code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __a = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: inspect_dataset(snake_case_ , snake_case_ ) snake_case__ : Optional[int] = path + """.py""" assert script_name in os.listdir(snake_case_ ) assert "__pycache__" not in os.listdir(snake_case_ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: inspect_metric(snake_case_ , snake_case_ ) snake_case__ : Any = path + """.py""" assert script_name in os.listdir(snake_case_ ) assert "__pycache__" not in os.listdir(snake_case_ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : str = get_dataset_config_info(snake_case_ , config_name=snake_case_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: with pytest.raises(snake_case_ ): get_dataset_config_info(snake_case_ , config_name=snake_case_ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: snake_case__ : List[Any] = get_dataset_config_names(snake_case_ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : int = get_dataset_infos(snake_case_ ) assert list(infos.keys() ) == expected_configs snake_case__ : str = expected_configs[0] assert expected_config in infos snake_case__ : Optional[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : str = get_dataset_infos(snake_case_ ) assert expected_config in infos snake_case__ : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: with pytest.raises(snake_case_ ): get_dataset_split_names(snake_case_ , config_name=snake_case_ )
35
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( _A ): a : Tuple = str(_A ) return n == n[::-1] def lowerCamelCase__ ( _A = 100_0000 ): a : Optional[int] = 0 for i in range(1 , _A ): if is_palindrome(_A ) and is_palindrome(bin(_A ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
363
'''simple docstring''' lowerCAmelCase: Union[str, Any] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) lowerCAmelCase: Optional[Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 1_2, 'Pm': 1_5, 'Em': 1_8, 'Zm': 2_1, 'Ym': 2_4, } def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = from_type.lower().strip('s' ) a : Optional[Any] = to_type.lower().strip('s' ) a : Dict = UNIT_SYMBOL.get(_A , _A ) a : Optional[Any] = UNIT_SYMBOL.get(_A , _A ) if from_sanitized not in METRIC_CONVERSION: a : Optional[Any] = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_A )}""" ) raise ValueError(_A ) if to_sanitized not in METRIC_CONVERSION: a : Union[str, Any] = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_A )}""" ) raise ValueError(_A ) a : List[Any] = METRIC_CONVERSION[from_sanitized] a : int = METRIC_CONVERSION[to_sanitized] a : Tuple = 1 if from_exponent > to_exponent: a : Optional[int] = from_exponent - to_exponent else: a : Optional[Any] = -(to_exponent - from_exponent) return value * pow(10 , _A ) if __name__ == "__main__": from doctest import testmod testmod()
96
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
73
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : Optional[Any] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
147
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = process __SCREAMING_SNAKE_CASE = params def __len__( self : List[str] ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self : int , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dataset[i] __SCREAMING_SNAKE_CASE = self.process(__SCREAMING_SNAKE_CASE , **self.params ) return processed class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=None ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = loader __SCREAMING_SNAKE_CASE = infer __SCREAMING_SNAKE_CASE = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = loader_batch_size # Internal bookkeeping __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __len__( self : Optional[int] ) -> Tuple: """simple docstring""" return len(self.loader ) def __iter__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = iter(self.loader ) return self def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __SCREAMING_SNAKE_CASE = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __SCREAMING_SNAKE_CASE = {} for k, element in self._loader_batch_data.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first __SCREAMING_SNAKE_CASE = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __SCREAMING_SNAKE_CASE = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __SCREAMING_SNAKE_CASE = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __SCREAMING_SNAKE_CASE = self._loader_batch_data.__class__(__SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __SCREAMING_SNAKE_CASE = next(self.iterator ) __SCREAMING_SNAKE_CASE = self.infer(__SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): __SCREAMING_SNAKE_CASE = processed else: __SCREAMING_SNAKE_CASE = list(processed.keys() )[0] __SCREAMING_SNAKE_CASE = processed[key] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE = observed_batch_size # Setting internal index to unwrap the batch __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str=None ) -> Any: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __iter__( self : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = iter(self.loader ) __SCREAMING_SNAKE_CASE = None return self def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" if self.subiterator is None: __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __SCREAMING_SNAKE_CASE = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) __SCREAMING_SNAKE_CASE = next(self.subiterator ) return processed class lowerCAmelCase__ ( a ): """simple docstring""" def __iter__( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = iter(self.loader ) return self def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE = self.loader_batch_item() __SCREAMING_SNAKE_CASE = item.pop("""is_last""" ) accumulator.append(__SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): __SCREAMING_SNAKE_CASE = processed else: __SCREAMING_SNAKE_CASE = list(processed.keys() )[0] __SCREAMING_SNAKE_CASE = processed[key] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE = observed_batch_size __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = 0 while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE = self.loader_batch_item() __SCREAMING_SNAKE_CASE = item.pop("""is_last""" ) accumulator.append(__SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = item.pop("""is_last""" ) accumulator.append(__SCREAMING_SNAKE_CASE ) return accumulator class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dataset , __SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = key def __len__( self : List[str] ) -> Dict: """simple docstring""" return len(self.dataset ) def __getitem__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> str: """simple docstring""" return self.dataset[i][self.key] class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dataset , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = keya __SCREAMING_SNAKE_CASE = keya def __len__( self : Tuple ) -> Any: """simple docstring""" return len(self.dataset ) def __getitem__( self : int , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
331
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = analyze_text(a__ ) __SCREAMING_SNAKE_CASE = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __SCREAMING_SNAKE_CASE = sum(single_char_strings.values() ) # one length string __SCREAMING_SNAKE_CASE = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __SCREAMING_SNAKE_CASE = single_char_strings[ch] __SCREAMING_SNAKE_CASE = my_str / all_sum my_fir_sum += prob * math.loga(a__ ) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum ):.1f}' ) # two len string __SCREAMING_SNAKE_CASE = sum(two_char_strings.values() ) __SCREAMING_SNAKE_CASE = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __SCREAMING_SNAKE_CASE = cha + cha if sequence in two_char_strings: __SCREAMING_SNAKE_CASE = two_char_strings[sequence] __SCREAMING_SNAKE_CASE = int(a__ ) / all_sum my_sec_sum += prob * math.loga(a__ ) # print second entropy print(F'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = Counter() # type: ignore __SCREAMING_SNAKE_CASE = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(a__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
331
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Any ) -> str: a_ : Any = 'laion/clap-htsat-unfused' a_ : Tuple = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : int ) -> int: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Optional[int] = self.get_tokenizer() a_ : int = self.get_feature_extractor() a_ : Union[str, Any] = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) a_ : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) a_ : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) a_ : int = self.get_feature_extractor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) a_ : Optional[Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : Union[str, Any] = self.get_feature_extractor() a_ : Union[str, Any] = self.get_tokenizer() a_ : Optional[Any] = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) a_ : str = floats_list((3, 1_0_0_0) ) a_ : Any = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) a_ : List[Any] = processor(audios=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: a_ : Union[str, Any] = self.get_feature_extractor() a_ : Dict = self.get_tokenizer() a_ : Tuple = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = 'This is a test string' a_ : List[str] = processor(text=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Tuple = self.get_feature_extractor() a_ : Any = self.get_tokenizer() a_ : Dict = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) a_ : Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: a_ : Dict = self.get_feature_extractor() a_ : Optional[Any] = self.get_tokenizer() a_ : Optional[int] = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
32
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ): if not (isinstance(_snake_case ,_snake_case ) and isinstance(_snake_case ,_snake_case )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = len(_snake_case ) SCREAMING_SNAKE_CASE__ : int = len(_snake_case ) SCREAMING_SNAKE_CASE__ : Dict = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 for i in range(1 ,texta_length + 1 ): for j in range(1 ,texta_length + 1 ): if texta[i - 1] == texta[j - 1]: SCREAMING_SNAKE_CASE__ : int = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: SCREAMING_SNAKE_CASE__ : List[Any] = i SCREAMING_SNAKE_CASE__ : List[str] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: A: str = np.inf def set_batch_size(__lowercase ) -> None: nonlocal batch_size if isinstance(A__ , A__ ): A: Dict = min(A__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(A__ , A__ ): A: Union[str, Any] = min(A__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(A__ , A__ ) and feature.dtype == "binary": A: Any = min(A__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(A__ , A__ ) return None if batch_size is np.inf else batch_size class lowerCAmelCase_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : NestedDataStructureLike[PathLike] , SCREAMING_SNAKE_CASE_ : Optional[NamedSplit] = None , SCREAMING_SNAKE_CASE_ : Optional[Features] = None , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> List[Any]: '''simple docstring''' super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) A: Optional[int] = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} A: str = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A: Dict = Parquet( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , hash=UpperCamelCase_ , **UpperCamelCase_ , ) def _snake_case ( self : Dict ) -> str: '''simple docstring''' if self.streaming: A: Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A: Optional[Any] = None A: List[str] = None A: Tuple = None A: Optional[int] = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) A: List[str] = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dataset , SCREAMING_SNAKE_CASE_ : Union[PathLike, BinaryIO] , SCREAMING_SNAKE_CASE_ : Optional[int] = None , **SCREAMING_SNAKE_CASE_ : Any , ) -> Any: '''simple docstring''' A: Dict = dataset A: List[Any] = path_or_buf A: List[Any] = batch_size or get_writer_batch_size(dataset.features ) A: int = parquet_writer_kwargs def _snake_case ( self : Union[str, Any] ) -> int: '''simple docstring''' A: Any = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A: Union[str, Any] = self._write(file_obj=UpperCamelCase_ , batch_size=UpperCamelCase_ , **self.parquet_writer_kwargs ) else: A: Optional[Any] = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase_ , **self.parquet_writer_kwargs ) return written def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : BinaryIO , SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: '''simple docstring''' A: str = 0 A: str = parquet_writer_kwargs.pop('''path_or_buf''' , UpperCamelCase_ ) A: Dict = self.dataset.features.arrow_schema A: Optional[Any] = pq.ParquetWriter(UpperCamelCase_ , schema=UpperCamelCase_ , **UpperCamelCase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase_ ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A: List[str] = query_table( table=self.dataset._data , key=slice(UpperCamelCase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase_ ) written += batch.nbytes writer.close() return written
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a ( lowerCAmelCase_ ): _snake_case : Optional[int] = 'beit' def __init__( self : Optional[Any] , __lowerCAmelCase : Any=8192 , __lowerCAmelCase : Tuple=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Optional[int]=12 , __lowerCAmelCase : Union[str, Any]=3072 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : int=1e-1_2 , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : Union[str, Any]=16 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Any=False , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[int]=[3, 5, 7, 11] , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Optional[int]=0.4 , __lowerCAmelCase : List[Any]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[Any]=255 , **__lowerCAmelCase : List[str] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class a ( lowerCAmelCase_ ): _snake_case : List[Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : Tuple ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Optional[Any] ): return 1e-4
289
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'efficientnet' def __init__( self : Any , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 600 , __lowerCAmelCase : float = 2.0 , __lowerCAmelCase : float = 3.1 , __lowerCAmelCase : int = 8 , __lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , __lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , __lowerCAmelCase : List[int] = [] , __lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCAmelCase : float = 0.25 , __lowerCAmelCase : str = "swish" , __lowerCAmelCase : int = 2560 , __lowerCAmelCase : str = "mean" , __lowerCAmelCase : float = 0.02 , __lowerCAmelCase : float = 0.001 , __lowerCAmelCase : float = 0.99 , __lowerCAmelCase : float = 0.5 , __lowerCAmelCase : float = 0.2 , **__lowerCAmelCase : List[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = width_coefficient _UpperCAmelCase = depth_coefficient _UpperCAmelCase = depth_divisor _UpperCAmelCase = kernel_sizes _UpperCAmelCase = in_channels _UpperCAmelCase = out_channels _UpperCAmelCase = depthwise_padding _UpperCAmelCase = strides _UpperCAmelCase = num_block_repeats _UpperCAmelCase = expand_ratios _UpperCAmelCase = squeeze_expansion_ratio _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dim _UpperCAmelCase = pooling_type _UpperCAmelCase = initializer_range _UpperCAmelCase = batch_norm_eps _UpperCAmelCase = batch_norm_momentum _UpperCAmelCase = dropout_rate _UpperCAmelCase = drop_connect_rate _UpperCAmelCase = sum(__lowerCAmelCase ) * 4 class a ( lowerCAmelCase_ ): _snake_case : Dict = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : int ): return 1e-5
289
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu' def SCREAMING_SNAKE_CASE_ ( __A : str , __A : int=1_00 , __A : Tuple=" " ) -> List[str]: _SCREAMING_SNAKE_CASE = text.split(__A ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__A ) , __A )] def SCREAMING_SNAKE_CASE_ ( __A : dict ) -> dict: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__A ): titles.append(title if title is not None else "" ) texts.append(__A ) return {"title": titles, "text": texts} def SCREAMING_SNAKE_CASE_ ( __A : dict , __A : DPRContextEncoder , __A : DPRContextEncoderTokenizerFast ) -> dict: _SCREAMING_SNAKE_CASE = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__A , padding="longest" , return_tensors="pt" )["input_ids"] _SCREAMING_SNAKE_CASE = ctx_encoder(input_ids.to(device=__A ) , return_dict=__A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def SCREAMING_SNAKE_CASE_ ( __A : "RagExampleArguments" , __A : "ProcessingArguments" , __A : "IndexHnswArguments" , ) -> int: ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _SCREAMING_SNAKE_CASE = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _SCREAMING_SNAKE_CASE = dataset.map(__A , batched=__A , num_proc=processing_args.num_proc ) # And compute the embeddings _SCREAMING_SNAKE_CASE = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__A ) _SCREAMING_SNAKE_CASE = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _SCREAMING_SNAKE_CASE = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _SCREAMING_SNAKE_CASE = dataset.map( partial(__A , ctx_encoder=__A , ctx_tokenizer=__A ) , batched=__A , batch_size=processing_args.batch_size , features=__A , ) # And finally save your dataset _SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _SCREAMING_SNAKE_CASE = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__A ) # And save the index _SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowercase_ : """simple docstring""" lowerCamelCase_ = field( default=str(Path(A ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) lowerCamelCase_ = field( default=A , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) lowerCamelCase_ = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) lowerCamelCase_ = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) lowerCamelCase_ = field( default=str(Path(A ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class lowercase_ : """simple docstring""" lowerCamelCase_ = field( default=A , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) lowerCamelCase_ = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class lowercase_ : """simple docstring""" lowerCamelCase_ = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) lowerCamelCase_ = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
111
'''simple docstring''' from ...configuration_utils import PretrainedConfig class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''bert-generation''' def __init__( self : int , __lowerCamelCase : int=5_0_3_5_8 , __lowerCamelCase : Union[str, Any]=1_0_2_4 , __lowerCamelCase : str=2_4 , __lowerCamelCase : int=1_6 , __lowerCamelCase : Union[str, Any]=4_0_9_6 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[Any]=5_1_2 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : Union[str, Any]=1e-12 , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Union[str, Any]=True , **__lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache
111
1
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a__ : List[Any] = 6_37_81_37.0 a__ : Any = 6_35_67_52.31_42_45 a__ : Optional[Any] = 6_3_7_8_1_3_7 def _lowercase ( __A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __UpperCamelCase = atan((1 - flattening) * tan(radians(__A ) ) ) __UpperCamelCase = atan((1 - flattening) * tan(radians(__A ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __UpperCamelCase = haversine_distance(__A ,__A ,__A ,__A ) / EQUATORIAL_RADIUS # Intermediate P and Q values __UpperCamelCase = (b_lata + b_lata) / 2 __UpperCamelCase = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __UpperCamelCase = (sin(__A ) ** 2) * (cos(__A ) ** 2) __UpperCamelCase = cos(sigma / 2 ) ** 2 __UpperCamelCase = (sigma - sin(__A )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __UpperCamelCase = (cos(__A ) ** 2) * (sin(__A ) ** 2) __UpperCamelCase = sin(sigma / 2 ) ** 2 __UpperCamelCase = (sigma + sin(__A )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from datetime import datetime import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__A ).content if __name__ == "__main__": a__ : int = input('Enter Video/IGTV url: ').strip() a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
349
1
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ : int = logging.get_logger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = to_pil_image(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = pil_image.size __SCREAMING_SNAKE_CASE = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type="dict" , config=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates __SCREAMING_SNAKE_CASE = [idx for idx, word in enumerate(lowerCAmelCase_ ) if not word.strip()] __SCREAMING_SNAKE_CASE = [word for idx, word in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __SCREAMING_SNAKE_CASE = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_ ) # finally, normalize the bounding boxes __SCREAMING_SNAKE_CASE = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[Any] = ["pixel_values"] def __init__( self : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : float = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[float, Iterable[float]] = None , UpperCAmelCase__ : Union[float, Iterable[float]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = "" , **UpperCAmelCase__ : Optional[Any] , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"height": 2_2_4, "width": 2_2_4} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_value __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD __SCREAMING_SNAKE_CASE = apply_ocr __SCREAMING_SNAKE_CASE = ocr_lang __SCREAMING_SNAKE_CASE = tesseract_config def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = (size["height"], size["width"]) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : List[Any] , ) -> np.ndarray: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, Iterable[float]] , UpperCAmelCase__ : Union[float, Iterable[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Union[float, Iterable[float]] = None , UpperCAmelCase__ : Union[float, Iterable[float]] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : List[Any] , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = apply_ocr if apply_ocr is not None else self.apply_ocr __SCREAMING_SNAKE_CASE = ocr_lang if ocr_lang is not None else self.ocr_lang __SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else self.tesseract_config __SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for image in images: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = apply_tesseract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) words_batch.append(UpperCAmelCase__ ) boxes_batch.append(UpperCAmelCase__ ) if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = BatchFeature(data={"pixel_values": images} , tensor_type=UpperCAmelCase__ ) if apply_ocr: __SCREAMING_SNAKE_CASE = words_batch __SCREAMING_SNAKE_CASE = boxes_batch return data
355
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a__ : Dict = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a__ : Any = TaTokenizerFast a__ : Tuple = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a__ : str = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
195
0
