entity_prediction_bias, entity_mask_bias] ) _snake_case = LukeForMaskedLM(config=__lowercase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) _snake_case = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): _snake_case = state_dict[key] else: _snake_case = state_dict[key] _snake_case , _snake_case = model.load_state_dict(__lowercase , strict=__lowercase ) if set(__lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(__lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _snake_case = MLukeTokenizer.from_pretrained(__lowercase , task='entity_classification' ) _snake_case = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' _snake_case = (0, 9) _snake_case = tokenizer(__lowercase , entity_spans=[span] , return_tensors='pt' ) _snake_case = model(**__lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _snake_case = torch.Size((1, 33, 768) ) _snake_case = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _snake_case = torch.Size((1, 1, 768) ) _snake_case = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _snake_case = MLukeTokenizer.from_pretrained(__lowercase ) _snake_case = 'Tokyo is the capital of <mask>.' _snake_case = (24, 30) _snake_case = tokenizer(__lowercase , entity_spans=[span] , return_tensors='pt' ) _snake_case = model(**__lowercase ) _snake_case = encoding['input_ids'][0].tolist() _snake_case = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) _snake_case = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__lowercase ) _snake_case = outputs.entity_logits[0][0].argmax().item() _snake_case = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(__lowercase ) ) model.save_pretrained(__lowercase ) def a_ ( __lowercase : int ) -> int: _snake_case = ['[MASK]', '[PAD]', '[UNK]'] _snake_case = [json.loads(__lowercase ) for line in open(__lowercase )] _snake_case = {} for entry in data: _snake_case = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _snake_case = entity_id break _snake_case = f'''{language}:{entity_name}''' _snake_case = entity_id return new_mapping if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _lowerCamelCase : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
130
0
from manim import * class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) __UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __UpperCAmelCase : Tuple = Rectangle(height=0.2_5 , width=0.2_5 ) __UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] __UpperCAmelCase : str = [mem.copy() for i in range(6 )] __UpperCAmelCase : Optional[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) __UpperCAmelCase : Optional[int] = VGroup(*a_ ).arrange(a_ , buff=0 ) __UpperCAmelCase : int = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) __UpperCAmelCase : List[str] = Text('''CPU''' , font_size=24 ) __UpperCAmelCase : str = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) __UpperCAmelCase : List[str] = [mem.copy() for i in range(4 )] __UpperCAmelCase : Dict = VGroup(*a_ ).arrange(a_ , buff=0 ) __UpperCAmelCase : Tuple = Text('''GPU''' , font_size=24 ) __UpperCAmelCase : Optional[int] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.move_to([-1, -1, 0] ) self.add(a_ ) __UpperCAmelCase : str = [mem.copy() for i in range(6 )] __UpperCAmelCase : List[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) __UpperCAmelCase : int = Text('''Model''' , font_size=24 ) __UpperCAmelCase : Tuple = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.add(a_ ) __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[Any] = [] for i, rect in enumerate(a_ ): __UpperCAmelCase : Union[str, Any] = fill.copy().set_fill(a_ , opacity=0.8 ) target.move_to(a_ ) model_arr.append(a_ ) __UpperCAmelCase : Optional[int] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(a_ ) self.add(*a_ , *a_ ) __UpperCAmelCase : str = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase : str = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase : Optional[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) __UpperCAmelCase : Optional[int] = VGroup(*a_ ).arrange(a_ , buff=0 ) __UpperCAmelCase : int = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) __UpperCAmelCase : List[str] = Text('''Disk''' , font_size=24 ) __UpperCAmelCase : Tuple = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) disk.move_to([-4, -1.2_5, 0] ) self.add(a_ , a_ ) __UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCAmelCase : Optional[int] = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a_ , a_ ) __UpperCAmelCase : List[Any] = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(a_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a_ ) __UpperCAmelCase : List[str] = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ ) ) __UpperCAmelCase : Union[str, Any] = Square(0.3 ) input.set_fill(a_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , a_ , buff=0.5 ) self.play(Write(a_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=a_ , buff=0.0_2 ) self.play(MoveToTarget(a_ ) ) self.play(FadeOut(a_ ) ) __UpperCAmelCase : List[str] = Arrow(start=a_ , end=a_ , color=a_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , a_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __UpperCAmelCase : Optional[int] = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) ) __UpperCAmelCase : Tuple = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.0_2} self.play( Write(a_ ) , Circumscribe(model_arr[0] , color=a_ , **a_ ) , Circumscribe(model_cpu_arr[0] , color=a_ , **a_ ) , Circumscribe(gpu_rect[0] , color=a_ , **a_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __UpperCAmelCase : Tuple = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , a_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) __UpperCAmelCase : Optional[Any] = AnimationGroup( FadeOut(a_ , run_time=0.5 ) , MoveToTarget(a_ , run_time=0.5 ) , FadeIn(a_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(a_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __UpperCAmelCase : Dict = 0.7 self.play( Circumscribe(model_arr[i] , **a_ ) , Circumscribe(cpu_left_col_base[i] , **a_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=a_ , **a_ ) , Circumscribe(gpu_rect[0] , color=a_ , **a_ ) , Circumscribe(model_arr[i + 1] , color=a_ , **a_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=a_ , **a_ ) , Circumscribe(cpu_left_col_base[-1] , color=a_ , **a_ ) , Circumscribe(gpu_rect[0] , color=a_ , **a_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __UpperCAmelCase : Optional[Any] = a_c __UpperCAmelCase : Optional[Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(a_ ) , FadeOut(a_ , run_time=0.5 ) , ) __UpperCAmelCase : Tuple = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) , MoveToTarget(a_ ) ) self.wait()
226
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A =logging.get_logger(__name__) __A ={ "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """deberta-v2""" def __init__( self : Optional[int] , a_ : List[str]=12_81_00 , a_ : Optional[Any]=15_36 , a_ : Optional[Any]=24 , a_ : List[Any]=24 , a_ : Optional[int]=61_44 , a_ : List[Any]="gelu" , a_ : Any=0.1 , a_ : Tuple=0.1 , a_ : Optional[Any]=5_12 , a_ : Tuple=0 , a_ : Dict=0.0_2 , a_ : Optional[Any]=1e-7 , a_ : List[str]=False , a_ : List[Any]=-1 , a_ : List[str]=0 , a_ : Optional[Any]=True , a_ : List[Any]=None , a_ : Optional[int]=0 , a_ : Tuple="gelu" , **a_ : List[str] , ): '''simple docstring''' super().__init__(**a_ ) __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : int = type_vocab_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[int] = relative_attention __UpperCAmelCase : int = max_relative_positions __UpperCAmelCase : Any = pad_token_id __UpperCAmelCase : int = position_biased_input # Backwards compatibility if type(a_ ) == str: __UpperCAmelCase : Optional[Any] = [x.strip() for x in pos_att_type.lower().split('''|''' )] __UpperCAmelCase : Tuple = pos_att_type __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : str = kwargs.get('''pooler_hidden_size''' , a_ ) __UpperCAmelCase : Union[str, Any] = pooler_dropout __UpperCAmelCase : Tuple = pooler_hidden_act class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' @property def snake_case__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : int = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return 12 def snake_case__ ( self : Any , a_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a_ : int = -1 , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional["TensorType"] = None , a_ : int = 3 , a_ : int = 40 , a_ : int = 40 , a_ : "PreTrainedTokenizerBase" = None , ): '''simple docstring''' __UpperCAmelCase : List[Any] = super().generate_dummy_inputs(preprocessor=a_ , framework=a_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
226
1
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if args.model_type == "bert": SCREAMING_SNAKE_CASE : Tuple = BertForMaskedLM.from_pretrained(args.model_name) SCREAMING_SNAKE_CASE : Union[str, Any] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') SCREAMING_SNAKE_CASE : Dict = model.state_dict() SCREAMING_SNAKE_CASE : str = {} for w in ["word_embeddings", "position_embeddings"]: SCREAMING_SNAKE_CASE : int = state_dict[F'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : List[str] = state_dict[F'{prefix}.embeddings.LayerNorm.{w}'] SCREAMING_SNAKE_CASE : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : Dict = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] SCREAMING_SNAKE_CASE : Tuple = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] SCREAMING_SNAKE_CASE : Any = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] SCREAMING_SNAKE_CASE : List[str] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] SCREAMING_SNAKE_CASE : List[str] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] SCREAMING_SNAKE_CASE : Dict = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 SCREAMING_SNAKE_CASE : Tuple = state_dict['''cls.predictions.decoder.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : Any = state_dict[F'cls.predictions.transform.dense.{w}'] SCREAMING_SNAKE_CASE : int = state_dict[F'cls.predictions.transform.LayerNorm.{w}'] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
369
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
0
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : Union[str, Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Optional[Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Union[str, Any]="replace" , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Tuple="</s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : Tuple="<s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : List[Any]="<pad>" , lowerCAmelCase_ : List[Any]="<mask>" , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Optional[Any]=True , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Tuple , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : str): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
136
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors UpperCAmelCase : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "sequence-classification" def __init__( self : Optional[Any] , lowerCAmelCase_ : int): """simple docstring""" if type(lowerCAmelCase_) == dict: lowercase_ = Namespace(**lowerCAmelCase_) lowercase_ = glue_output_modes[hparams.task] lowercase_ = glue_tasks_num_labels[hparams.task] super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , self.mode) def _UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : Optional[int]): """simple docstring""" return self.model(**lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ = outputs[0] lowercase_ = self.trainer.lr_schedulers[0]["""scheduler"""] lowercase_ = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.hparams lowercase_ = processors[args.task]() lowercase_ = processor.get_labels() for mode in ["train", "dev"]: lowercase_ = self._feature_file(lowerCAmelCase_) if os.path.exists(lowerCAmelCase_) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir) lowercase_ = ( processor.get_dev_examples(args.data_dir) if mode == """dev""" else processor.get_train_examples(args.data_dir) ) lowercase_ = convert_examples_to_features( lowerCAmelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , lowerCAmelCase_) torch.save(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : bool = False): """simple docstring""" lowercase_ = """dev""" if mode == """test""" else mode lowercase_ = self._feature_file(lowerCAmelCase_) logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) lowercase_ = torch.load(lowerCAmelCase_) lowercase_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) , batch_size=lowerCAmelCase_ , shuffle=lowerCAmelCase_ , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ , lowercase_ = outputs[:2] lowercase_ = logits.detach().cpu().numpy() lowercase_ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _UpperCAmelCase ( self : str , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = torch.stack([x["""val_loss"""] for x in outputs]).mean().detach().cpu().item() lowercase_ = np.concatenate([x["""pred"""] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": lowercase_ = np.argmax(lowerCAmelCase_ , axis=1) elif self.hparams.glue_output_mode == "regression": lowercase_ = np.squeeze(lowerCAmelCase_) lowercase_ = np.concatenate([x["""target"""] for x in outputs] , axis=0) lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , lowerCAmelCase_ , lowerCAmelCase_)} lowercase_ = dict(results.items()) lowercase_ = results return ret, preds_list, out_label_list def _UpperCAmelCase ( self : int , lowerCAmelCase_ : list): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase_ , lowerCAmelCase_) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=lowerCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowerCAmelCase_ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""") return parser def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = argparse.ArgumentParser() add_generic_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = GLUETransformer.add_model_specific_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase_ = os.path.join( """./results""" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) lowercase_ = GLUETransformer(__lowerCAmelCase ) lowercase_ = generic_train(__lowerCAmelCase , __lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase_ = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__lowerCAmelCase ) ) lowercase_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowerCAmelCase ) if __name__ == "__main__": main()
136
1
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase( UpperCAmelCase_ ): # A local function to see if a dot lands in the circle. def is_in_circle(UpperCAmelCase_ , UpperCAmelCase_ ) -> bool: UpperCAmelCase : Union[str, Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : List[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCAmelCase_ ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : List[str] = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0.0 , UpperCAmelCase_ = 1.0 , ): return mean( function_to_integrate(uniform(UpperCAmelCase_ , UpperCAmelCase_ ) ) for _ in range(UpperCAmelCase_ ) ) * (max_value - min_value) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = 0.0 , UpperCAmelCase_ = 1.0 ): def identity_function(UpperCAmelCase_ ) -> float: return x UpperCAmelCase : Any = area_under_curve_estimator( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print('******************' ) def UpperCamelCase( UpperCAmelCase_ ): def function_to_integrate(UpperCAmelCase_ ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Optional[int] = area_under_curve_estimator( UpperCAmelCase_ , UpperCAmelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCamelCase( ): UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=UpperCAmelCase_ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=UpperCAmelCase_ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=UpperCAmelCase_ , help='where to store parsed gold_data_path file' , ) UpperCAmelCase : int = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: UpperCAmelCase : int = json.load(UpperCAmelCase_ ) for dpr_record in tqdm(UpperCAmelCase_ ): UpperCAmelCase : Any = dpr_record['question'] UpperCAmelCase : List[str] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(UpperCAmelCase_ ) + '\n' ) if __name__ == "__main__": main()
280
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__:str = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:str = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Any = ["""CLIPFeatureExtractor"""] SCREAMING_SNAKE_CASE__:List[Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:List[Any] = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Union[str, Any] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Optional[Any] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
261
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE__:List[str] = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Dict = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Dict = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
261
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : Optional[int] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
136
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : int=False , lowerCAmelCase_ : int=True , lowerCAmelCase_ : int=99 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : str=5 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : Dict=37 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=5_12 , lowerCAmelCase_ : Dict=16 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : Optional[int]=None , ) -> List[str]: '''simple docstring''' A__ : List[str] =parent A__ : Optional[Any] =batch_size A__ : List[Any] =seq_length A__ : Tuple =is_training A__ : Optional[int] =use_input_mask A__ : Optional[int] =use_token_type_ids A__ : Tuple =use_labels A__ : Dict =vocab_size A__ : Optional[Any] =hidden_size A__ : Tuple =num_hidden_layers A__ : Tuple =num_attention_heads A__ : Union[str, Any] =intermediate_size A__ : Dict =hidden_act A__ : List[Any] =hidden_dropout_prob A__ : Optional[int] =attention_probs_dropout_prob A__ : List[str] =max_position_embeddings A__ : str =type_vocab_size A__ : Union[str, Any] =type_sequence_label_size A__ : Tuple =initializer_range A__ : List[Any] =num_labels A__ : str =num_choices A__ : Union[str, Any] =scope def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' A__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : List[str] =None if self.use_input_mask: A__ : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) A__ : List[str] =None A__ : int =None A__ : List[Any] =None if self.use_labels: A__ : str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any =ids_tensor([self.batch_size] , self.num_choices ) A__ : str =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> str: '''simple docstring''' A__ : Union[str, Any] =DistilBertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[str] =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =DistilBertForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Union[str, Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' A__ : Dict =DistilBertForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' A__ : List[Any] =self.num_labels A__ : Dict =DistilBertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Union[str, Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> int: '''simple docstring''' A__ : Optional[int] =self.num_labels A__ : Union[str, Any] =DistilBertForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Dict: '''simple docstring''' A__ : int =self.num_choices A__ : Tuple =DistilBertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : int =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : int =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Tuple =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) : List[str] =config_and_inputs A__ : str ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) __snake_case = True __snake_case = True __snake_case = True __snake_case = True def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' A__ : Any =DistilBertModelTester(self ) A__ : Tuple =ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' A__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase_ ) @slow def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[int] =DistilBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @slow @require_torch_gpu def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' A__ , A__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return A__ : Any =True A__ : Optional[Any] =model_class(config=lowerCAmelCase_ ) A__ : Dict =self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Optional[int] =torch.jit.trace( lowerCAmelCase_ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , """traced_model.pt""" ) ) A__ : List[Any] =torch.jit.load(os.path.join(lowerCAmelCase_ , """traced_model.pt""" ) , map_location=lowerCAmelCase_ ) loaded(inputs_dict["""input_ids"""].to(lowerCAmelCase_ ) , inputs_dict["""attention_mask"""].to(lowerCAmelCase_ ) ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' A__ : List[str] =DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A__ : Optional[Any] =torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) A__ : int =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] A__ : Tuple =torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase_ ) A__ : Optional[int] =torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1e-4 ) )
136
1
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = LayoutLMTokenizer UpperCAmelCase_ = LayoutLMTokenizerFast UpperCAmelCase_ = True UpperCAmelCase_ = True def snake_case_ (self ) -> Optional[Any]: super().setUp() UpperCamelCase = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ (self , **__a ) -> Any: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case_ (self , __a ) -> List[str]: UpperCamelCase = "UNwant\u00E9d,running" UpperCamelCase = "unwanted, running" return input_text, output_text def snake_case_ (self ) -> int: UpperCamelCase = self.tokenizer_class(self.vocab_file ) UpperCamelCase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [7, 4, 5, 10, 8, 9] ) def snake_case_ (self ) -> Any: pass
153
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: UpperCamelCase = _modexpt(_SCREAMING_SNAKE_CASE , exponent // 2 , _SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_SCREAMING_SNAKE_CASE , exponent - 1 , _SCREAMING_SNAKE_CASE )) % modulo_value def a__ ( _SCREAMING_SNAKE_CASE = 1_777 , _SCREAMING_SNAKE_CASE = 1_855 , _SCREAMING_SNAKE_CASE = 8 ): """simple docstring""" UpperCamelCase = base for _ in range(1 , _SCREAMING_SNAKE_CASE ): UpperCamelCase = _modexpt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
153
1
from collections import defaultdict from math import ceil, sqrt def A__ ( __lowerCamelCase = 1_00_00_00, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = defaultdict(__lowerCamelCase ) for outer_width in range(3, (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: SCREAMING_SNAKE_CASE_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 ) else: SCREAMING_SNAKE_CASE_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCamelCase, outer_width - 1, 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
359
from graphs.minimum_spanning_tree_kruskal import kruskal def A__ ( ): SCREAMING_SNAKE_CASE_ = 9 SCREAMING_SNAKE_CASE_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE_ = kruskal(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCamelCase ) == sorted(__lowerCamelCase )
257
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _a : str = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _a : Optional[int] = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = "maskformer" _UpperCamelCase : Optional[Any] = {"hidden_size": "mask_feature_size"} _UpperCamelCase : Any = ["resnet", "swin"] _UpperCamelCase : Dict = ["detr"] def __init__( self , a__ = 256 , a__ = 256 , a__ = 0.1 , a__ = False , a__ = None , a__ = None , a__ = 0.0_2 , a__ = 1.0 , a__ = 1.0 , a__ = 1.0 , a__ = 2_0.0 , a__ = None , **a__ , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowerCAmelCase : Union[str, Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(a__ , a__ ): _lowerCAmelCase : str = backbone_config.pop("""model_type""" ) _lowerCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Dict = config_class.from_dict(a__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowerCAmelCase : int = DetrConfig() else: # verify that the decoder is supported _lowerCAmelCase : Union[str, Any] = ( decoder_config.pop("""model_type""" ) if isinstance(a__ , a__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(a__ , a__ ): _lowerCAmelCase : int = CONFIG_MAPPING[decoder_type] _lowerCAmelCase : Tuple = config_class.from_dict(a__ ) _lowerCAmelCase : List[Any] = backbone_config _lowerCAmelCase : List[str] = decoder_config # main feature dimension for the model _lowerCAmelCase : int = fpn_feature_size _lowerCAmelCase : Tuple = mask_feature_size # initializer _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = init_xavier_std # Hungarian matcher && loss _lowerCAmelCase : Dict = cross_entropy_weight _lowerCAmelCase : Union[str, Any] = dice_weight _lowerCAmelCase : Tuple = mask_weight _lowerCAmelCase : int = use_auxiliary_loss _lowerCAmelCase : List[Any] = no_object_weight _lowerCAmelCase : int = output_auxiliary_logits _lowerCAmelCase : str = self.decoder_config.encoder_attention_heads _lowerCAmelCase : int = self.decoder_config.num_hidden_layers super().__init__(**a__ ) @classmethod def __A ( cls , a__ , a__ , **a__ ): return cls( backbone_config=a__ , decoder_config=a__ , **a__ , ) def __A ( self ): _lowerCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : str = self.backbone_config.to_dict() _lowerCAmelCase : Dict = self.decoder_config.to_dict() _lowerCAmelCase : List[Any] = self.__class__.model_type return output
44
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowercase ( unittest.TestCase ): __lowercase : Any = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase = VideoClassificationPipeline(model=A_ , image_processor=A_ , top_k=2 ) UpperCamelCase = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" for example in examples: UpperCamelCase = video_classifier(A_ ) self.assertEqual( A_ , [ {'score': ANY(A_ ), 'label': ANY(A_ )}, {'score': ANY(A_ ), 'label': ANY(A_ )}, ] , ) @require_torch def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCamelCase = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) UpperCamelCase = pipeline( 'video-classification' , model=A_ , feature_extractor=A_ , frame_sampling_rate=4 ) UpperCamelCase = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase = video_classifier(A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}] , ) UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], ] , ) @require_tf def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass
222
0
def UpperCamelCase ( __lowercase : str = "The quick brown fox jumps over the lazy dog" ,): '''simple docstring''' A_ : Any = set() # Replace all the whitespace in our sentence A_ : Dict = input_str.replace(' ' ,'' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowercase ) == 26 def UpperCamelCase ( __lowercase : str = "The quick brown fox jumps over the lazy dog" ,): '''simple docstring''' A_ : List[Any] = [False] * 26 for char in input_str: if char.islower(): A_ : Any = True elif char.isupper(): A_ : Optional[Any] = True return all(__lowercase ) def UpperCamelCase ( __lowercase : str = "The quick brown fox jumps over the lazy dog" ,): '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase ( ): '''simple docstring''' from timeit import timeit A_ : List[Any] = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' ,setup=__lowercase ) ) print(timeit('is_pangram_faster()' ,setup=__lowercase ) ) print(timeit('is_pangram_fastest()' ,setup=__lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
371
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''lilt''' def __init__( self , lowercase=3_0_5_2_2 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="absolute" , lowercase=None , lowercase=4 , lowercase=1_0_2_4 , **lowercase , ): """simple docstring""" super().__init__(pad_token_id=lowercase , **lowercase ) A_ : str = vocab_size A_ : Tuple = hidden_size A_ : List[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Union[str, Any] = hidden_act A_ : int = intermediate_size A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : List[str] = max_position_embeddings A_ : List[str] = type_vocab_size A_ : Any = initializer_range A_ : str = layer_norm_eps A_ : Optional[int] = position_embedding_type A_ : Union[str, Any] = classifier_dropout A_ : Optional[Any] = channel_shrink_ratio A_ : int = max_ad_position_embeddings
192
0
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_UpperCamelCase ) if number < 1: UpperCAmelCase : str = F"Input value of [number={number}] must be > 0" raise ValueError(_UpperCamelCase ) UpperCAmelCase : str = 1 for i in range(1 , _UpperCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
311
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = [False] * len(_UpperCamelCase ) lowercase : Optional[int] = [] queue.append(_UpperCamelCase ) lowercase : Union[str, Any] = True while queue: lowercase : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCamelCase ) lowercase : Tuple = True lowercase : Optional[Any] = u return visited[t] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : List[str] = [-1] * (len(_UpperCamelCase )) lowercase : int = 0 while bfs(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ): lowercase : List[str] = float('''Inf''' ) lowercase : int = sink while s != source: # Find the minimum value in select path lowercase : List[Any] = min(_UpperCamelCase, graph[parent[s]][s] ) lowercase : Union[str, Any] = parent[s] max_flow += path_flow lowercase : Optional[int] = sink while v != source: lowercase : Any = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Union[str, Any] = parent[v] return max_flow __a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __a , __a = 0, 5 print(ford_fulkerson(graph, source, sink))
337
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a :Union[str, Any] = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Optional[Any] = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys a :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: while b: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = b, a % b return a def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return a if b == 0 else euclidean_gcd_recursive(__lowerCAmelCase , a % b ) def _lowercase ( ) -> Union[str, Any]: print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
56
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = inspect.getfile(accelerate.test_utils ) __lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __lowercase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) __lowercase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) __lowercase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) __lowercase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __a : Dict = Accelerator() __a : Any = (accelerator.state.process_index + 2, 1_0) __a : Dict = torch.randint(0, 1_0, shape).to(accelerator.device) __a : Union[str, Any] = """""" __a : Tuple = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __a : str = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
210
