code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Dict = DistilBertTokenizerFast UpperCAmelCase__ : Tuple = True @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
12
0
import datasets lowercase_ = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' lowercase_ = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' lowercase_ = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self: Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def _snake_case ( self: int , a: Optional[Any] , a: Optional[Any] ): return {"accuracy": simple_accuracy(a , a )}
194
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = 0 __lowerCamelCase : Tuple = len(SCREAMING_SNAKE_CASE__ ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) <= 1: return arr, 0 __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) // 2 __lowerCamelCase : Union[str, Any] = arr[0:mid] __lowerCamelCase : List[Any] = arr[mid:] __lowerCamelCase , __lowerCamelCase : Any = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : List[str] = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Dict = _count_cross_inversions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[str] = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[int] = [] __lowerCamelCase : List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE__ ) and j < len(SCREAMING_SNAKE_CASE__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCamelCase__ ( ): __lowerCamelCase : Optional[int] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCamelCase : Optional[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCamelCase : Optional[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) # an empty list should also have zero inversions __lowerCamelCase : List[str] = [] __lowerCamelCase : Dict = count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
194
1
'''simple docstring''' import math import sys def a__ ( a__ ): """simple docstring""" if number != int(a__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 __SCREAMING_SNAKE_CASE = [-1] * (number + 1) __SCREAMING_SNAKE_CASE = 0 for i in range(1 , number + 1 ): __SCREAMING_SNAKE_CASE = sys.maxsize __SCREAMING_SNAKE_CASE = int(math.sqrt(a__ ) ) for j in range(1 , root + 1 ): __SCREAMING_SNAKE_CASE = 1 + answers[i - (j**2)] __SCREAMING_SNAKE_CASE = min(a__ , a__ ) __SCREAMING_SNAKE_CASE = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
267
'''simple docstring''' def a__ ( a__ ): """simple docstring""" if isinstance(a__ , a__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(a__ , a__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __SCREAMING_SNAKE_CASE = False if num < 0: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = -num __SCREAMING_SNAKE_CASE = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(a__ ) for e in binary ) return "0b" + "".join(str(a__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
267
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_:Tuple = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = PegasusTokenizer __lowerCamelCase : Optional[int] = PegasusTokenizerFast __lowerCamelCase : Optional[Any] = True __lowerCamelCase : List[Any] = True def _lowerCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing A : Optional[int] = PegasusTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCAmelCase ( self ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return ("This is a test", "This is a test") def _lowerCAmelCase ( self ): A : Dict = """</s>""" A : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ), lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ), lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<pad>""" ) self.assertEqual(vocab_keys[1], """</s>""" ) self.assertEqual(vocab_keys[-1], """v""" ) self.assertEqual(len(lowerCamelCase__ ), 1103 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size, 1103 ) def _lowerCAmelCase ( self ): A : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) A : Optional[Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) A : List[Any] = rust_tokenizer([raw_input_str], return_tensors=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ).input_ids[0] A : str = py_tokenizer([raw_input_str], return_tensors=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Tuple = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word A : Optional[Any] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" A : List[str] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] A : List[Any] = tokenizer([raw_input_str], return_tensors=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 A : Tuple = """To ensure a smooth flow of bank resolutions.""" A : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] A : str = tokenizer([raw_input_str], return_tensors=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowerCAmelCase ( self ): A : Dict = ["""This is going to be way too long.""" * 150, """short example"""] A : Any = ["""not super long but more than 5 tokens""", """tiny"""] A : int = self._large_tokenizer(lowerCamelCase__, padding=lowerCamelCase__, truncation=lowerCamelCase__, return_tensors="""pt""" ) A : Union[str, Any] = self._large_tokenizer( text_target=lowerCamelCase__, max_length=5, padding=lowerCamelCase__, truncation=lowerCamelCase__, return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase__ ) == 2 # input_ids, attention_mask. @slow def _lowerCAmelCase ( self ): # fmt: off A : str = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__, model_name="""google/bigbird-pegasus-large-arxiv""", revision="""ba85d0851d708441f91440d509690f1ab6353415""", ) @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = PegasusTokenizer __lowerCamelCase : int = PegasusTokenizerFast __lowerCamelCase : Optional[int] = True __lowerCamelCase : Optional[Any] = True def _lowerCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing A : Optional[Any] = PegasusTokenizer(lowerCamelCase__, offset=0, mask_token_sent=lowerCamelCase__, mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCAmelCase ( self ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return ("This is a test", "This is a test") def _lowerCAmelCase ( self ): A : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) A : Any = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) A : Any = rust_tokenizer([raw_input_str], return_tensors=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ).input_ids[0] A : Optional[Any] = py_tokenizer([raw_input_str], return_tensors=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) @require_torch def _lowerCAmelCase ( self ): A : str = ["""This is going to be way too long.""" * 1000, """short example"""] A : Dict = ["""not super long but more than 5 tokens""", """tiny"""] A : Dict = self._large_tokenizer(lowerCamelCase__, padding=lowerCamelCase__, truncation=lowerCamelCase__, return_tensors="""pt""" ) A : int = self._large_tokenizer( text_target=lowerCamelCase__, max_length=5, padding=lowerCamelCase__, truncation=lowerCamelCase__, return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase__ ) == 2 # input_ids, attention_mask. def _lowerCAmelCase ( self ): A : str = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) A : Dict = self._large_tokenizer(lowerCamelCase__ ).input_ids self.assertListEqual( lowerCamelCase__, [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1], )
369
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Union[str, Any] = """https://openaipublic.azureedge.net/jukebox/models/""" SCREAMING_SNAKE_CASE_:Optional[int] = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: A : Optional[int] = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: A : Any = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: A : str = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: A : Optional[Any] = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: A : List[str] = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: A : Tuple = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A : List[str] = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: A : Optional[int] = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: """simple docstring""" A : List[str] = {} import re A : Any = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A : str = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A : Union[str, Any] = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A : List[Any] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A : Optional[Any] = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A : List[str] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A : Optional[Any] = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) A : Tuple = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A : List[Any] = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCAmelCase ): A : Optional[Any] = re_encoder_block_conv_in.match(_lowerCAmelCase ) A : Tuple = regex_match.groups() A : str = int(groups[2] ) * 2 + int(groups[3] ) A : int = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' A : Any = re_encoder_block_conv_in.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCAmelCase ): A : Optional[int] = re_encoder_block_resnet.match(_lowerCAmelCase ) A : str = regex_match.groups() A : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) A : Any = {"""1""": 1, """3""": 2}[groups[-2]] A : int = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' A : List[str] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' A : str = prefix + resnet_block A : str = re_encoder_block_resnet.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCAmelCase ): A : List[str] = re_encoder_block_proj_out.match(_lowerCAmelCase ) A : List[Any] = regex_match.groups() A : List[Any] = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' A : Optional[int] = re_encoder_block_proj_out.sub(_lowerCAmelCase , _lowerCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCAmelCase ): A : Union[str, Any] = re_decoder_block_conv_out.match(_lowerCAmelCase ) A : Dict = regex_match.groups() A : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 A : Optional[int] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' A : int = re_decoder_block_conv_out.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCAmelCase ): A : Optional[int] = re_decoder_block_resnet.match(_lowerCAmelCase ) A : List[Any] = regex_match.groups() A : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 A : str = {"""1""": 1, """3""": 2}[groups[-2]] A : Optional[int] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' A : Union[str, Any] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' A : Tuple = prefix + resnet_block A : Tuple = re_decoder_block_resnet.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCAmelCase ): A : Optional[Any] = re_decoder_block_proj_in.match(_lowerCAmelCase ) A : Any = regex_match.groups() A : Optional[Any] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' A : Dict = re_decoder_block_proj_in.sub(_lowerCAmelCase , _lowerCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCAmelCase ): A : Optional[int] = re_prior_cond_conv_out.match(_lowerCAmelCase ) A : List[Any] = regex_match.groups() A : List[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 A : Tuple = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' A : List[str] = re_prior_cond_conv_out.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCAmelCase ): A : Any = re_prior_cond_resnet.match(_lowerCAmelCase ) A : Any = regex_match.groups() A : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 A : Optional[Any] = {"""1""": 1, """3""": 2}[groups[-2]] A : Tuple = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' A : List[str] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' A : Dict = prefix + resnet_block A : Union[str, Any] = re_prior_cond_resnet.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCAmelCase ): A : List[Any] = re_prior_cond_proj_in.match(_lowerCAmelCase ) A : Optional[int] = regex_match.groups() A : Tuple = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' A : Optional[int] = re_prior_cond_proj_in.sub(_lowerCAmelCase , _lowerCAmelCase ) # keep original key else: A : str = original_key A : List[str] = replace_key(_lowerCAmelCase ) if f'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(f'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape: A : str = model_state_dict[f'''{key_prefix}.{key}'''] print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) A : Union[str, Any] = original_key A : Union[str, Any] = original_key A : List[str] = value return new_dict @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Tuple: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): A : Optional[Any] = requests.get(f'''{PREFIX}{file}''' , allow_redirects=_lowerCAmelCase ) os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=_lowerCAmelCase ) open(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , """wb""" ).write(r.content ) A : Optional[int] = MODEL_MAPPING[model_name.split("""/""" )[-1]] A : List[Any] = JukeboxConfig.from_pretrained(_lowerCAmelCase ) A : Dict = JukeboxModel(_lowerCAmelCase ) A : str = [] A : Optional[int] = {} for i, dict_name in enumerate(_lowerCAmelCase ): A : str = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )["""model"""] A : Optional[int] = {} for k in old_dic.keys(): if k.endswith(""".b""" ): A : Dict = old_dic[k] elif k.endswith(""".w""" ): A : Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A : Union[str, Any] = old_dic[k] else: A : Optional[int] = old_dic[k] A : List[str] = """vqvae""" if i == 0 else f'''priors.{3 - i}''' A : List[Any] = fix_jukebox_keys(_lowerCAmelCase , model.state_dict() , _lowerCAmelCase , _lowerCAmelCase ) weight_dict.append(_lowerCAmelCase ) A : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) with open(f'''{pytorch_dump_folder_path}/mapping.json''' , """w""" ) as txtfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) return weight_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) SCREAMING_SNAKE_CASE_:int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
115
0
def _snake_case ( lowerCAmelCase : int = 1_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = n * (n + 1) * (2 * n + 1) / 6 SCREAMING_SNAKE_CASE_ : int = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
18
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
0
"""simple docstring""" import random def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ) -> Any: lowerCamelCase_ : str =a[left_index] lowerCamelCase_ : Union[str, Any] =left_index + 1 for j in range(left_index + 1 , lowerCamelCase__ ): if a[j] < pivot: lowerCamelCase_ , lowerCamelCase_ : List[str] =a[i], a[j] i += 1 lowerCamelCase_ , lowerCamelCase_ : List[Any] =a[i - 1], a[left_index] return i - 1 def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ) -> List[str]: if left < right: lowerCamelCase_ : Tuple =random.randint(lowerCamelCase__ , right - 1 ) lowerCamelCase_ , lowerCamelCase_ : str =( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCamelCase_ : List[Any] =partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) quick_sort_random( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCamelCase__ , pivot_index + 1 , lowerCamelCase__ ) # recursive quicksort to the right of the pivot point def _snake_case ( ) -> Optional[Any]: lowerCamelCase_ : List[str] =input("Enter numbers separated by a comma:\n" ).strip() lowerCamelCase_ : Dict =[int(lowerCamelCase__ ) for item in user_input.split("," )] quick_sort_random(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) ) print(lowerCamelCase__ ) if __name__ == "__main__": main()
209
"""simple docstring""" def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : list[int] ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if curr_ind == len(lowerCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(lowerCamelCase__ ) ): if valid_connection(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Insert current vertex into path as next transition lowerCamelCase_ : Tuple =next_ver # Validate created path if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , curr_ind + 1 ): return True # Backtrack lowerCamelCase_ : int =-1 return False def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int = 0 ) -> list[int]: lowerCamelCase_ : Optional[Any] =[-1] * (len(lowerCamelCase__ ) + 1) # initialize start and end of path with starting index lowerCamelCase_ : Optional[int] =start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , 1 ) else []
209
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """marian""" _SCREAMING_SNAKE_CASE = ["""past_key_values"""] _SCREAMING_SNAKE_CASE = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=5_8_1_0_1 , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Any=1_0_2_4 , UpperCamelCase__ : List[str]=1_2 , UpperCamelCase__ : Dict=4_0_9_6 , UpperCamelCase__ : Tuple=1_6 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : List[str]=4_0_9_6 , UpperCamelCase__ : int=1_6 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : List[Any]=1_0_2_4 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : List[str]=0.0_2 , UpperCamelCase__ : List[str]=5_8_1_0_0 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Optional[int]=5_8_1_0_0 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : int=True , **UpperCamelCase__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = decoder_vocab_size or vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : List[str] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase = {0: 'batch'} UpperCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(UpperCamelCase__ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Dict ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super().outputs else: UpperCamelCase = super(UpperCamelCase__ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(UpperCamelCase__ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def A ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs UpperCamelCase = seq_length if not self.use_past else 1 UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape UpperCamelCase = common_inputs['decoder_input_ids'].shape[1] UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = decoder_seq_length + 3 UpperCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) UpperCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase = min(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers UpperCamelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. UpperCamelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def A ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = common_inputs['attention_mask'].dtype UpperCamelCase = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) UpperCamelCase = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def A ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) UpperCamelCase = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def A ( self : Dict , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: UpperCamelCase = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def A ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: UpperCamelCase = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @property def A ( self : Dict ): """simple docstring""" return 1E-4
28
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _snake_case ( lowerCamelCase__ : Tuple ) -> List[Any]: lowerCamelCase_ : Union[str, Any] =384 if "tiny" in model_name: lowerCamelCase_ : str =[3, 3, 9, 3] lowerCamelCase_ : Union[str, Any] =[96, 192, 384, 768] if "small" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : List[str] =[96, 192, 384, 768] if "base" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : Tuple =[128, 256, 512, 1_024] lowerCamelCase_ : str =512 if "large" in model_name: lowerCamelCase_ : Optional[int] =[3, 3, 27, 3] lowerCamelCase_ : Optional[int] =[192, 384, 768, 1_536] lowerCamelCase_ : Optional[Any] =768 if "xlarge" in model_name: lowerCamelCase_ : str =[3, 3, 27, 3] lowerCamelCase_ : Optional[Any] =[256, 512, 1_024, 2_048] lowerCamelCase_ : Any =1_024 # set label information lowerCamelCase_ : Dict =150 lowerCamelCase_ : Union[str, Any] ="huggingface/label-files" lowerCamelCase_ : Optional[int] ="ade20k-id2label.json" lowerCamelCase_ : str =json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ : Dict ={int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ : Optional[Any] ={v: k for k, v in idalabel.items()} lowerCamelCase_ : Optional[int] =ConvNextConfig( depths=lowerCamelCase__ , hidden_sizes=lowerCamelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowerCamelCase_ : Any =UperNetConfig( backbone_config=lowerCamelCase__ , auxiliary_in_channels=lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , ) return config def _snake_case ( lowerCamelCase__ : str ) -> str: lowerCamelCase_ : List[str] =[] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) -> Dict: lowerCamelCase_ : List[str] =dct.pop(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =val def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] ) -> Dict: lowerCamelCase_ : Union[str, Any] ={ "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } lowerCamelCase_ : Optional[int] =model_name_to_url[model_name] lowerCamelCase_ : Optional[Any] =torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["state_dict"] lowerCamelCase_ : List[Any] =get_upernet_config(lowerCamelCase__ ) lowerCamelCase_ : Tuple =UperNetForSemanticSegmentation(lowerCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase_ : Optional[Any] =state_dict.pop(lowerCamelCase__ ) if "bn" in key: lowerCamelCase_ : str =key.replace("bn" , "batch_norm" ) lowerCamelCase_ : Union[str, Any] =val # rename keys lowerCamelCase_ : Tuple =create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify on image lowerCamelCase_ : List[str] ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowerCamelCase_ : Union[str, Any] =Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("RGB" ) lowerCamelCase_ : List[str] =SegformerImageProcessor() lowerCamelCase_ : int =processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values with torch.no_grad(): lowerCamelCase_ : Tuple =model(lowerCamelCase__ ) if model_name == "upernet-convnext-tiny": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowerCamelCase_ : Dict =torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowerCamelCase_ : Tuple =torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowerCamelCase_ : Dict =torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
144
0
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = BioGptTokenizer _lowerCamelCase : Any = False def lowercase_ ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w" ) as fp: fp.write(json.dumps(a_ ) ) with open(self.merges_file, "w" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : List[Any], a_ : Any ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = BioGptTokenizer(self.vocab_file, self.merges_file ) UpperCamelCase__ = "lower" UpperCamelCase__ = ["low", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + ["<unk>"] UpperCamelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @slow def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) UpperCamelCase__ = tokenizer.encode("sequence builders", add_special_tokens=a_ ) UpperCamelCase__ = tokenizer.encode("multi-sequence build", add_special_tokens=a_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a_, a_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
31
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase : Union[str, Any] = TypeVar("""T""") class __magic_name__ ( Generic[T] ): '''simple docstring''' def __init__( self , _a ): """simple docstring""" lowerCamelCase = data lowerCamelCase = None def __str__( self ): """simple docstring""" return f'{self.data}' class __magic_name__ ( Generic[T] ): '''simple docstring''' def __init__( self ): """simple docstring""" lowerCamelCase = None def __iter__( self ): """simple docstring""" lowerCamelCase = self.top while node: yield node.data lowerCamelCase = node.next def __str__( self ): """simple docstring""" return "->".join([str(_a ) for item in self] ) def __len__( self ): """simple docstring""" return len(tuple(iter(self ) ) ) def _lowerCAmelCase ( self ): """simple docstring""" return self.top is None def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = Node(_a ) if not self.is_empty(): lowerCamelCase = self.top lowerCamelCase = node def _lowerCAmelCase ( self ): """simple docstring""" if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , _a ) lowerCamelCase = self.top lowerCamelCase = self.top.next return pop_node.data def _lowerCAmelCase ( self ): """simple docstring""" if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = None if __name__ == "__main__": from doctest import testmod testmod()
291
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Any) -> Dict: '''simple docstring''' __UpperCamelCase : Optional[Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] __UpperCamelCase : Any = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } __UpperCamelCase : str = F'{src_lang}-{tgt_lang}' __UpperCamelCase : Tuple = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) __UpperCamelCase : Dict = os.path.join(_lowerCamelCase , "README.md") print(F'Generating {path}') with open(_lowerCamelCase , "w" , encoding="utf-8") as f: f.write(_lowerCamelCase) # make sure we are under the root of the project lowercase : List[str] = Path(__file__).resolve().parent.parent.parent lowercase : Union[str, Any] = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase , lowercase , lowercase : int = model_name.split('-') lowercase : Dict = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
232
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : List[Any] ): lowercase__ = [] lowercase__ = [] for i in range(self.num_layers ): lowercase__ = self.in_channels if i == 0 else self.out_channels lowercase__ = FlaxResnetBlockaD( in_channels=__lowercase, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(__lowercase ) lowercase__ = resnets lowercase__ = attentions if self.add_downsample: lowercase__ = FlaxDownsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self : List[Any], __lowercase : Tuple, __lowercase : Union[str, Any], __lowercase : Any, __lowercase : Tuple=True ): lowercase__ = () for resnet, attn in zip(self.resnets, self.attentions ): lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) lowercase__ = attn(__lowercase, __lowercase, deterministic=__lowercase ) output_states += (hidden_states,) if self.add_downsample: lowercase__ = self.downsamplers_a(__lowercase ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : int ): lowercase__ = [] for i in range(self.num_layers ): lowercase__ = self.in_channels if i == 0 else self.out_channels lowercase__ = FlaxResnetBlockaD( in_channels=__lowercase, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = resnets if self.add_downsample: lowercase__ = FlaxDownsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self : Optional[int], __lowercase : Any, __lowercase : int, __lowercase : int=True ): lowercase__ = () for resnet in self.resnets: lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) output_states += (hidden_states,) if self.add_downsample: lowercase__ = self.downsamplers_a(__lowercase ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : Optional[int] ): lowercase__ = [] lowercase__ = [] for i in range(self.num_layers ): lowercase__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase__ = self.prev_output_channel if i == 0 else self.out_channels lowercase__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(__lowercase ) lowercase__ = resnets lowercase__ = attentions if self.add_upsample: lowercase__ = FlaxUpsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self : List[str], __lowercase : str, __lowercase : Optional[Any], __lowercase : List[Any], __lowercase : List[str], __lowercase : Any=True ): for resnet, attn in zip(self.resnets, self.attentions ): # pop res hidden states lowercase__ = res_hidden_states_tuple[-1] lowercase__ = res_hidden_states_tuple[:-1] lowercase__ = jnp.concatenate((hidden_states, res_hidden_states), axis=-1 ) lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) lowercase__ = attn(__lowercase, __lowercase, deterministic=__lowercase ) if self.add_upsample: lowercase__ = self.upsamplers_a(__lowercase ) return hidden_states class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : str ): lowercase__ = [] for i in range(self.num_layers ): lowercase__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase__ = self.prev_output_channel if i == 0 else self.out_channels lowercase__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = resnets if self.add_upsample: lowercase__ = FlaxUpsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self : Tuple, __lowercase : Optional[Any], __lowercase : Union[str, Any], __lowercase : Optional[int], __lowercase : Any=True ): for resnet in self.resnets: # pop res hidden states lowercase__ = res_hidden_states_tuple[-1] lowercase__ = res_hidden_states_tuple[:-1] lowercase__ = jnp.concatenate((hidden_states, res_hidden_states), axis=-1 ) lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) if self.add_upsample: lowercase__ = self.upsamplers_a(__lowercase ) return hidden_states class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : List[Any] ): # there is always at least one resnet lowercase__ = [ FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) ] lowercase__ = [] for _ in range(self.num_layers ): lowercase__ = FlaxTransformeraDModel( in_channels=self.in_channels, n_heads=self.num_attention_heads, d_head=self.in_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(__lowercase ) lowercase__ = FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = resnets lowercase__ = attentions def __call__( self : Union[str, Any], __lowercase : Dict, __lowercase : List[str], __lowercase : Optional[Any], __lowercase : Union[str, Any]=True ): lowercase__ = self.resnets[0](__lowercase, __lowercase ) for attn, resnet in zip(self.attentions, self.resnets[1:] ): lowercase__ = attn(__lowercase, __lowercase, deterministic=__lowercase ) lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) return hidden_states
224
from collections import namedtuple import requests from lxml import html # type: ignore lowercase_ = namedtuple("""covid_data""", """cases deaths recovered""") def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "https://www.worldometers.info/coronavirus/" ): lowercase__ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(SCREAMING_SNAKE_CASE_ ).content ).xpath(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
224
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class snake_case : """simple docstring""" def __init__( self : Dict , __A : Tuple , ): __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 9_9 __UpperCamelCase = 0 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any , __A : Dict , __A : int , __A : Tuple , __A : Optional[int] , __A : Optional[int] , __A : Tuple , __A : List[str] , __A : Tuple , __A : Optional[int] , ): __UpperCamelCase = TFFlaubertModel(config=__A ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__A ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __A : Any , __A : str , __A : List[str] , __A : Tuple , __A : List[str] , __A : Any , __A : str , __A : Dict , __A : int , ): __UpperCamelCase = TFFlaubertWithLMHeadModel(__A ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Union[str, Any] , __A : int , __A : Tuple , __A : Dict , __A : int , __A : Tuple , __A : int , __A : Tuple , __A : Union[str, Any] , __A : Any , ): __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__A ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Dict , __A : List[str] , __A : List[Any] , __A : List[Any] , __A : Union[str, Any] , __A : str , __A : str , __A : List[str] , __A : Union[str, Any] , __A : List[Any] , ): __UpperCamelCase = TFFlaubertForSequenceClassification(__A ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : List[str] , __A : List[str] , __A : Dict , __A : Union[str, Any] , __A : List[Any] , __A : List[Any] , __A : str , __A : int , __A : int , __A : Union[str, Any] , ): __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__A ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : int , __A : Dict , __A : List[str] , __A : List[str] , __A : Optional[Any] , __A : Union[str, Any] , __A : Optional[int] , __A : List[str] , __A : Optional[Any] , __A : Dict , ): __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__A ) __UpperCamelCase = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : List[Any] =( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE_ : Optional[Any] =( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : List[str] =False SCREAMING_SNAKE_CASE_ : Optional[int] =False def _lowerCamelCase ( self : str , __A : Any , __A : int , __A : Optional[int] , __A : Tuple , __A : Optional[int] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__A , emb_dim=3_7 ) def _lowerCamelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _lowerCamelCase ( self : str ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__A ) def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__A ) @slow def _lowerCamelCase ( self : Optional[int] ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_tf @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 1_5_8, 7_3_5, 2_5_9_2, 1_4_2_4, 6_7_2_7, 8_2, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__A )[0] __UpperCamelCase = tf.TensorShape((1, 8, 5_1_2) ) self.assertEqual(output.shape , __A ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
53
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): def __init__( self : Optional[Any] , a : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): """simple docstring""" super().__init__() __lowerCamelCase = nn.ModuleList(a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : torch.FloatTensor , a : Union[torch.Tensor, float, int] , a : torch.Tensor , a : List[torch.tensor] , a : List[float] , a : Optional[torch.Tensor] = None , a : Optional[torch.Tensor] = None , a : Optional[torch.Tensor] = None , a : Optional[Dict[str, Any]] = None , a : bool = False , a : bool = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(a , a , self.nets ) ): __lowerCamelCase , __lowerCamelCase = controlnet( a , a , a , a , a , a , a , a , a , a , a , ) # merge samples if i == 0: __lowerCamelCase , __lowerCamelCase = down_samples, mid_sample else: __lowerCamelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a , a ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def SCREAMING_SNAKE_CASE__ ( self : Any , a : Union[str, os.PathLike] , a : bool = True , a : Callable = None , a : bool = False , a : Optional[str] = None , ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( a , is_main_process=a , save_function=a , safe_serialization=a , variant=a , ) idx += 1 __lowerCamelCase = model_path_to_save + f"""_{idx}""" @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , a : Optional[Union[str, os.PathLike]] , **a : Optional[Any] ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowerCamelCase = pretrained_model_path while os.path.isdir(a ): __lowerCamelCase = ControlNetModel.from_pretrained(a , **a ) controlnets.append(a ) idx += 1 __lowerCamelCase = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(a )} controlnets loaded from {pretrained_model_path}.""" ) if len(a ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(a )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(a )
67
0
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[int] = [0] * len(SCREAMING_SNAKE_CASE_ ) snake_case__ : Dict = [] snake_case__ : List[str] = [] snake_case__ : Optional[int] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) while queue: snake_case__ : int = queue.pop(0 ) cnt += 1 topo.append(SCREAMING_SNAKE_CASE_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) if cnt != len(SCREAMING_SNAKE_CASE_ ): print("""Cycle exists""" ) else: print(SCREAMING_SNAKE_CASE_ ) # Adjacency List of Graph __a = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
366
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = TextToVideoSDPipeline lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowercase = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def lowerCamelCase ( self : Dict ): torch.manual_seed(0 ) snake_case__ : str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) snake_case__ : Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) snake_case__ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) snake_case__ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) snake_case__ : List[Any] = CLIPTextModel(snake_case_ ) snake_case__ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case__ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase ( self : Tuple , snake_case_ : Any , snake_case_ : Optional[Any]=0 ): if str(snake_case_ ).startswith("""mps""" ): snake_case__ : List[Any] = torch.manual_seed(snake_case_ ) else: snake_case__ : List[str] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase ( self : List[str] ): snake_case__ : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : Dict = self.get_dummy_components() snake_case__ : Any = TextToVideoSDPipeline(**snake_case_ ) snake_case__ : Dict = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = self.get_dummy_inputs(snake_case_ ) snake_case__ : Tuple = """np""" snake_case__ : Tuple = sd_pipe(**snake_case_ ).frames snake_case__ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) snake_case__ : Any = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase ( self : int ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase ( self : Any ): pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase ( self : Union[str, Any] ): pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase ( self : Any ): pass def lowerCamelCase ( self : Dict ): return super().test_progress_bar() @slow @skip_mps class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Tuple ): snake_case__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) snake_case__ : str = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case__ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case__ : int = pipe.to("""cuda""" ) snake_case__ : str = """Spiderman is surfing""" snake_case__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case__ : Tuple = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=25 , output_type="""pt""" ).frames snake_case__ : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCamelCase ( self : Any ): snake_case__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) snake_case__ : List[str] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case__ : str = pipe.to("""cuda""" ) snake_case__ : Union[str, Any] = """Spiderman is surfing""" snake_case__ : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case__ : Optional[Any] = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type="""pt""" ).frames snake_case__ : Union[str, Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
43
0
import re def UpperCamelCase( __UpperCamelCase : str ): lowerCAmelCase_ : str = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__UpperCamelCase ,__UpperCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
103
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
186
0
def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def UpperCAmelCase ( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
124
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"text": Value("string" )} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "text" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Dict ): return { self.text_column: "text", self.label_column: "labels", }
124
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
8
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE : Any = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
1