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _a = 50_00_00 _a , _a = os.path.split(__file__) _a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, **UpperCamelCase_ : Tuple) -> Optional[Any]: '''simple docstring''' __lowercase = dataset.map(**UpperCamelCase_) @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, **UpperCamelCase_ : str) -> Tuple: '''simple docstring''' __lowercase = dataset.filter(**UpperCamelCase_) def _A ( ) -> Optional[int]: '''simple docstring''' __lowercase = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = datasets.Features({"text": datasets.Value("string"), "numbers": datasets.Value("float32")}) __lowercase = generate_example_dataset( os.path.join(UpperCamelCase_, "dataset.arrow"), UpperCamelCase_, num_examples=UpperCamelCase_) __lowercase = transformers.AutoTokenizer.from_pretrained("bert-base-cased", use_fast=UpperCamelCase_) def tokenize(UpperCamelCase_ : int): return tokenizer(examples["text"]) __lowercase = map(UpperCamelCase_) __lowercase = map(UpperCamelCase_, batched=UpperCamelCase_) __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) with dataset.formatted_as(type="numpy"): __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) with dataset.formatted_as(type="pandas"): __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) with dataset.formatted_as(type="torch", columns="numbers"): __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) with dataset.formatted_as(type="tensorflow", columns="numbers"): __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) __lowercase = map(UpperCamelCase_, function=UpperCamelCase_, batched=UpperCamelCase_) __lowercase = filter(UpperCamelCase_) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase_, "wb") as f: f.write(json.dumps(UpperCamelCase_).encode("utf-8")) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
17
'''simple docstring''' a__ : Union[str, Any] = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _UpperCamelCase ( __A ) -> int: '''simple docstring''' UpperCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a__ : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a__ : Optional[Any] = True a__ : Optional[Any] = False def _UpperCamelCase ( __A ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCamelCase__ = chain(next_number(__A ) ) UpperCamelCase__ = number_chain while number < 10000000: UpperCamelCase__ = number_chain number *= 10 return number_chain def _UpperCamelCase ( __A = 10000000 ) -> int: '''simple docstring''' for i in range(1 , __A ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__A ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
80
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _validate_point(lowerCAmelCase_ ) _validate_point(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if point: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for item in point: if not isinstance(lowerCAmelCase_ , (int, float) ): _UpperCAmelCase : Any = ( """Expected a list of numbers as input, found """ F'''{type(lowerCAmelCase_ ).__name__}''' ) raise TypeError(lowerCAmelCase_ ) else: _UpperCAmelCase : Optional[Any] = F'''Expected a list of numbers as input, found {type(lowerCAmelCase_ ).__name__}''' raise TypeError(lowerCAmelCase_ ) else: raise ValueError("""Missing an input""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _validate_point(lowerCAmelCase_ ) _validate_point(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
1
'''simple docstring''' from PIL import Image def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(UpperCAmelCase_ ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(UpperCAmelCase_ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 snake_case_ : List[str] = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
83
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCAmelCase_ (self ): UpperCamelCase__ = 10 UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps[0] UpperCamelCase__ = scheduler.timesteps[1] UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ (self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [1_06, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 1, 0] UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
244
0
'''simple docstring''' from heapq import heappop, heappush import numpy as np def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : tuple[int, int] , UpperCamelCase : tuple[int, int] , UpperCamelCase : bool , ): '''simple docstring''' _a , _a = grid.shape _a = [-1, 1, 0, 0] _a = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _a , _a = [(0, source)], set() _a = np.full((rows, cols) , np.inf ) _a = 0 _a = np.empty((rows, cols) , dtype=__UpperCamelCase ) _a = None while queue: ((_a) , (_a)) = heappop(__UpperCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _a = [] while (x, y) != source: path.append((x, y) ) _a , _a = predecessors[x, y] path.append(__UpperCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__UpperCamelCase ) ): _a , _a = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _a = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__UpperCamelCase , (dist + 1, (nx, ny)) ) _a = dist + 1 _a = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A ( _a ): lowercase_ = 42 lowercase_ = jnp.floataa lowercase_ = True def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setup() _a = nn.Dense(5 , dtype=self.dtype ) def __call__( self : List[Any] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ) -> List[Any]: """simple docstring""" _a = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) _a = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A ( _a ): lowercase_ = FlaxBigBirdForNaturalQuestionsModule def snake_case_ (UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' def cross_entropy(UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str]=None ): _a = logits.shape[-1] _a = (labels[..., None] == jnp.arange(UpperCamelCase )[None]).astype('''f4''' ) _a = jax.nn.log_softmax(UpperCamelCase , axis=-1 ) _a = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _a = reduction(UpperCamelCase ) return loss _a = partial(UpperCamelCase , reduction=jnp.mean ) _a = cross_entropy(UpperCamelCase , UpperCamelCase ) _a = cross_entropy(UpperCamelCase , UpperCamelCase ) _a = cross_entropy(UpperCamelCase , UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A : lowercase_ = "google/bigbird-roberta-base" lowercase_ = 3000 lowercase_ = 1_0500 lowercase_ = 128 lowercase_ = 3 lowercase_ = 1 lowercase_ = 5 # tx_args lowercase_ = 3e-5 lowercase_ = 0.0 lowercase_ = 2_0000 lowercase_ = 0.0095 lowercase_ = "bigbird-roberta-natural-questions" lowercase_ = "training-expt" lowercase_ = "data/nq-training.jsonl" lowercase_ = "data/nq-validation.jsonl" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" os.makedirs(self.base_dir , exist_ok=lowerCAmelCase_ ) _a = os.path.join(self.base_dir , self.save_dir ) _a = self.batch_size_per_device * jax.device_count() @dataclass class A : lowercase_ = 42 lowercase_ = 4096 # no dynamic padding on TPUs def __call__( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a = self.collate_fn(lowerCAmelCase_ ) _a = jax.tree_util.tree_map(lowerCAmelCase_ , lowerCAmelCase_ ) return batch def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[Any] ) -> int: """simple docstring""" _a , _a = self.fetch_inputs(features['''input_ids'''] ) _a = { '''input_ids''': jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : list ) -> List[Any]: """simple docstring""" _a = [self._fetch_inputs(lowerCAmelCase_ ) for ids in input_ids] return zip(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : list ) -> str: """simple docstring""" _a = [1 for _ in range(len(lowerCAmelCase_ ) )] while len(lowerCAmelCase_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Dict=None ): '''simple docstring''' if seed is not None: _a = dataset.shuffle(seed=UpperCamelCase ) for i in range(len(UpperCamelCase ) // batch_size ): _a = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase ) @partial(jax.pmap , axis_name='''batch''' ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , **UpperCamelCase : str ): '''simple docstring''' def loss_fn(UpperCamelCase : List[str] ): _a = model_inputs.pop('''start_labels''' ) _a = model_inputs.pop('''end_labels''' ) _a = model_inputs.pop('''pooled_labels''' ) _a = state.apply_fn(**UpperCamelCase , params=UpperCamelCase , dropout_rng=UpperCamelCase , train=UpperCamelCase ) _a , _a , _a = outputs return state.loss_fn( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) _a , _a = jax.random.split(UpperCamelCase ) _a = jax.value_and_grad(UpperCamelCase ) _a , _a = grad_fn(state.params ) _a = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _a = jax.lax.pmean(UpperCamelCase , '''batch''' ) _a = state.apply_gradients(grads=UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def snake_case_ (UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' _a = model_inputs.pop('''start_labels''' ) _a = model_inputs.pop('''end_labels''' ) _a = model_inputs.pop('''pooled_labels''' ) _a = state.apply_fn(**UpperCamelCase , params=state.params , train=UpperCamelCase ) _a , _a , _a = outputs _a = state.loss_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _a = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class A ( train_state.TrainState ): lowercase_ = struct.field(pytree_node=_a ) @dataclass class A : lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = None def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=None ) -> List[str]: """simple docstring""" _a = model.params _a = TrainState.create( apply_fn=model.__call__ , params=lowerCAmelCase_ , tx=lowerCAmelCase_ , loss_fn=lowerCAmelCase_ , ) if ckpt_dir is not None: _a , _a , _a , _a , _a = restore_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ ) _a = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _a , _a = build_tx(**lowerCAmelCase_ ) _a = train_state.TrainState( step=lowerCAmelCase_ , apply_fn=model.__call__ , params=lowerCAmelCase_ , tx=lowerCAmelCase_ , opt_state=lowerCAmelCase_ , ) _a = args _a = data_collator _a = lr _a = params _a = jax_utils.replicate(lowerCAmelCase_ ) return state def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ) -> int: """simple docstring""" _a = self.args _a = len(lowerCAmelCase_ ) // args.batch_size _a = jax.random.PRNGKey(0 ) _a = jax.random.split(lowerCAmelCase_ , jax.device_count() ) for epoch in range(args.max_epochs ): _a = jnp.array(0 , dtype=jnp.floataa ) _a = get_batched_dataset(lowerCAmelCase_ , args.batch_size , seed=lowerCAmelCase_ ) _a = 0 for batch in tqdm(lowerCAmelCase_ , total=lowerCAmelCase_ , desc=F'Running EPOCH-{epoch}' ): _a = self.data_collator(lowerCAmelCase_ ) _a , _a , _a = self.train_step_fn(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _a = jax_utils.unreplicate(state.step ) _a = running_loss.item() / i _a = self.scheduler_fn(state_step - 1 ) _a = self.evaluate(lowerCAmelCase_ , lowerCAmelCase_ ) _a = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowerCAmelCase_ ) ) self.logger.log(lowerCAmelCase_ , commit=lowerCAmelCase_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ) -> List[str]: """simple docstring""" _a = get_batched_dataset(lowerCAmelCase_ , self.args.batch_size ) _a = len(lowerCAmelCase_ ) // self.args.batch_size _a = jnp.array(0 , dtype=jnp.floataa ) _a = 0 for batch in tqdm(lowerCAmelCase_ , total=lowerCAmelCase_ , desc='''Evaluating ... ''' ): _a = self.data_collator(lowerCAmelCase_ ) _a = self.val_step_fn(lowerCAmelCase_ , **lowerCAmelCase_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def __lowerCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> int: """simple docstring""" _a = jax_utils.unreplicate(lowerCAmelCase_ ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=''' ... ''' ) self.model_save_fn(lowerCAmelCase_ , params=state.params ) with open(os.path.join(lowerCAmelCase_ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCAmelCase_ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(lowerCAmelCase_ , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCAmelCase_ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , lowerCAmelCase_ ) print('''DONE''' ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=''' ... ''' ) with open(os.path.join(UpperCamelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _a = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _a = from_bytes(state.opt_state , f.read() ) _a = joblib.load(os.path.join(UpperCamelCase , '''args.joblib''' ) ) _a = joblib.load(os.path.join(UpperCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(UpperCamelCase , '''training_state.json''' ) , '''r''' ) as f: _a = json.load(UpperCamelCase ) _a = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' _a = num_train_steps - warmup_steps _a = optax.linear_schedule(init_value=UpperCamelCase , end_value=UpperCamelCase , transition_steps=UpperCamelCase ) _a = optax.linear_schedule(init_value=UpperCamelCase , end_value=1e-7 , transition_steps=UpperCamelCase ) _a = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' def weight_decay_mask(UpperCamelCase : Dict ): _a = traverse_util.flatten_dict(UpperCamelCase ) _a = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase ) _a = scheduler_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _a = optax.adamw(learning_rate=UpperCamelCase , weight_decay=UpperCamelCase , mask=UpperCamelCase ) return tx, lr
179
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class UpperCamelCase ( lowercase_ ): lowercase = '''dpr''' def __init__( self ,__UpperCamelCase=3_0522 ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0 ,__UpperCamelCase="absolute" ,__UpperCamelCase = 0 ,**__UpperCamelCase ,) -> int: '''simple docstring''' super().__init__(pad_token_id=A__ ,**A__ ) lowercase_ : Any = vocab_size lowercase_ : Optional[int] = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : Tuple = num_attention_heads lowercase_ : Union[str, Any] = hidden_act lowercase_ : List[str] = intermediate_size lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Union[str, Any] = attention_probs_dropout_prob lowercase_ : int = max_position_embeddings lowercase_ : List[str] = type_vocab_size lowercase_ : List[str] = initializer_range lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : List[str] = projection_dim lowercase_ : Optional[int] = position_embedding_type
213
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase (lowercase_: int , lowercase_: Dict , lowercase_: Tuple ) -> Any: # Construct model if gpta_config_file == "": A__ : Dict = GPTaConfig() else: A__ : List[Any] = GPTaConfig.from_json_file(lowercase_ ) A__ : Tuple = GPTaModel(lowercase_ ) # Load weights from numpy load_tf_weights_in_gpta(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) A_ : str = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
192
0
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __SCREAMING_SNAKE_CASE : List[str] = 'src/diffusers' __SCREAMING_SNAKE_CASE : List[Any] = '.' # This is to make sure the diffusers module imported is the one in the repo. __SCREAMING_SNAKE_CASE : List[Any] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) __SCREAMING_SNAKE_CASE : Any = spec.loader.load_module() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , lowerCAmelCase__ ) is not None def _a ( _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = object_name.split(""".""" ) snake_case_ = 0 # First let's find the module where our object lives. snake_case_ = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , f"""{module}.py""" ) ): i += 1 if i < len(lowerCAmelCase__ ): snake_case_ = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(lowerCAmelCase__ , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ = f.readlines() # Now let's find the class / func in the code! snake_case_ = '''''' snake_case_ = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). snake_case_ = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') __SCREAMING_SNAKE_CASE : List[str] = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') __SCREAMING_SNAKE_CASE : List[Any] = re.compile(R'<FILL\s+[^>]*>') def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: snake_case_ = code.split("""\n""" ) snake_case_ = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: snake_case_ = f"""class Bla:\n{code}""" snake_case_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCAmelCase__ ) snake_case_ = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) snake_case_ = style_docstrings_in_code(lowerCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ = f.readlines() snake_case_ = [] snake_case_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): snake_case_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. snake_case_ = search.groups() snake_case_ = find_code_in_diffusers(lowerCAmelCase__ ) snake_case_ = get_indent(lowerCAmelCase__ ) snake_case_ = line_index + 1 if indent == theoretical_indent else line_index + 2 snake_case_ = theoretical_indent snake_case_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. snake_case_ = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break snake_case_ = lines[line_index] snake_case_ = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(f"""^{indent}# End copy""" , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ = lines[start_index:line_index] snake_case_ = ''''''.join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies snake_case_ = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] snake_case_ = '''\n'''.join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: snake_case_ = replace_pattern.replace("""with""" , """""" ).split(""",""" ) snake_case_ = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue snake_case_ = pattern.groups() snake_case_ = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": snake_case_ = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) snake_case_ = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line snake_case_ = blackify(lines[start_index - 1] + theoretical_code ) snake_case_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: snake_case_ = lines[:start_index] + [theoretical_code] + lines[line_index:] snake_case_ = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) return diffs def _a ( _SCREAMING_SNAKE_CASE = False ) -> Dict: snake_case_ = glob.glob(os.path.join(lowerCAmelCase__ , """**/*.py""" ) , recursive=lowerCAmelCase__ ) snake_case_ = [] for filename in all_files: snake_case_ = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: snake_case_ = '''\n'''.join(lowerCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() check_copies(args.fix_and_overwrite)
352
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __A (snake_case__): '''simple docstring''' __lowercase: Any = ["""image_processor""", """tokenizer"""] __lowercase: Dict = """AutoImageProcessor""" __lowercase: List[Any] = """AutoTokenizer""" def __init__( self : Tuple , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase_ , ) snake_case_ = kwargs.pop("""feature_extractor""" ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = self.image_processor snake_case_ = False def __call__( self : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str ) ->List[str]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = kwargs.pop("""images""" , UpperCAmelCase_ ) snake_case_ = kwargs.pop("""text""" , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: snake_case_ = args[0] snake_case_ = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: snake_case_ = self.image_processor(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None: snake_case_ = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) if text is None: return inputs elif images is None: return encodings else: snake_case_ = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ) ->Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->str: """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @contextmanager def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) snake_case_ = True snake_case_ = self.tokenizer yield snake_case_ = self.image_processor snake_case_ = False def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : str=None ) ->Tuple: """simple docstring""" if added_vocab is None: snake_case_ = self.tokenizer.get_added_vocab() snake_case_ = {} while tokens: snake_case_ = re.search(R"""<s_(.*?)>""" , UpperCAmelCase_ , re.IGNORECASE ) if start_token is None: break snake_case_ = start_token.group(1 ) snake_case_ = re.search(RF"""</s_{key}>""" , UpperCAmelCase_ , re.IGNORECASE ) snake_case_ = start_token.group() if end_token is None: snake_case_ = tokens.replace(UpperCAmelCase_ , """""" ) else: snake_case_ = end_token.group() snake_case_ = re.escape(UpperCAmelCase_ ) snake_case_ = re.escape(UpperCAmelCase_ ) snake_case_ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , UpperCAmelCase_ , re.IGNORECASE ) if content is not None: snake_case_ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case_ = self.tokenajson(UpperCAmelCase_ , is_inner_value=UpperCAmelCase_ , added_vocab=UpperCAmelCase_ ) if value: if len(UpperCAmelCase_ ) == 1: snake_case_ = value[0] snake_case_ = value else: # leaf nodes snake_case_ = [] for leaf in content.split(R"""<sep/>""" ): snake_case_ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case_ = leaf[1:-2] # for categorical special tokens output[key].append(UpperCAmelCase_ ) if len(output[key] ) == 1: snake_case_ = output[key][0] snake_case_ = tokens[tokens.find(UpperCAmelCase_ ) + len(UpperCAmelCase_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCAmelCase_ , added_vocab=UpperCAmelCase_ ) if len(UpperCAmelCase_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase_ , ) return self.image_processor_class @property def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase_ , ) return self.image_processor
233
