code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def lowerCAmelCase__ ( _UpperCamelCase : Iterable[str] , _UpperCamelCase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" snake_case = iter(_UpperCamelCase ) while True: snake_case = tuple(itertools.islice(_UpperCamelCase , _UpperCamelCase ) ) if not chunk: return yield chunk def lowerCAmelCase__ ( _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) snake_case = '' if len(_UpperCamelCase ) < 2: return dirty for i in range(len(_UpperCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_UpperCamelCase ) & 1: clean += "X" return clean def lowerCAmelCase__ ( _UpperCamelCase : str ) -> list[str]: """simple docstring""" snake_case = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler snake_case = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_UpperCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_UpperCamelCase ) return table def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = generate_table(_UpperCamelCase ) snake_case = prepare_input(_UpperCamelCase ) snake_case = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCamelCase , 2 ): snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = generate_table(_UpperCamelCase ) snake_case = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCamelCase , 2 ): snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
150
"""simple docstring""" import argparse import copy def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> str: """simple docstring""" snake_case = {} with open(_UpperCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[1], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[0], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" with open(_UpperCamelCase ) as f: snake_case = f.read(1 ) snake_case = start_node snake_case = [] snake_case = start_node snake_case = 0 while visiting not in first_solution: snake_case = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_UpperCamelCase ) and k[0] not in first_solution: snake_case = k[1] snake_case = k[0] first_solution.append(_UpperCamelCase ) snake_case = distance_of_first_solution + int(_UpperCamelCase ) snake_case = best_node first_solution.append(_UpperCamelCase ) snake_case = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case = [] for n in solution[1:-1]: snake_case = solution.index(_UpperCamelCase ) for kn in solution[1:-1]: snake_case = solution.index(_UpperCamelCase ) if n == kn: continue snake_case = copy.deepcopy(_UpperCamelCase ) snake_case = kn snake_case = n snake_case = 0 for k in _tmp[:-1]: snake_case = _tmp[_tmp.index(_UpperCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case = distance + int(i[1] ) _tmp.append(_UpperCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _UpperCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" snake_case = 1 snake_case = first_solution snake_case = [] snake_case = distance_of_first_solution snake_case = solution while count <= iters: snake_case = find_neighborhood(_UpperCamelCase , _UpperCamelCase ) snake_case = 0 snake_case = neighborhood[index_of_best_solution] snake_case = len(_UpperCamelCase ) - 1 snake_case = False while not found: snake_case = 0 while i < len(_UpperCamelCase ): if best_solution[i] != solution[i]: snake_case = best_solution[i] snake_case = solution[i] break snake_case = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case = True snake_case = best_solution[:-1] snake_case = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case = cost snake_case = solution else: snake_case = index_of_best_solution + 1 snake_case = neighborhood[index_of_best_solution] if len(_UpperCamelCase ) >= size: tabu_list.pop(0 ) snake_case = count + 1 return best_solution_ever, best_cost def lowerCAmelCase__ ( _UpperCamelCase : int=None ) -> List[str]: """simple docstring""" snake_case = generate_neighbours(args.File ) snake_case ,snake_case = generate_first_solution( args.File , _UpperCamelCase ) snake_case ,snake_case = tabu_search( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
150
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _snake_case = get_tests_dir('fixtures') class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = mock.Mock() _lowercase : Any = 500 _lowercase : Optional[int] = {} _lowercase : List[str] = HTTPError _lowercase : Optional[Any] = {} # Download this model to make sure it's in the cache. _lowercase : Optional[Any] = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_a ) as mock_head: _lowercase : int = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) _lowercase : List[str] = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(_a ) @is_staging_test class a__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls ): """simple docstring""" _lowercase : Optional[int] = TOKEN HfFolder.save_token(_a ) @classmethod def _lowerCamelCase ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = ViTImageProcessor.from_pretrained(_a ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) _lowercase : List[str] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _a , repo_id="test-image-processor" , push_to_hub=_a , use_auth_token=self._token ) _lowercase : Dict = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = ViTImageProcessor.from_pretrained(_a ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) _lowercase : Tuple = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _a , repo_id="valid_org/test-image-processor-org" , push_to_hub=_a , use_auth_token=self._token ) _lowercase : List[str] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def _lowerCamelCase ( self ): """simple docstring""" CustomImageProcessor.register_for_auto_class() _lowercase : str = CustomImageProcessor.from_pretrained(_a ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _lowercase : Dict = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=_a ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
361
'''simple docstring''' from math import pi, sqrt, tan def _A ( snake_case ) -> float: if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def _A ( snake_case , snake_case , snake_case ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _A ( snake_case ) -> float: if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def _A ( snake_case ) -> float: if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def _A ( snake_case , snake_case ) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _A ( snake_case , snake_case , snake_case ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) _lowercase : Union[str, Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _A ( snake_case , snake_case ) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def _A ( snake_case , snake_case ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(snake_case , 2 ) * torus_radius * tube_radius def _A ( snake_case , snake_case ) -> float: if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def _A ( snake_case ) -> float: if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def _A ( snake_case , snake_case ) -> float: if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def _A ( snake_case , snake_case , snake_case ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) _lowercase : Any = (sidea + sidea + sidea) / 2 _lowercase : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _A ( snake_case , snake_case ) -> float: if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def _A ( snake_case , snake_case , snake_case ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def _A ( snake_case ) -> float: if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def _A ( snake_case , snake_case ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def _A ( snake_case , snake_case ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def _A ( snake_case , snake_case ) -> float: if not isinstance(snake_case , snake_case ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
199
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys SCREAMING_SNAKE_CASE :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split SCREAMING_SNAKE_CASE :Tuple = datasets.load_iris() SCREAMING_SNAKE_CASE :Dict = np.array(data['data']) SCREAMING_SNAKE_CASE :Optional[int] = np.array(data['target']) SCREAMING_SNAKE_CASE :List[str] = data['target_names'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = train_test_split(X, y) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(a_ ) - np.array(a_ ) ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_=5 ) -> Dict: """simple docstring""" __A = zip(a_ , a_ ) # List of distances of all points from the point to be classified __A = [] for data_point in data: __A = euclidean_distance(data_point[0] , a_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __A = [i[1] for i in sorted(a_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __A = Counter(a_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
124
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCAmelCase : str = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A__ = 12_8022 A__ = 12_8028 @require_sentencepiece class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[int] = MaMaaaTokenizer __lowerCAmelCase : Tuple = False __lowerCAmelCase : Any = False __lowerCAmelCase : Union[str, Any] = True def __lowerCamelCase ( self :int ): super().setUp() snake_case__ : Tuple = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case__ : Optional[Any] = dict(zip(__lowercase ,range(len(__lowercase ) ) ) ) snake_case__ : List[Any] = Path(self.tmpdirname ) save_json(__lowercase ,save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__lowercase ,save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) snake_case__ : str = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :Optional[int] ,**__lowercase :Optional[int] ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Tuple ): return ( "This is a test", "This is a test", ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = '''</s>''' snake_case__ : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) ,__lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Dict = self.get_tokenizer() snake_case__ : Union[str, Any] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''</s>''' ) self.assertEqual(vocab_keys[1] ,'''<unk>''' ) self.assertEqual(vocab_keys[-1] ,'''<s>''' ) self.assertEqual(len(__lowercase ) ,tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def __lowerCamelCase ( self :List[Any] ): pass def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) ,[2, 3, 4, 5, 6] ,) snake_case__ : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_string(__lowercase ) self.assertEqual(__lowercase ,'''This is a test''' ) @slow def __lowerCamelCase ( self :Union[str, Any] ): # fmt: off snake_case__ : Tuple = {'''input_ids''': [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase ,model_name='''facebook/m2m100_418M''' ,revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' ,) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = """facebook/m2m100_418M""" __lowerCAmelCase : Union[str, Any] = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __lowerCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __lowerCAmelCase : Dict = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __lowerCamelCase ( cls :Union[str, Any] ): snake_case__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''en''' ,tgt_lang='''fr''' ) snake_case__ : Union[str, Any] = 1 return cls def __lowerCamelCase ( self :Tuple ): self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) ,1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) ,1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) ,1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) ,1_2_8_0_6_3 ) def __lowerCamelCase ( self :Any ): snake_case__ : Optional[int] = self.tokenizer.get_vocab() self.assertEqual(len(__lowercase ) ,self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] ,3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Optional[int] = '''en''' snake_case__ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,__lowercase ) def __lowerCamelCase ( self :List[Any] ): self.assertIn(__lowercase ,self.tokenizer.all_special_ids ) # fmt: off snake_case__ : int = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on snake_case__ : Tuple = self.tokenizer.decode(__lowercase ,skip_special_tokens=__lowercase ) snake_case__ : Optional[int] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertNotIn(self.tokenizer.eos_token ,__lowercase ) def __lowerCamelCase ( self :Any ): snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : List[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__lowercase ) snake_case__ : Any = MaMaaaTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.lang_token_to_id ,__lowercase ) @require_torch def __lowerCamelCase ( self :str ): snake_case__ : Dict = '''en''' snake_case__ : List[Any] = '''fr''' snake_case__ : Union[str, Any] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=__lowercase ,return_tensors='''pt''' ) snake_case__ : Optional[int] = shift_tokens_right( batch['''labels'''] ,self.tokenizer.pad_token_id ,self.tokenizer.eos_token_id ) for k in batch: snake_case__ : Optional[int] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[Any] = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) snake_case__ : Any = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) @require_torch def __lowerCamelCase ( self :Tuple ): snake_case__ : Union[str, Any] = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case__ : List[str] = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCamelCase ( self :Tuple ): snake_case__ : str = self.tokenizer._build_translation_inputs('''A test''' ,return_tensors='''pt''' ,src_lang='''en''' ,tgt_lang='''ar''' ) self.assertEqual( nested_simplify(__lowercase ) ,{ # en_XX, A, test, EOS '''input_ids''': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 1_2_8_0_0_6, } ,)
44
A__ = 0 # The first color of the flag. A__ = 1 # The second color of the flag. A__ = 2 # The third color of the flag. A__ = (red, white, blue) def _lowerCAmelCase ( __lowerCAmelCase ) -> list: """simple docstring""" if not sequence: return [] if len(__lowerCAmelCase ) == 1: return list(__lowerCAmelCase ) snake_case__ : List[Any] = 0 snake_case__ : str = len(__lowerCAmelCase ) - 1 snake_case__ : List[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: snake_case__ , snake_case__ : List[Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: snake_case__ , snake_case__ : int = sequence[high], sequence[mid] high -= 1 else: snake_case__ : List[Any] = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() A__ = input('''Enter numbers separated by commas:\n''').strip() A__ = [int(item.strip()) for item in user_input.split(''',''')] print(f"""{dutch_national_flag_sort(unsorted)}""")
44
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowerCAmelCase : Tuple = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
169
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] ): for attribute in key.split('.' ): lowercase_ : Tuple = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase_ : List[Any] = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).shape else: lowercase_ : str = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ : Optional[Any] = value elif weight_type == "weight_g": lowercase_ : Optional[Any] = value elif weight_type == "weight_v": lowercase_ : Optional[Any] = value elif weight_type == "bias": lowercase_ : Union[str, Any] = value else: lowercase_ : Any = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ : Optional[int] = [] lowercase_ : Optional[int] = fairseq_model.state_dict() lowercase_ : List[str] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase_ : List[str] = False if "conv_layers" in name: load_conv_layer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) lowercase_ : str = True else: for key, mapped_key in MAPPING.items(): lowercase_ : int = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowercase_ : str = True if "*" in mapped_key: lowercase_ : int = name.split(__SCREAMING_SNAKE_CASE )[0].split('.' )[-2] lowercase_ : Optional[Any] = mapped_key.replace('*' , __SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase_ : Any = 'weight_g' elif "weight_v" in name: lowercase_ : Tuple = 'weight_v' elif "weight" in name: lowercase_ : int = 'weight' elif "bias" in name: lowercase_ : List[Any] = 'bias' else: lowercase_ : Optional[Any] = None set_recursively(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(__SCREAMING_SNAKE_CASE ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Dict = full_name.split('conv_layers.' )[-1] lowercase_ : int = name.split('.' ) lowercase_ : Any = int(items[0] ) lowercase_ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ : List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : str = SEWConfig() if is_finetuned: lowercase_ : List[Any] = model.wav_encoder.wav_model.cfg else: lowercase_ : Tuple = model.cfg lowercase_ : Any = fs_config.conv_bias lowercase_ : Optional[Any] = eval(fs_config.conv_feature_layers ) lowercase_ : int = [x[0] for x in conv_layers] lowercase_ : Any = [x[1] for x in conv_layers] lowercase_ : Optional[Any] = [x[2] for x in conv_layers] lowercase_ : Tuple = 'gelu' lowercase_ : str = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' lowercase_ : int = 0.0 lowercase_ : Any = fs_config.activation_fn.name lowercase_ : Tuple = fs_config.encoder_embed_dim lowercase_ : int = 0.02 lowercase_ : Union[str, Any] = fs_config.encoder_ffn_embed_dim lowercase_ : Tuple = 1E-5 lowercase_ : Union[str, Any] = fs_config.encoder_layerdrop lowercase_ : Tuple = fs_config.encoder_attention_heads lowercase_ : List[str] = fs_config.conv_pos_groups lowercase_ : Union[str, Any] = fs_config.conv_pos lowercase_ : str = len(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = fs_config.encoder_layers lowercase_ : str = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase_ : Dict = model.cfg lowercase_ : Dict = fs_config.final_dropout lowercase_ : Dict = fs_config.layerdrop lowercase_ : Optional[int] = fs_config.activation_dropout lowercase_ : Any = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase_ : List[Any] = fs_config.attention_dropout lowercase_ : Tuple = fs_config.dropout_input lowercase_ : List[Any] = fs_config.dropout lowercase_ : Any = fs_config.mask_channel_length lowercase_ : str = fs_config.mask_channel_prob lowercase_ : Optional[Any] = fs_config.mask_length lowercase_ : Tuple = fs_config.mask_prob lowercase_ : List[Any] = 'Wav2Vec2FeatureExtractor' lowercase_ : Union[str, Any] = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=True ): if is_finetuned: lowercase_ , lowercase_ , lowercase_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase_ : List[str] = SEWConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Tuple = convert_config(model[0] , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = model[0].eval() lowercase_ : List[Any] = True if config.feat_extract_norm == 'layer' else False lowercase_ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , ) if is_finetuned: if dict_path: lowercase_ : Dict = Dictionary.load(__SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ : str = target_dict.pad_index lowercase_ : Union[str, Any] = target_dict.bos_index lowercase_ : Tuple = target_dict.pad_index lowercase_ : List[Any] = target_dict.bos_index lowercase_ : Any = target_dict.eos_index lowercase_ : str = len(target_dict.symbols ) lowercase_ : Optional[Any] = os.path.join(__SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__SCREAMING_SNAKE_CASE ) ) return os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = WavaVecaCTCTokenizer( __SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__SCREAMING_SNAKE_CASE , ) lowercase_ : Tuple = WavaVecaProcessor(feature_extractor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = SEWForCTC(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Any = SEWModel(__SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) recursively_load_weights(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
213
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase : Dict = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
191
from __future__ import annotations import time _lowerCamelCase : Tuple = list[tuple[int, int]] _lowerCamelCase : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCamelCase : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCamelCase : """simple docstring""" def __init__( self : Optional[int], _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : Node | None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = pos_x SCREAMING_SNAKE_CASE__ : List[Any] = pos_y SCREAMING_SNAKE_CASE__ : str = (pos_y, pos_x) SCREAMING_SNAKE_CASE__ : Dict = goal_x SCREAMING_SNAKE_CASE__ : List[Any] = goal_y SCREAMING_SNAKE_CASE__ : str = parent class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : tuple[int, int], _UpperCAmelCase : tuple[int, int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = Node(start[1], start[0], goal[1], goal[0], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Node(goal[1], goal[0], goal[1], goal[0], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = [self.start] SCREAMING_SNAKE_CASE__ : str = False def A_ ( self : Dict ) -> Path | None: """simple docstring""" while self.node_queue: SCREAMING_SNAKE_CASE__ : int = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE__ : Dict = True return self.retrace_path(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def A_ ( self : Any, _UpperCAmelCase : Node ) -> list[Node]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = [] for action in delta: SCREAMING_SNAKE_CASE__ : str = parent.pos_x + action[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase, _UpperCAmelCase, self.target.pos_y, self.target.pos_x, _UpperCAmelCase ) ) return successors def A_ ( self : List[str], _UpperCAmelCase : Node | None ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = node SCREAMING_SNAKE_CASE__ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_node.parent path.reverse() return path class lowerCamelCase : """simple docstring""" def __init__( self : List[str], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = BreadthFirstSearch(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = BreadthFirstSearch(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = False def A_ ( self : List[str] ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE__ : int = self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE__ : List[Any] = True return self.retrace_bidirectional_path( _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = current_bwd_node SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_fwd_node SCREAMING_SNAKE_CASE__ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def A_ ( self : int, _UpperCAmelCase : Node, _UpperCAmelCase : Node ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.fwd_bfs.retrace_path(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _lowerCamelCase : Optional[Any] = (0, 0) _lowerCamelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _lowerCamelCase : Dict = time.time() _lowerCamelCase : List[Any] = BreadthFirstSearch(init, goal) _lowerCamelCase : Optional[Any] = bfs.search() _lowerCamelCase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) _lowerCamelCase : str = time.time() _lowerCamelCase : Dict = BidirectionalBreadthFirstSearch(init, goal) _lowerCamelCase : Optional[Any] = bd_bfs.search() _lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
191
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING A__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __lowerCAmelCase ( lowerCamelCase__ ): def __init__( self , **_snake_case ): """simple docstring""" super().__init__(**_snake_case ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(_snake_case ) def __call__( self , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" if "text_queries" in kwargs: _lowerCAmelCase = kwargs.pop("""text_queries""" ) if isinstance(_snake_case , (str, Image.Image) ): _lowerCAmelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: _lowerCAmelCase = image _lowerCAmelCase = super().__call__(_snake_case , **_snake_case ) return results def snake_case ( self , **_snake_case ): """simple docstring""" _lowerCAmelCase = {} if "threshold" in kwargs: _lowerCAmelCase = kwargs["""threshold"""] if "top_k" in kwargs: _lowerCAmelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = load_image(inputs["""image"""] ) _lowerCAmelCase = inputs["""candidate_labels"""] if isinstance(_snake_case , _snake_case ): _lowerCAmelCase = candidate_labels.split(""",""" ) _lowerCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_snake_case ): _lowerCAmelCase = self.tokenizer(_snake_case , return_tensors=self.framework ) _lowerCAmelCase = self.image_processor(_snake_case , return_tensors=self.framework ) yield { "is_last": i == len(_snake_case ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""target_size""" ) _lowerCAmelCase = model_inputs.pop("""candidate_label""" ) _lowerCAmelCase = model_inputs.pop("""is_last""" ) _lowerCAmelCase = self.model(**_snake_case ) _lowerCAmelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def snake_case ( self , _snake_case , _snake_case=0.1 , _snake_case=None ): """simple docstring""" _lowerCAmelCase = [] for model_output in model_outputs: _lowerCAmelCase = model_output["""candidate_label"""] _lowerCAmelCase = BaseModelOutput(_snake_case ) _lowerCAmelCase = self.image_processor.post_process_object_detection( outputs=_snake_case , threshold=_snake_case , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): _lowerCAmelCase = outputs["""scores"""][index].item() _lowerCAmelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) _lowerCAmelCase = {"""score""": score, """label""": label, """box""": box} results.append(_snake_case ) _lowerCAmelCase = sorted(_snake_case , key=lambda _snake_case : x["score"] , reverse=_snake_case ) if top_k: _lowerCAmelCase = results[:top_k] return results def snake_case ( self , _snake_case ): """simple docstring""" if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = box.int().tolist() _lowerCAmelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
82
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE_:List[Any] = TypeVar("""KEY""") SCREAMING_SNAKE_CASE_:Dict = TypeVar("""VAL""") @dataclass(frozen=SCREAMING_SNAKE_CASE__ , slots=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( Generic[KEY, VAL] ): '''simple docstring''' __lowerCamelCase : KEY __lowerCamelCase : VAL class SCREAMING_SNAKE_CASE__ ( _Item ): '''simple docstring''' def __init__( self ): super().__init__(lowerCamelCase__, lowerCamelCase__ ) def __bool__( self ): return False SCREAMING_SNAKE_CASE_:Optional[Any] = _DeletedItem() class SCREAMING_SNAKE_CASE__ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self, lowerCamelCase__ = 8, lowerCamelCase__ = 0.75 ): A : List[str] = initial_block_size A : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 A : Dict = capacity_factor A : Optional[Any] = 0 def _lowerCAmelCase ( self, lowerCamelCase__ ): return hash(lowerCamelCase__ ) % len(self._buckets ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return (ind + 1) % len(self._buckets ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : List[Any] = self._buckets[ind] if not stored: A : Optional[int] = _Item(lowerCamelCase__, lowerCamelCase__ ) self._len += 1 return True elif stored.key == key: A : int = _Item(lowerCamelCase__, lowerCamelCase__ ) return True else: return False def _lowerCAmelCase ( self ): A : Union[str, Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase__ ) def _lowerCAmelCase ( self ): if len(self._buckets ) <= self._initial_block_size: return False A : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Dict = self._buckets A : Optional[Any] = [None] * new_size A : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def _lowerCAmelCase ( self ): self._resize(len(self._buckets ) * 2 ) def _lowerCAmelCase ( self ): self._resize(len(self._buckets ) // 2 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Union[str, Any] = self._get_bucket_index(lowerCamelCase__ ) for _ in range(len(self._buckets ) ): yield ind A : Dict = self._get_next_ind(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): for ind in self._iterate_buckets(lowerCamelCase__ ): if self._try_set(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): break def __setitem__( self, lowerCamelCase__, lowerCamelCase__ ): if self._is_full(): self._size_up() self._add_item(lowerCamelCase__, lowerCamelCase__ ) def __delitem__( self, lowerCamelCase__ ): for ind in self._iterate_buckets(lowerCamelCase__ ): A : Tuple = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase__ ) if item is _deleted: continue if item.key == key: A : int = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self, lowerCamelCase__ ): for ind in self._iterate_buckets(lowerCamelCase__ ): A : int = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase__ ) def __len__( self ): return self._len def __iter__( self ): yield from (item.key for item in self._buckets if item) def __repr__( self ): A : Union[str, Any] = """ ,""".join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
116
0
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCAmelCase = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], ) -> List[str]: UpperCamelCase : Optional[int] = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase : List[Any] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : int = num_channels UpperCamelCase : int = image_size UpperCamelCase : List[Any] = min_resolution UpperCamelCase : int = max_resolution UpperCamelCase : Any = do_resize UpperCamelCase : Optional[int] = size UpperCamelCase : List[str] = do_normalize UpperCamelCase : Optional[Any] = image_mean UpperCamelCase : Tuple = image_std def snake_case_ ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = ViTImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self ) @property def snake_case_ ( self ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'size' ) ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> int: # Initialize image_processor UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : List[str] = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, Image.Image ) # Test not batched input UpperCamelCase : str = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) # Test batched UpperCamelCase : Optional[Any] = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) def snake_case_ ( self ) -> str: # Initialize image_processor UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_, numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, np.ndarray ) # Test not batched input UpperCamelCase : Dict = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) # Test batched UpperCamelCase : Dict = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) def snake_case_ ( self ) -> Tuple: # Initialize image_processor UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : int = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_, torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) # Test not batched input UpperCamelCase : Optional[int] = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) # Test batched UpperCamelCase : int = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), )
103
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float: '''simple docstring''' UpperCAmelCase_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(snake_case_ )] ) UpperCAmelCase_ = np.array(snake_case_ ) UpperCAmelCase_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , snake_case_ ) ) , x.transpose() ) , snake_case_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float: '''simple docstring''' UpperCAmelCase_ = (1, 2, 1) UpperCAmelCase_ = (1, 1, 0, 7) UpperCAmelCase_ = SARIMAX( snake_case_ , exog=snake_case_ , order=snake_case_ , seasonal_order=snake_case_ ) UpperCAmelCase_ = model.fit(disp=snake_case_ , maxiter=6_00 , method="nm" ) UpperCAmelCase_ = model_fit.predict(1 , len(snake_case_ ) , exog=[test_match] ) return result[0] def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float: '''simple docstring''' UpperCAmelCase_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(snake_case_ , snake_case_ ) UpperCAmelCase_ = regressor.predict(snake_case_ ) return y_pred[0] def lowerCAmelCase_ ( snake_case_ : list ) -> float: '''simple docstring''' train_user.sort() UpperCAmelCase_ = np.percentile(snake_case_ , 25 ) UpperCAmelCase_ = np.percentile(snake_case_ , 75 ) UpperCAmelCase_ = qa - qa UpperCAmelCase_ = qa - (iqr * 0.1) return low_lim def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : float ) -> bool: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i in list_vote: if i > actual_result: UpperCAmelCase_ = not_safe + 1 else: if abs(abs(snake_case_ ) - abs(snake_case_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) SCREAMING_SNAKE_CASE_: List[Any] =[[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] SCREAMING_SNAKE_CASE_: Dict =pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) SCREAMING_SNAKE_CASE_: Any =Normalizer().fit_transform(data_input_df.values) # split data SCREAMING_SNAKE_CASE_: List[str] =normalize_df[:, 2].tolist() SCREAMING_SNAKE_CASE_: str =normalize_df[:, 0].tolist() SCREAMING_SNAKE_CASE_: str =normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) SCREAMING_SNAKE_CASE_: Dict =normalize_df[:, [1, 2]].tolist() SCREAMING_SNAKE_CASE_: Tuple =x[: len(x) - 1] SCREAMING_SNAKE_CASE_: List[Any] =x[len(x) - 1 :] # for linear regression & sarimax SCREAMING_SNAKE_CASE_: int =total_date[: len(total_date) - 1] SCREAMING_SNAKE_CASE_: Dict =total_user[: len(total_user) - 1] SCREAMING_SNAKE_CASE_: Tuple =total_match[: len(total_match) - 1] SCREAMING_SNAKE_CASE_: Optional[int] =total_date[len(total_date) - 1 :] SCREAMING_SNAKE_CASE_: str =total_user[len(total_user) - 1 :] SCREAMING_SNAKE_CASE_: int =total_match[len(total_match) - 1 :] # voting system with forecasting SCREAMING_SNAKE_CASE_: Optional[int] =[ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data SCREAMING_SNAKE_CASE_: Optional[int] ='' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_: Optional[int] =Lock() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): UpperCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*snake_case_ ) UpperCAmelCase_ = odd_even_transposition(snake_case_ ) print("Sorted List\n" ) print(*snake_case_ ) if __name__ == "__main__": main()
1
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCAmelCase_ : '''simple docstring''' def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase : Dict = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase : List[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCamelCase : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase : List[Any] = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.414 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCamelCase : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCamelCase : Optional[int] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCamelCase : Optional[int] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Any = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = inputs['''prompt'''] UpperCamelCase : Optional[Any] = inputs['''generator'''] UpperCamelCase : int = inputs['''num_inference_steps'''] UpperCamelCase : Union[str, Any] = inputs['''output_type'''] if "image" in inputs: UpperCamelCase : Tuple = inputs['''image'''] else: UpperCamelCase : Dict = None if "mask_image" in inputs: UpperCamelCase : Optional[Any] = inputs['''mask_image'''] else: UpperCamelCase : Optional[int] = None if "original_image" in inputs: UpperCamelCase : List[Any] = inputs['''original_image'''] else: UpperCamelCase : str = None UpperCamelCase , UpperCamelCase : Tuple = pipe.encode_prompt(__SCREAMING_SNAKE_CASE ) # inputs with prompt converted to embeddings UpperCamelCase : Tuple = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCamelCase : Dict = image if mask_image is not None: UpperCamelCase : Tuple = mask_image if original_image is not None: UpperCamelCase : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = pipe(**__SCREAMING_SNAKE_CASE )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = self.pipeline_class.from_pretrained(__SCREAMING_SNAKE_CASE ) pipe_loaded.to(__SCREAMING_SNAKE_CASE ) pipe_loaded.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCamelCase : Dict = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = inputs['''generator'''] UpperCamelCase : List[str] = inputs['''num_inference_steps'''] UpperCamelCase : str = inputs['''output_type'''] # inputs with prompt converted to embeddings UpperCamelCase : int = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCamelCase : Tuple = image if mask_image is not None: UpperCamelCase : Optional[int] = mask_image if original_image is not None: UpperCamelCase : List[Any] = original_image UpperCamelCase : Any = pipe_loaded(**__SCREAMING_SNAKE_CASE )[0] UpperCamelCase : str = np.abs(to_np(__SCREAMING_SNAKE_CASE ) - to_np(__SCREAMING_SNAKE_CASE ) ).max() self.assertLess(__SCREAMING_SNAKE_CASE , 1e-4 ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_dummy_components() UpperCamelCase : Dict = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = pipe(**__SCREAMING_SNAKE_CASE )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = self.pipeline_class.from_pretrained(__SCREAMING_SNAKE_CASE ) pipe_loaded.to(__SCREAMING_SNAKE_CASE ) pipe_loaded.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCamelCase : Optional[int] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = pipe_loaded(**__SCREAMING_SNAKE_CASE )[0] UpperCamelCase : Dict = np.abs(to_np(__SCREAMING_SNAKE_CASE ) - to_np(__SCREAMING_SNAKE_CASE ) ).max() self.assertLess(__SCREAMING_SNAKE_CASE , 1e-4 )
352
def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): """simple docstring""" UpperCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE_ ) ) return data_lists def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" UpperCamelCase : list[list[float]] = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = max(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: UpperCamelCase : Dict = F"""Invalid weight of {weight:f} provided""" raise ValueError(SCREAMING_SNAKE_CASE_ ) score_lists.append(SCREAMING_SNAKE_CASE_ ) return score_lists def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): """simple docstring""" UpperCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = final_scores[j] + ele return final_scores def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" UpperCamelCase : str = get_data(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = calculate_each_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = generate_final_scores(SCREAMING_SNAKE_CASE_ ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE_ ): source_data[i].append(SCREAMING_SNAKE_CASE_ ) return source_data
315
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @require_torch def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " snake_case_ = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " snake_case_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache snake_case_ = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__lowercase ) BertModel.from_pretrained(__lowercase ) BertTokenizer.from_pretrained(__lowercase ) pipeline(task="fill-mask" , model=__lowercase ) # baseline - just load from_pretrained with normal network snake_case_ = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed snake_case_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case_ = "1" snake_case_ = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " snake_case_ = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " snake_case_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache snake_case_ = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__lowercase ) BertModel.from_pretrained(__lowercase ) BertTokenizer.from_pretrained(__lowercase ) pipeline(task="fill-mask" , model=__lowercase ) # baseline - just load from_pretrained with normal network snake_case_ = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed snake_case_ = self.get_env() snake_case_ = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " snake_case_ = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " snake_case_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network snake_case_ = [sys.executable, "-c", "\n".join([load, run] )] # should succeed snake_case_ = self.get_env() snake_case_ = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network snake_case_ = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case_ = "1" snake_case_ = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = "\nfrom transformers import pipeline\n " snake_case_ = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " snake_case_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " snake_case_ = self.get_env() snake_case_ = "1" snake_case_ = [sys.executable, "-c", "\n".join([load, mock, run] )] snake_case_ = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = "\nfrom transformers import AutoModel\n " snake_case_ = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network snake_case_ = [sys.executable, "-c", "\n".join([load, run] )] # should succeed snake_case_ = self.get_env() snake_case_ = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case_ = "1" snake_case_ = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
187
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_A ) snake_case_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_A ) env_command_parser(subparsers=_A ) launch_command_parser(subparsers=_A ) tpu_command_parser(subparsers=_A ) test_command_parser(subparsers=_A ) # Let's go snake_case_ = parser.parse_args() if not hasattr(_A , "func" ): parser.print_help() exit(1 ) # Run args.func(_A ) if __name__ == "__main__": main()
187