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: if "xprophetnet" in prophetnet_checkpoint_path: _a : List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) _a , _a : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: _a : Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) _a , _a : Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) _a : Any = ['key_proj', 'value_proj', 'query_proj'] _a : Dict = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _a : Union[str, Any] = key.split('.' ) if attributes[0] == "lm_head": _a : Optional[Any] = prophet _a : str = prophet_old else: _a : List[str] = prophet.prophetnet _a : Optional[Any] = prophet_old.model _a : Optional[Any] = False for attribute in attributes: if attribute in mapping: _a : Tuple = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: _a : Tuple = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): _a : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _a : Any = old_model.weight logger.info(f"""{attribute} is initialized.""" ) _a : List[Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _a : Optional[Any] = old_model.bias logger.info(f"""{attribute} is initialized""" ) _a : List[str] = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , 'in_proj_weight' ): _a : Optional[Any] = old_model.in_proj_weight.shape[0] // 3 _a : Dict = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _a : Dict = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _a : Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _a : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _a : Optional[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _a : Optional[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _a : Union[str, Any] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _a : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _a : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _a : Optional[int] = True break if attribute.isdigit(): _a : Tuple = model[int(lowerCAmelCase_ )] _a : Dict = old_model[int(lowerCAmelCase_ )] else: _a : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": _a : Optional[Any] = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) _a : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
89
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[str] = '''vivit''' def __init__( self ,SCREAMING_SNAKE_CASE__=2_24 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=[2, 16, 16] ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu_fast" ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-06 ,SCREAMING_SNAKE_CASE__=True ,**SCREAMING_SNAKE_CASE__ ,) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :int = hidden_size __SCREAMING_SNAKE_CASE :List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE :Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE :Any = hidden_act __SCREAMING_SNAKE_CASE :Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE :str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Any = initializer_range __SCREAMING_SNAKE_CASE :Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE :Optional[int] = image_size __SCREAMING_SNAKE_CASE :List[str] = num_frames __SCREAMING_SNAKE_CASE :Any = tubelet_size __SCREAMING_SNAKE_CASE :str = num_channels __SCREAMING_SNAKE_CASE :Any = qkv_bias super().__init__(**SCREAMING_SNAKE_CASE__ )
191
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
310
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = GPTaTokenizer SCREAMING_SNAKE_CASE__ :Tuple = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :int = {"add_prefix_space": True} SCREAMING_SNAKE_CASE__ :Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCamelCase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : str = {"unk_token": "<unk>"} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any , **__a : Optional[int] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> Tuple: _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Dict = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : Optional[Any] = "lower newer" _UpperCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : Any = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : str = tokens + [tokenizer.unk_token] _UpperCamelCase : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: if not self.test_rust_tokenizer: return _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = "lower newer" # Testing tokenization _UpperCamelCase : str = tokenizer.tokenize(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _UpperCamelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _UpperCamelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token _UpperCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _UpperCamelCase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : int , **__a : List[Any] ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input _UpperCamelCase : Optional[int] = "This is a simple input" _UpperCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Dict = ("This is a simple input", "This is a pair") _UpperCamelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCamelCase : Union[str, Any] = "This is a simple input" _UpperCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] _UpperCamelCase : str = ("This is a simple input", "This is a pair") _UpperCamelCase : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCamelCase : Union[str, Any] = tokenizer.pad_token_id _UpperCamelCase : str = tokenizer(__a , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCamelCase : Tuple = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) _UpperCamelCase : str = tokenizer(*__a , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCamelCase : Optional[int] = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: _UpperCamelCase : Any = "$$$" _UpperCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) _UpperCamelCase : int = "This is a simple input" _UpperCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Union[str, Any] = tokenizer.bos_token_id _UpperCamelCase : str = tokenizer(__a ) _UpperCamelCase : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCamelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _UpperCamelCase : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _UpperCamelCase : Optional[Any] = [self.get_tokenizer(do_lower_case=__a , add_bos_token=__a )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "Encode this." _UpperCamelCase : List[str] = "This one too please." _UpperCamelCase : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) encoded_sequence += tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer.encode_plus( __a , __a , add_special_tokens=__a , return_special_tokens_mask=__a , ) _UpperCamelCase : str = encoded_sequence_dict["input_ids"] _UpperCamelCase : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__a ) , len(__a ) ) _UpperCamelCase : Union[str, Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__a ) ] _UpperCamelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__a , __a ) @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> str: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Any = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) _UpperCamelCase : str = AutoTokenizer.from_pretrained("./test_opt" ) _UpperCamelCase : Optional[Any] = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Union[str, Any] = tokenizer.encode( __a , ) # Same as above self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[str] = "bos" _UpperCamelCase : Tuple = tokenizer.get_vocab()["bos"] _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : List[Any] = tokenizer.encode( __a , ) # We changed the bos token self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _UpperCamelCase : Tuple = tokenizer.encode( __a , ) self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] )
310
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def UpperCAmelCase__ (UpperCamelCase_ ): # picklable for multiprocessing """simple docstring""" return x.sum() def UpperCAmelCase__ (UpperCamelCase_ ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class A__ : """simple docstring""" __magic_name__ = 42 __magic_name__ = 42 class A__ ( snake_case__ ): """simple docstring""" def a_ ( self ): snake_case = {} snake_case = [] snake_case = 1 snake_case = [1, 2] snake_case = {'''a''': 1, '''b''': 2} snake_case = {'''a''': [1, 2], '''b''': [3, 4]} snake_case = {'''a''': {'''1''': 1}, '''b''': 2} snake_case = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} snake_case = {} snake_case = [] snake_case = 2 snake_case = [2, 3] snake_case = {'''a''': 2, '''b''': 3} snake_case = {'''a''': [2, 3], '''b''': [4, 5]} snake_case = {'''a''': {'''1''': 2}, '''b''': 3} snake_case = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case ) , __snake_case ) snake_case = 2 self.assertEqual(map_nested(__snake_case , __snake_case , num_proc=__snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case , num_proc=__snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case , num_proc=__snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case , num_proc=__snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case , num_proc=__snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case , num_proc=__snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case , num_proc=__snake_case ) , __snake_case ) self.assertEqual(map_nested(__snake_case , __snake_case , num_proc=__snake_case ) , __snake_case ) snake_case = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} snake_case = {'''a''': 2, '''b''': 0, '''c''': 2} snake_case = { '''a''': np.eye(2 ).astype(__snake_case ), '''b''': np.zeros(3 ).astype(__snake_case ), '''c''': np.ones(2 ).astype(__snake_case ), } self.assertEqual(map_nested(__snake_case , __snake_case , map_numpy=__snake_case ) , __snake_case ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__snake_case , __snake_case , map_numpy=__snake_case ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__snake_case , __snake_case , map_numpy=__snake_case , num_proc=__snake_case ) , __snake_case ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__snake_case , __snake_case , map_numpy=__snake_case , num_proc=__snake_case ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__snake_case ): # can't pickle a local lambda map_nested(lambda __snake_case : x + 1 , __snake_case , num_proc=__snake_case ) def a_ ( self ): snake_case = {'''a''': 1, '''b''': 2} snake_case = {'''a''': 3, '''b''': 4} snake_case = {'''a''': 5, '''b''': 6} snake_case = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__snake_case , __snake_case , __snake_case ) ) , __snake_case ) def a_ ( self ): class A__ : """simple docstring""" __magic_name__ = 'bar' snake_case = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(__snake_case , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: snake_case = {F'''{i}''': i for i in range(A__ )} snake_case = map_nested(lambda UpperCamelCase_ : x + 10 ,A__ ,num_proc=A__ ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A__ ( snake_case__ ): """simple docstring""" @require_tf def a_ ( self ): import tensorflow as tf from tensorflow.keras import layers snake_case = layers.Dense(2 ) def gen_random_output(): snake_case = tf.random.uniform((1, 3) ) return model(__snake_case ).numpy() with temp_seed(4_2 , set_tensorflow=__snake_case ): snake_case = gen_random_output() with temp_seed(4_2 , set_tensorflow=__snake_case ): snake_case = gen_random_output() snake_case = gen_random_output() np.testing.assert_equal(__snake_case , __snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def a_ ( self ): import torch def gen_random_output(): snake_case = torch.nn.Linear(3 , 2 ) snake_case = torch.rand(1 , 3 ) return model(__snake_case ).detach().numpy() with temp_seed(4_2 , set_pytorch=__snake_case ): snake_case = gen_random_output() with temp_seed(4_2 , set_pytorch=__snake_case ): snake_case = gen_random_output() snake_case = gen_random_output() np.testing.assert_equal(__snake_case , __snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def a_ ( self ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): snake_case = gen_random_output() with temp_seed(4_2 ): snake_case = gen_random_output() snake_case = gen_random_output() np.testing.assert_equal(__snake_case , __snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''' ,[{}] ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = NestedDataStructure(A__ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' ,[ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] ,) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = NestedDataStructure(A__ ).flatten() assert output == expected_output def UpperCAmelCase__ (): """simple docstring""" snake_case = A(x=1 ,y='''foobar''' ) snake_case = {'''x''': 1, '''y''': '''foobar'''} assert asdict(A__ ) == expected_output snake_case = {'''a''': {'''b''': A(x=10 ,y='''foo''' )}, '''c''': [A(x=20 ,y='''bar''' )]} snake_case = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(A__ ) == expected_output with pytest.raises(A__ ): asdict([1, A(x=10 ,y='''foo''' )] ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" return text.split() def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def UpperCAmelCase__ (): """simple docstring""" with Pool(2 ) as pool: snake_case = list(iflatmap_unordered(A__ ,_split_text ,kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(A__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: snake_case = list(iflatmap_unordered(A__ ,_split_text ,kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(A__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: snake_case = [] for yield_time, content in iflatmap_unordered( A__ ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(A__ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(A__ ) == 4
127
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def a ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ) -> Optional[int]: """simple docstring""" _lowercase =AutoTokenizer.from_pretrained(A__ ) _lowercase =load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _lowercase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase =datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(A__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowercase =DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) _lowercase =DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def a ( A__ : Optional[Any] , A__ : Optional[int] , A__ : List[str] , A__ : Dict ) -> Dict: """simple docstring""" model.eval() _lowercase =0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase =model(**A__ ) _lowercase =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowercase , _lowercase =accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: _lowercase =predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowercase =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) _lowercase =metric.compute() return eval_metric["accuracy"] def a ( A__ : str , A__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _lowercase =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase =config['lr'] _lowercase =int(config['num_epochs'] ) _lowercase =int(config['seed'] ) _lowercase =int(config['batch_size'] ) _lowercase =args.model_name_or_path set_seed(A__ ) _lowercase , _lowercase =get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase =AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer _lowercase =( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase =optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: _lowercase =accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowercase =1 _lowercase =(len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase =get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: _lowercase =DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over _lowercase =0 # We also need to keep track of the stating epoch so files are named properly _lowercase =0 _lowercase =evaluate.load('glue' , 'mrpc' ) _lowercase =num_epochs if args.partial_train_epoch is not None: _lowercase =args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowercase =args.resume_from_checkpoint.split('epoch_' )[1] _lowercase ='' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowercase =int(A__ ) + 1 _lowercase =evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print('resumed checkpoint performance:' , A__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: _lowercase =json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowercase ={} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): _lowercase =model(**A__ ) _lowercase =outputs.loss _lowercase =loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowercase =F'''epoch_{epoch}''' _lowercase =os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) _lowercase =evaluation_loop(A__ , A__ , A__ , A__ ) _lowercase =accuracy _lowercase =lr_scheduler.get_lr()[0] _lowercase =optimizer.param_groups[0]['lr'] _lowercase =epoch _lowercase =overall_step accelerator.print(F'''epoch {epoch}:''' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(A__ , A__ ) def a ( ) -> Tuple: """simple docstring""" _lowercase =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , ) parser.add_argument( '--output_dir' , type=A__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=A__ , default=A__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=A__ , default=A__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=A__ , default=2 , help='Number of train epochs.' , ) _lowercase =parser.parse_args() _lowercase ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
205
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @property def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.dummy_uncond_unet UpperCamelCase = PNDMScheduler() UpperCamelCase = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pndm(generator=A_ , num_inference_steps=20 , output_type='numpy' ).images UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pndm(generator=A_ , num_inference_steps=20 , output_type='numpy' , return_dict=A_ )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = 'google/ddpm-cifar10-32' UpperCamelCase = UNetaDModel.from_pretrained(A_ ) UpperCamelCase = PNDMScheduler() UpperCamelCase = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pndm(generator=A_ , output_type='numpy' ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
251
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : int = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """timesformer""" def __init__( self , A_=224 , A_=16 , A_=3 , A_=8 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-6 , A_=True , A_="divided_space_time" , A_=0 , **A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = num_frames UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = qkv_bias UpperCamelCase = attention_type UpperCamelCase = drop_path_rate
251
1
"""simple docstring""" def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 for i in range(1 , 10_01 ): total += i**i return str(_lowercase )[-10:] if __name__ == "__main__": print(solution())
165
'''simple docstring''' from PIL import Image def __lowerCamelCase ( _lowercase , _lowercase ) -> Image: def brightness(_lowercase ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowercase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 a : Optional[Any] = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
265
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : torch.FloatTensor class __A ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=("DownEncoderBlock2D",) , UpperCAmelCase_ : Optional[int]=(64,) , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : int="silu" , UpperCAmelCase_ : Union[str, Any]=True , ): super().__init__() lowerCAmelCase : List[str] = layers_per_block lowerCAmelCase : Dict = torch.nn.Convad( UpperCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Any = nn.ModuleList([] ) # down lowerCAmelCase : List[Any] = block_out_channels[0] for i, down_block_type in enumerate(UpperCAmelCase_ ): lowerCAmelCase : List[str] = output_channel lowerCAmelCase : int = block_out_channels[i] lowerCAmelCase : str = i == len(UpperCAmelCase_ ) - 1 lowerCAmelCase : Any = get_down_block( UpperCAmelCase_ , num_layers=self.layers_per_block , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) self.down_blocks.append(UpperCAmelCase_ ) # mid lowerCAmelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # out lowerCAmelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCAmelCase_ , eps=1E-6 ) lowerCAmelCase : Any = nn.SiLU() lowerCAmelCase : List[Any] = 2 * out_channels if double_z else out_channels lowerCAmelCase : Optional[int] = nn.Convad(block_out_channels[-1] , UpperCAmelCase_ , 3 , padding=1 ) lowerCAmelCase : Union[str, Any] = False def lowercase__ ( self : List[str] , UpperCAmelCase_ : int ): lowerCAmelCase : Any = x lowerCAmelCase : Dict = self.conv_in(UpperCAmelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ : List[Any] ): def custom_forward(*UpperCAmelCase_ : List[Any] ): return module(*UpperCAmelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: lowerCAmelCase : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) # middle lowerCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) else: for down_block in self.down_blocks: lowerCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ ) # middle lowerCAmelCase : Optional[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCAmelCase_ ) else: # down for down_block in self.down_blocks: lowerCAmelCase : str = down_block(UpperCAmelCase_ ) # middle lowerCAmelCase : Tuple = self.mid_block(UpperCAmelCase_ ) # post-process lowerCAmelCase : int = self.conv_norm_out(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.conv_act(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.conv_out(UpperCAmelCase_ ) return sample class __A ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : str=("UpDecoderBlock2D",) , UpperCAmelCase_ : Any=(64,) , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Optional[int]="silu" , UpperCAmelCase_ : Dict="group" , ): super().__init__() lowerCAmelCase : Tuple = layers_per_block lowerCAmelCase : str = nn.Convad( UpperCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase : str = None lowerCAmelCase : Dict = nn.ModuleList([] ) lowerCAmelCase : Optional[int] = in_channels if norm_type == 'spatial' else None # mid lowerCAmelCase : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # up lowerCAmelCase : Any = list(reversed(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = output_channel lowerCAmelCase : Dict = reversed_block_out_channels[i] lowerCAmelCase : Any = i == len(UpperCAmelCase_ ) - 1 lowerCAmelCase : Tuple = get_up_block( UpperCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , prev_output_channel=UpperCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , resnet_time_scale_shift=UpperCAmelCase_ , ) self.up_blocks.append(UpperCAmelCase_ ) lowerCAmelCase : List[str] = output_channel # out if norm_type == "spatial": lowerCAmelCase : str = SpatialNorm(block_out_channels[0] , UpperCAmelCase_ ) else: lowerCAmelCase : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCAmelCase_ , eps=1E-6 ) lowerCAmelCase : int = nn.SiLU() lowerCAmelCase : str = nn.Convad(block_out_channels[0] , UpperCAmelCase_ , 3 , padding=1 ) lowerCAmelCase : Union[str, Any] = False def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=None ): lowerCAmelCase : Any = z lowerCAmelCase : str = self.conv_in(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ : Optional[Any] ): def custom_forward(*UpperCAmelCase_ : Union[str, Any] ): return module(*UpperCAmelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle lowerCAmelCase : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) lowerCAmelCase : Dict = sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: lowerCAmelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) else: # middle lowerCAmelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: lowerCAmelCase : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) else: # middle lowerCAmelCase : str = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : int = sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: lowerCAmelCase : int = up_block(UpperCAmelCase_ , UpperCAmelCase_ ) # post-process if latent_embeds is None: lowerCAmelCase : Dict = self.conv_norm_out(UpperCAmelCase_ ) else: lowerCAmelCase : str = self.conv_norm_out(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = self.conv_act(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = self.conv_out(UpperCAmelCase_ ) return sample class __A ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict="random" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=True ): super().__init__() lowerCAmelCase : Dict = n_e lowerCAmelCase : Optional[int] = vq_embed_dim lowerCAmelCase : Optional[Any] = beta lowerCAmelCase : List[Any] = legacy lowerCAmelCase : Union[str, Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCAmelCase : Optional[Any] = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) lowerCAmelCase : Any = self.used.shape[0] lowerCAmelCase : Union[str, Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCAmelCase : List[Any] = self.re_embed lowerCAmelCase : int = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: lowerCAmelCase : Any = n_e lowerCAmelCase : str = sane_index_shape def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = inds.shape assert len(UpperCAmelCase_ ) > 1 lowerCAmelCase : Optional[int] = inds.reshape(ishape[0] , -1 ) lowerCAmelCase : Optional[Any] = self.used.to(UpperCAmelCase_ ) lowerCAmelCase : Any = (inds[:, :, None] == used[None, None, ...]).long() lowerCAmelCase : int = match.argmax(-1 ) lowerCAmelCase : List[Any] = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCAmelCase : Optional[Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCAmelCase : List[str] = self.unknown_index return new.reshape(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Tuple = inds.shape assert len(UpperCAmelCase_ ) > 1 lowerCAmelCase : Dict = inds.reshape(ishape[0] , -1 ) lowerCAmelCase : Optional[int] = self.used.to(UpperCAmelCase_ ) if self.re_embed > self.used.shape[0]: # extra token lowerCAmelCase : List[Any] = 0 # simply set to zero lowerCAmelCase : List[str] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCAmelCase_ ) return back.reshape(UpperCAmelCase_ ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] ): # reshape z -> (batch, height, width, channel) and flatten lowerCAmelCase : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCAmelCase : Tuple = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCAmelCase : List[str] = torch.argmin(torch.cdist(UpperCAmelCase_ , self.embedding.weight ) , dim=1 ) lowerCAmelCase : str = self.embedding(UpperCAmelCase_ ).view(z.shape ) lowerCAmelCase : Dict = None lowerCAmelCase : Optional[Any] = None # compute loss for embedding if not self.legacy: lowerCAmelCase : int = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCAmelCase : Optional[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCAmelCase : Dict = z + (z_q - z).detach() # reshape back to match original input shape lowerCAmelCase : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCAmelCase : Any = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCAmelCase : Optional[Any] = self.remap_to_used(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCAmelCase : Optional[Any] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase__ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int ): # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCAmelCase : Union[str, Any] = indices.reshape(shape[0] , -1 ) # add batch axis lowerCAmelCase : Tuple = self.unmap_to_all(UpperCAmelCase_ ) lowerCAmelCase : Tuple = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCAmelCase : Any = self.embedding(UpperCAmelCase_ ) if shape is not None: lowerCAmelCase : Optional[Any] = z_q.view(UpperCAmelCase_ ) # reshape back to match original input shape lowerCAmelCase : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]=False ): lowerCAmelCase : Tuple = parameters lowerCAmelCase , lowerCAmelCase : Union[str, Any] = torch.chunk(UpperCAmelCase_ , 2 , dim=1 ) lowerCAmelCase : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) lowerCAmelCase : str = deterministic lowerCAmelCase : Union[str, Any] = torch.exp(0.5 * self.logvar ) lowerCAmelCase : Any = torch.exp(self.logvar ) if self.deterministic: lowerCAmelCase : Any = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase__ ( self : int , UpperCAmelCase_ : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype lowerCAmelCase : Dict = randn_tensor( self.mean.shape , generator=UpperCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCAmelCase : Any = self.mean + self.std * sample return x def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) lowerCAmelCase : int = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): return self.mean
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowercase ( __snake_case : str ): def decorator(__snake_case : int ): lowercase_ : int = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def lowercase ( *__snake_case : List[str] ): def decorator(__snake_case : Dict ): lowercase_ : int = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class _UpperCAmelCase ( _A ): def __new__( cls : List[str] , A : Tuple , A : str , A : Union[str, Any] ) -> str: lowercase_ : Optional[Any] = super().__new__(cls , A , A , A ) if not hasattr(A , '''key_handler''' ): setattr(A , '''key_handler''' , {} ) setattr(A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): lowercase_ : Dict = getattr(A , '''handle_key''' , [] ) for key in handled_keys: lowercase_ : int = value return new_cls @staticmethod def A ( cls : Tuple ) -> Optional[Any]: lowercase_ : Dict = get_character() if char != KEYMAP["undefined"]: lowercase_ : str = ord(A ) lowercase_ : Any = cls.key_handler.get(A ) if handler: lowercase_ : Optional[int] = char return handler(cls ) else: return None def lowercase ( cls : List[str] ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
33
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _UpperCAmelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self : Any , A : int=None , **A : str ) -> Union[str, Any]: super().__init__(features=A ) lowercase_ : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def A ( self : Dict , A : int ) -> List[Any]: import torch if isinstance(A , A ) and column: if all( isinstance(A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(A ) return column def A ( self : int , A : Any ) -> Optional[Any]: import torch if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase_ : Any = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowercase_ : Any = {'''dtype''': torch.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase_ : Dict = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): lowercase_ : Dict = np.asarray(A ) return torch.tensor(A , **{**default_dtype, **self.torch_tensor_kwargs} ) def A ( self : Union[str, Any] , A : Optional[int] ) -> str: import torch # support for torch, tf, jax etc. if hasattr(A , '''__array__''' ) and not isinstance(A , torch.Tensor ): lowercase_ : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def A ( self : Dict , A : dict ) -> Tuple: return map_nested(self._recursive_tensorize , A , map_list=A ) def A ( self : str , A : pa.Table ) -> Mapping: lowercase_ : Optional[Any] = self.numpy_arrow_extractor().extract_row(A ) lowercase_ : str = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def A ( self : List[Any] , A : pa.Table ) -> "torch.Tensor": lowercase_ : List[str] = self.numpy_arrow_extractor().extract_column(A ) lowercase_ : str = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) lowercase_ : Optional[int] = self.recursive_tensorize(A ) lowercase_ : Any = self._consolidate(A ) return column def A ( self : List[str] , A : pa.Table ) -> Mapping: lowercase_ : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) lowercase_ : int = self.python_features_decoder.decode_batch(A ) lowercase_ : Dict = self.recursive_tensorize(A ) for column_name in batch: lowercase_ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
33
1
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) __a : Dict = eval_examples __a : Any = post_process_function def _lowerCamelCase ( self , _UpperCAmelCase = None , _UpperCAmelCase=None , _UpperCAmelCase = None , _UpperCAmelCase = "eval" , **_UpperCAmelCase , ): __a : Dict = gen_kwargs.copy() __a : List[str] = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) __a : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) __a : str = gen_kwargs __a : Any = self.eval_dataset if eval_dataset is None else eval_dataset __a : List[str] = self.get_eval_dataloader(__UpperCAmelCase ) __a : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __a : Optional[Any] = self.compute_metrics __a : Optional[Any] = None __a : List[str] = time.time() __a : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a : Tuple = eval_loop( __UpperCAmelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: __a : List[str] = compute_metrics __a : str = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __a : Optional[int] = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __a : Tuple = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __a : str = metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) else: __a : Any = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __a : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , __UpperCAmelCase ) return metrics def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase = "test" , **_UpperCAmelCase ): __a : Dict = gen_kwargs.copy() __a : Dict = self.get_test_dataloader(__UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. __a : int = self.compute_metrics __a : str = None __a : Optional[int] = time.time() __a : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a : Any = eval_loop( __UpperCAmelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: __a : Union[str, Any] = compute_metrics __a : int = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __a : List[str] = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , '''predict''' ) __a : int = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __a : List[str] = metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__UpperCAmelCase )
354
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets A = datasets.logging.get_logger(__name__) A = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' A = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' A = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def _lowerCamelCase ( self , _UpperCAmelCase ): if self.config_name == "default": __a : List[str] = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: __a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False ): if gpus is None: __a : str = 1 if torch.cuda.is_available() else 0 __a : Optional[Any] = {'''src''': sources, '''mt''': predictions, '''ref''': references} __a : Dict = [dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) for t in zip(*data.values() )] __a , __a : int = self.scorer.predict(_UpperCAmelCase , gpus=_UpperCAmelCase , progress_bar=_UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
188
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = int(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=3_0_0 ): # docstyle-ignore return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: SCREAMING_SNAKE_CASE_ = F'''{elt:.6f}''' if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(__UpperCamelCase ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 5 lowerCamelCase__ = 0.2 def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[str] = None , __magic_name__ : bool = True , __magic_name__ : Optional["NotebookTrainingTracker"] = None , __magic_name__ : int = 300 , ) -> int: SCREAMING_SNAKE_CASE_ = total SCREAMING_SNAKE_CASE_ = "" if prefix is None else prefix SCREAMING_SNAKE_CASE_ = leave SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = width SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None def __A ( self : List[Any] , __magic_name__ : int , __magic_name__ : bool = False , __magic_name__ : str = None ) -> Dict: SCREAMING_SNAKE_CASE_ = value if comment is not None: SCREAMING_SNAKE_CASE_ = comment if self.last_value is None: SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.warmup SCREAMING_SNAKE_CASE_ = 1 self.update_bar(__magic_name__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: SCREAMING_SNAKE_CASE_ = self.elapsed_time / (value - self.start_value) else: SCREAMING_SNAKE_CASE_ = None if value >= self.total: SCREAMING_SNAKE_CASE_ = self.total SCREAMING_SNAKE_CASE_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: SCREAMING_SNAKE_CASE_ = self.average_time_per_item * (self.total - value) self.update_bar(__magic_name__ ) SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = current_time if self.average_time_per_item is None: SCREAMING_SNAKE_CASE_ = 1 else: SCREAMING_SNAKE_CASE_ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __A ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Any=None ) -> List[Any]: SCREAMING_SNAKE_CASE_ = " " * (len(str(self.total ) ) - len(str(__magic_name__ ) )) + str(__magic_name__ ) if self.elapsed_time is None: SCREAMING_SNAKE_CASE_ = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: SCREAMING_SNAKE_CASE_ = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: SCREAMING_SNAKE_CASE_ = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def __A ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: SCREAMING_SNAKE_CASE_ = disp.display(disp.HTML(self.html_code ) , display_id=__magic_name__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self : int ) -> List[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=None ) -> List[Any]: super().__init__(__magic_name__ ) SCREAMING_SNAKE_CASE_ = None if column_names is None else [column_names] SCREAMING_SNAKE_CASE_ = None def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: SCREAMING_SNAKE_CASE_ = disp.display(disp.HTML(self.html_code ) , display_id=__magic_name__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self : Dict , __magic_name__ : Dict ) -> List[Any]: if self.inner_table is None: SCREAMING_SNAKE_CASE_ = [list(values.keys() ), list(values.values() )] else: SCREAMING_SNAKE_CASE_ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__magic_name__ ) SCREAMING_SNAKE_CASE_ = columns self.inner_table.append([values[c] for c in columns] ) def __A ( self : Any , __magic_name__ : List[str] , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=300 ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = NotebookProgressBar(__magic_name__ , prefix=__magic_name__ , parent=self , width=__magic_name__ ) return self.child_bar def __A ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = None self.display() class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False def __A ( self : Optional[int] , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Tuple , **__magic_name__ : Tuple ) -> str: SCREAMING_SNAKE_CASE_ = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) SCREAMING_SNAKE_CASE_ = NotebookTrainingTracker(state.max_steps , __magic_name__ ) def __A ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Any , **__magic_name__ : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) SCREAMING_SNAKE_CASE_ = False def __A ( self : List[str] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Union[str, Any]=None , **__magic_name__ : Any ) -> Union[str, Any]: if not has_length(__magic_name__ ): return if self.prediction_bar is None: if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ = self.training_tracker.add_child(len(__magic_name__ ) ) else: SCREAMING_SNAKE_CASE_ = NotebookProgressBar(len(__magic_name__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __A ( self : str , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , **__magic_name__ : Any ) -> Optional[Any]: if self.prediction_bar is not None: self.prediction_bar.close() SCREAMING_SNAKE_CASE_ = None def __A ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=None , **__magic_name__ : Optional[int] ) -> Tuple: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: SCREAMING_SNAKE_CASE_ = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy SCREAMING_SNAKE_CASE_ = state.global_step self.training_tracker.write_line(__magic_name__ ) def __A ( self : Dict , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Optional[Any]=None , **__magic_name__ : Dict ) -> List[str]: if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: SCREAMING_SNAKE_CASE_ = log["loss"] break if self.first_column == "Epoch": SCREAMING_SNAKE_CASE_ = int(state.epoch ) else: SCREAMING_SNAKE_CASE_ = state.global_step SCREAMING_SNAKE_CASE_ = "eval" for k in metrics: if k.endswith("_loss" ): SCREAMING_SNAKE_CASE_ = re.sub(r"\_loss$" , "" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = metrics.pop("total_flos" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = metrics.pop("epoch" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_runtime''' , __magic_name__ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , __magic_name__ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , __magic_name__ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , __magic_name__ ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': SCREAMING_SNAKE_CASE_ = v else: SCREAMING_SNAKE_CASE_ = k.split("_" ) SCREAMING_SNAKE_CASE_ = " ".join([part.capitalize() for part in splits[1:]] ) SCREAMING_SNAKE_CASE_ = v self.training_tracker.write_line(__magic_name__ ) self.training_tracker.remove_child() SCREAMING_SNAKE_CASE_ = None # Evaluation takes a long time so we should force the next update. SCREAMING_SNAKE_CASE_ = True def __A ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , **__magic_name__ : List[Any] ) -> Dict: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=__magic_name__ ) SCREAMING_SNAKE_CASE_ = None