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( a_ ): '''simple docstring''' A = (DEISMultistepScheduler,) A = (("num_inference_steps", 2_5),) def a_ (self , **_UpperCAmelCase ) -> List[Any]: __UpperCamelCase : Dict = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**_A ) return config def a_ (self , _UpperCAmelCase=0 , **_UpperCAmelCase ) -> Any: __UpperCamelCase : Any = dict(self.forward_default_kwargs ) __UpperCamelCase : Optional[int] = kwargs.pop("num_inference_steps" , _A ) __UpperCamelCase : Union[str, Any] = self.dummy_sample __UpperCamelCase : Optional[int] = 0.1 * sample __UpperCamelCase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase : Dict = self.get_scheduler_config(**_A ) __UpperCamelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals __UpperCamelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __UpperCamelCase : Dict = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals __UpperCamelCase : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase , __UpperCamelCase : Dict = sample, sample for t in range(_A , time_step + scheduler.config.solver_order + 1 ): __UpperCamelCase : Optional[int] = scheduler.step(_A , _A , _A , **_A ).prev_sample __UpperCamelCase : List[str] = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a_ (self ) -> Optional[int]: pass def a_ (self , _UpperCAmelCase=0 , **_UpperCAmelCase ) -> Tuple: __UpperCamelCase : Union[str, Any] = dict(self.forward_default_kwargs ) __UpperCamelCase : Dict = kwargs.pop("num_inference_steps" , _A ) __UpperCamelCase : Optional[Any] = self.dummy_sample __UpperCamelCase : Optional[Any] = 0.1 * sample __UpperCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase : Optional[int] = self.get_scheduler_config() __UpperCamelCase : Dict = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) __UpperCamelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __UpperCamelCase : Tuple = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) __UpperCamelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase : Dict = scheduler.step(_A , _A , _A , **_A ).prev_sample __UpperCamelCase : Any = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a_ (self , _UpperCAmelCase=None , **_UpperCAmelCase ) -> str: if scheduler is None: __UpperCamelCase : Dict = self.scheduler_classes[0] __UpperCamelCase : List[str] = self.get_scheduler_config(**_A ) __UpperCamelCase : Dict = scheduler_class(**_A ) __UpperCamelCase : Any = self.scheduler_classes[0] __UpperCamelCase : int = self.get_scheduler_config(**_A ) __UpperCamelCase : Tuple = scheduler_class(**_A ) __UpperCamelCase : List[Any] = 1_0 __UpperCamelCase : str = self.dummy_model() __UpperCamelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase : Tuple = model(_A , _A ) __UpperCamelCase : Dict = scheduler.step(_A , _A , _A ).prev_sample return sample def a_ (self ) -> Dict: __UpperCamelCase : Tuple = dict(self.forward_default_kwargs ) __UpperCamelCase : List[str] = kwargs.pop("num_inference_steps" , _A ) for scheduler_class in self.scheduler_classes: __UpperCamelCase : List[Any] = self.get_scheduler_config() __UpperCamelCase : List[Any] = scheduler_class(**_A ) __UpperCamelCase : int = self.dummy_sample __UpperCamelCase : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(_A , "set_timesteps" ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A , "set_timesteps" ): __UpperCamelCase : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCamelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] __UpperCamelCase : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] __UpperCamelCase : Union[str, Any] = scheduler.timesteps[5] __UpperCamelCase : List[Any] = scheduler.timesteps[6] __UpperCamelCase : Tuple = scheduler.step(_A , _A , _A , **_A ).prev_sample __UpperCamelCase : Any = scheduler.step(_A , _A , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a_ (self ) -> Optional[int]: __UpperCamelCase : Dict = DEISMultistepScheduler(**self.get_scheduler_config() ) __UpperCamelCase : Tuple = self.full_loop(scheduler=_A ) __UpperCamelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 __UpperCamelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __UpperCamelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __UpperCamelCase : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) __UpperCamelCase : List[Any] = DEISMultistepScheduler.from_config(scheduler.config ) __UpperCamelCase : Any = self.full_loop(scheduler=_A ) __UpperCamelCase : str = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def a_ (self ) -> str: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_A ) def a_ (self ) -> List[str]: self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , algorithm_type="deis" , solver_order=_A , solver_type=_A , ) def a_ (self ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def a_ (self ) -> Dict: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A , solver_type=_A , prediction_type=_A , algorithm_type=_A , ) __UpperCamelCase : Optional[Any] = self.full_loop( solver_order=_A , solver_type=_A , prediction_type=_A , algorithm_type=_A , ) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def a_ (self ) -> Tuple: self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def a_ (self ) -> List[str]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=_A , time_step=0 ) def a_ (self ) -> Union[str, Any]: __UpperCamelCase : List[Any] = self.full_loop() __UpperCamelCase : List[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def a_ (self ) -> Any: __UpperCamelCase : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) __UpperCamelCase : Optional[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def a_ (self ) -> Dict: __UpperCamelCase : Optional[Any] = self.scheduler_classes[0] __UpperCamelCase : List[str] = self.get_scheduler_config(thresholding=_A , dynamic_thresholding_ratio=0 ) __UpperCamelCase : Optional[int] = scheduler_class(**_A ) __UpperCamelCase : Any = 1_0 __UpperCamelCase : Optional[Any] = self.dummy_model() __UpperCamelCase : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase : Any = model(_A , _A ) __UpperCamelCase : Optional[int] = scheduler.step(_A , _A , _A ).prev_sample assert sample.dtype == torch.floataa
298
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __A : str = random.Random() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__=1.0 , UpperCamelCase__=None , UpperCamelCase__=None ) -> Tuple: '''simple docstring''' if rng is None: UpperCAmelCase = global_rng UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class A_ (unittest.TestCase ): def __init__( self , _A , _A=7 , _A=4_0_0 , _A=2_0_0_0 , _A=1 , _A=0.0 , _A=1_6_0_0_0 , _A=True , _A=8_0 , _A=1_6 , _A=6_4 , _A="hann_window" , _A=8_0 , _A=7_6_0_0 , _A=1E-10 , _A=True , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = min_seq_length UpperCAmelCase = max_seq_length UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase = feature_size UpperCAmelCase = padding_value UpperCAmelCase = sampling_rate UpperCAmelCase = do_normalize UpperCAmelCase = num_mel_bins UpperCAmelCase = hop_length UpperCAmelCase = win_length UpperCAmelCase = win_function UpperCAmelCase = fmin UpperCAmelCase = fmax UpperCAmelCase = mel_floor UpperCAmelCase = return_attention_mask def _lowercase ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowercase ( self , _A=False , _A=False ): '''simple docstring''' def _flatten(_A ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(_A ) for x in speech_inputs] return speech_inputs def _lowercase ( self , _A=False , _A=False ): '''simple docstring''' if equal_length: UpperCAmelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = SpeechTaFeatureExtractor def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = SpeechTaFeatureExtractionTester(self ) def _lowercase ( self , _A ): '''simple docstring''' self.assertTrue(np.all(np.mean(_A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_A , axis=0 ) - 1 ) < 1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , padding=_A , max_length=_A , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) UpperCAmelCase = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , max_length=_A , padding=_A ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(_A ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase = feature_extractor(audio_target=_A , padding=_A , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCAmelCase = np.asarray(_A ) UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_A ) == len(_A ) for x, y in zip(_A , processed_features[input_name] ) ) ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_A ) UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_A ) UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' )[input_name] UpperCAmelCase = feat_extract.pad(_A , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_dict UpperCAmelCase = True UpperCAmelCase = self.feature_extraction_class(**_A ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = [len(_A ) for x in speech_inputs] UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_dict UpperCAmelCase = True UpperCAmelCase = self.feature_extraction_class(**_A ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = [len(_A ) for x in speech_inputs] UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = min(_A ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _lowercase ( self , _A ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , _A , atol=1E-6 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = feature_extractor(audio_target=_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _A , atol=1E-4 ) )
273
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """pegasus""" lowercase_ = ["""past_key_values"""] lowercase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Any , SCREAMING_SNAKE_CASE : int=50_265 , SCREAMING_SNAKE_CASE : Optional[Any]=1_024 , SCREAMING_SNAKE_CASE : Dict=12 , SCREAMING_SNAKE_CASE : Optional[int]=4_096 , SCREAMING_SNAKE_CASE : Tuple=16 , SCREAMING_SNAKE_CASE : Tuple=12 , SCREAMING_SNAKE_CASE : Any=4_096 , SCREAMING_SNAKE_CASE : Union[str, Any]=16 , SCREAMING_SNAKE_CASE : List[str]=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : int="gelu" , SCREAMING_SNAKE_CASE : Dict=1_024 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : Any=0.02 , SCREAMING_SNAKE_CASE : List[Any]=0 , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Optional[int]=0 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : Optional[Any]=1 , **SCREAMING_SNAKE_CASE : Optional[int] , ): lowercase__ : List[Any] = vocab_size lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : List[Any] = d_model lowercase__ : int = encoder_ffn_dim lowercase__ : int = encoder_layers lowercase__ : Optional[Any] = encoder_attention_heads lowercase__ : str = decoder_ffn_dim lowercase__ : str = decoder_layers lowercase__ : List[Any] = decoder_attention_heads lowercase__ : Optional[int] = dropout lowercase__ : Union[str, Any] = attention_dropout lowercase__ : Optional[int] = activation_dropout lowercase__ : Union[str, Any] = activation_function lowercase__ : List[str] = init_std lowercase__ : Tuple = encoder_layerdrop lowercase__ : int = decoder_layerdrop lowercase__ : Any = use_cache lowercase__ : int = encoder_layers lowercase__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , forced_eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @property def snake_case ( self : Optional[Any] ): return self.encoder_attention_heads @property def snake_case ( self : Dict ): return self.d_model
361
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """bridgetower_vision_model""" def __init__( self : str , SCREAMING_SNAKE_CASE : Dict=768 , SCREAMING_SNAKE_CASE : Union[str, Any]=12 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Dict=16 , SCREAMING_SNAKE_CASE : List[Any]=288 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : List[str]=1E-0_5 , SCREAMING_SNAKE_CASE : str=False , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Tuple=False , **SCREAMING_SNAKE_CASE : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : str = num_channels lowercase__ : Optional[int] = patch_size lowercase__ : Dict = image_size lowercase__ : List[Any] = initializer_factor lowercase__ : int = layer_norm_eps lowercase__ : List[str] = stop_gradient lowercase__ : Optional[int] = share_layernorm lowercase__ : Optional[int] = remove_last_layer @classmethod def snake_case ( cls : Tuple , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : str ): lowercase__ , lowercase__ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if config_dict.get("model_type" ) == "bridgetower": lowercase__ : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """bridgetower_text_model""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any]=50_265 , SCREAMING_SNAKE_CASE : Optional[int]=768 , SCREAMING_SNAKE_CASE : List[str]=12 , SCREAMING_SNAKE_CASE : Union[str, Any]=12 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : Any=3_072 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Tuple=514 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : Dict=1E-0_5 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : str=0 , SCREAMING_SNAKE_CASE : List[Any]=2 , SCREAMING_SNAKE_CASE : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE : int=True , **SCREAMING_SNAKE_CASE : int , ): super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : Any = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : int = hidden_act lowercase__ : Optional[Any] = initializer_factor lowercase__ : Dict = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : str = type_vocab_size lowercase__ : str = layer_norm_eps lowercase__ : Dict = position_embedding_type lowercase__ : Optional[Any] = use_cache lowercase__ : List[str] = pad_token_id lowercase__ : Optional[Any] = bos_token_id lowercase__ : Optional[Any] = eos_token_id @classmethod def snake_case ( cls : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : str ): lowercase__ , lowercase__ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if config_dict.get("model_type" ) == "bridgetower": lowercase__ : List[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """bridgetower""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : Any=768 , SCREAMING_SNAKE_CASE : Dict=1 , SCREAMING_SNAKE_CASE : Union[str, Any]=1E-0_5 , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : List[Any]="add" , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : Any=6 , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Dict=None , **SCREAMING_SNAKE_CASE : List[Any] , ): # TODO: remove this once the Hub files are updated. lowercase__ : int = kwargs.pop("text_config_dict" , SCREAMING_SNAKE_CASE ) lowercase__ : int = kwargs.pop("vision_config_dict" , SCREAMING_SNAKE_CASE ) super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = share_cross_modal_transformer_layers lowercase__ : int = hidden_act lowercase__ : int = hidden_size lowercase__ : Optional[int] = initializer_factor lowercase__ : Optional[int] = layer_norm_eps lowercase__ : str = share_link_tower_layers lowercase__ : Optional[int] = link_tower_type lowercase__ : List[Any] = num_attention_heads lowercase__ : Dict = num_hidden_layers lowercase__ : Dict = tie_word_embeddings lowercase__ : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: lowercase__ : Optional[Any] = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: lowercase__ : List[Any] = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) lowercase__ : Any = BridgeTowerTextConfig(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = BridgeTowerVisionConfig(**SCREAMING_SNAKE_CASE ) @classmethod def snake_case ( cls : Optional[int] , SCREAMING_SNAKE_CASE : BridgeTowerTextConfig , SCREAMING_SNAKE_CASE : BridgeTowerVisionConfig , **SCREAMING_SNAKE_CASE : List[str] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : List[str] = copy.deepcopy(self.__dict__ ) lowercase__ : Dict = self.text_config.to_dict() lowercase__ : Tuple = self.vision_config.to_dict() lowercase__ : Optional[Any] = self.__class__.model_type return output
121
0
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :str = ["input_values", "attention_mask"] def __init__( self , __A = 1 , __A = 1_6000 , __A = 0.0 , __A = False , __A = 80 , __A = 16 , __A = 64 , __A = "hann_window" , __A = 1.0 , __A = 80 , __A = 7600 , __A = 1E-10 , __A = 2 , __A = True , **__A , ) -> Tuple: super().__init__(feature_size=__A , sampling_rate=__A , padding_value=__A , **__A ) lowerCAmelCase_ :Optional[int] = do_normalize lowerCAmelCase_ :str = return_attention_mask lowerCAmelCase_ :Optional[int] = num_mel_bins lowerCAmelCase_ :Union[str, Any] = hop_length lowerCAmelCase_ :List[Any] = win_length lowerCAmelCase_ :str = win_function lowerCAmelCase_ :str = frame_signal_scale lowerCAmelCase_ :List[Any] = fmin lowerCAmelCase_ :List[Any] = fmax lowerCAmelCase_ :Optional[Any] = mel_floor lowerCAmelCase_ :Optional[int] = reduction_factor lowerCAmelCase_ :Optional[int] = win_length * sampling_rate // 1000 lowerCAmelCase_ :Optional[Any] = hop_length * sampling_rate // 1000 lowerCAmelCase_ :Optional[int] = optimal_fft_length(self.sample_size ) lowerCAmelCase_ :str = (self.n_fft // 2) + 1 lowerCAmelCase_ :List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=__A ) lowerCAmelCase_ :str = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , __A , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , __A , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __lowerCAmelCase ( __A , __A , __A = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowerCAmelCase_ :Tuple = np.array(__A , np.intaa ) lowerCAmelCase_ :Union[str, Any] = [] for vector, length in zip(__A , attention_mask.sum(-1 ) ): lowerCAmelCase_ :Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowerCAmelCase_ :Any = padding_value normed_input_values.append(__A ) else: lowerCAmelCase_ :Any = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __lowerCAmelCase ( self , __A , ) -> np.ndarray: lowerCAmelCase_ :Tuple = spectrogram( __A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , __A = None , __A = None , __A = False , __A = None , __A = False , __A = None , __A = None , __A = None , __A = None , **__A , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: lowerCAmelCase_ :List[str] = self._process_audio( __A , __A , __A , __A , __A , __A , __A , __A , **__A , ) else: lowerCAmelCase_ :List[str] = None if audio_target is not None: lowerCAmelCase_ :int = self._process_audio( __A , __A , __A , __A , __A , __A , __A , __A , **__A , ) if inputs is None: return inputs_target else: lowerCAmelCase_ :Any = inputs_target["""input_values"""] lowerCAmelCase_ :Dict = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCAmelCase_ :Union[str, Any] = decoder_attention_mask return inputs def __lowerCAmelCase ( self , __A , __A = False , __A = False , __A = None , __A = False , __A = None , __A = None , __A = None , **__A , ) -> BatchFeature: lowerCAmelCase_ :List[str] = isinstance(__A , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowerCAmelCase_ :int = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ :Optional[Any] = [np.asarray(__A , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__A , np.ndarray ): lowerCAmelCase_ :str = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ :List[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ :Tuple = [speech] # needed to make pad() work on spectrogram inputs lowerCAmelCase_ :Union[str, Any] = self.feature_size # convert into correct format for padding if is_target: lowerCAmelCase_ :str = [self._extract_mel_features(__A ) for waveform in speech] lowerCAmelCase_ :int = BatchFeature({"""input_values""": features} ) lowerCAmelCase_ :Optional[int] = self.num_mel_bins else: lowerCAmelCase_ :Optional[int] = BatchFeature({"""input_values""": speech} ) lowerCAmelCase_ :List[Any] = self.pad( __A , padding=__A , max_length=__A , truncation=__A , pad_to_multiple_of=__A , return_attention_mask=__A , **__A , ) lowerCAmelCase_ :Any = feature_size_hack # convert input values to correct format lowerCAmelCase_ :Optional[int] = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): lowerCAmelCase_ :Any = [np.asarray(__A , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__A , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowerCAmelCase_ :Any = [array.astype(np.floataa ) for array in input_values] elif isinstance(__A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowerCAmelCase_ :Tuple = input_values.astype(np.floataa ) # convert attention_mask to correct format lowerCAmelCase_ :Any = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowerCAmelCase_ :Optional[int] = [np.asarray(__A , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCAmelCase_ :Any = ( attention_mask if self._get_padding_strategies(__A , max_length=__A ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase_ :Dict = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=__A , padding_value=self.padding_value ) if return_tensors is not None: lowerCAmelCase_ :str = padded_inputs.convert_to_tensors(__A ) return padded_inputs def __lowerCAmelCase ( self ) -> Dict[str, Any]: lowerCAmelCase_ :Optional[int] = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCAmelCase_ :Dict = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
84
"""simple docstring""" def _snake_case ( lowercase__ : str , lowercase__ : str ) -> int: '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("""String lengths must match!""" ) lowerCAmelCase_ :Optional[int] = 0 for chara, chara in zip(lowercase__ , lowercase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
84
1
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int ): snake_case : int = 0 snake_case : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case : Tuple = i + 1 else: snake_case : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
354
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
0
'''simple docstring''' def __lowerCAmelCase (): return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCAmelCase (__lowerCAmelCase ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = 0 _UpperCAmelCase : str = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _UpperCAmelCase : Union[str, Any] = (left + right) // 2 _UpperCAmelCase : List[str] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _UpperCAmelCase : Tuple = mid + 1 else: _UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): _UpperCAmelCase : Dict = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def __lowerCAmelCase (__lowerCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def __lowerCAmelCase (): from timeit import timeit print("Running benchmarks" ) _UpperCAmelCase : Tuple = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _UpperCAmelCase : str = timeit(F"""{func}(grid=grid)""" , setup=__lowerCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
234
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = DPTConfig() if "large" in checkpoint_url: _UpperCAmelCase : List[str] = 1_024 _UpperCAmelCase : Optional[int] = 4_096 _UpperCAmelCase : Union[str, Any] = 24 _UpperCAmelCase : List[Any] = 16 _UpperCAmelCase : List[Any] = [5, 11, 17, 23] _UpperCAmelCase : int = [256, 512, 1_024, 1_024] _UpperCAmelCase : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : List[Any] = 150 _UpperCAmelCase : Optional[Any] = "huggingface/label-files" _UpperCAmelCase : Optional[int] = "ade20k-id2label.json" _UpperCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) ) , "r" ) ) _UpperCAmelCase : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : int = idalabel _UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : int = [1, 150, 480, 480] return config, expected_shape def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCAmelCase : str = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: _UpperCAmelCase : List[str] = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: _UpperCAmelCase : Dict = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: _UpperCAmelCase : int = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: _UpperCAmelCase : int = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: _UpperCAmelCase : int = name.replace("proj" , "projection" ) if "blocks" in name: _UpperCAmelCase : Tuple = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: _UpperCAmelCase : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : int = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: _UpperCAmelCase : List[Any] = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: _UpperCAmelCase : List[str] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: _UpperCAmelCase : Union[str, Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: _UpperCAmelCase : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: _UpperCAmelCase : int = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: _UpperCAmelCase : Tuple = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: _UpperCAmelCase : Optional[Any] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCAmelCase : List[str] = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _UpperCAmelCase : Tuple = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCAmelCase : Optional[Any] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: _UpperCAmelCase : Tuple = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: _UpperCAmelCase : Optional[int] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: _UpperCAmelCase : List[str] = name.replace("pretrained" , "dpt" ) if "bn" in name: _UpperCAmelCase : Dict = name.replace("bn" , "batch_norm" ) if "head" in name: _UpperCAmelCase : Tuple = name.replace("head" , "head.head" ) if "encoder.norm" in name: _UpperCAmelCase : Optional[Any] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: _UpperCAmelCase : Dict = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : int = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Dict = in_proj_bias[: config.hidden_size] _UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : str = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL _UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase : Tuple = state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model _UpperCAmelCase : Any = DPTForSemanticSegmentation(__lowerCAmelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image _UpperCAmelCase : Any = 480 if "ade" in checkpoint_url else 384 _UpperCAmelCase : List[str] = DPTImageProcessor(size=__lowerCAmelCase ) _UpperCAmelCase : Any = prepare_img() _UpperCAmelCase : Dict = image_processor(__lowerCAmelCase , return_tensors="pt" ) # forward pass _UpperCAmelCase : Tuple = model(**__lowerCAmelCase ).logits if "ade" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth # Assert logits _UpperCAmelCase : Dict = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _UpperCAmelCase : str = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __lowerCAmelCase ) ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