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : Dict = 16 _SCREAMING_SNAKE_CASE : Dict = 32 def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ = 16 ): """simple docstring""" snake_case = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(UpperCamelCase_ ): # max_length=None => use the model max length (it's actually the default) snake_case = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=UpperCamelCase_ ,max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case = datasets.map( UpperCamelCase_ ,batched=UpperCamelCase_ ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(UpperCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case = 16 elif accelerator.mixed_precision != "no": snake_case = 8 else: snake_case = None return tokenizer.pad( UpperCamelCase_ ,padding='''longest''' ,max_length=UpperCamelCase_ ,pad_to_multiple_of=UpperCamelCase_ ,return_tensors='''pt''' ,) # Instantiate dataloaders. snake_case = DataLoader( tokenized_datasets['''train'''] ,shuffle=UpperCamelCase_ ,collate_fn=UpperCamelCase_ ,batch_size=UpperCamelCase_ ) snake_case = DataLoader( tokenized_datasets['''validation'''] ,shuffle=UpperCamelCase_ ,collate_fn=UpperCamelCase_ ,batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : List[str] = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' ,UpperCamelCase_ ) == "1": snake_case = 2 # New Code # snake_case = int(args.gradient_accumulation_steps ) snake_case = int(args.local_sgd_steps ) # Initialize accelerator snake_case = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=UpperCamelCase_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config['''lr'''] snake_case = int(config['''num_epochs'''] ) snake_case = int(config['''seed'''] ) snake_case = int(config['''batch_size'''] ) snake_case = evaluate.load('''glue''' ,'''mrpc''' ) set_seed(UpperCamelCase_ ) snake_case , snake_case = get_dataloaders(UpperCamelCase_ ,UpperCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' ,return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case = model.to(accelerator.device ) # Instantiate optimizer snake_case = AdamW(params=model.parameters() ,lr=UpperCamelCase_ ) # Instantiate scheduler snake_case = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ ,num_warmup_steps=1_00 ,num_training_steps=(len(UpperCamelCase_ ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare( UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() with LocalSGD( accelerator=UpperCamelCase_ ,model=UpperCamelCase_ ,local_sgd_steps=UpperCamelCase_ ,enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCamelCase_ ): snake_case = model(**UpperCamelCase_ ) snake_case = output.loss accelerator.backward(UpperCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case = model(**UpperCamelCase_ ) snake_case = outputs.logits.argmax(dim=-1 ) snake_case , snake_case = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase_ ,references=UpperCamelCase_ ,) snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' ,UpperCamelCase_ ) def UpperCAmelCase__ (): """simple docstring""" snake_case = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' ,type=UpperCamelCase_ ,default=UpperCamelCase_ ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' ,type=UpperCamelCase_ ,default=1 ,help='''The number of minibatches to be ran before gradients are accumulated.''' ,) parser.add_argument( '''--local_sgd_steps''' ,type=UpperCamelCase_ ,default=8 ,help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) snake_case = parser.parse_args() snake_case = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCamelCase_ ,UpperCamelCase_ ) if __name__ == "__main__": main()
213
from __future__ import annotations import time _SCREAMING_SNAKE_CASE : List[Any] = list[tuple[int, int]] _SCREAMING_SNAKE_CASE : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = pos_x snake_case = pos_y snake_case = (pos_y, pos_x) snake_case = goal_x snake_case = goal_y snake_case = parent class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case ): snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , __snake_case ) snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , __snake_case ) snake_case = [self.start] snake_case = False def a_ ( self ): while self.node_queue: snake_case = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case = True return self.retrace_path(__snake_case ) snake_case = self.get_successors(__snake_case ) for node in successors: self.node_queue.append(__snake_case ) if not self.reached: return [self.start.pos] return None def a_ ( self , __snake_case ): snake_case = [] for action in delta: snake_case = parent.pos_x + action[1] snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__snake_case , __snake_case , self.target.pos_y , self.target.pos_x , __snake_case ) ) return successors def a_ ( self , __snake_case ): snake_case = node snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case = current_node.parent path.reverse() return path class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case ): snake_case = BreadthFirstSearch(__snake_case , __snake_case ) snake_case = BreadthFirstSearch(__snake_case , __snake_case ) snake_case = False def a_ ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case = self.fwd_bfs.node_queue.pop(0 ) snake_case = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case = True return self.retrace_bidirectional_path( __snake_case , __snake_case ) snake_case = current_bwd_node snake_case = current_fwd_node snake_case = { self.fwd_bfs: self.fwd_bfs.get_successors(__snake_case ), self.bwd_bfs: self.bwd_bfs.get_successors(__snake_case ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__snake_case ) if not self.reached: return [self.fwd_bfs.start.pos] return None def a_ ( self , __snake_case , __snake_case ): snake_case = self.fwd_bfs.retrace_path(__snake_case ) snake_case = self.bwd_bfs.retrace_path(__snake_case ) bwd_path.pop() bwd_path.reverse() snake_case = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : Optional[Any] = (0, 0) _SCREAMING_SNAKE_CASE : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE : List[Any] = time.time() _SCREAMING_SNAKE_CASE : List[Any] = BreadthFirstSearch(init, goal) _SCREAMING_SNAKE_CASE : List[str] = bfs.search() _SCREAMING_SNAKE_CASE : int = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) _SCREAMING_SNAKE_CASE : Any = time.time() _SCREAMING_SNAKE_CASE : Union[str, Any] = BidirectionalBreadthFirstSearch(init, goal) _SCREAMING_SNAKE_CASE : Union[str, Any] = bd_bfs.search() _SCREAMING_SNAKE_CASE : Tuple = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
213
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example a__ : int =[ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example a__ : Any =[[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowercase__ ( __lowercase : list[list[int]] ) -> list[list[int]]: """simple docstring""" __UpperCamelCase = [] for i in range(len(__lowercase ) ): __UpperCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __UpperCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__lowercase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__lowercase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__lowercase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __UpperCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__lowercase ) return next_generation def lowercase__ ( __lowercase : list[list[int]] , __lowercase : int ) -> list[Image.Image]: """simple docstring""" __UpperCamelCase = [] for _ in range(__lowercase ): # Create output image __UpperCamelCase = Image.new('RGB' , (len(cells[0] ), len(__lowercase )) ) __UpperCamelCase = img.load() # Save cells to image for x in range(len(__lowercase ) ): for y in range(len(cells[0] ) ): __UpperCamelCase = 255 - cells[y][x] * 255 __UpperCamelCase = (colour, colour, colour) # Save image images.append(__lowercase ) __UpperCamelCase = new_generation(__lowercase ) return images if __name__ == "__main__": a__ : Optional[int] =generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
53
'''simple docstring''' import datasets from .evaluate import evaluate _lowerCamelCase : List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _lowerCamelCase : List[Any] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _lowerCamelCase : Dict = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def A (self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def A (self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
258
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
370
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowercase ( pl.LightningModule ): """simple docstring""" def __init__( self , A ) -> Any: '''simple docstring''' super().__init__() lowerCamelCase = model lowerCamelCase = 2 lowerCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __A ( self ) -> int: '''simple docstring''' pass def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = LongformerModel.from_pretrained(lowerCamelCase__ ) lowerCamelCase = LightningModel(lowerCamelCase__ ) lowerCamelCase = torch.load(lowerCamelCase__ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model lowerCamelCase = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
66
0
'''simple docstring''' import qiskit def __lowerCAmelCase ( UpperCamelCase__ = 2 ) -> qiskit.result.counts.Counts: __lowerCamelCase = qubits # Using Aer's simulator __lowerCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register __lowerCamelCase = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCamelCase__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCamelCase__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCamelCase__ ) ) , list(range(UpperCamelCase__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __lowerCamelCase = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=10_00 ) return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": print(f'Total count for various states are: {quantum_entanglement(3)}')
67
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def __lowerCAmelCase ( UpperCamelCase__ ) -> list[list[float]]: __lowerCamelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(UpperCamelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowerCamelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements __lowerCamelCase = [[0.0, 0.0], [0.0, 0.0]] __lowerCamelCase , __lowerCamelCase = matrix[1][1], matrix[0][0] __lowerCamelCase , __lowerCamelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(UpperCamelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(UpperCamelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowerCamelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix __lowerCamelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowerCamelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowerCamelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowerCamelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowerCamelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowerCamelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowerCamelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowerCamelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowerCamelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowerCamelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowerCamelCase = array(UpperCamelCase__ ) for i in range(3 ): for j in range(3 ): __lowerCamelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowerCamelCase = array(UpperCamelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(UpperCamelCase__ ) # Calculate the inverse of the matrix return [[float(d(UpperCamelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
67
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller snake_case = 3 def lowerCamelCase__ ( lowercase ): """simple docstring""" print("Generating primitive root of p" ) while True: SCREAMING_SNAKE_CASE : Union[str, Any] = random.randrange(3 , lowercase ) if pow(lowercase , 2 , lowercase ) == 1: continue if pow(lowercase , lowercase , lowercase ) == 1: continue return g def lowerCamelCase__ ( lowercase ): """simple docstring""" print("Generating prime p..." ) SCREAMING_SNAKE_CASE : Tuple = rabin_miller.generate_large_prime(lowercase ) # select large prime number. SCREAMING_SNAKE_CASE : List[Any] = primitive_root(lowercase ) # one primitive root on modulo p. SCREAMING_SNAKE_CASE : Tuple = random.randrange(3 , lowercase ) # private_key -> have to be greater than 2 for safety. SCREAMING_SNAKE_CASE : Dict = cryptomath.find_mod_inverse(pow(lowercase , lowercase , lowercase ) , lowercase ) SCREAMING_SNAKE_CASE : Tuple = (key_size, e_a, e_a, p) SCREAMING_SNAKE_CASE : Union[str, Any] = (key_size, d) return public_key, private_key def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("\nWARNING:" ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' "Use a different name or delete these files and re-run this program." ) sys.exit() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = generate_key(lowercase ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , "w" ) as fo: fo.write(F'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , "w" ) as fo: fo.write(F'''{private_key[0]},{private_key[1]}''' ) def lowerCamelCase__ ( ): """simple docstring""" print("Making key files..." ) make_key_files("elgamal" , 2048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
319
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a : Dict = logging.get_logger(__name__) class a ( _lowerCamelCase ): def __init__( self : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
56
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _lowerCamelCase : List[str] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) _lowerCamelCase : int = [] _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} _lowerCamelCase : Tuple = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", 'emoji': True, }, } ] _lowerCamelCase : Union[str, Any] = 0 for log in Path().glob('*.log'): _lowerCamelCase : Dict = 0 with open(log, 'r') as f: for line in f: _lowerCamelCase : Tuple = json.loads(line) if line.get('nodeid', '') != "": _lowerCamelCase : List[str] = line['nodeid'] if line.get('duration', None) is not None: _lowerCamelCase : Optional[Any] = f"{line['duration']:.4f}" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _lowerCamelCase : Optional[Any] = [] log.unlink() _lowerCamelCase : int = '' _lowerCamelCase : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Tuple = {} for test in failed_tests: _lowerCamelCase : int = test[0].split('::') _lowerCamelCase : Dict = data[0].split('/')[-1] if data[0] not in filesafailed: _lowerCamelCase : Tuple = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _lowerCamelCase : Optional[int] = [test[0] for test in failed_table] _lowerCamelCase : Optional[int] = list(set(files)) # Count number of instances in failed_tests _lowerCamelCase : List[str] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _lowerCamelCase : str = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: _lowerCamelCase : Optional[int] = 'Too many failed tests, please see the full report in the Action results.' _lowerCamelCase : Dict = len(err) + 10 _lowerCamelCase : Optional[Any] = message[: 3000 - offset] + f"\n...\n```\n{err}" print(f"### {message}") else: _lowerCamelCase : int = 'No failed tests! 🤗' print(f"## {message}") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient _lowerCamelCase : Optional[Any] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": _lowerCamelCase : Dict = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) _lowerCamelCase : List[str] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) _lowerCamelCase : List[str] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) _lowerCamelCase : Tuple = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) _lowerCamelCase : Union[str, Any] = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _lowerCamelCase : Any = '' for i, row in enumerate(test_failures): if row[0] != test_class: _lowerCamelCase : str = row[0] else: _lowerCamelCase : Union[str, Any] = '' _lowerCamelCase : Dict = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
359
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
337
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __snake_case : """simple docstring""" def __init__( self : Any ) -> Union[str, Any]: lowerCAmelCase_ : Any = """""" lowerCAmelCase_ : Any = """""" lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : int = 2_56 lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = 0 def __lowercase ( self : int , lowerCamelCase : str ) -> int: lowerCAmelCase_ : Tuple = cva.imread(__A , 0 ) lowerCAmelCase_ : Any = copy.deepcopy(self.img ) lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Any = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label="""x""" ) lowerCAmelCase_ : List[str] = np.sum(__A ) for i in range(len(__A ) ): lowerCAmelCase_ : str = x[i] / self.k self.sk += prk lowerCAmelCase_ : Union[str, Any] = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase_ : List[str] = int(last % last ) lowerCAmelCase_ : int = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__A ) lowerCAmelCase_ : Optional[Any] = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase_ : List[str] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase_ : Optional[int] = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase_ : Union[str, Any] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __lowercase ( self : Optional[Any] ) -> Optional[int]: plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def __lowercase ( self : str ) -> Any: cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __A : int = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __A : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
359
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def UpperCamelCase_ ( A__ : np.ndarray , A__ : np.ndarray , A__ : np.ndarray , A__ : int , A__ : int ): '''simple docstring''' lowerCAmelCase_ : List[Any] = cva.getAffineTransform(A__ , A__ ) return cva.warpAffine(A__ , A__ , (rows, cols) ) if __name__ == "__main__": # read original image __A : Dict = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __A : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Dict = gray_img.shape # set different points to rotate image __A : List[str] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : Tuple = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : List[Any] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : Optional[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Dict = plt.figure(1) __A : Optional[Any] = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
89
0
from sklearn.metrics import recall_score import datasets A : Optional[Any] = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' A : Optional[Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' A : Tuple = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=1 , _snake_case="binary" , _snake_case=None , _snake_case="warn" , ) -> Any: '''simple docstring''' __a = recall_score( _snake_case , _snake_case , labels=_snake_case , pos_label=_snake_case , average=_snake_case , sample_weight=_snake_case , zero_division=_snake_case , ) return {"recall": float(_snake_case ) if score.size == 1 else score}
6
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> List[Any]: a = len(__UpperCamelCase) while cur > 1: # Find the maximum number in arr a = arr.index(max(arr[0:cur])) # Reverse from 0 to mi a = arr[mi::-1] + arr[mi + 1 : len(__UpperCamelCase)] # Reverse whole list a = arr[cur - 1 :: -1] + arr[cur : len(__UpperCamelCase)] cur -= 1 return arr if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : int = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
180
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : int = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class a__ ( UpperCamelCase__ ): a : Optional[Any] = """sew-d""" def __init__( self , A=32 , A=768 , A=12 , A=12 , A=3072 , A=2 , A=512 , A=256 , A=True , A=True , A=("p2c", "c2p") , A="layer_norm" , A="gelu_python" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.1 , A=0.0_2 , A=1e-7 , A=1e-5 , A="group" , A="gelu" , A=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A=False , A=128 , A=16 , A=True , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A="mean" , A=False , A=False , A=256 , A=0 , A=1 , A=2 , **A , ) -> Dict: '''simple docstring''' super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) a = hidden_size a = feat_extract_norm a = feat_extract_activation a = list(A ) a = list(A ) a = list(A ) a = conv_bias a = num_conv_pos_embeddings a = num_conv_pos_embedding_groups a = len(self.conv_dim ) a = num_hidden_layers a = intermediate_size a = squeeze_factor a = max_position_embeddings a = position_buckets a = share_att_key a = relative_attention a = norm_rel_ebd a = list(A ) a = hidden_act a = num_attention_heads a = hidden_dropout a = attention_dropout a = activation_dropout a = feat_proj_dropout a = final_dropout a = layer_norm_eps a = feature_layer_norm_eps a = initializer_range a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a = apply_spec_augment a = mask_time_prob a = mask_time_length a = mask_time_min_masks a = mask_feature_prob a = mask_feature_length a = mask_feature_min_masks # ctc loss a = ctc_loss_reduction a = ctc_zero_infinity # sequence classification a = use_weighted_layer_sum a = classifier_proj_size @property def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
180
1
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Union[str, Any]=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Any=None , ) ->Dict: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = mask_ratio snake_case_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->Dict: """simple docstring""" snake_case_ = TFViTMAEModel(config=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , training=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" snake_case_ = TFViTMAEForPreTraining(UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , training=UpperCAmelCase_ ) # expected sequence length = num_patches snake_case_ = (self.image_size // self.patch_size) ** 2 snake_case_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ = 1 snake_case_ = TFViTMAEForPreTraining(UpperCAmelCase_ ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(UpperCAmelCase_ , training=UpperCAmelCase_ ) snake_case_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() (snake_case_) = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowercase: Optional[Any] = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowercase: Optional[int] = False __lowercase: str = False __lowercase: Optional[Any] = False __lowercase: Any = False def lowerCAmelCase ( self : str ) ->str: """simple docstring""" snake_case_ = TFViTMAEModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , tf.keras.layers.Layer ) ) def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" np.random.seed(2 ) snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , noise=UpperCAmelCase_ ) snake_case_ = copy.deepcopy(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case_ = model(**UpperCAmelCase_ , noise=UpperCAmelCase_ ) snake_case_ = outputs_dict[0].numpy() snake_case_ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" np.random.seed(2 ) snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCAmelCase_ : Dict ): snake_case_ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCAmelCase_ ): snake_case_ = v.numpy() else: snake_case_ = np.array(UpperCAmelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = prepare_numpy_arrays(UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , noise=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ , noise=UpperCAmelCase_ ) self.assert_outputs_same(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ) ->Optional[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ = tf.constant(UpperCAmelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ = tf_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCAmelCase_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(UpperCAmelCase_ , UpperCAmelCase_ ),) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCAmelCase_ , """_keras_serializable""" , UpperCAmelCase_ ) } snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ = tf.convert_to_tensor(UpperCAmelCase_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ = main_layer_class(UpperCAmelCase_ ) snake_case_ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ = tf.keras.Model(UpperCAmelCase_ , outputs=main_layer(UpperCAmelCase_ ) ) snake_case_ = model(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(UpperCAmelCase_ , """keras_model.h5""" ) model.save(UpperCAmelCase_ ) snake_case_ = tf.keras.models.load_model( UpperCAmelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCAmelCase_ , tf.keras.Model ) snake_case_ = model(UpperCAmelCase_ ) self.assert_outputs_same(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" np.random.seed(2 ) snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , noise=UpperCAmelCase_ ) if model_class.__name__ == "TFViTMAEModel": snake_case_ = outputs.last_hidden_state.numpy() snake_case_ = 0 else: snake_case_ = outputs.logits.numpy() snake_case_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_ , saved_model=UpperCAmelCase_ ) snake_case_ = model_class.from_pretrained(UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , noise=UpperCAmelCase_ ) if model_class.__name__ == "TFViTMAEModel": snake_case_ = after_outputs["""last_hidden_state"""].numpy() snake_case_ = 0 else: snake_case_ = after_outputs["""logits"""].numpy() snake_case_ = 0 snake_case_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase_ , 1E-5 ) def lowerCAmelCase ( self : int ) ->str: """simple docstring""" np.random.seed(2 ) snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , noise=UpperCAmelCase_ ) snake_case_ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCAmelCase_ ) snake_case_ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ = model_class.from_config(model.config ) snake_case_ = new_model(UpperCAmelCase_ ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ = new_model(UpperCAmelCase_ , noise=UpperCAmelCase_ ) self.assert_outputs_same(UpperCAmelCase_ , UpperCAmelCase_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" pass @slow def lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" snake_case_ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( ) -> Union[str, Any]: snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ = ViTMAEConfig() snake_case_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ = model(**UpperCAmelCase_ , noise=UpperCAmelCase_ ) # verify the logits snake_case_ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCAmelCase_ , atol=1E-4 )
347
'''simple docstring''' def UpperCamelCase_ ( A__ : list[list[float]] ): '''simple docstring''' lowerCAmelCase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(A__ ): if len(A__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A__ ) ) return data_lists def UpperCamelCase_ ( A__ : list[list[float]] , A__ : list[int] ): '''simple docstring''' lowerCAmelCase_ : list[list[float]] = [] for dlist, weight in zip(A__ , A__ ): lowerCAmelCase_ : Tuple = min(A__ ) lowerCAmelCase_ : str = max(A__ ) lowerCAmelCase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase_ : List[Any] = f'Invalid weight of {weight:f} provided' raise ValueError(A__ ) score_lists.append(A__ ) return score_lists def UpperCamelCase_ ( A__ : list[list[float]] ): '''simple docstring''' lowerCAmelCase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A__ ): lowerCAmelCase_ : List[Any] = final_scores[j] + ele return final_scores def UpperCamelCase_ ( A__ : list[list[float]] , A__ : list[int] ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_data(A__ ) lowerCAmelCase_ : Tuple = calculate_each_score(A__ , A__ ) lowerCAmelCase_ : Optional[int] = generate_final_scores(A__ ) # append scores to source data for i, ele in enumerate(A__ ): source_data[i].append(A__ ) return source_data
120
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __snake_case = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''OwlViTFeatureExtractor'''] __snake_case = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
'''simple docstring''' import socket def a ( ) -> Dict: '''simple docstring''' UpperCamelCase__ :int = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCamelCase__ :List[Any] = socket.gethostname() UpperCamelCase__ :List[str] = 12312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCamelCase__ :str = sock.recv(1024 ) if not data: break out_file.write(__a ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
219
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class _lowerCamelCase( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)]) def UpperCamelCase ( self, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Tuple = GenerationConfig( do_sample=lowerCamelCase, temperature=0.7, length_penalty=1.0, bad_words_ids=[[1, 2, 3], [4, 5]], ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase, config_name=lowerCamelCase) _lowercase : List[str] = GenerationConfig.from_pretrained(lowerCamelCase, config_name=lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample, lowerCamelCase) self.assertEqual(loaded_config.temperature, 0.7) self.assertEqual(loaded_config.length_penalty, 1.0) self.assertEqual(loaded_config.bad_words_ids, [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k, 50) self.assertEqual(loaded_config.max_length, 20) self.assertEqual(loaded_config.max_time, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = AutoConfig.from_pretrained('gpt2') _lowercase : List[str] = GenerationConfig.from_model_config(lowerCamelCase) _lowercase : Union[str, Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowerCamelCase, lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id, default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id, model_config.eos_token_id) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = GenerationConfig() _lowercase : List[Any] = { 'max_new_tokens': 10_24, 'foo': 'bar', } _lowercase : Any = copy.deepcopy(lowerCamelCase) _lowercase : List[Any] = generation_config.update(**lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(lowerCamelCase, lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens, 10_24) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowerCamelCase, {'foo': 'bar'}) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = GenerationConfig() _lowercase : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config') as tmp_dir: generation_config.save_pretrained(lowerCamelCase) _lowercase : List[Any] = GenerationConfig.from_pretrained(lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo, 'bar') _lowercase : int = GenerationConfig.from_model_config(lowerCamelCase) assert not hasattr(lowerCamelCase, 'foo') # no new kwargs should be initialized if from config def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature, 1.0) self.assertEqual(default_config.do_sample, lowerCamelCase) self.assertEqual(default_config.num_beams, 1) _lowercase : Optional[Any] = GenerationConfig( do_sample=lowerCamelCase, temperature=0.7, length_penalty=1.0, bad_words_ids=[[1, 2, 3], [4, 5]], ) self.assertEqual(config.temperature, 0.7) self.assertEqual(config.do_sample, lowerCamelCase) self.assertEqual(config.num_beams, 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase) _lowercase : List[Any] = GenerationConfig.from_pretrained(lowerCamelCase, temperature=1.0) self.assertEqual(loaded_config.temperature, 1.0) self.assertEqual(loaded_config.do_sample, lowerCamelCase) self.assertEqual(loaded_config.num_beams, 1) # default value @is_staging_test class _lowerCamelCase( unittest.TestCase ): @classmethod def UpperCamelCase ( cls) -> str: """simple docstring""" _lowercase : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase) @classmethod def UpperCamelCase ( cls) -> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token, repo_id='test-generation-config') except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-generation-config-org') except HTTPError: pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = GenerationConfig( do_sample=lowerCamelCase, temperature=0.7, length_penalty=1.0, ) config.push_to_hub('test-generation-config', use_auth_token=self._token) _lowercase : Any = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase, getattr(lowerCamelCase, lowerCamelCase)) # Reset repo delete_repo(token=self._token, repo_id='test-generation-config') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase, repo_id='test-generation-config', push_to_hub=lowerCamelCase, use_auth_token=self._token) _lowercase : Tuple = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase, getattr(lowerCamelCase, lowerCamelCase)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = GenerationConfig( do_sample=lowerCamelCase, temperature=0.7, length_penalty=1.0, ) config.push_to_hub('valid_org/test-generation-config-org', use_auth_token=self._token) _lowercase : Any = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase, getattr(lowerCamelCase, lowerCamelCase)) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-generation-config-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase, repo_id='valid_org/test-generation-config-org', push_to_hub=lowerCamelCase, use_auth_token=self._token) _lowercase : Optional[Any] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase, getattr(lowerCamelCase, lowerCamelCase))
21
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : Node | None class _lowerCamelCase: def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : Node | None = None for i in sorted(lowerCamelCase, reverse=lowerCamelCase): _lowercase : Tuple = Node(lowerCamelCase, self.head) def __iter__( self) -> Iterator[int]: """simple docstring""" _lowercase : Union[str, Any] = self.head while node: yield node.data _lowercase : int = node.next_node def __len__( self) -> int: """simple docstring""" return sum(1 for _ in self) def __str__( self) -> str: """simple docstring""" return " -> ".join([str(lowerCamelCase) for node in self]) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> SortedLinkedList: return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
21
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = state_dict.pop(_SCREAMING_SNAKE_CASE ) _snake_case = val def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _snake_case = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) _snake_case = value else: _snake_case = value return new_state_dict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): _snake_case = """""" if is_panoptic: _snake_case = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _snake_case = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _snake_case = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:256, :] _snake_case = in_proj_bias[:256] _snake_case = in_proj_weight[256:512, :] _snake_case = in_proj_bias[256:512] _snake_case = in_proj_weight[-256:, :] _snake_case = in_proj_bias[-256:] def __SCREAMING_SNAKE_CASE ( ): _snake_case = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _snake_case = """resnet101""" if "dc5" in model_name: _snake_case = True _snake_case = """panoptic""" in model_name if is_panoptic: _snake_case = 250 else: _snake_case = 91 _snake_case = """huggingface/label-files""" _snake_case = """coco-detection-id2label.json""" _snake_case = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) _snake_case = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} # load image processor _snake_case = """coco_panoptic""" if is_panoptic else """coco_detection""" _snake_case = ConditionalDetrImageProcessor(format=_SCREAMING_SNAKE_CASE ) # prepare image _snake_case = prepare_img() _snake_case = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) _snake_case = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub _snake_case = torch.hub.load("""DeppMeng/ConditionalDETR""" , _SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ).eval() _snake_case = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _snake_case = """conditional_detr.""" + src rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE , is_panoptic=_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _snake_case = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _snake_case = state_dict.pop(_SCREAMING_SNAKE_CASE ) _snake_case = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _snake_case = state_dict.pop(_SCREAMING_SNAKE_CASE ) _snake_case = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _snake_case = state_dict.pop(_SCREAMING_SNAKE_CASE ) _snake_case = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _snake_case = state_dict.pop(_SCREAMING_SNAKE_CASE ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = ConditionalDetrForSegmentation(_SCREAMING_SNAKE_CASE ) if is_panoptic else ConditionalDetrForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() model.push_to_hub(repo_id=_SCREAMING_SNAKE_CASE , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion _snake_case = conditional_detr(_SCREAMING_SNAKE_CASE ) _snake_case = model(_SCREAMING_SNAKE_CASE ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
270
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase (self ) -> Dict: _snake_case, _snake_case = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case, _snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case = controlnet_params _snake_case = """bird""" _snake_case = jax.device_count() _snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) _snake_case = pipe.prepare_image_inputs([canny_image] * num_samples ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(UpperCAmelCase , jax.device_count() ) _snake_case = replicate(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowercase (self ) -> Optional[int]: _snake_case, _snake_case = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case, _snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case = controlnet_params _snake_case = """Chef in the kitchen""" _snake_case = jax.device_count() _snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) _snake_case = pipe.prepare_image_inputs([pose_image] * num_samples ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(UpperCAmelCase , jax.device_count() ) _snake_case = replicate(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
270
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a ( unittest.TestCase ): def A_ ( self : Tuple ): snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) snake_case_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } snake_case_ = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowercase_ , lowercase_ ) def A_ ( self : Tuple , **lowercase_ : Tuple ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase_ ) def A_ ( self : int , **lowercase_ : int ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase_ ) def A_ ( self : Dict , **lowercase_ : Optional[Any] ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def A_ ( self : Tuple ): snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : Dict ): snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase_ ) self.assertIsInstance(processor_fast.tokenizer , lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase_ ) self.assertIsInstance(processor_fast.image_processor , lowercase_ ) def A_ ( self : Optional[Any] ): snake_case_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case_ = self.get_image_processor(do_normalize=lowercase_ ) snake_case_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def A_ ( self : str ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowercase_ , return_tensors='''np''' ) snake_case_ = processor(images=lowercase_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : Union[str, Any] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = '''lower newer''' snake_case_ = processor(text=lowercase_ , return_tensors='''np''' ) snake_case_ = tokenizer(lowercase_ , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def A_ ( self : Any ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = '''lower newer''' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : int ): snake_case_ = '''google/owlvit-base-patch32''' snake_case_ = OwlViTProcessor.from_pretrained(lowercase_ ) snake_case_ = ['''cat''', '''nasa badge'''] snake_case_ = processor(text=lowercase_ ) snake_case_ = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : str ): snake_case_ = '''google/owlvit-base-patch32''' snake_case_ = OwlViTProcessor.from_pretrained(lowercase_ ) snake_case_ = [['''cat''', '''nasa badge'''], ['''person''']] snake_case_ = processor(text=lowercase_ ) snake_case_ = 16 snake_case_ = len(lowercase_ ) snake_case_ = max([len(lowercase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : Union[str, Any] ): snake_case_ = '''google/owlvit-base-patch32''' snake_case_ = OwlViTProcessor.from_pretrained(lowercase_ ) snake_case_ = ['''cat''', '''nasa badge'''] snake_case_ = processor(text=lowercase_ ) snake_case_ = 16 snake_case_ = inputs['''input_ids'''] snake_case_ = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def A_ ( self : List[str] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = self.prepare_image_inputs() snake_case_ = self.prepare_image_inputs() snake_case_ = processor(images=lowercase_ , query_images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : Any ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(lowercase_ ) snake_case_ = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
56
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : str , snake_case__ : str ): A = RobertaPreLayerNormConfig.from_pretrained( snake_case__ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict A = torch.load(hf_hub_download(repo_id=snake_case__ , filename='pytorch_model.bin' ) ) A = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): A = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue A = tensor_value A = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case__ , config=snake_case__ , state_dict=snake_case__ ) model.save_pretrained(snake_case__ ) # convert tokenizer A = AutoTokenizer.from_pretrained(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