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Optional[Any] = (KDPMaDiscreteScheduler,) __a : Dict = 10 def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase__ ) return config def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' if torch_device == "mps": return __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' if torch_device == "mps": return __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if str(lowerCAmelCase__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
210
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A ( __UpperCAmelCase ): __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'OwlViTImageProcessor' __snake_case = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self, UpperCamelCase__=None, UpperCamelCase__=None, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', UpperCamelCase__, ) lowerCAmelCase_ = kwargs.pop('''feature_extractor''' ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__, UpperCamelCase__ ) def __call__( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__="max_length", UpperCamelCase__="np", **UpperCamelCase__ ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(UpperCamelCase__, UpperCamelCase__ ) or (isinstance(UpperCamelCase__, UpperCamelCase__ ) and not isinstance(text[0], UpperCamelCase__ )): lowerCAmelCase_ = [self.tokenizer(UpperCamelCase__, padding=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ )] elif isinstance(UpperCamelCase__, UpperCamelCase__ ) and isinstance(text[0], UpperCamelCase__ ): lowerCAmelCase_ = [] # Maximum number of queries across batch lowerCAmelCase_ = max([len(UpperCamelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCamelCase__ ) != max_num_queries: lowerCAmelCase_ = t + [''' '''] * (max_num_queries - len(UpperCamelCase__ )) lowerCAmelCase_ = self.tokenizer(UpperCamelCase__, padding=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ) encodings.append(UpperCamelCase__ ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowerCAmelCase_ = np.concatenate([encoding['''input_ids'''] for encoding in encodings], axis=0 ) lowerCAmelCase_ = np.concatenate([encoding['''attention_mask'''] for encoding in encodings], axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase_ = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings], axis=0 ) lowerCAmelCase_ = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings], axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase_ = torch.cat([encoding['''input_ids'''] for encoding in encodings], dim=0 ) lowerCAmelCase_ = torch.cat([encoding['''attention_mask'''] for encoding in encodings], dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase_ = tf.stack([encoding['''input_ids'''] for encoding in encodings], axis=0 ) lowerCAmelCase_ = tf.stack([encoding['''attention_mask'''] for encoding in encodings], axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowerCAmelCase_ = BatchEncoding() lowerCAmelCase_ = input_ids lowerCAmelCase_ = attention_mask if query_images is not None: lowerCAmelCase_ = BatchEncoding() lowerCAmelCase_ = self.image_processor( UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ).pixel_values lowerCAmelCase_ = query_pixel_values if images is not None: lowerCAmelCase_ = self.image_processor(UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ) if text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ), tensor_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.image_processor.post_process(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.image_processor.post_process_object_detection(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__, **UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', UpperCamelCase__, ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', UpperCamelCase__, ) return self.image_processor
167
def __UpperCamelCase ( _A ): if length <= 0 or not isinstance(_A , _A ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(_A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
167
1
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class A__ ( snake_case__ ): def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def snake_case_ ( self ) -> int: '''simple docstring''' with self.assertRaises(UpperCAmelCase_ ): A_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase_ ): A_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A_ = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def snake_case_ ( self ) -> int: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A_ = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def snake_case_ ( self ) -> Tuple: '''simple docstring''' import PIL.Image A_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=UpperCAmelCase_ ) as mock_cast_to_python_objects: A_ = pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) ) A_ , A_ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , UpperCAmelCase_ ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = pa.BufferReader(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE, pa.Buffer ) else pa.memory_map(_SCREAMING_SNAKE_CASE ) A_ = pa.ipc.open_stream(_SCREAMING_SNAKE_CASE ) A_ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""", [None, 1, 10] ) @pytest.mark.parametrize( """fields""", [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Any: A_ = pa.BufferOutputStream() A_ = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE, schema=_SCREAMING_SNAKE_CASE, writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = pa.BufferOutputStream() A_ = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=_SCREAMING_SNAKE_CASE, features=_SCREAMING_SNAKE_CASE ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata A_ = pa.BufferReader(output.getvalue() ) A_ = pa.ipc.open_stream(_SCREAMING_SNAKE_CASE ) A_ = f.read_all() A_ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""writer_batch_size""", [None, 1, 10] ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE, writer_batch_size=_SCREAMING_SNAKE_CASE, hash_salt="""split_name""", check_duplicates=_SCREAMING_SNAKE_CASE, ) as writer: with pytest.raises(_SCREAMING_SNAKE_CASE ): writer.write({"""col_1""": """foo""", """col_2""": 1}, key=[1, 2] ) A_ , A_ = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""", [None, 2, 10] ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: A_ = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE, writer_batch_size=_SCREAMING_SNAKE_CASE, hash_salt="""split_name""", check_duplicates=_SCREAMING_SNAKE_CASE, ) as writer: with pytest.raises(_SCREAMING_SNAKE_CASE ): writer.write({"""col_1""": """foo""", """col_2""": 1}, key=10 ) writer.write({"""col_1""": """bar""", """col_2""": 2}, key=10 ) A_ , A_ = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""", [None, 2, 10] ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE, writer_batch_size=_SCREAMING_SNAKE_CASE, hash_salt="""split_name""", check_duplicates=_SCREAMING_SNAKE_CASE, ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1}, key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2}, key=2 ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""", [None, 1, 10] ) @pytest.mark.parametrize( """fields""", [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Any: A_ = pa.BufferOutputStream() A_ = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE, schema=_SCREAMING_SNAKE_CASE, writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""", [None, 1, 10] ) @pytest.mark.parametrize( """fields""", [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = pa.BufferOutputStream() A_ = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE, schema=_SCREAMING_SNAKE_CASE, writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""", [None, 1, 10] ) @pytest.mark.parametrize( """fields""", [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = pa.BufferOutputStream() A_ = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE, schema=_SCREAMING_SNAKE_CASE, writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCAmelCase__ ( ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: A_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} A_ = os.path.join(_SCREAMING_SNAKE_CASE, """test.arrow""" ) with ArrowWriter(path=_SCREAMING_SNAKE_CASE, schema=pa.schema(_SCREAMING_SNAKE_CASE ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE, metadata=writer._schema.metadata ) _check_output(_SCREAMING_SNAKE_CASE, 1 ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: if pa.types.is_list(_SCREAMING_SNAKE_CASE ): return get_base_dtype(arr_type.value_type ) else: return arr_type def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: if isinstance(lst[0], _SCREAMING_SNAKE_CASE ): change_first_primitive_element_in_list(lst[0], _SCREAMING_SNAKE_CASE ) else: A_ = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""", [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""", [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: A_ = pa.array(TypedSequence(_SCREAMING_SNAKE_CASE, optimized_int_type=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""", [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ], ) @pytest.mark.parametrize("""sequence""", [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: # in range A_ = pa.array(OptimizedTypedSequence(_SCREAMING_SNAKE_CASE, col=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications A_ = copy.deepcopy(_SCREAMING_SNAKE_CASE ) A_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) A_ = pa.array(OptimizedTypedSequence(_SCREAMING_SNAKE_CASE, col=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""", [False, True] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: A_ = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=_SCREAMING_SNAKE_CASE ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: A_ = """mock://dataset-train.arrow""" with ArrowWriter(path=_SCREAMING_SNAKE_CASE, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(_SCREAMING_SNAKE_CASE ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( ) -> Optional[int]: A_ = pa.BufferOutputStream() with ParquetWriter(stream=_SCREAMING_SNAKE_CASE ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) A_ , A_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 A_ = pa.BufferReader(output.getvalue() ) A_ = pq.read_table(_SCREAMING_SNAKE_CASE ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""", [False, True] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: import PIL.Image A_ = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(_SCREAMING_SNAKE_CASE, format="""png""" ) A_ = pa.BufferOutputStream() with ParquetWriter( stream=_SCREAMING_SNAKE_CASE, features=Features({"""image""": Image()} ), embed_local_files=_SCREAMING_SNAKE_CASE ) as writer: writer.write({"""image""": image_path} ) writer.finalize() A_ = pa.BufferReader(output.getvalue() ) A_ = pq.read_table(_SCREAMING_SNAKE_CASE ) A_ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""], _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE, """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def UpperCAmelCase__ ( ) -> List[Any]: A_ = pa.schema([pa.field("""col_1""", pa.string(), nullable=_SCREAMING_SNAKE_CASE )] ) A_ = pa.BufferOutputStream() with ArrowWriter(stream=_SCREAMING_SNAKE_CASE ) as writer: writer._build_writer(inferred_schema=_SCREAMING_SNAKE_CASE ) assert writer._schema == pa.schema([pa.field("""col_1""", pa.string() )] )
162
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ = get_failure_array(_SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern snake_case_ , snake_case_ = 0, 0 # index into text, pattern while i < len(_SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(_SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: snake_case_ = failure[j - 1] continue i += 1 return False def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = [0] snake_case_ = 0 snake_case_ = 1 while j < len(_SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: snake_case_ = failure[i - 1] continue j += 1 failure.append(_SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) __SCREAMING_SNAKE_CASE : Optional[int] = 'abc1abc12' __SCREAMING_SNAKE_CASE : Optional[int] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __SCREAMING_SNAKE_CASE : List[str] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __SCREAMING_SNAKE_CASE : int = 'ABABX' __SCREAMING_SNAKE_CASE : Optional[Any] = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __SCREAMING_SNAKE_CASE : Any = 'AAAB' __SCREAMING_SNAKE_CASE : List[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __SCREAMING_SNAKE_CASE : Optional[int] = 'abcdabcy' __SCREAMING_SNAKE_CASE : str = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __SCREAMING_SNAKE_CASE : Any = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
347
0
"""simple docstring""" from __future__ import annotations import pandas as pd def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] , _lowercase : list[int] , _lowercase : int ) ->list[int]: '''simple docstring''' a : int = [0] * no_of_processes a : Union[str, Any] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_lowercase ): a : int = burst_time[i] a : str = 0 a : List[str] = 0 a : Union[str, Any] = 9_9999_9999 a : Any = 0 a : Any = False # Process until all processes are completed while complete != no_of_processes: for j in range(_lowercase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: a : str = remaining_time[j] a : List[Any] = j a : Any = True if not check: increment_time += 1 continue remaining_time[short] -= 1 a : List[str] = remaining_time[short] if minm == 0: a : int = 9_9999_9999 if remaining_time[short] == 0: complete += 1 a : int = False # Find finish time of current process a : int = increment_time + 1 # Calculate waiting time a : str = finish_time - arrival_time[short] a : Union[str, Any] = finar - burst_time[short] if waiting_time[short] < 0: a : Tuple = 0 # Increment time increment_time += 1 return waiting_time def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] , _lowercase : int , _lowercase : list[int] ) ->list[int]: '''simple docstring''' a : Tuple = [0] * no_of_processes for i in range(_lowercase ): a : Optional[int] = burst_time[i] + waiting_time[i] return turn_around_time def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] , _lowercase : list[int] , _lowercase : int ) ->None: '''simple docstring''' a : List[Any] = 0 a : Optional[int] = 0 for i in range(_lowercase ): a : List[Any] = total_waiting_time + waiting_time[i] a : Any = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') a : int = int(input()) a : Any = [0] * no_of_processes a : Tuple = [0] * no_of_processes a : str = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) a : Optional[Any] = map(int, input().split()) a : Tuple = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a : List[Any] = burst_time a : Optional[int] = no_of_processes a : List[Any] = waiting_time a : Dict = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a : Tuple = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
366
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets a : Tuple = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' a : List[str] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' a : List[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __a ( self ) -> Dict: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ) -> Any: a : Optional[int] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) a : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] a : Union[str, Any] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) a : Optional[Any] = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
79
0
'''simple docstring''' from __future__ import annotations def __snake_case( _lowerCAmelCase ) -> None: create_state_space_tree(_lowerCAmelCase , [] , 0 , [0 for i in range(len(_lowerCAmelCase ) )] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> None: if index == len(_lowerCAmelCase ): print(_lowerCAmelCase ) return for i in range(len(_lowerCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case__ : Union[str, Any] = True create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , index + 1 , _lowerCAmelCase ) current_sequence.pop() snake_case__ : Optional[Any] = False __a = [3, 1, 2, 4] generate_all_permutations(sequence) __a = ["A", "B", "C"] generate_all_permutations(sequence_a)
35
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase( UpperCAmelCase_ ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , UpperCAmelCase_ , ) if isinstance(UpperCAmelCase_ , torch.Tensor ): return image elif isinstance(UpperCAmelCase_ , PIL.Image.Image ): UpperCAmelCase : List[str] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : List[str] = image[0].size UpperCAmelCase , UpperCAmelCase : str = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCAmelCase : str = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] UpperCAmelCase : Optional[int] = np.concatenate(UpperCAmelCase_ , axis=0 ) UpperCAmelCase : List[Any] = np.array(UpperCAmelCase_ ).astype(np.floataa ) / 255.0 UpperCAmelCase : Any = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : Any = 2.0 * image - 1.0 UpperCAmelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase : List[Any] = torch.cat(UpperCAmelCase_ , dim=0 ) return image def UpperCamelCase( UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , torch.Tensor ): return mask elif isinstance(UpperCAmelCase_ , PIL.Image.Image ): UpperCAmelCase : List[str] = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : List[Any] = mask[0].size UpperCAmelCase , UpperCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase : Tuple = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] UpperCAmelCase : Optional[int] = np.concatenate(UpperCAmelCase_ , axis=0 ) UpperCAmelCase : Any = mask.astype(np.floataa ) / 255.0 UpperCAmelCase : str = 0 UpperCAmelCase : Dict = 1 UpperCAmelCase : Optional[Any] = torch.from_numpy(UpperCAmelCase_ ) elif isinstance(mask[0] , torch.Tensor ): UpperCAmelCase : List[str] = torch.cat(UpperCAmelCase_ , dim=0 ) return mask class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : UNetaDModel UpperCAmelCase_ : RePaintScheduler def __init__( self : List[str] , lowercase_ : List[str] , lowercase_ : Tuple ) -> Tuple: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : Union[torch.Tensor, PIL.Image.Image] , lowercase_ : Union[torch.Tensor, PIL.Image.Image] , lowercase_ : int = 250 , lowercase_ : float = 0.0 , lowercase_ : int = 10 , lowercase_ : int = 10 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : Dict = image UpperCAmelCase : Optional[int] = _preprocess_image(lowercase_ ) UpperCAmelCase : Optional[Any] = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : Optional[Any] = _preprocess_mask(lowercase_ ) UpperCAmelCase : List[str] = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : Any = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase : List[str] = original_image.shape UpperCAmelCase : str = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowercase_ , lowercase_ , lowercase_ , self.device ) UpperCAmelCase : Tuple = eta UpperCAmelCase : Optional[int] = self.scheduler.timesteps[0] + 1 UpperCAmelCase : List[Any] = generator[0] if isinstance(lowercase_ , lowercase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCAmelCase : str = self.unet(lowercase_ , lowercase_ ).sample # compute previous image: x_t -> x_t-1 UpperCAmelCase : Dict = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCAmelCase : int = self.scheduler.undo_step(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = t UpperCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
151
0
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _snake_case (__SCREAMING_SNAKE_CASE): __A : torch.FloatTensor __A : Optional[torch.FloatTensor] =None def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ) -> List[str]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase_ : Any = [] for i in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[Any] = i / num_diffusion_timesteps UpperCAmelCase_ : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __A : List[Any] =1 @register_to_config def __init__( self ,_snake_case = 10_00 ,_snake_case = 0.0001 ,_snake_case = 0.02 ,_snake_case = "linear" ,_snake_case = None ,_snake_case = True ,_snake_case = True ,_snake_case = 0 ,_snake_case = "epsilon" ,_snake_case = 1.0 ,**_snake_case ,): if kwargs.get("set_alpha_to_one" ,_snake_case ) is not None: UpperCAmelCase_ : str = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" ,"1.0.0" ,_snake_case ,standard_warn=_snake_case ) UpperCAmelCase_ : List[str] = kwargs["set_alpha_to_one"] if trained_betas is not None: UpperCAmelCase_ : Union[str, Any] = torch.tensor(_snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ : Union[str, Any] = torch.linspace(_snake_case ,_snake_case ,_snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ : int = betas_for_alpha_bar(_snake_case ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) UpperCAmelCase_ : Optional[int] = 1.0 - self.betas UpperCAmelCase_ : List[str] = torch.cumprod(self.alphas ,dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. UpperCAmelCase_ : Optional[Any] = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution UpperCAmelCase_ : Tuple = 1.0 # setable values UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = torch.from_numpy(np.arange(0 ,_snake_case ).copy().astype(np.intaa ) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): return sample def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) UpperCAmelCase_ : List[Any] = num_inference_steps UpperCAmelCase_ : List[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ : str = (np.arange(0 ,_snake_case ) * step_ratio).round().copy().astype(np.intaa ) UpperCAmelCase_ : str = torch.from_numpy(_snake_case ).to(_snake_case ) self.timesteps += self.config.steps_offset def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case = 0.0 ,_snake_case = False ,_snake_case = None ,_snake_case = True ,): # 1. get previous step value (=t+1) UpperCAmelCase_ : Tuple = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process UpperCAmelCase_ : List[Any] = self.alphas_cumprod[timestep] UpperCAmelCase_ : List[str] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) UpperCAmelCase_ : Tuple = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 UpperCAmelCase_ : Optional[Any] = model_output elif self.config.prediction_type == "sample": UpperCAmelCase_ : Union[str, Any] = model_output UpperCAmelCase_ : Union[str, Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ : Union[str, Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output UpperCAmelCase_ : List[str] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ : List[str] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ : str = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_snake_case ,pred_original_sample=_snake_case ) def __len__( self ): return self.config.num_train_timesteps
67
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a__ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
67
1
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE__ = 1.6021E-19 # units = C def lowerCAmelCase__ ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
150
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) SCREAMING_SNAKE_CASE__ = _symbol_database.Default() SCREAMING_SNAKE_CASE__ = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) SCREAMING_SNAKE_CASE__ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" SCREAMING_SNAKE_CASE__ = 45 SCREAMING_SNAKE_CASE__ = 1_581 SCREAMING_SNAKE_CASE__ = 1_517 SCREAMING_SNAKE_CASE__ = 1_570 SCREAMING_SNAKE_CASE__ = 1_584 SCREAMING_SNAKE_CASE__ = 1_793 SCREAMING_SNAKE_CASE__ = 1_795 SCREAMING_SNAKE_CASE__ = 1_916 SCREAMING_SNAKE_CASE__ = 1_864 SCREAMING_SNAKE_CASE__ = 1_905 SCREAMING_SNAKE_CASE__ = 1_919 SCREAMING_SNAKE_CASE__ = 2_429 SCREAMING_SNAKE_CASE__ = 2_208 SCREAMING_SNAKE_CASE__ = 2_418 SCREAMING_SNAKE_CASE__ = 2_323 SCREAMING_SNAKE_CASE__ = 2_407 # @@protoc_insertion_point(module_scope)
150
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
354
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCAmelCase ( a_: Union[str, Any], a_: Dict ): assert isinstance(__snake_case, __snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True] ) def __UpperCAmelCase ( a_: Dict, a_: Union[str, Any], a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path / "cache" _UpperCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : List[Any] = ParquetDatasetReader(__snake_case, cache_dir=__snake_case, keep_in_memory=__snake_case ).read() _check_parquet_dataset(__snake_case, __snake_case ) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def __UpperCAmelCase ( a_: Tuple, a_: List[str], a_: Any ): _UpperCAmelCase : int = tmp_path / "cache" _UpperCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : Any = features.copy() if features else default_expected_features _UpperCAmelCase : int = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Optional[Any] = ParquetDatasetReader(__snake_case, features=__snake_case, cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case, __snake_case ) @pytest.mark.parametrize("split", [None, NamedSplit("train" ), "train", "test"] ) def __UpperCAmelCase ( a_: Union[str, Any], a_: str, a_: str ): _UpperCAmelCase : Dict = tmp_path / "cache" _UpperCAmelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : str = ParquetDatasetReader(__snake_case, cache_dir=__snake_case, split=__snake_case ).read() _check_parquet_dataset(__snake_case, __snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list] ) def __UpperCAmelCase ( a_: str, a_: Union[str, Any], a_: List[str] ): if issubclass(__snake_case, __snake_case ): _UpperCAmelCase : Optional[Any] = parquet_path elif issubclass(__snake_case, __snake_case ): _UpperCAmelCase : Optional[int] = [parquet_path] _UpperCAmelCase : str = tmp_path / "cache" _UpperCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : Dict = ParquetDatasetReader(__snake_case, cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case, __snake_case ) def __UpperCAmelCase ( a_: Optional[Any], a_: Optional[Any], a_: str=("train",) ): assert isinstance(__snake_case, __snake_case ) for split in splits: _UpperCAmelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True] ) def __UpperCAmelCase ( a_: Tuple, a_: List[Any], a_: List[Any] ): _UpperCAmelCase : Tuple = tmp_path / "cache" _UpperCAmelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Optional[Any] = ParquetDatasetReader( {"train": parquet_path}, cache_dir=__snake_case, keep_in_memory=__snake_case ).read() _check_parquet_datasetdict(__snake_case, __snake_case ) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def __UpperCAmelCase ( a_: List[str], a_: Optional[Any], a_: List[Any] ): _UpperCAmelCase : Optional[Any] = tmp_path / "cache" _UpperCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : str = features.copy() if features else default_expected_features _UpperCAmelCase : List[Any] = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : int = ParquetDatasetReader({"train": parquet_path}, features=__snake_case, cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case, __snake_case ) @pytest.mark.parametrize("split", [None, NamedSplit("train" ), "train", "test"] ) def __UpperCAmelCase ( a_: List[str], a_: List[str], a_: Tuple ): if split: _UpperCAmelCase : int = {split: parquet_path} else: _UpperCAmelCase : Any = "train" _UpperCAmelCase : Optional[Any] = {"train": parquet_path, "test": parquet_path} _UpperCAmelCase : str = tmp_path / "cache" _UpperCAmelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : Optional[Any] = ParquetDatasetReader(__snake_case, cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case, __snake_case, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __UpperCAmelCase ( a_: List[Any], a_: Dict ): _UpperCAmelCase : Dict = ParquetDatasetWriter(__snake_case, tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase : int = pq.ParquetFile(tmp_path / "foo.parquet" ) _UpperCAmelCase : Optional[Any] = pf.read() assert dataset.data.table == output_table def __UpperCAmelCase ( a_: Tuple, a_: int ): _UpperCAmelCase : Optional[Any] = str(shared_datadir / "test_image_rgb.jpg" ) _UpperCAmelCase : Tuple = {"image": [image_path]} _UpperCAmelCase : List[str] = Features({"image": Image()} ) _UpperCAmelCase : Any = Dataset.from_dict(__snake_case, features=__snake_case ) _UpperCAmelCase : Union[str, Any] = ParquetDatasetWriter(__snake_case, tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase : int = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _UpperCAmelCase : str = ParquetDatasetReader(str(tmp_path / "foo.parquet" ), streaming=__snake_case ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected", [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ], ) def __UpperCAmelCase ( a_: Dict, a_: Optional[int] ): assert get_writer_batch_size(__snake_case ) == expected
145
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _UpperCAmelCase ( self ) -> str: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__UpperCAmelCase , ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
153
0
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCAmelCase__ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": lowerCAmelCase__ = '''hopper-medium-v2''' lowerCAmelCase__ = gym.make(env_name) lowerCAmelCase__ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) lowerCAmelCase__ = env.reset() lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 1000 lowerCAmelCase__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCAmelCase__ = pipeline(obs, planning_horizon=32) # execute action in environment lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = env.step(denorm_actions) lowerCAmelCase__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) lowerCAmelCase__ = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
104
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") UpperCamelCase_ = parser.parse_args() if args.model_type == "bert": UpperCamelCase_ = BertForMaskedLM.from_pretrained(args.model_name) UpperCamelCase_ = "bert" else: raise ValueError("args.model_type should be \"bert\".") UpperCamelCase_ = model.state_dict() UpperCamelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCamelCase_ = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: UpperCamelCase_ = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] UpperCamelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 UpperCamelCase_ = state_dict["cls.predictions.decoder.weight"] UpperCamelCase_ = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase_ = state_dict[F"""cls.predictions.transform.dense.{w}"""] UpperCamelCase_ = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
251
0
"""simple docstring""" import os from collections.abc import Iterator def a__ ( __SCREAMING_SNAKE_CASE = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).lstrip("./" ) def a__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: return F"{i * ' '}*" if i else "\n##" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: Any = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(__SCREAMING_SNAKE_CASE )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def a__ ( __SCREAMING_SNAKE_CASE = "." ) -> None: __lowerCAmelCase: int = "" for filepath in sorted(good_file_paths(__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase , __lowerCAmelCase: int = os.path.split(__SCREAMING_SNAKE_CASE ) if filepath != old_path: __lowerCAmelCase: Tuple = print_path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = (filepath.count(os.sep ) + 1) if filepath else 0 __lowerCAmelCase: Optional[int] = F"{filepath}/{filename}".replace(" " , "%20" ) __lowerCAmelCase: Tuple = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(F"{md_prefix(__SCREAMING_SNAKE_CASE )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(".")