234
1
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __SCREAMING_SNAKE_CASE :List[Any] = '''Usage of script: script_name <size_of_canvas:int>''' __SCREAMING_SNAKE_CASE :Any = [0] * 100 + [1] * 10 random.shuffle(choice) def UpperCAmelCase_ ( __lowercase : int ) -> list[list[bool]]: '''simple docstring''' _UpperCAmelCase = [[False for i in range(__lowercase )] for j in range(__lowercase )] return canvas def UpperCAmelCase_ ( __lowercase : list[list[bool]] ) -> None: '''simple docstring''' for i, row in enumerate(__lowercase ): for j, _ in enumerate(__lowercase ): _UpperCAmelCase = bool(random.getrandbits(1 ) ) def UpperCAmelCase_ ( __lowercase : list[list[bool]] ) -> list[list[bool]]: '''simple docstring''' _UpperCAmelCase = np.array(__lowercase ) _UpperCAmelCase = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__lowercase ): for c, pt in enumerate(__lowercase ): _UpperCAmelCase = __judge_point( __lowercase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _UpperCAmelCase = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _UpperCAmelCase = current_canvas.tolist() return return_canvas def UpperCAmelCase_ ( __lowercase : bool , __lowercase : list[list[bool]] ) -> bool: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _UpperCAmelCase = pt if pt: if alive < 2: _UpperCAmelCase = False elif alive == 2 or alive == 3: _UpperCAmelCase = True elif alive > 3: _UpperCAmelCase = False else: if alive == 3: _UpperCAmelCase = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __SCREAMING_SNAKE_CASE :Optional[Any] = int(sys.argv[1]) # main working structure of this module. __SCREAMING_SNAKE_CASE :Any = create_canvas(canvas_size) seed(c) __SCREAMING_SNAKE_CASE :Any = plt.subplots() fig.show() __SCREAMING_SNAKE_CASE :Tuple = ListedColormap(['''w''', '''k''']) try: while True: __SCREAMING_SNAKE_CASE :Tuple = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
356
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int = 100_0000 ) -> int: '''simple docstring''' _UpperCAmelCase = limit + 1 _UpperCAmelCase = [0] * limit for first_term in range(1 , __lowercase ): for n in range(__lowercase , __lowercase , __lowercase ): _UpperCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
156
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __snake_case ( UpperCAmelCase_ : Dict ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ): lowerCamelCase_ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCamelCase_ = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) lowerCamelCase_ = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) lowerCamelCase_ = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) lowerCamelCase_ = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) lowerCamelCase_ = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) lowerCamelCase_ = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) lowerCamelCase_ = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) lowerCamelCase_ = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) lowerCamelCase_ = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) lowerCamelCase_ = key.replace("image_encoder.module" , "flava.image_model" ) lowerCamelCase_ = key.replace("text_encoder.module" , "flava.text_model" ) lowerCamelCase_ = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) lowerCamelCase_ = key.replace("mm_encoder.module" , "flava.multimodal_model" ) lowerCamelCase_ = key.replace("text_projection" , "flava.text_projection" ) lowerCamelCase_ = key.replace("image_projection" , "flava.image_projection" ) lowerCamelCase_ = value.float() for key, value in codebook_state_dict.items(): lowerCamelCase_ = value return upgrade @torch.no_grad() def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=None ): if config_path is not None: lowerCamelCase_ = FlavaConfig.from_pretrained(UpperCAmelCase_ ) else: lowerCamelCase_ = FlavaConfig() lowerCamelCase_ = FlavaForPreTraining(UpperCAmelCase_ ).eval() lowerCamelCase_ = convert_dalle_checkpoint(UpperCAmelCase_ , UpperCAmelCase_ , save_checkpoint=UpperCAmelCase_ ) if os.path.exists(UpperCAmelCase_ ): lowerCamelCase_ = torch.load(UpperCAmelCase_ , map_location="cpu" ) else: lowerCamelCase_ = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location="cpu" ) lowerCamelCase_ = upgrade_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) hf_model.load_state_dict(UpperCAmelCase_ ) lowerCamelCase_ = hf_model.state_dict() lowerCamelCase_ = count_parameters(UpperCAmelCase_ ) lowerCamelCase_ = count_parameters(UpperCAmelCase_ ) + count_parameters(UpperCAmelCase_ ) assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") a_ : Union[str, Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
55
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={ "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __UpperCAmelCase =["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : int = logging.get_logger(__name__) lowercase__ : Optional[int] = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCamelCase ( a_ , a_ ): '''simple docstring''' a_ : Optional[Any] = '''nat''' a_ : int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[str] , a_ : int=4 , a_ : Union[str, Any]=3 , a_ : List[Any]=64 , a_ : str=[3, 4, 6, 5] , a_ : Dict=[2, 4, 8, 16] , a_ : List[str]=7 , a_ : Optional[Any]=3.0 , a_ : Dict=True , a_ : List[Any]=0.0 , a_ : Tuple=0.0 , a_ : List[str]=0.1 , a_ : Optional[int]="gelu" , a_ : Optional[Any]=0.02 , a_ : List[Any]=1e-5 , a_ : Tuple=0.0 , a_ : List[Any]=None , a_ : List[Any]=None , **a_ : List[str] , ): super().__init__(**lowercase_ ) lowerCAmelCase_ : Union[str, Any] = patch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : str = embed_dim lowerCAmelCase_ : List[Any] = depths lowerCAmelCase_ : Optional[Any] = len(lowercase_ ) lowerCAmelCase_ : int = num_heads lowerCAmelCase_ : Optional[int] = kernel_size lowerCAmelCase_ : Union[str, Any] = mlp_ratio lowerCAmelCase_ : List[str] = qkv_bias lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = drop_path_rate lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : List[str] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : Dict = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ : Dict = layer_scale_init_value lowerCAmelCase_ : List[Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
364
"""simple docstring""" import os def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" with open(os.path.dirname(__UpperCamelCase ) + "/grid.txt" ) as f: lowerCAmelCase_ : str = [] # noqa: E741 for _ in range(20 ): l.append([int(__UpperCamelCase ) for x in f.readline().split()] ) lowerCAmelCase_ : Dict = 0 # right for i in range(20 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCAmelCase_ : Dict = temp # down for i in range(17 ): for j in range(20 ): lowerCAmelCase_ : Union[str, Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCAmelCase_ : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCAmelCase_ : List[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCAmelCase_ : str = temp return maximum if __name__ == "__main__": print(solution())
161
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ = 1000 ) -> int: _a , _a : Union[str, Any] = 1, 1 _a : Dict = 2 while True: _a : Any = 0 _a : Optional[Any] = fa + fa _a , _a : Union[str, Any] = fa, f index += 1 for _ in str(lowerCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
89
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Any =tempfile.mkdtemp() # fmt: off a__ : List[Any] =["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : str =dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) a__ : List[Any] =["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] a__ : Optional[int] ={"unk_token": "<unk>"} a__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) a__ : Optional[Any] ={ "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } a__ : Dict =os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] a__ : List[Any] =[Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Union[str, Any] =self.get_tokenizer() a__ : int =self.get_rust_tokenizer() a__ : List[str] =self.get_image_processor() a__ : Dict =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) a__ : Optional[Any] =CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) a__ : Tuple =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) a__ : Dict =CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ : str =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) a__ : int =self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) a__ : Optional[Any] =CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : str =self.get_image_processor() a__ : Optional[int] =self.get_tokenizer() a__ : Dict =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : str =self.prepare_image_inputs() a__ : Any =image_processor(lowerCAmelCase__ , return_tensors="np" ) a__ : Optional[int] =processor(images=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : List[Any] =self.get_tokenizer() a__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Union[str, Any] ="lower newer" a__ : List[str] =processor(text=lowerCAmelCase__ ) a__ : str =tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any =self.get_image_processor() a__ : Dict =self.get_tokenizer() a__ : Union[str, Any] =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict ="lower newer" a__ : int =self.prepare_image_inputs() a__ : Any =processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] =self.get_image_processor() a__ : Optional[Any] =self.get_tokenizer() a__ : str =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : int =self.prepare_image_inputs() a__ : Union[str, Any] =self.prepare_image_inputs() a__ : Tuple =processor(images=lowerCAmelCase__ , visual_prompt=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : Any =self.get_tokenizer() a__ : Tuple =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ : Optional[Any] =processor.batch_decode(lowerCAmelCase__ ) a__ : Dict =tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
95
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer A__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } A__ = { '''google/electra-small-generator''': 512, '''google/electra-base-generator''': 512, '''google/electra-large-generator''': 512, '''google/electra-small-discriminator''': 512, '''google/electra-base-discriminator''': 512, '''google/electra-large-discriminator''': 512, } A__ = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class a ( __lowerCamelCase ): __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : int = ElectraTokenizer def __init__( self :int ,__lowercase :str=None ,__lowercase :int=None ,__lowercase :Tuple=True ,__lowercase :str="[UNK]" ,__lowercase :List[Any]="[SEP]" ,__lowercase :Optional[int]="[PAD]" ,__lowercase :Tuple="[CLS]" ,__lowercase :Any="[MASK]" ,__lowercase :List[Any]=True ,__lowercase :Any=None ,**__lowercase :Dict ,): super().__init__( __lowercase ,tokenizer_file=__lowercase ,do_lower_case=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,pad_token=__lowercase ,cls_token=__lowercase ,mask_token=__lowercase ,tokenize_chinese_chars=__lowercase ,strip_accents=__lowercase ,**__lowercase ,) snake_case__ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__lowercase ) != tokenize_chinese_chars ): snake_case__ : str = getattr(__lowercase ,normalizer_state.pop('''type''' ) ) snake_case__ : Tuple = do_lower_case snake_case__ : List[str] = strip_accents snake_case__ : Dict = tokenize_chinese_chars snake_case__ : Optional[Any] = normalizer_class(**__lowercase ) snake_case__ : List[Any] = do_lower_case def __lowerCamelCase ( self :Tuple ,__lowercase :Tuple ,__lowercase :Any=None ): snake_case__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self :Any ,__lowercase :str ,__lowercase :Optional[str] = None ): snake_case__ : Any = self._tokenizer.model.save(__lowercase ,name=__lowercase ) return tuple(__lowercase )
44
A__ = 256 # Modulus to hash a string A__ = 100_0003 def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: """simple docstring""" snake_case__ : str = len(__lowerCAmelCase ) snake_case__ : Optional[int] = len(__lowerCAmelCase ) if p_len > t_len: return False snake_case__ : str = 0 snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = 1 # Calculating the hash of pattern and substring of text for i in range(__lowerCAmelCase ): snake_case__ : int = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case__ : str = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case__ : str = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case__ : Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _lowerCAmelCase ( ) -> None: """simple docstring""" snake_case__ : Optional[int] = '''abc1abc12''' snake_case__ : Dict = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' snake_case__ : int = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) and not rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 2) snake_case__ : int = '''ABABX''' snake_case__ : Any = '''ABABZABABYABABX''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 3) snake_case__ : Dict = '''AAAB''' snake_case__ : Union[str, Any] = '''ABAAAAAB''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 4) snake_case__ : Union[str, Any] = '''abcdabcy''' snake_case__ : Optional[Any] = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 5) snake_case__ : Dict = '''Lü''' snake_case__ : Optional[Any] = '''Lüsai''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : str = '''Lue''' assert not rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
44
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _lowercase : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=64 , SCREAMING_SNAKE_CASE__ : int=None ) -> Optional[int]: __lowerCAmelCase = np.random.default_rng(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = length __lowerCAmelCase = rng.normal(size=(length,) ).astype(np.floataa ) __lowerCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Union[str, Any] ) -> Optional[Any]: return self.length def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: return {"x": self.x[i], "y": self.y[i]} class _lowercase ( torch.nn.Module ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> Any: super().__init__() __lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowerCAmelCase = True def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> str: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __lowerCAmelCase = False return x * self.a[0] + self.b[0] class _lowercase ( torch.nn.Module ): '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Optional[Any]: super().__init__() __lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) __lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) __lowerCAmelCase = True def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=None ) -> int: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __lowerCAmelCase = False return x * self.a + self.b def UpperCamelCase_ ( snake_case_ : List[str] , snake_case_ : int = 16 ) -> int: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer __lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __lowerCAmelCase = load_dataset("""csv""" , data_files=snake_case_ ) __lowerCAmelCase = datasets["""train"""].unique("""label""" ) __lowerCAmelCase = {v: i for i, v in enumerate(snake_case_ )} def tokenize_function(snake_case_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ , padding="""max_length""" ) if "label" in examples: __lowerCAmelCase = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader(tokenized_datasets["""train"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=2 ) __lowerCAmelCase = DataLoader(tokenized_datasets["""validation"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=1 ) return train_dataloader, eval_dataloader
229
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _A : Optional[int] = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
229
1
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowercase__ : List[Any] = HfArgumentParser(InitializationArguments) lowercase__ : List[Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowercase__ : List[str] = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) lowercase__ : Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowercase__ : Optional[int] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
354
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase__ : Dict = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase__ : Any = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( __snake_case : Any ) -> Optional[Any]: __A : Dict = (images / 2 + 0.5).clamp(0 , 1 ) __A : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Dict = numpy_to_pil(__snake_case ) return images def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[Any]: if images.ndim == 3: __A : List[Any] = images[None, ...] __A : List[str] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __A : str = [Image.fromarray(__snake_case ) for image in images] return pil_images
190
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): snake_case_ : Optional[int] = MvpTokenizer snake_case_ : str = MvpTokenizerFast snake_case_ : Dict = True snake_case_ : Any = filter_roberta_detectors def UpperCamelCase ( self : Dict ): """simple docstring""" super().setUp() _UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _UpperCAmelCase = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCAmelCase = {"unk_token": "<unk>"} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def UpperCamelCase ( self : Tuple , **snake_case__ : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase ( self : List[str] , **snake_case__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase ( self : Tuple , snake_case__ : int ): """simple docstring""" return "lower newer", "lower newer" @cached_property def UpperCamelCase ( self : Tuple ): """simple docstring""" return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def UpperCamelCase ( self : List[Any] ): """simple docstring""" return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(snake_case__ , max_length=len(snake_case__ ) , padding=snake_case__ , return_tensors="pt" ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case__ , snake_case__ ) # Test that special tokens are reset @require_torch def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(snake_case__ , padding=snake_case__ , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , snake_case__ ) self.assertIn("attention_mask" , snake_case__ ) self.assertNotIn("labels" , snake_case__ ) self.assertNotIn("decoder_attention_mask" , snake_case__ ) @require_torch def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(text_target=snake_case__ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def UpperCamelCase ( self : List[Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer( ["I am a small frog" * 1_024, "I am a small frog"] , padding=snake_case__ , truncation=snake_case__ , return_tensors="pt" ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = ["A long paragraph for summarization."] _UpperCAmelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(snake_case__ , text_target=snake_case__ , return_tensors="pt" ) _UpperCAmelCase = inputs["input_ids"] _UpperCAmelCase = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass def UpperCamelCase ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _UpperCAmelCase = "A, <mask> AllenNLP sentence." _UpperCAmelCase = tokenizer_r.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) _UpperCAmelCase = tokenizer_p.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( snake_case__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( snake_case__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
133
def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000 ): '''simple docstring''' _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
133
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
1
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case =16 __snake_case =32 def a_ ( lowerCamelCase : Accelerator , lowerCamelCase : DatasetDict , lowerCamelCase : List[int] , lowerCamelCase : List[int] , lowerCamelCase : int = 16 ): lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase = DatasetDict( { 'train': dataset['train'].select(lowerCamelCase ), 'validation': dataset['train'].select(lowerCamelCase ), 'test': dataset['validation'], } ) def tokenize_function(lowerCamelCase : str ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase = 8 else: lowerCAmelCase = None return tokenizer.pad( lowerCamelCase , padding='longest' , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) lowerCAmelCase = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) lowerCAmelCase = DataLoader( tokenized_datasets['test'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def a_ ( lowerCamelCase : Tuple , lowerCamelCase : List[Any] ): # New Code # lowerCAmelCase = [] # Download the dataset lowerCAmelCase = load_dataset('glue' , 'mrpc' ) # Create our splits lowerCAmelCase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase = config['lr'] lowerCAmelCase = int(config['num_epochs'] ) lowerCAmelCase = int(config['seed'] ) lowerCAmelCase = int(config['batch_size'] ) lowerCAmelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase ) # New Code # # Create our folds: lowerCAmelCase = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowerCAmelCase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCamelCase ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = get_fold_dataloaders( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase = AdamW(params=model.parameters() , lr=lowerCamelCase ) # Instantiate scheduler lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Now we train the model for epoch in range(lowerCamelCase ): model.train() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase = model(**lowerCamelCase ) lowerCAmelCase = outputs.loss lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase = model(**lowerCamelCase ) lowerCAmelCase = outputs.logits.argmax(dim=-1 ) lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCamelCase ) # New Code # # We also run predictions on the test set at the very end lowerCAmelCase = [] for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase = model(**lowerCamelCase ) lowerCAmelCase = outputs.logits lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCAmelCase = torch.cat(lowerCamelCase , dim=0 ) lowerCAmelCase = torch.stack(lowerCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCAmelCase = metric.compute(predictions=lowerCamelCase , references=lowerCamelCase ) accelerator.print('Average test metrics from all folds:' , lowerCamelCase ) def a_ ( ): lowerCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase , default=lowerCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=lowerCamelCase , default=3 , help='The number of splits to perform across the dataset' ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
4
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
0