74
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowercase__ ( lowercase_ ) -> list[list[float]]: """simple docstring""" _UpperCamelCase : int = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _UpperCamelCase : Tuple = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements _UpperCamelCase : Union[str, Any] = [[0.0, 0.0], [0.0, 0.0]] _UpperCamelCase : Optional[int] = matrix[1][1], matrix[0][0] _UpperCamelCase : Any = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _UpperCamelCase : Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix _UpperCamelCase : Union[str, Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _UpperCamelCase : str = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _UpperCamelCase : Any = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _UpperCamelCase : Tuple = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _UpperCamelCase : int = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _UpperCamelCase : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _UpperCamelCase : str = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _UpperCamelCase : Dict = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _UpperCamelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _UpperCamelCase : str = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _UpperCamelCase : str = array(lowercase_ ) for i in range(3 ): for j in range(3 ): _UpperCamelCase : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _UpperCamelCase : Tuple = array(lowercase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase_ ) # Calculate the inverse of the matrix return [[float(d(lowercase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
352
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin UpperCAmelCase__ : Tuple = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=14 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=19 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=[1, 2, 3, 4, 5] , SCREAMING_SNAKE_CASE__=25 , SCREAMING_SNAKE_CASE__=5 , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = d_model SCREAMING_SNAKE_CASE__ : List[str] = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = prediction_length SCREAMING_SNAKE_CASE__ : List[str] = context_length SCREAMING_SNAKE_CASE__ : Optional[Any] = cardinality SCREAMING_SNAKE_CASE__ : List[str] = num_time_features SCREAMING_SNAKE_CASE__ : Optional[int] = lags_sequence SCREAMING_SNAKE_CASE__ : Dict = embedding_dimension SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : int = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = context_length SCREAMING_SNAKE_CASE__ : Optional[Any] = prediction_length + label_length SCREAMING_SNAKE_CASE__ : List[Any] = label_length SCREAMING_SNAKE_CASE__ : Tuple = moving_average SCREAMING_SNAKE_CASE__ : Union[str, Any] = autocorrelation_factor def __magic_name__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = config.context_length + max(config.lags_sequence ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, _past_length] ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor([self.batch_size, config.prediction_length] ) SCREAMING_SNAKE_CASE__ : str = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.get_config() SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_autoformer_inputs_dict(SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = AutoformerModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = AutoformerEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = model.create_network_inputs(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) SCREAMING_SNAKE_CASE__ : Tuple = encoder(inputs_embeds=SCREAMING_SNAKE_CASE__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) SCREAMING_SNAKE_CASE__ : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) SCREAMING_SNAKE_CASE__ : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = AutoformerDecoder.from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = decoder( trend=SCREAMING_SNAKE_CASE__ , inputs_embeds=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[int] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCamelCase : Optional[int] = (AutoformerForPrediction,) if is_torch_available() else () __UpperCamelCase : int = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} __UpperCamelCase : Any = False __UpperCamelCase : int = False __UpperCamelCase : str = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : int = False __UpperCamelCase : List[str] = False def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = AutoformerModelTester(self ) SCREAMING_SNAKE_CASE__ : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertEqual(info["""missing_keys"""] , [] ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" pass def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = inspect.signature(getattr(SCREAMING_SNAKE_CASE__ , """forward""" ) ) # The main input is the name of the argument after `self` SCREAMING_SNAKE_CASE__ : Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Any = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE__ )] , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : List[Any] = getattr(self.model_tester , """seq_length""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = getattr(self.model_tester , """decoder_seq_length""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr(self.model_tester , """encoder_seq_length""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = getattr(self.model_tester , """d_model""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = getattr(self.model_tester , """num_attention_heads""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = d_model // num_attention_heads for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : List[str] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.encoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # decoder attentions SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.decoder_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions SCREAMING_SNAKE_CASE__ : List[str] = outputs.cross_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : str = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(out_len + 2 , len(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __magic_name__ (self ) -> Dict: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowercase_ ( _snake_case="train-batch.pt" ): SCREAMING_SNAKE_CASE__ : List[str] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" ,filename=_snake_case ,repo_type="""dataset""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.load(_snake_case ,map_location=_snake_case ) return batch @require_torch @slow class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = prepare_batch() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] SCREAMING_SNAKE_CASE__ : int = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state SCREAMING_SNAKE_CASE__ : Dict = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) SCREAMING_SNAKE_CASE__ : List[str] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , SCREAMING_SNAKE_CASE__ , rtol=1E-1 ) )
25
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib UpperCAmelCase__ : Optional[int] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } UpperCAmelCase__ : List[Any] = logging.WARNING def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[Any] = os.getenv("""DATASETS_VERBOSITY""" ,_snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowercase_ ( ): return __name__.split(""".""" )[0] def lowercase_ ( ): return logging.getLogger(_get_library_name() ) def lowercase_ ( ): # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase_ ( _snake_case = None ): if name is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_library_name() return logging.getLogger(_snake_case ) def lowercase_ ( ): return _get_library_root_logger().getEffectiveLevel() def lowercase_ ( _snake_case ): _get_library_root_logger().setLevel(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): return set_verbosity(_snake_case ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Tuple = False def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class lowerCAmelCase_ : """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: # pylint: disable=unused-argument """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = args[0] if args else None def __iter__(self ) -> int: """simple docstring""" return iter(self._iterator ) def __getattr__(self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" def empty_fn(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): # pylint: disable=unused-argument return return empty_fn def __enter__(self ) -> Dict: """simple docstring""" return self def __exit__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return UpperCAmelCase__ : str = True class lowerCAmelCase_ : """simple docstring""" def __call__(self , *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: return EmptyTqdm(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase__ : Tuple = _tqdm_cls() def lowercase_ ( ): global _tqdm_active return bool(_tqdm_active ) def lowercase_ ( ): global _tqdm_active SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def lowercase_ ( ): global _tqdm_active SCREAMING_SNAKE_CASE__ : str = False
25
1
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _lowercase : Any = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def lowercase__ ( snake_case_ :str = "dhaka" , snake_case_ :int = 5 ): __UpperCAmelCase = min(A__ , 50 ) # Prevent abuse! __UpperCAmelCase = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } __UpperCAmelCase = requests.get('''https://www.google.com/search''' , params=A__ , headers=A__ ) __UpperCAmelCase = BeautifulSoup(html.text , '''html.parser''' ) __UpperCAmelCase = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) __UpperCAmelCase = json.dumps(A__ ) __UpperCAmelCase = json.loads(A__ ) __UpperCAmelCase = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , A__ , ) if not matched_google_image_data: return 0 __UpperCAmelCase = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(A__ ) , ) __UpperCAmelCase = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , A__ , ) for index, fixed_full_res_image in enumerate(A__ ): if index >= max_images: return index __UpperCAmelCase = bytes(A__ , '''ascii''' ).decode( '''unicode-escape''' ) __UpperCAmelCase = bytes(A__ , '''ascii''' ).decode( '''unicode-escape''' ) __UpperCAmelCase = urllib.request.build_opener() __UpperCAmelCase = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(A__ ) __UpperCAmelCase = F'''query_{query.replace(" " , "_" )}''' if not os.path.exists(A__ ): os.makedirs(A__ ) urllib.request.urlretrieve( # noqa: S310 A__ , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: _lowercase : List[str] = download_images_from_google_query(sys.argv[1]) print(f"""{image_count} images were downloaded to disk.""") except IndexError: print('Please provide a search term.') raise
357
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _lowercase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : List[Any] , _lowercase : GenericTensor ): if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def a ( self : List[str] , _lowercase : GenericTensor ): __UpperCAmelCase = self.get_masked_index(_lowercase ) __UpperCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def a ( self : Optional[int] , _lowercase : GenericTensor ): if isinstance(_lowercase , _lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowercase ) def a ( self : List[str] , _lowercase : Optional[int] , _lowercase : Tuple=None , **_lowercase : Tuple ): if return_tensors is None: __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase ) self.ensure_exactly_one_mask_token(_lowercase ) return model_inputs def a ( self : Optional[int] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) __UpperCAmelCase = model_inputs['''input_ids'''] return model_outputs def a ( self : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any]=5 , _lowercase : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __UpperCAmelCase = target_ids.shape[0] __UpperCAmelCase = model_outputs['''input_ids'''][0] __UpperCAmelCase = model_outputs['''logits'''] if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __UpperCAmelCase = outputs.numpy() __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = stable_softmax(_lowercase , axis=-1 ) if target_ids is not None: __UpperCAmelCase = tf.gather_nd(tf.squeeze(_lowercase , 0 ) , target_ids.reshape(-1 , 1 ) ) __UpperCAmelCase = tf.expand_dims(_lowercase , 0 ) __UpperCAmelCase = tf.math.top_k(_lowercase , k=_lowercase ) __UpperCAmelCase , __UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: __UpperCAmelCase = probs[..., target_ids] __UpperCAmelCase , __UpperCAmelCase = probs.topk(_lowercase ) __UpperCAmelCase = [] __UpperCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __UpperCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __UpperCAmelCase = input_ids.numpy().copy() if target_ids is not None: __UpperCAmelCase = target_ids[p].tolist() __UpperCAmelCase = p # Filter padding out: __UpperCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_lowercase ) result.append(_lowercase ) if single_mask: return result[0] return result def a ( self : str , _lowercase : List[Any] , _lowercase : List[Any]=None ): if isinstance(_lowercase , _lowercase ): __UpperCAmelCase = [targets] try: __UpperCAmelCase = self.tokenizer.get_vocab() except Exception: __UpperCAmelCase = {} __UpperCAmelCase = [] for target in targets: __UpperCAmelCase = vocab.get(_lowercase , _lowercase ) if id_ is None: __UpperCAmelCase = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , max_length=1 , truncation=_lowercase , )['''input_ids'''] if len(_lowercase ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue __UpperCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __UpperCAmelCase = list(set(_lowercase ) ) if len(_lowercase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) __UpperCAmelCase = np.array(_lowercase ) return target_ids def a ( self : int , _lowercase : Dict=None , _lowercase : Optional[Any]=None ): __UpperCAmelCase = {} if targets is not None: __UpperCAmelCase = self.get_target_ids(_lowercase , _lowercase ) __UpperCAmelCase = target_ids if top_k is not None: __UpperCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : Union[str, Any] , _lowercase : Optional[Any] , *_lowercase : Union[str, Any] , **_lowercase : int ): __UpperCAmelCase = super().__call__(_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs
86
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __A ( unittest.TestCase ): def __init__(self : str , __a : str , __a : Optional[int]=7 , __a : List[str]=3 , __a : Any=18 , __a : List[str]=30 , __a : Dict=400 , __a : Optional[Any]=True , __a : Optional[Any]=None , __a : int=True , __a : int=None , __a : List[str]=True , __a : Union[str, Any]=[0.5, 0.5, 0.5] , __a : Any=[0.5, 0.5, 0.5] , ): UpperCAmelCase_ = size if size is not None else {"shortest_edge": 18} UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std def _lowercase (self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Any = LevitImageProcessor if is_vision_available() else None def _lowercase (self : int ): UpperCAmelCase_ = LevitImageProcessingTester(self ) @property def _lowercase (self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "do_center_crop" ) ) self.assertTrue(hasattr(__a , "size" ) ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _lowercase (self : int ): pass def _lowercase (self : Optional[Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase (self : Dict ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase (self : int ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : str = "decision_transformer" __A : Union[str, Any] = ["past_key_values"] __A : Optional[int] = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __A=17 , __A=4 , __A=128 , __A=4096 , __A=True , __A=1 , __A=1024 , __A=3 , __A=1 , __A=None , __A="relu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=1e-5 , __A=0.02 , __A=True , __A=True , __A=5_0256 , __A=5_0256 , __A=False , __A=False , **__A , ): """simple docstring""" lowerCamelCase : List[str] = state_dim lowerCamelCase : Tuple = act_dim lowerCamelCase : List[str] = hidden_size lowerCamelCase : Optional[Any] = max_ep_len lowerCamelCase : Union[str, Any] = action_tanh lowerCamelCase : int = vocab_size lowerCamelCase : List[Any] = n_positions lowerCamelCase : Dict = n_layer lowerCamelCase : int = n_head lowerCamelCase : List[Any] = n_inner lowerCamelCase : Any = activation_function lowerCamelCase : Optional[int] = resid_pdrop lowerCamelCase : str = embd_pdrop lowerCamelCase : Tuple = attn_pdrop lowerCamelCase : List[Any] = layer_norm_epsilon lowerCamelCase : Dict = initializer_range lowerCamelCase : Optional[int] = scale_attn_weights lowerCamelCase : List[Any] = use_cache lowerCamelCase : Tuple = scale_attn_by_inverse_layer_idx lowerCamelCase : Optional[int] = reorder_and_upcast_attn lowerCamelCase : Dict = bos_token_id lowerCamelCase : Any = eos_token_id super().__init__(bos_token_id=__A , eos_token_id=__A , **__A )
283
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(_SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> bool: _UpperCAmelCase = False if low == high: return swapped _UpperCAmelCase = low _UpperCAmelCase = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right], collection[left], ) _UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right + 1], collection[left], ) _UpperCAmelCase = True _UpperCAmelCase = low + int((high - low) / 2 ) _UpperCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap _UpperCAmelCase = True while is_not_sorted is True: _UpperCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": __A : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() __A : Tuple = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
326
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
1
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A : Union[str, Any] =random.Random() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=1.0 , UpperCamelCase=None , UpperCamelCase=None ) -> int: if rng is None: lowerCamelCase__ : Dict = global_rng lowerCamelCase__ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowercase ( unittest.TestCase ): def __init__( self: int , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple=7 , UpperCamelCase__: List[str]=400 , UpperCamelCase__: Union[str, Any]=2_000 , UpperCamelCase__: Optional[Any]=10 , UpperCamelCase__: Any=160 , UpperCamelCase__: Union[str, Any]=8 , UpperCamelCase__: int=0.0 , UpperCamelCase__: Optional[Any]=4_000 , UpperCamelCase__: List[str]=False , UpperCamelCase__: str=True , ): lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : str = min_seq_length lowerCamelCase__ : List[Any] = max_seq_length lowerCamelCase__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__ : List[Any] = padding_value lowerCamelCase__ : Any = sampling_rate lowerCamelCase__ : Dict = return_attention_mask lowerCamelCase__ : Union[str, Any] = do_normalize lowerCamelCase__ : Optional[int] = feature_size lowerCamelCase__ : Union[str, Any] = chunk_length lowerCamelCase__ : Dict = hop_length def lowerCamelCase_ ( self: List[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[Any]=False , UpperCamelCase__: int=False ): def _flatten(UpperCamelCase__: List[str] ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: lowerCamelCase__ : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase__ : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase__ : Any = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowercase ( _lowercase , unittest.TestCase ): a = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Union[str, Any] = WhisperFeatureExtractionTester(self ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : List[Any] = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) lowerCamelCase__ : Dict = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : int = feat_extract_first.to_dict() lowerCamelCase__ : List[str] = feat_extract_second.to_dict() lowerCamelCase__ : List[str] = feat_extract_first.mel_filters lowerCamelCase__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : Tuple = os.path.join(UpperCamelCase__ , """feat_extract.json""" ) feat_extract_first.to_json_file(UpperCamelCase__ ) lowerCamelCase__ : int = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = feat_extract_first.to_dict() lowerCamelCase__ : Dict = feat_extract_second.to_dict() lowerCamelCase__ : Union[str, Any] = feat_extract_first.mel_filters lowerCamelCase__ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__ : int = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCamelCase__ : str = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test feature size lowerCamelCase__ : Dict = feature_extractor(UpperCamelCase__ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase__ : Any = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowerCamelCase__ : Dict = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched lowerCamelCase__ : List[Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowerCamelCase__ : Optional[Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase__ : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase__ : str = np.asarray(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowerCamelCase__ : List[str] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test truncation required lowerCamelCase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowerCamelCase__ : int = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] lowerCamelCase__ : Dict = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCamelCase__ : Dict = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs_truncated] lowerCamelCase__ : str = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowerCamelCase__ : Union[str, Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def lowerCamelCase_ ( self: Optional[Any] ): import torch lowerCamelCase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : Dict = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCamelCase__ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__ : Tuple = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase__ : int = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: List[Any] ): lowerCamelCase__ : List[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCamelCase__ : List[Any] = ds.sort("""id""" ).select(range(UpperCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self: str ): # fmt: off lowerCamelCase__ : Any = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on lowerCamelCase__ : Optional[int] = self._load_datasamples(1 ) lowerCamelCase__ : Optional[Any] = WhisperFeatureExtractor() lowerCamelCase__ : Dict = feature_extractor(UpperCamelCase__ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase__ , atol=1e-4 ) ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : Dict = self._load_datasamples(1 )[0] lowerCamelCase__ : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue lowerCamelCase__ : Any = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase__ )[0] self.assertTrue(np.all(np.mean(UpperCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ ) - 1 ) < 1e-3 ) )
41
'''simple docstring''' from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: return sum(c * (x**i) for i, c in enumerate(UpperCamelCase ) ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: lowerCamelCase__ : str = 0.0 for coeff in reversed(UpperCamelCase ): lowerCamelCase__ : Optional[int] = result * x + coeff return result if __name__ == "__main__": _A : Any =(0.0, 0.0, 5.0, 9.3, 7.0) _A : Optional[Any] =10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
41
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class a_ ( SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ : str ="trajectory_transformer" UpperCamelCase__ : List[Any] =["past_key_values"] UpperCamelCase__ : int ={ "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self :Dict , _lowercase :Optional[int]=100 , _lowercase :Optional[Any]=5 , _lowercase :Any=1 , _lowercase :Any=1 , _lowercase :Tuple=249 , _lowercase :str=6 , _lowercase :List[str]=17 , _lowercase :Tuple=25 , _lowercase :Any=4 , _lowercase :Optional[Any]=4 , _lowercase :List[str]=128 , _lowercase :str=0.1 , _lowercase :List[str]=0.1 , _lowercase :List[str]=0.1 , _lowercase :Optional[Any]=0.0_006 , _lowercase :Tuple=512 , _lowercase :Optional[int]=0.02 , _lowercase :Tuple=1E-1_2 , _lowercase :Optional[int]=1 , _lowercase :Optional[int]=True , _lowercase :int=1 , _lowercase :Dict=50256 , _lowercase :Union[str, Any]=50256 , **_lowercase :List[Any] , ) -> Optional[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = action_weight UpperCAmelCase_ = reward_weight UpperCAmelCase_ = value_weight UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = block_size UpperCAmelCase_ = action_dim UpperCAmelCase_ = observation_dim UpperCAmelCase_ = transition_dim UpperCAmelCase_ = learning_rate UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head UpperCAmelCase_ = n_embd UpperCAmelCase_ = embd_pdrop UpperCAmelCase_ = attn_pdrop UpperCAmelCase_ = resid_pdrop UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = kaiming_initializer_range UpperCAmelCase_ = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__)
353
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
0
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCamelCase = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } _UpperCamelCase = F'''{src_lang}-{tgt_lang}''' _UpperCamelCase = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=__snake_case, exist_ok=__snake_case ) _UpperCamelCase = os.path.join(__snake_case, '''README.md''' ) print(F'''Generating {path}''' ) with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(__snake_case ) # make sure we are under the root of the project _a = Path(__file__).resolve().parent.parent.parent _a = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _a = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
194
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: _UpperCamelCase = ksize + 1 _UpperCamelCase = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(__snake_case ): for x in range(__snake_case ): # distance from center _UpperCamelCase = x - ksize // 2 _UpperCamelCase = y - ksize // 2 # degree to radiant _UpperCamelCase = theta / 1_80 * np.pi _UpperCamelCase = np.cos(_theta ) _UpperCamelCase = np.sin(_theta ) # get kernel x _UpperCamelCase = cos_theta * px + sin_theta * py # get kernel y _UpperCamelCase = -sin_theta * px + cos_theta * py # fill kernel _UpperCamelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _a = imread("""../image_data/lena.jpg""") # turn image in gray scale value _a = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _a = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _a = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _a = out / out.max() * 255 _a = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
194
1
def A(__a: int = 100 ): lowerCAmelCase_ = set() lowerCAmelCase_ = 0 lowerCAmelCase_ = n + 1 # maximum limit for a in range(2 , __a ): for b in range(2 , __a ): lowerCAmelCase_ = a**b # calculates the current power collect_powers.add(__a ) # adds the result to the set return len(__a ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
22
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : List[str] ,__lowerCamelCase : Any ,): lowercase_ :str = coefficient_matrix.shape lowercase_ :Dict = constant_matrix.shape if rowsa != colsa: lowercase_ :Tuple = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_UpperCamelCase ) if colsa != 1: lowercase_ :int = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_UpperCamelCase ) if rowsa != rowsa: lowercase_ :Union[str, Any] = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_UpperCamelCase ) if len(_UpperCamelCase ) != rowsa: lowercase_ :str = ( 'Number of initial values must be equal to number of rows in coefficient ' F'matrix but received {len(_UpperCamelCase )} and {rowsa}' ) raise ValueError(_UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) lowercase_ :NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) lowercase_ :str = table.shape strictly_diagonally_dominant(_UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(_UpperCamelCase ): lowercase_ :Tuple = [] for row in range(_UpperCamelCase ): lowercase_ :Tuple = 0 for col in range(_UpperCamelCase ): if col == row: lowercase_ :Optional[Any] = table[row][col] elif col == cols - 1: lowercase_ :Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowercase_ :Tuple = (temp + val) / denom new_val.append(_UpperCamelCase ) lowercase_ :Tuple = new_val return [float(_UpperCamelCase ) for i in new_val] def UpperCAmelCase_ ( __lowerCamelCase : str ): lowercase_ :int = table.shape lowercase_ :Tuple = True for i in range(0 ,_UpperCamelCase ): lowercase_ :Tuple = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
223
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=14 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=0.02 , ): __lowerCAmelCase : Union[str, Any] = parent __lowerCAmelCase : Any = batch_size __lowerCAmelCase : Any = seq_length __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : Any = use_input_mask __lowerCAmelCase : Any = use_token_type_ids __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : Tuple = hidden_size __lowerCAmelCase : str = rotary_dim __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = vocab_size - 1 __lowerCAmelCase : Dict = vocab_size - 1 __lowerCAmelCase : int = vocab_size - 1 def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : List[str] = None if self.use_input_mask: __lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : Dict = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = 20 __lowerCAmelCase : List[str] = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCAmelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase : Any = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : int = model( input_ids[:, -1:] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = 20 __lowerCAmelCase : List[str] = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCAmelCase : List[str] = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase : Optional[Any] = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A_ : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __lowerCamelCase ( self ): __lowerCAmelCase : int = FlaxGPTJModelTester(self ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @tooslow def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCAmelCase : Optional[int] = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase : Any = False __lowerCAmelCase : Any = model.config.eos_token_id __lowerCAmelCase : Union[str, Any] = jax.jit(model.generate ) __lowerCAmelCase : Optional[Any] = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCAmelCase : str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = pt_inputs['input_ids'].shape __lowerCAmelCase : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Any = 1 __lowerCAmelCase : Optional[Any] = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) __lowerCAmelCase : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = fx_state with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() __lowerCAmelCase : str = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = fx_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase : List[str] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : str = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) __lowerCAmelCase : List[str] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params ) __lowerCAmelCase , __lowerCAmelCase : int = pt_inputs['input_ids'].shape __lowerCAmelCase : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = 0 __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Optional[Any] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCAmelCase : List[str] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() __lowerCAmelCase : Optional[int] = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = pt_model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase : Any = pt_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
86
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: """simple docstring""" A : Optional[Any] = parent A : List[Any] = batch_size A : int = seq_length A : Tuple = is_training A : int = use_input_mask A : Dict = use_token_type_ids A : Optional[int] = use_labels A : int = vocab_size A : Tuple = hidden_size A : Union[str, Any] = num_hidden_layers A : int = num_attention_heads A : List[Any] = intermediate_size A : str = hidden_act A : str = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : Dict = max_position_embeddings A : int = type_vocab_size A : int = type_sequence_label_size A : Optional[Any] = initializer_range A : Tuple = num_labels A : Any = num_choices A : str = scope def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[int] = None if self.use_input_mask: A : Any = random_attention_mask([self.batch_size, self.seq_length] ) A : Tuple = None if self.use_token_type_ids: A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A : Dict = None A : Union[str, Any] = None A : Optional[Any] = None if self.use_labels: A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : Any = ids_tensor([self.batch_size] , self.num_choices ) A : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , use_stable_embedding=_A , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : int = OpenLlamaModel(config=_A ) model.to(_A ) model.eval() A : List[Any] = model(_A , attention_mask=_A ) A : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" A : str = True A : Any = OpenLlamaModel(_A ) model.to(_A ) model.eval() A : Dict = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) A : List[str] = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) A : List[str] = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" A : Dict = OpenLlamaForCausalLM(config=_A ) model.to(_A ) model.eval() A : int = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" A : str = True A : Tuple = True A : List[str] = OpenLlamaForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass A : Tuple = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) A : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) A : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) A : Any = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )['hidden_states'][0] A : Optional[Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice A : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() A : str = output_from_no_past[:, -3:, random_slice_idx].detach() A : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : int = self.prepare_config_and_inputs() ( A ) : int = config_and_inputs A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __magic_name__ = (OpenLlamaForCausalLM,) if is_torch_available() else () __magic_name__ = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Tuple = OpenLlamaModelTester(self ) A : str = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A : Any = type self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A : List[Any] = 3 A : List[str] = input_dict['input_ids'] A : List[str] = input_ids.ne(1 ).to(_A ) A : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A : str = OpenLlamaForSequenceClassification(_A ) model.to(_A ) model.eval() A : Optional[Any] = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs_for_common() A : List[str] = 3 A : List[Any] = 'single_label_classification' A : int = input_dict['input_ids'] A : str = input_ids.ne(1 ).to(_A ) A : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A : str = OpenLlamaForSequenceClassification(_A ) model.to(_A ) model.eval() A : Union[str, Any] = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A : Optional[int] = 3 A : List[Any] = 'multi_label_classification' A : Union[str, Any] = input_dict['input_ids'] A : List[str] = input_ids.ne(1 ).to(_A ) A : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A : Union[str, Any] = OpenLlamaForSequenceClassification(_A ) model.to(_A ) model.eval() A : Union[str, Any] = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs_for_common() A : str = ids_tensor([1, 10] , config.vocab_size ) A : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A : List[Any] = OpenLlamaModel(_A ) original_model.to(_A ) original_model.eval() A : str = original_model(_A ).last_hidden_state A : List[Any] = original_model(_A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A : Optional[Any] = {'type': scaling_type, 'factor': 10.0} A : Dict = OpenLlamaModel(_A ) scaled_model.to(_A ) scaled_model.eval() A : Dict = scaled_model(_A ).last_hidden_state A : str = scaled_model(_A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_A , _A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) )
350
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase : str = datasets.utils.logging.get_logger(__name__) lowercase : Union[str, Any] = ['names', 'prefix'] lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowercase : List[Any] = ['encoding_errors', 'on_bad_lines'] lowercase : Any = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): __magic_name__ = "," __magic_name__ = None __magic_name__ = "infer" __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = "." __magic_name__ = None __magic_name__ = '"' __magic_name__ = 0 __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = None __magic_name__ = 10000 __magic_name__ = None __magic_name__ = "strict" __magic_name__ = "error" __magic_name__ = None def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" if self.delimiter is not None: A : Optional[Any] = self.delimiter if self.column_names is not None: A : Optional[Any] = self.column_names @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : str = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): __magic_name__ = CsvConfig def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ): A : str = data_files if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : int = [files] A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A : Tuple = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[str] = [files] A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table: """simple docstring""" if self.config.features is not None: A : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return pa_table def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ): A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ): A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' ) raise
311
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ) -> Dict: _a : Dict =tmp_path / """file.csv""" _a : Union[str, Any] =textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ) -> Tuple: _a : List[Any] =tmp_path / """malformed_file.csv""" _a : Union[str, Any] =textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ) -> Any: _a : int =tmp_path / """csv_with_image.csv""" _a : Tuple =textwrap.dedent( F"\\n image\n {image_file}\n " ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> str: _a : int =tmp_path / """csv_with_label.csv""" _a : Union[str, Any] =textwrap.dedent( """\ label good bad good """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> Tuple: _a : Optional[int] =tmp_path / """csv_with_int_list.csv""" _a : Any =textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] ) -> Union[str, Any]: _a : Union[str, Any] =Csv() _a : List[str] =csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_UpperCAmelCase ,match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(_UpperCAmelCase ) in record.message for record in caplog.records ) @require_pil def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> Any: with open(_UpperCAmelCase ,encoding="""utf-8""" ) as f: _a : Optional[int] =f.read().splitlines()[1] _a : Dict =Csv(encoding="""utf-8""" ,features=Features({"""image""": Image()} ) ) _a : Any =csv._generate_tables([[csv_file_with_image]] ) _a : List[str] =pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() _a : Tuple =pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> str: with open(_UpperCAmelCase ,encoding="""utf-8""" ) as f: _a : str =f.read().splitlines()[1:] _a : Any =Csv(encoding="""utf-8""" ,features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) _a : Dict =csv._generate_tables([[csv_file_with_label]] ) _a : Union[str, Any] =pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() _a : Any =pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(_UpperCAmelCase ) for label in labels] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ) -> Tuple: _a : List[str] =Csv(encoding="""utf-8""" ,sep=""",""" ,converters={"""int_list""": lambda _UpperCAmelCase : [int(_UpperCAmelCase ) for i in x.split()]} ) _a : int =csv._generate_tables([[csv_file_with_int_list]] ) _a : int =pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) _a : str =pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
276
'''simple docstring''' from __future__ import annotations import requests def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> dict: _a : Any =F"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(_UpperCAmelCase ).json() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10 ) -> list[dict]: _a : Union[str, Any] ="""https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" _a : int =requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10 ) -> str: _a : Union[str, Any] =hackernews_top_stories(_UpperCAmelCase ) return "\n".join("""* [{title}]({url})""".format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
276