118
import math from datetime import datetime, timedelta def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = year % 1_9 SCREAMING_SNAKE_CASE_ = year % 4 SCREAMING_SNAKE_CASE_ = year % 7 SCREAMING_SNAKE_CASE_ = math.floor(year / 1_0_0 ) SCREAMING_SNAKE_CASE_ = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) SCREAMING_SNAKE_CASE_ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE_ = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 SCREAMING_SNAKE_CASE_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE_ = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_8 ) else: return datetime(__UpperCamelCase , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): A : Dict = "will be" if year > datetime.now().year else "was" print(f"Easter in {year} {tense} {gauss_easter(year)}")
118
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) _UpperCAmelCase : int = precision _UpperCAmelCase : List[Any] = ceil(precision / 14 ) _UpperCAmelCase : Optional[int] = 426880 * Decimal(10005 ).sqrt() _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Union[str, Any] = 13591409 _UpperCAmelCase : List[Any] = Decimal(lowerCAmelCase_ ) for k in range(1 , lowerCAmelCase_ ): _UpperCAmelCase : str = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase_ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": A_ : Tuple = 5_0 print(f"""The first {n} digits of pi is: {pi(n)}""")
349
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= BigBirdConfig.from_json_file(lowercase__ ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: __lowercase= BigBirdForQuestionAnswering(lowercase__ ) else: __lowercase= BigBirdForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowercase__ , lowercase__ , is_trivia_qa=lowercase__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
295
import os import numpy import onnx def _lowerCamelCase( lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= a.name __lowercase= b.name __lowercase= '' __lowercase= '' __lowercase= a == b __lowercase= name_a __lowercase= name_b return res def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase__ , lowercase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) _graph_replace_input_with(node_proto.attribute[1].g , lowercase__ , lowercase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(lowercase__ , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= list(model.graph.initializer ) __lowercase= list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __lowercase= inits[i].name __lowercase= inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= os.path.dirname(lowercase__ ) __lowercase= os.path.basename(lowercase__ ) __lowercase= onnx.load(os.path.join(lowercase__ , lowercase__ ) ) __lowercase= list(model.graph.initializer ) __lowercase= set() __lowercase= {} __lowercase= [] __lowercase= 0 for i in range(len(lowercase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowercase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowercase__ ) dup_set.add(lowercase__ ) __lowercase= inits[j].data_type __lowercase= numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , lowercase__ ) total_reduced_size += mem_size __lowercase= inits[i].name __lowercase= inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase__ ) else: __lowercase= [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) __lowercase= sorted(lowercase__ ) _remove_dup_initializers_from_model(lowercase__ , lowercase__ , lowercase__ ) __lowercase= 'optimized_' + model_file_name __lowercase= os.path.join(lowercase__ , lowercase__ ) onnx.save(lowercase__ , lowercase__ ) return new_model
295
1
def __lowercase ( _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(_SCREAMING_SNAKE_CASE , digit + 1 ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
352
from __future__ import annotations import math def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = str(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [n] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if len(str(_SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(_SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(_SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def __lowercase ( _SCREAMING_SNAKE_CASE = 11 ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 13 while len(_SCREAMING_SNAKE_CASE ) != count: if validate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = list_truncated_nums(_SCREAMING_SNAKE_CASE ) if all(is_prime(_SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(_SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def __lowercase ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(1_1)) = }''')
193
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase__ = """pt""" elif is_tf_available(): lowerCAmelCase__ = """tf""" else: lowerCAmelCase__ = """jax""" class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = PerceiverTokenizer __lowerCamelCase = False def UpperCamelCase ( self ) -> Any: '''simple docstring''' super().setUp() A__ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase ( self ) -> Any: '''simple docstring''' return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def UpperCamelCase ( self , **lowercase ) -> PerceiverTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase=False , lowercase=20 , lowercase=5 ) -> Tuple[str, list]: '''simple docstring''' A__ = [] for i in range(len(lowercase ) ): try: A__ = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) A__ = list(filter(lambda lowercase : re.match(R"^[ a-zA-Z]+$" , t[1] ) , lowercase ) ) A__ = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: A__ = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: A__ = toks + toks # toks_str = [t[1] for t in toks] A__ = [t[0] for t in toks] # Ensure consistency A__ = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: A__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: A__ = " " + output_txt A__ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.perceiver_tokenizer A__ = "Unicode €." A__ = tokenizer(lowercase ) A__ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , lowercase ) # decoding A__ = tokenizer.decode(lowercase ) self.assertEqual(lowercase , "[CLS]Unicode €.[SEP]" ) A__ = tokenizer("e è é ê ë" ) A__ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , lowercase ) # decoding A__ = tokenizer.decode(lowercase ) self.assertEqual(lowercase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.perceiver_tokenizer A__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off A__ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on A__ = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": A__ = list(batch.input_ids.numpy()[0] ) else: A__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.perceiver_tokenizer A__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] A__ = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , lowercase ) self.assertIn("attention_mask" , lowercase ) self.assertNotIn("decoder_input_ids" , lowercase ) self.assertNotIn("decoder_attention_mask" , lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.perceiver_tokenizer A__ = [ "Summary of the text.", "Another summary.", ] A__ = tokenizer( text_target=lowercase , max_length=32 , padding="max_length" , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = " He is very happy, UNwant\u00E9d,running" A__ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) A__ = tokenizer.__class__.from_pretrained(lowercase ) A__ = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) A__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) A__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) A__ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) A__ = tokenizer.__class__.from_pretrained(lowercase ) A__ = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) A__ = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: A__ = json.load(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: A__ = json.load(lowercase ) A__ = [F'<extra_id_{i}>' for i in range(125 )] A__ = added_tokens_extra_ids + [ "an_additional_special_token" ] A__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(lowercase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A__ = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=lowercase )] A__ = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCamelCase ( self ) -> int: '''simple docstring''' pass def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A__ = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] A__ = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
68
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _UpperCAmelCase : ClassVar[Features] = Features({"""audio""": Audio()}) _UpperCAmelCase : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def UpperCamelCase__ ( self , __magic_name__ ): if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , __magic_name__ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) lowerCamelCase : Optional[Any] = copy.deepcopy(self ) lowerCamelCase : List[Any] = self.input_schema.copy() lowerCamelCase : Tuple = features[self.audio_column] lowerCamelCase : int = input_schema return task_template @property def UpperCamelCase__ ( self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
287
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = torch.nn.Linear(2 , 4 ) __lowerCamelCase = torch.optim.AdamW(model.parameters() , lr=1.0 ) __lowerCamelCase = torch.optim.lr_scheduler.OneCycleLR(A__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __lowerCamelCase = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __lowerCamelCase = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A__ ) class lowerCamelCase__( __lowerCamelCase): @require_cuda def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = Accelerator(cpu=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase = GradientState() assert state.num_steps == 1 __lowerCamelCase = 4 assert state.num_steps == 4 assert state.sync_gradients is True __lowerCamelCase = False assert state.sync_gradients is False GradientState._reset_state() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def lowerCAmelCase__ ( self: Optional[Any] ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*UpperCamelCase_: List[Any] , **UpperCamelCase_: int ): pass with patch("""torch.cuda.set_device""" , UpperCamelCase_ ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): __lowerCamelCase = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = get_signature(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase_ ) # make sure random weights don't match load_random_weights(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) < 1E-3 ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = get_signature(UpperCamelCase_ ) # saving hook def save_config(UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] ): __lowerCamelCase = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(UpperCamelCase_ , """data.json""" ) , """w""" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # loading hook def load_config(UpperCamelCase_: Dict , UpperCamelCase_: List[Any] ): with open(os.path.join(UpperCamelCase_ , """data.json""" ) , """r""" ) as f: __lowerCamelCase = json.load(UpperCamelCase_ ) __lowerCamelCase = config["""class_name"""] __lowerCamelCase = accelerator.register_save_state_pre_hook(UpperCamelCase_ ) __lowerCamelCase = accelerator.register_load_state_pre_hook(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase_ ) # make sure random weights don't match with hooks load_random_weights(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __lowerCamelCase = """random""" # make sure loaded weights match with hooks accelerator.load_state(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase_ ) # make sure random weights don't match with hooks removed load_random_weights(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __lowerCamelCase = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() __lowerCamelCase = None # This should work __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(dummy_obj is None ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() __lowerCamelCase = [1, 2, 3] # This should work __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def lowerCAmelCase__ ( self: Optional[int] ): from transformers import AutoModelForCausalLM __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase_ , device_map={"""""": 0} , ) __lowerCamelCase = Accelerator() # This should work __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) @slow @require_bnb def lowerCAmelCase__ ( self: Dict ): from transformers import AutoModelForCausalLM __lowerCamelCase = Accelerator() with init_empty_weights(): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() __lowerCamelCase = infer_auto_device_map(UpperCamelCase_ ) __lowerCamelCase = """cpu""" __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=UpperCamelCase_ , load_in_abit=UpperCamelCase_ , llm_inta_enable_fpaa_cpu_offload=UpperCamelCase_ ) # This should not work and get value error with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self: Optional[Any] ): from transformers import AutoModelForCausalLM __lowerCamelCase = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() __lowerCamelCase = infer_auto_device_map(UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase_ , device_map=UpperCamelCase_ , ) __lowerCamelCase = Accelerator() # This should not work and get value error with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self: Optional[Any] ): from transformers import AutoModelForCausalLM with init_empty_weights(): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) __lowerCamelCase = infer_auto_device_map(UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase_ , device_map=UpperCamelCase_ , ) __lowerCamelCase = Accelerator() # This should work __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) @require_cuda def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = torch.nn.Linear(10 , 10 ) __lowerCamelCase = torch.optim.SGD(model.parameters() , lr=0.01 ) __lowerCamelCase = Accelerator(cpu=UpperCamelCase_ ) __lowerCamelCase = accelerator.prepare(UpperCamelCase_ )
29
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "swinv2" UpperCAmelCase__ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , A_=224 , A_=4 , A_=3 , A_=96 , A_=[2, 2, 6, 2] , A_=[3, 6, 12, 24] , A_=7 , A_=4.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=False , A_=0.02 , A_=1E-5 , A_=32 , **A_ , ) -> Any: super().__init__(**A_ ) __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =embed_dim __UpperCamelCase =depths __UpperCamelCase =len(A_ ) __UpperCamelCase =num_heads __UpperCamelCase =window_size __UpperCamelCase =mlp_ratio __UpperCamelCase =qkv_bias __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =drop_path_rate __UpperCamelCase =hidden_act __UpperCamelCase =use_absolute_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =initializer_range __UpperCamelCase =encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCamelCase =int(embed_dim * 2 ** (len(A_ ) - 1) ) __UpperCamelCase =(0, 0, 0, 0)
62
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'gptj' __lowerCamelCase : List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , A=50_400 , A=2_048 , A=4_096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1E-5 , A=0.02 , A=True , A=50_256 , A=50_256 , A=False , **A , ) -> Tuple: """simple docstring""" _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __A ( A ): '''simple docstring''' def __init__(self , A , A = "default" , A = None , A = False , ) -> List[str]: """simple docstring""" super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , '''pad_token_id''' , A ): # TODO: how to do that better? _a = 0 @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(A , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a__ (self ) -> int: """simple docstring""" return self._config.n_layer @property def a__ (self ) -> int: """simple docstring""" return self._config.n_head def a__ (self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def a__ (self ) -> int: """simple docstring""" return 13
211
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
239
"""simple docstring""" def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[Any] ) -> Union[str, Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( a_ : Optional[int] , a_ : Any=0 ) -> Optional[Any]: return sorted(a_ , key=lambda a_ : x[column] ) def __lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int] , a_ : str=float('''inf''' ) ) -> str: for i in range(points_counts - 1 ): for j in range(i + 1 , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :Optional[Any] = current_dis return min_dis def __lowerCamelCase ( a_ : List[Any] , a_ : Any , a_ : Optional[int]=float('''inf''' ) ) -> Optional[Any]: for i in range(min(6 , points_counts - 1 ) , a_ ): for j in range(max(0 , i - 6 ) , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :int = current_dis return min_dis def __lowerCamelCase ( a_ : str , a_ : List[Any] , a_ : int ) -> Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(a_ , a_ ) # recursion __SCREAMING_SNAKE_CASE :int = points_counts // 2 __SCREAMING_SNAKE_CASE :Dict = closest_pair_of_points_sqr( a_ , points_sorted_on_y[:mid] , a_ ) __SCREAMING_SNAKE_CASE :Any = closest_pair_of_points_sqr( a_ , points_sorted_on_y[mid:] , points_counts - mid ) __SCREAMING_SNAKE_CASE :Union[str, Any] = min(a_ , a_ ) __SCREAMING_SNAKE_CASE :str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a_ ) __SCREAMING_SNAKE_CASE :Dict = dis_between_closest_in_strip( a_ , len(a_ ) , a_ ) return min(a_ , a_ ) def __lowerCamelCase ( a_ : int , a_ : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE :Union[str, Any] = column_based_sort(a_ , column=0 ) __SCREAMING_SNAKE_CASE :int = column_based_sort(a_ , column=1 ) return ( closest_pair_of_points_sqr( a_ , a_ , a_ ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase_ = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
239
1
'''simple docstring''' import numpy as np _lowerCAmelCase = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class lowerCAmelCase_: '''simple docstring''' def __init__( self ) -> None: lowerCAmelCase__ : Optional[Any] = np.array(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> np.ndarray: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = np.where(letter == self.SQUARE ) lowerCAmelCase__ : Optional[int] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : List[str] = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[int] = message.lower() lowerCAmelCase__ : Tuple = message.replace(""" """ ,"""""" ) lowerCAmelCase__ : Optional[int] = message.replace("""j""" ,"""i""" ) lowerCAmelCase__ : str = np.empty((2, len(__UpperCAmelCase )) ) for letter_index in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : List[str] = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase__ : Any = numbers[0] lowerCAmelCase__ : Optional[Any] = numbers[1] lowerCAmelCase__ : List[str] = first_step.reshape(2 * len(__UpperCAmelCase ) ) lowerCAmelCase__ : str = """""" for numbers_index in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : Tuple = int(second_step[numbers_index * 2] ) lowerCAmelCase__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) lowerCAmelCase__ : Tuple = self.numbers_to_letter(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = encoded_message + letter return encoded_message def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : List[Any] = message.lower() message.replace(""" """ ,"""""" ) lowerCAmelCase__ : Dict = np.empty(2 * len(__UpperCAmelCase ) ) for letter_index in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : Tuple = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase__ : List[str] = numbers[0] lowerCAmelCase__ : Dict = numbers[1] lowerCAmelCase__ : List[str] = first_step.reshape((2, len(__UpperCAmelCase )) ) lowerCAmelCase__ : str = """""" for numbers_index in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : Optional[Any] = int(second_step[0, numbers_index] ) lowerCAmelCase__ : Dict = int(second_step[1, numbers_index] ) lowerCAmelCase__ : Dict = self.numbers_to_letter(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = decoded_message + letter return decoded_message
37
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() UpperCAmelCase : Optional[int] =logging.get_logger(__name__) UpperCAmelCase : int ="""Hello, World!""" UpperCAmelCase : int ="""en_XX""" def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = Path("data_bin") UpperCamelCase_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowerCAmelCase).parent) , checkpoint_file=Path(_lowerCAmelCase).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(_lowerCAmelCase) , bpe="sentencepiece" , sentencepiece_model=str(Path(_lowerCAmelCase).parent / "sentencepiece.bpe.model") , src_dict=str(data_dir / "dict.txt") , ) xmod.eval() # disable dropout print(_lowerCAmelCase) UpperCamelCase_ = xmod.model.encoder.sentence_encoder UpperCamelCase_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCamelCase_ = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , _lowerCAmelCase) UpperCamelCase_ = XmodForSequenceClassification(_lowerCAmelCase) if classification_head else XmodForMaskedLM(_lowerCAmelCase) model.eval() # Now let's copy all the weights. # Embeddings UpperCamelCase_ = xmod_sent_encoder.embed_tokens.weight UpperCamelCase_ = xmod_sent_encoder.embed_positions.weight UpperCamelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. UpperCamelCase_ = xmod_sent_encoder.layernorm_embedding.weight UpperCamelCase_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer UpperCamelCase_ = model.roberta.encoder.layer[i] UpperCamelCase_ = xmod_sent_encoder.layers[i] # self attention UpperCamelCase_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError("Dimensions of self-attention weights do not match.") UpperCamelCase_ = xmod_layer.self_attn.q_proj.weight UpperCamelCase_ = xmod_layer.self_attn.q_proj.bias UpperCamelCase_ = xmod_layer.self_attn.k_proj.weight UpperCamelCase_ = xmod_layer.self_attn.k_proj.bias UpperCamelCase_ = xmod_layer.self_attn.v_proj.weight UpperCamelCase_ = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCamelCase_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match.") UpperCamelCase_ = xmod_layer.self_attn.out_proj.weight UpperCamelCase_ = xmod_layer.self_attn.out_proj.bias UpperCamelCase_ = xmod_layer.self_attn_layer_norm.weight UpperCamelCase_ = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCamelCase_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match.") UpperCamelCase_ = xmod_layer.fca.weight UpperCamelCase_ = xmod_layer.fca.bias # output UpperCamelCase_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match.") UpperCamelCase_ = xmod_layer.fca.weight UpperCamelCase_ = xmod_layer.fca.bias UpperCamelCase_ = xmod_layer.final_layer_norm.weight UpperCamelCase_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCamelCase_ = xmod_layer.adapter_layer_norm.weight UpperCamelCase_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError("Lists of language adapters do not match.") for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCamelCase_ = bert_output.adapter_modules[lang_code] UpperCamelCase_ = xmod_layer.adapter_modules[lang_code] UpperCamelCase_ = from_adapter.fca.weight UpperCamelCase_ = from_adapter.fca.bias UpperCamelCase_ = from_adapter.fca.weight UpperCamelCase_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCamelCase_ = xmod_sent_encoder.layer_norm.weight UpperCamelCase_ = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCamelCase_ = xmod.model.classification_heads["mnli"].dense.weight UpperCamelCase_ = xmod.model.classification_heads["mnli"].dense.bias UpperCamelCase_ = xmod.model.classification_heads["mnli"].out_proj.weight UpperCamelCase_ = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head UpperCamelCase_ = xmod.model.encoder.lm_head.dense.weight UpperCamelCase_ = xmod.model.encoder.lm_head.dense.bias UpperCamelCase_ = xmod.model.encoder.lm_head.layer_norm.weight UpperCamelCase_ = xmod.model.encoder.lm_head.layer_norm.bias UpperCamelCase_ = xmod.model.encoder.lm_head.weight UpperCamelCase_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCamelCase_ = xmod.encode(_lowerCAmelCase).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(_lowerCAmelCase) UpperCamelCase_ = model(_lowerCAmelCase)[0] if classification_head: UpperCamelCase_ = xmod.model.classification_heads["mnli"](xmod.extract_features(_lowerCAmelCase)) else: UpperCamelCase_ = xmod.model(_lowerCAmelCase , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) UpperCamelCase_ = torch.max(torch.abs(our_output - their_output)).item() print(f"""max_absolute_diff = {max_absolute_diff}""") # ~ 1e-7 UpperCamelCase_ = torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3) print("Do both models output the same tensors?" , "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") Path(_lowerCAmelCase).mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase) print(f"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(_lowerCAmelCase) if __name__ == "__main__": UpperCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) UpperCAmelCase : Tuple =parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
128
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def a__ ( lowercase : str = "laptop" ) -> int: """simple docstring""" _UpperCamelCase = F"""https://www.amazon.in/laptop/s?k={product}""" _UpperCamelCase = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _UpperCamelCase = BeautifulSoup(requests.get(a__, headers=a__ ).text ) # Initialize a Pandas dataframe with the column titles _UpperCamelCase = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''', attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''}, ), soup.find_all('''div''', attrs={'''class''': '''a-row a-size-base a-color-base'''} ), ): try: _UpperCamelCase = item.ha.text _UpperCamelCase = '''https://www.amazon.in/''' + item.ha.a['''href'''] _UpperCamelCase = item.find('''span''', attrs={'''class''': '''a-offscreen'''} ).text try: _UpperCamelCase = item.find('''span''', attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: _UpperCamelCase = '''Not available''' try: _UpperCamelCase = ( '''₹''' + item.find( '''span''', attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: _UpperCamelCase = '''''' try: _UpperCamelCase = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''', '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) ) * 100 ) except ValueError: _UpperCamelCase = float('''nan''' ) except AttributeError: pass _UpperCamelCase = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _UpperCamelCase = ''' ''' _UpperCamelCase = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase__ : Union[str, Any] = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
371
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ : Any = logging.getLogger(__name__) def a__ ( lowercase : Optional[Any], lowercase : Tuple ) -> Any: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) _snake_case : str = field(metadata={'help': 'Should contain the data files for the task.'} ) _snake_case : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(lowercase ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowercase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=lowercase, cache_dir=model_args.cache_dir, ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(lowercase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(lowercase, p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(lowercase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=lowercase, args=lowercase, train_dataset=lowercase, eval_dataset=lowercase, compute_metrics=lowercase, data_collator=lowercase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', lowercase, lowercase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowercase ) return results def a__ ( lowercase : Tuple ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
287
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class a__ ( UpperCAmelCase__ ): def __get__( self : Optional[Any] , a : str , a : Optional[int]=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) __lowerCamelCase = '''__cached_''' + self.fget.__name__ __lowerCamelCase = getattr(a , a , a ) if cached is None: __lowerCamelCase = self.fget(a ) setattr(a , a , a ) return cached def __lowerCAmelCase ( UpperCamelCase__ ) -> Any: __lowerCamelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def __lowerCAmelCase ( UpperCamelCase__ ) -> List[Any]: if is_torch_fx_proxy(SCREAMING_SNAKE_CASE_ ): return True if is_torch_available(): import torch if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(SCREAMING_SNAKE_CASE_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(SCREAMING_SNAKE_CASE_ , (jnp.ndarray, Tracer) ): return True return isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Tuple: return isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: return _is_numpy(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: import torch return isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Any: return False if not is_torch_available() else _is_torch(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( UpperCamelCase__ ) -> str: import torch return isinstance(SCREAMING_SNAKE_CASE_ , torch.device ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Tuple: return False if not is_torch_available() else _is_torch_device(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Tuple: import torch if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return False return isinstance(SCREAMING_SNAKE_CASE_ , torch.dtype ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: return False if not is_torch_available() else _is_torch_dtype(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: import tensorflow as tf return isinstance(SCREAMING_SNAKE_CASE_ , tf.Tensor ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(SCREAMING_SNAKE_CASE_ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(SCREAMING_SNAKE_CASE_ ) return type(SCREAMING_SNAKE_CASE_ ) == tf.Tensor def __lowerCAmelCase ( UpperCamelCase__ ) -> int: return False if not is_tf_available() else _is_tf_symbolic_tensor(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( UpperCamelCase__ ) -> str: import jax.numpy as jnp # noqa: F811 return isinstance(SCREAMING_SNAKE_CASE_ , jnp.ndarray ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Any: return False if not is_flax_available() else _is_jax(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( UpperCamelCase__ ) -> str: if isinstance(SCREAMING_SNAKE_CASE_ , (dict, UserDict) ): return {k: to_py_obj(SCREAMING_SNAKE_CASE_ ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): return [to_py_obj(SCREAMING_SNAKE_CASE_ ) for o in obj] elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): return obj.numpy().tolist() elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return np.asarray(SCREAMING_SNAKE_CASE_ ).tolist() elif isinstance(SCREAMING_SNAKE_CASE_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: if isinstance(SCREAMING_SNAKE_CASE_ , (dict, UserDict) ): return {k: to_numpy(SCREAMING_SNAKE_CASE_ ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): return np.array(SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): return obj.numpy() elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return np.asarray(SCREAMING_SNAKE_CASE_ ) else: return obj class a__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = fields(self ) # Safety and consistency checks if not len(a ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) __lowerCamelCase = getattr(self , class_fields[0].name ) __lowerCamelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(a ): if isinstance(a , a ): __lowerCamelCase = first_field.items() __lowerCamelCase = True else: try: __lowerCamelCase = iter(a ) __lowerCamelCase = True except TypeError: __lowerCamelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(a ): if ( not isinstance(a , (list, tuple) ) or not len(a ) == 2 or not isinstance(element[0] , a ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __lowerCamelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: __lowerCamelCase = element[1] elif first_field is not None: __lowerCamelCase = first_field else: for field in class_fields: __lowerCamelCase = getattr(self , field.name ) if v is not None: __lowerCamelCase = v def __delitem__( self : List[Any] , *a : str , **a : Optional[Any] ): """simple docstring""" raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , *a : Union[str, Any] , **a : Optional[int] ): """simple docstring""" raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict , *a : int , **a : Dict ): """simple docstring""" raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def SCREAMING_SNAKE_CASE__ ( self : Any , *a : str , **a : str ): """simple docstring""" raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Dict , a : Optional[int] ): """simple docstring""" if isinstance(a , a ): __lowerCamelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[str] , a : Dict , a : Optional[Any] ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(a , a ) super().__setattr__(a , a ) def __setitem__( self : Any , a : Optional[int] , a : int ): """simple docstring""" super().__setitem__(a , a ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(a , a ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , a : Tuple ): """simple docstring""" raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[int] ="longest" lowerCamelCase : str ="max_length" lowerCamelCase : List[str] ="do_not_pad" class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="pt" lowerCamelCase : Optional[Any] ="tf" lowerCamelCase : List[Any] ="np" lowerCamelCase : int ="jax" class a__ : def __init__( self : Dict , a : Optional[int] ): """simple docstring""" __lowerCamelCase = context_managers __lowerCamelCase = ExitStack() def __enter__( self : Union[str, Any] ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(a ) def __exit__( self : int , *a : Optional[int] , **a : Optional[int] ): """simple docstring""" self.stack.__exit__(*a , **a ) def __lowerCAmelCase ( UpperCamelCase__ ) -> List[Any]: __lowerCamelCase = infer_framework(SCREAMING_SNAKE_CASE_ ) if framework == "tf": __lowerCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __lowerCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: __lowerCamelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __lowerCAmelCase ( UpperCamelCase__ ) -> str: __lowerCamelCase = model_class.__name__ __lowerCamelCase = infer_framework(SCREAMING_SNAKE_CASE_ ) if framework == "tf": __lowerCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __lowerCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: __lowerCamelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = "" , UpperCamelCase__ = "." ) -> Union[str, Any]: def _flatten_dict(UpperCamelCase__ , UpperCamelCase__="" , UpperCamelCase__="." ): for k, v in d.items(): __lowerCamelCase = str(SCREAMING_SNAKE_CASE_ ) + delimiter + str(SCREAMING_SNAKE_CASE_ ) if parent_key else k if v and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): yield from flatten_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , delimiter=SCREAMING_SNAKE_CASE_ ).items() else: yield key, v return dict(_flatten_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) @contextmanager def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = False ) -> Dict: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.transpose(SCREAMING_SNAKE_CASE_ , axes=SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.T if axes is None else array.permute(*SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.transpose(SCREAMING_SNAKE_CASE_ , perm=SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return jnp.transpose(SCREAMING_SNAKE_CASE_ , axes=SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f"""Type not supported for transpose: {type(SCREAMING_SNAKE_CASE_ )}.""" ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> int: if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.reshape(*SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return jnp.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f"""Type not supported for reshape: {type(SCREAMING_SNAKE_CASE_ )}.""" ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=None ) -> str: if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.squeeze(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.squeeze() if axis is None else array.squeeze(dim=SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.squeeze(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return jnp.squeeze(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f"""Type not supported for squeeze: {type(SCREAMING_SNAKE_CASE_ )}.""" ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.expand_dims(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.unsqueeze(dim=SCREAMING_SNAKE_CASE_ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.expand_dims(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return jnp.expand_dims(SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f"""Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE_ )}.""" ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Tuple: if is_numpy_array(SCREAMING_SNAKE_CASE_ ): return np.size(SCREAMING_SNAKE_CASE_ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE_ ): return array.numel() elif is_tf_tensor(SCREAMING_SNAKE_CASE_ ): import tensorflow as tf return tf.size(SCREAMING_SNAKE_CASE_ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE_ ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE_ )}.""" ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Dict: for key, value in auto_map.items(): if isinstance(SCREAMING_SNAKE_CASE_ , (tuple, list) ): __lowerCamelCase = [f"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: __lowerCamelCase = f"""{repo_id}--{value}""" return auto_map def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: for base_class in inspect.getmro(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase = base_class.__module__ __lowerCamelCase = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
67
import datasets from .evaluate import evaluate lowerCAmelCase__ = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ lowerCAmelCase__ = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ lowerCAmelCase__ = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def UpperCamelCase ( self , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=lowercase , predictions=lowercase ) return score
68
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: '''simple docstring''' A__ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A__ = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) A__ = in_proj_weight[ : encoder_config.hidden_size, : ] A__ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A__ = in_proj_weight[ -encoder_config.hidden_size :, : ] def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> str: '''simple docstring''' A__ = dct.pop(lowercase_ ) A__ = val def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if "handwritten" in checkpoint_url: A__ = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A__ = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('RGB' ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: '''simple docstring''' A__ = ViTConfig(image_size=384 , qkv_bias=lowercase_ ) A__ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A__ = 768 elif "large" in checkpoint_url: # use ViT-large encoder A__ = 1024 A__ = 4096 A__ = 24 A__ = 16 A__ = 1024 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A__ = False A__ = 'relu' A__ = 1024 A__ = True A__ = False A__ = False # load HuggingFace model A__ = ViTModel(lowercase_ , add_pooling_layer=lowercase_ ) A__ = TrOCRForCausalLM(lowercase_ ) A__ = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() # load state_dict of original model, rename some keys A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='cpu' , check_hash=lowercase_ )['model'] A__ = create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A__ = state_dict.pop(lowercase_ ) if key.startswith('decoder' ) and "output_projection" not in key: A__ = val else: A__ = val # load state dict model.load_state_dict(lowercase_ ) # Check outputs on an image A__ = ViTImageProcessor(size=encoder_config.image_size ) A__ = RobertaTokenizer.from_pretrained('roberta-large' ) A__ = TrOCRProcessor(lowercase_ , lowercase_ ) A__ = processor(images=prepare_img(lowercase_ ) , return_tensors='pt' ).pixel_values # verify logits A__ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A__ = model(pixel_values=lowercase_ , decoder_input_ids=lowercase_ ) A__ = outputs.logits A__ = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A__ = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: A__ = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: A__ = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: A__ = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowercase_ , atol=1E-3 ), "First elements of logits not as expected" Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowercase_ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