108
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path __A = "src/transformers" # Matches is_xxx_available() __A = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} __A = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available __A = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") __A = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", __A = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], __A = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo __A = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: __A = re.compile(r"^\s*try:") # Catches a line with else: __A = re.compile(r"^\s*else:") def a__ ( __SCREAMING_SNAKE_CASE ) -> Any: if _re_test_backend.search(__SCREAMING_SNAKE_CASE ) is None: return None __lowerCAmelCase: Union[str, Any] = [b[0] for b in _re_backend.findall(__SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(__SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE ) -> int: with open(__SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase: Optional[int] = f.readlines() __lowerCAmelCase: Dict = 0 while line_index < len(__SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowerCAmelCase: Optional[Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: __lowerCAmelCase: Optional[int] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ).groups()[0] __lowerCAmelCase: List[Any] = re.findall("\[([^\]]+)\]" , __SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue __lowerCAmelCase: str = _re_import_struct_key_value.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowerCAmelCase: str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 __lowerCAmelCase: Tuple = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. __lowerCAmelCase: Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCAmelCase: Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCAmelCase: Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): __lowerCAmelCase: Optional[Any] = lines[line_index] if _re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ) is not None: __lowerCAmelCase: Union[str, Any] = _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) __lowerCAmelCase: int = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(__SCREAMING_SNAKE_CASE ) is not None: __lowerCAmelCase: Tuple = _re_between_brackets.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) __lowerCAmelCase: Tuple = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 __lowerCAmelCase: Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowerCAmelCase: str = [] while ( line_index < len(__SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): __lowerCAmelCase: List[Any] = lines[line_index] __lowerCAmelCase: Tuple = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowerCAmelCase: Any = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowerCAmelCase: Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCAmelCase: Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCAmelCase: List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): __lowerCAmelCase: Optional[int] = lines[line_index] __lowerCAmelCase: Any = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 __lowerCAmelCase: Union[str, Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: def find_duplicates(__SCREAMING_SNAKE_CASE ): return [k for k, v in collections.Counter(__SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowerCAmelCase: Optional[int] = [] for key in import_dict_objects.keys(): __lowerCAmelCase: Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) __lowerCAmelCase: Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowerCAmelCase: Union[str, Any] = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def a__ ( ) -> Tuple: __lowerCAmelCase: Optional[Any] = [] for root, _, files in os.walk(__SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowerCAmelCase: List[str] = os.path.join(__SCREAMING_SNAKE_CASE , "__init__.py" ) __lowerCAmelCase: int = parse_init(__SCREAMING_SNAKE_CASE ) if objects is not None: __lowerCAmelCase: Optional[Any] = analyze_results(*__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase: Union[str, Any] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError("\n\n".join(__SCREAMING_SNAKE_CASE ) ) def a__ ( ) -> Any: __lowerCAmelCase: Optional[int] = [] for path, directories, files in os.walk(__SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__SCREAMING_SNAKE_CASE ) / folder).glob("*.py" ) ) ) == 0: continue __lowerCAmelCase: Optional[int] = str((Path(__SCREAMING_SNAKE_CASE ) / folder).relative_to(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = short_path.replace(os.path.sep , "." ) submodules.append(__SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowerCAmelCase: Dict = str((Path(__SCREAMING_SNAKE_CASE ) / fname).relative_to(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Dict = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__SCREAMING_SNAKE_CASE ) return submodules __A = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def a__ ( ) -> Optional[int]: # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase: Optional[Any] = importlib.util.spec_from_file_location( "transformers" , os.path.join(__SCREAMING_SNAKE_CASE , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowerCAmelCase: Optional[int] = spec.loader.load_module() __lowerCAmelCase: str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase: Optional[int] = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
108
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a__: Union[str, Any] = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: List[Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Optional[int] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys a__: Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
193
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Optional[int]: __a = parent __a = 1_3 __a = 7 __a = True __a = True __a = True __a = True __a = 9_9 __a = 3_8_4 __a = 2 __a = 4 __a = 3_7 __a = 'gelu' __a = 0.1 __a = 0.1 __a = 5_1_2 __a = 1_6 __a = 2 __a = 0.02 __a = 3 __a = 4 __a = 1_2_8 __a = 2 __a = 9 __a = 1 __a = None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: __a = TFConvBertModel(config=UpperCAmelCase ) __a = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __a = [input_ids, input_mask] __a = model(UpperCAmelCase ) __a = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: __a = TFConvBertForMaskedLM(config=UpperCAmelCase ) __a = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __a = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: __a = self.num_labels __a = TFConvBertForSequenceClassification(config=UpperCAmelCase ) __a = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __a = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: __a = self.num_choices __a = TFConvBertForMultipleChoice(config=UpperCAmelCase ) __a = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __a = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __a = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: __a = self.num_labels __a = TFConvBertForTokenClassification(config=UpperCAmelCase ) __a = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __a = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: __a = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) __a = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __a = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a__ ( __snake_case , __snake_case , unittest.TestCase ): A__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A__ : Dict = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A__ : Optional[int] = False A__ : Dict = False A__ : Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = TFConvBertModelTester(self ) __a = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True __a = True if hasattr(UpperCAmelCase , 'use_cache' ): __a = True __a = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __a = getattr(self.model_tester , 'key_length' , UpperCAmelCase ) for model_class in self.all_model_classes: __a = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __a = model_class(UpperCAmelCase ) __a = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) __a = os.path.join(UpperCAmelCase , 'saved_model' , '1' ) __a = tf.keras.models.load_model(UpperCAmelCase ) __a = model(UpperCAmelCase ) if self.is_encoder_decoder: __a = outputs['encoder_hidden_states'] __a = outputs['encoder_attentions'] else: __a = outputs['hidden_states'] __a = outputs['attentions'] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) __a = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True __a = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __a = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __a = getattr(self.model_tester , 'key_length' , UpperCAmelCase ) __a = getattr(self.model_tester , 'key_length' , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase ): __a = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __a = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase ): __a = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __a = True __a = False __a = model_class(UpperCAmelCase ) __a = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __a = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: __a = model_class(UpperCAmelCase ) __a = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __a = True __a = model_class(UpperCAmelCase ) __a = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine __a = True __a = True __a = model_class(UpperCAmelCase ) __a = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class a__ ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __a = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a = model(UpperCAmelCase )[0] __a = [1, 6, 7_6_8] self.assertEqual(output.shape , UpperCAmelCase ) __a = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
197
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class a__ ( __snake_case ): def __init__( self , **UpperCAmelCase ) -> List[str]: super().__init__(**UpperCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type(UpperCAmelCase ) def __call__( self , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Tuple: if "text_queries" in kwargs: __a = kwargs.pop('text_queries' ) if isinstance(UpperCAmelCase , (str, Image.Image) ): __a = {'image': image, 'candidate_labels': candidate_labels} else: __a = image __a = super().__call__(UpperCAmelCase , **UpperCAmelCase ) return results def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> List[str]: __a = {} if "threshold" in kwargs: __a = kwargs['threshold'] if "top_k" in kwargs: __a = kwargs['top_k'] return {}, {}, postprocess_params def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Union[str, Any]: __a = load_image(inputs['image'] ) __a = inputs['candidate_labels'] if isinstance(UpperCAmelCase , UpperCAmelCase ): __a = candidate_labels.split(',' ) __a = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCAmelCase ): __a = self.tokenizer(UpperCAmelCase , return_tensors=self.framework ) __a = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> str: __a = model_inputs.pop('target_size' ) __a = model_inputs.pop('candidate_label' ) __a = model_inputs.pop('is_last' ) __a = self.model(**UpperCAmelCase ) __a = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=0.1 , UpperCAmelCase=None ) -> Tuple: __a = [] for model_output in model_outputs: __a = model_output['candidate_label'] __a = BaseModelOutput(UpperCAmelCase ) __a = self.image_processor.post_process_object_detection( outputs=UpperCAmelCase , threshold=UpperCAmelCase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): __a = outputs['scores'][index].item() __a = self._get_bounding_box(outputs['boxes'][index][0] ) __a = {'score': score, 'label': label, 'box': box} results.append(UpperCAmelCase ) __a = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x["score"] , reverse=UpperCAmelCase ) if top_k: __a = results[:top_k] return results def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) __a , __a , __a , __a = box.int().tolist() __a = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
197
1
"""simple docstring""" from collections.abc import Generator from math import sin def snake_case_ ( A_ : bytes ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) != 32: raise ValueError('''Input must be of length 32''' ) _lowerCamelCase : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case_ ( A_ : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) _lowerCamelCase : Optional[int] = format(SCREAMING_SNAKE_CASE__, '''08x''' )[-8:] _lowerCamelCase : List[Any] = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def snake_case_ ( A_ : bytes ): '''simple docstring''' _lowerCamelCase : Dict = b'' for char in message: bit_string += format(SCREAMING_SNAKE_CASE__, '''08b''' ).encode('''utf-8''' ) _lowerCamelCase : Dict = format(len(SCREAMING_SNAKE_CASE__ ), '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(SCREAMING_SNAKE_CASE__ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case_ ( A_ : bytes ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) % 5_12 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0, len(SCREAMING_SNAKE_CASE__ ), 5_12 ): _lowerCamelCase : str = bit_string[pos : pos + 5_12] _lowerCamelCase : Tuple = [] for i in range(0, 5_12, 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) ) yield block_words def snake_case_ ( A_ : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) _lowerCamelCase : List[str] = format(SCREAMING_SNAKE_CASE__, '''032b''' ) _lowerCamelCase : List[str] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(SCREAMING_SNAKE_CASE__, 2 ) def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' return (a + b) % 2**32 def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case_ ( A_ : bytes ): '''simple docstring''' _lowerCamelCase : int = preprocess(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Dict = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _lowerCamelCase : str = 0x67452301 _lowerCamelCase : Union[str, Any] = 0xEFCDAB89 _lowerCamelCase : List[str] = 0x98BADCFE _lowerCamelCase : int = 0x10325476 _lowerCamelCase : Optional[int] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : Union[str, Any] = aa _lowerCamelCase : List[Any] = ba _lowerCamelCase : Dict = ca _lowerCamelCase : List[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _lowerCamelCase : Optional[Any] = d ^ (b & (c ^ d)) _lowerCamelCase : Dict = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) _lowerCamelCase : List[str] = (5 * i + 1) % 16 elif i <= 47: _lowerCamelCase : str = b ^ c ^ d _lowerCamelCase : int = (3 * i + 5) % 16 else: _lowerCamelCase : Optional[Any] = c ^ (b | not_aa(SCREAMING_SNAKE_CASE__ )) _lowerCamelCase : Dict = (7 * i) % 16 _lowerCamelCase : Any = (f + a + added_consts[i] + block_words[g]) % 2**32 _lowerCamelCase : str = d _lowerCamelCase : Any = c _lowerCamelCase : Union[str, Any] = b _lowerCamelCase : Dict = sum_aa(SCREAMING_SNAKE_CASE__, left_rotate_aa(SCREAMING_SNAKE_CASE__, shift_amounts[i] ) ) # Add hashed chunk to running total _lowerCamelCase : Optional[Any] = sum_aa(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[str] = sum_aa(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[int] = sum_aa(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[str] = sum_aa(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[Any] = reformat_hex(SCREAMING_SNAKE_CASE__ ) + reformat_hex(SCREAMING_SNAKE_CASE__ ) + reformat_hex(SCREAMING_SNAKE_CASE__ ) + reformat_hex(SCREAMING_SNAKE_CASE__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
72
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = '▁' lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Tuple =BigBirdTokenizer UpperCamelCase__ : Union[str, Any] =BigBirdTokenizerFast UpperCamelCase__ : Any =True UpperCamelCase__ : Optional[Any] =True def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().setUp() _lowerCamelCase : List[Any] =self.tokenizer_class(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _lowerCamelCase : List[Any] ='<s>' _lowerCamelCase : Optional[Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[int] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(lowercase_ ) , 1004 ) def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Union[str, Any] =self.get_tokenizer() _lowerCamelCase : int =self.get_rust_tokenizer() _lowerCamelCase : int ='I was born in 92000, and this is falsé.' _lowerCamelCase : int =tokenizer.tokenize(lowercase_ ) _lowerCamelCase : List[Any] =rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Any =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _lowerCamelCase : str =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : str =self.get_rust_tokenizer() _lowerCamelCase : Union[str, Any] =tokenizer.encode(lowercase_ ) _lowerCamelCase : List[Any] =rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : str =BigBirdTokenizer(lowercase_ , keep_accents=lowercase_ ) _lowerCamelCase : int =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [285, 46, 10, 170, 382] , ) _lowerCamelCase : Optional[Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Any =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCamelCase : Optional[int] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] ='Hello World!' _lowerCamelCase : Tuple =[65, 1_8536, 2260, 101, 66] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : int =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off _lowerCamelCase : Tuple =[65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowerCamelCase : Union[str, Any] =list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCamelCase : List[Any] =' '.join(lowercase_ ) _lowerCamelCase : List[str] =self.big_tokenizer.encode_plus(lowercase_ , return_tensors='pt' , return_token_type_ids=lowercase_ ) _lowerCamelCase : Optional[int] =self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=lowercase_ ) _lowerCamelCase : List[str] =BigBirdConfig(attention_type='original_full' ) _lowerCamelCase : Optional[Any] =BigBirdModel(lowercase_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Dict =BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) _lowerCamelCase : int =tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] ={'input_ids': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
199
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple=13 , __lowerCAmelCase : Optional[Any]=7 , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=33 , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : Optional[Any]=5 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : List[Any]=37 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : List[Any]=5_12 , __lowerCAmelCase : Dict=16 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Tuple=None , ) -> int: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : Optional[int] ) -> str: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a_ ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" A__ = EsmModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ) -> str: """simple docstring""" A__ = EsmForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ) -> Any: """simple docstring""" A__ = self.num_labels A__ = EsmForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : Any ) -> Dict: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = False __lowerCamelCase : Union[str, Any] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase : List[Any] = () __lowerCamelCase : Optional[int] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Any = True def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = EsmModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def a_ ( self : Any ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def a_ ( self : Optional[int] ) -> int: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = EsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs()[0] A__ = EsmEmbeddings(config=__lowerCAmelCase ) A__ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) A__ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) A__ = create_position_ids_from_input_ids(__lowerCAmelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCAmelCase , __lowerCAmelCase ) ) ) def a_ ( self : List[Any] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs()[0] A__ = EsmEmbeddings(config=__lowerCAmelCase ) A__ = torch.empty(2 , 4 , 30 ) A__ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] A__ = torch.as_tensor([expected_single_positions, expected_single_positions] ) A__ = embeddings.create_position_ids_from_inputs_embeds(__lowerCAmelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCAmelCase , __lowerCAmelCase ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a_ ( self : List[Any] ) -> Dict: """simple docstring""" pass @require_torch class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def a_ ( self : int ) -> Optional[int]: """simple docstring""" with torch.no_grad(): A__ = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A__ = model(__lowerCAmelCase )[0] A__ = 33 A__ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __lowerCAmelCase ) A__ = torch.tensor( [[[8.9_2_1_5, -1_0.5_8_9_8, -6.4_6_7_1], [-6.3_9_6_7, -1_3.9_1_1_4, -1.1_2_1_2], [-7.7_8_1_2, -1_3.9_5_1_6, -3.7_4_0_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def a_ ( self : List[str] ) -> Tuple: """simple docstring""" with torch.no_grad(): A__ = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A__ = model(__lowerCAmelCase )[0] # compare the actual values for a slice. A__ = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) )
276
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class A : '''simple docstring''' __lowerCamelCase : Optional[Any] = BlenderbotSmallConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : List[Any] = '''gelu''' def __init__( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str]=13 , __lowerCAmelCase : List[Any]=7 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Union[str, Any]=99 , __lowerCAmelCase : Union[str, Any]=32 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : List[str]=20 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : int=0 , ) -> Any: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def a_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_small_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def a_ ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" A__ = TFBlenderbotSmallModel(config=__lowerCAmelCase ).get_decoder() A__ = inputs_dict["""input_ids"""] A__ = input_ids[:1, :] A__ = inputs_dict["""attention_mask"""][:1, :] A__ = inputs_dict["""head_mask"""] A__ = 1 # first forward pass A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , head_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) def __lowerCamelCase ( __a :Dict , __a :Tuple , __a :List[Any] , __a :List[str]=None , __a :List[Any]=None , __a :Optional[Any]=None , __a :List[str]=None , __a :int=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: A__ = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __lowerCamelCase : List[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Tuple = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Dict = True __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Tuple = False def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = TFBlenderbotSmallModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase ) def a_ ( self : List[str] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCAmelCase ) @require_tokenizers @require_tf class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] __lowerCamelCase : Optional[int] = '''facebook/blenderbot_small-90M''' @cached_property def a_ ( self : Optional[int] ) -> List[str]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def a_ ( self : List[str] ) -> List[str]: """simple docstring""" A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a_ ( self : int ) -> Optional[Any]: """simple docstring""" A__ = self.tokenizer(self.src_text , return_tensors="""tf""" ) A__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCAmelCase , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
276
1
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase__ = TypeVar("T") UpperCAmelCase__ = Union[List[T], Tuple[T, ...]] UpperCAmelCase__ = Union[T, List[T], Dict[str, T]] UpperCAmelCase__ = Union[str, bytes, os.PathLike]
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def __A ( self : int ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE_ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) SCREAMING_SNAKE_CASE_ = CLIPTextModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __A ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=0 ) -> Dict: if str(__magic_name__ ).startswith("mps" ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __A ( self : str ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __A ( self : Optional[Any] ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __A ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE_ = RobertaSeriesModelWithTransformation(__magic_name__ ) SCREAMING_SNAKE_CASE_ = text_encoder SCREAMING_SNAKE_CASE_ = AltDiffusionPipeline(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A photo of an astronaut" SCREAMING_SNAKE_CASE_ = alt_pipe(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=__magic_name__ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE_ = RobertaSeriesModelWithTransformation(__magic_name__ ) SCREAMING_SNAKE_CASE_ = text_encoder SCREAMING_SNAKE_CASE_ = AltDiffusionPipeline(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Union[str, Any] ) -> List[Any]: # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) SCREAMING_SNAKE_CASE_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=__magic_name__ , safety_checker=__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe([prompt] , generator=__magic_name__ , num_inference_steps=2 , output_type="numpy" ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
305
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
305
1
import enum import shutil import sys A , A : Dict = shutil.get_terminal_size() A : str = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class __A( enum.Enum ): snake_case_ = 0 snake_case_ = 1 def __lowerCAmelCase ( a__ , a__="" ) -> Optional[int]: sys.stdout.write(str(a__ ) + end ) sys.stdout.flush() def __lowerCAmelCase ( a__ , a__ , a__="" ) -> Dict: forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , a__ ) def __lowerCAmelCase ( ) -> Any: forceWrite('''\r''' ) def __lowerCAmelCase ( a__ , a__ ) -> Any: forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def __lowerCAmelCase ( ) -> int: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __lowerCAmelCase ( ) -> Dict: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
6
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def UpperCAmelCase_ (self ): UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ (self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = TFViTModel(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase__ = self.image_size // 2 UpperCamelCase__ = pixel_values[:, :, :image_size, :image_size] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase__ = self.image_size // 2 UpperCamelCase__ = pixel_values[:, :, :image_size, :image_size] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ (self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""tf""" ) # forward pass UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 )
244
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(a ) lowerCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(a ) lowerCAmelCase__ : Optional[Any] = tokenizer('This is me' , return_tensors='pt' ) lowerCAmelCase__ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCAmelCase__ : str = model.generate(**a ) lowerCAmelCase__ : Tuple = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : int = AutoModelForSeqaSeqLM.from_pretrained(a ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCAmelCase__ : List[str] = model_reloaded.generate(**a ) self.assertTrue(torch.allclose(a , a ) ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ : int = AutoModelForSeqaSeqLM.from_pretrained(a ) lowerCAmelCase__ : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(a ): model.save_pretrained(a ) lowerCAmelCase__ : str = model.reverse_bettertransformer() model.save_pretrained(a )
362
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __A : Optional[int] = logging.get_logger(__name__) __A : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Any = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } __A : Tuple = {"mobilebert-uncased": 512} __A : int = {} class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = MobileBertTokenizer def __init__( self : str , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : str=None , __UpperCamelCase : Tuple=True , __UpperCamelCase : Optional[int]="[UNK]" , __UpperCamelCase : List[str]="[SEP]" , __UpperCamelCase : Optional[int]="[PAD]" , __UpperCamelCase : Any="[CLS]" , __UpperCamelCase : str="[MASK]" , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Tuple=None , **__UpperCamelCase : Union[str, Any] , )->Union[str, Any]: super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCamelCase ) != tokenize_chinese_chars ): _UpperCAmelCase = getattr(__UpperCamelCase , normalizer_state.pop('''type''' ) ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = tokenize_chinese_chars _UpperCAmelCase = normalizer_class(**__UpperCamelCase ) _UpperCAmelCase = do_lower_case def lowercase__ ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any=None )->Any: _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Tuple , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]: _UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
260
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : List[str] = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """poolformer""" def __init__( self : List[str] , __UpperCamelCase : int=3 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : str=1_6 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : int=4.0 , __UpperCamelCase : str=[2, 2, 6, 2] , __UpperCamelCase : Tuple=[6_4, 1_2_8, 3_2_0, 5_1_2] , __UpperCamelCase : int=[7, 3, 3, 3] , __UpperCamelCase : str=[4, 2, 2, 2] , __UpperCamelCase : Union[str, Any]=[2, 1, 1, 1] , __UpperCamelCase : List[str]=4 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : List[str]=True , __UpperCamelCase : Union[str, Any]=1e-5 , __UpperCamelCase : str=0.0_2 , **__UpperCamelCase : List[Any] , )->Dict: _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = stride _UpperCAmelCase = padding _UpperCAmelCase = pool_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = mlp_ratio _UpperCAmelCase = depths _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = num_encoder_blocks _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_layer_scale _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = initializer_range super().__init__(**__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = version.parse("""1.11""") @property def lowercase__ ( self : Union[str, Any] )->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Tuple )->float: return 2e-3
260
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a : Optional[int] = random.Random() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=1.0, __UpperCAmelCase=None, __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' if rng is None: snake_case_ = global_rng snake_case_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a ( unittest.TestCase ): def __init__( self : Any , lowercase_ : int , lowercase_ : List[str]=7 , lowercase_ : List[str]=400 , lowercase_ : str=2000 , lowercase_ : Any=1 , lowercase_ : List[Any]=0.0 , lowercase_ : Any=1_6000 , lowercase_ : int=True , lowercase_ : List[str]=True , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = min_seq_length snake_case_ = max_seq_length snake_case_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ = feature_size snake_case_ = padding_value snake_case_ = sampling_rate snake_case_ = return_attention_mask snake_case_ = do_normalize def A_ ( self : Dict ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A_ ( self : Any , lowercase_ : Tuple=False , lowercase_ : Dict=False ): def _flatten(lowercase_ : Dict ): return list(itertools.chain(*lowercase_ ) ) if equal_length: snake_case_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = WavaVecaFeatureExtractor def A_ ( self : Tuple ): snake_case_ = WavaVecaFeatureExtractionTester(self ) def A_ ( self : Tuple , lowercase_ : Optional[int] ): self.assertTrue(np.all(np.mean(lowercase_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0 ) - 1 ) < 1e-3 ) ) def A_ ( self : Optional[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input snake_case_ = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values snake_case_ = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test batched snake_case_ = feat_extract(lowercase_ , return_tensors='''np''' ).input_values snake_case_ = feat_extract(lowercase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case_ = np.asarray(lowercase_ ) snake_case_ = feat_extract(lowercase_ , return_tensors='''np''' ).input_values snake_case_ = feat_extract(lowercase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def A_ ( self : Tuple ): snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case_ = [None, 1600, None] for max_length, padding in zip(lowercase_ , lowercase_ ): snake_case_ = feat_extract(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors='''np''' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def A_ ( self : Dict ): snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = range(800 , 1400 , 200 ) snake_case_ = [floats_list((1, x) )[0] for x in lengths] snake_case_ = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case_ = [None, 1600, None] for max_length, padding in zip(lowercase_ , lowercase_ ): snake_case_ = feat_extract(lowercase_ , max_length=lowercase_ , padding=lowercase_ ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def A_ ( self : List[str] ): snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ = feat_extract( lowercase_ , truncation=lowercase_ , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def A_ ( self : Dict ): snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ = feat_extract( lowercase_ , truncation=lowercase_ , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) snake_case_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ = feat_extract( lowercase_ , truncation=lowercase_ , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def A_ ( self : List[Any] ): import torch snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = np.random.rand(100 ).astype(np.floataa ) snake_case_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case_ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def A_ ( self : str ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case_ = WavaVecaConfig.from_pretrained(lowercase_ ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
72
'''simple docstring''' a : Dict = 6_5521 def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = 1 snake_case_ = 0 for plain_chr in plain_text: snake_case_ = (a + ord(__UpperCAmelCase )) % MOD_ADLER snake_case_ = (b + a) % MOD_ADLER return (b << 16) | a
72
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""CLIPFeatureExtractor"""] lowerCamelCase__ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): UpperCamelCase_ , UpperCamelCase_ = coefficient_matrix.shape UpperCamelCase_ , UpperCamelCase_ = constant_matrix.shape if rowsa != colsa: UpperCamelCase_ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase) if colsa != 1: UpperCamelCase_ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase) if rowsa != rowsa: UpperCamelCase_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase) if len(_lowerCAmelCase) != rowsa: UpperCamelCase_ = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(_lowerCAmelCase)} and {rowsa}""" ) raise ValueError(_lowerCAmelCase) if iterations <= 0: raise ValueError("Iterations must be at least 1") UpperCamelCase_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1) UpperCamelCase_ , UpperCamelCase_ = table.shape strictly_diagonally_dominant(_lowerCAmelCase) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase): UpperCamelCase_ = [] for row in range(_lowerCAmelCase): UpperCamelCase_ = 0 for col in range(_lowerCAmelCase): if col == row: UpperCamelCase_ = table[row][col] elif col == cols - 1: UpperCamelCase_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase_ = (temp + val) / denom new_val.append(_lowerCAmelCase) UpperCamelCase_ = new_val return [float(_lowerCAmelCase) for i in new_val] def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = table.shape UpperCamelCase_ = True for i in range(0 , _lowerCAmelCase): UpperCamelCase_ = 0 for j in range(0 , cols - 1): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant") return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
128
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' if is_torch_version('''<''', '''2.0.0''' ) or not hasattr(UpperCamelCase__, '''_dynamo''' ): return False return isinstance(UpperCamelCase__, torch._dynamo.eval_frame.OptimizedModule ) def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : bool = True ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =(torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE__ : Any =is_compiled_module(UpperCamelCase__ ) if is_compiled: SCREAMING_SNAKE_CASE__ : Dict =model SCREAMING_SNAKE_CASE__ : Dict =model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE__ : Optional[Any] =getattr(UpperCamelCase__, '''forward''' ) SCREAMING_SNAKE_CASE__ : List[Any] =model.__dict__.pop('''_original_forward''', UpperCamelCase__ ) if original_forward is not None: while hasattr(UpperCamelCase__, '''__wrapped__''' ): SCREAMING_SNAKE_CASE__ : Optional[int] =forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE__ : Optional[Any] =forward if getattr(UpperCamelCase__, '''_converted_to_transformer_engine''', UpperCamelCase__ ): convert_model(UpperCamelCase__, to_transformer_engine=UpperCamelCase__ ) if is_compiled: SCREAMING_SNAKE_CASE__ : Union[str, Any] =model SCREAMING_SNAKE_CASE__ : Tuple =compiled_model return model def _a( ): '''simple docstring''' PartialState().wait_for_everyone() def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : str ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCamelCase__, UpperCamelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCamelCase__, UpperCamelCase__ ) @contextmanager def _a( **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' for key, value in kwargs.items(): SCREAMING_SNAKE_CASE__ : List[Any] =str(UpperCamelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _a( UpperCamelCase__ : Any ): '''simple docstring''' if not hasattr(UpperCamelCase__, '''__qualname__''' ) and not hasattr(UpperCamelCase__, '''__name__''' ): SCREAMING_SNAKE_CASE__ : Optional[int] =getattr(UpperCamelCase__, '''__class__''', UpperCamelCase__ ) if hasattr(UpperCamelCase__, '''__qualname__''' ): return obj.__qualname__ if hasattr(UpperCamelCase__, '''__name__''' ): return obj.__name__ return str(UpperCamelCase__ ) def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : int ): '''simple docstring''' for key, value in source.items(): if isinstance(UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] =destination.setdefault(UpperCamelCase__, {} ) merge_dicts(UpperCamelCase__, UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ : List[str] =value return destination def _a( UpperCamelCase__ : int = None ): '''simple docstring''' if port is None: SCREAMING_SNAKE_CASE__ : Any =2_9_5_0_0 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