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( a_ : Optional[int] , a_ : int ) -> Any: # Load checkpoint __SCREAMING_SNAKE_CASE :Optional[Any] = torch.load(a_ , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository __SCREAMING_SNAKE_CASE :Union[str, Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: __SCREAMING_SNAKE_CASE :Union[str, Any] = v else: __SCREAMING_SNAKE_CASE :Any = v __SCREAMING_SNAKE_CASE :List[Any] = chkpt['''params'''] __SCREAMING_SNAKE_CASE :Optional[int] = {n: v for n, v in config.items() if not isinstance(a_ , (torch.FloatTensor, numpy.ndarray) )} __SCREAMING_SNAKE_CASE :Optional[Any] = chkpt['''dico_word2id'''] __SCREAMING_SNAKE_CASE :Any = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model __SCREAMING_SNAKE_CASE :List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __SCREAMING_SNAKE_CASE :int = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __SCREAMING_SNAKE_CASE :Optional[int] = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(a_ , a_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a_ , indent=2 ) + '''\n''' ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a_ , indent=2 ) + '''\n''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase_ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
239
"""simple docstring""" import math import random def __lowerCamelCase ( a_ : float , a_ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCamelCase_ = 0.02 def __lowerCamelCase ( a_ : int , a_ : int ) -> float: __SCREAMING_SNAKE_CASE :Any = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(a_ ): # Forward propagation __SCREAMING_SNAKE_CASE :Any = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE :Tuple = (expected / 1_00) - layer_a # Error delta __SCREAMING_SNAKE_CASE :Union[str, Any] = layer_1_error * sigmoid_function(a_ , a_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = int(input("Expected value: ")) lowerCamelCase_ = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
239
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : List[str] = logging.get_logger(__name__) a_ : Dict = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : str ='unispeech' def __init__( self, lowerCAmelCase=32, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-5, lowerCAmelCase="group", lowerCAmelCase="gelu", lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512), lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2), lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2), lowerCAmelCase=False, lowerCAmelCase=128, lowerCAmelCase=16, lowerCAmelCase=False, lowerCAmelCase=True, lowerCAmelCase=0.0_5, lowerCAmelCase=10, lowerCAmelCase=2, lowerCAmelCase=0.0, lowerCAmelCase=10, lowerCAmelCase=0, lowerCAmelCase=320, lowerCAmelCase=2, lowerCAmelCase=0.1, lowerCAmelCase=100, lowerCAmelCase=256, lowerCAmelCase=256, lowerCAmelCase=0.1, lowerCAmelCase="mean", lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=256, lowerCAmelCase=80, lowerCAmelCase=0, lowerCAmelCase=1, lowerCAmelCase=2, lowerCAmelCase=0.5, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase, pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase ) lowerCamelCase_ =hidden_size lowerCamelCase_ =feat_extract_norm lowerCamelCase_ =feat_extract_activation lowerCamelCase_ =list(lowerCAmelCase ) lowerCamelCase_ =list(lowerCAmelCase ) lowerCamelCase_ =list(lowerCAmelCase ) lowerCamelCase_ =conv_bias lowerCamelCase_ =num_conv_pos_embeddings lowerCamelCase_ =num_conv_pos_embedding_groups lowerCamelCase_ =len(self.conv_dim ) lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =activation_dropout lowerCamelCase_ =feat_proj_dropout lowerCamelCase_ =final_dropout lowerCamelCase_ =layerdrop lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =initializer_range lowerCamelCase_ =num_ctc_classes lowerCamelCase_ =vocab_size lowerCamelCase_ =do_stable_layer_norm lowerCamelCase_ =use_weighted_layer_sum lowerCamelCase_ =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ =apply_spec_augment lowerCamelCase_ =mask_time_prob lowerCamelCase_ =mask_time_length lowerCamelCase_ =mask_time_min_masks lowerCamelCase_ =mask_feature_prob lowerCamelCase_ =mask_feature_length lowerCamelCase_ =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase_ =num_codevectors_per_group lowerCamelCase_ =num_codevector_groups lowerCamelCase_ =contrastive_logits_temperature lowerCamelCase_ =feat_quantizer_dropout lowerCamelCase_ =num_negatives lowerCamelCase_ =codevector_dim lowerCamelCase_ =proj_codevector_dim lowerCamelCase_ =diversity_loss_weight # ctc loss lowerCamelCase_ =ctc_loss_reduction lowerCamelCase_ =ctc_zero_infinity # pretraining loss lowerCamelCase_ =replace_prob @property def lowercase__ ( self ): """simple docstring""" return functools.reduce(operator.mul, self.conv_stride, 1 )
75
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Any = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] ='efficientformer' def __init__( self, lowerCAmelCase = [3, 2, 6, 4], lowerCAmelCase = [48, 96, 224, 448], lowerCAmelCase = [True, True, True, True], lowerCAmelCase = 448, lowerCAmelCase = 32, lowerCAmelCase = 4, lowerCAmelCase = 7, lowerCAmelCase = 5, lowerCAmelCase = 8, lowerCAmelCase = 4, lowerCAmelCase = 0.0, lowerCAmelCase = 16, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 2, lowerCAmelCase = 1, lowerCAmelCase = 0.0, lowerCAmelCase = 1, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = 1e-5, lowerCAmelCase = "gelu", lowerCAmelCase = 0.0_2, lowerCAmelCase = 1e-12, lowerCAmelCase = 224, lowerCAmelCase = 1e-05, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =hidden_sizes lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =patch_size lowerCamelCase_ =num_channels lowerCamelCase_ =depths lowerCamelCase_ =mlp_expansion_ratio lowerCamelCase_ =downsamples lowerCamelCase_ =dim lowerCamelCase_ =key_dim lowerCamelCase_ =attention_ratio lowerCamelCase_ =resolution lowerCamelCase_ =pool_size lowerCamelCase_ =downsample_patch_size lowerCamelCase_ =downsample_stride lowerCamelCase_ =downsample_pad lowerCamelCase_ =drop_path_rate lowerCamelCase_ =num_metaad_blocks lowerCamelCase_ =distillation lowerCamelCase_ =use_layer_scale lowerCamelCase_ =layer_scale_init_value lowerCamelCase_ =image_size lowerCamelCase_ =batch_norm_eps
75
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """Wav2Vec2FeatureExtractor""" _snake_case = """AutoTokenizer""" def __init__( self , A , A ) -> List[str]: super().__init__(A , A ) snake_case : Union[str, Any] = self.feature_extractor snake_case : Optional[Any] = False @classmethod def UpperCAmelCase ( cls , A , **A ) -> Tuple: try: return super().from_pretrained(A , **A ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , A , ) snake_case : str = WavaVecaFeatureExtractor.from_pretrained(A , **A ) snake_case : Optional[int] = WavaVecaCTCTokenizer.from_pretrained(A , **A ) return cls(feature_extractor=A , tokenizer=A ) def __call__( self , *A , **A ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A , **A ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) snake_case : int = kwargs.pop("""raw_speech""" ) else: snake_case : str = kwargs.pop("""audio""" , A ) snake_case : str = kwargs.pop("""sampling_rate""" , A ) snake_case : Dict = kwargs.pop("""text""" , A ) if len(A ) > 0: snake_case : List[str] = args[0] snake_case : Any = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case : str = self.feature_extractor(A , *A , sampling_rate=A , **A ) if text is not None: snake_case : str = self.tokenizer(A , **A ) if text is None: return inputs elif audio is None: return encodings else: snake_case : List[Any] = encodings["""input_ids"""] return inputs def UpperCAmelCase ( self , *A , **A ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A , **A ) snake_case : Any = kwargs.pop("""input_features""" , A ) snake_case : Optional[Any] = kwargs.pop("""labels""" , A ) if len(A ) > 0: snake_case : Optional[Any] = args[0] snake_case : str = args[1:] if input_features is not None: snake_case : Dict = self.feature_extractor.pad(A , *A , **A ) if labels is not None: snake_case : List[str] = self.tokenizer.pad(A , **A ) if labels is None: return input_features elif input_features is None: return labels else: snake_case : Union[str, Any] = labels["""input_ids"""] return input_features def UpperCAmelCase ( self , *A , **A ) -> Tuple: return self.tokenizer.batch_decode(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> Optional[int]: return self.tokenizer.decode(*A , **A ) @contextmanager def UpperCAmelCase ( self ) -> Optional[Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) snake_case : Union[str, Any] = True snake_case : Union[str, Any] = self.tokenizer yield snake_case : Any = self.feature_extractor snake_case : Union[str, Any] = False
176
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) lowerCamelCase : Tuple = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class __lowercase (UpperCamelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase ( A ) -> List[str]: snake_case : Union[str, Any] = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=A , required=A , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=A , required=A , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=A , required=A , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=A , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=A , default=A , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=A ) def __init__( self , A , A , A , A , A , *A , ) -> List[Any]: snake_case : Any = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"""Loading model {model_type}""" ) snake_case : int = model_type snake_case : Any = tf_checkpoint snake_case : int = pytorch_dump_output snake_case : List[str] = config snake_case : Tuple = finetuning_task_name def UpperCAmelCase ( self ) -> int: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) if "ckpt" in self._tf_checkpoint.lower(): snake_case : List[Any] = self._tf_checkpoint snake_case : Tuple = """""" else: snake_case : Tuple = self._tf_checkpoint snake_case : Tuple = """""" convert_transfo_xl_checkpoint_to_pytorch( A , self._config , self._pytorch_dump_output , A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
176
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__: Optional[int] = logging.get_logger(__name__) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __magic_name__ : str = [144, 192, 240] __magic_name__ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __magic_name__ : List[str] = [96, 120, 144] __magic_name__ : Dict = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __magic_name__ : List[Any] = [64, 80, 96] __magic_name__ : Any = [16, 16, 24, 48, 64, 80, 320] __magic_name__ : List[str] = 0.05 __magic_name__ : Dict = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): __magic_name__ : Optional[Any] = 512 __magic_name__ : List[Any] = 16 __magic_name__ : List[str] = 21 __magic_name__ : int = """pascal-voc-id2label.json""" else: __magic_name__ : Optional[Any] = 1000 __magic_name__ : Optional[Any] = """imagenet-1k-id2label.json""" __magic_name__ : Tuple = """huggingface/label-files""" __magic_name__ : str = json.load(open(hf_hub_download(_A, _A, repo_type="""dataset""" ), """r""" ) ) __magic_name__ : Optional[int] = {int(_A ): v for k, v in idalabel.items()} __magic_name__ : Any = idalabel __magic_name__ : Dict = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( _A, _A=False ): """simple docstring""" for i in range(1, 6 ): if f'layer_{i}.' in name: __magic_name__ : Optional[int] = name.replace(f'layer_{i}.', f'encoder.layer.{i - 1}.' ) if "conv_1." in name: __magic_name__ : Optional[int] = name.replace("""conv_1.""", """conv_stem.""" ) if ".block." in name: __magic_name__ : Optional[int] = name.replace(""".block.""", """.""" ) if "exp_1x1" in name: __magic_name__ : int = name.replace("""exp_1x1""", """expand_1x1""" ) if "red_1x1" in name: __magic_name__ : Any = name.replace("""red_1x1""", """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: __magic_name__ : Optional[Any] = name.replace(""".local_rep.conv_3x3.""", """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: __magic_name__ : Union[str, Any] = name.replace(""".local_rep.conv_1x1.""", """.conv_1x1.""" ) if ".norm." in name: __magic_name__ : List[str] = name.replace(""".norm.""", """.normalization.""" ) if ".conv." in name: __magic_name__ : List[Any] = name.replace(""".conv.""", """.convolution.""" ) if ".conv_proj." in name: __magic_name__ : str = name.replace(""".conv_proj.""", """.conv_projection.""" ) for i in range(0, 2 ): for j in range(0, 4 ): if f'.{i}.{j}.' in name: __magic_name__ : List[str] = name.replace(f'.{i}.{j}.', f'.{i}.layer.{j}.' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'.{i}.{j}.' in name: __magic_name__ : Tuple = name.replace(f'.{i}.{j}.', f'.{i}.' ) if "expand_1x1" in name: __magic_name__ : Dict = name.replace("""expand_1x1""", """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: __magic_name__ : Union[str, Any] = name.replace("""conv_3x3""", """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: __magic_name__ : Union[str, Any] = name.replace("""reduce_1x1""", """downsampling_layer.reduce_1x1""" ) for i in range(2, 5 ): if f'.global_rep.{i}.weight' in name: __magic_name__ : Union[str, Any] = name.replace(f'.global_rep.{i}.weight', """.layernorm.weight""" ) if f'.global_rep.{i}.bias' in name: __magic_name__ : Any = name.replace(f'.global_rep.{i}.bias', """.layernorm.bias""" ) if ".global_rep." in name: __magic_name__ : int = name.replace(""".global_rep.""", """.transformer.""" ) if ".pre_norm_mha.0." in name: __magic_name__ : Union[str, Any] = name.replace(""".pre_norm_mha.0.""", """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: __magic_name__ : List[str] = name.replace(""".pre_norm_mha.1.out_proj.""", """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: __magic_name__ : Dict = name.replace(""".pre_norm_ffn.0.""", """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: __magic_name__ : Union[str, Any] = name.replace(""".pre_norm_ffn.1.""", """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: __magic_name__ : Dict = name.replace(""".pre_norm_ffn.4.""", """.output.dense.""" ) if ".transformer." in name: __magic_name__ : List[Any] = name.replace(""".transformer.""", """.transformer.layer.""" ) if ".aspp_layer." in name: __magic_name__ : str = name.replace(""".aspp_layer.""", """.""" ) if ".aspp_pool." in name: __magic_name__ : Any = name.replace(""".aspp_pool.""", """.""" ) if "seg_head." in name: __magic_name__ : List[Any] = name.replace("""seg_head.""", """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: __magic_name__ : Any = name.replace("""segmentation_head.classifier.classifier.""", """segmentation_head.classifier.""" ) if "classifier.fc." in name: __magic_name__ : Any = name.replace("""classifier.fc.""", """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): __magic_name__ : Optional[int] = """mobilevit.""" + name return name def UpperCamelCase ( _A, _A, _A=False ): """simple docstring""" if base_model: __magic_name__ : str = """""" else: __magic_name__ : List[str] = """mobilevit.""" for key in orig_state_dict.copy().keys(): __magic_name__ : str = orig_state_dict.pop(_A ) if key[:8] == "encoder.": __magic_name__ : Dict = key[8:] if "qkv" in key: __magic_name__ : List[str] = key.split(""".""" ) __magic_name__ : str = int(key_split[0][6:] ) - 1 __magic_name__ : Any = int(key_split[3] ) __magic_name__ : int = model.get_submodule(f'{model_prefix}encoder.layer.{layer_num}' ) __magic_name__ : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size __magic_name__ : str = ( f'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: __magic_name__ : Tuple = val[:dim, :] __magic_name__ : Union[str, Any] = val[dim : dim * 2, :] __magic_name__ : Any = val[-dim:, :] else: __magic_name__ : Tuple = val[:dim] __magic_name__ : str = val[dim : dim * 2] __magic_name__ : List[str] = val[-dim:] else: __magic_name__ : Any = val return orig_state_dict def UpperCamelCase ( ): """simple docstring""" __magic_name__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : Optional[int] = Image.open(requests.get(_A, stream=_A ).raw ) return im @torch.no_grad() def UpperCamelCase ( _A, _A, _A, _A=False ): """simple docstring""" __magic_name__ : Tuple = get_mobilevit_config(_A ) # load original state_dict __magic_name__ : Optional[int] = torch.load(_A, map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): __magic_name__ : Tuple = MobileViTForSemanticSegmentation(_A ).eval() else: __magic_name__ : Dict = MobileViTForImageClassification(_A ).eval() __magic_name__ : str = convert_state_dict(_A, _A ) model.load_state_dict(_A ) # Check outputs on an image, prepared by MobileViTImageProcessor __magic_name__ : Any = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __magic_name__ : Optional[int] = image_processor(images=prepare_img(), return_tensors="""pt""" ) __magic_name__ : Union[str, Any] = model(**_A ) __magic_name__ : str = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __magic_name__ : Dict = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __magic_name__ : Optional[int] = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __magic_name__ : int = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3, :3, :3], _A, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __magic_name__ : Any = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __magic_name__ : int = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __magic_name__ : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3], _A, atol=1e-4 ) Path(_A ).mkdir(exist_ok=_A ) print(f'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) if push_to_hub: __magic_name__ : Dict = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) __magic_name__ : Optional[Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(_A, organization="""apple""" ) model.push_to_hub(_A, organization="""apple""" ) if __name__ == "__main__": __magic_name__: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--mobilevit_name", default="mobilevit_s", type=str, help=( "Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs'," " 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'." ), ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __magic_name__: int = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __magic_name__: int = logging.getLogger(__name__) class snake_case__ ( lowerCAmelCase_ ): lowercase__ : Optional[int] = """summarization""" lowercase__ : List[str] = ["""loss"""] lowercase__ : List[Any] = ROUGE_KEYS lowercase__ : Tuple = """rouge2""" def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: if hparams.sortish_sampler and hparams.gpus > 1: __magic_name__ : List[Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , mode=self.mode , **__SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) __magic_name__ : Optional[int] = Path(self.output_dir ) / """metrics.json""" __magic_name__ : int = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) __magic_name__ : List[str] = 0 __magic_name__ : Optional[int] = defaultdict(__SCREAMING_SNAKE_CASE ) __magic_name__ : str = self.config.model_type __magic_name__ : Optional[Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size __magic_name__ : str = { """data_dir""": self.hparams.data_dir, """max_source_length""": self.hparams.max_source_length, """prefix""": self.model.config.prefix or """""", } __magic_name__ : Union[str, Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } __magic_name__ : int = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __magic_name__ : List[Any] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __magic_name__ : Tuple = get_git_info()["""repo_sha"""] __magic_name__ : Tuple = hparams.num_workers __magic_name__ : Union[str, Any] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __SCREAMING_SNAKE_CASE ): __magic_name__ : int = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __magic_name__ : List[Any] = self.decoder_start_token_id __magic_name__ : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) __magic_name__ : List[str] = False __magic_name__ : List[Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __magic_name__ : Tuple = self.hparams.eval_max_gen_length else: __magic_name__ : int = self.model.config.max_length __magic_name__ : str = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : str = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(__SCREAMING_SNAKE_CASE , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) __magic_name__ : str = True return readable_batch def __magic_name__ ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: return self.model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = self.tokenizer.batch_decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return lmap(str.strip , __SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = self.tokenizer.pad_token_id __magic_name__ ,__magic_name__ : List[str] = batch["""input_ids"""], batch["""attention_mask"""] __magic_name__ : Optional[int] = batch["""labels"""] if isinstance(self.model , __SCREAMING_SNAKE_CASE ): __magic_name__ : Union[str, Any] = self.model._shift_right(__SCREAMING_SNAKE_CASE ) else: __magic_name__ : List[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __magic_name__ : Optional[int] = decoder_input_ids self.save_readable_batch(__SCREAMING_SNAKE_CASE ) __magic_name__ : Union[str, Any] = self(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __magic_name__ : List[str] = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __magic_name__ : str = nn.CrossEntropyLoss(ignore_index=__SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size __magic_name__ : Union[str, Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __magic_name__ : Tuple = nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) __magic_name__ ,__magic_name__ : Dict = label_smoothed_nll_loss( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=__SCREAMING_SNAKE_CASE ) return (loss,) @property def __magic_name__ ( self ) -> List[Any]: return self.tokenizer.pad_token_id def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: __magic_name__ : List[str] = self._step(__SCREAMING_SNAKE_CASE ) __magic_name__ : Dict = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) # tokens per batch __magic_name__ : Any = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() __magic_name__ : str = batch["""input_ids"""].shape[0] __magic_name__ : Any = batch["""input_ids"""].eq(self.pad ).sum() __magic_name__ : List[Any] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: return self._generative_step(__SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__="val" ) -> Optional[int]: self.step_count += 1 __magic_name__ : int = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __magic_name__ : Tuple = losses["""loss"""] __magic_name__ : List[Any] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } __magic_name__ : Dict = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __magic_name__ : Optional[int] = torch.tensor(__SCREAMING_SNAKE_CASE ).type_as(__SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__SCREAMING_SNAKE_CASE ) __magic_name__ : Optional[Any] = {F'{prefix}_avg_{k}': x for k, x in losses.items()} __magic_name__ : str = self.step_count self.metrics[prefix].append(__SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path __magic_name__ : List[Any] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: __magic_name__ : Any = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __magic_name__ : Dict = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=__SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __magic_name__ : Dict = (time.time() - ta) / batch["""input_ids"""].shape[0] __magic_name__ : Optional[int] = self.ids_to_clean_text(__SCREAMING_SNAKE_CASE ) __magic_name__ : Union[str, Any] = self.ids_to_clean_text(batch["""labels"""] ) __magic_name__ : List[Any] = self._step(__SCREAMING_SNAKE_CASE ) __magic_name__ : Optional[int] = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) __magic_name__ : List[str] = self.calc_generative_metrics(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __magic_name__ : Any = np.mean(lmap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=__SCREAMING_SNAKE_CASE , gen_len=__SCREAMING_SNAKE_CASE , preds=__SCREAMING_SNAKE_CASE , target=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return base_metrics def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: return self._generative_step(__SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: return self.validation_epoch_end(__SCREAMING_SNAKE_CASE , prefix="""test""" ) def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: __magic_name__ : Union[str, Any] = self.n_obs[type_path] __magic_name__ : Dict = self.target_lens[type_path] __magic_name__ : Tuple = self.dataset_class( self.tokenizer , type_path=__SCREAMING_SNAKE_CASE , n_obs=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> str: __magic_name__ : Union[str, Any] = self.get_dataset(__SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __magic_name__ : List[str] = dataset.make_sortish_sampler(__SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __magic_name__ : str = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_sampler=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) return dataloader def __magic_name__ ( self ) -> List[Any]: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def __magic_name__ ( self ) -> int: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def __magic_name__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) add_generic_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) parser.add_argument( """--max_source_length""" , default=10_24 , type=__SCREAMING_SNAKE_CASE , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=__SCREAMING_SNAKE_CASE , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_42 , type=__SCREAMING_SNAKE_CASE , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_42 , type=__SCREAMING_SNAKE_CASE , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--max_tokens_per_batch""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--logger_name""" , type=__SCREAMING_SNAKE_CASE , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=__SCREAMING_SNAKE_CASE , default=5_00 , required=__SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=__SCREAMING_SNAKE_CASE , default="""summarization""" , required=__SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=__SCREAMING_SNAKE_CASE , default=0.0 , required=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--src_lang""" , type=__SCREAMING_SNAKE_CASE , default="""""" , required=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--tgt_lang""" , type=__SCREAMING_SNAKE_CASE , default="""""" , required=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--eval_beams""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) parser.add_argument( """--val_metric""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=__SCREAMING_SNAKE_CASE , default=1 , required=__SCREAMING_SNAKE_CASE , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class snake_case__ ( lowerCAmelCase_ ): lowercase__ : int = """translation""" lowercase__ : Optional[Any] = ["""loss"""] lowercase__ : Optional[Any] = ["""bleu"""] lowercase__ : Dict = """bleu""" def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: super().__init__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __magic_name__ : str = hparams.src_lang __magic_name__ : Tuple = hparams.tgt_lang def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: return calculate_bleu(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( _A, _A=None ): """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=_A ) check_output_dir(_A, expected_items=3 ) if model is None: if "summarization" in args.task: __magic_name__ : Any = SummarizationModule(_A ) else: __magic_name__ : Dict = TranslationModule(_A ) __magic_name__ : Optional[Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): __magic_name__ : Optional[int] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __magic_name__ : Union[str, Any] = os.environ.get("""WANDB_PROJECT""", _A ) __magic_name__ : Any = WandbLogger(name=model.output_dir.name, project=_A ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __magic_name__ : Union[str, Any] = WandbLogger(name=model.output_dir.name, project=f'hf_{dataset}' ) if args.early_stopping_patience >= 0: __magic_name__ : Dict = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: __magic_name__ : Union[str, Any] = False __magic_name__ : Optional[Any] = args.val_metric == """loss""" __magic_name__ : Any = generic_train( _A, _A, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, _A ), early_stopping_callback=_A, logger=_A, ) pickle_save(model.hparams, model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model __magic_name__ : str = """""" __magic_name__ : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, """*.ckpt""" ), recursive=_A ) ) if checkpoints: __magic_name__ : Optional[int] = checkpoints[-1] __magic_name__ : List[Any] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __magic_name__: Optional[Any] = argparse.ArgumentParser() __magic_name__: str = pl.Trainer.add_argparse_args(parser) __magic_name__: Dict = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __magic_name__: Tuple = parser.parse_args() main(args)
352
__magic_name__: List[Any] = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __magic_name__: Dict = [{"type": "code", "content": INSTALL_CONTENT}] __magic_name__: Optional[Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
138
0
'''simple docstring''' from math import isclose, sqrt def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] ) -> tuple[float, float, float]: '''simple docstring''' _a = point_y / 4 / point_x _a = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _a = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _a = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _a = outgoing_gradient**2 + 4 _a = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _a = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 _a = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _a = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _a = x_minus if isclose(_UpperCamelCase , _UpperCamelCase ) else x_plus _a = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _A (lowerCAmelCase__ :List[Any] = 1.4 , lowerCAmelCase__ :List[Any] = -9.6 ) -> int: '''simple docstring''' _a = 0 _a = first_x_coord _a = first_y_coord _a = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): _a = next_point(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
168
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
279
0
from collections.abc import Sequence from queue import Queue class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Tuple=None , lowercase : str=None ): '''simple docstring''' _snake_case = start _snake_case = end _snake_case = val _snake_case = (start + end) // 2 _snake_case = left _snake_case = right def __repr__( self : Any ): '''simple docstring''' return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowercase : Sequence , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = collection _snake_case = function if self.collection: _snake_case = self._build_tree(0 , len(lowercase ) - 1 ) def A ( self : List[str] , lowercase : List[Any] , lowercase : List[Any] ): '''simple docstring''' self._update_tree(self.root , lowercase , lowercase ) def A ( self : Optional[int] , lowercase : Dict , lowercase : int ): '''simple docstring''' return self._query_range(self.root , lowercase , lowercase ) def A ( self : List[str] , lowercase : str , lowercase : Optional[Any] ): '''simple docstring''' if start == end: return SegmentTreeNode(lowercase , lowercase , self.collection[start] ) _snake_case = (start + end) // 2 _snake_case = self._build_tree(lowercase , lowercase ) _snake_case = self._build_tree(mid + 1 , lowercase ) return SegmentTreeNode(lowercase , lowercase , self.fn(left.val , right.val ) , lowercase , lowercase ) def A ( self : Any , lowercase : List[Any] , lowercase : str , lowercase : Any ): '''simple docstring''' if node.start == i and node.end == i: _snake_case = val return if i <= node.mid: self._update_tree(node.left , lowercase , lowercase ) else: self._update_tree(node.right , lowercase , lowercase ) _snake_case = self.fn(node.left.val , node.right.val ) def A ( self : Dict , lowercase : str , lowercase : str , lowercase : str ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , lowercase , lowercase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , lowercase , node.mid ) , self._query_range(node.right , node.mid + 1 , lowercase ) , ) else: # range in right child tree return self._query_range(node.right , lowercase , lowercase ) def A ( self : int ): '''simple docstring''' if self.root is not None: _snake_case = Queue() queue.put(self.root ) while not queue.empty(): _snake_case = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) _lowerCamelCase : Optional[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
130
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : str = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "sequence-classification" def __init__( self : Optional[int] , lowercase : Optional[Any] ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : List[str] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : int ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : str ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Dict , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Optional[Any] , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : List[str] , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : Tuple , lowercase : Tuple ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> List[str]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
130
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase__ = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowercase__ = {"""facebook/blenderbot-3B""": 128} class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Tuple = VOCAB_FILES_NAMES a_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] = ["input_ids", "attention_mask"] a_ : Tuple = BlenderbotTokenizer def __init__( self : int , a_ : Dict=None , a_ : Dict=None , a_ : Dict=None , a_ : Union[str, Any]="replace" , a_ : Optional[Any]="<s>" , a_ : Dict="</s>" , a_ : Tuple="</s>" , a_ : List[Any]="<s>" , a_ : Tuple="<unk>" , a_ : Dict="<pad>" , a_ : Optional[int]="<mask>" , a_ : Tuple=False , a_ : str=True , **a_ : Tuple , ): super().__init__( a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , ) lowerCAmelCase_ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : Union[str, Any] = getattr(a_ , pre_tok_state.pop("type" ) ) lowerCAmelCase_ : str = add_prefix_space lowerCAmelCase_ : Any = pre_tok_class(**a_ ) lowerCAmelCase_ : Tuple = add_prefix_space lowerCAmelCase_ : int = """post_processor""" lowerCAmelCase_ : Dict = getattr(self.backend_tokenizer , a_ , a_ ) if tokenizer_component_instance: lowerCAmelCase_ : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : Any = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ : Union[str, Any] = tuple(state["cls"] ) lowerCAmelCase_ : int = False if state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : List[str] = add_prefix_space lowerCAmelCase_ : Union[str, Any] = True if state.get("trim_offsets" , a_ ) != trim_offsets: lowerCAmelCase_ : str = trim_offsets lowerCAmelCase_ : str = True if changes_to_apply: lowerCAmelCase_ : Union[str, Any] = getattr(a_ , state.pop("type" ) ) lowerCAmelCase_ : int = component_class(**a_ ) setattr(self.backend_tokenizer , a_ , a_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase ( self : int ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase ( self : Tuple , a_ : int ): lowerCAmelCase_ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value lowerCAmelCase_ : List[Any] = value def lowerCamelCase ( self : int , *a_ : Any , **a_ : List[str] ): lowerCAmelCase_ : Optional[Any] = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : Tuple , *a_ : Dict , **a_ : Tuple ): lowerCAmelCase_ : List[str] = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : Dict , a_ : Tuple , a_ : List[str] = None ): lowerCAmelCase_ : int = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def lowerCamelCase ( self : List[str] , a_ : Union[str, Any] , a_ : Tuple = None ): lowerCAmelCase_ : Optional[int] = [self.sep_token_id] lowerCAmelCase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : Any , a_ : str , a_ : Any = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Union[str, Any] , a_ : Union[str, Any] ): lowerCAmelCase_ : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a_ ) lowerCAmelCase_ : List[Any] = """ """.join(a_ ) lowerCAmelCase_ : Optional[Any] = self.encode(a_ ) if len(a_ ) > self.model_max_length: lowerCAmelCase_ : Any = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
241
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Optional[Any] = 'xlnet' lowerCAmelCase : int = ['mems'] lowerCAmelCase : Optional[int] = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] ,_UpperCAmelCase : List[Any]=32000 ,_UpperCAmelCase : int=1024 ,_UpperCAmelCase : Optional[Any]=24 ,_UpperCAmelCase : str=16 ,_UpperCAmelCase : int=4096 ,_UpperCAmelCase : int="gelu" ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : Dict="bi" ,_UpperCAmelCase : List[str]=0.02 ,_UpperCAmelCase : str=1E-12 ,_UpperCAmelCase : Union[str, Any]=0.1 ,_UpperCAmelCase : int=512 ,_UpperCAmelCase : List[str]=None ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Optional[int]=False ,_UpperCAmelCase : Tuple=False ,_UpperCAmelCase : List[Any]=-1 ,_UpperCAmelCase : Optional[Any]=False ,_UpperCAmelCase : List[str]="last" ,_UpperCAmelCase : Dict=True ,_UpperCAmelCase : Tuple="tanh" ,_UpperCAmelCase : str=0.1 ,_UpperCAmelCase : List[Any]=5 ,_UpperCAmelCase : str=5 ,_UpperCAmelCase : Dict=5 ,_UpperCAmelCase : Optional[int]=1 ,_UpperCAmelCase : List[Any]=2 ,**_UpperCAmelCase : Optional[Any] ,): _a : Dict = vocab_size _a : Union[str, Any] = d_model _a : Optional[int] = n_layer _a : Union[str, Any] = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) _a : List[Any] = d_model // n_head _a : Dict = ff_activation _a : int = d_inner _a : int = untie_r _a : Dict = attn_type _a : Tuple = initializer_range _a : Tuple = layer_norm_eps _a : Union[str, Any] = dropout _a : int = mem_len _a : str = reuse_len _a : List[Any] = bi_data _a : Dict = clamp_len _a : int = same_length _a : int = summary_type _a : Any = summary_use_proj _a : Dict = summary_activation _a : Tuple = summary_last_dropout _a : Any = start_n_top _a : Optional[Any] = end_n_top _a : List[str] = bos_token_id _a : Dict = pad_token_id _a : List[Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' ,_UpperCAmelCase ,) _a : List[Any] = kwargs['use_cache'] _a : Optional[Any] = use_mems_eval _a : List[Any] = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase ,bos_token_id=_UpperCAmelCase ,eos_token_id=_UpperCAmelCase ,**_UpperCAmelCase ) @property def __lowercase ( self : Optional[Any] ): logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __lowercase ( self : List[str] ,_UpperCAmelCase : List[str] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
107
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] __lowerCAmelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] __lowerCAmelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): __lowerCAmelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
1
"""simple docstring""" class a : def __init__( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =None SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Dict =graph self._normalize_graph(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =None def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple ) -> List[str]: '''simple docstring''' if sources is int: SCREAMING_SNAKE_CASE_: List[str] =[sources] if sinks is int: SCREAMING_SNAKE_CASE_: Tuple =[sinks] if len(lowerCAmelCase ) == 0 or len(lowerCAmelCase ) == 0: return SCREAMING_SNAKE_CASE_: List[Any] =sources[0] SCREAMING_SNAKE_CASE_: List[Any] =sinks[0] # make fake vertex if there are more # than one source or sink if len(lowerCAmelCase ) > 1 or len(lowerCAmelCase ) > 1: SCREAMING_SNAKE_CASE_: Any =0 for i in sources: max_input_flow += sum(self.graph[i] ) SCREAMING_SNAKE_CASE_: Any =len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: SCREAMING_SNAKE_CASE_: Optional[int] =max_input_flow SCREAMING_SNAKE_CASE_: List[str] =0 SCREAMING_SNAKE_CASE_: List[Any] =len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: SCREAMING_SNAKE_CASE_: Optional[Any] =max_input_flow SCREAMING_SNAKE_CASE_: List[str] =size - 1 def lowerCamelCase__ ( self : Any ) -> str: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =algorithm(self ) class a : def __init__( self : str , lowerCAmelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =flow_network SCREAMING_SNAKE_CASE_: List[Any] =flow_network.verticesCount SCREAMING_SNAKE_CASE_: Tuple =flow_network.sourceIndex SCREAMING_SNAKE_CASE_: Tuple =flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that SCREAMING_SNAKE_CASE_: Tuple =flow_network.graph SCREAMING_SNAKE_CASE_: List[Any] =False def lowerCamelCase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' if not self.executed: self._algorithm() SCREAMING_SNAKE_CASE_: Dict =True def lowerCamelCase__ ( self : int ) -> str: '''simple docstring''' pass class a ( UpperCAmelCase__ ): def __init__( self : Optional[Any] , lowerCAmelCase : int ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase ) # use this to save your result SCREAMING_SNAKE_CASE_: int =-1 def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class a ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCAmelCase : Tuple ) -> int: '''simple docstring''' super().__init__(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[[0] * self.verticies_count for i in range(self.verticies_count )] SCREAMING_SNAKE_CASE_: str =[0] * self.verticies_count SCREAMING_SNAKE_CASE_: str =[0] * self.verticies_count def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule SCREAMING_SNAKE_CASE_: List[Any] =[ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list SCREAMING_SNAKE_CASE_: Union[str, Any] =0 while i < len(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] =vertices_list[i] SCREAMING_SNAKE_CASE_: List[str] =self.heights[vertex_index] self.process_vertex(lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: List[str] =0 else: i += 1 SCREAMING_SNAKE_CASE_: Dict =sum(self.preflow[self.source_index] ) def lowerCamelCase__ ( self : Dict , lowerCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(lowerCAmelCase , lowerCAmelCase ) self.relabel(lowerCAmelCase ) def lowerCamelCase__ ( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCamelCase__ ( self : Dict , lowerCAmelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): SCREAMING_SNAKE_CASE_: int =self.heights[to_index] if min_height is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =min_height + 1 if __name__ == "__main__": _UpperCAmelCase = [0] _UpperCAmelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] _UpperCAmelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network _UpperCAmelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate _UpperCAmelCase = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