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class UpperCamelCase__( __A ): def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Any: if tokenize_kwargs is None: A__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) A__ = truncation A__ = tokenize_kwargs A__ = {} if return_tensors is not None: A__ = return_tensors return preprocess_params, {}, postprocess_params def snake_case__ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict[str, GenericTensor]: A__ = self.framework A__ = self.tokenizer(__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,**__UpperCAmelCase ) return model_inputs def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = self.model(**__UpperCAmelCase ) return model_outputs def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Optional[int]: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: return super().__call__(*__UpperCAmelCase ,**__UpperCAmelCase )
154
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) A__ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
154
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: str = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _a ( lowerCAmelCase__): """simple docstring""" UpperCamelCase__ = """speech_to_text_2""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: Optional[int] , __lowerCamelCase: Any=1_0000 , __lowerCamelCase: Optional[Any]=6 , __lowerCamelCase: List[str]=2048 , __lowerCamelCase: int=4 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Tuple=True , __lowerCamelCase: List[Any]="relu" , __lowerCamelCase: Optional[Any]=256 , __lowerCamelCase: Any=0.1 , __lowerCamelCase: str=0.0 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Any=2 , __lowerCamelCase: Dict=True , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Tuple=0 , __lowerCamelCase: Tuple=2 , __lowerCamelCase: Union[str, Any]=1024 , **__lowerCamelCase: Dict , ): '''simple docstring''' UpperCamelCase__: Optional[int] = vocab_size UpperCamelCase__: str = d_model UpperCamelCase__: Optional[Any] = decoder_ffn_dim UpperCamelCase__: Tuple = decoder_layers UpperCamelCase__: List[Any] = decoder_attention_heads UpperCamelCase__: List[Any] = dropout UpperCamelCase__: Dict = attention_dropout UpperCamelCase__: Optional[Any] = activation_dropout UpperCamelCase__: List[Any] = activation_function UpperCamelCase__: List[Any] = init_std UpperCamelCase__: List[str] = decoder_layerdrop UpperCamelCase__: List[Any] = use_cache UpperCamelCase__: List[str] = decoder_layers UpperCamelCase__: Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase__: Optional[int] = max_target_positions super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
149
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
0
from __future__ import annotations from decimal import Decimal from numpy import array def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(a__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix SCREAMING_SNAKE_CASE_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements SCREAMING_SNAKE_CASE_ = [[0.0, 0.0], [0.0, 0.0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = matrix[1][1], matrix[0][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(a__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(a__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule SCREAMING_SNAKE_CASE_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix SCREAMING_SNAKE_CASE_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] SCREAMING_SNAKE_CASE_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) SCREAMING_SNAKE_CASE_ = array(a__ ) for i in range(3 ): for j in range(3 ): SCREAMING_SNAKE_CASE_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix SCREAMING_SNAKE_CASE_ = array(a__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(a__ ) # Calculate the inverse of the matrix return [[float(d(a__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
369
__UpperCAmelCase = [ (10_00, "M"), (9_00, "CM"), (5_00, "D"), (4_00, "CD"), (1_00, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while place < len(__lowerCamelCase ): if (place + 1 < len(__lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = divmod(__lowerCamelCase, __lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
257
0
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _A ( UpperCamelCase_ : Dict) -> Dict: '''simple docstring''' def is_in_circle(UpperCamelCase_ : str, UpperCamelCase_ : str) -> bool: __lowercase = sqrt((x**2) + (y**2)) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __lowercase = mean( int(is_in_circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for _ in range(_UpperCamelCase)) # The ratio of the area for circle to square is pi/4. __lowercase = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""") print(F"""The numpy value of pi is {pi}""") print(F"""The total error is {abs(pi - pi_estimate)}""") def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Any, UpperCamelCase_ : Dict = 0.0, UpperCamelCase_ : List[Any] = 1.0, ) -> Dict: '''simple docstring''' return mean( function_to_integrate(uniform(_UpperCamelCase, _UpperCamelCase)) for _ in range(_UpperCamelCase)) * (max_value - min_value) def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Tuple = 0.0, UpperCamelCase_ : Union[str, Any] = 1.0) -> Optional[Any]: '''simple docstring''' def identity_function(UpperCamelCase_ : Optional[int]) -> float: return x __lowercase = area_under_curve_estimator( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase) __lowercase = (max_value * max_value - min_value * min_value) / 2 print("******************") print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""") print(F"""Estimated value is {estimated_value}""") print(F"""Expected value is {expected_value}""") print(F"""Total error is {abs(estimated_value - expected_value)}""") print("******************") def _A ( UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' def function_to_integrate(UpperCamelCase_ : Tuple) -> float: return sqrt(4.0 - x * x) __lowercase = area_under_curve_estimator( _UpperCamelCase, _UpperCamelCase, 0.0, 2.0) print("******************") print("Estimating pi using area_under_curve_estimator") print(F"""Estimated value is {estimated_value}""") print(F"""Expected value is {pi}""") print(F"""Total error is {abs(estimated_value - pi)}""") print("******************") if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __lowerCAmelCase (_UpperCamelCase = 100 ): __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : Optional[Any] = 2 for i in range(2 , max_n + 1 ): __lowerCAmelCase : Any = pre_numerator __lowerCAmelCase : Union[str, Any] = 2 * i // 3 if i % 3 == 0 else 1 __lowerCAmelCase : int = cur_numerator __lowerCAmelCase : Dict = e_cont * pre_numerator + temp return sum_digits(_UpperCamelCase ) if __name__ == "__main__": print(f'{solution() = }')
86
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _SCREAMING_SNAKE_CASE = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } _SCREAMING_SNAKE_CASE = logging.WARNING def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Any = os.getenv('DATASETS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def SCREAMING_SNAKE_CASE__ ( ): return __name__.split('.' )[0] def SCREAMING_SNAKE_CASE__ ( ): return logging.getLogger(_get_library_name() ) def SCREAMING_SNAKE_CASE__ ( ): # Apply our default configuration to the library root logger. snake_case_ : str = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def SCREAMING_SNAKE_CASE__ ( __a = None ): if name is None: snake_case_ : List[Any] = _get_library_name() return logging.getLogger(__a ) def SCREAMING_SNAKE_CASE__ ( ): return _get_library_root_logger().getEffectiveLevel() def SCREAMING_SNAKE_CASE__ ( __a ): _get_library_root_logger().setLevel(__a ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__a ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__a ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__a ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[int] = False def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE_ : def __init__( self : int , *_A : str , **_A : Dict ) -> Optional[int]: # pylint: disable=unused-argument """simple docstring""" snake_case_ : Optional[int] = args[0] if args else None def __iter__( self : List[str] ) -> Any: """simple docstring""" return iter(self._iterator ) def __getattr__( self : int , _A : int ) -> Tuple: """simple docstring""" def empty_fn(*_A : int , **_A : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self def __exit__( self : Optional[int] , _A : int , _A : Any , _A : int ) -> Dict: """simple docstring""" return _SCREAMING_SNAKE_CASE = True class SCREAMING_SNAKE_CASE_ : def __call__( self : Optional[Any] , *_A : Optional[Any] , _A : Tuple=False , **_A : Optional[Any] ) -> Dict: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*_A , **_A ) else: return EmptyTqdm(*_A , **_A ) def UpperCAmelCase_ ( self : Any , *_A : Optional[int] , **_A : str ) -> int: """simple docstring""" snake_case_ : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_A , **_A ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() _SCREAMING_SNAKE_CASE = _tqdm_cls() def SCREAMING_SNAKE_CASE__ ( ): global _tqdm_active return bool(_tqdm_active ) def SCREAMING_SNAKE_CASE__ ( ): global _tqdm_active snake_case_ : str = True def SCREAMING_SNAKE_CASE__ ( ): global _tqdm_active snake_case_ : str = False
352
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
0
from collections.abc import Sequence def _UpperCAmelCase ( snake_case , snake_case = False ): """simple docstring""" if not arr: return 0 _lowerCAmelCase = 0 if allow_empty_subarrays else float("""-inf""" ) _lowerCAmelCase = 0.0 for num in arr: _lowerCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num ) _lowerCAmelCase = max(snake_case , snake_case ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"{max_subarray_sum(nums) = }")
82
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
162
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : List[str] = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
_snake_case : List[str] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) _snake_case : List[Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : str, lowerCAmelCase_ : str ): __lowerCAmelCase = from_type.lower().strip('s' ) __lowerCAmelCase = to_type.lower().strip('s' ) __lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ ) if from_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) if to_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) __lowerCAmelCase = METRIC_CONVERSION[from_sanitized] __lowerCAmelCase = METRIC_CONVERSION[to_sanitized] __lowerCAmelCase = 1 if from_exponent > to_exponent: __lowerCAmelCase = from_exponent - to_exponent else: __lowerCAmelCase = -(to_exponent - from_exponent) return value * pow(10, lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
207
1
import math import unittest def lowercase_ ( _lowerCamelCase : int): assert isinstance(_lowerCamelCase , _lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: with self.assertRaises(__lowerCamelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
87
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : Union[str, Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ) -> None: warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
107
0
from __future__ import annotations from collections.abc import Callable _UpperCAmelCase = list[list[float | int]] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Matrix: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = [[0 for _ in range(size + 1 )] for _ in range(UpperCamelCase_ )] UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for row in range(UpperCamelCase_ ): for col in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[row][col] UpperCamelCase_ = vector[row][0] UpperCamelCase_ = 0 UpperCamelCase_ = 0 while row < size and col < size: # pivoting UpperCamelCase_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCamelCase_ , UpperCamelCase_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCamelCase_ , UpperCamelCase_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = augmented[rowa][col] / augmented[row][col] UpperCamelCase_ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCamelCase_ ): for row in range(UpperCamelCase_ ): UpperCamelCase_ = augmented[row][col] / augmented[col][col] for cola in range(UpperCamelCase_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCamelCase_ ) ] def lowerCAmelCase_ ( UpperCamelCase_ ) -> Callable[[int], int]: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = [[0 for _ in range(UpperCamelCase_ )] for _ in range(UpperCamelCase_ )] UpperCamelCase_ = [[0] for _ in range(UpperCamelCase_ )] UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for x_val, y_val in enumerate(UpperCamelCase_ ): for col in range(UpperCamelCase_ ): UpperCamelCase_ = (x_val + 1) ** (size - col - 1) UpperCamelCase_ = y_val UpperCamelCase_ = solve(UpperCamelCase_ , UpperCamelCase_ ) def interpolated_func(UpperCamelCase_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCamelCase_ ) ) return interpolated_func def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( UpperCamelCase_ = question_function , UpperCamelCase_ = 10 ) -> int: UpperCamelCase_ = [func(UpperCamelCase_ ) for x_val in range(1 , order + 1 )] UpperCamelCase_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCamelCase_ = 0 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for poly in polynomials: UpperCamelCase_ = 1 while func(UpperCamelCase_ ) == poly(UpperCamelCase_ ): x_val += 1 ret += poly(UpperCamelCase_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
328
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
1
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : int = [int(_lowerCamelCase ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(_lowerCamelCase ) == 4 and all(0 <= int(_lowerCamelCase ) <= 2_54 for octet in octets ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = input().strip() UpperCamelCase__ : Any = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f"{ip} is a {valid_or_invalid} IP v4 address.")
112
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCamelCase__ : List[Any] = { '''E''': 1_2.7_0, '''T''': 9.0_6, '''A''': 8.1_7, '''O''': 7.5_1, '''I''': 6.9_7, '''N''': 6.7_5, '''S''': 6.3_3, '''H''': 6.0_9, '''R''': 5.9_9, '''D''': 4.2_5, '''L''': 4.0_3, '''C''': 2.7_8, '''U''': 2.7_6, '''M''': 2.4_1, '''W''': 2.3_6, '''F''': 2.2_3, '''G''': 2.0_2, '''Y''': 1.9_7, '''P''': 1.9_3, '''B''': 1.2_9, '''V''': 0.9_8, '''K''': 0.7_7, '''J''': 0.1_5, '''X''': 0.1_5, '''Q''': 0.1_0, '''Z''': 0.0_7, } UpperCamelCase__ : Optional[Any] = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' UpperCamelCase__ : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : int = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCAmelCase_ ( _lowerCamelCase: tuple ): return x[0] def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = get_letter_count(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = """""".join(freq_to_letter[freq] ) __SCREAMING_SNAKE_CASE : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowerCamelCase , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[Any] = get_frequency_order(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
112
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> np.ndarray: '''simple docstring''' if (ksize % 2) == 0: snake_case : int = ksize + 1 snake_case : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE_ ): for x in range(SCREAMING_SNAKE_CASE_ ): # distance from center snake_case : Optional[Any] = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : int = theta / 180 * np.pi snake_case : Tuple = np.cos(_theta ) snake_case : Tuple = np.sin(_theta ) # get kernel x snake_case : Tuple = cos_theta * px + sin_theta * py # get kernel y snake_case : Dict = -sin_theta * px + cos_theta * py # fill kernel snake_case : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowercase__ = imread("../image_data/lena.jpg") # turn image in gray scale value lowercase__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowercase__ = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: lowercase__ = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowercase__ = out / out.max() * 2_5_5 lowercase__ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
366
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 class snake_case__ ( nn.Module ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = (16, 32, 96, 256) lowerCamelCase = jnp.floataa def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" snake_case : Optional[int] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case : Union[str, Any] = [] for i in range(len(self.block_out_channels ) - 1 ): snake_case : Optional[Any] = self.block_out_channels[i] snake_case : Optional[int] = self.block_out_channels[i + 1] snake_case : Optional[int] = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) snake_case : Optional[int] = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) snake_case : Tuple = blocks snake_case : Tuple = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Optional[int] , UpperCamelCase__ : Any ) -> Tuple: """simple docstring""" snake_case : Dict = self.conv_in(UpperCamelCase__ ) snake_case : int = nn.silu(UpperCamelCase__ ) for block in self.blocks: snake_case : str = block(UpperCamelCase__ ) snake_case : Optional[Any] = nn.silu(UpperCamelCase__ ) snake_case : Optional[Any] = self.conv_out(UpperCamelCase__ ) return embedding @flax_register_to_config class snake_case__ ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = 32 lowerCamelCase = 4 lowerCamelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCamelCase = False lowerCamelCase = (320, 640, 1280, 1280) lowerCamelCase = 2 lowerCamelCase = 8 lowerCamelCase = None lowerCamelCase = 1280 lowerCamelCase = 0.0 lowerCamelCase = False lowerCamelCase = jnp.floataa lowerCamelCase = True lowerCamelCase = 0 lowerCamelCase = "rgb" lowerCamelCase = (16, 32, 96, 256) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : jax.random.KeyArray ) -> FrozenDict: """simple docstring""" snake_case : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) snake_case : Any = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) snake_case : Dict = jnp.ones((1,) , dtype=jnp.intaa ) snake_case : List[str] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case : Optional[int] = (1, 3, self.sample_size * 8, self.sample_size * 8) snake_case : int = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) snake_case ,snake_case : Optional[int] = jax.random.split(UpperCamelCase__ ) snake_case : Optional[int] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" snake_case : Optional[int] = self.block_out_channels snake_case : Optional[int] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case : Union[str, Any] = self.num_attention_heads or self.attention_head_dim # input snake_case : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case : Any = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case : List[Any] = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) snake_case : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) snake_case : Any = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : str = (num_attention_heads,) * len(self.down_block_types ) # down snake_case : str = [] snake_case : List[str] = [] snake_case : Union[str, Any] = block_out_channels[0] snake_case : Tuple = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) for i, down_block_type in enumerate(self.down_block_types ): snake_case : Dict = output_channel snake_case : Union[str, Any] = block_out_channels[i] snake_case : Tuple = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case : List[Any] = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: snake_case : str = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) for _ in range(self.layers_per_block ): snake_case : Union[str, Any] = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) if not is_final_block: snake_case : str = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) snake_case : List[Any] = down_blocks snake_case : List[Any] = controlnet_down_blocks # mid snake_case : Optional[int] = block_out_channels[-1] snake_case : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) snake_case : List[Any] = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" snake_case : Optional[Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": snake_case : Dict = jnp.flip(UpperCamelCase__ , axis=1 ) # 1. time if not isinstance(UpperCamelCase__ , jnp.ndarray ): snake_case : str = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case : Any = timesteps.astype(dtype=jnp.floataa ) snake_case : Optional[Any] = jnp.expand_dims(UpperCamelCase__ , 0 ) snake_case : int = self.time_proj(UpperCamelCase__ ) snake_case : Tuple = self.time_embedding(UpperCamelCase__ ) # 2. pre-process snake_case : Dict = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) snake_case : Optional[int] = self.conv_in(UpperCamelCase__ ) snake_case : str = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) snake_case : Optional[int] = self.controlnet_cond_embedding(UpperCamelCase__ ) sample += controlnet_cond # 3. down snake_case : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case ,snake_case : Dict = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: snake_case ,snake_case : Dict = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid snake_case : List[str] = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) # 5. contronet blocks snake_case : Tuple = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase__ , self.controlnet_down_blocks ): snake_case : Any = controlnet_block(UpperCamelCase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) snake_case : Optional[Any] = controlnet_down_block_res_samples snake_case : int = self.controlnet_mid_block(UpperCamelCase__ ) # 6. scaling snake_case : Optional[int] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase__ , mid_block_res_sample=UpperCamelCase__ )
83
0
from sklearn.metrics import matthews_corrcoef import datasets __A : Any = '\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n' __A : List[str] = '\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n' __A : Union[str, Any] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _SCREAMING_SNAKE_CASE ( datasets.Metric): def _snake_case ( self )-> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )-> List[str]: return { "matthews_correlation": float(matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sample_weight=_SCREAMING_SNAKE_CASE ) ), }
154
def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" assert ( isinstance(_A , _A ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 lowerCamelCase_ , lowerCamelCase_ =1, 1 for _ in range(number_of_steps - 1 ): lowerCamelCase_ , lowerCamelCase_ =current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
154