357
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'bart' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple,lowercase_ : Optional[int]=5_0_2_6_5,lowercase_ : List[str]=1_0_2_4,lowercase_ : Any=1_2,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : str=1_6,lowercase_ : int=1_2,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : Any=1_6,lowercase_ : Any=0.0,lowercase_ : str=0.0,lowercase_ : Optional[Any]="gelu",lowercase_ : List[str]=1_0_2_4,lowercase_ : List[Any]=0.1,lowercase_ : Union[str, Any]=0.0,lowercase_ : Optional[int]=0.0,lowercase_ : List[Any]=0.02,lowercase_ : int=0.0,lowercase_ : Optional[Any]=False,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=3,lowercase_ : int=1,lowercase_ : int=0,lowercase_ : List[str]=2,lowercase_ : Optional[int]=True,lowercase_ : Tuple=2,lowercase_ : List[str]=2,**lowercase_ : Dict,)-> List[Any]: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = classifier_dropout A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase_,pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,decoder_start_token_id=lowercase_,forced_eos_token_id=lowercase_,**lowercase_,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated',lowercase_ ): A__ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' ) class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Dict )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ = {0: 'batch'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A__ = {0: 'batch', 1: 'decoder_sequence'} A__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_,direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} else: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def snake_case__ ( self : Optional[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super().outputs else: A__ = super(lowercase_,self ).outputs if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def snake_case__ ( self : Tuple,lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) # Generate decoder inputs A__ = seq_length if not self.use_past else 1 A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) A__ = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A__ = dict(**lowercase_,**lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape A__ = common_inputs['decoder_input_ids'].shape[1] A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = decoder_seq_length + 3 A__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A__ = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase_,lowercase_ )],dim=1 ) A__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A__ , A__ = self.num_layers A__ = min(lowercase_,lowercase_ ) A__ = max(lowercase_,lowercase_ ) - min_num_layers A__ = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. A__ = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowercase_,lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def snake_case__ ( self : List[str],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ , A__ = self.num_layers A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = common_inputs['attention_mask'].dtype A__ = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase_,lowercase_,dtype=lowercase_ )],dim=1 ) A__ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def snake_case__ ( self : Union[str, Any],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = tokenizer.num_special_tokens_to_add(lowercase_ ) A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence A__ = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A__ = dict(tokenizer(lowercase_,return_tensors=lowercase_ ) ) return common_inputs def snake_case__ ( self : Union[str, Any],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) elif self.task == "causal-lm": A__ = self._generate_dummy_inputs_for_causal_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) else: A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) return common_inputs def snake_case__ ( self : int,lowercase_ : Tuple,lowercase_ : int,lowercase_ : int,lowercase_ : str )-> str: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super()._flatten_past_key_values_(lowercase_,lowercase_,lowercase_,lowercase_ ) else: A__ = super(lowercase_,self )._flatten_past_key_values_( lowercase_,lowercase_,lowercase_,lowercase_ )
282
0
from queue import PriorityQueue from typing import Any import numpy as np def a__ ( A_, A_, A_, A_, A_, A_, A_, A_, A_, ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue __magic_name__ = cst_fwd.get(A_, np.inf ) __magic_name__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __magic_name__ = new_cost_f __magic_name__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __magic_name__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = -1 __magic_name__ = set() __magic_name__ = set() __magic_name__ = {source: 0} __magic_name__ = {destination: 0} __magic_name__ = {source: None} __magic_name__ = {destination: None} __magic_name__ = PriorityQueue() __magic_name__ = PriorityQueue() __magic_name__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __magic_name__ , __magic_name__ = queue_forward.get() visited_forward.add(A_ ) __magic_name__ , __magic_name__ = queue_backward.get() visited_backward.add(A_ ) __magic_name__ = pass_and_relaxation( A_, A_, A_, A_, A_, A_, A_, A_, A_, ) __magic_name__ = pass_and_relaxation( A_, A_, A_, A_, A_, A_, A_, A_, A_, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __magic_name__ = shortest_distance return shortest_path_distance __lowerCAmelCase : Optional[Any] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __lowerCAmelCase : Optional[Any] = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
88
"""simple docstring""" from manim import * class _SCREAMING_SNAKE_CASE( A ): def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = Rectangle(height=0.5 ,width=0.5 ) __SCREAMING_SNAKE_CASE :List[str] = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 ) __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :Optional[int] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Optional[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Any = VGroup(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Tuple = Text('''CPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :Optional[Any] = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = [mem.copy() for i in range(1 )] __SCREAMING_SNAKE_CASE :str = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = Text('''GPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) gpu.align_to(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :List[Any] = Text('''Model''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) model.move_to([3, -1.0, 0] ) self.play( Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,) __SCREAMING_SNAKE_CASE :List[str] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) __SCREAMING_SNAKE_CASE :List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __SCREAMING_SNAKE_CASE :Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ ,run_time=2.5 ) ,Write(SCREAMING_SNAKE_CASE__ ) ,Write(SCREAMING_SNAKE_CASE__ ) ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = [] __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :List[Any] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Any = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ ,opacity=0.7 ) cpu_target.move_to(SCREAMING_SNAKE_CASE__ ) cpu_target.generate_target() __SCREAMING_SNAKE_CASE :Union[str, Any] = 0.4_6 / 4 __SCREAMING_SNAKE_CASE :Tuple = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=SCREAMING_SNAKE_CASE__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) cpu_targs.append(SCREAMING_SNAKE_CASE__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(SCREAMING_SNAKE_CASE__ ) ) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ ,run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE__ ) self.play(*SCREAMING_SNAKE_CASE__ ) self.wait()
191
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[Any] = """data2vec-audio""" def __init__( self : Optional[int] , a__ : int=32 , a__ : str=768 , a__ : Any=12 , a__ : List[Any]=12 , a__ : Optional[Any]=3072 , a__ : Optional[Any]="gelu" , a__ : int=0.1 , a__ : Optional[Any]=0.1 , a__ : Any=0.1 , a__ : Any=0.0 , a__ : Union[str, Any]=0.1 , a__ : Dict=0.1 , a__ : List[Any]=0.02 , a__ : Dict=1E-5 , a__ : Tuple="gelu" , a__ : str=(512, 512, 512, 512, 512, 512, 512) , a__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , a__ : Any=(10, 3, 3, 3, 3, 2, 2) , a__ : Optional[int]=False , a__ : Union[str, Any]=16 , a__ : List[str]=19 , a__ : Optional[Any]=5 , a__ : int=0.05 , a__ : List[Any]=10 , a__ : Optional[int]=2 , a__ : Optional[Any]=0.0 , a__ : List[Any]=10 , a__ : str=0 , a__ : Any="sum" , a__ : List[str]=False , a__ : int=False , a__ : Any=256 , a__ : List[str]=(512, 512, 512, 512, 1500) , a__ : Union[str, Any]=(5, 3, 3, 1, 1) , a__ : Union[str, Any]=(1, 2, 3, 1, 1) , a__ : Tuple=512 , a__ : Optional[Any]=0 , a__ : Optional[int]=1 , a__ : Dict=2 , a__ : Any=False , a__ : List[Any]=3 , a__ : Optional[int]=2 , a__ : List[Any]=3 , a__ : int=None , **a__ : List[str] , ): super().__init__(**a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ ) __magic_name__ = hidden_size __magic_name__ = feat_extract_activation __magic_name__ = list(a__ ) __magic_name__ = list(a__ ) __magic_name__ = list(a__ ) __magic_name__ = conv_bias __magic_name__ = num_conv_pos_embeddings __magic_name__ = num_conv_pos_embedding_groups __magic_name__ = conv_pos_kernel_size __magic_name__ = len(self.conv_dim ) __magic_name__ = num_hidden_layers __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = num_attention_heads __magic_name__ = hidden_dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = feat_proj_dropout __magic_name__ = final_dropout __magic_name__ = layerdrop __magic_name__ = layer_norm_eps __magic_name__ = initializer_range __magic_name__ = vocab_size __magic_name__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ = mask_time_prob __magic_name__ = mask_time_length __magic_name__ = mask_time_min_masks __magic_name__ = mask_feature_prob __magic_name__ = mask_feature_length __magic_name__ = mask_feature_min_masks # ctc loss __magic_name__ = ctc_loss_reduction __magic_name__ = ctc_zero_infinity # adapter __magic_name__ = add_adapter __magic_name__ = adapter_kernel_size __magic_name__ = adapter_stride __magic_name__ = num_adapter_layers __magic_name__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __magic_name__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __magic_name__ = list(a__ ) __magic_name__ = list(a__ ) __magic_name__ = list(a__ ) __magic_name__ = xvector_output_dim @property def snake_case__ ( self : Optional[int] ): return math.prod(self.conv_stride )
98
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _lowerCAmelCase = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' __magic_name__ = '''https://pypi.org/pypi/diffusers/json''' __magic_name__ = json.loads(request.urlopen(a ).read() )['''releases'''].keys() return sorted(a , key=lambda a : version.Version(a ) ) def UpperCamelCase ( ) -> Any: '''simple docstring''' # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a ) os.makedirs(a , exist_ok=a ) __magic_name__ = Path(a ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' init_hf_modules() __magic_name__ = Path(a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a , exist_ok=a ) __magic_name__ = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def UpperCamelCase ( a ) -> List[str]: '''simple docstring''' with open(a , '''r''' , encoding='''utf-8''' ) as f: __magic_name__ = f.read() # Imports of the form `import .xxx` __magic_name__ = re.findall('''^\s*import\s+\.(\S+)\s*$''' , a , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , a , flags=re.MULTILINE ) # Unique-ify return list(set(a ) ) def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ = False __magic_name__ = [module_file] __magic_name__ = [] # Let's recurse through all relative imports while not no_change: __magic_name__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(a ) ) __magic_name__ = Path(a ).parent __magic_name__ = [str(module_path / m ) for m in new_imports] __magic_name__ = [f for f in new_import_files if f not in all_relative_imports] __magic_name__ = [F'''{f}.py''' for f in new_import_files] __magic_name__ = len(a ) == 0 all_relative_imports.extend(a ) return all_relative_imports def UpperCamelCase ( a ) -> List[str]: '''simple docstring''' with open(a , '''r''' , encoding='''utf-8''' ) as f: __magic_name__ = f.read() # Imports of the form `import xxx` __magic_name__ = re.findall('''^\s*import\s+(\S+)\s*$''' , a , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , a , flags=re.MULTILINE ) # Only keep the top-level module __magic_name__ = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all __magic_name__ = list(set(a ) ) __magic_name__ = [] for imp in imports: try: importlib.import_module(a ) except ImportError: missing_packages.append(a ) if len(a ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F'''{", ".join(a )}. Run `pip install {" ".join(a )}`''' ) return get_relative_imports(a ) def UpperCamelCase ( a , a ) -> Optional[int]: '''simple docstring''' __magic_name__ = module_path.replace(os.path.sep , '''.''' ) __magic_name__ = importlib.import_module(a ) if class_name is None: return find_pipeline_class(a ) return getattr(a , a ) def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' from ..pipelines import DiffusionPipeline __magic_name__ = dict(inspect.getmembers(a , inspect.isclass ) ) __magic_name__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) __magic_name__ = cls return pipeline_class def UpperCamelCase ( a , a , a = None , a = False , a = False , a = None , a = None , a = None , a = False , ) -> List[Any]: '''simple docstring''' __magic_name__ = str(a ) __magic_name__ = os.path.join(a , a ) if os.path.isfile(a ): __magic_name__ = module_file_or_url __magic_name__ = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: __magic_name__ = get_diffusers_versions() # cut ".dev0" __magic_name__ = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: __magic_name__ = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: __magic_name__ = F'''v{revision}''' elif revision == "main": __magic_name__ = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {", ".join(available_versions + ["main"] )}.''' ) # community pipeline on GitHub __magic_name__ = COMMUNITY_PIPELINES_URL.format(revision=a , pipeline=a ) try: __magic_name__ = cached_download( a , cache_dir=a , force_download=a , proxies=a , resume_download=a , local_files_only=a , use_auth_token=a , ) __magic_name__ = '''git''' __magic_name__ = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached __magic_name__ = hf_hub_download( a , a , cache_dir=a , force_download=a , proxies=a , resume_download=a , local_files_only=a , use_auth_token=a , ) __magic_name__ = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment __magic_name__ = check_imports(a ) # Now we move the module inside our cached dynamic modules. __magic_name__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a ) __magic_name__ = Path(a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a , submodule_path / module_file ) for module_needed in modules_needed: __magic_name__ = F'''{module_needed}.py''' shutil.copy(os.path.join(a , a ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a , a ): __magic_name__ = use_auth_token elif use_auth_token is True: __magic_name__ = HfFolder.get_token() else: __magic_name__ = None __magic_name__ = model_info(a , revision=a , token=a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __magic_name__ = submodule_path / commit_hash __magic_name__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(a ) if not (submodule_path / module_file).exists(): shutil.copy(a , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a , F'''{module_needed}.py''' , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) return os.path.join(a , a ) def UpperCamelCase ( a , a , a = None , a = None , a = False , a = False , a = None , a = None , a = None , a = False , **a , ) -> List[Any]: '''simple docstring''' __magic_name__ = get_cached_module_file( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) return get_class_in_module(a , final_module.replace('''.py''' , '''''' ) )
98
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Optional[Any] = {'vocab_file': 'spiece.model'} lowercase : str = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 lowercase : Tuple = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } lowercase : Optional[int] = '▁' class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self :List[Any] , a :int , a :int="</s>" , a :List[str]="<unk>" , a :List[Any]="<pad>" , a :List[str]=1_0_0 , a :Tuple=None , a :Optional[Dict[str, Any]] = None , a :str=True , **a :int , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCamelCase : Optional[int] = [f'<extra_id_{i}>' for i in range(a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCamelCase : Union[str, Any] = len(set(filter(lambda a : bool("extra_id" in str(a ) ) , a ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( f'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) __UpperCamelCase : Union[str, Any] = legacy __UpperCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , pad_token=a , extra_ids=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , legacy=a , **a , ) __UpperCamelCase : List[str] = vocab_file __UpperCamelCase : str = extra_ids __UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @staticmethod def _lowerCamelCase ( a :int , a :Union[str, Any] , a :List[Any] ) -> Dict: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __UpperCamelCase : Any = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , a , ) return max_model_length @property def _lowerCamelCase ( self :str ) -> Dict: return self.sp_model.get_piece_size() + self._extra_ids def _lowerCamelCase ( self :Dict ) -> List[str]: __UpperCamelCase : Tuple = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self :Tuple , a :List[int] , a :Optional[List[int]] = None , a :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a )) + [1] return ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def _lowerCamelCase ( self :Union[str, Any] ) -> Union[str, Any]: return list( set(filter(lambda a : bool(re.search(r"<extra_id_\d+>" , a ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self :Union[str, Any] ) -> Any: return [self._convert_token_to_id(a ) for token in self.get_sentinel_tokens()] def _lowerCamelCase ( self :List[str] , a :List[int] ) -> List[int]: if len(a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def _lowerCamelCase ( self :Optional[int] , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self :str , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Tuple = self._add_eos_if_not_present(a ) if token_ids_a is None: return token_ids_a else: __UpperCamelCase : Optional[Any] = self._add_eos_if_not_present(a ) return token_ids_a + token_ids_a def __getstate__( self :str ) -> Optional[Any]: __UpperCamelCase : List[Any] = self.__dict__.copy() __UpperCamelCase : Union[str, Any] = None return state def __setstate__( self :Any , a :Optional[Any] ) -> Tuple: __UpperCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Dict = {} __UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :Dict , a :"TextInput" , **a :int ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __UpperCamelCase : int = SPIECE_UNDERLINE + text.replace(a , " " ) return super().tokenize(a , **a ) def _lowerCamelCase ( self :List[str] , a :Optional[Any] , **a :Optional[int] ) -> str: if not self.legacy: __UpperCamelCase : Union[str, Any] = text.startswith(a ) if is_first: __UpperCamelCase : Tuple = text[1:] __UpperCamelCase : Optional[int] = self.sp_model.encode(a , out_type=a ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(a ): __UpperCamelCase : Optional[Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _lowerCamelCase ( self :Any , a :Tuple ) -> Optional[Any]: if token.startswith("<extra_id_" ): __UpperCamelCase : Optional[int] = re.match(r"<extra_id_(\d+)>" , a ) __UpperCamelCase : str = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(a ) def _lowerCamelCase ( self :Union[str, Any] , a :Optional[Any] ) -> Any: if index < self.sp_model.get_piece_size(): __UpperCamelCase : List[Any] = self.sp_model.IdToPiece(a ) else: __UpperCamelCase : Any = f'<extra_id_{self.vocab_size - 1 - index}>' return token def _lowerCamelCase ( self :Optional[Any] , a :Tuple ) -> int: __UpperCamelCase : str = [] __UpperCamelCase : str = "" __UpperCamelCase : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token __UpperCamelCase : int = True __UpperCamelCase : List[Any] = [] else: current_sub_tokens.append(a ) __UpperCamelCase : Optional[int] = False out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self :Optional[int] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : int = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
232
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase : Optional[Any] = TypeVar('T') class lowerCamelCase__ ( Generic[T]): '''simple docstring''' _A = 42 # Cache store of keys _A = 42 # References of the keys in cache _A = 1_0 # Maximum capacity of cache def __init__( self :Optional[Any] , a :int ) -> None: __UpperCamelCase : Union[str, Any] = deque() __UpperCamelCase : str = set() if not n: __UpperCamelCase : Union[str, Any] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: __UpperCamelCase : Any = n def _lowerCamelCase ( self :Tuple , a :T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCamelCase : int = self.dq_store.pop() self.key_reference.remove(a ) else: self.dq_store.remove(a ) self.dq_store.appendleft(a ) self.key_reference.add(a ) def _lowerCamelCase ( self :Any ) -> None: for k in self.dq_store: print(a ) def __repr__( self :Tuple ) -> str: return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() lowercase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
232
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self : int ) -> str: """simple docstring""" snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) snake_case_ : Any = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house snake_case_ : List[str] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Union[str, Any] = model(_lowerCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1E-3 ) ) @slow def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) snake_case_ : Union[str, Any] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house snake_case_ : Tuple = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Tuple = model(_lowerCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1E-3 ) )
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
0
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
'''simple docstring''' def _A ( A__ = 1000 ): """simple docstring""" __lowercase , __lowercase = 1, 1 __lowercase = 2 while True: __lowercase = 0 __lowercase = fa + fa __lowercase , __lowercase = fa, f index += 1 for _ in str(A__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
52
1
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(__UpperCAmelCase ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __magic_name__ ( ) -> Iterator[int]: '''simple docstring''' snake_case_ = 2 while True: if is_prime(__UpperCAmelCase ): yield num num += 1 def __magic_name__ ( __UpperCAmelCase = 200_0000 ) -> int: '''simple docstring''' return sum(takewhile(lambda __UpperCAmelCase : x < n, prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' import re def a ( lowerCamelCase__ ): '''simple docstring''' return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )] def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' try: A_ : List[Any] = split_input(lowerCamelCase__ ) if upper: A_ : Tuple = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: A_ : Optional[int] = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a ( lowerCamelCase__ ): '''simple docstring''' return to_simple_case(lowerCamelCase__ ) def a ( lowerCamelCase__ ): '''simple docstring''' try: A_ : Tuple = to_simple_case(lowerCamelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """_""" ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """-""" ) if __name__ == "__main__": __import__('''doctest''').testmod()
206
0
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple ): """simple docstring""" _A: Union[str, Any] = [ [], [], [], ] def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(lowerCAmelCase_ ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self : Optional[Any] ): """simple docstring""" return "\n".join(F"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ): """simple docstring""" _A: List[Any] = [] def __magic_name__ ( self : Dict , lowerCAmelCase_ : int ): """simple docstring""" if len(self.queue ) == 1_0_0: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: _A: str = min(self.queue ) self.queue.remove(lowerCAmelCase_ ) return data def __str__( self : Union[str, Any] ): """simple docstring""" return str(self.queue ) def lowerCamelCase__ ( ) -> str: _A: Tuple = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(a ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(a ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def lowerCamelCase__ ( ) -> Tuple: _A: List[Any] = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(a ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(a ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
301
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class a__ ( A__ ): A = 'vivit' def __init__( self : Tuple,_A : Any=224,_A : str=32,_A : Optional[Any]=[2, 16, 16],_A : Any=3,_A : Optional[Any]=768,_A : int=12,_A : Any=12,_A : str=3072,_A : List[Any]="gelu_fast",_A : Optional[int]=0.0,_A : Tuple=0.0,_A : int=0.02,_A : List[str]=1E-06,_A : Any=True,**_A : Any,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : List[Any] = image_size SCREAMING_SNAKE_CASE_ : List[Any] = num_frames SCREAMING_SNAKE_CASE_ : Optional[Any] = tubelet_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_channels SCREAMING_SNAKE_CASE_ : Dict = qkv_bias super().__init__(**_A )
18
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( _snake_case : Any ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] __snake_case : Dict = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __snake_case : Tuple = [3, 3, 3, 3] __snake_case : Dict = [5, 5, 5, 5] elif "fl4" in model_name: __snake_case : Any = [4, 4, 4, 4] __snake_case : List[str] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __snake_case : Optional[int] = [3, 3, 3, 3] if "lrf" in model_name: __snake_case : Any = [3, 3, 3, 3] else: __snake_case : int = [2, 2, 2, 2] if "tiny" in model_name: __snake_case : str = 96 elif "small" in model_name: __snake_case : Optional[int] = 96 elif "base" in model_name: __snake_case : Any = 128 elif "large" in model_name: __snake_case : Optional[Any] = 192 elif "xlarge" in model_name: __snake_case : List[Any] = 256 elif "huge" in model_name: __snake_case : Union[str, Any] = 352 # set label information __snake_case : Union[str, Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __snake_case : int = '''imagenet-22k-id2label.json''' else: __snake_case : Optional[Any] = '''imagenet-1k-id2label.json''' __snake_case : int = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) __snake_case : Dict = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} __snake_case : Optional[Any] = FocalNetConfig( embed_dim=_snake_case , depths=_snake_case , focal_levels=_snake_case , focal_windows=_snake_case , use_conv_embed=_snake_case , idalabel=_snake_case , labelaid=_snake_case , use_post_layernorm=_snake_case , use_layerscale=_snake_case , ) return config def lowercase ( _snake_case : Dict ) ->List[Any]: """simple docstring""" if "patch_embed.proj" in name: __snake_case : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __snake_case : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __snake_case : List[Any] = '''encoder.''' + name if "encoder.layers" in name: __snake_case : Optional[Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: __snake_case : Any = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: __snake_case : List[str] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __snake_case : Any = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __snake_case : List[Any] = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __snake_case : int = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": __snake_case : Optional[Any] = '''layernorm.weight''' if name == "norm.bias": __snake_case : List[str] = '''layernorm.bias''' if "head" in name: __snake_case : Union[str, Any] = name.replace('''head''' , '''classifier''' ) else: __snake_case : int = '''focalnet.''' + name return name def lowercase ( _snake_case : Tuple , _snake_case : Dict , _snake_case : List[str]=False ) ->Any: """simple docstring""" __snake_case : List[Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __snake_case : int = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _snake_case ) __snake_case : int = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): __snake_case : str = state_dict.pop(_snake_case ) __snake_case : Tuple = val __snake_case : Any = get_focalnet_config(_snake_case ) __snake_case : List[Any] = FocalNetForImageClassification(_snake_case ) model.eval() # load state dict model.load_state_dict(_snake_case ) # verify conversion __snake_case : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case : Any = BitImageProcessor( do_resize=_snake_case , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_snake_case , crop_size=224 , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , ) __snake_case : List[str] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __snake_case : int = processor(images=_snake_case , return_tensors='''pt''' ) __snake_case : Optional[int] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case : Optional[Any] = image_transforms(_snake_case ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _snake_case , atol=1e-4 ) __snake_case : Tuple = model(**_snake_case ) __snake_case : str = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __snake_case : Any = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __snake_case : int = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __snake_case : Optional[int] = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __snake_case : List[Any] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __snake_case : Union[str, Any] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __snake_case : List[str] = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
102
0
from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowercase : Optional[int] =["""flax""", """transformers"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowercase : List[Any] =["""flax""", """transformers"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowercase : Any =["""flax""", """transformers"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowercase : Dict =["""flax""", """transformers"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] )
252
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE : Any = random.Random() def UpperCamelCase ( _a , _a=1.0 , _a=None , _a=None ) -> str: '''simple docstring''' if rng is None: lowercase_ :Optional[Any] = global_rng lowercase_ :List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=400 , UpperCamelCase_=2000 , UpperCamelCase_=1 , UpperCamelCase_=0.0 , UpperCamelCase_=1_6000 , UpperCamelCase_=True , UpperCamelCase_=True , ): lowercase_ :Any = parent lowercase_ :Any = batch_size lowercase_ :int = min_seq_length lowercase_ :Optional[int] = max_seq_length lowercase_ :Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase_ :Any = feature_size lowercase_ :str = padding_value lowercase_ :Optional[int] = sampling_rate lowercase_ :int = return_attention_mask lowercase_ :Optional[Any] = do_normalize def UpperCamelCase ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase ( self , UpperCamelCase_=False , UpperCamelCase_=False ): def _flatten(UpperCamelCase_ ): return list(itertools.chain(*UpperCamelCase_ ) ) if equal_length: lowercase_ :Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase_ :List[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase_ :int = [np.asarray(UpperCamelCase_ ) for x in speech_inputs] return speech_inputs class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : int =WavaVecaFeatureExtractor def UpperCamelCase ( self ): lowercase_ :Tuple = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase ( self , UpperCamelCase_ ): self.assertTrue(np.all(np.mean(UpperCamelCase_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase_ , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus lowercase_ :int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase_ :Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :Any = [np.asarray(UpperCamelCase_ ) for speech_input in speech_inputs] # Test not batched input lowercase_ :Any = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowercase_ :List[str] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) # Test batched lowercase_ :Optional[Any] = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values lowercase_ :Tuple = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase_ :Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase_ :int = np.asarray(UpperCamelCase_ ) lowercase_ :List[str] = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values lowercase_ :Optional[Any] = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def UpperCamelCase ( self ): lowercase_ :Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :Any = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase_ :int = [None, 1600, None] for max_length, padding in zip(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[Any] = feat_extract(UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors='''np''' ) lowercase_ :Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase ( self ): lowercase_ :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :Union[str, Any] = range(800 , 1400 , 200 ) lowercase_ :Optional[int] = [floats_list((1, x) )[0] for x in lengths] lowercase_ :Any = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase_ :Optional[Any] = [None, 1600, None] for max_length, padding in zip(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Any = feat_extract(UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ ) lowercase_ :Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase ( self ): lowercase_ :Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :str = feat_extract( UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) lowercase_ :Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :Optional[int] = feat_extract( UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) lowercase_ :Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase_ :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :Optional[int] = feat_extract( UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) lowercase_ :int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCamelCase ( self ): import torch lowercase_ :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :Any = np.random.rand(100 ).astype(np.floataa ) lowercase_ :Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase_ :List[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase_ :Dict = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase ( self ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowercase_ :List[Any] = WavaVecaConfig.from_pretrained(UpperCamelCase_ ) lowercase_ :Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
252
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ) -> Dict: lowercase_ : List[str] = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase_ : List[str] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase_ : Dict = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim lowercase_ : int = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase_ : str = model(A )['''last_hidden_state'''].detach() self.assertEqual(output.shape , A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A , atol=1e-3 ) ) @slow def A ( self : Optional[int] ) -> List[str]: lowercase_ : List[Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) lowercase_ : Union[str, Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase_ : Optional[Any] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim lowercase_ : List[str] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase_ : Optional[int] = model(A )['''last_hidden_state'''].detach() self.assertEqual(output.shape , A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A , atol=1e-3 ) )
33
"""simple docstring""" from __future__ import annotations __A : List[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __A : str = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase ( __snake_case : list[float] ): lowercase_ : List[str] = [] lowercase_ : List[Any] = len(__snake_case ) for i in range(__snake_case ): lowercase_ : float = -1 for j in range(i + 1 , __snake_case ): if arr[i] < arr[j]: lowercase_ : List[str] = arr[j] break result.append(__snake_case ) return result def lowercase ( __snake_case : list[float] ): lowercase_ : List[str] = [] for i, outer in enumerate(__snake_case ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : List[Any] = inner break result.append(__snake_case ) return result def lowercase ( __snake_case : list[float] ): lowercase_ : List[str] = len(__snake_case ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(__snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __A : int = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
33
1
def UpperCamelCase_( lowerCamelCase_ = 1000 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
84
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Optional[int] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
84
1
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _UpperCamelCase ( __A ) -> Union[str, Any]: '''simple docstring''' return EnvironmentCommand() class lowercase_ ( a__ ): @staticmethod def __a ( a ): UpperCamelCase__ = parser.add_parser("env" ) download_parser.set_defaults(func=a ) def __a ( self ): UpperCamelCase__ = huggingface_hub.__version__ UpperCamelCase__ = "not installed" UpperCamelCase__ = "NA" if is_torch_available(): import torch UpperCamelCase__ = torch.__version__ UpperCamelCase__ = torch.cuda.is_available() UpperCamelCase__ = "not installed" if is_transformers_available(): import transformers UpperCamelCase__ = transformers.__version__ UpperCamelCase__ = "not installed" if is_accelerate_available(): import accelerate UpperCamelCase__ = accelerate.__version__ UpperCamelCase__ = "not installed" if is_xformers_available(): import xformers UpperCamelCase__ = xformers.__version__ UpperCamelCase__ = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a ) ) return info @staticmethod def __a ( a ): return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
80
"""simple docstring""" import os import numpy import onnx def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: A__ = a.name A__ = b.name A__ = "" A__ = "" A__ = a == b A__ = name_a A__ = name_b return res def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase_ , lowercase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowercase_ , lowercase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowercase_ , lowercase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: for n in graph_proto.node: _node_replace_input_with(lowercase_ , lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: A__ = list(model.graph.initializer ) A__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A__ = inits[i].name A__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: A__ = os.path.dirname(lowercase_ ) A__ = os.path.basename(lowercase_ ) A__ = onnx.load(os.path.join(lowercase_ , lowercase_ ) ) A__ = list(model.graph.initializer ) A__ = set() A__ = {} A__ = [] A__ = 0 for i in range(len(lowercase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowercase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowercase_ ) dup_set.add(lowercase_ ) A__ = inits[j].data_type A__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , lowercase_ ) total_reduced_size += mem_size A__ = inits[i].name A__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase_ ) else: A__ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 10_24 / 10_24 / 10_24 , "GB" ) A__ = sorted(lowercase_ ) _remove_dup_initializers_from_model(lowercase_ , lowercase_ , lowercase_ ) A__ = "optimized_" + model_file_name A__ = os.path.join(lowercase_ , lowercase_ ) onnx.save(lowercase_ , lowercase_ ) return new_model