173
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _UpperCAmelCase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") _UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Any =cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def __magic_name__ ( ): with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Dict =canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] =imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE_: List[Any] =canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def __magic_name__ ( ): assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def __magic_name__ ( ): # laplace diagonals SCREAMING_SNAKE_CASE_: str =array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) SCREAMING_SNAKE_CASE_: Tuple =conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def __magic_name__ ( ): assert med.median_filter(lowercase , 3 ).any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =sp.make_sepia(lowercase , 20 ) assert sepia.all() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" ): SCREAMING_SNAKE_CASE_: Dict =bs.Burkes(imread(lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" , ): SCREAMING_SNAKE_CASE_: int =rs.NearestNeighbour(imread(lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: str ="""digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE_: Tuple =imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE_: Optional[Any] =0 SCREAMING_SNAKE_CASE_: Any =0 SCREAMING_SNAKE_CASE_: List[Any] =image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE_: Optional[Any] =lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE_: Dict =np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE_: List[str] =lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
173
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def snake_case__ ( self, __a=0): '''simple docstring''' _lowerCAmelCase : int = floats_tensor((1, 3, 128, 128), rng=random.Random(__a)) _lowerCAmelCase : Optional[Any] = np.random.RandomState(__a) _lowerCAmelCase : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : Tuple = pipe(**__a).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Any = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**__a).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : List[Any] = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) # warmup pass to apply optimizations _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs()) _lowerCAmelCase : str = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**__a).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : List[str] = pipe(**__a).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Optional[int] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : int = self.get_dummy_inputs() _lowerCAmelCase : Optional[Any] = pipe(**__a).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : int = pipe(**__a).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : List[str] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ort.SessionOptions() _lowerCAmelCase : Dict = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _lowerCAmelCase : Dict = init_image.resize((768, 512)) # using the PNDM scheduler by default _lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A fantasy landscape, trending on artstation" _lowerCAmelCase : str = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=__a, output_type="np", ) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _lowerCAmelCase : int = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _lowerCAmelCase : Tuple = init_image.resize((768, 512)) _lowerCAmelCase : List[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx") _lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=__a, safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = "A fantasy landscape, trending on artstation" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Optional[int] = pipe( prompt=__a, image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=__a, output_type="np", ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _lowerCAmelCase : Any = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
300
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : Union[str, Any] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } _lowerCAmelCase : int = { '''gpt2''': 1_024, '''gpt2-medium''': 1_024, '''gpt2-large''': 1_024, '''gpt2-xl''': 1_024, '''distilgpt2''': 1_024, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = GPTaTokenizer def __init__( self :Tuple , snake_case :Optional[int]=None , snake_case :Union[str, Any]=None , snake_case :Tuple=None , snake_case :Optional[Any]="<|endoftext|>" , snake_case :List[str]="<|endoftext|>" , snake_case :Tuple="<|endoftext|>" , snake_case :Dict=False , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , unk_token=snake_case , bos_token=snake_case , eos_token=snake_case , add_prefix_space=snake_case , **snake_case , ) A_ : List[Any] = kwargs.pop("add_bos_token" , snake_case ) A_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Optional[int] = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Any = add_prefix_space A_ : Optional[Any] = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space def SCREAMING_SNAKE_CASE ( self :Optional[int] , *snake_case :Any , **snake_case :int ): '''simple docstring''' A_ : int = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , *snake_case :Optional[Any] , **snake_case :Dict ): '''simple docstring''' A_ : int = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : List[str] = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :"Conversation" ): '''simple docstring''' A_ : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case , add_special_tokens=snake_case ) + [self.eos_token_id] ) if len(snake_case ) > self.model_max_length: A_ : Dict = input_ids[-self.model_max_length :] return input_ids
300
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''data2vec-vision''' def __init__( self :int , snake_case :Optional[int]=768 , snake_case :Any=12 , snake_case :Any=12 , snake_case :Tuple=3_072 , snake_case :Any="gelu" , snake_case :Tuple=0.0 , snake_case :int=0.0 , snake_case :Any=0.02 , snake_case :str=1e-12 , snake_case :List[str]=224 , snake_case :Dict=16 , snake_case :int=3 , snake_case :int=False , snake_case :str=False , snake_case :List[Any]=False , snake_case :Optional[Any]=False , snake_case :Tuple=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Any=True , snake_case :Optional[Any]=[3, 5, 7, 11] , snake_case :Dict=[1, 2, 3, 6] , snake_case :int=True , snake_case :List[Any]=0.4 , snake_case :Any=256 , snake_case :Union[str, Any]=1 , snake_case :Union[str, Any]=False , snake_case :Any=255 , **snake_case :int , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Any = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : str = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : Optional[Any] = use_mask_token A_ : Optional[Any] = use_absolute_position_embeddings A_ : Optional[int] = use_relative_position_bias A_ : Dict = use_shared_relative_position_bias A_ : Any = layer_scale_init_value A_ : Optional[Any] = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : str = use_auxiliary_head A_ : List[Any] = auxiliary_loss_weight A_ : List[str] = auxiliary_channels A_ : Dict = auxiliary_num_convs A_ : List[str] = auxiliary_concat_input A_ : Optional[int] = semantic_loss_ignore_index class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4
300
1
'''simple docstring''' _SCREAMING_SNAKE_CASE : Any = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) _SCREAMING_SNAKE_CASE : List[Any] = frozenset(["prompt", "negative_prompt"]) _SCREAMING_SNAKE_CASE : Optional[Any] = frozenset([]) _SCREAMING_SNAKE_CASE : List[str] = frozenset(["image"]) _SCREAMING_SNAKE_CASE : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) _SCREAMING_SNAKE_CASE : Optional[int] = frozenset(["image"]) _SCREAMING_SNAKE_CASE : Any = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) _SCREAMING_SNAKE_CASE : Any = frozenset(["prompt", "image", "negative_prompt"]) _SCREAMING_SNAKE_CASE : Dict = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) _SCREAMING_SNAKE_CASE : Dict = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) _SCREAMING_SNAKE_CASE : List[Any] = frozenset(["image", "mask_image"]) _SCREAMING_SNAKE_CASE : Union[str, Any] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) _SCREAMING_SNAKE_CASE : Dict = frozenset(["example_image", "image", "mask_image"]) _SCREAMING_SNAKE_CASE : List[str] = frozenset(["class_labels"]) _SCREAMING_SNAKE_CASE : Optional[Any] = frozenset(["class_labels"]) _SCREAMING_SNAKE_CASE : List[Any] = frozenset(["batch_size"]) _SCREAMING_SNAKE_CASE : Union[str, Any] = frozenset([]) _SCREAMING_SNAKE_CASE : Dict = frozenset(["batch_size"]) _SCREAMING_SNAKE_CASE : int = frozenset([]) _SCREAMING_SNAKE_CASE : str = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) _SCREAMING_SNAKE_CASE : Optional[int] = frozenset(["prompt", "negative_prompt"]) _SCREAMING_SNAKE_CASE : Optional[Any] = frozenset(["input_tokens"]) _SCREAMING_SNAKE_CASE : Dict = frozenset(["input_tokens"])
92
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCamelCase_( snake_case : str , snake_case : complex , snake_case : str = "x" , snake_case : float = 1_0**-1_0 , snake_case : int = 1 , ): '''simple docstring''' snake_case_ = symbols(snake_case ) snake_case_ = lambdify(snake_case , snake_case ) snake_case_ = lambdify(snake_case , diff(snake_case , snake_case ) ) snake_case_ = starting_point while True: if diff_function(snake_case ) != 0: snake_case_ = prev_guess - multiplicity * func(snake_case ) / diff_function( snake_case ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(F"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}", ) # Find root of cos(x) print(F"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
92
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ : List[str] = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
63
from math import loga def A_ ( A__ ) -> int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(A__ , A__ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
99
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Tuple: monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Tuple: class lowerCamelCase_ : '''simple docstring''' def __init__( self : Dict , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = metric_id class lowerCamelCase_ : '''simple docstring''' lowercase_ = [MetricMock(_SCREAMING_SNAKE_CASE ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def lowerCAmelCase_ ( self : Any ): return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) -> str: if "tmp_path" in args: SCREAMING_SNAKE_CASE_ = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(__UpperCAmelCase , match='https://huggingface.co/docs/evaluate' ): func(*__UpperCAmelCase )
210
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Any = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "speech_to_text" lowercase_ = ["past_key_values"] lowercase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , _lowerCAmelCase : Optional[int]=10_000 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=2_048 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Optional[int]=2_048 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any="relu" , _lowerCAmelCase : Any=256 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Optional[int]=6_000 , _lowerCAmelCase : Tuple=1_024 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : str=(5, 5) , _lowerCAmelCase : Optional[int]=1_024 , _lowerCAmelCase : List[Any]=80 , _lowerCAmelCase : List[Any]=1 , **_lowerCAmelCase : List[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ = max_source_positions SCREAMING_SNAKE_CASE_ = max_target_positions SCREAMING_SNAKE_CASE_ = num_conv_layers SCREAMING_SNAKE_CASE_ = list(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = conv_channels SCREAMING_SNAKE_CASE_ = input_feat_per_channel SCREAMING_SNAKE_CASE_ = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
210
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def a_ ( ) -> Tuple: """simple docstring""" snake_case__ = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=_A ) snake_case__ = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=_A ) env_command_parser(subparsers=_A ) launch_command_parser(subparsers=_A ) tpu_command_parser(subparsers=_A ) test_command_parser(subparsers=_A ) # Let's go snake_case__ = parser.parse_args() if not hasattr(_A , 'func' ): parser.print_help() exit(1 ) # Run args.func(_A ) if __name__ == "__main__": main()
307
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a__ ( lowercase : List[str], lowercase : Any ) -> List[str]: """simple docstring""" _UpperCamelCase = k_size // 2 _UpperCamelCase , _UpperCamelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _UpperCamelCase = 1 / (2 * pi * sigma) * exp(-(square(lowercase ) + square(lowercase )) / (2 * square(lowercase )) ) return g def a__ ( lowercase : str, lowercase : Union[str, Any], lowercase : List[str] ) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = image.shape[0], image.shape[1] # dst image height and width _UpperCamelCase = height - k_size + 1 _UpperCamelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _UpperCamelCase = zeros((dst_height * dst_width, k_size * k_size) ) _UpperCamelCase = 0 for i, j in product(range(lowercase ), range(lowercase ) ): _UpperCamelCase = ravel(image[i : i + k_size, j : j + k_size] ) _UpperCamelCase = window row += 1 # turn the kernel into shape(k*k, 1) _UpperCamelCase = gen_gaussian_kernel(lowercase, lowercase ) _UpperCamelCase = ravel(lowercase ) # reshape and get the dst image _UpperCamelCase = dot(lowercase, lowercase ).reshape(lowercase, lowercase ).astype(lowercase ) return dst if __name__ == "__main__": # read original image lowercase__ : Any = imread(R'../image_data/lena.jpg') # turn image in gray scale value lowercase__ : List[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowercase__ : int = gaussian_filter(gray, 3, sigma=1) lowercase__ : Union[str, Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
361
'''simple docstring''' from math import isclose, sqrt def a__ ( lowercase : float, lowercase : float, lowercase : float ) -> tuple[float, float, float]: """simple docstring""" _UpperCamelCase = point_y / 4 / point_x _UpperCamelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _UpperCamelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _UpperCamelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _UpperCamelCase = outgoing_gradient**2 + 4 _UpperCamelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _UpperCamelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 _UpperCamelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _UpperCamelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _UpperCamelCase = x_minus if isclose(lowercase, lowercase ) else x_plus _UpperCamelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a__ ( lowercase : float = 1.4, lowercase : float = -9.6 ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = first_x_coord _UpperCamelCase = first_y_coord _UpperCamelCase = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = next_point(lowercase, lowercase, lowercase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
287
0
# flake8: noqa # Lint as: python3 UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
87
"""simple docstring""" SCREAMING_SNAKE_CASE__ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on SCREAMING_SNAKE_CASE__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """Morse code here!""" print(SCREAMING_SNAKE_CASE ) lowerCAmelCase = encrypt(SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) lowerCAmelCase = decrypt(SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
46
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowerCAmelCase = datasets.utils.logging.get_logger(__name__) @dataclass class __a ( datasets.BuilderConfig ): __lowercase : int = 1_0000 __lowercase : Optional[List[str]] = None __lowercase : Optional[datasets.Features] = None class __a ( datasets.ArrowBasedBuilder ): __lowercase : Optional[Any] = ParquetConfig def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowercase__: List[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): lowercase__: Union[str, Any] = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__: Union[str, Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowercase__: Tuple = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__: int = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(lowerCAmelCase__ ): with open(lowerCAmelCase__ , 'rb' ) as f: lowercase__: Any = datasets.Features.from_arrow_schema(pq.read_schema(lowerCAmelCase__ ) ) break splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__: List[Any] = table_cast(lowerCAmelCase__ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): with open(lowerCAmelCase__ , 'rb' ) as f: lowercase__: int = pq.ParquetFile(lowerCAmelCase__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowercase__: Tuple = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}' ) raise
288
import torch from diffusers import StableDiffusionPipeline __lowerCAmelCase = '''path-to-your-trained-model''' __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') __lowerCAmelCase = '''A photo of sks dog in a bucket''' __lowerCAmelCase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
288
1
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): __A : List[str] = True from torch.cuda.amp import autocast __A : Any = logging.getLogger(__name__) def lowercase ( __snake_case : Any=None , __snake_case : Union[str, Any]=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class _UpperCAmelCase : SCREAMING_SNAKE_CASE_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE_ : Optional[bool] = field( default=_A , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class _UpperCAmelCase : SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_A , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=_A , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_A , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE_ : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class _UpperCAmelCase : SCREAMING_SNAKE_CASE_ : WavaVecaProcessor SCREAMING_SNAKE_CASE_ : Union[bool, str] = True SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None def __call__( self : Optional[int] , A : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods lowercase_ : List[Any] = [{'''input_values''': feature['''input_values''']} for feature in features] lowercase_ : Optional[int] = [{'''input_ids''': feature['''labels''']} for feature in features] lowercase_ : Tuple = self.processor.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) lowercase_ : Any = self.processor.pad( labels=A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly lowercase_ : Tuple = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) lowercase_ : List[Any] = labels return batch class _UpperCAmelCase ( _A ): def A ( self : Optional[int] , A : nn.Module , A : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() lowercase_ : Dict = self._prepare_inputs(A ) if self.use_amp: with autocast(): lowercase_ : Union[str, Any] = self.compute_loss(A , A ) else: lowercase_ : List[str] = self.compute_loss(A , A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowercase_ : Tuple = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase_ : Optional[int] = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowercase_ : Union[str, Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(A ).backward() elif self.use_apex: with amp.scale_loss(A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(A ) else: loss.backward() return loss.detach() def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ : Any = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase_ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowercase_ : Tuple = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) lowercase_ : Tuple = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer lowercase_ : Optional[Any] = F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(__snake_case : Dict ): lowercase_ : Optional[int] = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch lowercase_ : Optional[Any] = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) lowercase_ : Union[str, Any] = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case : Optional[int] ): lowercase_ : str = ''' '''.join(batch['''text'''] ) lowercase_ : Optional[int] = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} lowercase_ : int = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) lowercase_ : Any = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) lowercase_ : int = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) lowercase_ : Optional[int] = {v: k for k, v in enumerate(__snake_case )} lowercase_ : List[Any] = vocab_dict[''' '''] del vocab_dict[" "] lowercase_ : int = len(__snake_case ) lowercase_ : Tuple = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : Any = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) lowercase_ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) lowercase_ : str = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) lowercase_ : Any = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: lowercase_ : int = min(len(__snake_case ) , data_args.max_train_samples ) lowercase_ : List[Any] = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: lowercase_ : int = eval_dataset.select(range(data_args.max_val_samples ) ) lowercase_ : Tuple = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case : List[str] ): lowercase_ , lowercase_ : List[Any] = torchaudio.load(batch['''path'''] ) lowercase_ : Any = resampler(__snake_case ).squeeze().numpy() lowercase_ : Any = 1_6_0_0_0 lowercase_ : Any = batch['''text'''] return batch lowercase_ : List[str] = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) lowercase_ : List[str] = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case : int ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' lowercase_ : str = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch lowercase_ : str = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) lowercase_ : Any = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric lowercase_ : Any = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case : Tuple ): lowercase_ : str = pred.predictions lowercase_ : Optional[Any] = np.argmax(__snake_case , axis=-1 ) lowercase_ : int = processor.tokenizer.pad_token_id lowercase_ : List[Any] = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics lowercase_ : Union[str, Any] = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) lowercase_ : List[str] = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowercase_ : int = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer lowercase_ : Any = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase_ : List[str] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowercase_ : List[str] = model_args.model_name_or_path else: lowercase_ : Tuple = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowercase_ : Tuple = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() lowercase_ : List[str] = train_result.metrics lowercase_ : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) lowercase_ : Union[str, Any] = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation lowercase_ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase_ : Tuple = trainer.evaluate() lowercase_ : Tuple = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) lowercase_ : List[str] = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
33
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : def __init__( self : int , A : Tuple , A : int=3 , A : List[str]=32 , A : Dict=3 , A : Any=10 , A : Dict=[10, 20, 30, 40] , A : Optional[Any]=[1, 1, 2, 1] , A : Union[str, Any]=True , A : Optional[Any]=True , A : Any="relu" , A : Optional[Any]=3 , A : Tuple=None , ) -> Dict: lowercase_ : str = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[int] = image_size lowercase_ : int = num_channels lowercase_ : int = embeddings_size lowercase_ : str = hidden_sizes lowercase_ : List[str] = depths lowercase_ : Dict = is_training lowercase_ : int = use_labels lowercase_ : Any = hidden_act lowercase_ : List[Any] = num_labels lowercase_ : Tuple = scope lowercase_ : Optional[Any] = len(A ) def A ( self : str ) -> Tuple: lowercase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Union[str, Any] = None if self.use_labels: lowercase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Optional[int] = self.get_config() return config, pixel_values, labels def A ( self : Dict ) -> int: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A ( self : str , A : Tuple , A : str , A : str ) -> str: lowercase_ : str = TFResNetModel(config=A ) lowercase_ : Union[str, Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : Any , A : int , A : List[Any] , A : Optional[Any] ) -> Optional[Any]: lowercase_ : Tuple = self.num_labels lowercase_ : Union[str, Any] = TFResNetForImageClassification(A ) lowercase_ : Tuple = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Union[str, Any] ) -> Tuple: lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Dict = config_and_inputs lowercase_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Any = False def A ( self : Union[str, Any] ) -> List[Any]: lowercase_ : int = TFResNetModelTester(self ) lowercase_ : str = ConfigTester(self , config_class=A , has_text_modality=A ) def A ( self : Dict ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Dict ) -> List[Any]: return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def A ( self : Any ) -> Any: pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def A ( self : List[str] ) -> Optional[Any]: pass def A ( self : str ) -> Tuple: lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : int = model_class(A ) lowercase_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : str = [*signature.parameters.keys()] lowercase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def A ( self : List[str] ) -> Tuple: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A ( self : List[Any] ) -> List[str]: def check_hidden_states_output(A : Union[str, Any] , A : int , A : List[Any] ): lowercase_ : int = model_class(A ) lowercase_ : Optional[Any] = model(**self._prepare_for_class(A , A ) ) lowercase_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : Any = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase_ : List[str] = layer_type lowercase_ : Tuple = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Optional[Any] = True check_hidden_states_output(A , A , A ) def A ( self : Optional[int] ) -> Tuple: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def A ( self : List[str] ) -> Optional[int]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = TFResNetModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase ( ): lowercase_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def A ( self : Any ) -> Optional[int]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Any ) -> Optional[int]: lowercase_ : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase_ : List[Any] = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : List[str] = image_processor(images=A , return_tensors='''tf''' ) # forward pass lowercase_ : Tuple = model(**A ) # verify the logits lowercase_ : Optional[int] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) lowercase_ : Optional[Any] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A , atol=1e-4 ) )
33
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : BigBirdConfig lowerCamelCase : jnp.dtype =jnp.floataa lowerCamelCase : bool =True def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" super().setup() __lowerCAmelCase : List[Any] = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = super().__call__(*lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : str = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Optional[Any] =FlaxBigBirdForNaturalQuestionsModule def snake_case_ (__A : int , __A : Union[str, Any] , __A : int , __A : str , __A : int , __A : List[Any] ) -> Dict: def cross_entropy(__A : Union[str, Any] , __A : List[str] , __A : Any=None ): __lowerCAmelCase : List[Any] = logits.shape[-1] __lowerCAmelCase : Dict = (labels[..., None] == jnp.arange(__A )[None]).astype("""f4""" ) __lowerCAmelCase : Dict = jax.nn.log_softmax(__A , axis=-1 ) __lowerCAmelCase : Optional[int] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __lowerCAmelCase : Tuple = reduction(__A ) return loss __lowerCAmelCase : int = partial(__A , reduction=jnp.mean ) __lowerCAmelCase : Optional[int] = cross_entropy(__A , __A ) __lowerCAmelCase : Union[str, Any] = cross_entropy(__A , __A ) __lowerCAmelCase : List[str] = cross_entropy(__A , __A ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : str ="google/bigbird-roberta-base" lowerCamelCase : int =3000 lowerCamelCase : int =1_0500 lowerCamelCase : int =128 lowerCamelCase : int =3 lowerCamelCase : int =1 lowerCamelCase : int =5 # tx_args lowerCamelCase : float =3e-5 lowerCamelCase : float =0.0 lowerCamelCase : int =2_0000 lowerCamelCase : float =0.0095 lowerCamelCase : str ="bigbird-roberta-natural-questions" lowerCamelCase : str ="training-expt" lowerCamelCase : str ="data/nq-training.jsonl" lowerCamelCase : str ="data/nq-validation.jsonl" def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: """simple docstring""" os.makedirs(self.base_dir , exist_ok=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = os.path.join(self.base_dir , self.save_dir ) __lowerCAmelCase : Optional[Any] = self.batch_size_per_device * jax.device_count() @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : int lowerCamelCase : int =4096 # no dynamic padding on TPUs def __call__( self : str , lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.collate_fn(lowerCAmelCase ) __lowerCAmelCase : List[str] = jax.tree_util.tree_map(lowerCAmelCase , lowerCAmelCase ) return batch def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) __lowerCAmelCase : int = { """input_ids""": jnp.array(lowerCAmelCase , dtype=jnp.intaa ), """attention_mask""": jnp.array(lowerCAmelCase , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : list ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = [self._fetch_inputs(lowerCAmelCase ) for ids in input_ids] return zip(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : list ) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = [1 for _ in range(len(lowerCAmelCase ) )] while len(lowerCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def snake_case_ (__A : int , __A : List[Any] , __A : str=None ) -> Dict: if seed is not None: __lowerCAmelCase : Optional[Any] = dataset.shuffle(seed=__A ) for i in range(len(__A ) // batch_size ): __lowerCAmelCase : Optional[int] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__A ) @partial(jax.pmap , axis_name="""batch""" ) def snake_case_ (__A : Optional[Any] , __A : Dict , **__A : str ) -> List[str]: def loss_fn(__A : Any ): __lowerCAmelCase : Dict = model_inputs.pop("""start_labels""" ) __lowerCAmelCase : str = model_inputs.pop("""end_labels""" ) __lowerCAmelCase : int = model_inputs.pop("""pooled_labels""" ) __lowerCAmelCase : List[str] = state.apply_fn(**__A , params=__A , dropout_rng=__A , train=__A ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Tuple = outputs return state.loss_fn( __A , __A , __A , __A , __A , __A , ) __lowerCAmelCase ,__lowerCAmelCase : Any = jax.random.split(__A ) __lowerCAmelCase : Optional[int] = jax.value_and_grad(__A ) __lowerCAmelCase ,__lowerCAmelCase : List[Any] = grad_fn(state.params ) __lowerCAmelCase : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) __lowerCAmelCase : Optional[Any] = jax.lax.pmean(__A , """batch""" ) __lowerCAmelCase : Dict = state.apply_gradients(grads=__A ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def snake_case_ (__A : int , **__A : Optional[Any] ) -> Any: __lowerCAmelCase : List[Any] = model_inputs.pop("""start_labels""" ) __lowerCAmelCase : Tuple = model_inputs.pop("""end_labels""" ) __lowerCAmelCase : Union[str, Any] = model_inputs.pop("""pooled_labels""" ) __lowerCAmelCase : List[Any] = state.apply_fn(**__A , params=state.params , train=__A ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[Any] = outputs __lowerCAmelCase : Optional[Any] = state.loss_fn(__A , __A , __A , __A , __A , __A ) __lowerCAmelCase : int = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class SCREAMING_SNAKE_CASE ( train_state.TrainState ): """simple docstring""" lowerCamelCase : Callable =struct.field(pytree_node=a_ ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Args lowerCamelCase : Callable lowerCamelCase : Callable lowerCamelCase : Callable lowerCamelCase : Callable lowerCamelCase : wandb lowerCamelCase : Callable =None def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Any=None ) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = model.params __lowerCAmelCase : Optional[Any] = TrainState.create( apply_fn=model.__call__ , params=lowerCAmelCase , tx=lowerCAmelCase , loss_fn=lowerCAmelCase , ) if ckpt_dir is not None: __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Optional[int] = restore_checkpoint(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } __lowerCAmelCase ,__lowerCAmelCase : List[str] = build_tx(**lowerCAmelCase ) __lowerCAmelCase : str = train_state.TrainState( step=lowerCAmelCase , apply_fn=model.__call__ , params=lowerCAmelCase , tx=lowerCAmelCase , opt_state=lowerCAmelCase , ) __lowerCAmelCase : Union[str, Any] = args __lowerCAmelCase : Tuple = data_collator __lowerCAmelCase : Optional[Any] = lr __lowerCAmelCase : int = params __lowerCAmelCase : Any = jax_utils.replicate(lowerCAmelCase ) return state def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : int = self.args __lowerCAmelCase : Optional[int] = len(lowerCAmelCase ) // args.batch_size __lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) __lowerCAmelCase : Tuple = jax.random.split(lowerCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): __lowerCAmelCase : Tuple = jnp.array(0 , dtype=jnp.floataa ) __lowerCAmelCase : List[Any] = get_batched_dataset(lowerCAmelCase , args.batch_size , seed=lowerCAmelCase ) __lowerCAmelCase : int = 0 for batch in tqdm(lowerCAmelCase , total=lowerCAmelCase , desc=f'''Running EPOCH-{epoch}''' ): __lowerCAmelCase : Tuple = self.data_collator(lowerCAmelCase ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str = self.train_step_fn(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: __lowerCAmelCase : Union[str, Any] = jax_utils.unreplicate(state.step ) __lowerCAmelCase : Optional[int] = running_loss.item() / i __lowerCAmelCase : Tuple = self.scheduler_fn(state_step - 1 ) __lowerCAmelCase : List[Any] = self.evaluate(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(lowerCAmelCase ) ) self.logger.log(lowerCAmelCase , commit=lowerCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = get_batched_dataset(lowerCAmelCase , self.args.batch_size ) __lowerCAmelCase : Optional[int] = len(lowerCAmelCase ) // self.args.batch_size __lowerCAmelCase : str = jnp.array(0 , dtype=jnp.floataa ) __lowerCAmelCase : Optional[int] = 0 for batch in tqdm(lowerCAmelCase , total=lowerCAmelCase , desc="""Evaluating ... """ ): __lowerCAmelCase : List[Any] = self.data_collator(lowerCAmelCase ) __lowerCAmelCase : Dict = self.val_step_fn(lowerCAmelCase , **lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = jax_utils.unreplicate(lowerCAmelCase ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(lowerCAmelCase , params=state.params ) with open(os.path.join(lowerCAmelCase , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCAmelCase , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(lowerCAmelCase , """data_collator.joblib""" ) ) with open(os.path.join(lowerCAmelCase , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , lowerCAmelCase ) print("""DONE""" ) def snake_case_ (__A : int , __A : List[str] ) -> int: print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(__A , """flax_model.msgpack""" ) , """rb""" ) as f: __lowerCAmelCase : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(__A , """opt_state.msgpack""" ) , """rb""" ) as f: __lowerCAmelCase : Union[str, Any] = from_bytes(state.opt_state , f.read() ) __lowerCAmelCase : Optional[int] = joblib.load(os.path.join(__A , """args.joblib""" ) ) __lowerCAmelCase : Optional[Any] = joblib.load(os.path.join(__A , """data_collator.joblib""" ) ) with open(os.path.join(__A , """training_state.json""" ) , """r""" ) as f: __lowerCAmelCase : List[str] = json.load(__A ) __lowerCAmelCase : Any = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def snake_case_ (__A : Any , __A : List[Any] , __A : str , __A : List[str] ) -> Dict: __lowerCAmelCase : int = num_train_steps - warmup_steps __lowerCAmelCase : Any = optax.linear_schedule(init_value=__A , end_value=__A , transition_steps=__A ) __lowerCAmelCase : Optional[int] = optax.linear_schedule(init_value=__A , end_value=1e-7 , transition_steps=__A ) __lowerCAmelCase : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def snake_case_ (__A : Dict , __A : Tuple , __A : str , __A : Tuple , __A : Optional[int] ) -> List[Any]: def weight_decay_mask(__A : Union[str, Any] ): __lowerCAmelCase : Optional[Any] = traverse_util.flatten_dict(__A ) __lowerCAmelCase : Any = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(__A ) __lowerCAmelCase : int = scheduler_fn(__A , __A , __A , __A ) __lowerCAmelCase : Any = optax.adamw(learning_rate=__A , weight_decay=__A , mask=__A ) return tx, lr
139
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : str =field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase : ClassVar[Features] =Features({"audio": Audio()} ) lowerCamelCase : ClassVar[Features] =Features({"labels": ClassLabel} ) lowerCamelCase : str ="audio" lowerCamelCase : str ="labels" def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Dict ) -> Dict: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __lowerCAmelCase : Tuple = copy.deepcopy(self ) __lowerCAmelCase : Tuple = self.label_schema.copy() __lowerCAmelCase : Union[str, Any] = features[self.label_column] __lowerCAmelCase : Any = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : str ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
139
1
from sklearn.metrics import matthews_corrcoef import datasets __A =''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __A =''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __A ='''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE_( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None ) -> Optional[Any]: return { "matthews_correlation": float(matthews_corrcoef(lowercase , lowercase , sample_weight=lowercase ) ), }
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _SCREAMING_SNAKE_CASE = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _SCREAMING_SNAKE_CASE = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def SCREAMING_SNAKE_CASE__ ( __a ): if "://" in dataset_path: snake_case_ : Any = dataset_path.split('://' )[1] return dataset_path def SCREAMING_SNAKE_CASE__ ( __a ): if fs is not None and fs.protocol != "file": return True else: return False def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Union[str, Any] = not is_remote_filesystem(__a ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__a ) , fs._strip_protocol(__a ) ) else: fs.mv(__a , __a , recursive=__a ) def SCREAMING_SNAKE_CASE__ ( ): if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: snake_case_ : Any = None snake_case_ : Optional[int] = None snake_case_ : int = threading.Lock()
88