356
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""pixel_values"""] def __init__( self : List[str] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 2_55 , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : List[Any] , ) -> None: super().__init__(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =size if size is not None else {'''shortest_edge''': 2_56} SCREAMING_SNAKE_CASE__ : str =get_size_dict(__lowercase , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} SCREAMING_SNAKE_CASE__ : Tuple =get_size_dict(__lowercase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE__ : int =do_resize SCREAMING_SNAKE_CASE__ : Dict =size SCREAMING_SNAKE_CASE__ : List[str] =resample SCREAMING_SNAKE_CASE__ : List[Any] =do_center_crop SCREAMING_SNAKE_CASE__ : str =crop_size SCREAMING_SNAKE_CASE__ : List[str] =do_rescale SCREAMING_SNAKE_CASE__ : Optional[Any] =rescale_factor SCREAMING_SNAKE_CASE__ : List[str] =do_normalize SCREAMING_SNAKE_CASE__ : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Optional[Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : str =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : int , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Optional[Any] , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Tuple ) -> np.ndarray: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Dict , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : List[Any] , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : int , ) -> Dict: SCREAMING_SNAKE_CASE__ : List[Any] =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : int =size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Optional[int] =get_size_dict(__lowercase , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : Optional[Any] =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : List[str] =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : int =get_size_dict(__lowercase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : int =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : List[str] =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Optional[Any] =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Any =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : str =make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : Dict =[to_numpy_array(__lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[Any] =[self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : List[Any] =[self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Tuple =[self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str =[to_channel_dimension_format(__lowercase , __lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Any ={'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : Tuple , __lowercase : List[Tuple] = None ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[int] =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowercase ) != len(__lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__lowercase ): SCREAMING_SNAKE_CASE__ : int =target_sizes.numpy() SCREAMING_SNAKE_CASE__ : List[Any] =[] for idx in range(len(__lowercase ) ): SCREAMING_SNAKE_CASE__ : Any =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Any =logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Optional[int] =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
222
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase (metaclass=UpperCamelCase_ ): lowerCamelCase__ : Any = ['onnx'] def __init__( self : str , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["""onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) -> Any: requires_backends(cls , ["""onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ) -> List[Any]: requires_backends(cls , ["""onnx"""] )
165
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A__ : Union[str, Any] = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(UpperCamelCase_ ) class __snake_case ( UpperCamelCase_ ): _a = '''rag''' _a = True def __init__( self : str , A_ : List[Any]=None , A_ : str=True , A_ : Tuple=None , A_ : Union[str, Any]=None , A_ : List[str]=None , A_ : List[str]=None , A_ : List[Any]=None , A_ : Union[str, Any]=" / " , A_ : Tuple=" // " , A_ : Any=5 , A_ : Optional[Any]=3_0_0 , A_ : Tuple=7_6_8 , A_ : Union[str, Any]=8 , A_ : Dict="wiki_dpr" , A_ : Optional[Any]="train" , A_ : Dict="compressed" , A_ : Optional[int]=None , A_ : List[str]=None , A_ : str=False , A_ : Dict=False , A_ : Dict=0.0 , A_ : List[str]=True , A_ : List[str]=False , A_ : List[Any]=False , A_ : Any=False , A_ : Optional[int]=True , A_ : int=None , **A_ : List[str] , ): super().__init__( bos_token_id=A_ , pad_token_id=A_ , eos_token_id=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , is_encoder_decoder=A_ , prefix=A_ , vocab_size=A_ , **A_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCAmelCase_ : List[str] = kwargs.pop('''question_encoder''') lowerCAmelCase_ : Tuple = question_encoder_config.pop('''model_type''') lowerCAmelCase_ : Tuple = kwargs.pop('''generator''') lowerCAmelCase_ : Dict = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig lowerCAmelCase_ : Union[str, Any] = AutoConfig.for_model(A_ , **A_) lowerCAmelCase_ : int = AutoConfig.for_model(A_ , **A_) lowerCAmelCase_ : List[Any] = reduce_loss lowerCAmelCase_ : Optional[Any] = label_smoothing lowerCAmelCase_ : Union[str, Any] = exclude_bos_score lowerCAmelCase_ : List[Any] = do_marginalize lowerCAmelCase_ : int = title_sep lowerCAmelCase_ : Optional[int] = doc_sep lowerCAmelCase_ : List[str] = n_docs lowerCAmelCase_ : int = max_combined_length lowerCAmelCase_ : Union[str, Any] = dataset lowerCAmelCase_ : int = dataset_split lowerCAmelCase_ : Dict = index_name lowerCAmelCase_ : Union[str, Any] = retrieval_vector_size lowerCAmelCase_ : Optional[Any] = retrieval_batch_size lowerCAmelCase_ : List[str] = passages_path lowerCAmelCase_ : Any = index_path lowerCAmelCase_ : int = use_dummy_dataset lowerCAmelCase_ : Tuple = output_retrieved lowerCAmelCase_ : List[Any] = do_deduplication lowerCAmelCase_ : Union[str, Any] = use_cache if self.forced_eos_token_id is None: lowerCAmelCase_ : List[Any] = getattr(self.generator , '''forced_eos_token_id''' , A_) @classmethod def UpperCAmelCase__ ( cls : str , A_ : PretrainedConfig , A_ : PretrainedConfig , **A_ : Any): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : str = copy.deepcopy(self.__dict__) lowerCAmelCase_ : Tuple = self.question_encoder.to_dict() lowerCAmelCase_ : Dict = self.generator.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
103
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _UpperCAmelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = {} with open(_UpperCAmelCase , 'r' ) as file: for line_number, line in enumerate(_UpperCAmelCase ): lowerCamelCase__ : Dict = line.strip() if line: lowerCamelCase__ : Union[str, Any] = line.split() lowerCamelCase__ : Tuple = line_number lowerCamelCase__ : Dict = words[0] lowerCamelCase__ : Optional[Any] = value return result def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: for attribute in key.split('.' ): lowerCamelCase__ : Tuple = getattr(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCAmelCase ): lowerCamelCase__ : Any = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCamelCase__ : Any = 'param' if weight_type is not None and weight_type != "param": lowerCamelCase__ : Optional[int] = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": lowerCamelCase__ : List[str] = hf_pointer for attribute in hf_param_name.split('.' ): lowerCamelCase__ : Dict = getattr(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = shape_pointer.shape # let's reduce dimension lowerCamelCase__ : str = value[0] else: lowerCamelCase__ : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__ : Tuple = value elif weight_type == "weight_g": lowerCamelCase__ : Tuple = value elif weight_type == "weight_v": lowerCamelCase__ : Union[str, Any] = value elif weight_type == "bias": lowerCamelCase__ : List[str] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): lowerCamelCase__ : List[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = value else: lowerCamelCase__ : Optional[int] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCAmelCase ): lowerCamelCase__ : Tuple = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCamelCase__ : str = 'param' if weight_type is not None and weight_type != "param": lowerCamelCase__ : List[str] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCamelCase__ : Tuple = '.'.join([key, hf_param_name] ) else: lowerCamelCase__ : List[Any] = key lowerCamelCase__ : List[Any] = value if 'lm_head' in full_key else value[0] _UpperCAmelCase : List[Any] = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ) -> Union[str, Any]: lowerCamelCase__ : List[str] = False for key, mapped_key in MAPPING.items(): lowerCamelCase__ : Optional[int] = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCamelCase__ : Optional[int] = True if "*" in mapped_key: lowerCamelCase__ : Optional[Any] = name.split(_UpperCAmelCase )[0].split('.' )[-2] lowerCamelCase__ : Dict = mapped_key.replace('*' , _UpperCAmelCase ) if "weight_g" in name: lowerCamelCase__ : Any = 'weight_g' elif "weight_v" in name: lowerCamelCase__ : str = 'weight_v' elif "bias" in name: lowerCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__ : Union[str, Any] = 'weight' else: lowerCamelCase__ : Union[str, Any] = None if hf_dict is not None: rename_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return is_used return is_used def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ : int = [] lowerCamelCase__ : Optional[Any] = fairseq_model.state_dict() lowerCamelCase__ : Tuple = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowerCamelCase__ : Optional[int] = True else: lowerCamelCase__ : Optional[int] = load_wavaveca_layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Dict = full_name.split('conv_layers.' )[-1] lowerCamelCase__ : Tuple = name.split('.' ) lowerCamelCase__ : Dict = int(items[0] ) lowerCamelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__ : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__ : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCamelCase__ : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__ : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False ) -> Dict: if config_path is not None: lowerCamelCase__ : Dict = WavaVecaConfig.from_pretrained(_UpperCAmelCase ) else: lowerCamelCase__ : Optional[int] = WavaVecaConfig() if is_seq_class: lowerCamelCase__ : Dict = read_txt_into_dict(_UpperCAmelCase ) lowerCamelCase__ : str = idalabel lowerCamelCase__ : Tuple = WavaVecaForSequenceClassification(_UpperCAmelCase ) lowerCamelCase__ : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) feature_extractor.save_pretrained(_UpperCAmelCase ) elif is_finetuned: if dict_path: lowerCamelCase__ : Tuple = Dictionary.load(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__ : int = target_dict.pad_index lowerCamelCase__ : List[Any] = target_dict.bos_index lowerCamelCase__ : List[str] = target_dict.eos_index lowerCamelCase__ : Optional[Any] = len(target_dict.symbols ) lowerCamelCase__ : str = os.path.join(_UpperCAmelCase , 'vocab.json' ) if not os.path.isdir(_UpperCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowerCamelCase__ : Any = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : str = WavaVecaCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCAmelCase , ) lowerCamelCase__ : Dict = True if config.feat_extract_norm == 'layer' else False lowerCamelCase__ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) lowerCamelCase__ : List[Any] = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) lowerCamelCase__ : List[str] = WavaVecaForCTC(_UpperCAmelCase ) else: lowerCamelCase__ : Optional[int] = WavaVecaForPreTraining(_UpperCAmelCase ) if is_finetuned or is_seq_class: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCamelCase__ : Optional[int] = argparse.Namespace(task='audio_pretraining' ) lowerCamelCase__ : Dict = fairseq.tasks.setup_task(_UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_UpperCAmelCase ) lowerCamelCase__ : Dict = model[0].eval() recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Optional[int] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
45
from collections import deque class lowerCAmelCase : def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : int ) -> None: lowerCamelCase__ : Optional[int] = process_name # process name lowerCamelCase__ : Optional[int] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase__ : str = arrival_time lowerCamelCase__ : List[Any] = burst_time # remaining burst time lowerCamelCase__ : Any = 0 # total time of the process wait in ready queue lowerCamelCase__ : Tuple = 0 # time from arrival time to completion time class lowerCAmelCase : def __init__( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : list[int] , UpperCAmelCase : deque[Process] , UpperCAmelCase : int , ) -> None: # total number of mlfq's queues lowerCamelCase__ : Optional[int] = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase__ : List[str] = time_slices # unfinished process is in this ready_queue lowerCamelCase__ : List[str] = queue # current time lowerCamelCase__ : Optional[Any] = current_time # finished process is in this sequence queue lowerCamelCase__ : deque[Process] = deque() def A_ ( self : Tuple ) -> list[str]: lowerCamelCase__ : Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A_ ( self : Tuple , UpperCAmelCase : list[Process] ) -> list[int]: lowerCamelCase__ : Tuple = [] for i in range(len(UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A_ ( self : Union[str, Any] , UpperCAmelCase : list[Process] ) -> list[int]: lowerCamelCase__ : int = [] for i in range(len(UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A_ ( self : Optional[int] , UpperCAmelCase : list[Process] ) -> list[int]: lowerCamelCase__ : Tuple = [] for i in range(len(UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def A_ ( self : str , UpperCAmelCase : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def A_ ( self : int , UpperCAmelCase : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A_ ( self : Optional[int] , UpperCAmelCase : deque[Process] ) -> deque[Process]: lowerCamelCase__ : deque[Process] = deque() # sequence deque of finished process while len(UpperCAmelCase ) != 0: lowerCamelCase__ : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase__ : Optional[int] = 0 # set the process's turnaround time because it is finished lowerCamelCase__ : Union[str, Any] = self.current_time - cp.arrival_time # set the completion time lowerCamelCase__ : Any = self.current_time # add the process to queue that has finished queue finished.append(UpperCAmelCase ) self.finish_queue.extend(UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A_ ( self : str , UpperCAmelCase : deque[Process] , UpperCAmelCase : int ) -> tuple[deque[Process], deque[Process]]: lowerCamelCase__ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCAmelCase ) ): lowerCamelCase__ : Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase__ : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase__ : Any = 0 # set the finish time lowerCamelCase__ : int = self.current_time # update the process' turnaround time because it is finished lowerCamelCase__ : Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCAmelCase ) self.finish_queue.extend(UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A_ ( self : Dict ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase__ , lowerCamelCase__ : Any = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _UpperCAmelCase : List[str] = Process("""P1""", 0, 53) _UpperCAmelCase : Union[str, Any] = Process("""P2""", 0, 17) _UpperCAmelCase : int = Process("""P3""", 0, 68) _UpperCAmelCase : str = Process("""P4""", 0, 24) _UpperCAmelCase : Optional[int] = 3 _UpperCAmelCase : Optional[Any] = [17, 25] _UpperCAmelCase : Optional[int] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) _UpperCAmelCase : Tuple = Process("""P1""", 0, 53) _UpperCAmelCase : Any = Process("""P2""", 0, 17) _UpperCAmelCase : Any = Process("""P3""", 0, 68) _UpperCAmelCase : List[Any] = Process("""P4""", 0, 24) _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Optional[int] = [17, 25] _UpperCAmelCase : Optional[int] = deque([Pa, Pa, Pa, Pa]) _UpperCAmelCase : Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) _UpperCAmelCase : Dict = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
45
1
_lowerCamelCase =[0, 2, 4, 6, 8] _lowerCamelCase =[1, 3, 5, 7, 9] def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowerCamelCase : List[Any] = 0 for digit in range(10 ): lowerCamelCase : Union[str, Any] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, lowerCamelCase, lowerCamelCase ) return result lowerCamelCase : Tuple = 0 for digita in range(10 ): lowerCamelCase : Optional[int] = digita if (remainder + digita) % 2 == 0: lowerCamelCase : str = ODD_DIGITS else: lowerCamelCase : Optional[int] = EVEN_DIGITS for digita in other_parity_digits: lowerCamelCase : List[Any] = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, lowerCamelCase, lowerCamelCase, ) return result def _a ( lowerCamelCase = 9 ): lowerCamelCase : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(lowerCamelCase, 0, [0] * length, lowerCamelCase ) return result if __name__ == "__main__": print(f'''{solution() = }''')
287
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCamelCase : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase : str = model(__magic_name__ )["""last_hidden_state"""] lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. lowerCamelCase : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
287
1
"""simple docstring""" UpperCAmelCase: Optional[Any] = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
336
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : int ,SCREAMING_SNAKE_CASE__ : int = 1_2_8 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : float = 2000.0 ,SCREAMING_SNAKE_CASE__ : int = 7_6_8 ,SCREAMING_SNAKE_CASE__ : int = 1_2 ,SCREAMING_SNAKE_CASE__ : int = 1_2 ,SCREAMING_SNAKE_CASE__ : int = 6_4 ,SCREAMING_SNAKE_CASE__ : int = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,): super().__init__() __lowerCamelCase : Optional[Any] = nn.Sequential( nn.Linear(SCREAMING_SNAKE_CASE__ ,d_model * 4 ,bias=SCREAMING_SNAKE_CASE__) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=SCREAMING_SNAKE_CASE__) ,nn.SiLU() ,) __lowerCamelCase : Tuple = nn.Embedding(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = nn.Dropout(p=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE__): # FiLM conditional T5 decoder __lowerCamelCase : Optional[int] = DecoderLayer(d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__) self.decoders.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = TaLayerNorm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = nn.Dropout(p=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Tuple = torch.mul(query_input.unsqueeze(-1) ,key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase : Dict = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype) __lowerCamelCase : List[Any] = self.conditioning_emb(SCREAMING_SNAKE_CASE__).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase : Any = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase : Tuple = torch.broadcast_to( torch.arange(SCREAMING_SNAKE_CASE__ ,device=decoder_input_tokens.device) ,(batch, seq_length) ,) __lowerCamelCase : Tuple = self.position_encoding(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.continuous_inputs_projection(SCREAMING_SNAKE_CASE__) inputs += position_encodings __lowerCamelCase : str = self.dropout(SCREAMING_SNAKE_CASE__) # decoder: No padding present. __lowerCamelCase : List[str] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase : str = [(x, self.encoder_decoder_mask(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1) __lowerCamelCase : Optional[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1) for lyr in self.decoders: __lowerCamelCase : Tuple = lyr( SCREAMING_SNAKE_CASE__ ,conditioning_emb=SCREAMING_SNAKE_CASE__ ,encoder_hidden_states=SCREAMING_SNAKE_CASE__ ,encoder_attention_mask=SCREAMING_SNAKE_CASE__ ,)[0] __lowerCamelCase : List[str] = self.decoder_norm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.post_dropout(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.spec_out(SCREAMING_SNAKE_CASE__) return spec_out class A_ ( nn.Module ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple=1E-6): super().__init__() __lowerCamelCase : Any = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__)) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ,layer_norm_epsilon=SCREAMING_SNAKE_CASE__ ,)) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ,layer_norm_epsilon=SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : str=None ,): __lowerCamelCase : Any = self.layer[0]( SCREAMING_SNAKE_CASE__ ,conditioning_emb=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,) if encoder_hidden_states is not None: __lowerCamelCase : Tuple = torch.where(encoder_attention_mask > 0 ,0 ,-1E10).to( encoder_hidden_states.dtype) __lowerCamelCase : Any = self.layer[1]( SCREAMING_SNAKE_CASE__ ,key_value_states=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,) # Apply Film Conditional Feed Forward layer __lowerCamelCase : Tuple = self.layer[-1](SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) return (hidden_states,) class A_ ( nn.Module ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): super().__init__() __lowerCamelCase : int = TaLayerNorm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = TaFiLMLayer(in_features=d_model * 4 ,out_features=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = Attention(query_dim=SCREAMING_SNAKE_CASE__ ,heads=SCREAMING_SNAKE_CASE__ ,dim_head=SCREAMING_SNAKE_CASE__ ,out_bias=SCREAMING_SNAKE_CASE__ ,scale_qk=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = nn.Dropout(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,): # pre_self_attention_layer_norm __lowerCamelCase : Dict = self.layer_norm(SCREAMING_SNAKE_CASE__) if conditioning_emb is not None: __lowerCamelCase : int = self.FiLMLayer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # Self-attention block __lowerCamelCase : int = self.attention(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__) return hidden_states class A_ ( nn.Module ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple): super().__init__() __lowerCamelCase : str = Attention(query_dim=SCREAMING_SNAKE_CASE__ ,heads=SCREAMING_SNAKE_CASE__ ,dim_head=SCREAMING_SNAKE_CASE__ ,out_bias=SCREAMING_SNAKE_CASE__ ,scale_qk=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = TaLayerNorm(SCREAMING_SNAKE_CASE__ ,eps=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = nn.Dropout(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,): __lowerCamelCase : str = self.layer_norm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = self.attention( SCREAMING_SNAKE_CASE__ ,encoder_hidden_states=SCREAMING_SNAKE_CASE__ ,attention_mask=attention_mask.squeeze(1) ,) __lowerCamelCase : Optional[int] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__) return layer_output class A_ ( nn.Module ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]): super().__init__() __lowerCamelCase : Union[str, Any] = TaDenseGatedActDense(d_model=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = TaLayerNorm(SCREAMING_SNAKE_CASE__ ,eps=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = nn.Dropout(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Dict=None): __lowerCamelCase : List[Any] = self.layer_norm(SCREAMING_SNAKE_CASE__) if conditioning_emb is not None: __lowerCamelCase : int = self.film(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.DenseReluDense(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__) return hidden_states class A_ ( nn.Module ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int]): super().__init__() __lowerCamelCase : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = nn.Dropout(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = NewGELUActivation() def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : List[Any] = self.act(self.wi_a(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Optional[int] = self.wi_a(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = hidden_gelu * hidden_linear __lowerCamelCase : Tuple = self.dropout(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.wo(SCREAMING_SNAKE_CASE__) return hidden_states class A_ ( nn.Module ): def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-6): super().__init__() __lowerCamelCase : List[Any] = nn.Parameter(torch.ones(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : List[Any] = eps def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : int): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowerCamelCase : List[str] = hidden_states.to(torch.floataa).pow(2).mean(-1 ,keepdim=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase : int = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class A_ ( nn.Module ): def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : torch.Tensor): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(SCREAMING_SNAKE_CASE__ ,3.0)))) class A_ ( nn.Module ): def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple): super().__init__() __lowerCamelCase : List[str] = nn.Linear(SCREAMING_SNAKE_CASE__ ,out_features * 2 ,bias=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : List[Any] = self.scale_bias(SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : str = torch.chunk(SCREAMING_SNAKE_CASE__ ,2 ,-1) __lowerCamelCase : Tuple = x * (1 + scale) + shift return x
73
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Dict = len(lowerCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCamelCase : str = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCamelCase__ ): return None __lowerCamelCase : Tuple = sorted_collection[point] if current_item == item: return point else: if point < left: __lowerCamelCase : List[Any] = left __lowerCamelCase : Tuple = point elif point > right: __lowerCamelCase : Dict = right __lowerCamelCase : str = point else: if item < current_item: __lowerCamelCase : Dict = point - 1 else: __lowerCamelCase : Dict = point + 1 return None def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCamelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) elif point > right: return interpolation_search_by_recursion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , point - 1 ) else: return interpolation_search_by_recursion( lowerCamelCase__ , lowerCamelCase__ , point + 1 , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: if collection != sorted(lowerCamelCase__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys a =0 if debug == 1: a =[10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") a =67 a =interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print("""Not found""")
73
1
"""simple docstring""" from __future__ import annotations def lowercase (SCREAMING_SNAKE_CASE_ : list[int] ) -> bool: return len(set(SCREAMING_SNAKE_CASE_ ) ) == len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" from __future__ import annotations def lowercase (SCREAMING_SNAKE_CASE_ : list[int] ) -> bool: return len(set(SCREAMING_SNAKE_CASE_ ) ) == len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
38
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset snake_case_ : int = "bert-base-cased" snake_case_ : List[Any] = "google/pegasus-xsum" snake_case_ : Optional[Any] = [" Sam ate lunch today.", "Sams lunch ingredients."] snake_case_ : Any = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] snake_case_ : List[str] = "patrickvonplaten/t5-tiny-random" snake_case_ : Tuple = "sshleifer/bart-tiny-random" snake_case_ : List[str] = "sshleifer/tiny-mbart" snake_case_ : List[Any] = "sshleifer/tiny-marian-en-de" def A (__A : Path , __A : list ) -> Tuple: """simple docstring""" UpperCAmelCase_ = '''\n'''.join(__A ) Path(__A ).open('''w''' ).writelines(__A ) def A (__A : str ) -> Union[str, Any]: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(__A , F"""{split}.source""" ) , __A ) _dump_articles(os.path.join(__A , F"""{split}.target""" ) , __A ) return tmp_dir class __snake_case ( a ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowerCamelCase ( self : List[str] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) UpperCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) UpperCAmelCase_ = max(len(tokenizer.encode(_snake_case)) for a in ARTICLES) UpperCAmelCase_ = max(len(tokenizer.encode(_snake_case)) for a in SUMMARIES) UpperCAmelCase_ = 4 UpperCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCAmelCase_ , UpperCAmelCase_ = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. UpperCAmelCase_ = SeqaSeqDataset( _snake_case , data_dir=_snake_case , type_path='''train''' , max_source_length=_snake_case , max_target_length=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case , ) UpperCAmelCase_ = DataLoader(_snake_case , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(_snake_case , _snake_case) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCAmelCase_ = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def lowerCamelCase ( self : Optional[int] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) UpperCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) UpperCAmelCase_ = max(len(tokenizer.encode(_snake_case)) for a in ARTICLES) UpperCAmelCase_ = max(len(tokenizer.encode(_snake_case)) for a in SUMMARIES) UpperCAmelCase_ = 4 UpperCAmelCase_ = LegacySeqaSeqDataset( _snake_case , data_dir=_snake_case , type_path='''train''' , max_source_length=20 , max_target_length=_snake_case , ) UpperCAmelCase_ = DataLoader(_snake_case , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''') UpperCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) UpperCAmelCase_ = tmp_dir.joinpath('''train.source''').open().readlines() UpperCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(_snake_case , _snake_case , 128 , _snake_case) UpperCAmelCase_ = {x.name for x in tmp_dir.iterdir()} UpperCAmelCase_ = {x.name for x in save_dir.iterdir()} UpperCAmelCase_ = save_dir.joinpath('''train.source''').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_snake_case) < len(_snake_case) assert len(_snake_case) == 1 assert len(packed_examples[0]) == sum(len(_snake_case) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''') def lowerCamelCase ( self : List[Any]): """simple docstring""" if not FAIRSEQ_AVAILABLE: return UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self._get_dataset(max_len=64) UpperCAmelCase_ = 64 UpperCAmelCase_ = ds.make_dynamic_sampler(_snake_case , required_batch_size_multiple=_snake_case) UpperCAmelCase_ = [len(_snake_case) for x in batch_sampler] assert len(set(_snake_case)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_snake_case) == len(_snake_case) # no dropped or added examples UpperCAmelCase_ = DataLoader(_snake_case , batch_sampler=_snake_case , collate_fn=ds.collate_fn , num_workers=2) UpperCAmelCase_ = [] UpperCAmelCase_ = [] for batch in data_loader: UpperCAmelCase_ = batch['''input_ids'''].shape UpperCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCAmelCase_ = np.product(batch['''input_ids'''].shape) num_src_per_batch.append(_snake_case) if num_src_tokens > (max_tokens * 1.1): failures.append(_snake_case) assert num_src_per_batch[0] == max(_snake_case) if failures: raise AssertionError(F"""too many tokens in {len(_snake_case)} batches""") def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self._get_dataset(max_len=512) UpperCAmelCase_ = 2 UpperCAmelCase_ = ds.make_sortish_sampler(_snake_case , shuffle=_snake_case) UpperCAmelCase_ = DataLoader(_snake_case , batch_size=_snake_case , collate_fn=ds.collate_fn , num_workers=2) UpperCAmelCase_ = DataLoader(_snake_case , batch_size=_snake_case , collate_fn=ds.collate_fn , num_workers=2 , sampler=_snake_case) UpperCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_snake_case : List[Any] , _snake_case : Tuple="input_ids"): return [batch[k].eq(_snake_case).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_snake_case , k='''labels''')) < sum(count_pad_tokens(_snake_case , k='''labels''')) assert sum(count_pad_tokens(_snake_case)) < sum(count_pad_tokens(_snake_case)) assert len(_snake_case) == len(_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : Dict=1000 , _snake_case : str=128): """simple docstring""" if os.getenv('''USE_REAL_DATA''' , _snake_case): UpperCAmelCase_ = '''examples/seq2seq/wmt_en_ro''' UpperCAmelCase_ = max_len * 2 * 64 if not Path(_snake_case).joinpath('''train.len''').exists(): save_len_file(_snake_case , _snake_case) else: UpperCAmelCase_ = '''examples/seq2seq/test_data/wmt_en_ro''' UpperCAmelCase_ = max_len * 4 save_len_file(_snake_case , _snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) UpperCAmelCase_ = SeqaSeqDataset( _snake_case , data_dir=_snake_case , type_path='''train''' , max_source_length=_snake_case , max_target_length=_snake_case , n_obs=_snake_case , ) return ds, max_tokens, tokenizer def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self._get_dataset() UpperCAmelCase_ = set(DistributedSortishSampler(_snake_case , 256 , num_replicas=2 , rank=0 , add_extra_examples=_snake_case)) UpperCAmelCase_ = set(DistributedSortishSampler(_snake_case , 256 , num_replicas=2 , rank=1 , add_extra_examples=_snake_case)) assert idsa.intersection(_snake_case) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowerCamelCase ( self : List[str] , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , use_fast=_snake_case) if tok_name == MBART_TINY: UpperCAmelCase_ = SeqaSeqDataset( _snake_case , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) UpperCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCAmelCase_ = SeqaSeqDataset( _snake_case , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) UpperCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_snake_case) == 1 if tok_name == BART_TINY else len(_snake_case) == 0
51
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = MgpstrTokenizer lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : Any = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = """tester""" UpperCAmelCase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass
346
0
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 10 , snake_case_ : int = 1000 , snake_case_ : bool = True ): assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ): return int((number_a + number_a) / 2 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int ): assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(snake_case_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) snake_case__ : Union[str, Any] = lower snake_case__ : int = higher snake_case__ : Tuple = [] while True: snake_case__ : Optional[Any] = get_avg(snake_case_ , snake_case_ ) last_numbers.append(snake_case_ ) if answer(snake_case_ ) == "low": snake_case__ : Tuple = number elif answer(snake_case_ ) == "high": snake_case__ : Tuple = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : List[Any] = int(input("Enter lower value : " ).strip() ) snake_case__ : Dict = int(input("Enter high value : " ).strip() ) snake_case__ : Optional[int] = int(input("Enter value to guess : " ).strip() ) guess_the_number(snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": main()
286
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "xmod" def __init__( self : List[str] , __A : List[str]=3_0_5_2_2 , __A : Tuple=7_6_8 , __A : str=1_2 , __A : List[Any]=1_2 , __A : List[str]=3_0_7_2 , __A : List[str]="gelu" , __A : List[Any]=0.1 , __A : Tuple=0.1 , __A : str=5_1_2 , __A : Union[str, Any]=2 , __A : List[Any]=0.0_2 , __A : List[str]=1e-1_2 , __A : Tuple=1 , __A : List[Any]=0 , __A : Optional[Any]=2 , __A : Optional[int]="absolute" , __A : Optional[int]=True , __A : Dict=None , __A : Optional[int]=False , __A : Dict=2 , __A : List[str]=False , __A : Dict=True , __A : Union[str, Any]=True , __A : Tuple=("en_XX",) , __A : Optional[Any]=None , **__A : Tuple , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) snake_case__ : Tuple = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : List[str] = use_cache snake_case__ : Tuple = classifier_dropout snake_case__ : Any = pre_norm snake_case__ : List[str] = adapter_reduction_factor snake_case__ : List[Any] = adapter_layer_norm snake_case__ : str = adapter_reuse_layer_norm snake_case__ : Union[str, Any] = ln_before_adapter snake_case__ : Tuple = list(__A ) snake_case__ : int = default_language class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : int ): if self.task == "multiple-choice": snake_case__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
286