247
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( A__ , A__ , unittest.TestCase ): snake_case_ = IFImgaImgSuperResolutionPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) snake_case_ = PipelineTesterMixin.required_optional_params - {"latents"} def A_ ( self : List[str] ): return self._get_superresolution_dummy_components() def A_ ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Tuple=0 ): if str(__A ).startswith('''mps''' ): snake_case_ = torch.manual_seed(__A ) else: snake_case_ = torch.Generator(device=__A ).manual_seed(__A ) snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) snake_case_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(__A ) ).to(__A ) snake_case_ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A_ ( self : int ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def A_ ( self : int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def A_ ( self : str ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def A_ ( self : int ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def A_ ( self : Any ): self._test_save_load_local() def A_ ( self : Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
351
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : int = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
72
0
'''simple docstring''' from __future__ import annotations def _A (lowerCAmelCase__ :list[list[int]] ) -> int: '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(lowerCAmelCase__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(lowerCAmelCase__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
168
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _A (lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class a : def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: pass def __UpperCAmelCase ( self ) -> Any: pass def __UpperCAmelCase ( self ) -> List[Any]: pass def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = np.abs((a - b) ).max() self.assertLessEqual(__magic_name__ , __magic_name__ , f'Difference between torch and flax is {diff} (>= {tol}).' ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Tuple: _a = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) _a = FlaxVisionTextDualEncoderModel(__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Optional[Any]: _a , _a = self.get_vision_text_model(__magic_name__ , __magic_name__ ) _a = {'vision_model': vision_model, 'text_model': text_model} _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Union[str, Any]: _a , _a = self.get_vision_text_model(__magic_name__ , __magic_name__ ) _a = {'vision_model': vision_model, 'text_model': text_model} _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) _a = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel.from_pretrained(__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) _a = after_output[0] _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1e-3 ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Any: _a , _a = self.get_vision_text_model(__magic_name__ , __magic_name__ ) _a = {'vision_model': vision_model, 'text_model': text_model} _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) _a = model( input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , output_attentions=__magic_name__ ) _a = output.vision_model_output.attentions self.assertEqual(len(__magic_name__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _a = to_atuple(vision_model.config.image_size ) _a = to_atuple(vision_model.config.patch_size ) _a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _a = output.text_model_output.attentions self.assertEqual(len(__magic_name__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: pt_model.to(__magic_name__ ) pt_model.eval() # prepare inputs _a = inputs_dict _a = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _a = pt_model(**__magic_name__ ).to_tuple() _a = fx_model(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__magic_name__ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) _a = fx_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__magic_name__ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__magic_name__ ) _a = VisionTextDualEncoderModel.from_pretrained(__magic_name__ , from_flax=__magic_name__ ) pt_model_loaded.to(__magic_name__ ) pt_model_loaded.eval() with torch.no_grad(): _a = pt_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__magic_name__ , pt_output_loaded.numpy() , 4e-2 ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: _a = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) _a = VisionTextDualEncoderModel(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel(__magic_name__ ) _a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __magic_name__ ) _a = fx_state self.check_pt_flax_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) _a = VisionTextDualEncoderModel(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel(__magic_name__ ) _a = load_flax_weights_in_pytorch_model(__magic_name__ , fx_model.params ) self.check_pt_flax_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: _a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.prepare_config_and_inputs() self.check_save_load(**__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: _a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__magic_name__ ) @is_pt_flax_cross_test def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.prepare_config_and_inputs() _a = config_inputs_dict.pop('vision_config' ) _a = config_inputs_dict.pop('text_config' ) _a = config_inputs_dict self.check_equivalence_pt_to_flax(__magic_name__ , __magic_name__ , __magic_name__ ) self.check_equivalence_flax_to_pt(__magic_name__ , __magic_name__ , __magic_name__ ) @slow def __UpperCAmelCase ( self ) -> Optional[Any]: _a , _a = self.get_pretrained_model_and_inputs() _a = model_a(**__magic_name__ ) _a = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel.from_pretrained(__magic_name__ ) _a = model_a(**__magic_name__ ) _a = after_outputs[0] _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1e-5 ) @require_flax class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): def __UpperCAmelCase ( self ) -> List[str]: _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__magic_name__ , text_from_pt=__magic_name__ , ) _a = 13 _a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a = random_attention_mask([batch_size, 4] ) _a = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = FlaxViTModel(__magic_name__ ) _a = FlaxBertModel(__magic_name__ ) return vision_model, text_model def __UpperCAmelCase ( self ) -> Optional[Any]: _a = FlaxViTModelTester(self ) _a = FlaxBertModelTester(self ) _a = vit_model_tester.prepare_config_and_inputs() _a = bert_model_tester.prepare_config_and_inputs() _a , _a = vision_config_and_inputs _a , _a , _a , _a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): def __UpperCAmelCase ( self ) -> Any: _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__magic_name__ , text_from_pt=__magic_name__ , ) _a = 13 _a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a = random_attention_mask([batch_size, 4] ) _a = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = FlaxCLIPVisionModel(__magic_name__ ) _a = FlaxBertModel(__magic_name__ ) return vision_model, text_model def __UpperCAmelCase ( self ) -> Tuple: _a = FlaxCLIPVisionModelTester(self ) _a = FlaxBertModelTester(self ) _a = clip_model_tester.prepare_config_and_inputs() _a = bert_model_tester.prepare_config_and_inputs() _a , _a = vision_config_and_inputs _a , _a , _a , _a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class a ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ) -> Tuple: _a = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) _a = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=__magic_name__ , padding=__magic_name__ , return_tensors='np' ) _a = model(**__magic_name__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _a = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __magic_name__ , atol=1e-3 ) )
168
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = min(__lowerCAmelCase ) # min() finds the minimum value _UpperCAmelCase : Any = max(__lowerCAmelCase ) # max() finds the maximum value _UpperCAmelCase : Optional[Any] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _UpperCAmelCase : Optional[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _UpperCAmelCase : Any = 0 for count in range(__lowerCAmelCase ): while holes[count] > 0: holes[count] -= 1 _UpperCAmelCase : str = count + min_val i += 1 def __lowerCAmelCase (): _UpperCAmelCase : Tuple = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__lowerCAmelCase ) print("Sorted order is:" , " ".join(__lowerCAmelCase ) ) if __name__ == "__main__": main()
361
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "timesformer" def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> Tuple: super().__init__(**__lowerCamelCase) _A : Any = image_size _A : Union[str, Any] = patch_size _A : Tuple = num_channels _A : Dict = num_frames _A : int = hidden_size _A : Union[str, Any] = num_hidden_layers _A : List[Any] = num_attention_heads _A : Optional[int] = intermediate_size _A : Union[str, Any] = hidden_act _A : List[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Tuple = initializer_range _A : Tuple = layer_norm_eps _A : str = qkv_bias _A : str = attention_type _A : Dict = drop_path_rate
11
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Any = DanceDiffusionPipeline A__ : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS A__ : List[Any] = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } A__ : Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS A__ : str = False A__ : Any = False def lowerCamelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_ = IPNDMScheduler() UpperCamelCase_ = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = DanceDiffusionPipeline(**__UpperCamelCase ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ = pipe(**__UpperCamelCase ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_ = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def lowerCamelCase_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
122
0
"""simple docstring""" import os from distutils.util import strtobool def A ( snake_case :Optional[Any] , snake_case :Tuple ) -> Tuple: for e in env_keys: __UpperCamelCase = int(os.environ.get(snake_case , -1 ) ) if val >= 0: return val return default def A ( snake_case :Optional[Any] , snake_case :Dict=False ) -> Union[str, Any]: __UpperCamelCase = os.environ.get(snake_case , str(snake_case ) ) return strtobool(snake_case ) == 1 # As its name indicates `strtobool` actually returns an int... def A ( snake_case :Union[str, Any] , snake_case :str="no" ) -> str: __UpperCamelCase = os.environ.get(snake_case , str(snake_case ) ) return value
263
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase : Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
263
1
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> bool: '''simple docstring''' __lowercase= get_failure_array(lowercase__ ) # 2) Step through text searching for pattern __lowercase, __lowercase= 0, 0 # index into text, pattern while i < len(lowercase__ ): if pattern[j] == text[i]: if j == (len(lowercase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase= failure[j - 1] continue i += 1 return False def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= [0] __lowercase= 0 __lowercase= 1 while j < len(lowercase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase= failure[i - 1] continue j += 1 failure.append(lowercase__ ) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase = '''abc1abc12''' lowerCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCAmelCase = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase = '''ABABX''' lowerCAmelCase = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCAmelCase = '''AAAB''' lowerCAmelCase = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCAmelCase = '''abcdabcy''' lowerCAmelCase = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCAmelCase = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
295
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> bool: '''simple docstring''' __lowercase= get_failure_array(lowercase__ ) # 2) Step through text searching for pattern __lowercase, __lowercase= 0, 0 # index into text, pattern while i < len(lowercase__ ): if pattern[j] == text[i]: if j == (len(lowercase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase= failure[j - 1] continue i += 1 return False def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= [0] __lowercase= 0 __lowercase= 1 while j < len(lowercase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase= failure[i - 1] continue j += 1 failure.append(lowercase__ ) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase = '''abc1abc12''' lowerCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCAmelCase = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase = '''ABABX''' lowerCAmelCase = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCAmelCase = '''AAAB''' lowerCAmelCase = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCAmelCase = '''abcdabcy''' lowerCAmelCase = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCAmelCase = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
295
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowercase = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowercase = 10 def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :list[int] , __lowerCamelCase :int ): for i in range(__lowerCamelCase , __lowerCamelCase ): if array[i] == target: return i return -1 def A (__lowerCamelCase :list[int] , __lowerCamelCase :int ): _lowerCAmelCase = 0 _lowerCAmelCase = len(__lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = (left + right) // 3 + 1 _lowerCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCAmelCase = one_third - 1 elif array[two_third] < target: _lowerCAmelCase = two_third + 1 else: _lowerCAmelCase = one_third + 1 _lowerCAmelCase = two_third - 1 else: return -1 def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :list[int] , __lowerCamelCase :int ): if left < right: if right - left < precision: return lin_search(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = (left + right) // 3 + 1 _lowerCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCamelCase , one_third - 1 , __lowerCamelCase , __lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __lowerCamelCase , __lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input("""Enter numbers separated by comma:\n""").strip() _lowercase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _lowercase = int(input("""Enter the number to be found in the list:\n""").strip()) _lowercase = ite_ternary_search(collection, target) _lowercase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("""Not found""")
229
1
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __snake_case : List[Any] = 'bert-base-cased' __snake_case : Tuple = 'fp16' __snake_case : str = 'bf16' __snake_case : Optional[int] = [FPaa, BFaa] @require_fsdp @require_cuda class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Union[str, Any]: """simple docstring""" super().setUp() __lowerCAmelCase : str = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def _SCREAMING_SNAKE_CASE ( self: int) -> Optional[Any]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Tuple = self.dist_env.copy() __lowerCAmelCase : Dict = F"""{i + 1}""" __lowerCAmelCase : Union[str, Any] = strategy with mockenv_context(**_SCREAMING_SNAKE_CASE): __lowerCAmelCase : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Union[str, Any]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = self.dist_env.copy() __lowerCAmelCase : List[str] = prefetch_policy with mockenv_context(**_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Dict = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def _SCREAMING_SNAKE_CASE ( self: int) -> Union[str, Any]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Union[str, Any] = self.dist_env.copy() __lowerCAmelCase : Optional[Any] = state_dict_type with mockenv_context(**_SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def _SCREAMING_SNAKE_CASE ( self: Dict) -> Dict: """simple docstring""" __lowerCAmelCase : List[str] = AutoModel.from_pretrained(_SCREAMING_SNAKE_CASE) for policy in FSDP_AUTO_WRAP_POLICY: __lowerCAmelCase : List[str] = self.dist_env.copy() __lowerCAmelCase : List[str] = policy if policy == "TRANSFORMER_BASED_WRAP": __lowerCAmelCase : List[str] = "BertLayer" elif policy == "SIZE_BASED_WRAP": __lowerCAmelCase : Any = "2000" with mockenv_context(**_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Dict = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_SCREAMING_SNAKE_CASE) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) __lowerCAmelCase : List[str] = self.dist_env.copy() __lowerCAmelCase : int = "TRANSFORMER_BASED_WRAP" __lowerCAmelCase : List[Any] = "T5Layer" with mockenv_context(**_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[Any] = FullyShardedDataParallelPlugin() with self.assertRaises(_SCREAMING_SNAKE_CASE) as cm: fsdp_plugin.set_auto_wrap_policy(_SCREAMING_SNAKE_CASE) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception)) __lowerCAmelCase : Any = self.dist_env.copy() __lowerCAmelCase : Any = "SIZE_BASED_WRAP" __lowerCAmelCase : str = "0" with mockenv_context(**_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_SCREAMING_SNAKE_CASE) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Union[str, Any]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __lowerCAmelCase : Union[str, Any] = self.dist_env.copy() __lowerCAmelCase : Tuple = mp_dtype with mockenv_context(**_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Any = Accelerator() if mp_dtype == "fp16": __lowerCAmelCase : Optional[Any] = torch.floataa elif mp_dtype == "bf16": __lowerCAmelCase : List[Any] = torch.bfloataa __lowerCAmelCase : int = MixedPrecision(param_dtype=_SCREAMING_SNAKE_CASE , reduce_dtype=_SCREAMING_SNAKE_CASE , buffer_dtype=_SCREAMING_SNAKE_CASE) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _SCREAMING_SNAKE_CASE) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _SCREAMING_SNAKE_CASE)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> int: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __lowerCAmelCase : Tuple = self.dist_env.copy() __lowerCAmelCase : List[Any] = str(_SCREAMING_SNAKE_CASE).lower() with mockenv_context(**_SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_SCREAMING_SNAKE_CASE)) @require_fsdp @require_multi_gpu @slow class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" super().setUp() __lowerCAmelCase : Optional[Any] = 0.82 __lowerCAmelCase : Dict = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] __lowerCAmelCase : List[Any] = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __lowerCAmelCase : Tuple = 160 __lowerCAmelCase : Any = 160 __lowerCAmelCase : Optional[Any] = inspect.getfile(accelerate.test_utils) __lowerCAmelCase : str = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"]) def _SCREAMING_SNAKE_CASE ( self: Any) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = os.path.join(self.test_scripts_folder , "test_performance.py") __lowerCAmelCase : Tuple = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: __lowerCAmelCase : Tuple = cmd.copy() for i, strategy in enumerate(_SCREAMING_SNAKE_CASE): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""") break if "fp32" in config: cmd_config.append("--mixed_precision=no") else: cmd_config.append("--mixed_precision=fp16") if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy()) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Dict: """simple docstring""" __lowerCAmelCase : List[str] = os.path.join(self.test_scripts_folder , "test_checkpointing.py") __lowerCAmelCase : List[str] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Any = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""") if strategy != "FULL_SHARD": continue __lowerCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE) for state_dict_type in FSDP_STATE_DICT_TYPE: __lowerCAmelCase : str = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""") cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy()) __lowerCAmelCase : Tuple = cmd_config[:-1] __lowerCAmelCase : List[str] = os.path.join(self.tmpdir , "epoch_0") cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy()) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py") __lowerCAmelCase : str = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __lowerCAmelCase : Dict = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"]) else: cmd_config.extend(["--mixed_precision=no"]) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"]) for i, strategy in enumerate(_SCREAMING_SNAKE_CASE): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""") break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy())
269
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _lowercase ( *__snake_case ) -> Optional[Any]: with open(__snake_case ,"r" ) as fh: fcntl.flock(__snake_case ,fcntl.LOCK_EX ) try: print(*__snake_case ) finally: fcntl.flock(__snake_case ,fcntl.LOCK_UN ) __snake_case : List[Any] = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) __snake_case : List[str] = torch.device('cuda', local_rank) __snake_case : Optional[Any] = socket.gethostname() __snake_case : str = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __snake_case : Tuple = dist.get_rank() __snake_case : Any = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
269
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
236
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart snake_case_ : Union[str, Any] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } snake_case_ : Any = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def A__ ( ): _UpperCamelCase : str = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _UpperCamelCase : Any = bs[:] _UpperCamelCase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase_ ) cs.append(2**8 + n ) n += 1 _UpperCamelCase : Any = [chr(UpperCAmelCase_ ) for n in cs] return dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Tuple = set() _UpperCamelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase : Any = char return pairs class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]="replace" ,lowerCamelCase__ : str="<s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : Any="<s>" ,lowerCamelCase__ : Tuple="<unk>" ,lowerCamelCase__ : List[str]="<pad>" ,lowerCamelCase__ : Optional[Any]="<mask>" ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : List[str] ,): '''simple docstring''' _UpperCamelCase : Dict = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else bos_token _UpperCamelCase : Tuple = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else eos_token _UpperCamelCase : Optional[int] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else sep_token _UpperCamelCase : Tuple = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else cls_token _UpperCamelCase : Union[str, Any] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else unk_token _UpperCamelCase : List[str] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : str = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,add_prefix_space=lowerCamelCase__ ,**lowerCamelCase__ ,) with open(lowerCamelCase__ ,encoding='utf-8' ) as vocab_handle: _UpperCamelCase : List[str] = json.load(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} _UpperCamelCase : Optional[Any] = errors # how to handle errors in decoding _UpperCamelCase : Tuple = bytes_to_unicode() _UpperCamelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ ,encoding='utf-8' ) as merges_handle: _UpperCamelCase : Dict = merges_handle.read().split('\n' )[1:-1] _UpperCamelCase : str = [tuple(merge.split() ) for merge in bpe_merges] _UpperCamelCase : Dict = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) _UpperCamelCase : Tuple = {} _UpperCamelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCamelCase : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def UpperCamelCase_ ( self : str ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Any ): '''simple docstring''' if token in self.cache: return self.cache[token] _UpperCamelCase : Dict = tuple(lowerCamelCase__ ) _UpperCamelCase : List[str] = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: _UpperCamelCase : List[str] = min(lowerCamelCase__ ,key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase : int = bigram _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Dict = 0 while i < len(lowerCamelCase__ ): try: _UpperCamelCase : int = word.index(lowerCamelCase__ ,lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCamelCase : Dict = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase : int = tuple(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = new_word if len(lowerCamelCase__ ) == 1: break else: _UpperCamelCase : Any = get_pairs(lowerCamelCase__ ) _UpperCamelCase : int = ' '.join(lowerCamelCase__ ) _UpperCamelCase : List[Any] = word return word def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : int = [] for token in re.findall(self.pat ,lowerCamelCase__ ): _UpperCamelCase : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(' ' ) ) return bpe_tokens def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : List[Any] ): '''simple docstring''' return self.encoder.get(lowerCamelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : int ): '''simple docstring''' return self.decoder.get(lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : Dict = ''.join(lowerCamelCase__ ) _UpperCamelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCamelCase : List[Any] = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _UpperCamelCase : Union[str, Any] = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase__ ,ensure_ascii=lowerCamelCase__ ) + '\n' ) _UpperCamelCase : Optional[Any] = 0 with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) _UpperCamelCase : int = token_index writer.write(' '.join(lowerCamelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] _UpperCamelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Tuple = [self.sep_token_id] _UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Tuple = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): _UpperCamelCase : List[str] = ' ' + text return (text, kwargs)
236
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) _snake_case : Dict = 'The Nymphenburg Palace is a beautiful palace in Munich!' def A__ ( UpperCamelCase , UpperCamelCase ): A = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1E-5, "token_type_vocab_size": 2, } A = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py A = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=UpperCamelCase , output_all_encodings=UpperCamelCase , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , UpperCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later A = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab A = os.path.join(get_home_dir() , "models" ) A = _load_vocab(UpperCamelCase , UpperCamelCase , UpperCamelCase , cls=UpperCamelCase ) A = nlp.model.BERTModel( UpperCamelCase , len(UpperCamelCase ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=UpperCamelCase , use_token_type_embed=UpperCamelCase , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=UpperCamelCase , use_decoder=UpperCamelCase , ) original_bort.load_parameters(UpperCamelCase , cast_dtype=UpperCamelCase , ignore_extra=UpperCamelCase ) A = original_bort._collect_params_with_prefix() # Build our config 🤗 A = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(UpperCamelCase ), } A = BertConfig.from_dict(UpperCamelCase ) A = BertForMaskedLM(UpperCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(UpperCamelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(UpperCamelCase , UpperCamelCase ): A = hf_param.shape A = to_torch(params[gluon_param] ) A = gluon_param.shape assert ( shape_hf == shape_gluon ), F"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param A = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) A = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) A = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) A = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) A = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): A = hf_bort_model.bert.encoder.layer[i] # self attention A = layer.attention.self A = check_and_map_params( self_attn.key.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) A = check_and_map_params( self_attn.key.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) A = check_and_map_params( self_attn.query.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) A = check_and_map_params( self_attn.query.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) A = check_and_map_params( self_attn.value.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) A = check_and_map_params( self_attn.value.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output A = layer.attention.output A = check_and_map_params( self_output.dense.bias , F"encoder.transformer_cells.{i}.proj.bias" ) A = check_and_map_params( self_output.dense.weight , F"encoder.transformer_cells.{i}.proj.weight" ) A = check_and_map_params( self_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.layer_norm.beta" ) A = check_and_map_params( self_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate A = layer.intermediate A = check_and_map_params( intermediate.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) A = check_and_map_params( intermediate.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output A = layer.output A = check_and_map_params( bert_output.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) A = check_and_map_params( bert_output.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) A = check_and_map_params( bert_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) A = check_and_map_params( bert_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models A = RobertaTokenizer.from_pretrained("roberta-base" ) A = tokenizer.encode_plus(UpperCamelCase )["input_ids"] # Get gluon output A = mx.nd.array([input_ids] ) A = original_bort(inputs=UpperCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(UpperCamelCase ) A = BertModel.from_pretrained(UpperCamelCase ) hf_bort_model.eval() A = tokenizer.encode_plus(UpperCamelCase , return_tensors="pt" ) A = hf_bort_model(**UpperCamelCase )[0] A = output_gluon[0].asnumpy() A = output_hf[0].detach().numpy() A = np.max(np.abs(hf_layer - gluon_layer ) ).item() A = np.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , UpperCamelCase ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : Union[str, Any] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
292
"""simple docstring""" def A__ ( UpperCamelCase ): A = generate_pascal_triangle(UpperCamelCase ) for row_idx in range(UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def A__ ( UpperCamelCase ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A = [] for current_row_idx in range(UpperCamelCase ): A = populate_current_row(UpperCamelCase , UpperCamelCase ) triangle.append(UpperCamelCase ) return triangle def A__ ( UpperCamelCase , UpperCamelCase ): A = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A, A = 1, 1 for current_col_idx in range(1 , UpperCamelCase ): calculate_current_element( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return current_row def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): A = triangle[current_row_idx - 1][current_col_idx - 1] A = triangle[current_row_idx - 1][current_col_idx] A = above_to_left_elt + above_to_right_elt def A__ ( UpperCamelCase ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A = [[1]] for row_index in range(1 , UpperCamelCase ): A = [0] + result[-1] + [0] A = row_index + 1 # Calculate the number of distinct elements in a row A = sum(divmod(UpperCamelCase , 2 ) ) A = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A = row_first_half + row_second_half result.append(UpperCamelCase ) return result def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase , UpperCamelCase ) -> None: A = F"{func.__name__}({value})" A = timeit(F"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCamelCase , UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
292
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCAmelCase : '''simple docstring''' @property def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" return self.get_dummy_input() @property def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase ( self : Tuple , __a : List[str]=True , __a : Any=False , __a : List[Any]=False , __a : Any=False , ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = 4 __lowercase : Optional[Any] = 32 __lowercase : int = (32, 32) __lowercase : List[str] = torch.manual_seed(0 ) __lowercase : str = torch.device(__a ) __lowercase : Optional[int] = (batch_size, num_channels) + sizes __lowercase : Tuple = randn_tensor(__a , generator=__a , device=__a ) __lowercase : Dict = {"""hidden_states""": hidden_states} if include_temb: __lowercase : Union[str, Any] = 128 __lowercase : Optional[Any] = randn_tensor((batch_size, temb_channels) , generator=__a , device=__a ) if include_res_hidden_states_tuple: __lowercase : List[str] = torch.manual_seed(1 ) __lowercase : Optional[int] = (randn_tensor(__a , generator=__a , device=__a ),) if include_encoder_hidden_states: __lowercase : Any = floats_tensor((batch_size, 32, 32) ).to(__a ) if include_skip_sample: __lowercase : int = randn_tensor(((batch_size, 3) + sizes) , generator=__a , device=__a ) return dummy_input def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : List[Any] = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": __lowercase : Optional[int] = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) __lowercase : str = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : Tuple , __a : Any ) -> int: """simple docstring""" __lowercase , __lowercase : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() __lowercase : Tuple = self.block_class(**__a ) unet_block.to(__a ) unet_block.eval() with torch.no_grad(): __lowercase : Dict = unet_block(**__a ) if isinstance(__a , __a ): __lowercase : Union[str, Any] = output[0] self.assertEqual(output.shape , self.output_shape ) __lowercase : Dict = output[0, -1, -3:, -3:] __lowercase : Union[str, Any] = torch.tensor(__a ).to(__a ) assert torch_all_close(output_slice.flatten() , __a , atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase , __lowercase : str = self.prepare_init_args_and_inputs_for_common() __lowercase : List[Any] = self.block_class(**__a ) model.to(__a ) model.train() __lowercase : List[Any] = model(**__a ) if isinstance(__a , __a ): __lowercase : int = output[0] __lowercase : Dict = torch.device(__a ) __lowercase : Union[str, Any] = randn_tensor(output.shape , device=__a ) __lowercase : Tuple = torch.nn.functional.mse_loss(__a , __a ) loss.backward()
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0
'''simple docstring''' def _A ( A__ = 3 , A__ = 7 , A__ = 1000000 ): """simple docstring""" __lowercase = 0 __lowercase = 1 for current_denominator in range(1 , limit + 1 ): __lowercase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowercase = current_numerator __lowercase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
104
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase__ ( a__ : Dataset , a__ : Dict[str, str] ) -> int: UpperCamelCase_ = args.log_outputs UpperCamelCase_ = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCamelCase_ = load_metric("""wer""" ) UpperCamelCase_ = load_metric("""cer""" ) # compute metrics UpperCamelCase_ = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) UpperCamelCase_ = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results UpperCamelCase_ = f'''WER: {wer_result}\nCER: {cer_result}''' print(a__ ) with open(f'''{dataset_id}_eval_results.txt''' , """w""" ) as f: f.write(a__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase_ = f'''log_{dataset_id}_predictions.txt''' UpperCamelCase_ = f'''log_{dataset_id}_targets.txt''' with open(a__ , """w""" ) as p, open(a__ , """w""" ) as t: # mapping function to write output def write_to_file(a__ : List[str] , a__ : Any ): p.write(f'''{i}''' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'''{i}''' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(a__ , with_indices=a__ ) def lowerCamelCase__ ( a__ : str ) -> str: UpperCamelCase_ = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase_ = re.sub(a__ , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase_ = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCamelCase_ = """ """.join(text.split(a__ ) ) return text def lowerCamelCase__ ( a__ : Optional[int] ) -> Union[str, Any]: # load dataset UpperCamelCase_ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=a__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase_ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase_ = feature_extractor.sampling_rate # resample audio UpperCamelCase_ = dataset.cast_column("""audio""" , Audio(sampling_rate=a__ ) ) # load eval pipeline if args.device is None: UpperCamelCase_ = 0 if torch.cuda.is_available() else -1 UpperCamelCase_ = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(a__ : Optional[Any] ): UpperCamelCase_ = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCamelCase_ = prediction["""text"""] UpperCamelCase_ = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCamelCase_ = dataset.map(a__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(a__ , a__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) _A = parser.parse_args() main(args)
261
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( a__ : Dict ) -> List[Any]: UpperCamelCase_ = {} UpperCamelCase_ = tokenizer(example["""content"""] , truncation=a__ )["""input_ids"""] UpperCamelCase_ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output _A = HfArgumentParser(PretokenizationArguments) _A = parser.parse_args() if args.num_workers is None: _A = multiprocessing.cpu_count() _A = AutoTokenizer.from_pretrained(args.tokenizer_dir) _A = time.time() _A = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') _A = time.time() _A = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') _A = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
261
1
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : List[str] ): # noqa: E741 '''simple docstring''' while r - l > 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] =(l + r) // 2 if v[m] >= key: SCREAMING_SNAKE_CASE__ : List[Any] =m else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =m # noqa: E741 return r def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if len(UpperCamelCase__ ) == 0: return 0 SCREAMING_SNAKE_CASE__ : List[Any] =[0] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =1 SCREAMING_SNAKE_CASE__ : Optional[int] =v[0] for i in range(1, len(UpperCamelCase__ ) ): if v[i] < tail[0]: SCREAMING_SNAKE_CASE__ : Tuple =v[i] elif v[i] > tail[length - 1]: SCREAMING_SNAKE_CASE__ : Tuple =v[i] length += 1 else: SCREAMING_SNAKE_CASE__ : List[Any] =v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
152
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class lowerCamelCase_( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def snake_case__ ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ): if tokenize_kwargs is None: _lowerCamelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) _lowerCamelCase = truncation _lowerCamelCase = tokenize_kwargs _lowerCamelCase = {} if return_tensors is not None: _lowerCamelCase = return_tensors return preprocess_params, {}, postprocess_params def snake_case__ ( self , lowerCamelCase__ , **lowerCamelCase__ ): _lowerCamelCase = self.framework _lowerCamelCase = self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) return model_inputs def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = self.model(**lowerCamelCase__ ) return model_outputs def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ): return super().__call__(*lowerCamelCase__ , **lowerCamelCase__ )