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE_ : __magic_name__: int = MBartConfig __magic_name__: str = {} __magic_name__: Union[str, Any] = "gelu" def __init__( self : List[str] , _A : Optional[int] , _A : List[Any]=13 , _A : List[Any]=7 , _A : Dict=True , _A : Tuple=False , _A : Optional[Any]=99 , _A : Dict=32 , _A : str=2 , _A : str=4 , _A : Tuple=37 , _A : Tuple=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=20 , _A : Dict=2 , _A : List[str]=1 , _A : Union[str, Any]=0 , ) -> List[Any]: """simple docstring""" snake_case_ : str = parent snake_case_ : List[str] = batch_size snake_case_ : List[str] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : Optional[int] = use_labels snake_case_ : Dict = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Optional[Any] = eos_token_id snake_case_ : Tuple = pad_token_id snake_case_ : int = bos_token_id def UpperCAmelCase_ ( self : List[str] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : Union[str, Any] = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , _A : Optional[Any] , _A : int ) -> str: """simple docstring""" snake_case_ : Dict = TFMBartModel(config=_A ).get_decoder() snake_case_ : Any = inputs_dict['input_ids'] snake_case_ : List[Any] = input_ids[:1, :] snake_case_ : Dict = inputs_dict['attention_mask'][:1, :] snake_case_ : Tuple = inputs_dict['head_mask'] snake_case_ : List[Any] = 1 # first forward pass snake_case_ : Any = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) snake_case_ ,snake_case_ : str = outputs.to_tuple() snake_case_ : int = past_key_values[1] def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ): if attention_mask is None: snake_case_ : Optional[int] = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: Tuple = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __magic_name__: int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __magic_name__: Union[str, Any] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__: Tuple = True __magic_name__: Tuple = False __magic_name__: Any = False def UpperCAmelCase_ ( self : Any , _A : Union[str, Any] , _A : List[Any] , _A : str , _A : int , _A : Dict ) -> Union[str, Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFMBartModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", ] __magic_name__: Union[str, Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] __magic_name__: List[Any] = "facebook/mbart-large-en-ro" @cached_property def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" snake_case_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ ( self : Optional[int] , **_A : str ) -> int: """simple docstring""" snake_case_ : List[str] = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def UpperCAmelCase_ ( self : Union[str, Any] , **_A : Dict ) -> int: """simple docstring""" snake_case_ : Optional[Any] = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) snake_case_ : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) snake_case_ : Any = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def UpperCAmelCase_ ( self : str ) -> List[str]: """simple docstring""" self._assert_generated_batch_equal_expected()
88
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''spiece.model'''} __A = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __A = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __A = '''▁''' class snake_case ( _snake_case ): SCREAMING_SNAKE_CASE_ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Union[str, Any]="[CLS]" , UpperCamelCase__ : Optional[int]="[SEP]" , UpperCamelCase__ : List[Any]="<unk>" , UpperCamelCase__ : List[str]="[SEP]" , UpperCamelCase__ : int="<pad>" , UpperCamelCase__ : Dict="[CLS]" , UpperCamelCase__ : List[str]="[MASK]" , UpperCamelCase__ : int = None , **UpperCamelCase__ : Optional[int] , )-> Dict: '''simple docstring''' __lowerCAmelCase: str = ( AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase , normalized=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else mask_token ) __lowerCAmelCase: str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) __lowerCAmelCase: List[Any] = do_lower_case __lowerCAmelCase: int = remove_space __lowerCAmelCase: List[Any] = keep_accents __lowerCAmelCase: Optional[int] = vocab_file __lowerCAmelCase: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCamelCase) @property def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' return len(self.sp_model) def lowercase_ ( self : Union[str, Any])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Tuple)-> Any: '''simple docstring''' __lowerCAmelCase: Optional[int] = self.__dict__.copy() __lowerCAmelCase: int = None return state def __setstate__( self : Any , UpperCamelCase__ : List[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): __lowerCAmelCase: Any = {} __lowerCAmelCase: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowercase_ ( self : List[Any] , UpperCamelCase__ : Union[str, Any])-> Tuple: '''simple docstring''' if self.remove_space: __lowerCAmelCase: int = ''' '''.join(inputs.strip().split()) else: __lowerCAmelCase: Tuple = inputs __lowerCAmelCase: Tuple = outputs.replace("``" , "\"").replace("\'\'" , "\"") if not self.keep_accents: __lowerCAmelCase: List[str] = unicodedata.normalize("NFKD" , _lowerCamelCase) __lowerCAmelCase: List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase)]) if self.do_lower_case: __lowerCAmelCase: Tuple = outputs.lower() return outputs def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : int)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = self.preprocess_text(_lowerCamelCase) __lowerCAmelCase: int = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase) __lowerCAmelCase: Tuple = [] for piece in pieces: if len(_lowerCamelCase) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): __lowerCAmelCase: int = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __lowerCAmelCase: List[str] = cur_pieces[1:] else: __lowerCAmelCase: Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowerCamelCase) else: new_pieces.append(_lowerCamelCase) return new_pieces def lowercase_ ( self : str , UpperCamelCase__ : Any)-> Any: '''simple docstring''' return self.sp_model.PieceToId(_lowerCamelCase) def lowercase_ ( self : int , UpperCamelCase__ : Tuple)-> List[str]: '''simple docstring''' return self.sp_model.IdToPiece(_lowerCamelCase) def lowercase_ ( self : List[str] , UpperCamelCase__ : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Dict = [] __lowerCAmelCase: List[Any] = '''''' __lowerCAmelCase: str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase) + token __lowerCAmelCase: Optional[int] = True __lowerCAmelCase: str = [] else: current_sub_tokens.append(_lowerCamelCase) __lowerCAmelCase: Optional[int] = False out_string += self.sp_model.decode(_lowerCamelCase) return out_string.strip() def lowercase_ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any = None)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: str = [self.sep_token_id] __lowerCAmelCase: str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Any] = False)-> List[Any]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase) if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase)) + [1] + ([0] * len(_lowerCamelCase)) + [1] return [1] + ([0] * len(_lowerCamelCase)) + [1] def lowercase_ ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] = None)-> Dict: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = [self.sep_token_id] __lowerCAmelCase: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowercase_ ( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any = None)-> Optional[Any]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __lowerCAmelCase: Dict = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCamelCase , "wb") as fi: __lowerCAmelCase: Dict = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase) return (out_vocab_file,)
217
def __lowerCamelCase ( UpperCAmelCase_ : int = 1000 ): """simple docstring""" a , a :int = 1, 1 a :Any = 2 while True: a :Optional[int] = 0 a :str = fa + fa a , a :List[Any] = fa, f index += 1 for _ in str(UpperCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCAmelCase : int = logging.get_logger(__name__) class __magic_name__ ( a_ ): def __init__( self , *__snake_case , **__snake_case ) -> Tuple: '''simple docstring''' warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
218
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ): lowercase = size if size is not None else {'height': 1_8, 'width': 1_8} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a ( a_, unittest.TestCase ): UpperCAmelCase_ : Optional[int] =DPTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowercase = DPTImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size' ) ) def UpperCamelCase_ ( self ): lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
220
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase__ : List[str] =logging.get_logger(__name__) class __A ( a ): def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
262
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCAmelCase__ : Optional[int] =logging.get_logger(__name__) UpperCAmelCase__ : int ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase__ : List[str] ={ '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } UpperCAmelCase__ : Any ={'''mobilebert-uncased''': 5_12} UpperCAmelCase__ : Any ={} class __A ( a ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_INIT_CONFIGURATION __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = MobileBertTokenizer def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=True , UpperCAmelCase_="[UNK]" , UpperCAmelCase_="[SEP]" , UpperCAmelCase_="[PAD]" , UpperCAmelCase_="[CLS]" , UpperCAmelCase_="[MASK]" , UpperCAmelCase_=True , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase_ ) != tokenize_chinese_chars ): lowerCamelCase =getattr(UpperCAmelCase_ , normalizer_state.pop("""type""" ) ) lowerCamelCase =do_lower_case lowerCamelCase =strip_accents lowerCamelCase =tokenize_chinese_chars lowerCamelCase =normalizer_class(**UpperCAmelCase_ ) lowerCamelCase =do_lower_case def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=None ): lowerCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
262
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = botoa.client('iam' ) UpperCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowercase_ , AssumeRolePolicyDocument=json.dumps(lowercase_ , indent=2 ) ) UpperCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowercase_ , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(lowercase_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = botoa.client('iam' ) return iam_client.get_role(RoleName=lowercase_ )["Role"]["Arn"] def _lowerCAmelCase ( ): UpperCAmelCase = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , lowercase_ , ) UpperCAmelCase = None if credentials_configuration == 0: UpperCAmelCase = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) UpperCAmelCase = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) UpperCAmelCase = _ask_field('AWS Access Key ID: ' ) UpperCAmelCase = aws_access_key_id UpperCAmelCase = _ask_field('AWS Secret Access Key: ' ) UpperCAmelCase = aws_secret_access_key UpperCAmelCase = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) UpperCAmelCase = aws_region UpperCAmelCase = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , lowercase_ , ) if role_management == 0: UpperCAmelCase = _ask_field('Enter your IAM role name: ' ) else: UpperCAmelCase = """accelerate_sagemaker_execution_role""" print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(lowercase_ ) UpperCAmelCase = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=lowercase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase = None if is_custom_docker_image: UpperCAmelCase = _ask_field('Enter your Docker image: ' , lambda lowercase_ : str(lowercase_ ).lower() ) UpperCAmelCase = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=lowercase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase = None if is_sagemaker_inputs_enabled: UpperCAmelCase = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda lowercase_ : str(lowercase_ ).lower() , ) UpperCAmelCase = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=lowercase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase = None if is_sagemaker_metrics_enabled: UpperCAmelCase = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda lowercase_ : str(lowercase_ ).lower() , ) UpperCAmelCase = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) UpperCAmelCase = {} UpperCAmelCase = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=lowercase_ , error_message='Please enter yes or no.' , ) if use_dynamo: UpperCAmelCase = """dynamo_""" UpperCAmelCase = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) UpperCAmelCase = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=lowercase_ , error_message='Please enter yes or no.' , ) if use_custom_options: UpperCAmelCase = _ask_options( 'Which mode do you want to use?' , lowercase_ , lambda lowercase_ : TORCH_DYNAMO_MODES[int(lowercase_ )] , default='default' , ) UpperCAmelCase = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=lowercase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=lowercase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: UpperCAmelCase = _ask_options( lowercase_ , lowercase_ , lambda lowercase_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowercase_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCAmelCase = _ask_field(lowercase_ , lambda lowercase_ : str(lowercase_ ).lower() , default='ml.p3.2xlarge' ) UpperCAmelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCAmelCase = _ask_field( 'How many machines do you want use? [1]: ' , lowercase_ , default=1 , ) UpperCAmelCase = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=lowercase_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowercase_ , use_cpu=lowercase_ , dynamo_config=lowercase_ , eca_instance_type=lowercase_ , profile=lowercase_ , region=lowercase_ , iam_role_name=lowercase_ , mixed_precision=lowercase_ , num_machines=lowercase_ , sagemaker_inputs_file=lowercase_ , sagemaker_metrics_file=lowercase_ , )
78
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _UpperCAmelCase : ClassVar[Features] = Features({"""audio""": Audio()}) _UpperCAmelCase : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def UpperCamelCase__ ( self , __magic_name__ ): if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , __magic_name__ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) lowerCamelCase : Optional[Any] = copy.deepcopy(self ) lowerCamelCase : List[Any] = self.input_schema.copy() lowerCamelCase : Tuple = features[self.audio_column] lowerCamelCase : int = input_schema return task_template @property def UpperCamelCase__ ( self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
287
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[int] =XGLMConfig lowerCamelCase : Optional[Any] ={} lowerCamelCase : Optional[Any] ="gelu" def __init__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str]=14 , lowerCAmelCase : Any=7 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[int]=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : str="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : Optional[int]=0.02 , ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : Any = seq_length __lowerCAmelCase : Optional[int] = is_training __lowerCAmelCase : List[Any] = use_input_mask __lowerCAmelCase : int = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : str = d_model __lowerCAmelCase : Any = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = ffn_dim __lowerCAmelCase : List[str] = activation_function __lowerCAmelCase : Union[str, Any] = activation_dropout __lowerCAmelCase : int = attention_dropout __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : List[str] = None __lowerCAmelCase : Any = 0 __lowerCAmelCase : List[str] = 2 __lowerCAmelCase : Optional[int] = 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : Tuple = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCAmelCase : Any = None if self.use_input_mask: __lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : int = self.get_config() __lowerCAmelCase : List[str] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: """simple docstring""" __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : str = config_and_inputs __lowerCAmelCase : List[str] = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : Dict =(TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any =( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : Tuple =False lowerCamelCase : Optional[int] =False lowerCamelCase : Optional[int] =False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = TFXGLMModelTester(self ) __lowerCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase , n_embd=37 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : List[str] = TFXGLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().test_resize_token_embeddings() @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : List[Any]=True ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) __lowerCAmelCase : Union[str, Any] = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCAmelCase : Dict = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCAmelCase : Union[str, Any] = model.generate(lowerCAmelCase , do_sample=lowerCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[Any] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) __lowerCAmelCase : str = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) __lowerCAmelCase : str = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) __lowerCAmelCase : Union[str, Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): __lowerCAmelCase : Optional[int] = model.generate(lowerCAmelCase , do_sample=lowerCAmelCase , seed=[7, 0] ) __lowerCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Any = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) __lowerCAmelCase : int = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) __lowerCAmelCase : List[str] = """left""" # use different length sentences to test batching __lowerCAmelCase : Union[str, Any] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] __lowerCAmelCase : List[str] = tokenizer(lowerCAmelCase , return_tensors="""tf""" , padding=lowerCAmelCase ) __lowerCAmelCase : str = inputs["""input_ids"""] __lowerCAmelCase : Tuple = model.generate(input_ids=lowerCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) __lowerCAmelCase : str = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids __lowerCAmelCase : Any = model.generate(input_ids=lowerCAmelCase , max_new_tokens=12 ) __lowerCAmelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids __lowerCAmelCase : Tuple = model.generate(input_ids=lowerCAmelCase , max_new_tokens=12 ) __lowerCAmelCase : Dict = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase ) __lowerCAmelCase : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase ) __lowerCAmelCase : str = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , [non_padded_sentence, padded_sentence] )
139
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple =AutoencoderKL lowerCamelCase : Tuple ="sample" lowerCamelCase : Dict =1e-2 @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = 4 __lowerCAmelCase : Dict = 3 __lowerCAmelCase : Optional[Any] = (32, 32) __lowerCAmelCase : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: """simple docstring""" return (3, 32, 32) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" return (3, 32, 32) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } __lowerCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : str = self.prepare_init_args_and_inputs_for_common() __lowerCAmelCase : Dict = self.model_class(**lowerCAmelCase ) model.to(lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training __lowerCAmelCase : str = model(**lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __lowerCAmelCase : Any = torch.randn_like(lowerCAmelCase ) __lowerCAmelCase : str = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __lowerCAmelCase : List[str] = self.model_class(**lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __lowerCAmelCase : Any = model_a(**lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __lowerCAmelCase : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __lowerCAmelCase : int = dict(model.named_parameters() ) __lowerCAmelCase : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[Any] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCAmelCase ) __lowerCAmelCase : int = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) __lowerCAmelCase : Optional[Any] = model.to(lowerCAmelCase ) model.eval() if torch_device == "mps": __lowerCAmelCase : List[Any] = torch.manual_seed(0 ) else: __lowerCAmelCase : Any = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) __lowerCAmelCase : Optional[int] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __lowerCAmelCase : Optional[int] = image.to(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , sample_posterior=lowerCAmelCase , generator=lowerCAmelCase ).sample __lowerCAmelCase : Dict = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __lowerCAmelCase : List[str] = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": __lowerCAmelCase : Union[str, Any] = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __lowerCAmelCase : Tuple = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1e-2 ) ) @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str ) -> int: """simple docstring""" return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase ) for s in shape] )}.npy''' def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Union[str, Any]=0 , lowerCAmelCase : Any=(4, 3, 5_12, 5_12) , lowerCAmelCase : Any=False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = torch.floataa if fpaa else torch.floataa __lowerCAmelCase : Optional[int] = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase ) ) ).to(lowerCAmelCase ).to(lowerCAmelCase ) return image def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any]="CompVis/stable-diffusion-v1-4" , lowerCAmelCase : int=False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = """fp16""" if fpaa else None __lowerCAmelCase : List[str] = torch.floataa if fpaa else torch.floataa __lowerCAmelCase : Dict = AutoencoderKL.from_pretrained( lowerCAmelCase , subfolder="""vae""" , torch_dtype=lowerCAmelCase , revision=lowerCAmelCase , ) model.to(lowerCAmelCase ).eval() return model def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Tuple=0 ) -> Tuple: """simple docstring""" if torch_device == "mps": return torch.manual_seed(lowerCAmelCase ) return torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.get_sd_vae_model() __lowerCAmelCase : Optional[int] = self.get_sd_image(lowerCAmelCase ) __lowerCAmelCase : List[str] = self.get_generator(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model(lowerCAmelCase , generator=lowerCAmelCase , sample_posterior=lowerCAmelCase ).sample assert sample.shape == image.shape __lowerCAmelCase : Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCAmelCase : List[str] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_sd_vae_model(fpaa=lowerCAmelCase ) __lowerCAmelCase : Tuple = self.get_sd_image(lowerCAmelCase , fpaa=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = self.get_generator(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Dict = model(lowerCAmelCase , generator=lowerCAmelCase , sample_posterior=lowerCAmelCase ).sample assert sample.shape == image.shape __lowerCAmelCase : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCAmelCase : Optional[int] = torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Any ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_sd_vae_model() __lowerCAmelCase : Optional[int] = self.get_sd_image(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : List[Any] = model(lowerCAmelCase ).sample assert sample.shape == image.shape __lowerCAmelCase : Union[str, Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCAmelCase : str = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.get_sd_vae_model() __lowerCAmelCase : Optional[Any] = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __lowerCAmelCase : Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().cpu() __lowerCAmelCase : Tuple = torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.get_sd_vae_model(fpaa=lowerCAmelCase ) __lowerCAmelCase : str = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Dict = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __lowerCAmelCase : Any = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCAmelCase : Union[str, Any] = torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_sd_vae_model(fpaa=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model.decode(lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCAmelCase : int = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[int] = self.get_sd_vae_model() __lowerCAmelCase : Optional[Any] = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model.decode(lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCAmelCase : Tuple = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : int , lowerCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.get_sd_vae_model() __lowerCAmelCase : List[str] = self.get_sd_image(lowerCAmelCase ) __lowerCAmelCase : Any = self.get_generator(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Optional[int] = model.encode(lowerCAmelCase ).latent_dist __lowerCAmelCase : Union[str, Any] = dist.sample(generator=lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __lowerCAmelCase : Any = sample[0, -1, -3:, -3:].flatten().cpu() __lowerCAmelCase : int = torch.tensor(lowerCAmelCase ) __lowerCAmelCase : str = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=lowerCAmelCase )
139
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') _lowerCamelCase : Any = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) _lowerCamelCase : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) _lowerCamelCase : List[str] = BeautifulSoup(res.text, 'html.parser') _lowerCamelCase : Dict = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"https://google.com{link.get('href')}")
258
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BioGptTokenizer __lowerCAmelCase = False def A (self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def A (self : Tuple , _lowerCAmelCase : List[str] ): A = """lower newer""" A = """lower newer""" return input_text, output_text def A (self : List[Any] ): A = BioGptTokenizer(self.vocab_file , self.merges_file ) A = """lower""" A = ["""low""", """er</w>"""] A = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) A = tokens + ["""<unk>"""] A = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def A (self : Union[str, Any] ): A = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) A = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) A = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) A = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
258
1
"""simple docstring""" import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] ): '''simple docstring''' A__ : Optional[int] = (0, 0) A__ : Dict = None A__ : int = 0 A__ : str = 0 A__ : Optional[Any] = 0 def __eq__( self : str , snake_case : Optional[int] ): '''simple docstring''' return self.position == cell.position def _UpperCamelCase ( self : List[str] ): '''simple docstring''' print(self.position ) class __SCREAMING_SNAKE_CASE : def __init__( self : int , snake_case : Any=(5, 5) ): '''simple docstring''' A__ : Optional[int] = np.zeros(snake_case ) A__ : List[Any] = world_size[0] A__ : Dict = world_size[1] def _UpperCamelCase ( self : Any ): '''simple docstring''' print(self.w ) def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] A__ : int = cell.position[0] A__ : str = cell.position[1] A__ : Any = [] for n in neughbour_cord: A__ : List[Any] = current_x + n[0] A__ : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: A__ : List[Any] = Cell() A__ : str = (x, y) A__ : Optional[Any] = cell neighbours.append(snake_case ) return neighbours def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict: A__ : Union[str, Any] = [] A__ : Optional[int] = [] _open.append(UpperCAmelCase__ ) while _open: A__ : List[Any] = np.argmin([n.f for n in _open] ) A__ : Union[str, Any] = _open[min_f] _closed.append(_open.pop(UpperCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase__ ): for c in _closed: if c == n: continue A__ : Dict = current.g + 1 A__ , A__ : int = n.position A__ , A__ : Optional[int] = goal.position A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 A__ : Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase__ ) A__ : List[str] = [] while current.parent is not None: path.append(current.position ) A__ : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A_ = Gridworld() # Start position and goal A_ = Cell() A_ = (0, 0) A_ = Cell() A_ = (4, 4) print(F'path from {start.position} to {goal.position}') A_ = astar(world, start, goal) # Just for visual reasons. for i in s: A_ = 1 print(world.w)
296
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'Salesforce/blip-image-captioning-base' snake_case_ = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case_ = 'image_captioner' snake_case_ = AutoModelForVisionaSeq snake_case_ = ['image'] snake_case_ = ['text'] def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*snake_case , **snake_case ) def _UpperCamelCase ( self : int , snake_case : "Image" ): '''simple docstring''' return self.pre_processor(images=snake_case , return_tensors="""pt""" ) def _UpperCamelCase ( self : int , snake_case : List[Any] ): '''simple docstring''' return self.model.generate(**snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
296
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : int = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[int] = """unispeech-sat""" def __init__( self : Union[str, Any] , _lowerCamelCase : Dict=32 , _lowerCamelCase : Optional[Any]=7_68 , _lowerCamelCase : Dict=12 , _lowerCamelCase : Optional[int]=12 , _lowerCamelCase : str=30_72 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : Optional[Any]=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[Any]=0.02 , _lowerCamelCase : Tuple=1E-5 , _lowerCamelCase : Optional[Any]="group" , _lowerCamelCase : str="gelu" , _lowerCamelCase : Optional[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _lowerCamelCase : Tuple=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase : Tuple=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=1_28 , _lowerCamelCase : str=16 , _lowerCamelCase : int=False , _lowerCamelCase : Tuple=True , _lowerCamelCase : Dict=0.05 , _lowerCamelCase : int=10 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Any=10 , _lowerCamelCase : Optional[Any]=0 , _lowerCamelCase : str=3_20 , _lowerCamelCase : int=2 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Tuple=1_00 , _lowerCamelCase : List[Any]=2_56 , _lowerCamelCase : str=2_56 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Any="mean" , _lowerCamelCase : str=False , _lowerCamelCase : int=False , _lowerCamelCase : int=2_56 , _lowerCamelCase : List[str]=(5_12, 5_12, 5_12, 5_12, 15_00) , _lowerCamelCase : str=(5, 3, 3, 1, 1) , _lowerCamelCase : List[Any]=(1, 2, 3, 1, 1) , _lowerCamelCase : Tuple=5_12 , _lowerCamelCase : Optional[int]=0 , _lowerCamelCase : Tuple=1 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[Any]=5_04 , **_lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) A_ : Any = hidden_size A_ : Optional[Any] = feat_extract_norm A_ : str = feat_extract_activation A_ : Optional[Any] = list(_lowerCamelCase ) A_ : Tuple = list(_lowerCamelCase ) A_ : Dict = list(_lowerCamelCase ) A_ : int = conv_bias A_ : Tuple = num_conv_pos_embeddings A_ : Dict = num_conv_pos_embedding_groups A_ : Optional[Any] = len(self.conv_dim ) A_ : Optional[int] = num_hidden_layers A_ : Optional[int] = intermediate_size A_ : List[Any] = hidden_act A_ : List[str] = num_attention_heads A_ : Dict = hidden_dropout A_ : Union[str, Any] = attention_dropout A_ : Dict = activation_dropout A_ : str = feat_proj_dropout A_ : Optional[int] = final_dropout A_ : str = layerdrop A_ : Dict = layer_norm_eps A_ : List[str] = initializer_range A_ : str = vocab_size A_ : Tuple = num_clusters A_ : Dict = do_stable_layer_norm A_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : Optional[int] = apply_spec_augment A_ : Dict = mask_time_prob A_ : List[Any] = mask_time_length A_ : str = mask_time_min_masks A_ : List[str] = mask_feature_prob A_ : int = mask_feature_length A_ : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A_ : int = num_codevectors_per_group A_ : str = num_codevector_groups A_ : List[str] = contrastive_logits_temperature A_ : Tuple = feat_quantizer_dropout A_ : Dict = num_negatives A_ : Union[str, Any] = codevector_dim A_ : Optional[int] = proj_codevector_dim A_ : Union[str, Any] = diversity_loss_weight # ctc loss A_ : List[str] = ctc_loss_reduction A_ : Dict = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. A_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A_ : Tuple = list(_lowerCamelCase ) A_ : Any = list(_lowerCamelCase ) A_ : Dict = list(_lowerCamelCase ) A_ : List[str] = xvector_output_dim @property def a_ ( self : Any ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
167
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : str = {'vocab_file': 'spiece.model'} _lowerCamelCase : Optional[int] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _lowerCamelCase : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = 2 _lowerCamelCase : Dict = 3 _lowerCamelCase : Union[str, Any] = 4 class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Any = """left""" def __init__( self : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : str=False , _lowerCamelCase : Optional[Any]="<s>" , _lowerCamelCase : List[str]="</s>" , _lowerCamelCase : Union[str, Any]="<unk>" , _lowerCamelCase : List[Any]="<sep>" , _lowerCamelCase : str="<pad>" , _lowerCamelCase : Dict="<cls>" , _lowerCamelCase : str="<mask>" , _lowerCamelCase : Optional[int]=["<eop>", "<eod>"] , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : str = 3 A_ : Union[str, Any] = do_lower_case A_ : Tuple = remove_space A_ : int = keep_accents A_ : Optional[Any] = vocab_file A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def a_ ( self : int ): """simple docstring""" return len(self.sp_model ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" A_ : str = self.__dict__.copy() A_ : Tuple = None return state def __setstate__( self : Tuple , _lowerCamelCase : int ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : List[Any] = {} A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" if self.remove_space: A_ : str = ''' '''.join(inputs.strip().split() ) else: A_ : Any = inputs A_ : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A_ : Any = unicodedata.normalize('''NFKD''' , _lowerCamelCase ) A_ : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] ) if self.do_lower_case: A_ : str = outputs.lower() return outputs def a_ ( self : List[str] , _lowerCamelCase : str ): """simple docstring""" A_ : str = self.preprocess_text(_lowerCamelCase ) A_ : int = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) A_ : List[Any] = [] for piece in pieces: if len(_lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A_ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : Tuple = cur_pieces[1:] else: A_ : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCamelCase ) else: new_pieces.append(_lowerCamelCase ) return new_pieces def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.PieceToId(_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.IdToPiece(_lowerCamelCase ) def a_ ( self : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Any = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = None , _lowerCamelCase : bool = True , **_lowerCamelCase : int , ): """simple docstring""" A_ : int = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase ) A_ : List[str] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ : Any = [] A_ : List[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) A_ : int = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A_ : Optional[int] = ''''''.join(_lowerCamelCase ) A_ : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ : Dict = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : Optional[int] = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a_ ( self : List[str] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is not None: return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1, 1] return ([0] * len(_lowerCamelCase )) + [1, 1] def a_ ( self : int , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a_ ( self : int , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
167
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = BioGptTokenizer UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__)))) A__ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''') as fp: fp.write(json.dumps(UpperCAmelCase__)) with open(self.merges_file , '''w''') as fp: fp.write('''\n'''.join(UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : str) ->int: '''simple docstring''' A__ = '''lower newer''' A__ = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = BioGptTokenizer(self.vocab_file , self.merges_file) A__ = '''lower''' A__ = ['''low''', '''er</w>'''] A__ = tokenizer.tokenize(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) A__ = tokens + ['''<unk>'''] A__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' A__ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') A__ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase__) A__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase__) A__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__) A__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
231
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
231
1
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) UpperCAmelCase_ : Tuple = Vector() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(lowercase_ ) , "(0,0,0,0,0,1)" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(lowercase_ ) , 4 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = Vector([1, 2] ) UpperCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4, 5] ) UpperCAmelCase_ : str = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) UpperCAmelCase_ : Optional[Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) UpperCAmelCase_ : Tuple = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = Vector([1, 2, 3] ) UpperCAmelCase_ : List[str] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Vector([1, 2, 3] ) UpperCAmelCase_ : int = Vector([2, -1, 4] ) # for test of dot product UpperCAmelCase_ : int = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Vector([1, 2, 3] ) UpperCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , lowercase_ , lowercase_ ) ) , "(3,4,7)" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Vector([1, 0, 0, 0, 0, 0] ) UpperCAmelCase_ : Optional[Any] = x.copy() self.assertEqual(str(lowercase_ ) , str(lowercase_ ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(lowercase_ ) , "(0,1,0)" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(lowercase_ ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase_ : Tuple = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(lowercase_ , lowercase_ ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase_ : Optional[Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(lowercase_ , lowercase_ ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) UpperCAmelCase_ : int = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(lowercase_ ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase_ : str = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase_ : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
61
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _lowerCAmelCase ( __snake_case : str , __snake_case : complex , __snake_case : str = "x" , __snake_case : float = 10**-10 , __snake_case : int = 1 , ) -> complex: __A : int = symbols(__snake_case ) __A : Tuple = lambdify(__snake_case , __snake_case ) __A : Any = lambdify(__snake_case , diff(__snake_case , __snake_case ) ) __A : str = starting_point while True: if diff_function(__snake_case ) != 0: __A : Optional[Any] = prev_guess - multiplicity * func(__snake_case ) / diff_function( __snake_case ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : Dict = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
190
0
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase_ : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _lowerCamelCase ( lowercase : str , lowercase : int , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : List[str] ) -> List[str]: for attribute in key.split("." ): _a = getattr(lowercase , lowercase ) if weight_type is not None: _a = getattr(lowercase , lowercase ).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCamelCase ( lowercase : Tuple , lowercase : str ) -> List[str]: _a = [] _a = fairseq_model.state_dict() _a = hf_model.feature_extractor _a = hf_model.adapter for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == "group" , ) _a = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(lowercase , lowercase , lowercase , lowercase ) _a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _a = True if "*" in mapped_key: _a = name.split(lowercase )[0].split("." )[-2] _a = mapped_key.replace("*" , lowercase ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" else: _a = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F'Unused weights: {unused_weights}' ) def _lowerCamelCase ( lowercase : Dict , lowercase : int , lowercase : Any , lowercase : List[str] , lowercase : str ) -> List[Any]: _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _a = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) def _lowerCamelCase ( lowercase : Tuple , lowercase : Tuple , lowercase : Any , lowercase : List[str] ) -> List[str]: _a = full_name.split("adaptor." )[-1] _a = name.split("." ) if items[1].isdigit(): _a = int(items[1] ) else: _a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' _a = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' _a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' _a = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' _a = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(lowercase , lowercase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' _a = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' _a = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) def _lowerCamelCase ( lowercase : Tuple ) -> str: _a , _a = emb.weight.shape _a = nn.Linear(lowercase , lowercase , bias=lowercase ) _a = emb.weight.data return lin_layer @torch.no_grad() def _lowerCamelCase ( lowercase : int , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : int , lowercase : Optional[int] , ) -> Union[str, Any]: _a = WavaVecaConfig.from_pretrained( lowercase , add_adapter=lowercase , adapter_stride=lowercase , adapter_kernel_size=lowercase , use_auth_token=lowercase , output_hidden_size=lowercase , ) _a = MBartConfig.from_pretrained(lowercase ) # load model _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) _a = model[0].eval() # load feature extractor _a = WavaVecaFeatureExtractor.from_pretrained(lowercase , use_auth_token=lowercase ) # set weights for wav2vec2 encoder _a = WavaVecaModel(lowercase ) recursively_load_weights_wavaveca(model.encoder , lowercase ) # load decoder weights _a = MBartForCausalLM(lowercase ) _a , _a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase ) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) _a = SpeechEncoderDecoderModel(encoder=lowercase , decoder=lowercase ) _a = False _a = MBartaaTokenizer(lowercase ) tokenizer.save_pretrained(lowercase ) _a = hf_wavavec.config.to_dict() _a = tokenizer.pad_token_id _a = tokenizer.bos_token_id _a = tokenizer.eos_token_id _a = "mbart50" _a = "wav2vec2" _a = tokenizer.eos_token_id _a = 25_0004 _a = tokenizer.eos_token_id _a = SpeechEncoderDecoderConfig.from_dict(lowercase ) hf_wavavec.save_pretrained(lowercase ) feature_extractor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=10_24, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=25_00_04, type=int, help='`decoder_start_token_id` of model config') lowerCAmelCase_ : Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