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase__ = '''__DUMMY_TRANSFORMERS_USER__''' lowerCAmelCase__ = '''Dummy User''' lowerCAmelCase__ = '''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''' lowerCAmelCase__ = '''https://hub-ci.huggingface.co''' lowerCAmelCase__ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' lowerCAmelCase__ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' lowerCAmelCase__ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , lowerCamelCase__ ) @pytest.fixture def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" monkeypatch.setattr("datasets.config.HF_ENDPOINT" , lowerCamelCase__ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , lowerCamelCase__ ) @pytest.fixture def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , lowerCamelCase__ ) @pytest.fixture def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" HfFolder.save_token(lowerCamelCase__ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def __lowerCamelCase ( ): """simple docstring""" return HfApi(endpoint=lowerCamelCase__ ) @pytest.fixture(scope="session" ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = HfFolder.get_token() HfFolder.save_token(lowerCamelCase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCamelCase__ ) @pytest.fixture def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" def _cleanup_repo(lowerCamelCase__ ): hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" @contextmanager def _temporary_repo(lowerCamelCase__ ): try: yield repo_id finally: cleanup_repo(lowerCamelCase__ ) return _temporary_repo @pytest.fixture(scope="session" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Any = F"""repo_txt_data-{int(time.time() * 10e3 )}""" lowercase__ : Union[str, Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" , private=lowerCamelCase__ ) hf_api.upload_file( token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="data/text_data.txt" , repo_id=lowerCamelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" lowercase__ : Tuple = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" , private=lowerCamelCase__ ) hf_api.upload_file( token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCamelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" lowercase__ : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" , private=lowerCamelCase__ ) hf_api.upload_file( token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCamelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
130
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = [] for part_id in partition_order: lowercase__ : str = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(lowerCamelCase__ ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Tuple = spark.range(100 ).repartition(1 ) lowercase__ : Tuple = Spark(lowerCamelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Tuple = spark.range(10 ).repartition(2 ) lowercase__ : Any = [1, 0] lowercase__ : Optional[int] = _generate_iterable_examples(lowerCamelCase__ , lowerCamelCase__ ) # Reverse the partitions. lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , lowerCamelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowercase__ , lowercase__ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : int = spark.range(10 ).repartition(1 ) lowercase__ : Optional[int] = SparkExamplesIterable(lowerCamelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Optional[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: lowercase__ : int = lambda lowerCamelCase__ : x.reverse() lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [2, 1, 0] ) lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shuffle_data_sources(lowerCamelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Optional[Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowercase__ : Optional[Any] = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : int = spark.range(100 ).repartition(1 ) lowercase__ : Tuple = Spark(lowerCamelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
130
1
from math import factorial def __lowercase ( a__ = 1_00 ) -> Tuple: return sum(int(a__ ) for x in str(factorial(a__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
361
from __future__ import annotations from collections.abc import Generator def __lowercase ( ) -> Generator[int, None, None]: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 2 while True: __SCREAMING_SNAKE_CASE = factor_map.pop(a__ , a__ ) if factor: __SCREAMING_SNAKE_CASE = factor + prime while x in factor_map: x += factor __SCREAMING_SNAKE_CASE = factor else: __SCREAMING_SNAKE_CASE = prime yield prime prime += 1 def __lowercase ( a__ = 1E10 ) -> int: __SCREAMING_SNAKE_CASE = sieve() __SCREAMING_SNAKE_CASE = 1 while True: __SCREAMING_SNAKE_CASE = next(a__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(a__ ) n += 2 if __name__ == "__main__": print(solution())
118
0
'''simple docstring''' import sys from collections import defaultdict class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int ): """simple docstring""" UpperCamelCase = [] def A ( self : Optional[Any] , UpperCamelCase__ : Optional[int] ): """simple docstring""" return self.node_position[vertex] def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = pos def A ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase = 2 * start + 1 else: UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase = heap[smallest_child], positions[smallest_child] UpperCamelCase = ( heap[start], positions[start], ) UpperCamelCase = temp, tempa UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCamelCase__ ) self.top_to_bottom(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = position[index] while index != 0: UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase = heap[parent] UpperCamelCase = position[parent] self.set_position(position[parent] , UpperCamelCase__ ) else: UpperCamelCase = val UpperCamelCase = temp self.set_position(UpperCamelCase__ , UpperCamelCase__ ) break UpperCamelCase = parent else: UpperCamelCase = val UpperCamelCase = temp self.set_position(UpperCamelCase__ , 0 ) def A ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = len(UpperCamelCase__ ) // 2 - 1 for i in range(UpperCamelCase__ , -1 , -1 ): self.top_to_bottom(UpperCamelCase__ , UpperCamelCase__ , len(UpperCamelCase__ ) , UpperCamelCase__ ) def A ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = positions[0] UpperCamelCase = sys.maxsize self.top_to_bottom(UpperCamelCase__ , 0 , len(UpperCamelCase__ ) , UpperCamelCase__ ) return temp def __lowerCamelCase ( A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = Heap() UpperCamelCase = [0] * len(A__ ) UpperCamelCase = [-1] * len(A__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase = [] for vertex in range(len(A__ ) ): distance_tv.append(sys.maxsize ) positions.append(A__ ) heap.node_position.append(A__ ) UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase = 0 UpperCamelCase = distance heap.heapify(A__ , A__ ) for _ in range(1 , len(A__ ) ): UpperCamelCase = heap.delete_minimum(A__ , A__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(A__ )] ): UpperCamelCase = distance heap.bottom_to_top( A__ , heap.get_position(A__ ) , A__ , A__ ) UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCamelCase : Any = int(input("Enter number of edges: ").strip()) _lowerCamelCase : Any = defaultdict(list) for _ in range(edges_number): _lowerCamelCase : Dict = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
28
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'philschmid/bart-large-cnn-samsum' lowercase = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) lowercase = 'summarizer' lowercase = AutoTokenizer lowercase = AutoModelForSeqaSeqLM lowercase = ['text'] lowercase = ['text'] def __lowercase ( self : Dict , lowerCamelCase : Dict ) -> Any: return self.pre_processor(lowerCamelCase , return_tensors="""pt""" , truncation=lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : Tuple ) -> List[str]: return self.model.generate(**lowerCamelCase )[0] def __lowercase ( self : str , lowerCamelCase : Dict ) -> List[Any]: return self.pre_processor.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase )
120
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class a__ ( UpperCamelCase__ , UpperCamelCase__ ): a : Tuple = """focalnet""" def __init__( self , A=224 , A=4 , A=3 , A=96 , A=False , A=[192, 384, 768, 768] , A=[2, 2, 6, 2] , A=[2, 2, 2, 2] , A=[3, 3, 3, 3] , A="gelu" , A=4.0 , A=0.0 , A=0.1 , A=False , A=1e-4 , A=False , A=False , A=False , A=0.0_2 , A=1e-5 , A=32 , A=None , A=None , **A , ) -> Dict: '''simple docstring''' super().__init__(**A ) a = image_size a = patch_size a = num_channels a = embed_dim a = use_conv_embed a = hidden_sizes a = depths a = focal_levels a = focal_windows a = hidden_act a = mlp_ratio a = hidden_dropout_prob a = drop_path_rate a = use_layerscale a = layerscale_value a = use_post_layernorm a = use_post_layernorm_in_modulation a = normalize_modulator a = initializer_range a = layer_norm_eps a = encoder_stride a = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names )
180
import math import sys def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: if number != int(__UpperCamelCase): raise ValueError("the value of input must be a natural number") if number < 0: raise ValueError("the value of input must not be a negative number") if number == 0: return 1 a = [-1] * (number + 1) a = 0 for i in range(1 , number + 1): a = sys.maxsize a = int(math.sqrt(__UpperCamelCase)) for j in range(1 , root + 1): a = 1 + answers[i - (j**2)] a = min(__UpperCamelCase , __UpperCamelCase) a = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
180
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _snake_case ( lowerCAmelCase : Optional[int] ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class a__ ( nn.Module ): def __init__( self : str,_A : nn.Module,_A : int ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : str = module SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Sequential( nn.Linear(module.in_features,_A,bias=_A ),nn.Linear(_A,module.out_features,bias=_A ),) SCREAMING_SNAKE_CASE_ : str = (2.0 / (5 * min(module.in_features,module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight,std=_A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __UpperCamelCase ( self : Optional[Any],_A : Dict,*_A : int,**_A : Dict ): """simple docstring""" return self.module(_A,*_A,**_A ) + self.adapter(_A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module A = 'bigscience/bloom-1b7' # Constant values A = 2.109_6595_5269_2574 A = 'Hello my name is' A = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) A = 10 def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class a__ ( A__ ): def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name,torch_dtype=torch.floataa,device_map="auto" ) SCREAMING_SNAKE_CASE_ : Dict = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=_A,device_map="auto" ) def __UpperCamelCase ( self : str ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_abit.config self.assertTrue(hasattr(_A,"quantization_config" ) ) SCREAMING_SNAKE_CASE_ : Any = config.to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = config.to_diff_dict() SCREAMING_SNAKE_CASE_ : int = config.to_json_string() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE_ : str = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit,self.EXPECTED_RELATIVE_DIFFERENCE ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __UpperCamelCase ( self : int ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_A,torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(self.input_text,return_tensors="pt" ) SCREAMING_SNAKE_CASE_ : Any = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ),max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0],skip_special_tokens=_A ),self.EXPECTED_OUTPUTS ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = BitsAndBytesConfig() SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : str = AutoModelForCausalLM.from_pretrained( self.model_name,quantization_config=_A,device_map="auto" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(self.input_text,return_tensors="pt" ) SCREAMING_SNAKE_CASE_ : int = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ),max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0],skip_special_tokens=_A ),self.EXPECTED_OUTPUTS ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(_A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = BitsAndBytesConfig() with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name,quantization_config=_A,load_in_abit=_A,device_map="auto",bnb_abit_quant_type="nf4",) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(_A ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(_A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_A ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(_A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer(self.input_text,return_tensors="pt" ) SCREAMING_SNAKE_CASE_ : int = self.model_fpaa.to(torch.floataa ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ),max_new_tokens=10 ) # Check this does not throw an error SCREAMING_SNAKE_CASE_ : str = self.model_fpaa.to("cpu" ) # Check this does not throw an error SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE_ : int = self.model_fpaa.float() def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = AutoModelForSeqaSeqLM.from_pretrained("t5-small",load_in_abit=_A,device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a__ ( unittest.TestCase ): @classmethod def __UpperCamelCase ( cls : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "t5-small" SCREAMING_SNAKE_CASE_ : Optional[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(cls.model_name ) SCREAMING_SNAKE_CASE_ : Optional[Any] = "Translate in German: Hello, my dog is cute" def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any] ): """simple docstring""" from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE_ : Dict = None # test with `t5-small` SCREAMING_SNAKE_CASE_ : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name,load_in_abit=_A,device_map="auto" ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(self.input_text,return_tensors="pt" ).to(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.generate(**_A ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE_ : Union[str, Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name,load_in_abit=_A,device_map="auto" ) SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(self.input_text,return_tensors="pt" ).to(0 ) SCREAMING_SNAKE_CASE_ : Tuple = model.generate(**_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = modules def __UpperCamelCase ( self : str ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name,load_in_abit=_A,device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q,bnb.nn.Linearabit ) ) SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer(self.input_text,return_tensors="pt" ).to(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.generate(**_A ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name,load_in_abit=_A,device_map="auto" ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(self.input_text,return_tensors="pt" ).to(0 ) SCREAMING_SNAKE_CASE_ : List[str] = model.generate(**_A ) class a__ ( A__ ): def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" super().setUp() # model_name SCREAMING_SNAKE_CASE_ : str = "bigscience/bloom-560m" SCREAMING_SNAKE_CASE_ : Optional[int] = "t5-small" # Different types of model SCREAMING_SNAKE_CASE_ : List[str] = AutoModel.from_pretrained(self.model_name,load_in_abit=_A,device_map="auto" ) # Sequence classification model SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( self.model_name,load_in_abit=_A,device_map="auto" ) # CausalLM model SCREAMING_SNAKE_CASE_ : int = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=_A,device_map="auto" ) # Seq2seq model SCREAMING_SNAKE_CASE_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name,load_in_abit=_A,device_map="auto" ) def __UpperCamelCase ( self : Dict ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class a__ ( A__ ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().setUp() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = pipeline( "text-generation",model=self.model_name,model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa},max_new_tokens=self.MAX_NEW_TOKENS,) # Real second forward pass SCREAMING_SNAKE_CASE_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"],self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class a__ ( A__ ): def __UpperCamelCase ( self : str ): """simple docstring""" super().setUp() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name,load_in_abit=_A,device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ),{0, 1} ) # Check that inference pass works on the model SCREAMING_SNAKE_CASE_ : Any = self.tokenizer(self.input_text,return_tensors="pt" ) # Second real batch SCREAMING_SNAKE_CASE_ : Optional[int] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ),max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0],skip_special_tokens=_A ),self.EXPECTED_OUTPUTS ) class a__ ( A__ ): def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "facebook/opt-350m" super().setUp() def __UpperCamelCase ( self : Any ): """simple docstring""" if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=_A ) self.assertEqual(set(model.hf_device_map.values() ),{torch.cuda.current_device()} ) for param in model.parameters(): SCREAMING_SNAKE_CASE_ : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE_ : List[Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_A ) ): SCREAMING_SNAKE_CASE_ : Dict = LoRALayer(module.q_proj,rank=16 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LoRALayer(module.k_proj,rank=16 ) SCREAMING_SNAKE_CASE_ : List[Any] = LoRALayer(module.v_proj,rank=16 ) # Step 3: dummy batch SCREAMING_SNAKE_CASE_ : int = self.tokenizer("Test batch ",return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE_ : int = model.forward(**_A ) out.logits.norm().backward() for module in model.modules(): if isinstance(_A,_A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_A,nn.Embedding ): self.assertTrue(module.weight.grad is None ) class a__ ( A__ ): A = 'gpt2-xl' A = 3.3191_8548_5415_2187
18
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : str , a : Optional[Any] , a : int=13 , a : str=7 , a : str=True , a : List[str]=True , a : Optional[Any]=True , a : int=True , a : List[Any]=99 , a : List[Any]=32 , a : Tuple=5 , a : Any=4 , a : Optional[int]=37 , a : Tuple="gelu" , a : Any=0.1 , a : int=0.1 , a : List[Any]=128 , a : Union[str, Any]=32 , a : Union[str, Any]=16 , a : Dict=2 , a : List[Any]=0.0_2 , a : Optional[Any]=3 , a : List[Any]=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Optional[Any] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Union[str, Any] = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : List[Any] = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Any = type_vocab_size lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Dict = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : Union[str, Any] = scope def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Tuple = None if self.use_token_type_ids: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self : Optional[Any] , a : Optional[int] , a : Tuple , a : Optional[int] , a : List[Any] , a : Tuple , a : List[str] , a : Any ): '''simple docstring''' lowerCAmelCase__ : List[str] = NezhaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , token_type_ids=a ) lowerCAmelCase__ : List[str] = model(a , token_type_ids=a ) lowerCAmelCase__ : Any = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : List[Any] , a : Union[str, Any] , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Tuple , a : List[Any] , a : Tuple , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[int] = NezhaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Dict = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , ) lowerCAmelCase__ : List[str] = model(a , attention_mask=a , token_type_ids=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : Tuple , a : Optional[Any] , a : List[Any] , a : str , a : List[str] , a : Tuple , a : List[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = NezhaForMaskedLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : List[Any] , a : Optional[int] , a : List[Any] , a : int , a : List[str] , a : Union[str, Any] , a : int , a : Any ): '''simple docstring''' lowerCAmelCase__ : List[Any] = NezhaForNextSentencePrediction(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : int , a : Optional[int] , a : str , a : List[str] , a : int , a : Dict , a : Optional[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = NezhaForPreTraining(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : List[str] , a : Any , a : Any , a : Union[str, Any] , a : Tuple , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = NezhaForQuestionAnswering(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Tuple , a : str , a : Union[str, Any] , a : Tuple , a : Optional[Any] , a : Dict , a : str , a : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.num_labels lowerCAmelCase__ : Optional[Any] = NezhaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : List[str] , a : Dict , a : str , a : Optional[Any] , a : Optional[int] , a : List[str] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : Dict = self.num_labels lowerCAmelCase__ : str = NezhaForTokenClassification(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : int , a : Tuple , a : List[Any] , a : Tuple , a : List[Any] , a : Optional[int] , a : Optional[int] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.num_choices lowerCAmelCase__ : Any = NezhaForMultipleChoice(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _lowerCamelCase ( self : str , a : Tuple , a : int , a : Dict=False ): '''simple docstring''' lowerCAmelCase__ : int = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): lowerCAmelCase__ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) lowerCAmelCase__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = NezhaModelTester(self ) lowerCAmelCase__ : Optional[int] = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase__ : str = None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , a , a , a , ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = NezhaModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Any = model_class(config=a ) lowerCAmelCase__ : Union[str, Any] = self._prepare_for_class(a , a ) lowerCAmelCase__ : int = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'bert.pt' ) ) lowerCAmelCase__ : Any = torch.jit.load(os.path.join(a , 'bert.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowerCAmelCase__ : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a )[0] lowerCAmelCase__ : Union[str, Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : Optional[int] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowerCAmelCase__ : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a )[0] lowerCAmelCase__ : int = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : List[Any] = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1E-4 ) )
212
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
267
# Function to print upper half of diamond (pyramid) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" for i in range(0 , SCREAMING_SNAKE_CASE ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" for i in range(SCREAMING_SNAKE_CASE , 0 , -1 ): for _ in range(SCREAMING_SNAKE_CASE , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(SCREAMING_SNAKE_CASE ) # upper half reverse_floyd(SCREAMING_SNAKE_CASE ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") UpperCAmelCase = 1 while K: UpperCAmelCase = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) UpperCAmelCase = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
267
1
'''simple docstring''' import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase__ = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCamelCase( UpperCAmelCase_ ): config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def UpperCamelCase( UpperCAmelCase_ ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_SCREAMING_SNAKE_CASE ) def UpperCamelCase( UpperCAmelCase_ ): from transformers.testing_utils import pytest_terminal_summary_main UpperCAmelCase : Optional[int] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_SCREAMING_SNAKE_CASE , id=_SCREAMING_SNAKE_CASE ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: UpperCAmelCase : Optional[int] = 0 # Doctest custom flag to ignore output. lowercase__ = doctest.register_optionflag("IGNORE_RESULT") lowercase__ = doctest.OutputChecker class A_ ( __lowerCAmelCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Any ) -> Optional[int]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase_ , lowercase_ , lowercase_ ) lowercase__ = CustomOutputChecker lowercase__ = HfDoctestModule lowercase__ = HfDocTestParser
151
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __snake_case ( __lowerCAmelCase ): a__ = """audio-spectrogram-transformer""" def __init__( self , lowercase=7_68 , lowercase=12 , lowercase=12 , lowercase=30_72 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-12 , lowercase=16 , lowercase=True , lowercase=10 , lowercase=10 , lowercase=10_24 , lowercase=1_28 , **lowercase , ) -> str: '''simple docstring''' super().__init__(**lowercase) a__: Any = hidden_size a__: int = num_hidden_layers a__: Union[str, Any] = num_attention_heads a__: Any = intermediate_size a__: Union[str, Any] = hidden_act a__: int = hidden_dropout_prob a__: str = attention_probs_dropout_prob a__: str = initializer_range a__: Tuple = layer_norm_eps a__: Any = patch_size a__: int = qkv_bias a__: Optional[Any] = frequency_stride a__: int = time_stride a__: List[str] = max_length a__: Tuple = num_mel_bins
290
0
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" ,[ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] ,) def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Any ,__lowerCamelCase : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str] ,): lowercase_ :Union[str, Any] = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } lowercase_ , lowercase_ :Union[str, Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase_ :Optional[Any] = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCamelCase ) assert base_extractor.is_extractable(__lowerCamelCase ) lowercase_ :Dict = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(__lowerCamelCase ,__lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase_ :Optional[int] = file_path.read_text(encoding="utf-8" ) else: lowercase_ :Union[str, Any] = output_path.read_text(encoding="utf-8" ) lowercase_ :Union[str, Any] = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" ,[ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] ,) def UpperCAmelCase_ ( __lowerCamelCase : Tuple ,__lowerCamelCase : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any] ,): lowercase_ :str = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } lowercase_ :List[str] = input_paths[compression_format] if input_path is None: lowercase_ :Optional[Any] = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCamelCase ) lowercase_ :Tuple = Extractor.infer_extractor_format(__lowerCamelCase ) assert extractor_format is not None lowercase_ :List[str] = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase_ :Optional[Any] = file_path.read_text(encoding="utf-8" ) else: lowercase_ :List[str] = output_path.read_text(encoding="utf-8" ) lowercase_ :Tuple = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : int ): import tarfile lowercase_ :Tuple = tmp_path / "data_dot_dot" directory.mkdir() lowercase_ :Union[str, Any] = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(__lowerCamelCase ,"w" ) as f: f.add(__lowerCamelCase ,arcname=os.path.join(".." ,text_file.name ) ) return path @pytest.fixture def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ): import tarfile lowercase_ :Tuple = tmp_path / "data_sym_link" directory.mkdir() lowercase_ :Tuple = directory / "tar_file_with_sym_link.tar" os.symlink(".." ,directory / "subdir" ,target_is_directory=__lowerCamelCase ) with tarfile.TarFile(__lowerCamelCase ,"w" ) as f: f.add(str(directory / "subdir" ) ,arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" ,[("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] ,) def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : str ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[str] ): lowercase_ :Tuple = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } lowercase_ :Dict = insecure_tar_files[insecure_tar_file] lowercase_ :int = tmp_path / "extracted" TarExtractor.extract(__lowerCamelCase ,__lowerCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCAmelCase_ ( __lowerCamelCase : int ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase_ :Any = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 lowercase_ :Any = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(__lowerCamelCase ) assert zipfile.is_zipfile(str(__lowerCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__lowerCamelCase ) # but we're right
147
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_ ( _lowerCAmelCase ): __A = ["image_processor", "tokenizer"] __A = "LayoutLMv3ImageProcessor" __A = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : int , lowercase : Optional[Any]=None , lowercase : List[str]=None , **lowercase : Optional[int] ): """simple docstring""" lowercase_ :int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase , ) lowercase_ :Optional[int] = kwargs.pop("feature_extractor" ) lowercase_ :Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase , lowercase ) def __call__( self : Optional[Any] , lowercase : List[str] , lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase : Union[List[List[int]], List[List[List[int]]]] = None , lowercase : Optional[Union[List[int], List[List[int]]]] = None , lowercase : bool = True , lowercase : Union[bool, str, PaddingStrategy] = False , lowercase : Union[bool, str, TruncationStrategy] = None , lowercase : Optional[int] = None , lowercase : int = 0 , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = True , lowercase : Optional[Union[str, TensorType]] = None , **lowercase : List[Any] , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor lowercase_ :Dict = self.image_processor(images=lowercase , return_tensors=lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase , lowercase ): lowercase_ :str = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase_ :Union[str, Any] = features["words"] lowercase_ :Optional[Any] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) # add pixel values lowercase_ :Any = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowercase_ :Any = self.get_overflowing_images(lowercase , encoded_inputs["overflow_to_sample_mapping"] ) lowercase_ :Any = images return encoded_inputs def lowercase__ ( self : List[Any] , lowercase : Any , lowercase : Optional[Any] ): """simple docstring""" lowercase_ :Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase ) != len(lowercase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F' {len(lowercase )} and {len(lowercase )}' ) return images_with_overflow def lowercase__ ( self : Union[str, Any] , *lowercase : List[Any] , **lowercase : Optional[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase , **lowercase ) def lowercase__ ( self : List[Any] , *lowercase : Any , **lowercase : str ): """simple docstring""" return self.tokenizer.decode(*lowercase , **lowercase ) @property def lowercase__ ( self : Optional[Any] ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowercase__ ( self : str ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase , ) return self.image_processor_class @property def lowercase__ ( self : Tuple ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase , ) return self.image_processor
147
1
"""simple docstring""" from itertools import product def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = sides_number snake_case_ = max_face_number * dice_number snake_case_ = [0] * (max_total + 1) snake_case_ = 1 snake_case_ = range(_SCREAMING_SNAKE_CASE , max_face_number + 1 ) for dice_numbers in product(_SCREAMING_SNAKE_CASE , repeat=_SCREAMING_SNAKE_CASE ): snake_case_ = sum(_SCREAMING_SNAKE_CASE ) totals_frequencies[total] += 1 return totals_frequencies def _a ( ) -> float: snake_case_ = total_frequency_distribution( sides_number=4 , dice_number=9 ) snake_case_ = total_frequency_distribution( sides_number=6 , dice_number=6 ) snake_case_ = 0 snake_case_ = 9 snake_case_ = 4 * 9 snake_case_ = 6 for peter_total in range(_SCREAMING_SNAKE_CASE , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case_ = (4**9) * (6**6) snake_case_ = peter_wins_count / total_games_number snake_case_ = round(_SCREAMING_SNAKE_CASE , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
347
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class __A (snake_case__): '''simple docstring''' __lowercase: int = """upernet""" def __init__( self : str , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=0.4 , UpperCAmelCase_ : Tuple=384 , UpperCAmelCase_ : Union[str, Any]=256 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : Dict , ) ->Union[str, Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = backbone_config.get("""model_type""" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(UpperCAmelCase_ ) snake_case_ = backbone_config snake_case_ = hidden_size snake_case_ = initializer_range snake_case_ = pool_scales snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_in_channels snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = loss_ignore_index def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
347
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
50
from __future__ import annotations import numpy as np def __lowercase ( lowerCamelCase : list[float] ): return np.maximum(0 , lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
50
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Any = """xglm""" A__ : int = ["""past_key_values"""] A__ : Any = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self , __UpperCamelCase=2_5_6_0_0_8 , __UpperCamelCase=2_0_4_8 , __UpperCamelCase=1_0_2_4 , __UpperCamelCase=4_0_9_6 , __UpperCamelCase=2_4 , __UpperCamelCase=1_6 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = vocab_size UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = d_model UpperCamelCase_ = ffn_dim UpperCamelCase_ = num_layers UpperCamelCase_ = attention_heads UpperCamelCase_ = activation_function UpperCamelCase_ = dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = activation_dropout UpperCamelCase_ = layerdrop UpperCamelCase_ = init_std UpperCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_ = use_cache super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , **__UpperCamelCase , )
122
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=3 , __UpperCamelCase=3_2 , __UpperCamelCase=3 , __UpperCamelCase=1_0 , __UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCamelCase=[1, 1, 2, 1] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=3 , __UpperCamelCase=None , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = num_channels UpperCamelCase_ = embeddings_size UpperCamelCase_ = hidden_sizes UpperCamelCase_ = depths UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_act UpperCamelCase_ = num_labels UpperCamelCase_ = scope UpperCamelCase_ = len(__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = self.get_config() return config, pixel_values def lowerCamelCase_ ( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModel(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = FlaxRegNetForImageClassification(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () A__ : Any = False A__ : List[Any] = False A__ : Dict = False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ): """simple docstring""" return def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_ = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase , **__UpperCamelCase ): return model(pixel_values=__UpperCamelCase , **__UpperCamelCase ) with self.subTest("""JIT Enabled""" ): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowercase_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""np""" ) UpperCamelCase_ = model(**__UpperCamelCase ) # verify the logits UpperCamelCase_ = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase_ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
122
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "vit_msn" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-0_6 , _a=224 , _a=16 , _a=3 , _a=True , **_a , ): """simple docstring""" super().__init__(**_a ) lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = qkv_bias
168
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : int = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "blip_2_vision_model" def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.00_001 , _a=0.0 , _a=1e-1_0 , _a=True , **_a , ): """simple docstring""" super().__init__(**_a ) lowerCamelCase = hidden_size lowerCamelCase = intermediate_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = patch_size lowerCamelCase = image_size lowerCamelCase = initializer_range lowerCamelCase = attention_dropout lowerCamelCase = layer_norm_eps lowerCamelCase = hidden_act lowerCamelCase = qkv_bias @classmethod def _lowerCAmelCase ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) lowerCamelCase , lowerCamelCase = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCamelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a , **_a ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "blip_2_qformer" def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1e-1_2 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): """simple docstring""" super().__init__(pad_token_id=_a , **_a ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = hidden_act lowerCamelCase = intermediate_size lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = position_embedding_type lowerCamelCase = cross_attention_frequency lowerCamelCase = encoder_hidden_size @classmethod def _lowerCAmelCase ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) lowerCamelCase , lowerCamelCase = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCamelCase = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a , **_a ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "blip-2" __UpperCamelCase = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): """simple docstring""" super().__init__(**_a ) if vision_config is None: lowerCamelCase = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowerCamelCase = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowerCamelCase = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowerCamelCase = BlipaVisionConfig(**_a ) lowerCamelCase = BlipaQFormerConfig(**_a ) lowerCamelCase = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowerCamelCase = CONFIG_MAPPING[text_model_type](**_a ) lowerCamelCase = self.text_config.tie_word_embeddings lowerCamelCase = self.text_config.is_encoder_decoder lowerCamelCase = num_query_tokens lowerCamelCase = self.vision_config.hidden_size lowerCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase = 1.0 lowerCamelCase = 0.02 @classmethod def _lowerCAmelCase ( cls , _a , _a , _a , **_a , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.vision_config.to_dict() lowerCamelCase = self.qformer_config.to_dict() lowerCamelCase = self.text_config.to_dict() lowerCamelCase = self.__class__.model_type return output