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = self.dummy_uncond_unet lowercase__ = ScoreSdeVeScheduler() lowercase__ = ScoreSdeVePipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) sde_ve.to(UpperCamelCase ) sde_ve.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase ).images lowercase__ = torch.manual_seed(0 ) lowercase__ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase , return_dict=UpperCamelCase )[ 0 ] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''google/ncsnpp-church-256''' lowercase__ = UNetaDModel.from_pretrained(UpperCamelCase ) lowercase__ = ScoreSdeVeScheduler.from_pretrained(UpperCamelCase ) lowercase__ = ScoreSdeVePipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) sde_ve.to(UpperCamelCase ) sde_ve.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=UpperCamelCase ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
2
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=13, lowerCamelCase__=7, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=99, lowerCamelCase__=32, lowerCamelCase__=5, lowerCamelCase__=4, lowerCamelCase__=37, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=16, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=4, ): A : List[str] = parent A : Optional[int] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : List[str] = use_attention_mask A : Union[str, Any] = use_token_type_ids A : Any = use_labels A : str = vocab_size A : Union[str, Any] = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : Optional[int] = intermediate_size A : Optional[Any] = hidden_act A : Dict = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : int = type_vocab_size A : str = type_sequence_label_size A : List[Any] = initializer_range A : str = num_choices def _lowerCAmelCase ( self ): A : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : Union[str, Any] = None if self.use_attention_mask: A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) A : int = None if self.use_token_type_ids: A : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) A : Optional[int] = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase__, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self ): A : Dict = self.prepare_config_and_inputs() A , A , A , A : str = config_and_inputs A : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self ): A : Dict = FlaxAlbertModelTester(self ) @slow def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: A : Dict = model_class_name.from_pretrained("""albert-base-v2""" ) A : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): A : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) A : List[str] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A : Optional[int] = model(lowerCamelCase__, attention_mask=lowerCamelCase__ )[0] A : str = (1, 11, 768) self.assertEqual(output.shape, lowerCamelCase__ ) A : Optional[int] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], lowerCamelCase__, atol=1e-4 ) )
116
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
116
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''input_values''', '''attention_mask'''] def __init__( self : Optional[Any] , _A : int = 1 , _A : int = 16_000 , _A : float = 0.0 , _A : bool = False , _A : int = 80 , _A : int = 16 , _A : int = 64 , _A : str = "hann_window" , _A : float = 1.0 , _A : float = 80 , _A : float = 7_600 , _A : float = 1E-10 , _A : int = 2 , _A : bool = True , **_A : int , ) -> Union[str, Any]: """simple docstring""" super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) lowercase : str = do_normalize lowercase : int = return_attention_mask lowercase : Union[str, Any] = num_mel_bins lowercase : Union[str, Any] = hop_length lowercase : Dict = win_length lowercase : Union[str, Any] = win_function lowercase : int = frame_signal_scale lowercase : Dict = fmin lowercase : Optional[Any] = fmax lowercase : str = mel_floor lowercase : Dict = reduction_factor lowercase : List[Any] = win_length * sampling_rate // 1_000 lowercase : Union[str, Any] = hop_length * sampling_rate // 1_000 lowercase : Optional[Any] = optimal_fft_length(self.sample_size ) lowercase : Dict = (self.n_fft // 2) + 1 lowercase : Any = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A ) lowercase : Dict = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[int] = np.array(_A , np.intaa ) lowercase : Dict = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : List[str] = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __a ( self : Any , _A : np.ndarray , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = spectrogram( _A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : List[Any] , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , **_A : Tuple , ) -> BatchFeature: """simple docstring""" if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: lowercase : Any = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) else: lowercase : Any = None if audio_target is not None: lowercase : Tuple = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) if inputs is None: return inputs_target else: lowercase : Any = inputs_target['''input_values'''] lowercase : Dict = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase : Union[str, Any] = decoder_attention_mask return inputs def __a ( self : List[Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = False , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , **_A : Any , ) -> BatchFeature: """simple docstring""" lowercase : Optional[int] = isinstance(_A , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : int = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : Optional[int] = [np.asarray(_A , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[str] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase : List[str] = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : Union[str, Any] = [speech] # needed to make pad() work on spectrogram inputs lowercase : Any = self.feature_size # convert into correct format for padding if is_target: lowercase : int = [self._extract_mel_features(_A ) for waveform in speech] lowercase : Any = BatchFeature({'''input_values''': features} ) lowercase : Optional[Any] = self.num_mel_bins else: lowercase : Optional[Any] = BatchFeature({'''input_values''': speech} ) lowercase : Optional[int] = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) lowercase : str = feature_size_hack # convert input values to correct format lowercase : List[Any] = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): lowercase : List[str] = [np.asarray(_A , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_A , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase : List[str] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase : Optional[Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase : int = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase : Union[str, Any] = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase : Any = ( attention_mask if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase : Optional[int] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_A , padding_value=self.padding_value ) if return_tensors is not None: lowercase : Tuple = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase : Optional[int] = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
116
1
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __snake_case = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Tuple = 'maskformer' A_ : str = {'hidden_size': 'mask_feature_size'} A_ : Optional[Any] = ['resnet', 'swin'] A_ : int = ['detr'] def __init__( self , __UpperCAmelCase = 256 , __UpperCAmelCase = 256 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 20.0 , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[int]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = backbone_config.pop('''model_type''' ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _a = DetrConfig() else: # verify that the decoder is supported _a = ( decoder_config.pop('''model_type''' ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = CONFIG_MAPPING[decoder_type] _a = config_class.from_dict(__UpperCAmelCase ) _a = backbone_config _a = decoder_config # main feature dimension for the model _a = fpn_feature_size _a = mask_feature_size # initializer _a = init_std _a = init_xavier_std # Hungarian matcher && loss _a = cross_entropy_weight _a = dice_weight _a = mask_weight _a = use_auxiliary_loss _a = no_object_weight _a = output_auxiliary_logits _a = self.decoder_config.encoder_attention_heads _a = self.decoder_config.num_hidden_layers super().__init__(**__UpperCAmelCase ) @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: return cls( backbone_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , **__UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Dict[str, any]: _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.decoder_config.to_dict() _a = self.__class__.model_type return output
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase : Optional[int] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
280
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> None: __A : int = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a ) == len(a ), F"""{len(a )} != {len(a )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCAmelCase : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCAmelCase : Optional[int] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE ( a , a ) -> Dict: try: __A : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(a ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> List[int]: if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(a ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE ( a , a = "student" , a = None , a = None , a=False , a=None , a=None , **a , ) -> Tuple[PreTrainedModel, List[int], List[int]]: __A : List[str] = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(a , a ): AutoTokenizer.from_pretrained(a ).save_pretrained(a ) # purely for convenience __A : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(a ).eval() else: assert isinstance(a , a ), F"""teacher must be a model or string got type {type(a )}""" __A : int = teacher.config.to_diff_dict() try: __A , __A : List[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __A : str = teacher_e if d is None: __A : List[Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): __A , __A : List[Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __A , __A : Optional[int] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __A : int = teacher_e if d is None: __A : Optional[Any] = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a ) # Copy weights __A : Dict = teacher.config_class(**a ) __A : int = AutoModelForSeqaSeqLM.from_config(a ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __A : Any = student.load_state_dict(teacher.state_dict() , strict=a ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __A , __A : Optional[int] = list(range(a ) ), list(range(a ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(a ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) if d_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) try: if hasattr( a , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a ) copy_layers(teacher.decoder.block , student.decoder.block , a ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) __A : Optional[int] = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(a ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
280
1
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=24 , A_=2 , A_=6 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.0_2 , A_=3 , A_=None , A_=1000 , ) -> Union[str, Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = scope lowerCAmelCase = range_bbox def __snake_case ( self ) -> List[Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __snake_case ( self ) -> int: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> int: lowerCAmelCase = LiltModel(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ ) lowerCAmelCase = model(A_ , bbox=A_ , token_type_ids=A_ ) lowerCAmelCase = model(A_ , bbox=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Union[str, Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = LiltForTokenClassification(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: lowerCAmelCase = LiltForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) = config_and_inputs lowerCAmelCase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase : Union[str, Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Optional[int] = False UpperCAmelCase : Dict = False def __snake_case ( self , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: return True def __snake_case ( self ) -> int: lowerCAmelCase = LiltModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __snake_case ( self ) -> Any: self.config_tester.run_common_tests() def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*A_ ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def __snake_case ( self ) -> Union[str, Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = LiltModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @slow class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> Tuple: lowerCAmelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(A_ ) lowerCAmelCase = torch.tensor([[1, 2]] , device=A_ ) lowerCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A_ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(input_ids=A_ , bbox=A_ ) lowerCAmelCase = torch.Size([1, 2, 768] ) lowerCAmelCase = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=A_ , ) self.assertTrue(outputs.last_hidden_state.shape , A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A_ , atol=1e-3 ) )
366
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : list ) -> list: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(_SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> bool: lowerCAmelCase = False if low == high: return swapped lowerCAmelCase = low lowerCAmelCase = high while left < right: if collection[left] > collection[right]: lowerCAmelCase, lowerCAmelCase = ( collection[right], collection[left], ) lowerCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowerCAmelCase, lowerCAmelCase = ( collection[right + 1], collection[left], ) lowerCAmelCase = True lowerCAmelCase = low + int((high - low) / 2 ) lowerCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap lowerCAmelCase = True while is_not_sorted is True: lowerCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
187
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = LEDTokenizer _SCREAMING_SNAKE_CASE = LEDTokenizerFast _SCREAMING_SNAKE_CASE = True def _snake_case ( self ) -> Union[str, Any]: super().setUp() lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase ) ) def _snake_case ( self , **lowercase ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , lowercase ) -> Optional[Any]: return "lower newer", "lower newer" @cached_property def _snake_case ( self ) -> Any: return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def _snake_case ( self ) -> Optional[Any]: return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def _snake_case ( self ) -> Tuple: lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCAmelCase = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(lowercase , max_length=len(lowercase ) , padding=lowercase , return_tensors="""pt""" ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowercase , lowercase ) @require_torch def _snake_case ( self ) -> List[str]: lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , lowercase ) self.assertIn("""attention_mask""" , lowercase ) self.assertNotIn("""labels""" , lowercase ) self.assertNotIn("""decoder_attention_mask""" , lowercase ) @require_torch def _snake_case ( self ) -> str: lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(text_target=lowercase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def _snake_case ( self ) -> Optional[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=lowercase , truncation=lowercase , return_tensors="""pt""" ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def _snake_case ( self ) -> str: lowerCAmelCase = ["""A long paragraph for summarization."""] lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(lowercase , return_tensors="""pt""" ) lowerCAmelCase = tokenizer(text_target=lowercase , return_tensors="""pt""" ) lowerCAmelCase = inputs["""input_ids"""] lowerCAmelCase = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _snake_case ( self ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = ["""Summary of the text.""", """Another summary."""] lowerCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCAmelCase = tokenizer(lowercase , padding=lowercase ) lowerCAmelCase = [[0] * len(lowercase ) for x in encoded_output["""input_ids"""]] lowerCAmelCase = tokenizer.pad(lowercase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , lowercase ) def _snake_case ( self ) -> Optional[Any]: pass def _snake_case ( self ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCAmelCase = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCAmelCase = """A, <mask> AllenNLP sentence.""" lowerCAmelCase = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) lowerCAmelCase = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
46
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return [ord(SCREAMING_SNAKE_CASE ) - 96 for elem in plain] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , SCREAMING_SNAKE_CASE ) print("""Decoded:""" , decode(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
46
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase : Dict = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = to_pil_image(_lowerCAmelCase ) lowercase : Optional[int] = pil_image.size lowercase : int = pytesseract.image_to_data(_lowerCAmelCase , lang=_lowerCAmelCase , output_type="""dict""" , config=_lowerCAmelCase ) lowercase : List[Any] = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates lowercase : Optional[Any] = [idx for idx, word in enumerate(_lowerCAmelCase ) if not word.strip()] lowercase : Dict = [word for idx, word in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] lowercase : List[str] = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] lowercase : Union[str, Any] = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] lowercase : int = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] lowercase : List[Any] = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple = [] for x, y, w, h in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase : Optional[int] = [x, y, x + w, y + h] actual_boxes.append(_lowerCAmelCase ) # finally, normalize the bounding boxes lowercase : List[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __snake_case ( _a ): _a : Any= ["pixel_values"] def __init__( self ,snake_case = True ,snake_case = None ,snake_case = PILImageResampling.BILINEAR ,snake_case = True ,snake_case = 1 / 255 ,snake_case = True ,snake_case = None ,snake_case = None ,snake_case = True ,snake_case = None ,snake_case = "" ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case_ ) lowercase : Tuple = size if size is not None else {"""height""": 224, """width""": 224} lowercase : Union[str, Any] = get_size_dict(snake_case_ ) lowercase : Optional[Any] = do_resize lowercase : Tuple = size lowercase : Tuple = resample lowercase : Any = do_rescale lowercase : str = rescale_value lowercase : Union[str, Any] = do_normalize lowercase : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : str = apply_ocr lowercase : Tuple = ocr_lang lowercase : Tuple = tesseract_config def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = PILImageResampling.BILINEAR ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : Optional[Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) lowercase : str = (size["""height"""], size["""width"""]) return resize(snake_case_ ,size=snake_case_ ,resample=snake_case_ ,data_format=snake_case_ ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = None ,**snake_case ,): '''simple docstring''' return rescale(snake_case_ ,scale=snake_case_ ,data_format=snake_case_ ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = None ,**snake_case ,): '''simple docstring''' return normalize(snake_case_ ,mean=snake_case_ ,std=snake_case_ ,data_format=snake_case_ ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case=None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = ChannelDimension.FIRST ,**snake_case ,): '''simple docstring''' lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Tuple = size if size is not None else self.size lowercase : Tuple = get_size_dict(snake_case_ ) lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowercase : Any = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : List[str] = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : Dict = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. lowercase : List[Any] = [to_numpy_array(snake_case_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self ,"""pytesseract""" ) lowercase : Optional[int] = [] lowercase : Dict = [] for image in images: lowercase : List[str] = apply_tesseract(snake_case_ ,snake_case_ ,snake_case_ ) words_batch.append(snake_case_ ) boxes_batch.append(snake_case_ ) if do_resize: lowercase : Tuple = [self.resize(image=snake_case_ ,size=snake_case_ ,resample=snake_case_ ) for image in images] if do_rescale: lowercase : str = [self.rescale(image=snake_case_ ,scale=snake_case_ ) for image in images] if do_normalize: lowercase : Optional[int] = [self.normalize(image=snake_case_ ,mean=snake_case_ ,std=snake_case_ ) for image in images] lowercase : List[str] = [to_channel_dimension_format(snake_case_ ,snake_case_ ) for image in images] lowercase : Optional[int] = BatchFeature(data={"""pixel_values""": images} ,tensor_type=snake_case_ ) if apply_ocr: lowercase : Tuple = words_batch lowercase : Union[str, Any] = boxes_batch return data
371
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Optional[int]= None _a : Optional[Any]= BloomTokenizerFast _a : Tuple= BloomTokenizerFast _a : str= True _a : Optional[int]= False _a : List[Any]= "tokenizer_file" _a : List[Any]= {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Optional[Any] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.get_rust_tokenizer() lowercase : List[str] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] lowercase : Optional[int] = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase : Any = tokenizer.batch_encode_plus(snake_case )["""input_ids"""] self.assertListEqual(snake_case ,snake_case ) lowercase : Optional[int] = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase : Dict = self.rust_tokenizer_class.from_pretrained(snake_case ,**snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase : Dict = """This is a simple input""" lowercase : Tuple = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase : Dict = ("""This is a simple input""", """This is a pair""") lowercase : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase : Optional[int] = None # Hotfixing padding = None self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.get_rust_tokenizer() lowercase : List[str] = load_dataset("""xnli""" ,"""all_languages""" ,split="""test""" ,streaming=snake_case ) lowercase : Optional[Any] = next(iter(snake_case ) )["""premise"""] # pick up one data lowercase : str = list(sample_data.values() ) lowercase : Optional[int] = list(map(tokenizer.encode ,snake_case ) ) lowercase : Dict = [tokenizer.decode(snake_case ,clean_up_tokenization_spaces=snake_case ) for x in output_tokens] self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
285
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowercase_ : List[str] = 'pytorch_model.bin' lowercase_ : Any = 'pytorch_model.bin.index.json' lowercase_ : Optional[int] = 'adapter_config.json' lowercase_ : Optional[Any] = 'adapter_model.bin' lowercase_ : Optional[Any] = 'adapter_model.safetensors' lowercase_ : Dict = 'tf_model.h5' lowercase_ : Union[str, Any] = 'tf_model.h5.index.json' lowercase_ : List[str] = 'model.ckpt' lowercase_ : List[Any] = 'flax_model.msgpack' lowercase_ : List[str] = 'flax_model.msgpack.index.json' lowercase_ : Dict = 'model.safetensors' lowercase_ : str = 'model.safetensors.index.json' lowercase_ : Tuple = 'config.json' lowercase_ : int = 'preprocessor_config.json' lowercase_ : Union[str, Any] = FEATURE_EXTRACTOR_NAME lowercase_ : Optional[int] = 'generation_config.json' lowercase_ : Tuple = 'modelcard.json' lowercase_ : Dict = '▁' lowercase_ : Tuple = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowercase_ : List[Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowercase_ : Union[str, Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowercase_ : Optional[int] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' if version.parse(snake_case_ ) < version.parse(snake_case_ ): if "dev" in min_version: _UpperCAmelCase = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: _UpperCAmelCase = f"""This example requires a minimum version of {min_version},""" error_message += f""" but the version found is {__version__}.\n""" raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
133
lowercase_ : Optional[int] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase_ : list[bool | None] = [None] * 10_00_00_00 lowercase_ : Optional[int] = True lowercase_ : str = False def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCAmelCase = chain(next_number(snake_case_ ) ) _UpperCAmelCase = number_chain while number < 1000_0000: _UpperCAmelCase = number_chain number *= 10 return number_chain def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000_0000 ): '''simple docstring''' for i in range(1 , snake_case_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
133
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase = """pt""" elif is_tf_available(): _lowerCamelCase = """tf""" else: _lowerCamelCase = """jax""" class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : List[Any] =PerceiverTokenizer __A : str =False def UpperCamelCase__ ( self ): super().setUp() UpperCAmelCase_ : Any = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase__ ( self ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def UpperCamelCase__ ( self ,**_snake_case ): return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case=False ,_snake_case=20 ,_snake_case=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCAmelCase_ : Tuple = [] for i in range(len(_snake_case ) ): try: UpperCAmelCase_ : Any = tokenizer.decode([i] ,clean_up_tokenization_spaces=_snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase_ : Optional[int] = list(filter(lambda _snake_case : re.match(R"^[ a-zA-Z]+$" ,t[1] ) ,_snake_case ) ) UpperCAmelCase_ : Optional[Any] = list(filter(lambda _snake_case : [t[0]] == tokenizer.encode(t[1] ,add_special_tokens=_snake_case ) ,_snake_case ) ) if max_length is not None and len(_snake_case ) > max_length: UpperCAmelCase_ : Dict = toks[:max_length] if min_length is not None and len(_snake_case ) < min_length and len(_snake_case ) > 0: while len(_snake_case ) < min_length: UpperCAmelCase_ : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ : Dict = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ : Optional[int] = tokenizer.decode(_snake_case ,clean_up_tokenization_spaces=_snake_case ) if " " not in output_txt and len(_snake_case ) > 1: UpperCAmelCase_ : List[str] = ( tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=_snake_case ) + " " + tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=_snake_case ) ) if with_prefix_space: UpperCAmelCase_ : int = " " + output_txt UpperCAmelCase_ : Optional[Any] = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) return output_txt, output_ids def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.perceiver_tokenizer UpperCAmelCase_ : Optional[int] = "Unicode €." UpperCAmelCase_ : int = tokenizer(_snake_case ) UpperCAmelCase_ : str = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded["input_ids"] ,_snake_case ) # decoding UpperCAmelCase_ : Any = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case ,"[CLS]Unicode €.[SEP]" ) UpperCAmelCase_ : Any = tokenizer("e è é ê ë" ) UpperCAmelCase_ : int = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded["input_ids"] ,_snake_case ) # decoding UpperCAmelCase_ : List[Any] = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case ,"[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) ,"[CLS]e è é ê ë[SEP]" ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.perceiver_tokenizer UpperCAmelCase_ : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off UpperCAmelCase_ : Union[str, Any] = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on UpperCAmelCase_ : int = tokenizer(_snake_case ,padding=_snake_case ,return_tensors=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) if FRAMEWORK != "jax": UpperCAmelCase_ : Tuple = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase_ : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_snake_case ,_snake_case ) self.assertEqual((2, 38) ,batch.input_ids.shape ) self.assertEqual((2, 38) ,batch.attention_mask.shape ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.perceiver_tokenizer UpperCAmelCase_ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase_ : int = tokenizer(_snake_case ,padding=_snake_case ,return_tensors=_snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" ,_snake_case ) self.assertIn("attention_mask" ,_snake_case ) self.assertNotIn("decoder_input_ids" ,_snake_case ) self.assertNotIn("decoder_attention_mask" ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.perceiver_tokenizer UpperCAmelCase_ : List[str] = [ "Summary of the text.", "Another summary.", ] UpperCAmelCase_ : List[str] = tokenizer( text_target=_snake_case ,max_length=32 ,padding="max_length" ,truncation=_snake_case ,return_tensors=_snake_case ) self.assertEqual(32 ,targets["input_ids"].shape[1] ) def UpperCamelCase__ ( self ): # safety check on max_len default value so we are sure the test works UpperCAmelCase_ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test UpperCAmelCase_ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ : str = tempfile.mkdtemp() UpperCAmelCase_ : Any = " He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ : List[str] = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) UpperCAmelCase_ : Union[str, Any] = tokenizer.__class__.from_pretrained(_snake_case ) UpperCAmelCase_ : int = after_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) shutil.rmtree(_snake_case ) UpperCAmelCase_ : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ : List[str] = tempfile.mkdtemp() UpperCAmelCase_ : int = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) UpperCAmelCase_ : List[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ : Tuple = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) UpperCAmelCase_ : Optional[Any] = tokenizer.__class__.from_pretrained(_snake_case ) UpperCAmelCase_ : int = after_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) self.assertIn("new_additional_special_token" ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) UpperCAmelCase_ : str = tokenizer.__class__.from_pretrained(_snake_case ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case ) with open(os.path.join(_snake_case ,"special_tokens_map.json" ) ,encoding="utf-8" ) as json_file: UpperCAmelCase_ : List[str] = json.load(_snake_case ) with open(os.path.join(_snake_case ,"tokenizer_config.json" ) ,encoding="utf-8" ) as json_file: UpperCAmelCase_ : Any = json.load(_snake_case ) UpperCAmelCase_ : Optional[Any] = [f'''<extra_id_{i}>''' for i in range(1_25 )] UpperCAmelCase_ : Tuple = added_tokens_extra_ids + [ "an_additional_special_token" ] UpperCAmelCase_ : Any = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_snake_case ,"special_tokens_map.json" ) ,"w" ,encoding="utf-8" ) as outfile: json.dump(_snake_case ,_snake_case ) with open(os.path.join(_snake_case ,"tokenizer_config.json" ) ,"w" ,encoding="utf-8" ) as outfile: json.dump(_snake_case ,_snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ : List[str] = tokenizer_class.from_pretrained( _snake_case ,) self.assertIn( "an_additional_special_token" ,tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) ,) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ : Union[str, Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" ,lstrip=_snake_case )] UpperCAmelCase_ : Optional[int] = tokenizer_class.from_pretrained( _snake_case ,additional_special_tokens=_snake_case ,) self.assertIn("a_new_additional_special_token" ,tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] ,tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) ,) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) ,"�" ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCAmelCase_ : Any = self.get_tokenizers(fast=_snake_case ,do_lower_case=_snake_case ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase_ : Optional[Any] = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] UpperCAmelCase_ : Any = tokenizer.convert_tokens_to_string(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case )
353
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" if gpta_config_file == "": UpperCAmelCase_ : List[str] = GPTaConfig() else: UpperCAmelCase_ : int = GPTaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = GPTaModel(_SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCAmelCase_ : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase_ : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
67
0
'''simple docstring''' from collections.abc import Generator from math import sin def _A (lowerCAmelCase__ :bytes ) -> bytes: '''simple docstring''' if len(lowerCAmelCase__ ) != 32: raise ValueError('Input must be of length 32' ) _a = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A (lowerCAmelCase__ :int ) -> bytes: '''simple docstring''' if i < 0: raise ValueError('Input must be non-negative' ) _a = format(lowerCAmelCase__ , '08x' )[-8:] _a = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A (lowerCAmelCase__ :bytes ) -> bytes: '''simple docstring''' _a = B'' for char in message: bit_string += format(lowerCAmelCase__ , '08b' ).encode('utf-8' ) _a = format(len(lowerCAmelCase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCAmelCase__ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A (lowerCAmelCase__ :bytes ) -> Generator[list[int], None, None]: '''simple docstring''' if len(lowerCAmelCase__ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowerCAmelCase__ ) , 5_12 ): _a = bit_string[pos : pos + 5_12] _a = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' if i < 0: raise ValueError('Input must be non-negative' ) _a = format(lowerCAmelCase__ , '032b' ) _a = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCAmelCase__ , 2 ) def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (a + b) % 2**32 def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A (lowerCAmelCase__ :bytes ) -> bytes: '''simple docstring''' _a = preprocess(lowerCAmelCase__ ) _a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _a = 0x6_7_4_5_2_3_0_1 _a = 0xe_f_c_d_a_b_8_9 _a = 0x9_8_b_a_d_c_f_e _a = 0x1_0_3_2_5_4_7_6 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCAmelCase__ ): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(lowerCAmelCase__ )) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(lowerCAmelCase__ , left_rotate_aa(lowerCAmelCase__ , shift_amounts[i] ) ) # Add hashed chunk to running total _a = sum_aa(lowerCAmelCase__ , lowerCAmelCase__ ) _a = sum_aa(lowerCAmelCase__ , lowerCAmelCase__ ) _a = sum_aa(lowerCAmelCase__ , lowerCAmelCase__ ) _a = sum_aa(lowerCAmelCase__ , lowerCAmelCase__ ) _a = reformat_hex(lowerCAmelCase__ ) + reformat_hex(lowerCAmelCase__ ) + reformat_hex(lowerCAmelCase__ ) + reformat_hex(lowerCAmelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
168
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a_ : str = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") a_ : Tuple = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a_ : Any = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a_ : Union[str, Any] = sorted(arg_to_scheduler.keys()) a_ : List[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class a ( pl.LightningModule ): def __init__( self , __magic_name__ , __magic_name__=None , __magic_name__="base" , __magic_name__=None , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> List[str]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__magic_name__ ) _a = 0 _a = Path(self.hparams.output_dir ) _a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , ) else: _a = config _a = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __magic_name__ , __magic_name__ ): assert hasattr(self.config , __magic_name__ ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) ) if tokenizer is None: _a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , ) else: _a = tokenizer _a = MODEL_MODES[mode] if model is None: _a = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , ) else: _a = model def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: _a = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = arg_to_scheduler[self.hparams.lr_scheduler] _a = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _a = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __UpperCAmelCase ( self ) -> Any: _a = self.model _a = ['bias', 'LayerNorm.weight'] _a = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: _a = Adafactor( __magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ ) else: _a = AdamW( __magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _a = optimizer _a = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> List[str]: return self.validation_step(__magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: return self.validation_end(__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: if stage == "test": _a = len(self.test_dataloader().dataset ) else: _a = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__magic_name__ ) _a = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = False ) -> int: raise NotImplementedError('You must implement this for your task' ) def __UpperCAmelCase ( self ) -> Tuple: return self.train_loader def __UpperCAmelCase ( self ) -> Dict: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self ) -> Tuple: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self , __magic_name__ ) -> None: _a = self.output_dir.joinpath('best_tfmr' ) _a = self.step_count self.model.save_pretrained(__magic_name__ ) self.tokenizer.save_pretrained(__magic_name__ ) @staticmethod def __UpperCAmelCase ( __magic_name__ , __magic_name__ ) -> Optional[int]: parser.add_argument( '--model_name_or_path' , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__magic_name__ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__magic_name__ , type=__magic_name__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__magic_name__ ).parent / 'test_run' / 'cache' ) , type=__magic_name__ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__magic_name__ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__magic_name__ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__magic_name__ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__magic_name__ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=__magic_name__ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__magic_name__ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__magic_name__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__magic_name__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__magic_name__ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__magic_name__ ) parser.add_argument('--train_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--eval_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--adafactor' , action='store_true' ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Any: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__magic_name__ ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = trainer.lr_schedulers[0]['scheduler'] _a = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: rank_zero_info('***** Validation results *****' ) _a = trainer.callback_metrics # Log results for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: rank_zero_info('***** Test results *****' ) _a = trainer.callback_metrics # Log and save results to file _a = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__magic_name__ , 'w' ) as writer: for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] ) -> None: '''simple docstring''' parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase__ , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase__ ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase__ , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase__ , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase__ , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def _A (lowerCAmelCase__ :BaseTransformer , lowerCAmelCase__ :argparse.Namespace , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=[] , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Union[str, Any]=None , **lowerCAmelCase__ :List[str] , ) -> str: '''simple docstring''' pl.seed_everything(args.seed ) # init model _a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: _a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase__ ) if logging_callback is None: _a = LoggingCallback() _a = {} if args.fpaa: _a = 16 if args.gpus > 1: _a = 'auto' _a = 'ddp' _a = args.accumulate_grad_batches _a = None _a = 'auto' _a = pl.Trainer.from_argparse_args( lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , ) if args.do_train: trainer.fit(lowerCAmelCase__ ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