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase_ = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" lowercase_ = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" lowercase_ = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' __snake_case : Tuple = simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : int = float(fa_score(y_true=__SCREAMING_SNAKE_CASE , y_pred=__SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' __snake_case : List[str] = float(pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] ) __snake_case : List[Any] = float(spearmanr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def snake_case__ ( self : Optional[int] ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def snake_case__ ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["YolosFeatureExtractor"] lowercase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCAmelCase ( a_: int, a_: Tuple ): _UpperCAmelCase : str = checkpoint _UpperCAmelCase : Tuple = {} _UpperCAmelCase : Optional[Any] = vae_state_dict["encoder.conv_in.weight"] _UpperCAmelCase : Union[str, Any] = vae_state_dict["encoder.conv_in.bias"] _UpperCAmelCase : Optional[Any] = vae_state_dict["encoder.conv_out.weight"] _UpperCAmelCase : Optional[Any] = vae_state_dict["encoder.conv_out.bias"] _UpperCAmelCase : Optional[Any] = vae_state_dict["encoder.norm_out.weight"] _UpperCAmelCase : List[Any] = vae_state_dict["encoder.norm_out.bias"] _UpperCAmelCase : Tuple = vae_state_dict["decoder.conv_in.weight"] _UpperCAmelCase : List[Any] = vae_state_dict["decoder.conv_in.bias"] _UpperCAmelCase : Any = vae_state_dict["decoder.conv_out.weight"] _UpperCAmelCase : Optional[Any] = vae_state_dict["decoder.conv_out.bias"] _UpperCAmelCase : Any = vae_state_dict["decoder.norm_out.weight"] _UpperCAmelCase : List[str] = vae_state_dict["decoder.norm_out.bias"] _UpperCAmelCase : Tuple = vae_state_dict["quant_conv.weight"] _UpperCAmelCase : Any = vae_state_dict["quant_conv.bias"] _UpperCAmelCase : int = vae_state_dict["post_quant_conv.weight"] _UpperCAmelCase : Optional[int] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only _UpperCAmelCase : Dict = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) _UpperCAmelCase : List[str] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(a_ ) } # Retrieves the keys for the decoder up blocks only _UpperCAmelCase : Optional[Any] = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) _UpperCAmelCase : List[Any] = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(a_ ) } for i in range(a_ ): _UpperCAmelCase : Optional[Any] = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: _UpperCAmelCase : Optional[int] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) _UpperCAmelCase : int = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) _UpperCAmelCase : Any = renew_vae_resnet_paths(a_ ) _UpperCAmelCase : Dict = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a_, a_, a_, additional_replacements=[meta_path], config=a_ ) _UpperCAmelCase : str = [key for key in vae_state_dict if "encoder.mid.block" in key] _UpperCAmelCase : Optional[Any] = 2 for i in range(1, num_mid_res_blocks + 1 ): _UpperCAmelCase : Optional[Any] = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] _UpperCAmelCase : Optional[Any] = renew_vae_resnet_paths(a_ ) _UpperCAmelCase : Tuple = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a_, a_, a_, additional_replacements=[meta_path], config=a_ ) _UpperCAmelCase : int = [key for key in vae_state_dict if "encoder.mid.attn" in key] _UpperCAmelCase : List[Any] = renew_vae_attention_paths(a_ ) _UpperCAmelCase : Optional[int] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(a_, a_, a_, additional_replacements=[meta_path], config=a_ ) conv_attn_to_linear(a_ ) for i in range(a_ ): _UpperCAmelCase : str = num_up_blocks - 1 - i _UpperCAmelCase : str = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: _UpperCAmelCase : List[str] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] _UpperCAmelCase : Optional[Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] _UpperCAmelCase : int = renew_vae_resnet_paths(a_ ) _UpperCAmelCase : Optional[Any] = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a_, a_, a_, additional_replacements=[meta_path], config=a_ ) _UpperCAmelCase : List[Any] = [key for key in vae_state_dict if "decoder.mid.block" in key] _UpperCAmelCase : Dict = 2 for i in range(1, num_mid_res_blocks + 1 ): _UpperCAmelCase : Optional[int] = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] _UpperCAmelCase : Tuple = renew_vae_resnet_paths(a_ ) _UpperCAmelCase : List[str] = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a_, a_, a_, additional_replacements=[meta_path], config=a_ ) _UpperCAmelCase : Optional[Any] = [key for key in vae_state_dict if "decoder.mid.attn" in key] _UpperCAmelCase : Dict = renew_vae_attention_paths(a_ ) _UpperCAmelCase : List[Any] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(a_, a_, a_, additional_replacements=[meta_path], config=a_ ) conv_attn_to_linear(a_ ) return new_checkpoint def __UpperCAmelCase ( a_: str, a_: str, ): # Only support V1 _UpperCAmelCase : Union[str, Any] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) _UpperCAmelCase : Optional[int] = io.BytesIO(r.content ) _UpperCAmelCase : int = OmegaConf.load(a_ ) _UpperCAmelCase : int = 512 _UpperCAmelCase : str = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open _UpperCAmelCase : Optional[int] = {} with safe_open(a_, framework="pt", device="cpu" ) as f: for key in f.keys(): _UpperCAmelCase : Tuple = f.get_tensor(a_ ) else: _UpperCAmelCase : Tuple = torch.load(a_, map_location=a_ )["state_dict"] # Convert the VAE model. _UpperCAmelCase : Any = create_vae_diffusers_config(a_, image_size=a_ ) _UpperCAmelCase : Tuple = custom_convert_ldm_vae_checkpoint(a_, a_ ) _UpperCAmelCase : List[str] = AutoencoderKL(**a_ ) vae.load_state_dict(a_ ) vae.save_pretrained(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') __a = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
145
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __a = None __a = logging.get_logger(__name__) __a = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } __a = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __a = '▁' class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ : List[str] = BarthezTokenizer def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Tuple="<s>" , lowerCAmelCase__ : Any="<unk>" , lowerCAmelCase__ : Any="<pad>" , lowerCAmelCase__ : List[str]="<mask>" , **lowerCAmelCase__ : Dict , ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Any = vocab_file _UpperCAmelCase : Optional[Any] = False if not self.vocab_file else True def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] _UpperCAmelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
145
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A: def __init__( self , _snake_case , _snake_case=3 , _snake_case=32 , _snake_case=3 , _snake_case=10 , _snake_case=[10, 20, 30, 40] , _snake_case=[1, 1, 2, 1] , _snake_case=True , _snake_case=True , _snake_case="relu" , _snake_case=3 , _snake_case=None , ) -> Optional[Any]: '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = num_channels __a = embeddings_size __a = hidden_sizes __a = depths __a = is_training __a = use_labels __a = hidden_act __a = num_labels __a = scope __a = len(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[str]: '''simple docstring''' __a = TFResNetModel(config=_snake_case ) __a = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.num_labels __a = TFResNetForImageClassification(_snake_case ) __a = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A( a , a , unittest.TestCase ): snake_case_ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () snake_case_ = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = TFResNetModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) __a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): __a = model_class(_snake_case ) __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __a = layer_type __a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __lowerCAmelCase ( ) -> Union[str, Any]: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_snake_case , return_tensors='''tf''' ) # forward pass __a = model(**_snake_case ) # verify the logits __a = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _snake_case ) __a = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4 ) )
33
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A : str = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) A : int = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( ) -> Tuple: __a = '''https://pypi.org/pypi/diffusers/json''' __a = json.loads(request.urlopen(a__ ).read() )['''releases'''].keys() return sorted(a__ , key=lambda a__ : version.Version(a__ ) ) def __lowerCAmelCase ( ) -> List[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a__ ) os.makedirs(a__ , exist_ok=a__ ) __a = Path(a__ ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: init_hf_modules() __a = Path(a__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a__ , exist_ok=a__ ) __a = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import .xxx` __a = re.findall('''^\s*import\s+\.(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Unique-ify return list(set(a__ ) ) def __lowerCAmelCase ( a__ ) -> Any: __a = False __a = [module_file] __a = [] # Let's recurse through all relative imports while not no_change: __a = [] for f in files_to_check: new_imports.extend(get_relative_imports(a__ ) ) __a = Path(a__ ).parent __a = [str(module_path / m ) for m in new_imports] __a = [f for f in new_import_files if f not in all_relative_imports] __a = [F"""{f}.py""" for f in new_import_files] __a = len(a__ ) == 0 all_relative_imports.extend(a__ ) return all_relative_imports def __lowerCAmelCase ( a__ ) -> str: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import xxx` __a = re.findall('''^\s*import\s+(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Only keep the top-level module __a = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all __a = list(set(a__ ) ) __a = [] for imp in imports: try: importlib.import_module(a__ ) except ImportError: missing_packages.append(a__ ) if len(a__ ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"""{', '.join(a__ )}. Run `pip install {' '.join(a__ )}`""" ) return get_relative_imports(a__ ) def __lowerCAmelCase ( a__ , a__ ) -> Dict: __a = module_path.replace(os.path.sep , '''.''' ) __a = importlib.import_module(a__ ) if class_name is None: return find_pipeline_class(a__ ) return getattr(a__ , a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: from ..pipelines import DiffusionPipeline __a = dict(inspect.getmembers(a__ , inspect.isclass ) ) __a = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a__ ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) __a = cls return pipeline_class def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , ) -> Tuple: __a = str(a__ ) __a = os.path.join(a__ , a__ ) if os.path.isfile(a__ ): __a = module_file_or_url __a = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: __a = get_diffusers_versions() # cut ".dev0" __a = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: __a = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: __a = F"""v{revision}""" elif revision == "main": __a = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub __a = COMMUNITY_PIPELINES_URL.format(revision=a__ , pipeline=a__ ) try: __a = cached_download( a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = '''git''' __a = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached __a = hf_hub_download( a__ , a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment __a = check_imports(a__ ) # Now we move the module inside our cached dynamic modules. __a = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a__ ) __a = Path(a__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a__ , submodule_path / module_file ) for module_needed in modules_needed: __a = F"""{module_needed}.py""" shutil.copy(os.path.join(a__ , a__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a__ , a__ ): __a = use_auth_token elif use_auth_token is True: __a = HfFolder.get_token() else: __a = None __a = model_info(a__ , revision=a__ , token=a__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __a = submodule_path / commit_hash __a = full_submodule + os.path.sep + commit_hash create_dynamic_module(a__ ) if not (submodule_path / module_file).exists(): shutil.copy(a__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a__ , F"""{module_needed}.py""" , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return os.path.join(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ) -> Tuple: __a = get_cached_module_file( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return get_class_in_module(a__ , final_module.replace('''.py''' , '''''' ) )
33
1
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): _UpperCAmelCase : str = [0 for i in range(r + 1 )] # nc0 = 1 _UpperCAmelCase : Union[str, Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _UpperCAmelCase : Union[str, Any] = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
263
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :List[str] = logging.get_logger(__name__) _lowerCAmelCase :Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''falcon''' a__ =['''past_key_values'''] def __init__( self , A=6_5_0_2_4 , A=4_5_4_4 , A=3_2 , A=7_1 , A=1E-5 , A=0.02 , A=True , A=0.0 , A=0.0 , A=None , A=False , A=False , A=True , A=True , A=False , A=1_1 , A=1_1 , **A , ) -> Any: _UpperCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase : Optional[Any] = kwargs.pop('''n_embed''' , A ) _UpperCAmelCase : int = hidden_size if n_embed is None else n_embed _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[int] = layer_norm_epsilon _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Optional[int] = use_cache _UpperCAmelCase : Any = hidden_dropout _UpperCAmelCase : Dict = attention_dropout _UpperCAmelCase : Any = bos_token_id _UpperCAmelCase : List[Any] = eos_token_id _UpperCAmelCase : Tuple = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase : Dict = alibi _UpperCAmelCase : Optional[int] = new_decoder_architecture _UpperCAmelCase : str = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase : Optional[int] = parallel_attn _UpperCAmelCase : Optional[int] = bias super().__init__(bos_token_id=A , eos_token_id=A , **A ) @property def __lowerCAmelCase ( self ) -> List[str]: return self.hidden_size // self.num_attention_heads @property def __lowerCAmelCase ( self ) -> List[Any]: return not self.alibi
263
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
116
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) lowerCAmelCase_ = None lowerCAmelCase_ = { '7B': 1_10_08, '13B': 1_38_24, '30B': 1_79_20, '65B': 2_20_16, '70B': 2_86_72, } lowerCAmelCase_ = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def snake_case( __magic_name__ , __magic_name__=1 , __magic_name__=2_56 ) -> List[Any]: '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case( __magic_name__ ) -> Union[str, Any]: '''simple docstring''' with open(__magic_name__ , '''r''' ) as f: return json.load(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' with open(__magic_name__ , '''w''' ) as f: json.dump(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Tuple: '''simple docstring''' os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowercase : List[Any] = os.path.join(__magic_name__ , '''tmp''' ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowercase : List[Any] = read_json(os.path.join(__magic_name__ , '''params.json''' ) ) lowercase : int = NUM_SHARDS[model_size] lowercase : str = params['''n_layers'''] lowercase : Optional[int] = params['''n_heads'''] lowercase : str = n_heads // num_shards lowercase : Dict = params['''dim'''] lowercase : int = dim // n_heads lowercase : List[str] = 1_0_0_0_0.0 lowercase : Optional[Any] = 1.0 / (base ** (torch.arange(0 , __magic_name__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowercase : Optional[Any] = params['''n_kv_heads'''] # for GQA / MQA lowercase : Union[str, Any] = n_heads_per_shard // num_key_value_heads lowercase : Any = dim // num_key_value_heads else: # compatibility with other checkpoints lowercase : Optional[Any] = n_heads lowercase : str = n_heads_per_shard lowercase : Any = dim # permute for sliced rotary def permute(__magic_name__ , __magic_name__=n_heads , __magic_name__=dim , __magic_name__=dim ): return w.view(__magic_name__ , dima // n_heads // 2 , 2 , __magic_name__ ).transpose(1 , 2 ).reshape(__magic_name__ , __magic_name__ ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowercase : Tuple = torch.load(os.path.join(__magic_name__ , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded lowercase : str = [ torch.load(os.path.join(__magic_name__ , F"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(__magic_name__ ) ] lowercase : Tuple = 0 lowercase : str = {'''weight_map''': {}} for layer_i in range(__magic_name__ ): lowercase : List[Any] = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowercase : int = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowercase : List[Any] = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } lowercase : Tuple = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(__magic_name__ , __magic_name__ , __magic_name__ ) for i in range(__magic_name__ ) ] , dim=0 , ).reshape(__magic_name__ , __magic_name__ ) ) lowercase : Any = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( __magic_name__ , __magic_name__ , __magic_name__ ) for i in range(__magic_name__ ) ] , dim=0 , ).reshape(__magic_name__ , __magic_name__ ) , __magic_name__ , __magic_name__ , __magic_name__ , ) lowercase : Any = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( __magic_name__ , __magic_name__ , __magic_name__ ) for i in range(__magic_name__ ) ] , dim=0 , ).reshape(__magic_name__ , __magic_name__ ) lowercase : int = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(__magic_name__ )] , dim=1 ) lowercase : str = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(__magic_name__ )] , dim=0 ) lowercase : Any = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(__magic_name__ )] , dim=1 ) lowercase : List[Any] = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(__magic_name__ )] , dim=0 ) lowercase : List[Any] = inv_freq for k, v in state_dict.items(): lowercase : Tuple = filename param_count += v.numel() torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) lowercase : Tuple = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowercase : Optional[int] = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: lowercase : Tuple = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(__magic_name__ )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(__magic_name__ )] , dim=0 ), } for k, v in state_dict.items(): lowercase : Tuple = filename param_count += v.numel() torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) # Write configs lowercase : Tuple = {'''total_size''': param_count * 2} write_json(__magic_name__ , os.path.join(__magic_name__ , '''pytorch_model.bin.index.json''' ) ) lowercase : Tuple = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 lowercase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 2_56 lowercase : List[Any] = LlamaConfig( hidden_size=__magic_name__ , intermediate_size=compute_intermediate_size(__magic_name__ , __magic_name__ , __magic_name__ ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=__magic_name__ , ) config.save_pretrained(__magic_name__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) lowercase : Dict = LlamaForCausalLM.from_pretrained(__magic_name__ , torch_dtype=torch.floataa , low_cpu_mem_usage=__magic_name__ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(__magic_name__ , safe_serialization=__magic_name__ ) shutil.rmtree(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : str = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) lowercase : Tuple = tokenizer_class(__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=__magic_name__ , help='''Whether or not to save using `safetensors`.''' ) lowercase : List[str] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowercase : Any = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , __magic_name__ ) if __name__ == "__main__": main()
116
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = 2**power A__ = 0 while n: A__ , A__ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
7
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowercase__ ( ctypes.Structure ): '''simple docstring''' A_ : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): """simple docstring""" if os.name == "nt": _SCREAMING_SNAKE_CASE : Tuple = CursorInfo() _SCREAMING_SNAKE_CASE : Tuple = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def snake_case_ ( ): """simple docstring""" if os.name == "nt": _SCREAMING_SNAKE_CASE : int = CursorInfo() _SCREAMING_SNAKE_CASE : List[str] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) _SCREAMING_SNAKE_CASE : Tuple = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
200
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
77
"""simple docstring""" import pytest UpperCAmelCase ="__dummy_dataset1__" UpperCAmelCase ="\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A ( _a : str , _a : List[Any] , _a : List[Any] ): """simple docstring""" A = dataset_loading_script_name A = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=_a ) A = script_dir / f'{script_name}.py' with open(_a , """w""" ) as f: f.write(_a ) return str(_a )
77
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match" __UpperCamelCase : int = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match" __UpperCamelCase : List[str] = nn.Parameter(snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): # set torch weights for 1-to-1 comparison __UpperCamelCase : Any = np.asarray(weights[0] ) __UpperCamelCase : Tuple = np.asarray(weights[1] ) __UpperCamelCase : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case__ ).view(-1 , snake_case__ ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): # set torch weights for 1-to-1 comparison __UpperCamelCase : Dict = np.asarray(weights[0] ) __UpperCamelCase : List[str] = np.asarray(weights[1] ) __UpperCamelCase : Any = np.asarray(weights[2] ) __UpperCamelCase : List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case__ ).view(-1 , snake_case__ ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): # layernorm 1 __UpperCamelCase : Any = weights[0][0][0] __UpperCamelCase : List[str] = np.asarray(layer_norm_a[0] ) __UpperCamelCase : Optional[int] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(snake_case__ ) , torch.tensor(snake_case__ ) , ) # lsh weights + output __UpperCamelCase : Union[str, Any] = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ , torch_block.attention , snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ , torch_block.attention , snake_case__ ) # intermediate weighs __UpperCamelCase : Tuple = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: __UpperCamelCase : int = intermediate_weights[2] # layernorm 2 __UpperCamelCase : List[Any] = np.asarray(intermediate_weights[0][0] ) __UpperCamelCase : List[str] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(snake_case__ ) , torch.tensor(snake_case__ ) , ) # intermediate dense __UpperCamelCase : str = np.asarray(intermediate_weights[1][0] ) __UpperCamelCase : Union[str, Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(snake_case__ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case__ ) , ) # intermediate out __UpperCamelCase : str = np.asarray(intermediate_weights[4][0] ) __UpperCamelCase : Dict = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(snake_case__ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case__ ) , ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): # reformer model __UpperCamelCase : str = torch_model.reformer # word embeds __UpperCamelCase : Union[str, Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(snake_case__ ) , ) if isinstance(weights[3] , snake_case__ ): __UpperCamelCase : Optional[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __UpperCamelCase : Optional[int] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"{position_embeddings[emb_idx]} emb does not match" __UpperCamelCase : List[str] = nn.Parameter(torch.tensor(snake_case__ ) ) __UpperCamelCase : Optional[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __UpperCamelCase : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ , snake_case__ , snake_case__ ) # output layer norm __UpperCamelCase : List[str] = np.asarray(weights[7][0] ) __UpperCamelCase : str = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(snake_case__ ) , torch.tensor(snake_case__ ) , ) # output embeddings __UpperCamelCase : Optional[int] = np.asarray(weights[9][0] ) __UpperCamelCase : List[str] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(snake_case__ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case__ ) , ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): # Initialise PyTorch model __UpperCamelCase : Optional[int] = ReformerConfig.from_json_file(snake_case__ ) print(F"Building PyTorch model from configuration: {config}" ) __UpperCamelCase : Any = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ , "rb" ) as f: __UpperCamelCase : Any = pickle.load(snake_case__ )["weights"] set_model_weights_in_torch(snake_case__ , snake_case__ , config.hidden_size ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