346
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 6008_5147_5143 ) -> int: try: _a = int(lowercase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) _a = 2 _a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _a = i while n % i == 0: _a = n // i i += 1 return int(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
346
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller _UpperCAmelCase : Dict = 3 def A ( lowercase ) -> int: '''simple docstring''' print('Generating primitive root of p' ) while True: UpperCamelCase = random.randrange(3 , lowercase ) if pow(lowercase , 2 , lowercase ) == 1: continue if pow(lowercase , lowercase , lowercase ) == 1: continue return g def A ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: '''simple docstring''' print('Generating prime p...' ) UpperCamelCase = rabin_miller.generate_large_prime(lowercase ) # select large prime number. UpperCamelCase = primitive_root(lowercase ) # one primitive root on modulo p. UpperCamelCase = random.randrange(3 , lowercase ) # private_key -> have to be greater than 2 for safety. UpperCamelCase = cryptomath.find_mod_inverse(pow(lowercase , lowercase , lowercase ) , lowercase ) UpperCamelCase = (key_size, e_a, e_a, p) UpperCamelCase = (key_size, d) return public_key, private_key def A ( lowercase , lowercase ) -> None: '''simple docstring''' if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCamelCase , UpperCamelCase = generate_key(lowercase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , 'w' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , 'w' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def A ( ) -> None: '''simple docstring''' print('Making key files...' ) make_key_files('elgamal' , 2_048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
222
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _UpperCAmelCase : List[Any] = get_logger(__name__) _UpperCAmelCase : Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , A_ , **A_ ) -> jnp.ndarray: """simple docstring""" for processor in self: UpperCamelCase = inspect.signature(processor.__call__ ).parameters if len(A_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) UpperCamelCase = processor(A_ , A_ , A_ , **A_ ) else: UpperCamelCase = processor(A_ , A_ , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) UpperCamelCase = temperature def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores / self.temperature return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(A_ , A_ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) UpperCamelCase = top_p UpperCamelCase = filter_value UpperCamelCase = min_tokens_to_keep def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = lax.top_k(A_ , scores.shape[-1] ) UpperCamelCase = jnp.full_like(A_ , self.filter_value ) UpperCamelCase = jax.nn.softmax(A_ , axis=-1 ).cumsum(axis=-1 ) UpperCamelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCamelCase = jnp.roll(A_ , 1 ) score_mask |= score_mask.at[:, 0].set(A_ ) # min tokens to keep UpperCamelCase = score_mask.at[:, : self.min_tokens_to_keep].set(A_ ) UpperCamelCase = jnp.where(A_ , A_ , A_ ) UpperCamelCase = jax.lax.sort_key_val(A_ , A_ )[-1] return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[str]: """simple docstring""" if not isinstance(A_ , A_ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) UpperCamelCase = max(A_ , A_ ) UpperCamelCase = filter_value def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = scores.shape UpperCamelCase = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCamelCase = min(self.top_k , scores.shape[-1] ) # Safety check UpperCamelCase , UpperCamelCase = lax.top_k(A_ , A_ ) UpperCamelCase = jnp.broadcast_to((jnp.arange(A_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCamelCase = topk_scores.flatten() UpperCamelCase = topk_indices.flatten() + shift UpperCamelCase = next_scores_flat.at[topk_indices_flat].set(A_ ) UpperCamelCase = next_scores_flat.reshape(A_ , A_ ) return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = bos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = max_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(A_ , A_ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) UpperCamelCase = min_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" # create boolean flag to decide if min length penalty should be applied UpperCamelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = list(A_ ) UpperCamelCase = begin_index def __call__( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = list(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" UpperCamelCase = dict(A_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCamelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCamelCase = force_token_array.at[index].set(A_ ) UpperCamelCase = jnp.intaa(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" def _force_token(A_ ): UpperCamelCase = scores.shape[0] UpperCamelCase = self.force_token_array[generation_idx] UpperCamelCase = jnp.ones_like(A_ , dtype=scores.dtype ) * -float('inf' ) UpperCamelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCamelCase = lax.dynamic_update_slice(A_ , A_ , (0, current_token) ) return new_scores UpperCamelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_ ) , lambda: scores , ) , ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = generate_config.eos_token_id UpperCamelCase = generate_config.no_timestamps_token_id UpperCamelCase = generate_config.no_timestamps_token_id + 1 UpperCamelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(A_ , 'max_initial_timestamp_index' ): UpperCamelCase = generate_config.max_initial_timestamp_index else: UpperCamelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCamelCase = model_config.vocab_size def __call__( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" # suppress <|notimestamps|> which is handled by without_timestamps UpperCamelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(A_ , A_ ): UpperCamelCase = jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , ) UpperCamelCase = jnp.where((cur_len - self.begin_index) < 2 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , ) return jnp.where( A_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) UpperCamelCase = jnp.where(cur_len == self.begin_index , A_ , A_ ) UpperCamelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , ) UpperCamelCase = self.timestamp_begin + self.max_initial_timestamp_index UpperCamelCase = jnp.where( A_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , A_ , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCamelCase = jax.nn.log_softmax(A_ , axis=-1 ) def handle_cumulative_probs(A_ , A_ ): UpperCamelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCamelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) return scores
222
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = "informer" a__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Any , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "student_t" , __lowerCamelCase : str = "nll" , __lowerCamelCase : int = 1 , __lowerCamelCase : List[int] = None , __lowerCamelCase : Optional[Union[str, bool]] = "mean" , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : bool = True , __lowerCamelCase : str = "gelu" , __lowerCamelCase : float = 0.05 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : int = 1_00 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : str = "prob" , __lowerCamelCase : int = 5 , __lowerCamelCase : bool = True , **__lowerCamelCase : Union[str, Any] , ) -> str: # time series specific configuration A : List[Any] = prediction_length A : Any = context_length or prediction_length A : Optional[Any] = distribution_output A : List[str] = loss A : Union[str, Any] = input_size A : List[Any] = num_time_features A : int = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A : str = scaling A : str = num_dynamic_real_features A : Any = num_static_real_features A : str = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) A : Dict = cardinality else: A : str = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) A : Optional[Any] = embedding_dimension else: A : Union[str, Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A : Union[str, Any] = num_parallel_samples # Transformer architecture configuration A : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features A : List[Any] = d_model A : int = encoder_attention_heads A : int = decoder_attention_heads A : Optional[Any] = encoder_ffn_dim A : int = decoder_ffn_dim A : List[str] = encoder_layers A : List[str] = decoder_layers A : int = dropout A : Union[str, Any] = attention_dropout A : int = activation_dropout A : Any = encoder_layerdrop A : Union[str, Any] = decoder_layerdrop A : Any = activation_function A : Dict = init_std A : Optional[int] = use_cache # Informer A : Dict = attention_type A : int = sampling_factor A : Union[str, Any] = distil super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
256
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class snake_case__ : """simple docstring""" def __init__( self : Tuple, _snake_case : int, _snake_case : Union[str, Any]=1_3, _snake_case : int=7, _snake_case : Tuple=True, _snake_case : Union[str, Any]=True, _snake_case : Dict=True, _snake_case : Optional[Any]=True, _snake_case : Tuple=9_9, _snake_case : Any=6_4, _snake_case : str=3_2, _snake_case : Optional[int]=5, _snake_case : Any=4, _snake_case : str=3_7, _snake_case : List[Any]="gelu", _snake_case : Any=0.1, _snake_case : List[str]=0.1, _snake_case : Union[str, Any]=5_1_2, _snake_case : int=1_6, _snake_case : Tuple=2, _snake_case : Union[str, Any]=0.0_2, _snake_case : str=3, _snake_case : str=4, _snake_case : Optional[int]=None, ) ->List[str]: snake_case__ : List[Any] = parent snake_case__ : str = batch_size snake_case__ : List[str] = seq_length snake_case__ : Dict = is_training snake_case__ : int = use_input_mask snake_case__ : List[Any] = use_token_type_ids snake_case__ : int = use_labels snake_case__ : str = vocab_size snake_case__ : str = hidden_size snake_case__ : Any = embedding_size snake_case__ : Any = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Union[str, Any] = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : List[Any] = type_sequence_label_size snake_case__ : Optional[Any] = initializer_range snake_case__ : str = num_labels snake_case__ : int = num_choices snake_case__ : Any = scope def lowercase_ ( self : int ) ->Optional[Any]: snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : int = None if self.use_input_mask: snake_case__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Optional[Any] = None if self.use_token_type_ids: snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case__ : Dict = None snake_case__ : Any = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case__ : Tuple = ids_tensor([self.batch_size], self.num_choices ) snake_case__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Optional[Any] ) ->List[Any]: return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_snake_case, initializer_range=self.initializer_range, ) def lowercase_ ( self : Any, _snake_case : Union[str, Any], _snake_case : Optional[int], _snake_case : str, _snake_case : List[str], _snake_case : List[Any], _snake_case : List[Any], _snake_case : List[str] ) ->Tuple: snake_case__ : Union[str, Any] = MobileBertModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[int] = model(_snake_case, attention_mask=_snake_case, token_type_ids=_snake_case ) snake_case__ : Union[str, Any] = model(_snake_case, token_type_ids=_snake_case ) snake_case__ : List[str] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase_ ( self : Optional[Any], _snake_case : Optional[Any], _snake_case : List[Any], _snake_case : Optional[Any], _snake_case : Tuple, _snake_case : Optional[Any], _snake_case : Tuple, _snake_case : Dict ) ->int: snake_case__ : Union[str, Any] = MobileBertForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, attention_mask=_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Union[str, Any], _snake_case : List[str], _snake_case : Tuple, _snake_case : List[str], _snake_case : List[str], _snake_case : Optional[int], _snake_case : Union[str, Any], _snake_case : Optional[int] ) ->List[Any]: snake_case__ : List[Any] = MobileBertForNextSentencePrediction(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : List[str] = model( _snake_case, attention_mask=_snake_case, token_type_ids=_snake_case, labels=_snake_case, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def lowercase_ ( self : str, _snake_case : str, _snake_case : Union[str, Any], _snake_case : Any, _snake_case : Any, _snake_case : int, _snake_case : Dict, _snake_case : Any ) ->Union[str, Any]: snake_case__ : str = MobileBertForPreTraining(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : int = model( _snake_case, attention_mask=_snake_case, token_type_ids=_snake_case, labels=_snake_case, next_sentence_label=_snake_case, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def lowercase_ ( self : List[str], _snake_case : List[str], _snake_case : Optional[Any], _snake_case : List[Any], _snake_case : int, _snake_case : List[Any], _snake_case : Optional[Any], _snake_case : Union[str, Any] ) ->Dict: snake_case__ : Any = MobileBertForQuestionAnswering(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : str = model( _snake_case, attention_mask=_snake_case, token_type_ids=_snake_case, start_positions=_snake_case, end_positions=_snake_case, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase_ ( self : List[Any], _snake_case : Optional[int], _snake_case : Tuple, _snake_case : str, _snake_case : Union[str, Any], _snake_case : Union[str, Any], _snake_case : Optional[Any], _snake_case : List[str] ) ->Any: snake_case__ : Optional[int] = self.num_labels snake_case__ : List[str] = MobileBertForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : str = model(_snake_case, attention_mask=_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : int, _snake_case : List[Any], _snake_case : Union[str, Any], _snake_case : Dict, _snake_case : int, _snake_case : Union[str, Any], _snake_case : List[Any], _snake_case : List[Any] ) ->Optional[Any]: snake_case__ : Dict = self.num_labels snake_case__ : Optional[int] = MobileBertForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, attention_mask=_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Optional[int], _snake_case : Optional[Any], _snake_case : str, _snake_case : Union[str, Any], _snake_case : Union[str, Any], _snake_case : int, _snake_case : Dict, _snake_case : Tuple ) ->Optional[Any]: snake_case__ : List[str] = self.num_choices snake_case__ : Optional[int] = MobileBertForMultipleChoice(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() snake_case__ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() snake_case__ : List[str] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() snake_case__ : Tuple = model( _snake_case, attention_mask=_snake_case, token_type_ids=_snake_case, labels=_snake_case, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase_ ( self : Union[str, Any] ) ->str: snake_case__ : Tuple = self.prepare_config_and_inputs() ( snake_case__ ) : Union[str, Any] = config_and_inputs snake_case__ : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True def lowercase_ ( self : Optional[Any], _snake_case : Optional[Any], _snake_case : List[str], _snake_case : Tuple=False ) ->List[Any]: snake_case__ : Optional[int] = super()._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) if return_labels: if model_class in get_values(_snake_case ): snake_case__ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=_snake_case ) snake_case__ : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_snake_case ) return inputs_dict def lowercase_ ( self : List[Any] ) ->Tuple: snake_case__ : int = MobileBertModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self, config_class=_snake_case, hidden_size=3_7 ) def lowercase_ ( self : Dict ) ->Optional[int]: self.config_tester.run_common_tests() def lowercase_ ( self : int ) ->str: snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_snake_case ) def lowercase_ ( self : List[Any] ) ->List[Any]: snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_snake_case ) def lowercase_ ( self : Dict ) ->List[str]: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_snake_case ) def lowercase_ ( self : Optional[int] ) ->Union[str, Any]: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_snake_case ) def lowercase_ ( self : str ) ->str: snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_snake_case ) def lowercase_ ( self : Union[str, Any] ) ->Dict: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_snake_case ) def lowercase_ ( self : Union[str, Any] ) ->str: snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_snake_case ) def lowercase_ ( self : Optional[int] ) ->List[str]: snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_snake_case ) def lowercase_ (A : Any ): return torch.tensor( lowercase__ , dtype=torch.long , device=lowercase__ , ) a_ :Any = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : List[str] ) ->Union[str, Any]: snake_case__ : Optional[int] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(_snake_case ) snake_case__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): snake_case__ : Any = model(_snake_case )[0] snake_case__ : Tuple = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, _snake_case ) snake_case__ : List[Any] = torch.tensor( [ [ [-2.4736526e07, 8.2691656e04, 1.6521838e05], [-5.7541704e-01, 3.9056022e00, 4.4011507e00], [2.6047359e00, 1.5677652e00, -1.7324188e-01], ] ], device=_snake_case, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE snake_case__ : Any = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) snake_case__ : str = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
277
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _lowerCamelCase : List[Any] = (boundary[1] - boundary[0]) / steps _lowerCamelCase : Tuple = boundary[0] _lowerCamelCase : Dict = boundary[1] _lowerCamelCase : List[Any] = make_points(lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : List[Any] = 0.0 y += (h / 2.0) * f(lowercase__ ) for i in x_i: # print(i) y += h * f(lowercase__ ) y += (h / 2.0) * f(lowercase__ ) return y def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = a + h while x < (b - h): yield x _lowerCamelCase : int = x + h def _snake_case ( lowercase__ ): # enter your function here _lowerCamelCase : Optional[Any] = (x - 0) * (x - 0) return y def _snake_case ( ): _lowerCamelCase : int = 0.0 # Lower bound of integration _lowerCamelCase : Optional[int] = 1.0 # Upper bound of integration _lowerCamelCase : List[str] = 1_0.0 # define number of steps or resolution _lowerCamelCase : List[Any] = [a, b] # define boundary of integration _lowerCamelCase : Optional[Any] = method_a(lowercase__ , lowercase__ ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
96
0
import socket def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase = socket.gethostname() lowercase = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: lowercase = sock.recv(1_0_2_4 ) if not data: break out_file.write(__a ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
class __A: """simple docstring""" def __init__(self ): UpperCamelCase__ = {} # Mapping from char to TrieNode UpperCamelCase__ = False def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): for word in words: self.insert(UpperCamelCase__ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self for char in word: if char not in curr.nodes: UpperCamelCase__ = TrieNode() UpperCamelCase__ = curr.nodes[char] UpperCamelCase__ = True def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self for char in word: if char not in curr.nodes: return False UpperCamelCase__ = curr.nodes[char] return curr.is_leaf def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): def _delete(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: if index == len(UpperCamelCase__ ): # If word does not exist if not curr.is_leaf: return False UpperCamelCase__ = False return len(curr.nodes ) == 0 UpperCamelCase__ = word[index] UpperCamelCase__ = curr.nodes.get(UpperCamelCase__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCamelCase__ = _delete(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase__ , 0 ) def __magic_name__ ( __a : TrieNode , __a : str ): '''simple docstring''' if node.is_leaf: print(__a , end=""" """ ) for key, value in node.nodes.items(): print_words(__a , word + key ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = "banana bananas bandana band apple all beast".split() UpperCamelCase__ = TrieNode() root.insert_many(__a ) # print_words(root, "") assert all(root.find(__a ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __magic_name__ ( __a : str , __a : bool ): '''simple docstring''' print(str(__a ) , """works!""" if passes else """doesn't work :(""" ) def __magic_name__ ( ): '''simple docstring''' assert test_trie() def __magic_name__ ( ): '''simple docstring''' print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
244
"""simple docstring""" def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = [] snake_case : List[Any] = 1 while len(lowercase ) < 1e6: constant.append(str(lowercase ) ) i += 1 snake_case : Tuple = "".join(lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
203
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Any = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=__UpperCAmelCase).to(__UpperCAmelCase) SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("google/mt5-small") SCREAMING_SNAKE_CASE_: Any = tokenizer("Hello there" , return_tensors="pt").input_ids SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer("Hi I am" , return_tensors="pt").input_ids SCREAMING_SNAKE_CASE_: str = model(input_ids.to(__UpperCAmelCase) , labels=labels.to(__UpperCAmelCase)).loss SCREAMING_SNAKE_CASE_: int = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE_: Any = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
366
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : Optional[int] = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = ["""YolosFeatureExtractor"""] lowerCAmelCase : Tuple = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
127
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : str , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : List[str] = 1_3 _UpperCAmelCase : Tuple = 7 _UpperCAmelCase : Tuple = True _UpperCAmelCase : Tuple = True _UpperCAmelCase : str = True _UpperCAmelCase : Union[str, Any] = 9_9 _UpperCAmelCase : Dict = 3_2 _UpperCAmelCase : Optional[Any] = 2 _UpperCAmelCase : Tuple = 4 _UpperCAmelCase : str = 3_7 _UpperCAmelCase : Union[str, Any] = "gelu" _UpperCAmelCase : Tuple = 0.1 _UpperCAmelCase : List[str] = 0.1 _UpperCAmelCase : Optional[int] = 5_1_2 _UpperCAmelCase : List[Any] = 1_6 _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : Dict = 0.02 _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : Union[str, Any] = 4 _UpperCAmelCase : str = None def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[Any] = None if self.use_input_mask: _UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Dict = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : int = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : int = self.prepare_config_and_inputs() _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ) -> int: """simple docstring""" _UpperCAmelCase : int = TFEsmModel(config=_a ) _UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Optional[int] = model(_a ) _UpperCAmelCase : Union[str, Any] = [input_ids, input_mask] _UpperCAmelCase : Union[str, Any] = model(_a ) _UpperCAmelCase : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Tuple = TFEsmModel(config=_a ) _UpperCAmelCase : str = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } _UpperCAmelCase : int = model(_a ) _UpperCAmelCase : List[str] = [input_ids, input_mask] _UpperCAmelCase : str = model(_a , encoder_hidden_states=_a ) # Also check the case where encoder outputs are not passed _UpperCAmelCase : Optional[int] = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = TFEsmForMaskedLM(config=_a ) _UpperCAmelCase : List[Any] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ) -> str: """simple docstring""" _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Optional[Any] = TFEsmForTokenClassification(config=_a ) _UpperCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Union[str, Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : int = config_and_inputs _UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : int = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase_ : Tuple = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : Tuple = False UpperCamelCase_ : Union[str, Any] = False def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Any = TFEsmModelTester(self ) _UpperCAmelCase : List[Any] = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_a ) def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = TFEsmModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip("Protein models do not support embedding resizing." ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("Protein models do not support embedding resizing." ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[int] = model_class(_a ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _UpperCAmelCase : List[Any] = model.get_bias() assert isinstance(_a , _a ) for k, v in name.items(): assert isinstance(_a , tf.Variable ) else: _UpperCAmelCase : int = model.get_output_embeddings() assert x is None _UpperCAmelCase : int = model.get_bias() assert name is None @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) _UpperCAmelCase : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase : List[Any] = model(_a )[0] _UpperCAmelCase : List[Any] = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , _a ) # compare the actual values for a slice. _UpperCAmelCase : Union[str, Any] = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : int = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) _UpperCAmelCase : Any = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _UpperCAmelCase : Optional[Any] = model(_a )[0] # compare the actual values for a slice. _UpperCAmelCase : int = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
145
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path lowerCamelCase_ = "src/transformers" # Matches is_xxx_available() lowerCamelCase_ = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} lowerCamelCase_ = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase_ = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available lowerCamelCase_ = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") lowerCamelCase_ = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase_ = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase_ = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase_ = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo lowerCamelCase_ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: lowerCamelCase_ = re.compile(r"^\s*try:") # Catches a line with else: lowerCamelCase_ = re.compile(r"^\s*else:") def __lowerCamelCase ( a_ : List[str] ) -> Any: if _re_test_backend.search(a_ ) is None: return None __SCREAMING_SNAKE_CASE :Optional[int] = [b[0] for b in _re_backend.findall(a_ )] backends.sort() return "_and_".join(a_ ) def __lowerCamelCase ( a_ : Dict ) -> List[Any]: with open(a_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __SCREAMING_SNAKE_CASE :List[str] = f.readlines() __SCREAMING_SNAKE_CASE :List[str] = 0 while line_index < len(a_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(a_ ): return None # First grab the objects without a specific backend in _import_structure __SCREAMING_SNAKE_CASE :Optional[Any] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: __SCREAMING_SNAKE_CASE :str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(a_ ): __SCREAMING_SNAKE_CASE :Optional[int] = _re_one_line_import_struct.search(a_ ).groups()[0] __SCREAMING_SNAKE_CASE :str = re.findall('''\[([^\]]+)\]''' , a_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue __SCREAMING_SNAKE_CASE :int = _re_import_struct_key_value.search(a_ ) if single_line_import_search is not None: __SCREAMING_SNAKE_CASE :List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(a_ ) > 0] objects.extend(a_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 __SCREAMING_SNAKE_CASE :Optional[Any] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. __SCREAMING_SNAKE_CASE :str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __SCREAMING_SNAKE_CASE :Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __SCREAMING_SNAKE_CASE :List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): __SCREAMING_SNAKE_CASE :List[str] = lines[line_index] if _re_import_struct_add_one.search(a_ ) is not None: objects.append(_re_import_struct_add_one.search(a_ ).groups()[0] ) elif _re_import_struct_add_many.search(a_ ) is not None: __SCREAMING_SNAKE_CASE :Dict = _re_import_struct_add_many.search(a_ ).groups()[0].split(''', ''' ) __SCREAMING_SNAKE_CASE :Tuple = [obj[1:-1] for obj in imports if len(a_ ) > 0] objects.extend(a_ ) elif _re_between_brackets.search(a_ ) is not None: __SCREAMING_SNAKE_CASE :Union[str, Any] = _re_between_brackets.search(a_ ).groups()[0].split(''', ''' ) __SCREAMING_SNAKE_CASE :List[Any] = [obj[1:-1] for obj in imports if len(a_ ) > 0] objects.extend(a_ ) elif _re_quote_object.search(a_ ) is not None: objects.append(_re_quote_object.search(a_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 __SCREAMING_SNAKE_CASE :Dict = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __SCREAMING_SNAKE_CASE :str = [] while ( line_index < len(a_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): __SCREAMING_SNAKE_CASE :str = lines[line_index] __SCREAMING_SNAKE_CASE :str = _re_import.search(a_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 __SCREAMING_SNAKE_CASE :Dict = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(a_ ): # If the line is an if is_backend_available, we grab all objects associated. __SCREAMING_SNAKE_CASE :str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __SCREAMING_SNAKE_CASE :str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __SCREAMING_SNAKE_CASE :Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): __SCREAMING_SNAKE_CASE :List[Any] = lines[line_index] __SCREAMING_SNAKE_CASE :List[str] = _re_import.search(a_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 __SCREAMING_SNAKE_CASE :str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __lowerCamelCase ( a_ : str , a_ : List[Any] ) -> Optional[Any]: def find_duplicates(a_ : Dict ): return [k for k, v in collections.Counter(a_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __SCREAMING_SNAKE_CASE :Dict = [] for key in import_dict_objects.keys(): __SCREAMING_SNAKE_CASE :Tuple = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) __SCREAMING_SNAKE_CASE :str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __SCREAMING_SNAKE_CASE :Optional[Any] = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def __lowerCamelCase ( ) -> Optional[Any]: __SCREAMING_SNAKE_CASE :Dict = [] for root, _, files in os.walk(a_ ): if "__init__.py" in files: __SCREAMING_SNAKE_CASE :Dict = os.path.join(a_ , '''__init__.py''' ) __SCREAMING_SNAKE_CASE :str = parse_init(a_ ) if objects is not None: __SCREAMING_SNAKE_CASE :List[Any] = analyze_results(*a_ ) if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :Tuple = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(a_ ) ) if len(a_ ) > 0: raise ValueError('''\n\n'''.join(a_ ) ) def __lowerCamelCase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE :List[Any] = [] for path, directories, files in os.walk(a_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(a_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(a_ ) / folder).glob('''*.py''' ) ) ) == 0: continue __SCREAMING_SNAKE_CASE :List[str] = str((Path(a_ ) / folder).relative_to(a_ ) ) __SCREAMING_SNAKE_CASE :Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(a_ ) for fname in files: if fname == "__init__.py": continue __SCREAMING_SNAKE_CASE :int = str((Path(a_ ) / fname).relative_to(a_ ) ) __SCREAMING_SNAKE_CASE :List[str] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(a_ ) return submodules lowerCamelCase_ = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def __lowerCamelCase ( ) -> str: # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE :Optional[int] = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(a_ , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __SCREAMING_SNAKE_CASE :List[Any] = spec.loader.load_module() __SCREAMING_SNAKE_CASE :int = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :List[Any] = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
239
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __SCREAMING_SNAKE_CASE :Optional[int] = deepcopy(SCREAMING_SNAKE_CASE__ ) elif os.path.exists(SCREAMING_SNAKE_CASE__ ): with io.open(SCREAMING_SNAKE_CASE__ ,'''r''' ,encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE :Dict = json.load(SCREAMING_SNAKE_CASE__ ) else: try: __SCREAMING_SNAKE_CASE :str = baseaa.urlsafe_baadecode(SCREAMING_SNAKE_CASE__ ).decode('''utf-8''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = json.loads(SCREAMING_SNAKE_CASE__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) __SCREAMING_SNAKE_CASE :Optional[int] = config self.set_stage_and_offload() def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_value('''zero_optimization.stage''' ,-1 ) # offload __SCREAMING_SNAKE_CASE :Any = False if self.is_zeroa() or self.is_zeroa(): __SCREAMING_SNAKE_CASE :Optional[Any] = set(['''cpu''', '''nvme'''] ) __SCREAMING_SNAKE_CASE :Optional[Any] = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __SCREAMING_SNAKE_CASE :int = True def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.config # find the config node of interest if it exists __SCREAMING_SNAKE_CASE :Union[str, Any] = ds_key_long.split('''.''' ) __SCREAMING_SNAKE_CASE :List[str] = nodes.pop() for node in nodes: __SCREAMING_SNAKE_CASE :Dict = config.get(SCREAMING_SNAKE_CASE__ ) if config is None: return None, ds_key return config, ds_key def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = self.find_config_node(SCREAMING_SNAKE_CASE__ ) if config is None: return default return config.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.config # find the config node of interest if it exists __SCREAMING_SNAKE_CASE :str = ds_key_long.split('''.''' ) for node in nodes: __SCREAMING_SNAKE_CASE :Any = config __SCREAMING_SNAKE_CASE :int = config.get(SCREAMING_SNAKE_CASE__ ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else bool(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else not bool(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._stage == 2 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return self._stage == 3 def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return self._offload class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = engine def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" self.engine.backward(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ,device_placement=SCREAMING_SNAKE_CASE__ ,scaler=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = hasattr(self.optimizer ,'''overflow''' ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=None ) -> Union[str, Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _UpperCamelCase ( self ) -> Dict: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=0.0_0_1 ,SCREAMING_SNAKE_CASE__=0 ,**SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = params __SCREAMING_SNAKE_CASE :str = lr __SCREAMING_SNAKE_CASE :str = weight_decay __SCREAMING_SNAKE_CASE :int = kwargs class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=0 ,**SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = optimizer __SCREAMING_SNAKE_CASE :Union[str, Any] = total_num_steps __SCREAMING_SNAKE_CASE :Any = warmup_num_steps __SCREAMING_SNAKE_CASE :int = kwargs
239
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class a__ ( _UpperCAmelCase ): """simple docstring""" __lowerCamelCase = 'mobilenet_v1' def __init__( self , lowercase=3 , lowercase=224 , lowercase=1.0 , lowercase=8 , lowercase="relu6" , lowercase=True , lowercase=0.999 , lowercase=0.02 , lowercase=0.001 , **lowercase , ) -> int: '''simple docstring''' super().__init__(**__UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) A__ = num_channels A__ = image_size A__ = depth_multiplier A__ = min_depth A__ = hidden_act A__ = tf_padding A__ = classifier_dropout_prob A__ = initializer_range A__ = layer_norm_eps class a__ ( _UpperCAmelCase ): """simple docstring""" __lowerCamelCase = version.parse('1.11' ) @property def UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def UpperCamelCase ( self ) -> float: '''simple docstring''' return 1e-4
68
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir('''fixtures''') class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ) -> Tuple: '''simple docstring''' A: str = mock.Mock() A: Tuple = 5_00 A: Optional[Any] = {} A: Tuple = HTTPError A: int = {} # Download this model to make sure it's in the cache. A: Dict = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=SCREAMING_SNAKE_CASE_ ) as mock_head: A: List[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self : Union[str, Any] ) -> str: '''simple docstring''' A: Dict = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _snake_case ( cls : List[str] ) -> Any: '''simple docstring''' A: Any = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def _snake_case ( cls : List[str] ) -> List[str]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def _snake_case ( self : Any ) -> Any: '''simple docstring''' A: Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) A: Tuple = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''test-feature-extractor''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) A: int = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A: Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) A: Tuple = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) A: Tuple = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() A: Optional[int] = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) A: Tuple = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=SCREAMING_SNAKE_CASE_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
334
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ) -> None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
334
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Any = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __A( A__ ): snake_case_ = 'sew' def __init__( self , _snake_case=32 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case=2 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.02 , _snake_case=1E-5 , _snake_case="group" , _snake_case="gelu" , _snake_case=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _snake_case=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _snake_case=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _snake_case=False , _snake_case=128 , _snake_case=16 , _snake_case=True , _snake_case=0.05 , _snake_case=10 , _snake_case=2 , _snake_case=0.0 , _snake_case=10 , _snake_case=0 , _snake_case="mean" , _snake_case=False , _snake_case=False , _snake_case=256 , _snake_case=0 , _snake_case=1 , _snake_case=2 , **_snake_case , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) __a = hidden_size __a = feat_extract_norm __a = feat_extract_activation __a = list(__UpperCAmelCase ) __a = list(__UpperCAmelCase ) __a = list(__UpperCAmelCase ) __a = conv_bias __a = num_conv_pos_embeddings __a = num_conv_pos_embedding_groups __a = len(self.conv_dim ) __a = num_hidden_layers __a = intermediate_size __a = squeeze_factor __a = hidden_act __a = num_attention_heads __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = feat_proj_dropout __a = final_dropout __a = layerdrop __a = layer_norm_eps __a = initializer_range __a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a = apply_spec_augment __a = mask_time_prob __a = mask_time_length __a = mask_time_min_masks __a = mask_feature_prob __a = mask_feature_length __a = mask_feature_min_masks # ctc loss __a = ctc_loss_reduction __a = ctc_zero_infinity # sequence classification __a = use_weighted_layer_sum __a = classifier_proj_size @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