168
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = '''nat''' __a: int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
14
def lowerCamelCase ( a_ ) -> bool: lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool: visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
14
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } _snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Tuple = {} with open(SCREAMING_SNAKE_CASE_ , "r" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Any = line.strip() if line: lowerCamelCase : Optional[Any] = line.split() lowerCamelCase : Dict = line_number lowerCamelCase : List[Any] = words[0] lowerCamelCase : Optional[Any] = value return result def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for attribute in key.split("." ): lowerCamelCase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Union[str, Any] = PARAM_MAPPING[full_name.split("." )[-1]] lowerCamelCase : Optional[Any] = "param" if weight_type is not None and weight_type != "param": lowerCamelCase : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape elif weight_type is not None and weight_type == "param": lowerCamelCase : Optional[Any] = hf_pointer for attribute in hf_param_name.split("." ): lowerCamelCase : int = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[int] = shape_pointer.shape # let's reduce dimension lowerCamelCase : List[str] = value[0] else: lowerCamelCase : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase : Any = value elif weight_type == "weight_g": lowerCamelCase : str = value elif weight_type == "weight_v": lowerCamelCase : Dict = value elif weight_type == "bias": lowerCamelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split("." ): lowerCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] = value else: lowerCamelCase : int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int = PARAM_MAPPING[full_name.split("." )[-1]] lowerCamelCase : int = "param" if weight_type is not None and weight_type != "param": lowerCamelCase : Union[str, Any] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCamelCase : str = ".".join([key, hf_param_name] ) else: lowerCamelCase : Union[str, Any] = key lowerCamelCase : Any = value if "lm_head" in full_key else value[0] _snake_case = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' lowerCamelCase : Optional[int] = False for key, mapped_key in MAPPING.items(): lowerCamelCase : List[Any] = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase : List[Any] = True if "*" in mapped_key: lowerCamelCase : List[str] = name.split(SCREAMING_SNAKE_CASE_ )[0].split("." )[-2] lowerCamelCase : List[Any] = mapped_key.replace("*" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: lowerCamelCase : Optional[Any] = "weight_g" elif "weight_v" in name: lowerCamelCase : List[Any] = "weight_v" elif "bias" in name: lowerCamelCase : Tuple = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase : Optional[Any] = "weight" else: lowerCamelCase : Optional[int] = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return is_used return is_used def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = [] lowerCamelCase : Optional[int] = fairseq_model.state_dict() lowerCamelCase : Any = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase : Union[str, Any] = True else: lowerCamelCase : Optional[int] = load_wavaveca_layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = full_name.split("conv_layers." )[-1] lowerCamelCase : Dict = name.split("." ) lowerCamelCase : List[Any] = int(items[0] ) lowerCamelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase : str = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCamelCase : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' if config_path is not None: lowerCamelCase : str = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : int = WavaVecaConfig() if is_seq_class: lowerCamelCase : Union[str, Any] = read_txt_into_dict(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = idalabel lowerCamelCase : List[Any] = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) elif is_finetuned: if dict_path: lowerCamelCase : Optional[Any] = Dictionary.load(SCREAMING_SNAKE_CASE_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase : str = target_dict.pad_index lowerCamelCase : Any = target_dict.bos_index lowerCamelCase : str = target_dict.eos_index lowerCamelCase : List[Any] = len(target_dict.symbols ) lowerCamelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE_ ) ) return os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase : Tuple = 0 lowerCamelCase : List[str] = 1 with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : str = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase : List[str] = True if config.feat_extract_norm == "layer" else False lowerCamelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase : Dict = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = WavaVecaForCTC(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : Union[str, Any] = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE_ ) if is_finetuned or is_seq_class: lowerCamelCase , lowerCamelCase , lowerCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCamelCase : Optional[Any] = argparse.Namespace(task="audio_pretraining" ) lowerCamelCase : Any = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE_ ) lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) _snake_case = parser.parse_args() _snake_case = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
283
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : str = "decision_transformer" __A : Union[str, Any] = ["past_key_values"] __A : Optional[int] = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __A=17 , __A=4 , __A=128 , __A=4096 , __A=True , __A=1 , __A=1024 , __A=3 , __A=1 , __A=None , __A="relu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=1e-5 , __A=0.02 , __A=True , __A=True , __A=5_0256 , __A=5_0256 , __A=False , __A=False , **__A , ): """simple docstring""" lowerCamelCase : List[str] = state_dim lowerCamelCase : Tuple = act_dim lowerCamelCase : List[str] = hidden_size lowerCamelCase : Optional[Any] = max_ep_len lowerCamelCase : Union[str, Any] = action_tanh lowerCamelCase : int = vocab_size lowerCamelCase : List[Any] = n_positions lowerCamelCase : Dict = n_layer lowerCamelCase : int = n_head lowerCamelCase : List[Any] = n_inner lowerCamelCase : Any = activation_function lowerCamelCase : Optional[int] = resid_pdrop lowerCamelCase : str = embd_pdrop lowerCamelCase : Tuple = attn_pdrop lowerCamelCase : List[Any] = layer_norm_epsilon lowerCamelCase : Dict = initializer_range lowerCamelCase : Optional[int] = scale_attn_weights lowerCamelCase : List[Any] = use_cache lowerCamelCase : Tuple = scale_attn_by_inverse_layer_idx lowerCamelCase : Optional[int] = reorder_and_upcast_attn lowerCamelCase : Dict = bos_token_id lowerCamelCase : Any = eos_token_id super().__init__(bos_token_id=__A , eos_token_id=__A , **__A )
283
1
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 10 @require_sentencepiece @require_tokenizers class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = SpeechaTextTokenizer UpperCAmelCase_ = False UpperCAmelCase_ = True def snake_case_ (self ) -> List[Any]: super().setUp() UpperCamelCase = sp.SentencePieceProcessor() spm_model.Load(__a ) UpperCamelCase = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__a ) )] UpperCamelCase = dict(zip(__a , range(len(__a ) ) ) ) UpperCamelCase = Path(self.tmpdirname ) save_json(__a , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__a , save_dir / VOCAB_FILES_NAMES["spm_file"] ) UpperCamelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ (self ) -> str: UpperCamelCase = "<pad>" UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def snake_case_ (self ) -> Optional[int]: UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__a ) , 10_01 ) def snake_case_ (self ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) UpperCamelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2_89, 50, 14, 1_74, 3_86] , ) UpperCamelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) UpperCamelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def snake_case_ (self ) -> str: # fmt: off UpperCamelCase = {"input_ids": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class _lowerCamelCase ( unittest.TestCase ): UpperCAmelCase_ = "valhalla/s2t_mustc_multilinguial_medium" UpperCAmelCase_ = "C'est trop cool" UpperCAmelCase_ = "Esto es genial" @classmethod def snake_case_ (cls ) -> Optional[int]: UpperCamelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def snake_case_ (self ) -> Tuple: self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def snake_case_ (self ) -> Dict: self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def snake_case_ (self ) -> List[Any]: self.assertIn(__a , self.tokenizer.all_special_ids ) UpperCamelCase = [ES_CODE, 4, 16_01, 47, 76_47, 2] UpperCamelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def snake_case_ (self ) -> List[str]: UpperCamelCase = "fr" UpperCamelCase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __a ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def snake_case_ (self ) -> List[Any]: UpperCamelCase = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) UpperCamelCase = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
244
"""simple docstring""" import math def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase = 0 while arr[min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - 1] < x: UpperCamelCase = step step += int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase = prev + 1 if prev == min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] lowerCAmelCase__ = int(input('''Enter the number to be searched:\n''')) lowerCAmelCase__ = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
244
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _SCREAMING_SNAKE_CASE : Optional[Any] = 'hf-internal-testing/tiny-random-bert' _SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") _SCREAMING_SNAKE_CASE : Optional[Any] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = cached_file(a__ , a__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(a__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(a__ , a__ ) ) ) with open(os.path.join(a__ , "refs" , "main" ) ) as f: snake_case_ = f.read() self.assertEqual(a__ , os.path.join(a__ , "snapshots" , a__ , a__ ) ) self.assertTrue(os.path.isfile(a__ ) ) # File is cached at the same place the second time. snake_case_ = cached_file(a__ , a__ ) self.assertEqual(a__ , a__ ) # Using a specific revision to test the full commit hash. snake_case_ = cached_file(a__ , a__ , revision="9b8c223" ) self.assertEqual(a__ , os.path.join(a__ , "snapshots" , a__ , a__ ) ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex(a__ , "is not a valid model identifier" ): snake_case_ = cached_file("tiny-random-bert" , a__ ) with self.assertRaisesRegex(a__ , "is not a valid git identifier" ): snake_case_ = cached_file(a__ , a__ , revision="aaaa" ) with self.assertRaisesRegex(a__ , "does not appear to have a file named" ): snake_case_ = cached_file(a__ , "conf" ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex(a__ , "does not appear to have a file named" ): snake_case_ = cached_file(a__ , "conf" ) with open(os.path.join(a__ , "refs" , "main" ) ) as f: snake_case_ = f.read() self.assertTrue(os.path.isfile(os.path.join(a__ , ".no_exist" , a__ , "conf" ) ) ) snake_case_ = cached_file(a__ , "conf" , _raise_exceptions_for_missing_entries=a__ ) self.assertIsNone(a__ ) snake_case_ = cached_file(a__ , "conf" , local_files_only=a__ , _raise_exceptions_for_missing_entries=a__ ) self.assertIsNone(a__ ) snake_case_ = mock.Mock() snake_case_ = 500 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a__ ) as mock_head: snake_case_ = cached_file(a__ , "conf" , _raise_exceptions_for_connection_errors=a__ ) self.assertIsNone(a__ ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , a__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a__ ) ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(a__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , a__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(a__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , a__ , revision="ahaha" ) snake_case_ = get_file_from_repo("bert-base-cased" , a__ ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case_ = json.loads(open(a__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(a__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(a__ , "a.txt" ) , str(a__ ) ) self.assertIsNone(get_file_from_repo(a__ , "b.txt" ) )
85
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
0
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=__snake_case ): _lowerCamelCase = ['onnx'] def __init__( self , *lowercase_ , **lowercase_ ): requires_backends(self , ["onnx"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["onnx"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["onnx"] )
370
import logging from transformers import PretrainedConfig __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : int = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class lowercase_ ( __snake_case ): _lowerCamelCase = 'bertabs' def __init__( self , lowercase_=30_522 , lowercase_=512 , lowercase_=6 , lowercase_=512 , lowercase_=8 , lowercase_=512 , lowercase_=0.2 , lowercase_=6 , lowercase_=768 , lowercase_=8 , lowercase_=2_048 , lowercase_=0.2 , **lowercase_ , ): super().__init__(**lowercase_ ) _snake_case : List[Any] = vocab_size _snake_case : int = max_pos _snake_case : Tuple = enc_layers _snake_case : Optional[Any] = enc_hidden_size _snake_case : Union[str, Any] = enc_heads _snake_case : str = enc_ff_size _snake_case : Any = enc_dropout _snake_case : Tuple = dec_layers _snake_case : Optional[Any] = dec_hidden_size _snake_case : Dict = dec_heads _snake_case : str = dec_ff_size _snake_case : List[str] = dec_dropout
284
0
"""simple docstring""" import qiskit def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : int ) -> qiskit.result.counts.Counts: lowerCamelCase_ : List[Any] =qiskit.Aer.get_backend("aer_simulator" ) lowerCamelCase_ : Optional[int] =qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCamelCase_ : Dict =qiskit.execute(_UpperCamelCase , _UpperCamelCase , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": A__ : Dict = half_adder(1, 1) print(f'Half Adder Output Qubit Counts: {counts}')
144
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
115
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Optional[Any] , __lowercase : UNetaDModel , __lowercase : UNetaDModel , __lowercase : DDPMScheduler , __lowercase : Union[str, Any] , ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE__ : Optional[int] =value_function SCREAMING_SNAKE_CASE__ : Tuple =unet SCREAMING_SNAKE_CASE__ : Union[str, Any] =scheduler SCREAMING_SNAKE_CASE__ : Tuple =env SCREAMING_SNAKE_CASE__ : Optional[int] =env.get_dataset() SCREAMING_SNAKE_CASE__ : Any ={} for key in self.data.keys(): try: SCREAMING_SNAKE_CASE__ : List[str] =self.data[key].mean() except: # noqa: E722 pass SCREAMING_SNAKE_CASE__ : Any ={} for key in self.data.keys(): try: SCREAMING_SNAKE_CASE__ : Tuple =self.data[key].std() except: # noqa: E722 pass SCREAMING_SNAKE_CASE__ : str =env.observation_space.shape[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] =env.action_space.shape[0] def __magic_name__ ( self : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : str ) -> Tuple: return (x_in - self.means[key]) / self.stds[key] def __magic_name__ ( self : Dict , __lowercase : Tuple , __lowercase : List[str] ) -> Any: return x_in * self.stds[key] + self.means[key] def __magic_name__ ( self : Dict , __lowercase : Optional[int] ) -> Union[str, Any]: if type(__lowercase ) is dict: return {k: self.to_torch(__lowercase ) for k, v in x_in.items()} elif torch.is_tensor(__lowercase ): return x_in.to(self.unet.device ) return torch.tensor(__lowercase , device=self.unet.device ) def __magic_name__ ( self : Any , __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : Any ) -> str: for key, val in cond.items(): SCREAMING_SNAKE_CASE__ : List[Any] =val.clone() return x_in def __magic_name__ ( self : Optional[Any] , __lowercase : Tuple , __lowercase : int , __lowercase : Dict , __lowercase : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int =x.shape[0] SCREAMING_SNAKE_CASE__ : List[str] =None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model SCREAMING_SNAKE_CASE__ : Any =torch.full((batch_size,) , __lowercase , device=self.unet.device , dtype=torch.long ) for _ in range(__lowercase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.value_function(x.permute(0 , 2 , 1 ) , __lowercase ).sample SCREAMING_SNAKE_CASE__ : int =torch.autograd.grad([y.sum()] , [x] )[0] SCREAMING_SNAKE_CASE__ : Tuple =self.scheduler._get_variance(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =torch.exp(0.5 * posterior_variance ) SCREAMING_SNAKE_CASE__ : int =model_std * grad SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : int =x.detach() SCREAMING_SNAKE_CASE__ : Dict =x + scale * grad SCREAMING_SNAKE_CASE__ : Dict =self.reset_xa(__lowercase , __lowercase , self.action_dim ) SCREAMING_SNAKE_CASE__ : List[Any] =self.unet(x.permute(0 , 2 , 1 ) , __lowercase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg SCREAMING_SNAKE_CASE__ : Optional[Any] =self.scheduler.step(__lowercase , __lowercase , __lowercase , predict_epsilon=__lowercase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) SCREAMING_SNAKE_CASE__ : Optional[int] =self.reset_xa(__lowercase , __lowercase , self.action_dim ) SCREAMING_SNAKE_CASE__ : Tuple =self.to_torch(__lowercase ) return x, y def __call__( self : int , __lowercase : List[Any] , __lowercase : Optional[Any]=64 , __lowercase : List[Any]=32 , __lowercase : int=2 , __lowercase : int=0.1 ) -> int: # normalize the observations and create batch dimension SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.normalize(__lowercase , '''observations''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =obs[None].repeat(__lowercase , axis=0 ) SCREAMING_SNAKE_CASE__ : Any ={0: self.to_torch(__lowercase )} SCREAMING_SNAKE_CASE__ : Dict =(batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) SCREAMING_SNAKE_CASE__ : Dict =randn_tensor(__lowercase , device=self.unet.device ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.reset_xa(__lowercase , __lowercase , self.action_dim ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.to_torch(__lowercase ) # run the diffusion process SCREAMING_SNAKE_CASE__ : Dict =self.run_diffusion(__lowercase , __lowercase , __lowercase , __lowercase ) # sort output trajectories by value SCREAMING_SNAKE_CASE__ : Optional[Any] =y.argsort(0 , descending=__lowercase ).squeeze() SCREAMING_SNAKE_CASE__ : str =x[sorted_idx] SCREAMING_SNAKE_CASE__ : Optional[int] =sorted_values[:, :, : self.action_dim] SCREAMING_SNAKE_CASE__ : str =actions.detach().cpu().numpy() SCREAMING_SNAKE_CASE__ : Optional[Any] =self.de_normalize(__lowercase , key='''actions''' ) # select the action with the highest value if y is not None: SCREAMING_SNAKE_CASE__ : str =0 else: # if we didn't run value guiding, select a random action SCREAMING_SNAKE_CASE__ : Tuple =np.random.randint(0 , __lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =denorm_actions[selected_index, 0] return denorm_actions
352
'''simple docstring''' from scipy.stats import pearsonr import datasets a_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __magic_name__ ( self : List[Any] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : str=False ) -> int: if return_pvalue: SCREAMING_SNAKE_CASE__ : List[str] =pearsonr(__lowercase , __lowercase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowercase , __lowercase )[0] )}
222
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: Tuple , UpperCamelCase: List[Any] , UpperCamelCase: Tuple=7 , UpperCamelCase: Tuple=3 , UpperCamelCase: str=10 , UpperCamelCase: int=18 , UpperCamelCase: Optional[int]=30 , UpperCamelCase: List[Any]=4_00 , UpperCamelCase: List[str]=True , UpperCamelCase: Optional[Any]=None , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Tuple=[0.5, 0.5, 0.5] , UpperCamelCase: Optional[int]=[0.5, 0.5, 0.5] , UpperCamelCase: int=None , ) -> Tuple: snake_case__ = size if size is not None else {'shortest_edge': 18} snake_case__ = crop_size if crop_size is not None else {'height': 18, 'width': 18} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = num_frames snake_case__ = image_size snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = crop_size def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE( UpperCAmelCase__ , unittest.TestCase ): _UpperCAmelCase = VivitImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[int]: snake_case__ = VivitImageProcessingTester(self ) @property def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self: Any ) -> Tuple: snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case_ , 'image_std' ) ) self.assertTrue(hasattr(snake_case_ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'do_center_crop' ) ) self.assertTrue(hasattr(snake_case_ , 'size' ) ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCAmelCase_ ( self: str ) -> int: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos snake_case__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for video in video_inputs: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input snake_case__ = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for video in video_inputs: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input snake_case__ = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self: Dict ) -> str: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for video in video_inputs: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input snake_case__ = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
307
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): """simple docstring""" super().__init__(*snake_case_ , **snake_case_ ) A_ : Tuple = {} def lowerCamelCase_ ( self , snake_case_ , *snake_case_ , **snake_case_ ): """simple docstring""" A_ : str = super().add_tokens(snake_case_ , *snake_case_ , **snake_case_ ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def lowerCamelCase_ ( self , snake_case_ , *snake_case_ , snake_case_=1 , **snake_case_ ): """simple docstring""" A_ : Tuple = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case_ , *snake_case_ , **snake_case_ ) output.append(snake_case_ ) else: A_ : Tuple = [] for i in range(snake_case_ ): A_ : List[str] = placeholder_token + F"""_{i}""" self.try_adding_tokens(snake_case_ , *snake_case_ , **snake_case_ ) output.append(snake_case_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) A_ : Any = output def lowerCamelCase_ ( self , snake_case_ , snake_case_=False , snake_case_=1.0 ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): A_ : Optional[Any] = [] for i in range(len(snake_case_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A_ : List[Any] = self.token_map[placeholder_token] A_ : Optional[int] = tokens[: 1 + int(len(snake_case_ ) * prop_tokens_to_load )] if vector_shuffle: A_ : Optional[Any] = copy.copy(snake_case_ ) random.shuffle(snake_case_ ) A_ : List[str] = text.replace(snake_case_ , ' '.join(snake_case_ ) ) return text def __call__( self , snake_case_ , *snake_case_ , snake_case_=False , snake_case_=1.0 , **snake_case_ ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( snake_case_ , vector_shuffle=snake_case_ , prop_tokens_to_load=snake_case_ ) , *snake_case_ , **snake_case_ , ) def lowerCamelCase_ ( self , snake_case_ , *snake_case_ , snake_case_=False , snake_case_=1.0 , **snake_case_ ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( snake_case_ , vector_shuffle=snake_case_ , prop_tokens_to_load=snake_case_ ) , *snake_case_ , **snake_case_ , )
286
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = XGLMTokenizer SCREAMING_SNAKE_CASE = XGLMTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: int) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : List[str] = XGLMTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Any: """simple docstring""" __lowerCAmelCase : Dict = "<pad>" __lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(_SCREAMING_SNAKE_CASE) , 1008) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = XGLMTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = tokenizer.tokenize("This is a test") self.assertListEqual(_SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowerCAmelCase : str = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[int]: """simple docstring""" return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_SCREAMING_SNAKE_CASE , f.name) __lowerCAmelCase : List[str] = XGLMTokenizer(f.name , keep_accents=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = pickle.dumps(_SCREAMING_SNAKE_CASE) pickle.loads(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : int = self.get_rust_tokenizer() __lowerCAmelCase : Optional[Any] = "I was born in 92000, and this is falsé." __lowerCAmelCase : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = self.get_rust_tokenizer() __lowerCAmelCase : Union[str, Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = "Hello World!" __lowerCAmelCase : int = [2, 3_1227, 4447, 35] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE)) @slow def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Any = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off __lowerCAmelCase : str = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE)) @slow def _SCREAMING_SNAKE_CASE ( self: Any) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="facebook/xglm-564M" , padding=_SCREAMING_SNAKE_CASE , )
58
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __lt__( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Dict: """simple docstring""" return self[-1] < other[-1] def __eq__( self: int , _SCREAMING_SNAKE_CASE: Any) -> Tuple: """simple docstring""" return self[-1] == other[-1] def _lowercase ( __snake_case ) -> list: __lowerCAmelCase : list[Stack] = [] # sort into stacks for element in collection: __lowerCAmelCase : Dict = Stack([element] ) __lowerCAmelCase : str = bisect_left(__snake_case ,__snake_case ) if i != len(__snake_case ): stacks[i].append(__snake_case ) else: stacks.append(__snake_case ) # use a heap-based merge to merge stack efficiently __lowerCAmelCase : Union[str, Any] = merge(*(reversed(__snake_case ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() __snake_case : Optional[int] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
58
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: if digit_amount > 0: return round(number - int(UpperCamelCase ) , UpperCamelCase ) return number - int(UpperCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
41
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ): lowercase = size if size is not None else {'height': 1_8, 'width': 1_8} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a ( a_, unittest.TestCase ): UpperCAmelCase_ : Optional[int] =DPTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowercase = DPTImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size' ) ) def UpperCamelCase_ ( self ): lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
220
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): UpperCamelCase__ = inspect.getfile(accelerate.test_utils ) UpperCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _lowerCamelCase ( self ): UpperCamelCase__ = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() UpperCamelCase__ = [sys.executable] + distributed_args execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy() )
370
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCamelCase__ = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCamelCase__ = "UperNetConfig" class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = False , __lowerCAmelCase = 1 , ): super().__init__() UpperCamelCase__ = nn.Convad( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , bias=__lowerCAmelCase , dilation=__lowerCAmelCase , ) UpperCamelCase__ = nn.BatchNormad(__lowerCAmelCase ) UpperCamelCase__ = nn.ReLU() def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = self.conv(__lowerCAmelCase ) UpperCamelCase__ = self.batch_norm(__lowerCAmelCase ) UpperCamelCase__ = self.activation(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = [ nn.AdaptiveAvgPoolad(__lowerCAmelCase ), UperNetConvModule(__lowerCAmelCase , __lowerCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = input for layer in self.layers: UpperCamelCase__ = layer(__lowerCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = pool_scales UpperCamelCase__ = align_corners UpperCamelCase__ = in_channels UpperCamelCase__ = channels UpperCamelCase__ = [] for i, pool_scale in enumerate(__lowerCAmelCase ): UpperCamelCase__ = UperNetPyramidPoolingBlock(pool_scale=__lowerCAmelCase , in_channels=__lowerCAmelCase , channels=__lowerCAmelCase ) self.blocks.append(__lowerCAmelCase ) self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = [] for ppm in self.blocks: UpperCamelCase__ = ppm(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate( __lowerCAmelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(__lowerCAmelCase ) return ppm_outs class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase__ = in_channels UpperCamelCase__ = config.hidden_size UpperCamelCase__ = False UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase__ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase__ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase__ = nn.ModuleList() UpperCamelCase__ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase__ = UperNetConvModule(__lowerCAmelCase , self.channels , kernel_size=1 ) UpperCamelCase__ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__lowerCAmelCase ) self.fpn_convs.append(__lowerCAmelCase ) UpperCamelCase__ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowerCamelCase ( self ): self.apply(self._init_weights ) def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = inputs[-1] UpperCamelCase__ = [x] psp_outs.extend(self.psp_modules(__lowerCAmelCase ) ) UpperCamelCase__ = torch.cat(__lowerCAmelCase , dim=1 ) UpperCamelCase__ = self.bottleneck(__lowerCAmelCase ) return output def _lowerCamelCase ( self , __lowerCAmelCase ): # build laterals UpperCamelCase__ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__lowerCAmelCase ) ) # build top-down path UpperCamelCase__ = len(__lowerCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = laterals[i - 1].shape[2:] UpperCamelCase__ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__lowerCAmelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs UpperCamelCase__ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) UpperCamelCase__ = torch.cat(__lowerCAmelCase , dim=1 ) UpperCamelCase__ = self.fpn_bottleneck(__lowerCAmelCase ) UpperCamelCase__ = self.classifier(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 2 , __lowerCAmelCase = 3 , __lowerCAmelCase = 1 ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.auxiliary_in_channels UpperCamelCase__ = config.auxiliary_channels UpperCamelCase__ = config.auxiliary_num_convs UpperCamelCase__ = config.auxiliary_concat_input UpperCamelCase__ = in_index UpperCamelCase__ = (kernel_size // 2) * dilation UpperCamelCase__ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) if self.num_convs == 0: UpperCamelCase__ = nn.Identity() else: UpperCamelCase__ = nn.Sequential(*__lowerCAmelCase ) if self.concat_input: UpperCamelCase__ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=kernel_size // 2 ) UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowerCamelCase ( self ): self.apply(self._init_weights ) def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self , __lowerCAmelCase ): # just take the relevant feature maps UpperCamelCase__ = encoder_hidden_states[self.in_index] UpperCamelCase__ = self.convs(__lowerCAmelCase ) if self.concat_input: UpperCamelCase__ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase__ = self.classifier(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Any = UperNetConfig snake_case : List[Any] = """pixel_values""" snake_case : Optional[Any] = True def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowerCamelCase ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=False ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = value UpperCamelCase__ = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCamelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , _a , ) class __SCREAMING_SNAKE_CASE ( _a ): def __init__( self , __lowerCAmelCase ): super().__init__(__lowerCAmelCase ) UpperCamelCase__ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase__ = UperNetHead(__lowerCAmelCase , in_channels=self.backbone.channels ) UpperCamelCase__ = UperNetFCNHead(__lowerCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC ) def _lowerCamelCase ( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): UpperCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase__ = self.backbone.forward_with_filtered_kwargs( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , output_attentions=__lowerCAmelCase ) UpperCamelCase__ = outputs.feature_maps UpperCamelCase__ = self.decode_head(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate(__lowerCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) UpperCamelCase__ = None if self.auxiliary_head is not None: UpperCamelCase__ = self.auxiliary_head(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate( __lowerCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) UpperCamelCase__ = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss UpperCamelCase__ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase__ = (logits,) + outputs[1:] else: UpperCamelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
87
0
from __future__ import annotations from typing import Any class a__ : def __init__( self : str,_A : Dict,_A : int,_A : int = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = row, column SCREAMING_SNAKE_CASE_ : Optional[Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = F'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier SCREAMING_SNAKE_CASE_ : int = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE_ : str = max(__UpperCAmelCase,len(str(__UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_ : List[str] = F'%{max_element_length}s' # Make string and return def single_line(_A : Optional[Any] ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE_ : Optional[Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self : Any ): """simple docstring""" return str(self ) def __UpperCamelCase ( self : Optional[Any],_A : Union[str, Any] ): """simple docstring""" if not (isinstance(__UpperCAmelCase,(list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Tuple,_A : Tuple ): """simple docstring""" assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : Union[str, Any],_A : str,_A : Union[str, Any] ): """simple docstring""" assert self.validate_indicies(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = value def __add__( self : Any,_A : Optional[Any] ): """simple docstring""" assert isinstance(__UpperCAmelCase,__UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE_ : Any = Matrix(self.row,self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE_ : int = self[r, c] + another[r, c] return result def __neg__( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Matrix(self.row,self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE_ : Optional[Any] = -self[r, c] return result def __sub__( self : Dict,_A : str ): """simple docstring""" return self + (-another) def __mul__( self : str,_A : int ): """simple docstring""" if isinstance(__UpperCAmelCase,(int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE_ : int = Matrix(self.row,self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase,__UpperCAmelCase ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE_ : Union[str, Any] = Matrix(self.row,another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE_ : List[str] = F'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Matrix(self.column,self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE_ : Any = self[r, c] return result def __UpperCamelCase ( self : int,_A : Union[str, Any],_A : List[Any] ): """simple docstring""" assert isinstance(__UpperCAmelCase,__UpperCAmelCase ) and isinstance(__UpperCAmelCase,__UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE_ : int = v.transpose() SCREAMING_SNAKE_CASE_ : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = Matrix(3 , 3 , 0 ) for i in range(3 ): SCREAMING_SNAKE_CASE_ : List[Any] = 1 print(f'a^(-1) is {ainv}' ) # u, v SCREAMING_SNAKE_CASE_ : Dict = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE_ : List[Any] = 1, 2, -3 SCREAMING_SNAKE_CASE_ : List[Any] = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE_ : List[Any] = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def _snake_case ( ): """simple docstring""" import doctest doctest.testmod() testa()
18
'''simple docstring''' import qiskit def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase : Any = qiskit.QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __UpperCAmelCase : int = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
254
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.ndarray: __lowerCAmelCase: List[Any] = cva.getAffineTransform(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cva.warpAffine(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image __A = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __A = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A = gray_img.shape # set different points to rotate image __A = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A = plt.figure(1) __A = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
108
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,**__UpperCAmelCase ) -> Tuple: super().__init__(**__UpperCAmelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> str: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> str: lowerCAmelCase__ : List[Any] = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : int = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowerCAmelCase__ : Optional[int] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="This is a photo of {}." ) -> int: lowerCAmelCase__ : str = load_image(__UpperCAmelCase ) lowerCAmelCase__ : Dict = self.image_processor(images=[image] ,return_tensors=self.framework ) lowerCAmelCase__ : List[Any] = candidate_labels lowerCAmelCase__ : List[str] = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ : Optional[Any] = self.tokenizer(__UpperCAmelCase ,return_tensors=self.framework ,padding=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = [text_inputs] return inputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Tuple = model_inputs.pop("""candidate_labels""" ) lowerCAmelCase__ : Union[str, Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,__UpperCAmelCase ): lowerCAmelCase__ : int = text_inputs[0] else: # Batching case. lowerCAmelCase__ : Dict = text_inputs[0][0] lowerCAmelCase__ : Any = self.model(**__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Union[str, Any] = model_outputs.pop("""candidate_labels""" ) lowerCAmelCase__ : List[str] = model_outputs["""logits"""][0] if self.framework == "pt": lowerCAmelCase__ : List[str] = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ : Optional[Any] = probs.tolist() if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Dict = [scores] elif self.framework == "tf": lowerCAmelCase__ : Any = stable_softmax(__UpperCAmelCase ,axis=-1 ) lowerCAmelCase__ : List[Any] = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowerCAmelCase__ : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase ,__UpperCAmelCase ) ,key=lambda __UpperCAmelCase : -x[0] ) ] return result