168
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets a__ : Optional[Any] =''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' a__ : List[str] =''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' a__ : Any =''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def _lowerCamelCase ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def _lowerCamelCase ( self : List[Any] , __A : int , __A : Union[str, Any] , __A : Union[str, Any]=None , __A : List[Any]=1 , __A : Union[str, Any]="binary" , __A : Union[str, Any]=None ): __UpperCamelCase = fa_score( __A , __A , labels=__A , pos_label=__A , average=__A , sample_weight=__A ) return {"f1": float(__A ) if score.size == 1 else score}
53
'''simple docstring''' a__ : Optional[Any] =256 # Modulus to hash a string a__ : Dict =1_000_003 def lowercase__ ( __lowercase : str , __lowercase : str ) -> bool: """simple docstring""" __UpperCamelCase = len(__lowercase ) __UpperCamelCase = len(__lowercase ) if p_len > t_len: return False __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 1 # Calculating the hash of pattern and substring of text for i in range(__lowercase ): __UpperCamelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCamelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCamelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCamelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase__ ( ) -> None: """simple docstring""" __UpperCamelCase = 'abc1abc12' __UpperCamelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __UpperCamelCase = 'alskfjaldsk23adsfabcabc' assert rabin_karp(__lowercase , __lowercase ) and not rabin_karp(__lowercase , __lowercase ) # Test 2) __UpperCamelCase = 'ABABX' __UpperCamelCase = 'ABABZABABYABABX' assert rabin_karp(__lowercase , __lowercase ) # Test 3) __UpperCamelCase = 'AAAB' __UpperCamelCase = 'ABAAAAAB' assert rabin_karp(__lowercase , __lowercase ) # Test 4) __UpperCamelCase = 'abcdabcy' __UpperCamelCase = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(__lowercase , __lowercase ) # Test 5) __UpperCamelCase = 'Lü' __UpperCamelCase = 'Lüsai' assert rabin_karp(__lowercase , __lowercase ) __UpperCamelCase = 'Lue' assert not rabin_karp(__lowercase , __lowercase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class lowercase_ ( __snake_case , __snake_case ): _lowerCamelCase = 'focalnet' def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=False , lowercase_=[192, 384, 768, 768] , lowercase_=[2, 2, 6, 2] , lowercase_=[2, 2, 2, 2] , lowercase_=[3, 3, 3, 3] , lowercase_="gelu" , lowercase_=4.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=False , lowercase_=1e-4 , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ): super().__init__(**lowercase_ ) _snake_case : Union[str, Any] = image_size _snake_case : Tuple = patch_size _snake_case : Any = num_channels _snake_case : int = embed_dim _snake_case : List[str] = use_conv_embed _snake_case : Optional[Any] = hidden_sizes _snake_case : List[Any] = depths _snake_case : Union[str, Any] = focal_levels _snake_case : Optional[Any] = focal_windows _snake_case : str = hidden_act _snake_case : Optional[Any] = mlp_ratio _snake_case : Any = hidden_dropout_prob _snake_case : List[Any] = drop_path_rate _snake_case : Optional[Any] = use_layerscale _snake_case : List[str] = layerscale_value _snake_case : Any = use_post_layernorm _snake_case : str = use_post_layernorm_in_modulation _snake_case : Optional[int] = normalize_modulator _snake_case : Dict = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Dict = encoder_stride _snake_case : Union[str, Any] = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _snake_case ,_snake_case : int = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
284
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Any = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
284
1
import os import pytest from attr import dataclass A__ = 'us-east-1' # defaults region @dataclass class __lowerCAmelCase : __lowerCamelCase = 42 __lowerCamelCase = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' __lowerCamelCase = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5_500, } __lowerCamelCase = {**hyperparameters, '''max_steps''': 1_000} @property def snake_case ( self ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case ( self ): """simple docstring""" return F'{self.framework}-transfromers-test' @property def snake_case ( self ): """simple docstring""" return F'./tests/sagemaker/scripts/{self.framework}' @property def snake_case ( self ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
82
'''simple docstring''' import os from datetime import datetime as dt from github import Github snake_case_ : Any = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def A__ ( ): _UpperCamelCase : Tuple = Github(os.environ['GITHUB_TOKEN'] ) _UpperCamelCase : List[Any] = g.get_repo('huggingface/diffusers' ) _UpperCamelCase : List[Any] = repo.get_issues(state='open' ) for issue in open_issues: _UpperCamelCase : Dict = sorted(issue.get_comments() , key=lambda UpperCAmelCase_ : i.created_at , reverse=UpperCAmelCase_ ) _UpperCamelCase : List[str] = comments[0] if len(UpperCAmelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
83
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = list(snake_case_ ) _snake_case = list(snake_case_ ) _snake_case = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _snake_case = """_""" if count > 1: return False else: return "".join(snake_case_ ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [] while True: _snake_case = ["""$"""] * len(snake_case_ ) _snake_case = [] for i in range(len(snake_case_ ) ): for j in range(i + 1 , len(snake_case_ ) ): _snake_case = compare_string(binary[i] , binary[j] ) if k is False: _snake_case = """*""" _snake_case = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _snake_case = list(set(snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [] for minterm in minterms: _snake_case = """""" for _ in range(snake_case_ ): _snake_case = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = list(snake_case_ ) _snake_case = list(snake_case_ ) _snake_case = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [] _snake_case = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _snake_case = 0 _snake_case = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _snake_case = j if count == 1: _snake_case = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _snake_case = 0 temp.append(prime_implicants[i] ) while True: _snake_case = 0 _snake_case = -1 _snake_case = 0 for i in range(len(snake_case_ ) ): _snake_case = chart[i].count(1 ) if count_n > max_n: _snake_case = count_n _snake_case = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _snake_case = 0 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _snake_case = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case_ ): _snake_case = 1 return chart def __SCREAMING_SNAKE_CASE ( ): _snake_case = int(input("""Enter the no. of variables\n""" ) ) _snake_case = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _snake_case = decimal_to_binary(snake_case_ , snake_case_ ) _snake_case = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _snake_case = prime_implicant_chart(snake_case_ , snake_case_ ) _snake_case = selection(snake_case_ , snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
355
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __lowerCAmelCase = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=16 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=14 , UpperCAmelCase=10 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=25 , UpperCAmelCase=5 , ) -> int: _snake_case = d_model _snake_case = parent _snake_case = batch_size _snake_case = prediction_length _snake_case = context_length _snake_case = cardinality _snake_case = num_time_features _snake_case = lags_sequence _snake_case = embedding_dimension _snake_case = is_training _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = context_length _snake_case = prediction_length + label_length _snake_case = label_length _snake_case = moving_average _snake_case = autocorrelation_factor def lowercase (self ) -> str: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase (self , UpperCAmelCase ) -> Tuple: _snake_case = config.context_length + max(config.lags_sequence ) _snake_case = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _snake_case = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _snake_case = floats_tensor([self.batch_size, _past_length] ) _snake_case = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _snake_case = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _snake_case = floats_tensor([self.batch_size, config.prediction_length] ) _snake_case = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowercase (self ) -> int: _snake_case = self.get_config() _snake_case = self.prepare_autoformer_inputs_dict(UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _snake_case = AutoformerModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.encoder_last_hidden_state _snake_case = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = model.get_encoder() encoder.save_pretrained(UpperCAmelCase ) _snake_case = AutoformerEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = model.create_network_inputs(**UpperCAmelCase ) _snake_case, _snake_case = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _snake_case = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _snake_case = encoder(inputs_embeds=UpperCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _snake_case = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _snake_case = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _snake_case = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _snake_case = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = model.get_decoder() decoder.save_pretrained(UpperCAmelCase ) _snake_case = AutoformerDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = decoder( trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCAmelCase_ = (AutoformerForPrediction,) if is_torch_available() else () lowerCAmelCase_ = {"feature-extraction": AutoformerModel} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> List[Any]: _snake_case = AutoformerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase (self ) -> Any: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase ) _snake_case, _snake_case = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def lowercase (self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> Any: _snake_case = inspect.signature(getattr(UpperCAmelCase , """forward""" ) ) # The main input is the name of the argument after `self` _snake_case = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , """seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """decoder_seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """encoder_seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """d_model""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """num_attention_heads""" , UpperCAmelCase ) _snake_case = d_model // num_attention_heads for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _snake_case = len(UpperCAmelCase ) _snake_case = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # decoder attentions _snake_case = outputs.decoder_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _snake_case = outputs.cross_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + 2 , len(UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase (self ) -> List[Any]: super().test_retain_grad_hidden_states_attentions() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE="train-batch.pt" ): _snake_case = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) _snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Union[str, Any]: _snake_case = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch() with torch.no_grad(): _snake_case = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _snake_case = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> str: _snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _snake_case = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _snake_case = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Optional[int]: _snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _snake_case = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _snake_case = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCAmelCase ) _snake_case = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCAmelCase ) _snake_case = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1 ) )
270
0
"""simple docstring""" from __future__ import annotations from typing import Any class UpperCamelCase__( __A ): pass class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ) -> None: A__ = data A__ = None def __iter__( self ) -> Dict: A__ = self A__ = [] while node: if node in visited: raise ContainsLoopError visited.append(__UpperCAmelCase ) yield node.data A__ = node.next_node @property def snake_case__ ( self ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __lowerCamelCase = Node(1) __lowerCamelCase = Node(2) __lowerCamelCase = Node(3) __lowerCamelCase = Node(4) print(root_node.has_loop) # False __lowerCamelCase = root_node.next_node print(root_node.has_loop) # True __lowerCamelCase = Node(5) __lowerCamelCase = Node(6) __lowerCamelCase = Node(5) __lowerCamelCase = Node(6) print(root_node.has_loop) # False __lowerCamelCase = Node(1) print(root_node.has_loop) # False
221
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=64 ,__UpperCAmelCase=5 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,) -> List[Any]: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = vocab_size - 1 def snake_case__ ( self ) -> str: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A__ = self.get_config() return config, input_ids, input_mask, token_labels def snake_case__ ( self ) -> List[str]: return GPTNeoXConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCAmelCase ,initializer_range=self.initializer_range ,pad_token_id=self.pad_token_id ,) def snake_case__ ( self ) -> List[str]: A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = True return config, input_ids, input_mask, token_labels def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: A__ = GPTNeoXModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: A__ = True A__ = GPTNeoXModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = GPTNeoXForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = self.num_labels A__ = GPTNeoXForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: A__ = self.num_labels A__ = GPTNeoXForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = self.num_labels A__ = GPTNeoXForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = True A__ = GPTNeoXForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,use_cache=__UpperCAmelCase ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) ,config.vocab_size ) A__ = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] ,dim=-1 ) A__ = torch.cat([input_mask, next_mask] ,dim=-1 ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) A__ = output_from_no_past['hidden_states'][0] A__ = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,past_key_values=__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,)['hidden_states'][0] # select random slice A__ = ids_tensor((1,) ,output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-3 ) ) def snake_case__ ( self ) -> Dict: A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__( __A , __A , __A , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ : List[Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : List[str] = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : str = False lowerCAmelCase__ : Any = False lowerCAmelCase__ : str = False def snake_case__ ( self ) -> Tuple: A__ = GPTNeoXModelTester(self ) A__ = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=64 ,num_attention_heads=8 ) def snake_case__ ( self ) -> str: self.config_tester.run_common_tests() def snake_case__ ( self ) -> List[str]: A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Dict: A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> str: A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) def snake_case__ ( self ) -> List[str]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def snake_case__ ( self ) -> Any: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def snake_case__ ( self ) -> List[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def snake_case__ ( self ) -> str: pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case__ ( self ,__UpperCAmelCase ) -> Tuple: A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ids_tensor([1, 10] ,config.vocab_size ) A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = GPTNeoXModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() A__ = original_model(__UpperCAmelCase ).last_hidden_state A__ = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = {'type': scaling_type, 'factor': 1_0.0} A__ = GPTNeoXModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() A__ = scaled_model(__UpperCAmelCase ).last_hidden_state A__ = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-5 ) ) @require_torch class UpperCamelCase__( unittest.TestCase ): @slow def snake_case__ ( self ) -> int: A__ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: A__ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__UpperCAmelCase ) A__ = tokenizer('My favorite food is' ,return_tensors='pt' ).to(__UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A__ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' A__ = model.generate(**__UpperCAmelCase ,do_sample=__UpperCAmelCase ,max_new_tokens=20 ) A__ = tokenizer.batch_decode(__UpperCAmelCase )[0] self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase )
221
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def _snake_case ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowercase_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowercase_ : str = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _snake_case ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ): """simple docstring""" self._test_save_load_local() def _snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
264
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = num_of_nodes lowercase_ : list[list[int]] = [] lowercase_ : dict[int, int] = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowercase_ : Optional[int] = self.find_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowercase_ : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(__SCREAMING_SNAKE_CASE ) elif component_size[u_node] >= component_size[v_node]: lowercase_ : int = self.find_component(__SCREAMING_SNAKE_CASE ) component_size[u_node] += component_size[v_node] self.set_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = [] lowercase_ : Optional[Any] = 0 lowercase_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase_ : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase_ , lowercase_ , lowercase_ : List[Any] = edge lowercase_ : Dict = self.m_component[u] lowercase_ : Any = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase_ : Union[str, Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ , lowercase_ : str = edge lowercase_ : Tuple = self.m_component[u] lowercase_ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 lowercase_ : str = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
264
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): lowercase = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): for i in range(config.num_hidden_layers ): if base_model: lowercase = '' else: lowercase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowercase = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[ : config.hidden_size, : ] lowercase = in_proj_bias[: config.hidden_size] lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase = in_proj_weight[ -config.hidden_size :, : ] lowercase = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase = val def UpperCAmelCase_ ( ): lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): lowercase = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=__SCREAMING_SNAKE_CASE , ) lowercase = ViTHybridConfig(backbone_config=__SCREAMING_SNAKE_CASE , image_size=384 , num_labels=1000 ) lowercase = False # load original model from timm lowercase = timm.create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase = timm_model.state_dict() if base_model: remove_classification_head_(__SCREAMING_SNAKE_CASE ) lowercase = create_rename_keys(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = 'huggingface/label-files' lowercase = 'imagenet-1k-id2label.json' lowercase = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowercase = ViTHybridModel(__SCREAMING_SNAKE_CASE ).eval() else: lowercase = ViTHybridForImageClassification(__SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # create image processor lowercase = create_transform(**resolve_data_config({} , model=__SCREAMING_SNAKE_CASE ) ) lowercase = transform.transforms lowercase = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } lowercase = ViTHybridImageProcessor( do_resize=__SCREAMING_SNAKE_CASE , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__SCREAMING_SNAKE_CASE , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=__SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase = prepare_img() lowercase = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) lowercase = processor(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # verify logits with torch.no_grad(): lowercase = model(__SCREAMING_SNAKE_CASE ) lowercase = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: lowercase = timm_model.forward_features(__SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1e-3 ) else: lowercase = timm_model(__SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
195
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class A_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): return None class A_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): return None class A_ ( unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Tuple = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , 'tf' , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , 'pt' , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import BertModel lowercase = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(snake_case ) ) vocab_file.flush() lowercase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase = BertModel(BertConfig(vocab_size=len(snake_case ) ) ) model.save_pretrained(snake_case ) self._test_export(snake_case , 'pt' , 12 , snake_case ) @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase = self._test_export(snake_case , 'tf' , 12 , **snake_case ) lowercase = quantize(Path(snake_case ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase = self._test_export(snake_case , 'pt' , 12 , **snake_case ) lowercase = quantize(snake_case ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case=None , **snake_case ): try: # Compute path with TemporaryDirectory() as tempdir: lowercase = Path(snake_case ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case ) return path except Exception as e: self.fail(snake_case ) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import BertModel lowercase = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case , snake_case , 'pt' ) @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import TFBertModel lowercase = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case , snake_case , 'tf' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = FeatureExtractionPipeline(snake_case , snake_case ) lowercase = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase , lowercase , lowercase , lowercase = infer_shapes(snake_case , snake_case ) # Assert all variables are present self.assertEqual(len(snake_case ) , len(snake_case ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , snake_case ) self.assertSequenceEqual(variable_names[3:] , snake_case ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase , lowercase = ensure_valid_input(FuncContiguousArgs() , snake_case , snake_case ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(snake_case ) , 3 ) # Should have exactly the same input names self.assertEqual(set(snake_case ) , set(snake_case ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(snake_case , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase , lowercase = ensure_valid_input(FuncNonContiguousArgs() , snake_case , snake_case ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(snake_case ) , 1 ) self.assertEqual(len(snake_case ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
195
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCamelCase_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,**__lowerCamelCase : List[str] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCamelCase ).tokenizer def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,**__lowerCamelCase : Optional[int] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCamelCase ).image_processor def SCREAMING_SNAKE_CASE_ ( self : Tuple ,**__lowerCamelCase : Optional[int] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCamelCase ).qformer_tokenizer def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = InstructBlipProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__lowerCamelCase ,padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=__lowerCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__lowerCamelCase ) self.assertIsInstance(processor.qformer_tokenizer ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ,qformer_tokenizer=__lowerCamelCase ) a = self.prepare_image_inputs() a = image_processor(__lowerCamelCase ,return_tensors='''np''' ) a = processor(images=__lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ,qformer_tokenizer=__lowerCamelCase ) a = 'lower newer' a = processor(text=__lowerCamelCase ) a = tokenizer(__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ) a = qformer_tokenizer(__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor['''qformer_''' + key] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ,qformer_tokenizer=__lowerCamelCase ) a = 'lower newer' a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase ,images=__lowerCamelCase ) self.assertListEqual( list(inputs.keys() ) ,['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] ,) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ,qformer_tokenizer=__lowerCamelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__lowerCamelCase ) a = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ,qformer_tokenizer=__lowerCamelCase ) a = 'lower newer' a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase ,images=__lowerCamelCase ) self.assertListEqual( list(inputs.keys() ) ,['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] ,)
351
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
42
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : Dict=30 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=32 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : Optional[int]=37 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=10 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=2 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 2 def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Tuple ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = TFDeiTModel(config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = TFDeiTForMaskedImageModeling(config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFDeiTForMaskedImageModeling(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassification(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassification(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowercase_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = TFDeiTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Dense ) ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any]=False ): SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowerCAmelCase_ ( self : Union[str, Any] ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFDeiTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCAmelCase_ ( ) -> str: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : List[str] ): return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCAmelCase , return_tensors='tf' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
225
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = 0 @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowerCAmelCase : str = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowerCAmelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowerCAmelCase ) , 0 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: """simple docstring""" __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) # Check that tokenizer_type ≠ model_type __lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase , config=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(lowerCAmelCase , """vocab.txt""" ) ) __lowerCAmelCase : Any = AutoTokenizer.from_pretrained(lowerCAmelCase , tokenizer_type="""bert""" , use_fast=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(lowerCAmelCase , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(lowerCAmelCase , """merges.txt""" ) ) __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase , tokenizer_type="""gpt2""" , use_fast=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(lowerCAmelCase , """vocab.txt""" ) ) __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase , tokenizer_type="""bert""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(lowerCAmelCase , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(lowerCAmelCase , """merges.txt""" ) ) __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase , tokenizer_type="""gpt2""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" with pytest.raises(lowerCAmelCase ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowerCAmelCase : str = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowerCAmelCase ) else: self.assertEqual(tokenizer.do_lower_case , lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_12 ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowerCAmelCase , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): __lowerCAmelCase : List[str] = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : str = TOKENIZER_MAPPING.values() __lowerCAmelCase : Dict = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowerCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowerCAmelCase ) , lowerCAmelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , lowerCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=lowerCAmelCase ) __lowerCAmelCase : str = """Hello, world. How are you?""" __lowerCAmelCase : List[Any] = tokenizer.tokenize(lowerCAmelCase ) self.assertEqual("""[UNK]""" , tokens[0] ) __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_12 ) self.assertEqual(tokenizer.vocab_size , 3_00_00 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Any = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[int] = get_tokenizer_config("""bert-base-cased""" ) __lowerCAmelCase : Any = config.pop("""_commit_hash""" , lowerCAmelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowerCAmelCase , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __lowerCAmelCase : List[Any] = get_tokenizer_config(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Tuple = get_tokenizer_config(lowerCAmelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: """simple docstring""" try: AutoConfig.register("""custom""" , lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase ) __lowerCAmelCase : Tuple = CustomTokenizer.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def SCREAMING_SNAKE_CASE ( self : str ) -> Any: """simple docstring""" try: AutoConfig.register("""custom""" , lowerCAmelCase ) # Can register in two steps AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(lowerCAmelCase , fast_tokenizer_class=lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase , fast_tokenizer_class=lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoTokenizer.register(lowerCAmelCase , fast_tokenizer_class=lowerCAmelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : List[Any] = BertTokenizerFast.from_pretrained(lowerCAmelCase ) bert_tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = CustomTokenizerFast.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase , use_fast=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowerCAmelCase ): __lowerCAmelCase : int = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase ): __lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCAmelCase ) __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase , trust_remote_code=lowerCAmelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCAmelCase , use_fast=lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase , trust_remote_code=lowerCAmelCase , use_fast=lowerCAmelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : int =False class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Dict =NewTokenizer lowerCamelCase : Any =False try: AutoConfig.register("""custom""" , lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase , fast_tokenizer_class=lowerCAmelCase ) # If remote code is not set, the default is to use local __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCAmelCase , use_fast=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __lowerCAmelCase : int = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) __lowerCAmelCase : str = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCAmelCase , use_fast=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=lowerCAmelCase , use_fast=lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCAmelCase : str = AutoTokenizer.from_pretrained(lowerCAmelCase , revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
139
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict=13 , lowerCAmelCase : int=7 , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : int=64 , lowerCAmelCase : Any=32 , lowerCAmelCase : str=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=None , ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : Dict = use_input_mask __lowerCAmelCase : Optional[int] = use_token_type_ids __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Optional[int] = embedding_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Optional[Any] = type_vocab_size __lowerCAmelCase : Optional[Any] = type_sequence_label_size __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : Union[str, Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_input_mask: __lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = MobileBertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : List[Any] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : Tuple = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = MobileBertForNextSentencePrediction(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForPreTraining(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , next_sentence_label=lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : int = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_labels __lowerCAmelCase : int = MobileBertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Dict = MobileBertForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.num_choices __lowerCAmelCase : List[Any] = MobileBertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : List[Any] = config_and_inputs __lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : Optional[int] =( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] =True def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=False ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class in get_values(lowerCAmelCase ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = MobileBertModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase ) def snake_case_ (__A : Any ) -> Optional[Any]: return torch.tensor( __A , dtype=torch.long , device=__A , ) __UpperCAmelCase = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase ) __lowerCAmelCase : int = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : List[str] = model(lowerCAmelCase )[0] __lowerCAmelCase : List[Any] = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowerCAmelCase : int = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
139
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS __UpperCAmelCase = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : str = "retribert" def __init__( self, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=128, SCREAMING_SNAKE_CASE_=0, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : str = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : Dict = intermediate_size UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : List[Any] = type_vocab_size UpperCamelCase : Any = initializer_range UpperCamelCase : str = layer_norm_eps UpperCamelCase : Tuple = share_encoders UpperCamelCase : Union[str, Any] = projection_dim
119
import argparse import json from tqdm import tqdm def UpperCamelCase ( ) -> Optional[int]: UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=snake_case__ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=snake_case__ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=snake_case__ , help='where to store parsed gold_data_path file' , ) UpperCamelCase : int = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: UpperCamelCase : int = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): UpperCamelCase : Union[str, Any] = dpr_record['question'] UpperCamelCase : Dict = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(snake_case__ ) + '\n' ) if __name__ == "__main__": main()
119
1
import inspect import unittest class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: str ): '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps _SCREAMING_SNAKE_CASE = inspect.getmembers(UpperCamelCase_ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": _SCREAMING_SNAKE_CASE = """k-diffusion""" elif backend == "invisible_watermark": _SCREAMING_SNAKE_CASE = """invisible-watermark""" assert backend in deps, F'{backend} is not in the deps table!'