298
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __lowerCAmelCase ( snake_case__=None ): if subparsers is not None: __UpperCamelCase : Any = subparsers.add_parser("test" ) else: __UpperCamelCase : Dict = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=snake_case__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=snake_case__ ) return parser def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : str = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: __UpperCamelCase : str = script_name else: __UpperCamelCase : Tuple = F"--config_file={args.config_file} {script_name}" __UpperCamelCase : Optional[Any] = ["accelerate-launch"] + test_args.split() __UpperCamelCase : Optional[Any] = execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __lowerCAmelCase ( ): __UpperCamelCase : int = test_command_parser() __UpperCamelCase : Union[str, Any] = parser.parse_args() test_command(snake_case__ ) if __name__ == "__main__": main()
298
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py SCREAMING_SNAKE_CASE :Tuple = 'src/diffusers' # Matches is_xxx_available() SCREAMING_SNAKE_CASE :Optional[Any] = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla SCREAMING_SNAKE_CASE :List[Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') SCREAMING_SNAKE_CASE :int = '\n{0} = None\n' SCREAMING_SNAKE_CASE :str = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' SCREAMING_SNAKE_CASE :str = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = _re_backend.findall(a_ ) if len(a_ ) == 0: return None return "_and_".join(a_ ) def UpperCAmelCase ( ) -> int: """simple docstring""" with open(os.path.join(a_ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: __A = f.readlines() # Get to the point we do the actual imports for type checking __A = 0 __A = {} # Go through the end of the file while line_index < len(a_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __A = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 __A = [] # Until we unindent, add backend objects to the list while line_index < len(a_ ) and len(lines[line_index] ) > 1: __A = lines[line_index] __A = _re_single_line_import.search(a_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(a_ ) > 0: __A = objects else: line_index += 1 return backend_specific_objects def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(a_ ) elif name.islower(): return DUMMY_FUNCTION.format(a_ , a_ ) else: return DUMMY_CLASS.format(a_ , a_ ) def UpperCAmelCase ( a_=None ) -> Dict: """simple docstring""" if backend_specific_objects is None: __A = read_init() # For special correspondence backend to module name as used in the function requires_modulename __A = {} for backend, objects in backend_specific_objects.items(): __A = "[" + ", ".join(F'''"{b}"''' for b in backend.split("_and_" ) ) + "]" __A = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(a_ , a_ ) for o in objects] ) __A = dummy_file return dummy_files def UpperCAmelCase ( a_=False ) -> List[str]: """simple docstring""" __A = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __A = {"torch": "pt"} # Locate actual dummy modules and read their content. __A = os.path.join(a_ , "utils" ) __A = { backend: os.path.join(a_ , F'''dummy_{short_names.get(a_ , a_ )}_objects.py''' ) for backend in dummy_files.keys() } __A = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(a_ ): with open(a_ , "r" , encoding="utf-8" , newline="\n" ) as f: __A = f.read() else: __A = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(a_ , a_ )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'''diffusers.utils.dummy_{short_names.get(a_ , a_ )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE :Dict = parser.parse_args() check_dummies(args.fix_and_overwrite)
124
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,A : List[str] ,A : List[Any]=7 ,A : Any=3 ,A : int=30 ,A : List[Any]=4_00 ,A : str=True ,A : int=None ,A : List[str]=0.9 ,A : Dict=None ,A : int=True ,A : Any=[0.5, 0.5, 0.5] ,A : Optional[int]=[0.5, 0.5, 0.5] ,): __A = size if size is not None else {"shortest_edge": 30} __A = crop_size if crop_size is not None else {"height": 30, "width": 30} __A = parent __A = batch_size __A = num_channels __A = min_resolution __A = max_resolution __A = do_resize_and_center_crop __A = size __A = crop_pct __A = crop_size __A = do_normalize __A = image_mean __A = image_std def UpperCamelCase_ ( self : int ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): __A = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Tuple ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"crop_pct" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) __A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
124
1
import pickle import numpy as np from matplotlib import pyplot as plt class A__ : def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0.2 , _UpperCAmelCase : Optional[Any]=0.2 ) -> Optional[int]: """simple docstring""" __lowercase = bp_numa __lowercase = bp_numa __lowercase = bp_numa __lowercase = conva_get[:2] __lowercase = conva_get[2] __lowercase = size_pa __lowercase = rate_w __lowercase = rate_t __lowercase = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] __lowercase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __lowercase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __lowercase = -2 * np.random.rand(self.conva[1] ) + 1 __lowercase = -2 * np.random.rand(self.num_bpa ) + 1 __lowercase = -2 * np.random.rand(self.num_bpa ) + 1 def a__ ( self : List[str] , _UpperCAmelCase : str ) -> List[Any]: """simple docstring""" __lowercase = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(snake_case_ , 'wb' ) as f: pickle.dump(snake_case_ , snake_case_ ) print(f"""Model saved: {save_path}""" ) @classmethod def a__ ( cls : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(snake_case_ , 'rb' ) as f: __lowercase = pickle.load(snake_case_ ) # noqa: S301 __lowercase = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) __lowercase = model_dic.get('size_pooling1' ) __lowercase = model_dic.get('num_bp1' ) __lowercase = model_dic.get('num_bp2' ) __lowercase = model_dic.get('num_bp3' ) __lowercase = model_dic.get('rate_weight' ) __lowercase = model_dic.get('rate_thre' ) # create model instance __lowercase = CNN(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # modify model parameter __lowercase = model_dic.get('w_conv1' ) __lowercase = model_dic.get('wkj' ) __lowercase = model_dic.get('vji' ) __lowercase = model_dic.get('thre_conv1' ) __lowercase = model_dic.get('thre_bp2' ) __lowercase = model_dic.get('thre_bp3' ) return conv_ins def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" return round(snake_case_ , 3 ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" __lowercase = convs[0] __lowercase = convs[1] __lowercase = np.shape(snake_case_ )[0] # get the data slice of original image data, data_focus __lowercase = [] for i_focus in range(0 , size_data - size_conv + 1 , snake_case_ ): for j_focus in range(0 , size_data - size_conv + 1 , snake_case_ ): __lowercase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(snake_case_ ) # calculate the feature map of every single kernel, and saved as list of matrix __lowercase = [] __lowercase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(snake_case_ ): __lowercase = [] for i_focus in range(len(snake_case_ ) ): __lowercase = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(snake_case_ ) ) __lowercase = np.asmatrix(snake_case_ ).reshape( snake_case_ , snake_case_ ) data_featuremap.append(snake_case_ ) # expanding the data slice to One dimenssion __lowercase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(snake_case_ ) ) __lowercase = np.asarray(snake_case_ ) return focus_list, data_featuremap def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]="average_pool" ) -> Optional[int]: """simple docstring""" __lowercase = len(featuremaps[0] ) __lowercase = int(size_map / size_pooling ) __lowercase = [] for i_map in range(len(snake_case_ ) ): __lowercase = featuremaps[i_map] __lowercase = [] for i_focus in range(0 , snake_case_ , snake_case_ ): for j_focus in range(0 , snake_case_ , snake_case_ ): __lowercase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(snake_case_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(snake_case_ ) ) __lowercase = np.asmatrix(snake_case_ ).reshape(snake_case_ , snake_case_ ) featuremap_pooled.append(snake_case_ ) return featuremap_pooled def a__ ( self : Dict , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = [] for i in range(len(snake_case_ ) ): __lowercase = np.shape(data[i] ) __lowercase = data[i].reshape(1 , shapes[0] * shapes[1] ) __lowercase = data_listed.getA().tolist()[0] data_expanded.extend(snake_case_ ) __lowercase = np.asarray(snake_case_ ) return data_expanded def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = np.asarray(snake_case_ ) __lowercase = np.shape(snake_case_ ) __lowercase = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def a__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> str: """simple docstring""" __lowercase = [] __lowercase = 0 for i_map in range(snake_case_ ): __lowercase = np.ones((size_map, size_map) ) for i in range(0 , snake_case_ , snake_case_ ): for j in range(0 , snake_case_ , snake_case_ ): __lowercase = pd_pool[ i_pool ] __lowercase = i_pool + 1 __lowercase = np.multiply( snake_case_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(snake_case_ ) return pd_all def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=bool ) -> Tuple: """simple docstring""" print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(snake_case_ )) ) print((' - - Shape: Teach_Data ', np.shape(snake_case_ )) ) __lowercase = 0 __lowercase = [] __lowercase = 1_00_00 while rp < n_repeat and mse >= error_accuracy: __lowercase = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(snake_case_ ) ): # print('------------Learning Image: %d--------------'%p) __lowercase = np.asmatrix(datas_train[p] ) __lowercase = np.asarray(datas_teach[p] ) __lowercase = self.convolute( snake_case_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowercase = self.pooling(snake_case_ , self.size_poolinga ) __lowercase = np.shape(snake_case_ ) __lowercase = self._expand(snake_case_ ) __lowercase = data_bp_input __lowercase = np.dot(snake_case_ , self.vji.T ) - self.thre_bpa __lowercase = self.sig(snake_case_ ) __lowercase = np.dot(snake_case_ , self.wkj.T ) - self.thre_bpa __lowercase = self.sig(snake_case_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __lowercase = np.multiply( (data_teach - bp_outa) , np.multiply(snake_case_ , (1 - bp_outa) ) ) __lowercase = np.multiply( np.dot(snake_case_ , self.wkj ) , np.multiply(snake_case_ , (1 - bp_outa) ) ) __lowercase = np.dot(snake_case_ , self.vji ) __lowercase = pd_i_all / (self.size_poolinga * self.size_poolinga) __lowercase = pd_conva_pooled.T.getA().tolist() __lowercase = self._calculate_gradient_from_pool( snake_case_ , snake_case_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): __lowercase = self._expand_mat(pd_conva_all[k_conv] ) __lowercase = self.rate_weight * np.dot(snake_case_ , snake_case_ ) __lowercase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) __lowercase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer __lowercase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __lowercase = self.vji + pd_j_all.T * bp_outa * self.rate_weight __lowercase = self.thre_bpa - pd_k_all * self.rate_thre __lowercase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __lowercase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __lowercase = rp + 1 __lowercase = error_count / patterns all_mse.append(snake_case_ ) def draw_error(): __lowercase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(snake_case_ , '+-' ) plt.plot(snake_case_ , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(snake_case_ , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(snake_case_ )) ) for p in range(len(snake_case_ ) ): __lowercase = np.asmatrix(datas_test[p] ) __lowercase = self.convolute( snake_case_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowercase = self.pooling(snake_case_ , self.size_poolinga ) __lowercase = self._expand(snake_case_ ) __lowercase = data_bp_input __lowercase = bp_outa * self.vji.T - self.thre_bpa __lowercase = self.sig(snake_case_ ) __lowercase = bp_outa * self.wkj.T - self.thre_bpa __lowercase = self.sig(snake_case_ ) produce_out.extend(bp_outa.getA().tolist() ) __lowercase = [list(map(self.do_round , snake_case_ ) ) for each in produce_out] return np.asarray(snake_case_ ) def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = np.asmatrix(snake_case_ ) __lowercase = self.convolute( snake_case_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowercase = self.pooling(snake_case_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
325
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" A_ : str = False if num < 0: A_ : Dict = True A_ : Union[str, Any] = -num A_ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_UpperCAmelCase ) for e in binary ) return "0b" + "".join(str(_UpperCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
286
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''BlipImageProcessor''' lowerCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _a , _a ) -> Union[str, Any]: lowerCAmelCase_ = False super().__init__(_a , _a ) lowerCAmelCase_ = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: lowerCAmelCase_ = self.tokenizer lowerCAmelCase_ = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a ) if text is not None: lowerCAmelCase_ = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: lowerCAmelCase_ = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def __a ( self , *_a , **_a ) -> Tuple: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Dict: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> Tuple: lowerCAmelCase_ = self.tokenizer.model_input_names lowerCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
22
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
1
from manim import * class _snake_case ( _snake_case ): def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = Rectangle(height=0.5 , width=0.5 ) a :Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a :List[Any] = [mem.copy() for i in range(6 )] a :int = [mem.copy() for i in range(6 )] a :Optional[Any] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) a :List[str] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) a :Union[str, Any] = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) a :Any = Text('''CPU''' , font_size=24 ) a :Dict = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCamelCase ) a :Optional[Any] = [mem.copy() for i in range(4 )] a :Dict = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) a :Union[str, Any] = Text('''GPU''' , font_size=24 ) a :List[str] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCamelCase ) a :List[str] = [mem.copy() for i in range(6 )] a :Union[str, Any] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) a :Optional[int] = Text('''Model''' , font_size=24 ) a :int = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCamelCase ) a :Optional[Any] = [] for i, rect in enumerate(_lowerCamelCase ): rect.set_stroke(_lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a :int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_lowerCamelCase , buff=0.0 ) self.add(_lowerCamelCase ) cpu_targs.append(_lowerCamelCase ) a :Optional[Any] = [mem.copy() for i in range(6 )] a :Tuple = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) a :Any = Text('''Loaded Checkpoint''' , font_size=24 ) a :Dict = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , aligned_edge=_lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) a :Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a :Optional[Any] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) a :Dict = MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase ) , Write(_lowerCamelCase ) ) self.play(Write(_lowerCamelCase , run_time=1 ) , Create(_lowerCamelCase , run_time=1 ) ) a :Optional[Any] = [] a :List[Any] = [] for i, rect in enumerate(_lowerCamelCase ): a :Tuple = fill.copy().set_fill(_lowerCamelCase , opacity=0.7 ) target.move_to(_lowerCamelCase ) first_animations.append(GrowFromCenter(_lowerCamelCase , run_time=1 ) ) a :Optional[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_lowerCamelCase , run_time=1.5 ) ) self.play(*_lowerCamelCase ) self.play(*_lowerCamelCase ) self.wait()
94
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[] ): '''simple docstring''' lowerCamelCase : Optional[Any] = size[0] - overlap_pixels * 2 lowerCamelCase : int = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCamelCase : Tuple = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 lowerCamelCase : List[Any] = np.pad(SCREAMING_SNAKE_CASE_ , mode="linear_ramp" , pad_width=SCREAMING_SNAKE_CASE_ , end_values=0 ) if "l" in remove_borders: lowerCamelCase : Optional[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCamelCase : List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCamelCase : List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCamelCase : Tuple = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return max(SCREAMING_SNAKE_CASE_ , min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCamelCase : Any = clamp_rect(SCREAMING_SNAKE_CASE_ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE_ , (original_slice, 0) ) return result def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCamelCase : int = tile.crop(SCREAMING_SNAKE_CASE_ ) return tile def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = n % d return n - divisor class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A , __A , __A , __A , __A , __A = 350 , ): """simple docstring""" super().__init__( vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , low_res_scheduler=__A , scheduler=__A , max_noise_level=__A , ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , **__A ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase : Tuple = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCamelCase : Union[str, Any] = add_overlap_rect(__A , __A , image.size ) lowerCamelCase : List[str] = image.crop(__A ) lowerCamelCase : Optional[int] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCamelCase : int = translated_slice_x - (original_image_slice / 2) lowerCamelCase : Optional[Any] = max(0 , __A ) lowerCamelCase : Tuple = squeeze_tile(__A , __A , __A , __A ) lowerCamelCase : Dict = to_input.size lowerCamelCase : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCamelCase : Dict = super(__A , self ).__call__(image=__A , **__A ).images[0] lowerCamelCase : Tuple = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCamelCase : Optional[Any] = unsqueeze_tile(__A , __A ) lowerCamelCase : Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCamelCase : int = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) lowerCamelCase : int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__A ) , mode="L" , ) final_image.paste( __A , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __A ) @torch.no_grad() def __call__( self , __A , __A , __A = 75 , __A = 9.0 , __A = 50 , __A = None , __A = 1 , __A = 0.0 , __A = None , __A = None , __A = None , __A = 1 , __A = 128 , __A = 32 , __A = 32 , ): """simple docstring""" lowerCamelCase : Dict = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) lowerCamelCase : Union[str, Any] = math.ceil(image.size[0] / tile_size ) lowerCamelCase : Dict = math.ceil(image.size[1] / tile_size ) lowerCamelCase : str = tcx * tcy lowerCamelCase : int = 0 for y in range(__A ): for x in range(__A ): self._process_tile( __A , __A , __A , __A , __A , __A , __A , prompt=__A , num_inference_steps=__A , guidance_scale=__A , noise_level=__A , negative_prompt=__A , num_images_per_prompt=__A , eta=__A , generator=__A , latents=__A , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def lowercase_( ): '''simple docstring''' lowerCamelCase : Dict = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase : Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , revision="fp16" , torch_dtype=torch.floataa ) lowerCamelCase : Optional[Any] = pipe.to("cuda" ) lowerCamelCase : List[str] = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(SCREAMING_SNAKE_CASE_ ): print(f"""progress: {obj['progress']:.4f}""" ) obj["image"].save("diffusers_library_progress.jpg" ) lowerCamelCase : int = pipe(image=SCREAMING_SNAKE_CASE_ , prompt="Black font, white background, vector" , noise_level=40 , callback=SCREAMING_SNAKE_CASE_ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
283
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowercase__ ='\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' lowercase__ ='\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' lowercase__ ='\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): def lowerCAmelCase (self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowerCAmelCase (self : Any , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : List[str]=4 , snake_case_ : Union[str, Any]=False ): __a : str = compute_bleu( reference_corpus=snake_case_ , translation_corpus=snake_case_ , max_order=snake_case_ , smooth=snake_case_ ) (__a) : Any = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
366
def __UpperCamelCase ( lowerCAmelCase__ : int = 1_0_0_0 ): __a : int = -1 __a : Any = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __a : List[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) __a : Union[str, Any] = n - a - b if c * c == (a * a + b * b): __a : Union[str, Any] = a * b * c if candidate >= product: __a : List[Any] = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
90
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( A__ ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = create_tensor(A__ ) UpperCamelCase = gather(A__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __lowerCamelCase ( A__ ) -> Tuple: """simple docstring""" UpperCamelCase = [state.process_index] UpperCamelCase = gather_object(A__ ) assert len(A__ ) == state.num_processes, F"""{gathered_obj}, {len(A__ )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" UpperCamelCase = create_tensor(A__ ) UpperCamelCase = broadcast(A__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __lowerCamelCase ( A__ ) -> str: """simple docstring""" # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: UpperCamelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: UpperCamelCase = torch.arange(state.num_processes ).to(state.device ) UpperCamelCase = pad_across_processes(A__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __lowerCamelCase ( A__ ) -> str: """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return UpperCamelCase = create_tensor(A__ ) UpperCamelCase = reduce(A__ , 'sum' ) UpperCamelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(A__ , A__ ), F"""{reduced_tensor} != {truth_tensor}""" def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return UpperCamelCase = create_tensor(A__ ) UpperCamelCase = reduce(A__ , 'mean' ) UpperCamelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(A__ , A__ ), F"""{reduced_tensor} != {truth_tensor}""" def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" # For xla_spawn (TPUs) main() def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" UpperCamelCase = PartialState() state.print(F"""State: {state}""" ) state.print('testing gather' ) test_gather(A__ ) state.print('testing gather_object' ) test_gather_object(A__ ) state.print('testing broadcast' ) test_broadcast(A__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(A__ ) state.print('testing reduce_sum' ) test_reduce_sum(A__ ) state.print('testing reduce_mean' ) test_reduce_mean(A__ ) if __name__ == "__main__": main()