37
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Union[str, Any] = DiTPipeline A_ : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A_ : List[Any] = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } A_ : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A_ : Tuple = False def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = AutoencoderKL() __lowerCAmelCase : Union[str, Any] = DDIMScheduler() __lowerCAmelCase : Dict = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __lowerCAmelCase : List[str] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : List[str] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'cpu' __lowerCAmelCase : Any = self.get_dummy_components() __lowerCAmelCase : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = pipe(**_SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCAmelCase : Optional[int] = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) __lowerCAmelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 ) def __lowerCamelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = torch.manual_seed(0 ) __lowerCAmelCase : int = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __lowerCAmelCase : Optional[Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] __lowerCAmelCase : Optional[Any] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCamelCase ( self ): __lowerCAmelCase : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __lowerCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __lowerCAmelCase : Dict = ['vase', 'umbrella'] __lowerCAmelCase : List[str] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1E-1
86
0
def lowerCAmelCase_ ( _lowercase : str , _lowercase : int) -> str: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
353
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _lowercase : str =logging.getLogger(__name__) @dataclass class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __lowerCAmelCase :bool = field(default=A__ , metadata={"help": "Whether to SortishSamler or not."} ) __lowerCAmelCase :bool = field( default=A__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __lowerCAmelCase :bool = field(default=A__ , metadata={"help": "whether to use adafactor"} ) __lowerCAmelCase :Optional[float] = field( default=A__ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[float] = field( default=A__ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[float] = field(default=A__ , metadata={"help": "Dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[float] = field( default=A__ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[str] = field( default="linear" , metadata={"help": f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
266
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
203
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __snake_case = """hf-internal-testing/tiny-random-bert""" __snake_case = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") __snake_case = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : int = cached_file(UpperCamelCase__ , UpperCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Dict = f.read() self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # File is cached at the same place the second time. snake_case : List[str] = cached_file(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Using a specific revision to test the full commit hash. snake_case : Any = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="9b8c223" ) self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): snake_case : Optional[Any] = cached_file("tiny-random-bert" , UpperCamelCase__ ) with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): snake_case : Optional[Any] = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="aaaa" ) with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : List[Any] = cached_file(UpperCamelCase__ , "conf" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , ".no_exist" , UpperCamelCase__ , "conf" ) ) ) snake_case : Optional[Any] = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = cached_file(UpperCamelCase__ , "conf" , local_files_only=UpperCamelCase__ , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = mock.Mock() snake_case : List[Any] = 500 snake_case : int = {} snake_case : Optional[int] = HTTPError snake_case : Tuple = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCamelCase__ ) as mock_head: snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_connection_errors=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self ) -> Any: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> str: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCamelCase__ , revision="ahaha" ) snake_case : int = get_file_from_repo("bert-base-cased" , UpperCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case : str = json.loads(open(UpperCamelCase__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : int = Path(UpperCamelCase__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase__ , "a.txt" ) , str(UpperCamelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase__ , "b.txt" ) )
203
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowercase : """simple docstring""" @staticmethod def lowerCAmelCase__ ( *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' pass def a ( __a ) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __snake_case = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" _a = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Dict = pipeline( '''document-question-answering''' , model=__snake_case , tokenizer=__snake_case , image_processor=__snake_case ) UpperCamelCase__ :Tuple = INVOICE_URL UpperCamelCase__ :str = list(zip(*apply_tesseract(load_image(__snake_case ) , __snake_case , '''''' ) ) ) UpperCamelCase__ :int = 'What is the placebo?' UpperCamelCase__ :Tuple = [ { 'image': load_image(__snake_case ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = dqa_pipeline(__snake_case , top_k=2 ) self.assertEqual( __snake_case , [ [ {'''score''': ANY(__snake_case ), '''answer''': ANY(__snake_case ), '''start''': ANY(__snake_case ), '''end''': ANY(__snake_case )}, {'''score''': ANY(__snake_case ), '''answer''': ANY(__snake_case ), '''start''': ANY(__snake_case ), '''end''': ANY(__snake_case )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) UpperCamelCase__ :Tuple = INVOICE_URL UpperCamelCase__ :Optional[int] = 'How many cats are there?' UpperCamelCase__ :List[Any] = [ {'score': 0.0001, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0001, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] UpperCamelCase__ :List[Any] = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual(nested_simplify(__snake_case , decimals=4 ) , __snake_case ) UpperCamelCase__ :List[str] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(__snake_case , decimals=4 ) , __snake_case ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCamelCase__ :Tuple = './tests/fixtures/tests_samples/COCO/000000039769.png' UpperCamelCase__ :int = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual(__snake_case , [] ) # We can optionnally pass directly the words and bounding boxes UpperCamelCase__ :List[Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' UpperCamelCase__ :Tuple = [] UpperCamelCase__ :List[str] = [] UpperCamelCase__ :Dict = dqa_pipeline(image=__snake_case , question=__snake_case , words=__snake_case , boxes=__snake_case , top_k=2 ) self.assertEqual(__snake_case , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) UpperCamelCase__ :Dict = INVOICE_URL UpperCamelCase__ :List[Any] = 'What is the invoice number?' UpperCamelCase__ :List[str] = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) UpperCamelCase__ :List[str] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) UpperCamelCase__ :Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) UpperCamelCase__ :str = INVOICE_URL UpperCamelCase__ :List[Any] = 'What is the invoice number?' UpperCamelCase__ :Union[str, Any] = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) UpperCamelCase__ :Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) UpperCamelCase__ :str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__snake_case ) UpperCamelCase__ :List[str] = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__snake_case , revision='''3dc6de3''' , ) UpperCamelCase__ :Tuple = INVOICE_URL UpperCamelCase__ :Union[str, Any] = 'What is the invoice number?' UpperCamelCase__ :Optional[int] = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) UpperCamelCase__ :List[Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) UpperCamelCase__ :List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) UpperCamelCase__ :Tuple = list(zip(*apply_tesseract(load_image(__snake_case ) , __snake_case , '''''' ) ) ) # This model should also work if `image` is set to None UpperCamelCase__ :int = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__snake_case ) UpperCamelCase__ :List[str] = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__snake_case , revision='''3dc6de3''' , max_seq_len=50 , ) UpperCamelCase__ :List[Any] = INVOICE_URL UpperCamelCase__ :List[Any] = 'What is the invoice number?' UpperCamelCase__ :str = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) UpperCamelCase__ :Dict = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) UpperCamelCase__ :int = list(zip(*apply_tesseract(load_image(__snake_case ) , __snake_case , '''''' ) ) ) # This model should also work if `image` is set to None UpperCamelCase__ :int = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) UpperCamelCase__ :int = INVOICE_URL UpperCamelCase__ :List[str] = 'What is the invoice number?' UpperCamelCase__ :Dict = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual(nested_simplify(__snake_case , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass
358
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __snake_case = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = PRETRAINED_INIT_CONFIGURATION _a = ['input_ids', 'attention_mask'] _a = DistilBertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_="[UNK]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[PAD]" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): UpperCamelCase__ :int = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) UpperCamelCase__ :Optional[Any] = do_lower_case UpperCamelCase__ :Optional[Any] = strip_accents UpperCamelCase__ :List[Any] = tokenize_chinese_chars UpperCamelCase__ :Any = normalizer_class(**UpperCamelCase_ ) UpperCamelCase__ :int = do_lower_case def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :List[str] = [self.sep_token_id] UpperCamelCase__ :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
219
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): while y: # --> when y=0 then loop will terminate and return x as final GCD. __UpperCamelCase , __UpperCamelCase =y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): try: __UpperCamelCase =input('Enter two integers separated by comma (,): ' ).split(',' ) __UpperCamelCase =int(nums[0] ) __UpperCamelCase =int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}' ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
62
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file a__ : Tuple = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def UpperCAmelCase__ (lowerCAmelCase_=None ): '''simple docstring''' if subparsers is not None: __SCREAMING_SNAKE_CASE = subparsers.add_parser("tpu-config" , description=_description ) else: __SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments __SCREAMING_SNAKE_CASE = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=lowerCAmelCase_ , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=lowerCAmelCase_ , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) __SCREAMING_SNAKE_CASE = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=lowerCAmelCase_ , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __SCREAMING_SNAKE_CASE = defaults.command_file if not args.command and defaults.commands is not None: __SCREAMING_SNAKE_CASE = defaults.commands if not args.tpu_name: __SCREAMING_SNAKE_CASE = defaults.tpu_name if not args.tpu_zone: __SCREAMING_SNAKE_CASE = defaults.tpu_zone if args.accelerate_version == "dev": __SCREAMING_SNAKE_CASE = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": __SCREAMING_SNAKE_CASE = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: __SCREAMING_SNAKE_CASE = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __SCREAMING_SNAKE_CASE = ["cd /usr/share"] if args.install_accelerate: new_cmd += [f"""pip install {args.accelerate_version}"""] new_cmd += args.command __SCREAMING_SNAKE_CASE = "; ".join(lowerCAmelCase_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __SCREAMING_SNAKE_CASE = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"""Running {' '.join(lowerCAmelCase_ )}""" ) return subprocess.run(lowerCAmelCase_ ) print("Successfully setup pod." ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = tpu_command_parser() __SCREAMING_SNAKE_CASE = parser.parse_args() tpu_command_launcher(lowerCAmelCase_ )
54
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _A : str = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A : List[Any] = 25_00_04 _A : Dict = 25_00_20 @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Dict = MBartTokenizer _UpperCAmelCase : str = MBartTokenizerFast _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Dict = True def __lowerCamelCase ( self : Union[str, Any] ) ->List[str]: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Dict = MBartTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self : Any ) ->List[Any]: lowerCamelCase__ : Dict = MBartTokenizer(A , keep_accents=A ) lowerCamelCase__ : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCamelCase__ : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCamelCase__ : int = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __lowerCamelCase ( self : List[str] ) ->List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase__ : Any = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(A , **A ) lowerCamelCase__ : str = self.tokenizer_class.from_pretrained(A , **A ) lowerCamelCase__ : Dict = tempfile.mkdtemp() lowerCamelCase__ : str = tokenizer_r.save_pretrained(A ) lowerCamelCase__ : Optional[Any] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCamelCase__ : Union[str, Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way lowerCamelCase__ : Optional[int] = tokenizer_r.from_pretrained(A ) lowerCamelCase__ : List[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True lowerCamelCase__ : Optional[int] = tempfile.mkdtemp() lowerCamelCase__ : Optional[int] = tokenizer_r.save_pretrained(A , legacy_format=A ) lowerCamelCase__ : int = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way lowerCamelCase__ : List[str] = tokenizer_r.from_pretrained(A ) lowerCamelCase__ : Optional[int] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False lowerCamelCase__ : Tuple = tempfile.mkdtemp() lowerCamelCase__ : Optional[Any] = tokenizer_r.save_pretrained(A , legacy_format=A ) lowerCamelCase__ : List[Any] = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase__ : Any = tokenizer_r.from_pretrained(A ) lowerCamelCase__ : List[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = "facebook/mbart-large-en-ro" _UpperCAmelCase : str = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _UpperCAmelCase : Tuple = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _UpperCAmelCase : Any = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __lowerCamelCase ( cls : Dict ) ->Tuple: lowerCamelCase__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowerCamelCase__ : Dict = 1 return cls def __lowerCamelCase ( self : Dict ) ->Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) def __lowerCamelCase ( self : Any ) ->Dict: lowerCamelCase__ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def __lowerCamelCase ( self : Any ) ->Dict: self.assertIn(A , self.tokenizer.all_special_ids ) lowerCamelCase__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCamelCase__ : Dict = self.tokenizer.decode(A , skip_special_tokens=A ) lowerCamelCase__ : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def __lowerCamelCase ( self : int ) ->Tuple: lowerCamelCase__ : List[str] = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , A ) lowerCamelCase__ : Optional[int] = 1_0 lowerCamelCase__ : Optional[int] = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A ) self.assertEqual(len(A ) , A ) def __lowerCamelCase ( self : Union[str, Any] ) ->Dict: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __lowerCamelCase ( self : int ) ->Tuple: lowerCamelCase__ : Union[str, Any] = tempfile.mkdtemp() lowerCamelCase__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) lowerCamelCase__ : int = MBartTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def __lowerCamelCase ( self : Optional[int] ) ->str: lowerCamelCase__ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors='''pt''' ) lowerCamelCase__ : int = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __lowerCamelCase ( self : List[Any] ) ->Optional[int]: lowerCamelCase__ : List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCamelCase__ : Optional[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(A , A ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCamelCase__ : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __lowerCamelCase ( self : Tuple ) ->Dict: lowerCamelCase__ : Any = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors='''pt''' ) lowerCamelCase__ : Tuple = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=1_0 , return_tensors='''pt''' ) lowerCamelCase__ : Optional[int] = targets['''input_ids'''] lowerCamelCase__ : List[str] = shift_tokens_right(A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __lowerCamelCase ( self : Optional[int] ) ->str: lowerCamelCase__ : str = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(A ) , { # A, test, EOS, en_XX '''input_ids''': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
364
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _A : Any = logging.get_logger(__name__) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" def run_func(UpperCAmelCase ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> ["tf.Tensor"]: """simple docstring""" lowerCamelCase__ : List[Any] = random.Random() lowerCamelCase__ : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : TensorFlowBenchmarkArguments _UpperCAmelCase : PretrainedConfig _UpperCAmelCase : str = "TensorFlow" @property def __lowerCamelCase ( self : int ) ->Optional[int]: return tf.__version__ def __lowerCamelCase ( self : Optional[int] , A : str , A : int , A : int ) ->float: # initialize GPU on separate process lowerCamelCase__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : int = self._prepare_inference_func(A , A , A ) return self._measure_speed(_inference ) def __lowerCamelCase ( self : str , A : str , A : int , A : int ) ->float: lowerCamelCase__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : List[Any] = self._prepare_train_func(A , A , A ) return self._measure_speed(_train ) def __lowerCamelCase ( self : int , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : int = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_inference_func(A , A , A ) return self._measure_memory(_inference ) def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_train_func(A , A , A ) return self._measure_memory(_train ) def __lowerCamelCase ( self : Dict , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Tuple = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[Any] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : int = getattr(A , A ) lowerCamelCase__ : int = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Tuple = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Optional[Any] = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(A , decoder_input_ids=A , training=A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(A , training=A ) lowerCamelCase__ : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Optional[int] = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[str] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : Optional[int] = getattr(A , A ) lowerCamelCase__ : Optional[Any] = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Optional[int] = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Dict = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCamelCase__ : int = model(A , decoder_input_ids=A , labels=A , training=A )[0] lowerCamelCase__ : List[Any] = tf.gradients(A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCamelCase__ : Optional[int] = model(A , labels=A , training=A )[0] lowerCamelCase__ : List[str] = tf.gradients(A , model.trainable_variables ) return gradients lowerCamelCase__ : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __lowerCamelCase ( self : Tuple , A : Any ) ->float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCamelCase__ : Optional[Any] = timeit.repeat( A , repeat=self.args.repeat , number=1_0 , ) return min(A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def __lowerCamelCase ( self : List[Any] , A : Callable[[], None] ) ->[Memory, MemorySummary]: logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) lowerCamelCase__ : Union[str, Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) lowerCamelCase__ : Union[str, Any] = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() lowerCamelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCamelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(A ) lowerCamelCase__ : List[Any] = meminfo.used lowerCamelCase__ : Union[str, Any] = Memory(A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) lowerCamelCase__ : Tuple = None else: lowerCamelCase__ : Dict = measure_peak_memory_cpu(A ) lowerCamelCase__ : Optional[Any] = Memory(A ) if isinstance(A , A ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCamelCase__ : Union[str, Any] = stop_memory_tracing(A ) if memory is None: lowerCamelCase__ : Dict = summary.total else: lowerCamelCase__ : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
265
0
import math def lowerCamelCase__ ( snake_case_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ): __snake_case = f"""Input value of [number={number}] must be an integer""" raise TypeError(snake_case_ ) if number < 1: __snake_case = f"""Input value of [number={number}] must be > 0""" raise ValueError(snake_case_ ) elif number == 1: return 3 elif number == 2: return 5 else: __snake_case = int(math.log(number // 3 , 2 ) ) + 2 __snake_case = [3, 5] __snake_case = 2 __snake_case = 3 for block in range(1 , snake_case_ ): for _ in range(snake_case_ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): snake_case_ = 0 try: snake_case_ = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
24
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def UpperCAmelCase_ (self ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """this is a test""" UpperCamelCase__ = """this is a test""" return input_text, output_text def UpperCAmelCase_ (self ): UpperCamelCase__ = """<pad>""" UpperCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 3_00_01 ) def UpperCAmelCase_ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """This is a test""" UpperCamelCase__ = [13, 1, 43_98, 25, 21, 12_89] UpperCamelCase__ = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] UpperCamelCase__ = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode("""sequence builders""" ) UpperCamelCase__ = tokenizer.encode("""multi-sequence build""" ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ , ) @slow def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = {"""input_ids""": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
244
0
def __UpperCamelCase ( ) ->int: """simple docstring""" return 1 def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCamelCase__ ) def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCamelCase__ ) def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCamelCase__ ) def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCamelCase__ ) def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCamelCase__ ) def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCamelCase__ ) def __UpperCamelCase ( _A : int = 200 ) ->int: """simple docstring""" return two_pound(lowerCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
354
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =data lowerCamelCase_ =None lowerCamelCase_ =None def __UpperCamelCase ( _A : Node | None ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCamelCase ( _A : Node | None ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCamelCase ( _A : Node ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCamelCase ( ) ->None: # Main function for testing. """simple docstring""" lowerCamelCase_ =Node(1 ) lowerCamelCase_ =Node(2 ) lowerCamelCase_ =Node(3 ) lowerCamelCase_ =Node(4 ) lowerCamelCase_ =Node(5 ) lowerCamelCase_ =Node(6 ) lowerCamelCase_ =Node(7 ) lowerCamelCase_ =Node(8 ) lowerCamelCase_ =Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print("""Tree is: """ ) display(_A ) if __name__ == "__main__": main()
49
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Optional[Any] = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "unispeech-sat" def __init__( self , UpperCamelCase=32 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.02 , UpperCamelCase=1e-5 , UpperCamelCase="group" , UpperCamelCase="gelu" , UpperCamelCase=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase=False , UpperCamelCase=128 , UpperCamelCase=16 , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=0.05 , UpperCamelCase=10 , UpperCamelCase=2 , UpperCamelCase=0.0 , UpperCamelCase=10 , UpperCamelCase=0 , UpperCamelCase=320 , UpperCamelCase=2 , UpperCamelCase=0.1 , UpperCamelCase=100 , UpperCamelCase=256 , UpperCamelCase=256 , UpperCamelCase=0.1 , UpperCamelCase="mean" , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=256 , UpperCamelCase=(512, 512, 512, 512, 1500) , UpperCamelCase=(5, 3, 3, 1, 1) , UpperCamelCase=(1, 2, 3, 1, 1) , UpperCamelCase=512 , UpperCamelCase=0 , UpperCamelCase=1 , UpperCamelCase=2 , UpperCamelCase=504 , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = feat_extract_norm lowerCamelCase_ = feat_extract_activation lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = conv_bias lowerCamelCase_ = num_conv_pos_embeddings lowerCamelCase_ = num_conv_pos_embedding_groups lowerCamelCase_ = len(self.conv_dim ) lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = feat_proj_dropout lowerCamelCase_ = final_dropout lowerCamelCase_ = layerdrop lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = vocab_size lowerCamelCase_ = num_clusters lowerCamelCase_ = do_stable_layer_norm lowerCamelCase_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length lowerCamelCase_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase_ = num_codevectors_per_group lowerCamelCase_ = num_codevector_groups lowerCamelCase_ = contrastive_logits_temperature lowerCamelCase_ = feat_quantizer_dropout lowerCamelCase_ = num_negatives lowerCamelCase_ = codevector_dim lowerCamelCase_ = proj_codevector_dim lowerCamelCase_ = diversity_loss_weight # ctc loss lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = xvector_output_dim @property def snake_case ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
55
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase = 13 , UpperCamelCase = 64 , UpperCamelCase = 2 , UpperCamelCase = 3 , UpperCamelCase = 3 , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 128 , UpperCamelCase=[16, 32, 64, 128] , UpperCamelCase = 7 , UpperCamelCase = 4 , UpperCamelCase = 37 , UpperCamelCase = "gelu" , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 10 , UpperCamelCase = 0.02 , UpperCamelCase = 2 , UpperCamelCase = 1 , UpperCamelCase = 128 , UpperCamelCase = [2, 2, 2, 2] , UpperCamelCase = 2 , UpperCamelCase = 2 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = encoder_stride lowerCamelCase_ = num_attention_outputs lowerCamelCase_ = embed_dim lowerCamelCase_ = embed_dim + 1 lowerCamelCase_ = resolution lowerCamelCase_ = depths lowerCamelCase_ = hidden_sizes lowerCamelCase_ = dim lowerCamelCase_ = mlp_expansion_ratio def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModel(config=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCamelCase = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModelTester(self ) lowerCamelCase_ = ConfigTester( self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) if hasattr(self.model_tester , "encoder_seq_length" ): lowerCamelCase_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowerCamelCase_ = seq_length * self.model_tester.chunk_length else: lowerCamelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCamelCase_ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCamelCase , (list, tuple) ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "decoder_seq_length" , UpperCamelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEfficientFormerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "encoder_seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "key_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "chunk_length" , UpperCamelCase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowerCamelCase_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def snake_case ( self ): """simple docstring""" # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCamelCase_ = model_class(UpperCamelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCamelCase_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCamelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCamelCase_ = model(UpperCamelCase ) self.assertTrue(outputs_dict is not None ) def __snake_case ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
55
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=13 ,snake_case=30 ,snake_case=2 ,snake_case=3 ,snake_case=True ,snake_case=True ,snake_case=32 ,snake_case=5 ,snake_case=4 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=10 ,snake_case=0.02 ,): '''simple docstring''' lowercase : List[str] = parent lowercase : Dict = batch_size lowercase : List[Any] = image_size lowercase : Optional[int] = patch_size lowercase : Optional[Any] = num_channels lowercase : List[str] = is_training lowercase : List[Any] = use_labels lowercase : Optional[int] = hidden_size lowercase : int = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : Tuple = intermediate_size lowercase : List[Any] = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : Tuple = attention_probs_dropout_prob lowercase : str = type_sequence_label_size lowercase : str = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase : Tuple = (image_size // patch_size) ** 2 lowercase : Optional[Any] = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Tuple = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,) return config, pixel_values def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = FlaxViTModel(config=snake_case ) lowercase : str = model(snake_case ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowercase : List[Any] = (self.image_size, self.image_size) lowercase : Tuple = (self.patch_size, self.patch_size) lowercase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = self.type_sequence_label_size lowercase : Any = FlaxViTForImageClassification(config=snake_case ) lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase : int = 1 lowercase : Dict = FlaxViTForImageClassification(snake_case ) lowercase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase : List[str] = model(snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ) : Any = config_and_inputs lowercase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : List[str]= (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = FlaxViTModelTester(self ) lowercase : int = ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] = model_class(snake_case ) lowercase : List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[str] = [*signature.parameters.keys()] lowercase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : List[str] = self._prepare_for_class(snake_case ,snake_case ) lowercase : Optional[int] = model_class(snake_case ) @jax.jit def model_jitted(snake_case ,**snake_case ): return model(pixel_values=snake_case ,**snake_case ) with self.subTest("""JIT Enabled""" ): lowercase : List[Any] = model_jitted(**snake_case ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowercase : Union[str, Any] = model_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) ,len(snake_case ) ) for jitted_output, output in zip(snake_case ,snake_case ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase : str = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) lowercase : Union[str, Any] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case )
285
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _snake_case( ) -> tuple[list[int], int]: lowercase : List[Any] = [randint(-1_000 , 1_000 ) for i in range(10 )] lowercase : Tuple = randint(-5_000 , 5_000 ) return (arr, r) lowercase : List[Any] = make_dataset() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[int, ...]: for triplet in permutations(SCREAMING_SNAKE_CASE__ , 3 ): if sum(SCREAMING_SNAKE_CASE__ ) == target: return tuple(sorted(SCREAMING_SNAKE_CASE__ ) ) return (0, 0, 0) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[int, int, int]: arr.sort() lowercase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(n - 1 ): lowercase , lowercase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _snake_case( ) -> tuple[float, float]: lowercase : Dict = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ lowercase : Tuple = """ triplet_sum1(*dataset) """ lowercase : int = """ triplet_sum2(*dataset) """ lowercase : str = repeat(setup=SCREAMING_SNAKE_CASE__ , stmt=SCREAMING_SNAKE_CASE__ , repeat=5 , number=10_000 ) lowercase : Dict = repeat(setup=SCREAMING_SNAKE_CASE__ , stmt=SCREAMING_SNAKE_CASE__ , repeat=5 , number=10_000 ) return (min(SCREAMING_SNAKE_CASE__ ), min(SCREAMING_SNAKE_CASE__ )) if __name__ == "__main__": from doctest import testmod testmod() lowercase : Union[str, Any] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
285
1
from ...processing_utils import ProcessorMixin class __a ( A_ ): __lowercase : Optional[Any] = '''WhisperFeatureExtractor''' __lowercase : List[Any] = '''WhisperTokenizer''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Any = self.feature_extractor lowercase__: Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Optional[int]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase__ , language=lowerCAmelCase__ , no_timestamps=lowerCAmelCase__ ) def __call__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Any = kwargs.pop('audio' , lowerCAmelCase__ ) lowercase__: List[str] = kwargs.pop('sampling_rate' , lowerCAmelCase__ ) lowercase__: Optional[Any] = kwargs.pop('text' , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase__: Optional[int] = args[0] lowercase__: Tuple = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowercase__: int = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: lowercase__: Optional[int] = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif audio is None: return encodings else: lowercase__: Any = encodings['input_ids'] return inputs def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__="np" ) -> Any: '''simple docstring''' return self.tokenizer.get_prompt_ids(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
196
from collections.abc import Sequence def _lowerCamelCase( lowercase__ , lowercase__ = False ) -> float: '''simple docstring''' if not arr: return 0 __lowercase= 0 if allow_empty_subarrays else float('-inf' ) __lowercase= 0.0 for num in arr: __lowercase= max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowercase= max(lowercase__ , lowercase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
295
0
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _a : List[Any] = HfArgumentParser(InitializationArguments) _a : Tuple = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _a : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _a : List[Any] = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) _a : Dict = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _a : List[Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
126
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _a : Union[str, Any] = 250_004 _a : Optional[int] = 250_020 @require_sentencepiece @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = MBartaaTokenizer _UpperCamelCase : Any = MBartaaTokenizerFast _UpperCamelCase : List[str] = True _UpperCamelCase : Optional[int] = True def __A ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Tuple = MBartaaTokenizer(a__ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : Any = """<s>""" _lowerCAmelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(a__ ) , 1054 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def __A ( self ): _lowerCAmelCase : str = MBartaaTokenizer(a__ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) _lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __A ( self ): # fmt: off _lowerCAmelCase : Any = {"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def __A ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : List[str] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(a__ , **a__ ) _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(a__ ) _lowerCAmelCase : List[str] = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[Any] = tokenizer_r.from_pretrained(a__ ) _lowerCAmelCase : int = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : List[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(a__ ) _lowerCAmelCase : Any = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(a__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : Any = tokenizer_r.from_pretrained(a__ ) _lowerCAmelCase : int = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): _UpperCamelCase : Union[str, Any] = "facebook/mbart-large-50-one-to-many-mmt" _UpperCamelCase : int = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _UpperCamelCase : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _UpperCamelCase : List[str] = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def __A ( cls ): _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) _lowerCAmelCase : str = 1 return cls def __A ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 ) def __A ( self ): _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a__ ) def __A ( self ): self.assertIn(a__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _lowerCAmelCase : int = self.tokenizer.decode(a__ , skip_special_tokens=a__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ ) self.assertNotIn(self.tokenizer.eos_token , a__ ) def __A ( self ): _lowerCAmelCase : Any = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , a__ ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Optional[int] = self.tokenizer(a__ , max_length=a__ , truncation=a__ ).input_ids[0] self.assertEqual(ids[0] , a__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(a__ ) , a__ ) def __A ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] ) def __A ( self ): _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a__ ) _lowerCAmelCase : List[Any] = MBartaaTokenizer.from_pretrained(a__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a__ ) @require_torch def __A ( self ): _lowerCAmelCase : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a__ , return_tensors="""pt""" ) _lowerCAmelCase : Any = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __A ( self ): _lowerCAmelCase : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) _lowerCAmelCase : Tuple = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(a__ , a__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __A ( self ): _lowerCAmelCase : str = self.tokenizer(self.src_text , padding=a__ , truncation=a__ , max_length=3 , return_tensors="""pt""" ) _lowerCAmelCase : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=10 , return_tensors="""pt""" ) _lowerCAmelCase : List[str] = targets["""input_ids"""] _lowerCAmelCase : Any = shift_tokens_right(a__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __A ( self ): _lowerCAmelCase : str = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(a__ ) , { # en_XX, A, test, EOS """input_ids""": [[250004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
126
1