355
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[str] = KandinskyVaaInpaintPipeline __snake_case : Union[str, Any] = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __snake_case : Tuple = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __snake_case : str = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __snake_case : List[str] = False @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase ( self: str ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str]=0 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask _SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def UpperCamelCase ( self: int ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = """a hat""" _SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
125
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _a , _a , _a = False, False, False @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = None # Automatically constructed SCREAMING_SNAKE_CASE__ : Union[str, Any] = """dict""" SCREAMING_SNAKE_CASE__ : Dict = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = field(default="""Audio""" ,init=__a ,repr=__a ) def __call__( self ): """simple docstring""" return self.pa_type def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(_UpperCamelCase , _UpperCamelCase ): return {"bytes": None, "path": value} elif isinstance(_UpperCamelCase , _UpperCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ : Optional[int] = BytesIO() sf.write(_UpperCamelCase , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ : Dict = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: UpperCAmelCase_ : List[str] = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_2767 UpperCAmelCase_ : Any = BytesIO(bytes() ) sf.write(_UpperCamelCase , _UpperCamelCase , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err UpperCAmelCase_ : Any = xsplitext(_UpperCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: UpperCAmelCase_ : List[str] = token_per_repo_id or {} UpperCAmelCase_ : Optional[Any] = path.split("::" )[-1] try: UpperCAmelCase_ : List[Any] = string_to_dict(_UpperCamelCase , config.HUB_DATASETS_URL )["repo_id"] UpperCAmelCase_ : Optional[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ : str = None with xopen(_UpperCamelCase , "rb" , use_auth_token=_UpperCamelCase ) as f: UpperCAmelCase_ , UpperCAmelCase_ : str = sf.read(_UpperCamelCase ) else: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = sf.read(_UpperCamelCase ) UpperCAmelCase_ : str = array.T if self.mono: UpperCAmelCase_ : Optional[int] = librosa.to_mono(_UpperCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ : Any = librosa.resample(_UpperCamelCase , orig_sr=_UpperCamelCase , target_sr=self.sampling_rate ) UpperCAmelCase_ : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCamelCase__ ( self ): """simple docstring""" from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCAmelCase_ : Optional[int] = pa.array([None] * len(_UpperCamelCase ) , type=pa.binary() ) UpperCAmelCase_ : int = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : str = pa.array([None] * len(_UpperCamelCase ) , type=pa.string() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): UpperCAmelCase_ : Optional[int] = pa.array([Audio().encode_example(_UpperCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCAmelCase_ : List[str] = storage.field("bytes" ) else: UpperCAmelCase_ : List[str] = pa.array([None] * len(_UpperCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCAmelCase_ : List[Any] = storage.field("path" ) else: UpperCAmelCase_ : Dict = pa.array([None] * len(_UpperCamelCase ) , type=pa.string() ) UpperCAmelCase_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(_UpperCamelCase , self.pa_type ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(lowercase_ ): with xopen(_UpperCamelCase , "rb" ) as f: UpperCAmelCase_ : Tuple = f.read() return bytes_ UpperCAmelCase_ : List[str] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ : int = pa.array( [os.path.basename(_UpperCamelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCAmelCase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_UpperCamelCase , self.pa_type )
61
import math def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 while num > 0: lowerCAmelCase_ = num % 8 lowerCAmelCase_ = octal + (remainder * math.floor(math.pow(10 , __lowerCAmelCase ) )) counter += 1 lowerCAmelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(__lowerCAmelCase )}""" def lowerCamelCase__ ( ): """simple docstring""" print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
231
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"""{test_file} instead.""" ) lowercase__ = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) lowercase__ = components[:-1] + [test_fn.replace('.py' , '' )] lowercase__ = '.'.join(_SCREAMING_SNAKE_CASE ) return test_module_path def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = get_module_path(_SCREAMING_SNAKE_CASE ) lowercase__ = importlib.import_module(_SCREAMING_SNAKE_CASE ) return test_module def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = [] lowercase__ = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = [] lowercase__ = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): lowercase__ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'all_model_classes' , [] ) if len(_SCREAMING_SNAKE_CASE ) > 0: test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_test_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = test_class() if hasattr(_SCREAMING_SNAKE_CASE , 'setUp' ): test.setUp() lowercase__ = None if hasattr(_SCREAMING_SNAKE_CASE , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowercase__ = test.model_tester.__class__ return model_tester def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: lowercase__ = get_test_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = [] for test_class in test_classes: lowercase__ = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = get_test_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = get_model_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = { model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_model_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = { model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(_SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {to_json(_SCREAMING_SNAKE_CASE ): to_json(_SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
269
class SCREAMING_SNAKE_CASE (UpperCAmelCase ): pass class SCREAMING_SNAKE_CASE (UpperCAmelCase ): pass class SCREAMING_SNAKE_CASE : def __init__( self : Dict )-> Optional[int]: """simple docstring""" lowercase__ = [ [], [], [], ] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int )-> None: """simple docstring""" try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(a ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def SCREAMING_SNAKE_CASE_ ( self : int )-> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self : Dict )-> str: """simple docstring""" return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] )-> Any: """simple docstring""" lowercase__ = [] def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int )-> None: """simple docstring""" if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> int: """simple docstring""" if not self.queue: raise UnderFlowError('The queue is empty' ) else: lowercase__ = min(self.queue ) self.queue.remove(a ) return data def __str__( self : Union[str, Any] )-> str: """simple docstring""" return str(self.queue ) def __UpperCamelCase () -> str: lowercase__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCamelCase () -> List[str]: lowercase__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
269
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _A ( unittest.TestCase ): def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : int = 0 def __a ( self : Tuple ) -> str: """simple docstring""" lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_A , _A ) def __a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any = Path(_A ) / '''preprocessor_config.json''' lowercase : List[str] = Path(_A ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) lowercase : str = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __a ( self : List[str] ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase : List[str] = Path(_A ) / '''preprocessor_config.json''' lowercase : Union[str, Any] = Path(_A ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) lowercase : Dict = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __a ( self : Tuple ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Union[str, Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] = Path(_A ) / '''preprocessor_config.json''' lowercase : Any = Path(_A ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : List[Any] = AutoImageProcessor.from_pretrained(_A ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str = CLIPImageProcessor(**_A ) # save in new folder model_config.save_pretrained(_A ) config.save_pretrained(_A ) lowercase : Dict = AutoImageProcessor.from_pretrained(_A ) # make sure private variable is not incorrectly saved lowercase : Tuple = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_A , _A ) def __a ( self : str ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase : List[Any] = Path(_A ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) lowercase : str = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( _A , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __a ( self : Dict ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( _A , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : int = AutoImageProcessor.from_pretrained(_A , revision='''aaaaaa''' ) def __a ( self : Union[str, Any] ) -> int: """simple docstring""" with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __a ( self : List[Any] ) -> List[str]: """simple docstring""" with self.assertRaises(_A ): lowercase : int = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): lowercase : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) lowercase : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A ) lowercase : Tuple = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __a ( self : List[Any] ) -> Dict: """simple docstring""" try: AutoConfig.register('''custom''' , _A ) AutoImageProcessor.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoImageProcessor.register(_A , _A ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : List[Any] = Path(_A ) / '''preprocessor_config.json''' lowercase : Dict = Path(_A ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) lowercase : List[str] = CustomImageProcessor.from_pretrained(_A ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A ) lowercase : List[Any] = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" class _A ( __snake_case ): _UpperCamelCase : Union[str, Any] = True try: AutoConfig.register('''custom''' , _A ) AutoImageProcessor.register(_A , _A ) # If remote code is not set, the default is to use local lowercase : Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_A , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
308
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowercase ( __a ): """simple docstring""" UpperCamelCase : torch.FloatTensor UpperCamelCase : torch.FloatTensor class __lowercase ( __a , __a ): """simple docstring""" UpperCamelCase : str = 1 @register_to_config def __init__( self , A = 20_00 , A = 0.15 , A = 0.01 , A = 13_48.0 , A = 1e-5 , A = 1 , ) -> str: '''simple docstring''' lowerCamelCase = sigma_max # setable values lowerCamelCase = None self.set_sigmas(a__ , a__ , a__ , a__ ) def __A ( self , A , A = None ) -> int: '''simple docstring''' return sample def __A ( self , A , A = None , A = None ) -> Any: '''simple docstring''' lowerCamelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCamelCase = torch.linspace(1 , a__ , a__ , device=a__ ) def __A ( self , A , A = None , A = None , A = None ) -> Dict: '''simple docstring''' lowerCamelCase = sigma_min if sigma_min is not None else self.config.sigma_min lowerCamelCase = sigma_max if sigma_max is not None else self.config.sigma_max lowerCamelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(a__ , a__ ) lowerCamelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCamelCase = torch.exp(torch.linspace(math.log(a__ ) , math.log(a__ ) , a__ ) ) lowerCamelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __A ( self , A , A ) -> Tuple: '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __A ( self , A , A , A , A = None , A = True , ) -> int: '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler""" ) lowerCamelCase = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCamelCase = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCamelCase = timesteps.to(self.discrete_sigmas.device ) lowerCamelCase = self.discrete_sigmas[timesteps].to(sample.device ) lowerCamelCase = self.get_adjacent_sigma(a__ , a__ ).to(sample.device ) lowerCamelCase = torch.zeros_like(a__ ) lowerCamelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCamelCase = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCamelCase = diffusion.unsqueeze(-1 ) lowerCamelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCamelCase = randn_tensor( sample.shape , layout=sample.layout , generator=a__ , device=sample.device , dtype=sample.dtype ) lowerCamelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCamelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=a__ , prev_sample_mean=a__ ) def __A ( self , A , A , A = None , A = True , ) -> str: '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCamelCase = randn_tensor(sample.shape , layout=sample.layout , generator=a__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCamelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCamelCase = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCamelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCamelCase = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCamelCase = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCamelCase = step_size.unsqueeze(-1 ) lowerCamelCase = sample + step_size * model_output lowerCamelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a__ ) def __A ( self , A , A , A , ) -> Optional[int]: '''simple docstring''' lowerCamelCase = timesteps.to(original_samples.device ) lowerCamelCase = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCamelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(a__ ) * sigmas[:, None, None, None] ) lowerCamelCase = noise + original_samples return noisy_samples def __len__( self ) -> Dict: '''simple docstring''' return self.config.num_train_timesteps
359
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Any = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Tuple = "switch_transformers" UpperCamelCase : Tuple = ["past_key_values"] UpperCamelCase : Any = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , A=3_21_28 , A=7_68 , A=64 , A=20_48 , A=64 , A=12 , A=3 , A=12 , A=3 , A=12 , A=8 , A=False , A=0.01 , A="float32" , A=False , A=32 , A=1_28 , A=0.1 , A=1e-6 , A=0.001 , A=0.001 , A=1.0 , A="relu" , A=True , A=False , A=True , A=0 , A=1 , **A , ) -> str: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = d_model lowerCamelCase = d_kv lowerCamelCase = d_ff lowerCamelCase = num_sparse_encoder_layers lowerCamelCase = num_layers lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowerCamelCase = self.num_layers // self.num_sparse_encoder_layers else: lowerCamelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowerCamelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowerCamelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers lowerCamelCase = num_heads lowerCamelCase = num_experts lowerCamelCase = expert_capacity lowerCamelCase = router_bias lowerCamelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) lowerCamelCase = router_dtype lowerCamelCase = router_ignore_padding_tokens lowerCamelCase = relative_attention_num_buckets lowerCamelCase = relative_attention_max_distance lowerCamelCase = dropout_rate lowerCamelCase = layer_norm_epsilon lowerCamelCase = initializer_factor lowerCamelCase = feed_forward_proj lowerCamelCase = use_cache lowerCamelCase = add_router_probs lowerCamelCase = router_z_loss_coef lowerCamelCase = router_aux_loss_coef lowerCamelCase = self.feed_forward_proj.split("""-""" ) lowerCamelCase = act_info[-1] lowerCamelCase = act_info[0] == """gated""" if len(A ) > 1 and act_info[0] != "gated" or len(A ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase = """gelu_new""" super().__init__( pad_token_id=A , eos_token_id=A , is_encoder_decoder=A , **A , )
66
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : Tuple = 16 lowercase__ : List[str] = 32 def a__ ( lowercase : Accelerator, lowercase : int = 16 ) -> int: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCamelCase = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(lowercase : Tuple ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase = datasets.map( lowercase, batched=lowercase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(lowercase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase = 16 elif accelerator.mixed_precision != "no": _UpperCamelCase = 8 else: _UpperCamelCase = None return tokenizer.pad( lowercase, padding='''longest''', max_length=lowercase, pad_to_multiple_of=lowercase, return_tensors='''pt''', ) # Instantiate dataloaders. _UpperCamelCase = DataLoader( tokenized_datasets['''train'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) _UpperCamelCase = DataLoader( tokenized_datasets['''validation'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Optional[Any] = mocked_dataloaders # noqa: F811 def a__ ( lowercase : Tuple, lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowercase ) == "1": _UpperCamelCase = 2 # New Code # _UpperCamelCase = int(args.gradient_accumulation_steps ) _UpperCamelCase = int(args.local_sgd_steps ) # Initialize accelerator _UpperCamelCase = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=lowercase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase = config['''lr'''] _UpperCamelCase = int(config['''num_epochs'''] ) _UpperCamelCase = int(config['''seed'''] ) _UpperCamelCase = int(config['''batch_size'''] ) _UpperCamelCase = evaluate.load('''glue''', '''mrpc''' ) set_seed(lowercase ) _UpperCamelCase , _UpperCamelCase = get_dataloaders(lowercase, lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase = AdamW(params=model.parameters(), lr=lowercase ) # Instantiate scheduler _UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=100, num_training_steps=(len(lowercase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() with LocalSGD( accelerator=lowercase, model=lowercase, local_sgd_steps=lowercase, enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): _UpperCamelCase = model(**lowercase ) _UpperCamelCase = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase, references=lowercase, ) _UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowercase ) def a__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=lowercase, default=lowercase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=lowercase, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument( '''--local_sgd_steps''', type=lowercase, default=8, help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
324
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowercase__ : List[str] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowercase__ : Dict = logging.getLogger() def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int: """simple docstring""" _UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: return json.load(lowercase ) raise ValueError(F"""can't find {path}""" ) lowercase__ : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_flax_glue.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def snake_case__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_clm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def snake_case__ ( self : Tuple ) -> str: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_summarization_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_mlm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def snake_case__ ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_ta_mlm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_flax_ner.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_qa.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
324
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a__: Union[str, Any] = None a__: List[str] = logging.get_logger(__name__) a__: Dict = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} a__: int = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } a__: Dict = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } a__: List[str] = '▁' class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE = BarthezTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase="<s>",__lowerCamelCase="</s>",__lowerCamelCase="</s>",__lowerCamelCase="<s>",__lowerCamelCase="<unk>",__lowerCamelCase="<pad>",__lowerCamelCase="<mask>",**__lowerCamelCase,): # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(lowerCAmelCase_,lstrip=lowerCAmelCase_,rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_,lowerCAmelCase_ ) else mask_token super().__init__( lowerCAmelCase_,tokenizer_file=lowerCAmelCase_,bos_token=lowerCAmelCase_,eos_token=lowerCAmelCase_,unk_token=lowerCAmelCase_,sep_token=lowerCAmelCase_,cls_token=lowerCAmelCase_,pad_token=lowerCAmelCase_,mask_token=lowerCAmelCase_,**lowerCAmelCase_,) A__ = vocab_file A__ = False if not self.vocab_file else True def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( lowerCAmelCase_,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file,lowerCAmelCase_ ) return (out_vocab_file,)
364
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe( [prompt],generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=15,output_type='''np''',use_karras_sigmas=__lowerCamelCase,) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Any: snake_case : Optional[int] = WavaVecaForSequenceClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : List[str] = downstream_dict["""projector.weight"""] snake_case : Dict = downstream_dict["""projector.bias"""] snake_case : Dict = downstream_dict["""model.post_net.linear.weight"""] snake_case : List[Any] = downstream_dict["""model.post_net.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[str]: snake_case : str = WavaVecaForAudioFrameClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : List[Any] = downstream_dict["""model.linear.weight"""] snake_case : str = downstream_dict["""model.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : Any = WavaVecaForXVector.from_pretrained(lowercase ,config=lowercase ) snake_case : str = downstream_dict["""connector.weight"""] snake_case : Optional[Any] = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case : List[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] snake_case : Optional[int] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] snake_case : List[str] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] snake_case : Union[str, Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] snake_case : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] snake_case : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] snake_case : Any = downstream_dict["""objective.W"""] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: snake_case : Tuple = torch.load(lowercase ,map_location="""cpu""" ) snake_case : Any = checkpoint["""Downstream"""] snake_case : List[str] = WavaVecaConfig.from_pretrained(lowercase ) snake_case : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( lowercase ,return_attention_mask=lowercase ,do_normalize=lowercase ) snake_case : str = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case : int = convert_classification(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case : Dict = convert_diarization(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForXVector""" ): snake_case : Optional[Any] = convert_xvector(lowercase ,lowercase ,lowercase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: snake_case : List[str] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCamelCase : int = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
124
import math def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not isinstance(lowercase ,lowercase ): snake_case : List[Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: snake_case : int = f"""Input value of [number={number}] must be > 0""" raise ValueError(lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: snake_case : Any = int(math.log(number // 3 ,2 ) ) + 2 snake_case : List[Any] = [3, 5] snake_case : Optional[int] = 2 snake_case : Union[str, Any] = 3 for block in range(1 ,lowercase ): for _ in range(lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): lowerCamelCase : Optional[Any] = 0 try: lowerCamelCase : Tuple = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
124
1
'''simple docstring''' def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =(boundary[1] - boundary[0]) / steps __lowercase =boundary[0] __lowercase =boundary[1] __lowercase =make_points(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase =0.0 y += (h / 2.0) * f(_lowerCAmelCase ) for i in x_i: # print(i) y += h * f(_lowerCAmelCase ) y += (h / 2.0) * f(_lowerCAmelCase ) return y def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =a + h while x < (b - h): yield x __lowercase =x + h def _A ( _lowerCAmelCase ): # enter your function here """simple docstring""" __lowercase =(x - 0) * (x - 0) return y def _A ( ): """simple docstring""" __lowercase =0.0 # Lower bound of integration __lowercase =1.0 # Upper bound of integration __lowercase =10.0 # define number of steps or resolution __lowercase =[a, b] # define boundary of integration __lowercase =method_a(_lowerCAmelCase , _lowerCAmelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
359
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """spiece.model"""} lowerCamelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowerCamelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowerCamelCase = 0 lowerCamelCase = 1 lowerCamelCase = 2 lowerCamelCase = 3 lowerCamelCase = 4 class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = """left""" def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : Union[str, Any]="</s>" , _lowerCAmelCase : int="<unk>" , _lowerCAmelCase : Union[str, Any]="<sep>" , _lowerCAmelCase : Union[str, Any]="<pad>" , _lowerCAmelCase : Union[str, Any]="<cls>" , _lowerCAmelCase : List[Any]="<mask>" , _lowerCAmelCase : List[Any]=["<eop>", "<eod>"] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : str , ): '''simple docstring''' __lowercase =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase) if isinstance(_lowerCAmelCase , _lowerCAmelCase) else mask_token __lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __lowercase =3 __lowercase =do_lower_case __lowercase =remove_space __lowercase =keep_accents __lowercase =vocab_file __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCAmelCase) @property def __lowerCamelCase ( self : str): '''simple docstring''' return len(self.sp_model) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase ={self.convert_ids_to_tokens(_lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : str): '''simple docstring''' __lowercase =self.__dict__.copy() __lowercase =None return state def __setstate__( self : List[Any] , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __lowercase ={} __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Any): '''simple docstring''' if self.remove_space: __lowercase =' '.join(inputs.strip().split()) else: __lowercase =inputs __lowercase =outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __lowercase =unicodedata.normalize('NFKD' , _lowerCAmelCase) __lowercase =''.join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase)]) if self.do_lower_case: __lowercase =outputs.lower() return outputs def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : str): '''simple docstring''' __lowercase =self.preprocess_text(_lowerCAmelCase) __lowercase =self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase) __lowercase =[] for piece in pieces: if len(_lowerCAmelCase) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __lowercase =self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __lowercase =cur_pieces[1:] else: __lowercase =cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowerCAmelCase) else: new_pieces.append(_lowerCAmelCase) return new_pieces def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int]): '''simple docstring''' return self.sp_model.PieceToId(_lowerCAmelCase) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[str]): '''simple docstring''' return self.sp_model.IdToPiece(_lowerCAmelCase) def __lowerCamelCase ( self : Any , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =''.join(_lowerCAmelCase).replace(_lowerCAmelCase , ' ').strip() return out_string def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase =kwargs.pop('use_source_tokenizer' , _lowerCAmelCase) __lowercase =self.convert_ids_to_tokens(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase =[] __lowercase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase)) __lowercase =[] sub_texts.append(_lowerCAmelCase) else: current_sub_text.append(_lowerCAmelCase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __lowercase =''.join(_lowerCAmelCase) __lowercase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase =self.clean_up_tokenization(_lowerCAmelCase) return clean_text else: return text def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase)) + [1] + ([0] * len(_lowerCAmelCase)) + [1, 1] return ([0] * len(_lowerCAmelCase)) + [1, 1] def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' if not os.path.isdir(_lowerCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __lowercase =os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCAmelCase , 'wb') as fi: __lowercase =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase) return (out_vocab_file,)
48
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = 1 _A = 3 _A = (32, 32) _A = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def lowerCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowerCAmelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _A = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(__UpperCAmelCase ) @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' def extract(*__UpperCAmelCase : str , **__UpperCAmelCase : List[Any] ): class _UpperCAmelCase : """simple docstring""" def __init__( self : str ): '''simple docstring''' _A = torch.ones([0] ) def lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] ): '''simple docstring''' self.pixel_values.to(__UpperCAmelCase ) return self return Out() return extract def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.dummy_cond_unet _A = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _A = 77 _A = self.dummy_image.to(__UpperCAmelCase ) _A = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _A = AltDiffusionImgaImgPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) _A = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCAmelCase ) _A = alt_pipe.to(__UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = "A painting of a squirrel eating a burger" _A = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _A = alt_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__UpperCAmelCase , ) _A = output.images _A = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _A = alt_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.dummy_cond_unet _A = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _A = 77 _A = self.dummy_image.to(__UpperCAmelCase ) # put models in fp16 _A = unet.half() _A = vae.half() _A = bert.half() # make sure here that pndm scheduler skips prk _A = AltDiffusionImgaImgPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) _A = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCAmelCase ) _A = alt_pipe.to(__UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = "A painting of a squirrel eating a burger" _A = torch.manual_seed(0 ) _A = alt_pipe( [prompt] , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=__UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _A = init_image.resize((760, 504) ) _A = "BAAI/AltDiffusion" _A = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCAmelCase , safety_checker=__UpperCAmelCase , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = "A fantasy landscape, trending on artstation" _A = torch.manual_seed(0 ) _A = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCAmelCase , output_type="np" , ) _A = output.images[0] _A = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _A = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : int ): '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _A = init_image.resize((768, 512) ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _A = "BAAI/AltDiffusion" _A = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCAmelCase , safety_checker=__UpperCAmelCase , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = "A fantasy landscape, trending on artstation" _A = torch.manual_seed(0 ) _A = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCAmelCase , output_type="np" , ) _A = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
79
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } __SCREAMING_SNAKE_CASE : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = {} with open(_SCREAMING_SNAKE_CASE , """r""" ) as file: for line_number, line in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = line.strip() if line: snake_case_ = line.split() snake_case_ = line_number snake_case_ = words[0] snake_case_ = value return result def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for attribute in key.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): snake_case_ = PARAM_MAPPING[full_name.split(""".""" )[-1]] snake_case_ = """param""" if weight_type is not None and weight_type != "param": snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape elif weight_type is not None and weight_type == "param": snake_case_ = hf_pointer for attribute in hf_param_name.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = shape_pointer.shape # let's reduce dimension snake_case_ = value[0] else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = value else: snake_case_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): snake_case_ = PARAM_MAPPING[full_name.split(""".""" )[-1]] snake_case_ = """param""" if weight_type is not None and weight_type != "param": snake_case_ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case_ = """.""".join([key, hf_param_name] ) else: snake_case_ = key snake_case_ = value if """lm_head""" in full_key else value[0] __SCREAMING_SNAKE_CASE : int = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[str]: snake_case_ = False for key, mapped_key in MAPPING.items(): snake_case_ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] snake_case_ = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: snake_case_ = """weight_g""" elif "weight_v" in name: snake_case_ = """weight_v""" elif "bias" in name: snake_case_ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = """weight""" else: snake_case_ = None if hf_dict is not None: rename_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return is_used return is_used def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ = True else: snake_case_ = load_wavaveca_layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = full_name.split("""conv_layers.""" )[-1] snake_case_ = name.split(""".""" ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> int: if config_path is not None: snake_case_ = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: snake_case_ = WavaVecaConfig() if is_seq_class: snake_case_ = read_txt_into_dict(_SCREAMING_SNAKE_CASE ) snake_case_ = idalabel snake_case_ = WavaVecaForSequenceClassification(_SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) elif is_finetuned: if dict_path: snake_case_ = Dictionary.load(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.eos_index snake_case_ = len(target_dict.symbols ) snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) snake_case_ = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ = 0 snake_case_ = 1 with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_SCREAMING_SNAKE_CASE , ) snake_case_ = True if config.feat_extract_norm == """layer""" else False snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) snake_case_ = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaForCTC(_SCREAMING_SNAKE_CASE ) else: snake_case_ = WavaVecaForPreTraining(_SCREAMING_SNAKE_CASE ) if is_finetuned or is_seq_class: snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case_ = argparse.Namespace(task="""audio_pretraining""" ) snake_case_ = fairseq.tasks.setup_task(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_SCREAMING_SNAKE_CASE ) snake_case_ = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , not is_finetuned ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() __SCREAMING_SNAKE_CASE : List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