6
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with open(snake_case__ ) as metadata_file: SCREAMING_SNAKE_CASE__ = json.load(snake_case__ ) SCREAMING_SNAKE_CASE__ = LukeConfig(use_entity_aware_attention=snake_case__ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE__ = torch.load(snake_case__ , map_location="""cpu""" ) # Load the entity vocab file SCREAMING_SNAKE_CASE__ = load_entity_vocab(snake_case__ ) SCREAMING_SNAKE_CASE__ = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE__ = AddedToken("""<ent>""" , lstrip=snake_case__ , rstrip=snake_case__ ) SCREAMING_SNAKE_CASE__ = AddedToken("""<ent2>""" , lstrip=snake_case__ , rstrip=snake_case__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ , LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE__ = LukeTokenizer.from_pretrained(snake_case__ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE__ = state_dict["""embeddings.word_embeddings.weight"""] SCREAMING_SNAKE_CASE__ = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE__ = f"""encoder.layer.{layer_index}.attention.self.""" SCREAMING_SNAKE_CASE__ = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE__ = state_dict["""entity_embeddings.entity_embeddings.weight"""] SCREAMING_SNAKE_CASE__ = entity_emb[entity_vocab["""[MASK]"""]] SCREAMING_SNAKE_CASE__ = LukeModel(config=snake_case__ ).eval() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) if not (len(snake_case__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {", ".join(snake_case__ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs SCREAMING_SNAKE_CASE__ = LukeTokenizer.from_pretrained(snake_case__ , task="""entity_classification""" ) SCREAMING_SNAKE_CASE__ = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) SCREAMING_SNAKE_CASE__ = (39, 42) SCREAMING_SNAKE_CASE__ = tokenizer(snake_case__ , entity_spans=[span] , add_prefix_space=snake_case__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**snake_case__ ) # Verify word hidden states if model_size == "large": SCREAMING_SNAKE_CASE__ = torch.Size((1, 42, 10_24) ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base SCREAMING_SNAKE_CASE__ = torch.Size((1, 42, 7_68) ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": SCREAMING_SNAKE_CASE__ = torch.Size((1, 1, 10_24) ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base SCREAMING_SNAKE_CASE__ = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(snake_case__ ) ) model.save_pretrained(snake_case__ ) def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = line.rstrip().split("""\t""" ) SCREAMING_SNAKE_CASE__ = index return entity_vocab if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) A_ : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
165
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _A ( __magic_name__ ): # A local function to see if a dot lands in the circle. def is_in_circle(__magic_name__ , __magic_name__ ) -> bool: lowercase__ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase__ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__magic_name__ ) ) # The ratio of the area for circle to square is pi/4. lowercase__ = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ = 0.0 , __magic_name__ = 1.0 , ): return mean( function_to_integrate(uniform(__magic_name__ , __magic_name__ ) ) for _ in range(__magic_name__ ) ) * (max_value - min_value) def _A ( __magic_name__ , __magic_name__ = 0.0 , __magic_name__ = 1.0 ): def identity_function(__magic_name__ ) -> float: return x lowercase__ = area_under_curve_estimator( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def _A ( __magic_name__ ): def function_to_integrate(__magic_name__ ) -> float: return sqrt(4.0 - x * x ) lowercase__ = area_under_curve_estimator( __magic_name__ , __magic_name__ , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
201
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _A ( __magic_name__=32 , __magic_name__=10 , __magic_name__=100 , __magic_name__=1026 , __magic_name__=True , __magic_name__="data/tokenized_stories_train_wikitext103.jbl" , __magic_name__="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set lowercase__ , lowercase__ = generate_datasets( __magic_name__ , __magic_name__ , number=__magic_name__ , min_len=1026 , trim=__magic_name__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase__ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model lowercase__ = load_gpta("gpt2" ).to(__magic_name__ ) print("computing perplexity on objective set" ) lowercase__ = compute_perplexity(__magic_name__ , __magic_name__ , __magic_name__ ).item() print("perplexity on objective set:" , __magic_name__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _A ( __magic_name__ , __magic_name__=15 , __magic_name__=128 , __magic_name__=100 , __magic_name__="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model lowercase__ = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model lowercase__ = SecondaryLearner(__magic_name__ ) # Train secondary learner lowercase__ = train_secondary_learner( __magic_name__ , __magic_name__ , max_epochs=__magic_name__ , batch_size=__magic_name__ , eval_freq=100 , igf_model_path=__magic_name__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=32 , __magic_name__=1000 , __magic_name__=16 , __magic_name__=1.0 , __magic_name__=recopy_gpta , __magic_name__=None , __magic_name__=10 , __magic_name__="gpt2_finetuned.pt" , ): lowercase__ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) lowercase__ = RandomSampler(__magic_name__ ) lowercase__ = DataLoader(__magic_name__ , sampler=__magic_name__ ) lowercase__ = max_steps // (len(__magic_name__ )) + 1 lowercase__ = 0 lowercase__ = torch.zeros((1, context_len) , dtype=torch.long , device=__magic_name__ ) lowercase__ , lowercase__ , lowercase__ = recopy_model(__magic_name__ , __magic_name__ , __magic_name__ ) model.train() if secondary_learner is not None: secondary_learner.to(__magic_name__ ) secondary_learner.eval() lowercase__ = [] lowercase__ = 0 lowercase__ = [] lowercase__ = [] # Compute the performance of the transformer model at the beginning lowercase__ = compute_perplexity(__magic_name__ , __magic_name__ , __magic_name__ ) test_perps.append(__magic_name__ ) print("Test perplexity, step" , __magic_name__ , ":" , __magic_name__ ) for epoch in range(int(__magic_name__ ) ): for step, example in enumerate(__magic_name__ ): torch.cuda.empty_cache() lowercase__ = random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase__ = model(__magic_name__ , labels=__magic_name__ ) lowercase__ = True if secondary_learner is not None: lowercase__ = secondary_learner.forward( torch.tensor(__magic_name__ , dtype=torch.long , device=__magic_name__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(__magic_name__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase__ = -1 if predicted_q < threshold: lowercase__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase__ = compute_perplexity(__magic_name__ , __magic_name__ , __magic_name__ ) test_perps.append(__magic_name__ ) print("Test perplexity, step" , __magic_name__ , ":" , __magic_name__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __magic_name__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _A ( ): lowercase__ = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=__magic_name__ , default=__magic_name__ , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=__magic_name__ , default=__magic_name__ , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=__magic_name__ , type=__magic_name__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=__magic_name__ , default=__magic_name__ , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=__magic_name__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=__magic_name__ , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=__magic_name__ , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1000 , type=__magic_name__ , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=__magic_name__ , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=__magic_name__ , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=__magic_name__ , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=__magic_name__ , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1026 , type=__magic_name__ , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=__magic_name__ , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=__magic_name__ , type=__magic_name__ , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=__magic_name__ , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=__magic_name__ , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=__magic_name__ , type=__magic_name__ , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__magic_name__ , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner lowercase__ = joblib.load("data/IGF_values.jbl" ) # Train secondary learner lowercase__ = training_secondary_learner( __magic_name__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model lowercase__ = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowercase__ , lowercase__ = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=__magic_name__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __magic_name__ , __magic_name__ , __magic_name__ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__magic_name__ , secondary_learner=__magic_name__ , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
201
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A: Dict = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } A: str = logging.WARNING def _snake_case ( ): UpperCAmelCase : Union[str, Any] = os.getenv("""DATASETS_VERBOSITY""" , UpperCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option DATASETS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def _snake_case ( ): return __name__.split(""".""" )[0] def _snake_case ( ): return logging.getLogger(_get_library_name() ) def _snake_case ( ): # Apply our default configuration to the library root logger. UpperCAmelCase : List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _snake_case ( ): UpperCAmelCase : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _snake_case ( UpperCamelCase : Optional[str] = None ): if name is None: UpperCAmelCase : int = _get_library_name() return logging.getLogger(UpperCamelCase ) def _snake_case ( ): return _get_library_root_logger().getEffectiveLevel() def _snake_case ( UpperCamelCase : int ): _get_library_root_logger().setLevel(UpperCamelCase ) def _snake_case ( ): return set_verbosity(UpperCamelCase ) def _snake_case ( ): return set_verbosity(UpperCamelCase ) def _snake_case ( ): return set_verbosity(UpperCamelCase ) def _snake_case ( ): return set_verbosity(UpperCamelCase ) def _snake_case ( ): UpperCAmelCase : Optional[Any] = False def _snake_case ( ): UpperCAmelCase : List[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE__ : def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: # pylint: disable=unused-argument '''simple docstring''' UpperCAmelCase : str = args[0] if args else None def __iter__( self ) -> List[Any]: '''simple docstring''' return iter(self._iterator ) def __getattr__( self , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' def empty_fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> int: '''simple docstring''' return self def __exit__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return A: List[Any] = True class SCREAMING_SNAKE_CASE__ : def __call__( self , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: return EmptyTqdm(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() A: List[Any] = _tqdm_cls() def _snake_case ( ): global _tqdm_active return bool(_tqdm_active ) def _snake_case ( ): global _tqdm_active UpperCAmelCase : Optional[Any] = True def _snake_case ( ): global _tqdm_active UpperCAmelCase : Tuple = False
109
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = '' for i in table: res += inp[i - 1] return res def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' return data[1:] + data[0] def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = '' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase__ ( __snake_case : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = int('0b' + data[0] + data[-1] , 2 ) UpperCAmelCase_ : Any = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = message[:4] UpperCAmelCase_ : Optional[int] = message[4:] UpperCAmelCase_ : Union[str, Any] = apply_table(__snake_case , __snake_case ) UpperCAmelCase_ : Union[str, Any] = xor(__snake_case , __snake_case ) UpperCAmelCase_ : Dict = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 UpperCAmelCase_ : Any = apply_sbox(__snake_case , temp[4:] ) UpperCAmelCase_ : str = '0' * (2 - len(__snake_case )) + l # noqa: E741 UpperCAmelCase_ : int = '0' * (2 - len(__snake_case )) + r UpperCAmelCase_ : int = apply_table(l + r , __snake_case ) UpperCAmelCase_ : int = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase = input('Enter 10 bit key: ') __UpperCAmelCase = input('Enter 8 bit message: ') __UpperCAmelCase = [6, 3, 7, 4, 8, 5, 10, 9] __UpperCAmelCase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __UpperCAmelCase = [2, 4, 3, 1] __UpperCAmelCase = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase = apply_table(key, paa_table) __UpperCAmelCase = temp[:5] __UpperCAmelCase = temp[5:] __UpperCAmelCase = left_shift(left) __UpperCAmelCase = left_shift(right) __UpperCAmelCase = apply_table(left + right, pa_table) __UpperCAmelCase = left_shift(left) __UpperCAmelCase = left_shift(right) __UpperCAmelCase = left_shift(left) __UpperCAmelCase = left_shift(right) __UpperCAmelCase = apply_table(left + right, pa_table) # encryption __UpperCAmelCase = apply_table(message, IP) __UpperCAmelCase = function(expansion, sa, sa, keya, temp) __UpperCAmelCase = temp[4:] + temp[:4] __UpperCAmelCase = function(expansion, sa, sa, keya, temp) __UpperCAmelCase = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption __UpperCAmelCase = apply_table(CT, IP) __UpperCAmelCase = function(expansion, sa, sa, keya, temp) __UpperCAmelCase = temp[4:] + temp[:4] __UpperCAmelCase = function(expansion, sa, sa, keya, temp) __UpperCAmelCase = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
145
0
import re def a__ ( _UpperCamelCase : str ): if len(re.findall('''[ATCG]''' ,_UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' ,'''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a_ : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
327
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase__ (_UpperCAmelCase): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _snake_case ( nn.Module ): def __init__( self , a , a) -> Union[str, Any]: super().__init__() SCREAMING_SNAKE_CASE = module SCREAMING_SNAKE_CASE = nn.Sequential( nn.Linear(module.in_features , a , bias=a) , nn.Linear(a , module.out_features , bias=a) , ) SCREAMING_SNAKE_CASE = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=a) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def SCREAMING_SNAKE_CASE__ ( self , a , *a , **a) -> Any: return self.module(a , *a , **a) + self.adapter(a) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowercase : Union[str, Any] = '''bigscience/bloom-1b7''' # Constant values _lowercase : str = 2.109_6595_5269_2574 _lowercase : Any = '''Hello my name is''' _lowercase : Any = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) _lowercase : Union[str, Any] = 10 def SCREAMING_SNAKE_CASE__ ( self) -> Any: # Models and tokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(self.model_name) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto') SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_abit.config self.assertTrue(hasattr(a , 'quantization_config')) SCREAMING_SNAKE_CASE = config.to_dict() SCREAMING_SNAKE_CASE = config.to_diff_dict() SCREAMING_SNAKE_CASE = config.to_json_string() def SCREAMING_SNAKE_CASE__ ( self) -> Any: from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE) SCREAMING_SNAKE_CASE = get_some_linear_layer(self.model_abit) self.assertTrue(linear.weight.__class__ == Paramsabit) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(a , torch.nn.Linear): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = BitsAndBytesConfig() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) def SCREAMING_SNAKE_CASE__ ( self) -> str: with self.assertRaises(a), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = BitsAndBytesConfig() with self.assertRaises(a): SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , load_in_abit=a , device_map='auto' , bnb_abit_quant_type='nf4' , ) def SCREAMING_SNAKE_CASE__ ( self) -> int: with self.assertRaises(a): # Tries with `str` self.model_abit.to('cpu') with self.assertRaises(a): # Tries with a `dtype`` self.model_abit.to(torch.floataa) with self.assertRaises(a): # Tries with a `device` self.model_abit.to(torch.device('cuda:0')) with self.assertRaises(a): # Tries with a `device` self.model_abit.float() with self.assertRaises(a): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = self.model_fpaa.to(torch.floataa) SCREAMING_SNAKE_CASE = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.to('cpu') # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.float() def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=a , device_map='auto') self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> Tuple: SCREAMING_SNAKE_CASE = 't5-small' SCREAMING_SNAKE_CASE = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(cls.model_name) SCREAMING_SNAKE_CASE = 'Translate in German: Hello, my dog is cute' def SCREAMING_SNAKE_CASE__ ( self) -> Dict: gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE = None # test with `t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) # test with `flan-t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) SCREAMING_SNAKE_CASE = modules def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit)) SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) # test with `flan-t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> str: super().setUp() # model_name SCREAMING_SNAKE_CASE = 'bigscience/bloom-560m' SCREAMING_SNAKE_CASE = 't5-small' # Different types of model SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # Sequence classification model SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=a , device_map='auto') # CausalLM model SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # Seq2seq model SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=a , device_map='auto') def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Dict: del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE = self.pipe(self.input_text) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> int: super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=a , device_map='balanced') # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1}) # Check that inference pass works on the model SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') # Second real batch SCREAMING_SNAKE_CASE = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = 'facebook/opt-350m' super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Any: if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a) self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()}) for param in model.parameters(): SCREAMING_SNAKE_CASE = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE = param.data.to(torch.floataa) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(a)): SCREAMING_SNAKE_CASE = LoRALayer(module.q_proj , rank=16) SCREAMING_SNAKE_CASE = LoRALayer(module.k_proj , rank=16) SCREAMING_SNAKE_CASE = LoRALayer(module.v_proj , rank=16) # Step 3: dummy batch SCREAMING_SNAKE_CASE = self.tokenizer('Test batch ' , return_tensors='pt').to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE = model.forward(**a) out.logits.norm().backward() for module in model.modules(): if isinstance(a , a): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(a , nn.Embedding): self.assertTrue(module.weight.grad is None) class _snake_case ( A__ ): _lowercase : str = '''gpt2-xl''' _lowercase : Union[str, Any] = 3.3191_8548_5415_2187
327
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : int = {'tokenizer_file': 'tokenizer.json'} lowercase_ : str = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : str = VOCAB_FILES_NAMES snake_case_ : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case_ : List[str] = ["input_ids", "attention_mask"] snake_case_ : List[Any] = None def __init__( self : Tuple , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Tuple=None , snake_case__ : Tuple="<unk>" , snake_case__ : List[Any]="<s>" , snake_case__ : str="</s>" , snake_case__ : Any="<pad>" , snake_case__ : Optional[Any]=False , snake_case__ : int=False , **snake_case__ : Tuple , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , add_prefix_space=snake_case__ , clean_up_tokenization_spaces=snake_case__ , **snake_case__ , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: _UpperCAmelCase = getattr(snake_case__ , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**snake_case__ ) _UpperCAmelCase = add_prefix_space def UpperCamelCase ( self : Dict , *snake_case__ : List[str] , **snake_case__ : Optional[Any] ): """simple docstring""" _UpperCAmelCase = kwargs.get("is_split_into_words" , snake_case__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[Any] , *snake_case__ : Dict , **snake_case__ : Dict ): """simple docstring""" _UpperCAmelCase = kwargs.get("is_split_into_words" , snake_case__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : "Conversation" ): """simple docstring""" _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
133
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowercase_ : str = 'scheduler_config.json' class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : List[str] = 1 snake_case_ : Tuple = 2 snake_case_ : List[Any] = 3 snake_case_ : Union[str, Any] = 4 snake_case_ : Optional[int] = 5 snake_case_ : str = 6 snake_case_ : Any = 7 snake_case_ : List[str] = 8 snake_case_ : Optional[Any] = 9 snake_case_ : Any = 10 snake_case_ : int = 11 snake_case_ : int = 12 snake_case_ : Union[str, Any] = 13 snake_case_ : int = 14 @dataclass class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : torch.FloatTensor class __lowerCAmelCase : snake_case_ : List[str] = SCHEDULER_CONFIG_NAME snake_case_ : Union[str, Any] = [] snake_case_ : str = True @classmethod def UpperCamelCase ( cls : List[str] , snake_case__ : Dict[str, Any] = None , snake_case__ : Optional[str] = None , snake_case__ : int=False , **snake_case__ : Tuple , ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = cls.load_config( pretrained_model_name_or_path=snake_case__ , subfolder=snake_case__ , return_unused_kwargs=snake_case__ , return_commit_hash=snake_case__ , **snake_case__ , ) return cls.from_config(snake_case__ , return_unused_kwargs=snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : Union[str, os.PathLike] , snake_case__ : bool = False , **snake_case__ : List[Any] ): """simple docstring""" self.save_config(save_directory=snake_case__ , push_to_hub=snake_case__ , **snake_case__ ) @property def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return self._get_compatibles() @classmethod def UpperCamelCase ( cls : str ): """simple docstring""" _UpperCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) _UpperCAmelCase = importlib.import_module(__name__.split("." )[0] ) _UpperCAmelCase = [ getattr(snake_case__ , snake_case__ ) for c in compatible_classes_str if hasattr(snake_case__ , snake_case__ ) ] return compatible_classes
133
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class _UpperCAmelCase ( lowercase_ ): """simple docstring""" def __init__( self : int , **__UpperCAmelCase : Any ): '''simple docstring''' super().__init__(**a__ ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , "vision" ) self.check_model_type(a__ ) def __call__( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] = None , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' if "text_queries" in kwargs: _A = kwargs.pop("text_queries" ) if isinstance(a__ , (str, Image.Image) ): _A = {"image": image, "candidate_labels": candidate_labels} else: _A = image _A = super().__call__(a__ , **a__ ) return results def lowerCAmelCase ( self : int , **__UpperCAmelCase : Any ): '''simple docstring''' _A = {} if "threshold" in kwargs: _A = kwargs["threshold"] if "top_k" in kwargs: _A = kwargs["top_k"] return {}, {}, postprocess_params def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = load_image(inputs["image"] ) _A = inputs["candidate_labels"] if isinstance(a__ , a__ ): _A = candidate_labels.split("," ) _A = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(a__ ): _A = self.tokenizer(a__ , return_tensors=self.framework ) _A = self.image_processor(a__ , return_tensors=self.framework ) yield { "is_last": i == len(a__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase ( self : Any , __UpperCAmelCase : int ): '''simple docstring''' _A = model_inputs.pop("target_size" ) _A = model_inputs.pop("candidate_label" ) _A = model_inputs.pop("is_last" ) _A = self.model(**a__ ) _A = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : List[Any]=None ): '''simple docstring''' _A = [] for model_output in model_outputs: _A = model_output["candidate_label"] _A = BaseModelOutput(a__ ) _A = self.image_processor.post_process_object_detection( outputs=a__ , threshold=a__ , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): _A = outputs["scores"][index].item() _A = self._get_bounding_box(outputs["boxes"][index][0] ) _A = {"score": score, "label": label, "box": box} results.append(a__ ) _A = sorted(a__ , key=lambda __UpperCAmelCase : x["score"] , reverse=a__ ) if top_k: _A = results[:top_k] return results def lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[int] ): '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) _A , _A , _A , _A = box.int().tolist() _A = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
354
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __lowercase ( __lowercase , __lowercase , __lowercase ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__lowercase , 2 ) - pow(__lowercase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__lowercase , 2 ) - pow(__lowercase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__lowercase , 2 ) + pow(__lowercase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
174
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : int = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase__ ( UpperCAmelCase__ ): _UpperCAmelCase :Any = 'speech_to_text' _UpperCAmelCase :Union[str, Any] = ['past_key_values'] _UpperCAmelCase :List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Union[str, Any] , snake_case__ : Tuple=1_0000 , snake_case__ : Union[str, Any]=12 , snake_case__ : Dict=2048 , snake_case__ : List[Any]=4 , snake_case__ : Union[str, Any]=6 , snake_case__ : Any=2048 , snake_case__ : Optional[int]=4 , snake_case__ : Any=0.0 , snake_case__ : str=0.0 , snake_case__ : Optional[int]=True , snake_case__ : int=True , snake_case__ : Dict="relu" , snake_case__ : Optional[Any]=256 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Optional[Any]=0.0 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.02 , snake_case__ : Any=2 , snake_case__ : List[Any]=True , snake_case__ : Tuple=1 , snake_case__ : Union[str, Any]=0 , snake_case__ : int=2 , snake_case__ : Dict=6000 , snake_case__ : int=1024 , snake_case__ : str=2 , snake_case__ : List[str]=(5, 5) , snake_case__ : Optional[int]=1024 , snake_case__ : Tuple=80 , snake_case__ : str=1 , **snake_case__ : int , ): lowerCamelCase_ : Any =vocab_size lowerCamelCase_ : Any =d_model lowerCamelCase_ : Dict =encoder_ffn_dim lowerCamelCase_ : Optional[Any] =encoder_layers lowerCamelCase_ : Dict =encoder_attention_heads lowerCamelCase_ : Optional[Any] =decoder_ffn_dim lowerCamelCase_ : Optional[Any] =decoder_layers lowerCamelCase_ : Optional[int] =decoder_attention_heads lowerCamelCase_ : List[Any] =dropout lowerCamelCase_ : Optional[Any] =attention_dropout lowerCamelCase_ : Optional[int] =activation_dropout lowerCamelCase_ : Optional[int] =activation_function lowerCamelCase_ : int =init_std lowerCamelCase_ : Any =encoder_layerdrop lowerCamelCase_ : List[Any] =decoder_layerdrop lowerCamelCase_ : Any =use_cache lowerCamelCase_ : int =encoder_layers lowerCamelCase_ : str =scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase_ : str =max_source_positions lowerCamelCase_ : str =max_target_positions lowerCamelCase_ : Tuple =num_conv_layers lowerCamelCase_ : Optional[Any] =list(snake_case__ ) lowerCamelCase_ : Dict =conv_channels lowerCamelCase_ : List[str] =input_feat_per_channel lowerCamelCase_ : Tuple =input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " F"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , **snake_case__ , )
144
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _UpperCAmelCase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") _UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Any =cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def __magic_name__ ( ): with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Dict =canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] =imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE_: List[Any] =canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def __magic_name__ ( ): assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def __magic_name__ ( ): # laplace diagonals SCREAMING_SNAKE_CASE_: str =array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) SCREAMING_SNAKE_CASE_: Tuple =conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def __magic_name__ ( ): assert med.median_filter(lowercase , 3 ).any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =sp.make_sepia(lowercase , 20 ) assert sepia.all() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" ): SCREAMING_SNAKE_CASE_: Dict =bs.Burkes(imread(lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" , ): SCREAMING_SNAKE_CASE_: int =rs.NearestNeighbour(imread(lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: str ="""digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE_: Tuple =imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE_: Optional[Any] =0 SCREAMING_SNAKE_CASE_: Any =0 SCREAMING_SNAKE_CASE_: List[Any] =image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE_: Optional[Any] =lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE_: Dict =np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE_: List[str] =lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
173
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = StableDiffusionSAGPipeline UpperCamelCase__ = TEXT_TO_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : List[str] ): torch.manual_seed(0 ) lowercase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase_ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowercase_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase_ : Dict = CLIPTextModel(lowercase_ ) lowercase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ : Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : List[str]=0 ): if str(lowercase_ ).startswith("""mps""" ): lowercase_ : Tuple = torch.manual_seed(lowercase_ ) else: lowercase_ : str = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase_ : Any = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : str = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) lowercase_ : Optional[int] = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : str = """.""" lowercase_ : List[Any] = torch.manual_seed(0 ) lowercase_ : int = sag_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowercase_ : Dict = output.images lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : List[str] = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Tuple = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowercase_ : Tuple = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : str = """.""" lowercase_ : Any = torch.manual_seed(0 ) lowercase_ : Optional[int] = sag_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowercase_ : str = output.images lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Any = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowercase_ : Union[str, Any] = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Optional[Any] = """.""" lowercase_ : List[str] = torch.manual_seed(0 ) lowercase_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) lowercase_ : int = output.images assert image.shape == (1, 512, 768, 3)
21
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __a :Any = logging.getLogger() def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = {} A_ = os.path.join(__UpperCamelCase ,"all_results.json" ) if os.path.exists(__UpperCamelCase ): with open(__UpperCamelCase ,"r" ) as f: A_ = json.load(__UpperCamelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results __a :Optional[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): import xla_spawn A_ = self.get_auto_remove_tmp_dir() A_ = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(UpperCAmelCase , "argv" , UpperCAmelCase ): A_ = time() xla_spawn.main() A_ = time() A_ = get_results(UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def __A ( self : Optional[int] ): import xla_spawn A_ = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(UpperCAmelCase , "argv" , UpperCAmelCase ): xla_spawn.main()
312
import functools from typing import Any def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : list[str] ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or len(__UpperCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not all( isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie A_ = {} A_ = "WORD_KEEPER" for word in words: A_ = trie for c in word: if c not in trie_node: A_ = {} A_ = trie_node[c] A_ = True A_ = len(__UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(__UpperCamelCase : int ) -> bool: if index == len_string: return True A_ = trie for i in range(__UpperCamelCase ,__UpperCamelCase ): A_ = trie_node.get(string[i] ,__UpperCamelCase ) if trie_node is None: return False if trie_node.get(__UpperCamelCase ,__UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
312
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Tuple: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = eval_examples _snake_case = post_process_function def lowerCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_=None , lowerCAmelCase_ = None , lowerCAmelCase_ = "eval" , **lowerCAmelCase_ , ) -> Dict[str, float]: _snake_case = gen_kwargs.copy() _snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) _snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) _snake_case = gen_kwargs _snake_case = self.eval_dataset if eval_dataset is None else eval_dataset _snake_case = self.get_eval_dataloader(lowerCAmelCase_ ) _snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _snake_case = self.compute_metrics _snake_case = None _snake_case = time.time() _snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case = eval_loop( lowerCAmelCase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase_ , metric_key_prefix=lowerCAmelCase_ , ) finally: _snake_case = compute_metrics _snake_case = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCAmelCase_ , lowerCAmelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _snake_case = self.post_process_function(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.compute_metrics(lowerCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _snake_case = metrics.pop(lowerCAmelCase_ ) metrics.update(output.metrics ) else: _snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCAmelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase_ ) return metrics def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_ = "test" , **lowerCAmelCase_ ) -> str: _snake_case = gen_kwargs.copy() _snake_case = self.get_test_dataloader(lowerCAmelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. _snake_case = self.compute_metrics _snake_case = None _snake_case = time.time() _snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case = eval_loop( lowerCAmelCase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase_ , metric_key_prefix=lowerCAmelCase_ , ) finally: _snake_case = compute_metrics _snake_case = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCAmelCase_ , lowerCAmelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _snake_case = self.post_process_function(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 'predict' ) _snake_case = self.compute_metrics(lowerCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _snake_case = metrics.pop(lowerCAmelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase_ )
295
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
1
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" class snake_case : '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : Optional[Any] ): '''simple docstring''' __A = metric_id class snake_case : '''simple docstring''' A_ : Union[str, Any] = [MetricMock(_lowerCAmelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if "tmp_path" in args: __A = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(__UpperCamelCase , match='''https://huggingface.co/docs/evaluate''' ): func(*__UpperCamelCase )
266
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase ( __UpperCamelCase = 1_0_0_0_0_0_0 , __UpperCamelCase = 1_0 ): """simple docstring""" __A = defaultdict(__UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F'''{solution() = }''')
266
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = RoCBertTokenizer lowerCamelCase_ = None lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = filter_non_english def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} for i, value in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__lowerCamelCase , __lowerCamelCase , ensure_ascii=__lowerCamelCase ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__lowerCamelCase , __lowerCamelCase , ensure_ascii=__lowerCamelCase ) def lowerCAmelCase_ ( self : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__lowerCamelCase , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def lowerCAmelCase_ ( self : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase_ ( self : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = RoCBertWordpieceTokenizer(vocab=__lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def lowerCAmelCase_ ( self : int ): """simple docstring""" self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def lowerCAmelCase_ ( self : str ): """simple docstring""" self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( __lowerCamelCase , return_attention_mask=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(__lowerCamelCase , "do_lower_case" ) else False _SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "Allen"), ((2_1, 2_3), "##NL"), ((2_3, 2_4), "##P"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "allen"), ((2_1, 2_3), "##nl"), ((2_3, 2_4), "##p"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["的", "人", "有"] _SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(__lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(__lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(__lowerCamelCase ) ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _SCREAMING_SNAKE_CASE = tokenizer.encode("你好" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.encode("你是谁" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _SCREAMING_SNAKE_CASE = "你好,你是谁" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_shape_ids(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_pronunciation_ids(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.prepare_for_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
111
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''efficientnet''' def __init__( self : Optional[Any] , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 6_0_0 , __lowerCamelCase : float = 2.0 , __lowerCamelCase : float = 3.1 , __lowerCamelCase : int = 8 , __lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __lowerCamelCase : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __lowerCamelCase : List[int] = [] , __lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase : float = 0.2_5 , __lowerCamelCase : str = "swish" , __lowerCamelCase : int = 2_5_6_0 , __lowerCamelCase : str = "mean" , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 0.0_0_1 , __lowerCamelCase : float = 0.9_9 , __lowerCamelCase : float = 0.5 , __lowerCamelCase : float = 0.2 , **__lowerCamelCase : Tuple , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = width_coefficient _SCREAMING_SNAKE_CASE = depth_coefficient _SCREAMING_SNAKE_CASE = depth_divisor _SCREAMING_SNAKE_CASE = kernel_sizes _SCREAMING_SNAKE_CASE = in_channels _SCREAMING_SNAKE_CASE = out_channels _SCREAMING_SNAKE_CASE = depthwise_padding _SCREAMING_SNAKE_CASE = strides _SCREAMING_SNAKE_CASE = num_block_repeats _SCREAMING_SNAKE_CASE = expand_ratios _SCREAMING_SNAKE_CASE = squeeze_expansion_ratio _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dim _SCREAMING_SNAKE_CASE = pooling_type _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = batch_norm_eps _SCREAMING_SNAKE_CASE = batch_norm_momentum _SCREAMING_SNAKE_CASE = dropout_rate _SCREAMING_SNAKE_CASE = drop_connect_rate _SCREAMING_SNAKE_CASE = sum(__lowerCamelCase ) * 4 class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return 1e-5
111
1