347
0
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCAmelCase_ : Optional[Any] = '''bart''' lowerCAmelCase_ : List[str] = True @st.cache(allow_output_mutation=lowerCAmelCase ) def _lowerCAmelCase ( ): '''simple docstring''' if LOAD_DENSE_INDEX: UpperCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) UpperCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) UpperCAmelCase = qar_model.eval() else: UpperCAmelCase , UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": UpperCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) UpperCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) UpperCAmelCase = sas_model.eval() else: UpperCAmelCase , UpperCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCAmelCase ) def _lowerCAmelCase ( ): '''simple docstring''' if LOAD_DENSE_INDEX: UpperCAmelCase = faiss.StandardGpuResources() UpperCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] UpperCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) UpperCAmelCase = faiss.IndexFlatIP(128 ) UpperCAmelCase = faiss.index_cpu_to_gpu(lowerCAmelCase , 1 , lowerCAmelCase ) wikiaab_gpu_index_flat.add(lowerCAmelCase ) # TODO fix for larger GPU else: UpperCAmelCase , UpperCAmelCase = (None, None) UpperCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCAmelCase ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) UpperCAmelCase = elia["""train_eli5"""] UpperCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCAmelCase ) return (elia_train, eli5_train_q_index) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = load_indexes() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = load_models() lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = load_train_data() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=10 ): '''simple docstring''' UpperCAmelCase = embed_questions_for_retrieval([question] , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = eli5_train_q_index.search(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = [elia_train[int(lowerCAmelCase )] for i in I[0]] return nn_examples def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase="wiki40b" , lowerCAmelCase="dense" , lowerCAmelCase=10 ): '''simple docstring''' if source == "none": UpperCAmelCase , UpperCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": UpperCAmelCase , UpperCAmelCase = query_qa_dense_index( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase , UpperCAmelCase = query_es_index( lowerCAmelCase , lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=lowerCAmelCase , ) UpperCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] UpperCAmelCase = """question: {} context: {}""".format(lowerCAmelCase , lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCAmelCase : None), } ) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=64 , lowerCAmelCase=256 , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=0.95 , lowerCAmelCase=0.8 ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase = qa_sas_generate( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_answers=1 , num_beams=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase , do_sample=lowerCAmelCase , temp=lowerCAmelCase , top_p=lowerCAmelCase , top_k=lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar lowerCAmelCase_ : Union[str, Any] = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' lowerCAmelCase_ : Union[str, Any] = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCAmelCase_ : List[Any] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) lowerCAmelCase_ : Any = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] lowerCAmelCase_ : Optional[Any] = st.sidebar.checkbox('''Demo options''') if demo_options: lowerCAmelCase_ : Union[str, Any] = st.sidebar.selectbox( '''''', action_list, index=3, ) lowerCAmelCase_ : Tuple = action_list.index(action_st) lowerCAmelCase_ : Union[str, Any] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) lowerCAmelCase_ : Optional[Any] = show_type == '''Show full text of passages''' else: lowerCAmelCase_ : Dict = 3 lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Optional[int] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: lowerCAmelCase_ : int = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) lowerCAmelCase_ : int = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) lowerCAmelCase_ : Tuple = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: lowerCAmelCase_ : List[Any] = '''wiki40b''' lowerCAmelCase_ : Optional[Any] = '''dense''' lowerCAmelCase_ : Optional[Any] = '''beam''' lowerCAmelCase_ : List[str] = 2 lowerCAmelCase_ : List[Any] = 6_4 lowerCAmelCase_ : Optional[int] = 2_5_6 lowerCAmelCase_ : int = None lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : str = st.sidebar.checkbox('''Generation options''') if generate_options: lowerCAmelCase_ : Union[str, Any] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) lowerCAmelCase_ : Any = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) lowerCAmelCase_ : Union[str, Any] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) lowerCAmelCase_ : List[Any] = st.sidebar.slider( '''Maximum generation length''', min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": lowerCAmelCase_ : Tuple = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCAmelCase_ : int = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowerCAmelCase_ : Union[str, Any] = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowerCAmelCase_ : List[Any] = None # start main text lowerCAmelCase_ : Any = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] lowerCAmelCase_ : List[str] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCAmelCase_ : Tuple = st.text_input('''Enter your question here:''', '''''') else: lowerCAmelCase_ : List[Any] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": lowerCAmelCase_ , lowerCAmelCase_ : Tuple = make_support(question, source=wiki_source, method='''dense''', n_results=1_0) lowerCAmelCase_ , lowerCAmelCase_ : Any = make_support(question, source=wiki_source, method='''sparse''', n_results=1_0) lowerCAmelCase_ : List[str] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCAmelCase_ : Union[str, Any] = support_list[:1_0] lowerCAmelCase_ : Union[str, Any] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: lowerCAmelCase_ , lowerCAmelCase_ : Tuple = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): lowerCAmelCase_ : List[Any] = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) lowerCAmelCase_ : Union[str, Any] = res[1].strip() if sec_titles == "": lowerCAmelCase_ : List[str] = '''[{}]({})'''.format(res[0], wiki_url) else: lowerCAmelCase_ : int = sec_titles.split(''' & ''') lowerCAmelCase_ : Optional[Any] = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: lowerCAmelCase_ : str = find_nearest_training(question) lowerCAmelCase_ : List[str] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) lowerCAmelCase_ : List[Any] = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) lowerCAmelCase_ : Tuple = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
248
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = math.inf , lowerCAmelCase = -math.inf , lowerCAmelCase = math.inf , lowerCAmelCase = -math.inf , lowerCAmelCase = False , lowerCAmelCase = 100 , lowerCAmelCase = 0.01 , lowerCAmelCase = 1 , ): '''simple docstring''' UpperCAmelCase = False UpperCAmelCase = search_prob UpperCAmelCase = start_temperate UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = None while not search_end: UpperCAmelCase = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase = current_state scores.append(lowerCAmelCase ) iterations += 1 UpperCAmelCase = None UpperCAmelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor UpperCAmelCase = neighbors.pop(lowerCAmelCase ) UpperCAmelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase = picked_neighbor else: UpperCAmelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase = picked_neighbor UpperCAmelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase = True else: UpperCAmelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ : List[str] = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ : int = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ : Optional[Any] = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' return (3 * x**2) - (6 * y) lowerCAmelCase_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ : List[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' ) lowerCAmelCase_ : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' )
248
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase_ = n_correct / len(__a ) return { "accuracy": accuracy, }
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCamelCase__ = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCamelCase__ = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : int ) ->MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : List[List[List[str]]] , lowerCamelCase__ : List[List[str]] , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 4 , ) ->Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCamelCase__ , hypotheses=lowerCamelCase__ , min_len=lowerCamelCase__ , max_len=lowerCamelCase__ ) }
234
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : str = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Any = "longformer" def __init__( self : Dict , lowerCAmelCase : Union[List[int], int] = 512 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 0 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 30522 , lowerCAmelCase : int = 768 , lowerCAmelCase : int = 12 , lowerCAmelCase : int = 12 , lowerCAmelCase : int = 3072 , lowerCAmelCase : str = "gelu" , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 2 , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 1E-12 , lowerCAmelCase : bool = False , **lowerCAmelCase : Union[str, Any] , )-> List[str]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = attention_window UpperCAmelCase = sep_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = onnx_export class UpperCamelCase__( lowerCAmelCase ): def __init__( self : List[Any] , lowerCAmelCase : "PretrainedConfig" , lowerCAmelCase : str = "default" , lowerCAmelCase : "List[PatchingSpec]" = None )-> Tuple: """simple docstring""" super().__init__(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = True @property def a__( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def a__( self : Tuple )-> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCAmelCase = super().outputs if self.task == "default": UpperCAmelCase = {0: '''batch'''} return outputs @property def a__( self : Dict )-> float: """simple docstring""" return 1E-4 @property def a__( self : Tuple )-> int: """simple docstring""" return max(super().default_onnx_opset , 14 ) def a__( self : int , lowerCAmelCase : "PreTrainedTokenizerBase" , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = super().generate_dummy_inputs( preprocessor=lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global UpperCAmelCase = 1 return inputs
91
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
91
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCAmelCase = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
141
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging a_ = logging.get_logger(__name__) def _a( UpperCamelCase__ : nn.ModuleList, UpperCamelCase__ : nn.ModuleList, UpperCamelCase__ : List[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ), f"{len(UpperCamelCase__ )} != {len(UpperCamelCase__ )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) a_ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } a_ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : str ): '''simple docstring''' try: SCREAMING_SNAKE_CASE__ : int =LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" f" {n_student}" ) return list(range(UpperCamelCase__ ) ) def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[int] ): '''simple docstring''' if n_student > n_teacher: raise ValueError(f"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(UpperCamelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _a( UpperCamelCase__ : Union[str, PreTrainedModel], UpperCamelCase__ : Union[str, Path] = "student", UpperCamelCase__ : Union[int, None] = None, UpperCamelCase__ : Union[int, None] = None, UpperCamelCase__ : List[str]=False, UpperCamelCase__ : Any=None, UpperCamelCase__ : Dict=None, **UpperCamelCase__ : List[Any], ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] ='''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(UpperCamelCase__, UpperCamelCase__ ): AutoTokenizer.from_pretrained(UpperCamelCase__ ).save_pretrained(UpperCamelCase__ ) # purely for convenience SCREAMING_SNAKE_CASE__ : str =AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ).eval() else: assert isinstance(UpperCamelCase__, UpperCamelCase__ ), f"teacher must be a model or string got type {type(UpperCamelCase__ )}" SCREAMING_SNAKE_CASE__ : Union[str, Any] =teacher.config.to_diff_dict() try: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: SCREAMING_SNAKE_CASE__ : Dict =teacher_e if d is None: SCREAMING_SNAKE_CASE__ : List[Any] =teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config, '''num_encoder_layers''' ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: SCREAMING_SNAKE_CASE__ : Dict =teacher_e if d is None: SCREAMING_SNAKE_CASE__ : Optional[Any] =teacher_d if hasattr(teacher.config, '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(UpperCamelCase__ ) # Copy weights SCREAMING_SNAKE_CASE__ : Optional[Any] =teacher.config_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =AutoModelForSeqaSeqLM.from_config(UpperCamelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. SCREAMING_SNAKE_CASE__ : Any =student.load_state_dict(teacher.state_dict(), strict=UpperCamelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =list(range(UpperCamelCase__ ) ), list(range(UpperCamelCase__ ) ) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" f" {save_path}" ) student.save_pretrained(UpperCamelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: SCREAMING_SNAKE_CASE__ : List[int] =pick_layers_to_copy(UpperCamelCase__, UpperCamelCase__ ) if d_layers_to_copy is None: SCREAMING_SNAKE_CASE__ : List[int] =pick_layers_to_copy(UpperCamelCase__, UpperCamelCase__ ) try: if hasattr( UpperCamelCase__, '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers, student.prophetnet.encoder.layers, UpperCamelCase__ ) copy_layers(teacher.prophetnet.decoder.layers, student.prophetnet.decoder.layers, UpperCamelCase__ ) else: copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, UpperCamelCase__ ) copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, UpperCamelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block, student.encoder.block, UpperCamelCase__ ) copy_layers(teacher.decoder.block, student.decoder.block, UpperCamelCase__ ) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) SCREAMING_SNAKE_CASE__ : List[str] ={ '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(UpperCamelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
152
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ConvNextFeatureExtractor'] a_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
249
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Any , snake_case_ : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = 0 if start < end: UpperCAmelCase_ = randint(snake_case_ , snake_case_ ) UpperCAmelCase_ = a[end] UpperCAmelCase_ = a[pivot] UpperCAmelCase_ = temp UpperCAmelCase_ , UpperCAmelCase_ = _in_place_partition(snake_case_ , snake_case_ , snake_case_ ) count += _in_place_quick_sort(snake_case_ , snake_case_ , p - 1 ) count += _in_place_quick_sort(snake_case_ , p + 1 , snake_case_ ) return count def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = randint(snake_case_ , snake_case_ ) UpperCAmelCase_ = a[end] UpperCAmelCase_ = a[pivot] UpperCAmelCase_ = temp UpperCAmelCase_ = start - 1 for index in range(snake_case_ , snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCAmelCase_ = new_pivot_index + 1 UpperCAmelCase_ = a[new_pivot_index] UpperCAmelCase_ = a[index] UpperCAmelCase_ = temp UpperCAmelCase_ = a[new_pivot_index + 1] UpperCAmelCase_ = a[end] UpperCAmelCase_ = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_: List[str] =TemporaryFile() SCREAMING_SNAKE_CASE_: int =1_00 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: str =0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_: List[str] =np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_: str =np.load(outfile) SCREAMING_SNAKE_CASE_: List[Any] =len(M) - 1 SCREAMING_SNAKE_CASE_: Dict =_in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
106
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def _lowercase (self : Dict ): UpperCAmelCase_ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCAmelCase_ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCAmelCase_ = model(__a )["last_hidden_state"] UpperCAmelCase_ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. UpperCAmelCase_ = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
106
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = BertTokenizer __UpperCamelCase : Any = BertTokenizerFast __UpperCamelCase : List[Any] = True __UpperCamelCase : Tuple = True __UpperCamelCase : Optional[Any] = filter_non_english def __magic_name__ ( self : int ): """simple docstring""" super().setUp() _A: str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _A: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: int = 'UNwant\u00E9d,running' _A: int = 'unwanted, running' return input_text, output_text def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = self.tokenizer_class(self.vocab_file ) _A: Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __magic_name__ ( self : str ): """simple docstring""" if not self.test_rust_tokenizer: return _A: Optional[Any] = self.get_tokenizer() _A: Any = self.get_rust_tokenizer() _A: int = 'UNwant\u00E9d,running' _A: Tuple = tokenizer.tokenize(__a ) _A: List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) _A: Any = tokenizer.encode(__a , add_special_tokens=__a ) _A: Optional[int] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) _A: Optional[Any] = self.get_rust_tokenizer() _A: Optional[int] = tokenizer.encode(__a ) _A: int = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing _A: Dict = self.get_tokenizer(do_lower_case=__a ) _A: Optional[int] = self.get_rust_tokenizer(do_lower_case=__a ) _A: Dict = 'UNwant\u00E9d,running' _A: int = tokenizer.tokenize(__a ) _A: int = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) _A: Dict = tokenizer.encode(__a , add_special_tokens=__a ) _A: str = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) _A: List[str] = self.get_rust_tokenizer() _A: List[Any] = tokenizer.encode(__a ) _A: Tuple = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Any = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: int = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[Any] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: str = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: List[str] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[Any] = BasicTokenizer(do_lower_case=__a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = BasicTokenizer() _A: List[str] = 'a\n\'ll !!to?\'d of, can\'t.' _A: Union[str, Any] = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(__a ) , __a ) def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _A: Dict = {} for i, token in enumerate(__a ): _A: Tuple = i _A: Union[str, Any] = WordpieceTokenizer(vocab=__a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __magic_name__ ( self : Tuple ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __magic_name__ ( self : Dict ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[int] = self.get_tokenizer() _A: int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) _A: Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=__a ) _A: Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a ) _A: List[str] = tokenizer.build_inputs_with_special_tokens(__a ) _A: Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __magic_name__ ( self : List[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A: str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _A: Dict = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _A: Optional[int] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _A: Optional[int] = tokenizer_r.do_lower_case if hasattr(__a , '''do_lower_case''' ) else False _A: Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Union[str, Any] = ['的', '人', '有'] _A: List[str] = ''.join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A: Any = True _A: Any = self.tokenizer_class.from_pretrained(__a , **__a ) _A: Any = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _A: Tuple = tokenizer_p.encode(__a , add_special_tokens=__a ) _A: Union[str, Any] = tokenizer_r.encode(__a , add_special_tokens=__a ) _A: Dict = tokenizer_r.convert_ids_to_tokens(__a ) _A: Optional[Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _A: Union[str, Any] = False _A: List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _A: Optional[int] = self.tokenizer_class.from_pretrained(__a , **__a ) _A: List[str] = tokenizer_r.encode(__a , add_special_tokens=__a ) _A: List[str] = tokenizer_p.encode(__a , add_special_tokens=__a ) _A: str = tokenizer_r.convert_ids_to_tokens(__a ) _A: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _A: Optional[Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
121
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowercase : List[Any] = 'bart' __lowercase : Union[str, Any] = True @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : List[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __a : Dict = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __a : Optional[int] = qar_model.eval() else: __a , __a : str = (None, None) if MODEL_TYPE == "bart": __a : Union[str, Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __a : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __a : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __a : str = sas_model.eval() else: __a , __a : Tuple = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : Optional[Any] = faiss.StandardGpuResources() __a : Dict = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __a : int = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) __a : int = faiss.IndexFlatIP(128 ) __a : Any = faiss.index_cpu_to_gpu(_SCREAMING_SNAKE_CASE , 1 , _SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(_SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: __a , __a : str = (None, None) __a : Optional[int] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : Dict = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __a : Dict = elia['train_eli5'] __a : Optional[int] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) __a : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) __lowercase , __lowercase , __lowercase : Any = load_indexes() __lowercase , __lowercase , __lowercase , __lowercase : Dict = load_models() __lowercase , __lowercase : int = load_train_data() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str]=10 ): __a : Optional[int] = embed_questions_for_retrieval([question] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a : Union[str, Any] = eli5_train_q_index.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [elia_train[int(_SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str="wiki40b" , _SCREAMING_SNAKE_CASE : List[str]="dense" , _SCREAMING_SNAKE_CASE : Any=10 ): if source == "none": __a , __a : Any = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a : str = query_qa_dense_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a , __a : Union[str, Any] = query_es_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index_name='english_wiki40b_snippets_100w' , n_results=_SCREAMING_SNAKE_CASE , ) __a : Dict = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __a : Any = 'question: {} context: {}'.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _SCREAMING_SNAKE_CASE : None), } ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict=64 , _SCREAMING_SNAKE_CASE : Dict=256 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.9_5 , _SCREAMING_SNAKE_CASE : str=0.8 ): with torch.no_grad(): __a : Union[str, Any] = qa_sas_generate( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=_SCREAMING_SNAKE_CASE , min_len=_SCREAMING_SNAKE_CASE , max_len=_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , temp=_SCREAMING_SNAKE_CASE , top_p=_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE , max_input_length=1_024 , device='cuda:0' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar __lowercase : Optional[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' __lowercase : str = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowercase : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) __lowercase : Dict = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] __lowercase : Union[str, Any] = st.sidebar.checkbox('Demo options') if demo_options: __lowercase : Any = st.sidebar.selectbox( '', action_list, index=3, ) __lowercase : Tuple = action_list.index(action_st) __lowercase : Tuple = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) __lowercase : List[Any] = show_type == 'Show full text of passages' else: __lowercase : int = 3 __lowercase : str = True __lowercase : Tuple = st.sidebar.checkbox('Retrieval options') if retrieval_options: __lowercase : List[Any] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: __lowercase : str = 'wiki40b' __lowercase : List[Any] = 'dense' __lowercase : Dict = 'beam' __lowercase : Optional[int] = 2 __lowercase : List[str] = 64 __lowercase : Tuple = 2_56 __lowercase : List[str] = None __lowercase : Tuple = None __lowercase : List[Any] = st.sidebar.checkbox('Generation options') if generate_options: __lowercase : Optional[Any] = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) __lowercase : List[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) __lowercase : Tuple = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) __lowercase : int = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": __lowercase : Any = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowercase : Dict = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowercase : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowercase : List[str] = None # start main text __lowercase : int = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] __lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowercase : Any = st.text_input('Enter your question here:', '') else: __lowercase : Any = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": __lowercase , __lowercase : Optional[int] = make_support(question, source=wiki_source, method='dense', n_results=10) __lowercase , __lowercase : List[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) __lowercase : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowercase : str = support_list[:10] __lowercase : Optional[int] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: __lowercase , __lowercase : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowercase , __lowercase : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): __lowercase : str = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) __lowercase : Any = res[1].strip() if sec_titles == "": __lowercase : List[str] = '[{}]({})'.format(res[0], wiki_url) else: __lowercase : Union[str, Any] = sec_titles.split(' & ') __lowercase : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: __lowercase : str = find_nearest_training(question) __lowercase : Optional[int] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) __lowercase : Any = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) __lowercase : List[Any] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
27
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def UpperCamelCase( lowercase_ ) -> List[Any]: '''simple docstring''' snake_case_ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: snake_case_ = 128 elif "12-12" in model_name: snake_case_ = 12 snake_case_ = 12 elif "14-14" in model_name: snake_case_ = 14 snake_case_ = 14 elif "16-16" in model_name: snake_case_ = 16 snake_case_ = 16 else: raise ValueError("""Model not supported""" ) snake_case_ = """huggingface/label-files""" if "speech-commands" in model_name: snake_case_ = 35 snake_case_ = """speech-commands-v2-id2label.json""" else: snake_case_ = 527 snake_case_ = """audioset-id2label.json""" snake_case_ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ = {int(lowercase_ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def UpperCamelCase( lowercase_ ) -> Optional[int]: '''simple docstring''' if "module.v" in name: snake_case_ = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: snake_case_ = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: snake_case_ = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: snake_case_ = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: snake_case_ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: snake_case_ = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: snake_case_ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case_ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case_ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case_ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case_ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case_ = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: snake_case_ = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: snake_case_ = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: snake_case_ = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def UpperCamelCase( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: snake_case_ = key.split(""".""" ) snake_case_ = int(key_split[3] ) snake_case_ = config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = val return orig_state_dict def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' snake_case_ = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) @torch.no_grad() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=False ) -> List[Any]: '''simple docstring''' snake_case_ = get_audio_spectrogram_transformer_config(lowercase_ ) snake_case_ = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict snake_case_ = model_name_to_url[model_name] snake_case_ = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) # remove some keys remove_keys(lowercase_ ) # rename some keys snake_case_ = convert_state_dict(lowercase_ , lowercase_ ) # load 🤗 model snake_case_ = ASTForAudioClassification(lowercase_ ) model.eval() model.load_state_dict(lowercase_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 snake_case_ = -4.2_67_73_93 if """speech-commands""" not in model_name else -6.84_59_78 snake_case_ = 4.5_68_99_74 if """speech-commands""" not in model_name else 5.5_65_45_26 snake_case_ = 1024 if """speech-commands""" not in model_name else 128 snake_case_ = ASTFeatureExtractor(mean=lowercase_ , std=lowercase_ , max_length=lowercase_ ) if "speech-commands" in model_name: snake_case_ = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) snake_case_ = dataset[0]["""audio"""]["""array"""] else: snake_case_ = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) snake_case_ , snake_case_ = torchaudio.load(lowercase_ ) snake_case_ = waveform.squeeze().numpy() snake_case_ = feature_extractor(lowercase_ , sampling_rate=16000 , return_tensors="""pt""" ) # forward pass snake_case_ = model(**lowercase_ ) snake_case_ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": snake_case_ = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": snake_case_ = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": snake_case_ = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": snake_case_ = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": snake_case_ = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": snake_case_ = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": snake_case_ = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": snake_case_ = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(lowercase_ ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase_ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=True , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) -> Union[str, Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_multiple_size snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = weight_tying snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def lowerCAmelCase_ ( self ) -> str: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = GPTNeoXJapaneseModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase ) snake_case_ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = True snake_case_ = GPTNeoXJapaneseModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: snake_case_ = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: snake_case_ = True snake_case_ = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase ) snake_case_ = output_from_no_past["""hidden_states"""][0] snake_case_ = model( lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["""hidden_states"""][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( __snake_case , __snake_case , unittest.TestCase ): lowerCamelCase_ : Any = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase_ : str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase_ : Any = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase_ : Tuple = False lowerCamelCase_ : Dict = False lowerCamelCase_ : Tuple = False lowerCamelCase_ : Optional[int] = False def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ = GPTNeoXJapaneseModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> str: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> str: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: # This regression test was failing with PyTorch < 1.3 snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case_ = """abeja/gpt-neox-japanese-2.7b""" snake_case_ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] snake_case_ = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] snake_case_ = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase ) snake_case_ = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase ) snake_case_ = [] for prompt in prompts: snake_case_ = tokenizer(lowerCamelCase , return_tensors="""pt""" ).input_ids snake_case_ = model.generate(lowerCamelCase , max_length=50 ) snake_case_ = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase , lowerCamelCase )
34
1