28
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
214
0
'''simple docstring''' _UpperCAmelCase : str = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _UpperCAmelCase : Optional[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def a__ ( lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : int ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = True _UpperCamelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) order.append(lowerCamelCase__ ) return order def a__ ( lowercase : Optional[Any], lowercase : List[Any], lowercase : Tuple ) -> str: """simple docstring""" _UpperCamelCase = True _UpperCamelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) return component def a__ ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCamelCase = len(lowerCamelCase__ ) * [False] _UpperCamelCase = {vert: [] for vert in range(len(lowerCamelCase__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowerCamelCase__ ) _UpperCamelCase = [] for i, was_visited in enumerate(lowerCamelCase__ ): if not was_visited: order += topology_sort(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) _UpperCamelCase = [] _UpperCamelCase = len(lowerCamelCase__ ) * [False] for i in range(len(lowerCamelCase__ ) ): _UpperCamelCase = order[len(lowerCamelCase__ ) - i - 1] if not visited[vert]: _UpperCamelCase = find_components(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) components_list.append(lowerCamelCase__ ) return components_list
353
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase__ : List[str] = sys.version_info >= (3, 10) def a__ ( lowercase : Dict=None, lowercase : List[str]=None ) -> List[Any]: """simple docstring""" return field(default_factory=lambda: default, metadata=lowercase ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : int _snake_case : float _snake_case : str _snake_case : bool @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : int = 4_2 _snake_case : str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : bool = False _snake_case : bool = True _snake_case : Optional[bool] = None class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'titi' _snake_case : Union[str, Any] = 'toto' class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'titi' _snake_case : Union[str, Any] = 'toto' _snake_case : Any = 4_2 @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : BasicEnum = "toto" def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = BasicEnum(self.foo ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : MixedTypeEnum = "toto" def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MixedTypeEnum(self.foo ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : Optional[int] = None _snake_case : Optional[float] = field(default=__magic_name__ , metadata={'help': 'help message'} ) _snake_case : Optional[str] = None _snake_case : Optional[List[str]] = list_field(default=[] ) _snake_case : Optional[List[int]] = list_field(default=[] ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : List[int] = list_field(default=[] ) _snake_case : List[int] = list_field(default=[1, 2, 3] ) _snake_case : List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _snake_case : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : List[int] = field() _snake_case : str = field() _snake_case : BasicEnum = field() def snake_case__ ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase = BasicEnum(self.required_enum ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : int _snake_case : "BasicEnum" = field() _snake_case : "Optional[bool]" = None _snake_case : "str" = field(default='toto' , metadata={'help': 'help message'} ) _snake_case : "List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : bool = False _snake_case : bool = True _snake_case : bool | None = None @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : int | None = None _snake_case : float | None = field(default=__magic_name__ , metadata={'help': 'help message'} ) _snake_case : str | None = None _snake_case : list[str] | None = list_field(default=[] ) _snake_case : list[int] | None = list_field(default=[] ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : argparse.ArgumentParser , lowerCAmelCase__ : argparse.ArgumentParser ) -> str: '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _UpperCamelCase = {k: v for k, v in vars(lowerCAmelCase__ ).items() if k != '''container'''} _UpperCamelCase = {k: v for k, v in vars(lowerCAmelCase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowerCAmelCase__ ) and yy.get('''choices''' , lowerCAmelCase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowerCAmelCase__ ) , yy['''type'''](lowerCAmelCase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument('''--bar''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument('''--baz''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument('''--flag''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , const=lowerCAmelCase__ , nargs='''?''' ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_UpperCamelCase) , ) = parser.parse_args_into_dataclasses(lowerCAmelCase__ , look_for_args_file=lowerCAmelCase__ ) self.assertFalse(example.flag ) def snake_case__ ( self : int ) -> Any: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowerCAmelCase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowerCAmelCase__ , help='''help message''' ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , const=lowerCAmelCase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , const=lowerCAmelCase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowerCAmelCase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) _UpperCamelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCAmelCase__ ) for dataclass_type in dataclass_types: _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) _UpperCamelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) _UpperCamelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) _UpperCamelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) _UpperCamelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCamelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _UpperCamelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCamelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _UpperCamelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) _UpperCamelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : Literal["titi", "toto", 4_2] = "toto" _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCamelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCamelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowerCAmelCase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowerCAmelCase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowerCAmelCase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowerCAmelCase__ ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual( lowerCAmelCase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _UpperCamelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowerCAmelCase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ ) expected.add_argument('''--bar''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowerCAmelCase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowerCAmelCase__ ) _UpperCamelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCAmelCase__ ) for dataclass_type in dataclass_types: _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , bar=lowerCAmelCase__ , baz=lowerCAmelCase__ , ces=[] , des=[] ) ) _UpperCamelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument('''--required_str''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowerCAmelCase__ , ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowerCAmelCase__ , ) expected.add_argument('''--opt''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowerCAmelCase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowerCAmelCase__ ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } _UpperCamelCase = parser.parse_dict(lowerCAmelCase__ )[0] _UpperCamelCase = BasicExample(**lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowerCAmelCase__ , parser.parse_dict , lowerCAmelCase__ , allow_extra_keys=lowerCAmelCase__ ) def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = os.path.join(lowerCAmelCase__ , '''temp_json''' ) os.mkdir(lowerCAmelCase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _UpperCamelCase = BasicExample(**lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = os.path.join(lowerCAmelCase__ , '''temp_yaml''' ) os.mkdir(lowerCAmelCase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _UpperCamelCase = BasicExample(**lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> str: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ )
287
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _snake_case ( UpperCamelCase : int = 1000000 , UpperCamelCase : int = 10 ): UpperCAmelCase : defaultdict = defaultdict(UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase : Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
0
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a : List[Any] = { '''E''': 12.70, '''T''': 9.06, '''A''': 8.17, '''O''': 7.51, '''I''': 6.97, '''N''': 6.75, '''S''': 6.33, '''H''': 6.09, '''R''': 5.99, '''D''': 4.25, '''L''': 4.03, '''C''': 2.78, '''U''': 2.76, '''M''': 2.41, '''W''': 2.36, '''F''': 2.23, '''G''': 2.02, '''Y''': 1.97, '''P''': 1.93, '''B''': 1.29, '''V''': 0.98, '''K''': 0.77, '''J''': 0.15, '''X''': 0.15, '''Q''': 0.10, '''Z''': 0.07, } a : Any = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' a : Any = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->dict[str, int]: '''simple docstring''' a : Optional[int] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _SCREAMING_SNAKE_CASE ( _lowercase : tuple ) ->str: '''simple docstring''' return x[0] def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' a : Tuple = get_letter_count(_lowercase ) a : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowercase ) a : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_lowercase ) a : List[Any] = "".join(freq_to_letter[freq] ) a : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowercase , reverse=_lowercase ) a : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->int: '''simple docstring''' a : int = get_frequency_order(_lowercase ) a : List[Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" from itertools import product def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int ) ->list[int]: '''simple docstring''' a : Dict = sides_number a : List[str] = max_face_number * dice_number a : Optional[int] = [0] * (max_total + 1) a : Dict = 1 a : Optional[Any] = range(_lowercase , max_face_number + 1 ) for dice_numbers in product(_lowercase , repeat=_lowercase ): a : Union[str, Any] = sum(_lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _SCREAMING_SNAKE_CASE ( ) ->float: '''simple docstring''' a : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) a : List[Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) a : Optional[Any] = 0 a : Tuple = 9 a : Union[str, Any] = 4 * 9 a : Any = 6 for peter_total in range(_lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) a : List[str] = (4**9) * (6**6) a : List[Any] = peter_wins_count / total_games_number a : Any = round(_lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
79
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = PhobertTokenizer snake_case_ = False def lowercase_ ( self ) -> int: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = ['#version: 0.2', 'l à</w>'] __lowerCamelCase = {'unk_token': '<unk>'} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def lowercase_ ( self , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 'Tôi là VinAI Research' __lowerCamelCase = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase = 'Tôi là VinAI Research' __lowerCamelCase = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() __lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ )
90
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=13, lowerCamelCase__=7, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=99, lowerCamelCase__=32, lowerCamelCase__=5, lowerCamelCase__=4, lowerCamelCase__=37, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=16, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=4, ): A : List[str] = parent A : Optional[int] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : List[str] = use_attention_mask A : Union[str, Any] = use_token_type_ids A : Any = use_labels A : str = vocab_size A : Union[str, Any] = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : Optional[int] = intermediate_size A : Optional[Any] = hidden_act A : Dict = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : int = type_vocab_size A : str = type_sequence_label_size A : List[Any] = initializer_range A : str = num_choices def _lowerCAmelCase ( self ): A : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : Union[str, Any] = None if self.use_attention_mask: A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) A : int = None if self.use_token_type_ids: A : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) A : Optional[int] = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase__, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self ): A : Dict = self.prepare_config_and_inputs() A , A , A , A : str = config_and_inputs A : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self ): A : Dict = FlaxAlbertModelTester(self ) @slow def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: A : Dict = model_class_name.from_pretrained("""albert-base-v2""" ) A : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): A : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) A : List[str] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A : Optional[int] = model(lowerCamelCase__, attention_mask=lowerCamelCase__ )[0] A : str = (1, 11, 768) self.assertEqual(output.shape, lowerCamelCase__ ) A : Optional[int] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], lowerCamelCase__, atol=1e-4 ) )
116
0
'''simple docstring''' from PIL import Image def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Union[str, Any] ) -> Image: __snake_case : Any = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(_UpperCAmelCase : Optional[int] ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 A__ : Optional[Any] = change_contrast(img, 1_7_0) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
366
'''simple docstring''' from __future__ import annotations import time import numpy as np A__ : str = [8, 5, 9, 7] A__ : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A__ : Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case__ : def __init__( self : Union[str, Any] , __a : list[int] , __a : list[list[int]] , __a : list[list[int]] , ) -> None: '''simple docstring''' __snake_case : int = claim_vector __snake_case : Optional[int] = allocated_resources_table __snake_case : List[str] = maximum_claim_table def A_ ( self : str ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def A_ ( self : int ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def A_ ( self : int ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def A_ ( self : str ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__a ): i for i in self.__need()} def A_ ( self : Union[str, Any] , **__a : int ) -> None: '''simple docstring''' __snake_case : str = self.__need() __snake_case : List[Any] = self.__allocated_resources_table __snake_case : Optional[int] = self.__available_resources() __snake_case : Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __snake_case : Tuple = False for each_need in need_list: __snake_case : Any = True for index, need in enumerate(__a ): if need > available_resources[index]: __snake_case : List[str] = False break if execution: __snake_case : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __snake_case : str = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(__a ) # update available/freed resources stack __snake_case : Union[str, Any] = np.array(__a ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__a ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(__a ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(__a ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__a ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
0
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as input_file: UpperCAmelCase : List[str] = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) UpperCAmelCase : str = input_file.read() UpperCAmelCase : int = regexp.search(_SCREAMING_SNAKE_CASE ) return match def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as input_file: UpperCAmelCase : Union[str, Any] = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) UpperCAmelCase : Optional[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase : int = regexp.finditer(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Dict = Path("""./datasets""" ) UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_SCREAMING_SNAKE_CASE ) ): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any = Path("""./datasets""" ) UpperCAmelCase : Optional[Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(_SCREAMING_SNAKE_CASE ) ): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
109
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
0
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = PhobertTokenizer SCREAMING_SNAKE_CASE = False def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase : Tuple = ["T@@", "i", "I", "R@@", "r", "e@@"] __UpperCAmelCase : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __UpperCAmelCase : Optional[Any] = ["#version: 0.2", "l à</w>"] __UpperCAmelCase : List[str] = {"unk_token": "<unk>"} __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def lowerCamelCase_ ( self : str , **UpperCAmelCase_ : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def lowerCamelCase_ ( self : str , UpperCAmelCase_ : List[Any] ): """simple docstring""" __UpperCAmelCase : int = "Tôi là VinAI Research" __UpperCAmelCase : Optional[int] = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Dict = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase : Any = "Tôi là VinAI Research" __UpperCAmelCase : List[Any] = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() __UpperCAmelCase : Optional[int] = tokenizer.tokenize(lowerCAmelCase__ ) print(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : Tuple = tokens + [tokenizer.unk_token] __UpperCAmelCase : Union[str, Any] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ )
365
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCAmelCase__ : str = logging.get_logger(__name__) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = UNetaDModel SCREAMING_SNAKE_CASE = '''sample''' @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Dict = 4 __UpperCAmelCase : Dict = 3 __UpperCAmelCase : Dict = (32, 32) __UpperCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : str = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : int ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return (3, 32, 32) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } __UpperCAmelCase : List[str] = self.dummy_input return init_dict, inputs_dict class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = UNetaDModel SCREAMING_SNAKE_CASE = '''sample''' @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : str = 4 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : Optional[int] = (32, 32) __UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return (4, 32, 32) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return (4, 32, 32) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } __UpperCAmelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : str = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : List[str] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : List[str] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase_ ( self : str ): """simple docstring""" # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` __UpperCAmelCase , __UpperCAmelCase : str = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model_accelerate.to(UpperCAmelCase_ ) model_accelerate.eval() __UpperCAmelCase : Optional[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCAmelCase : int = noise.to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = model_accelerate(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() __UpperCAmelCase , __UpperCAmelCase : str = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ , low_cpu_mem_usage=UpperCAmelCase_ ) model_normal_load.to(UpperCAmelCase_ ) model_normal_load.eval() __UpperCAmelCase : Optional[Any] = model_normal_load(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Tuple = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCAmelCase : Optional[int] = noise.to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) with torch.no_grad(): __UpperCAmelCase : Dict = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample __UpperCAmelCase : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __UpperCAmelCase : int = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = UNetaDModel SCREAMING_SNAKE_CASE = '''sample''' @property def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : List[str]=(32, 32) ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : str ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase_ ( self : Any ): """simple docstring""" return (3, 32, 32) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : List[Any] = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } __UpperCAmelCase : int = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : int = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Any = self.dummy_input __UpperCAmelCase : int = floats_tensor((4, 3) + (256, 256) ).to(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = noise __UpperCAmelCase : Optional[Any] = model(**UpperCAmelCase_ ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Any = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : int = (256, 256) __UpperCAmelCase : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : Dict = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): __UpperCAmelCase : Tuple = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample __UpperCAmelCase : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __UpperCAmelCase : Tuple = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : Dict = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = 4 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : Union[str, Any] = (32, 32) __UpperCAmelCase : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): __UpperCAmelCase : str = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample __UpperCAmelCase : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __UpperCAmelCase : Any = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def lowerCamelCase_ ( self : Any ): """simple docstring""" # not required for this model pass
37
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class _lowercase ( snake_case_ , snake_case_ ): lowercase = 'convnextv2' def __init__( self : Union[str, Any] , snake_case : int=3 , snake_case : Any=4 , snake_case : str=4 , snake_case : Optional[Any]=None , snake_case : List[Any]=None , snake_case : List[Any]="gelu" , snake_case : List[str]=0.02 , snake_case : List[str]=1e-12 , snake_case : List[Any]=0.0 , snake_case : str=2_2_4 , snake_case : str=None , snake_case : Any=None , **snake_case : int , ) -> int: """simple docstring""" super().__init__(**snake_case ) UpperCamelCase_ : Dict = num_channels UpperCamelCase_ : Dict = patch_size UpperCamelCase_ : Dict = num_stages UpperCamelCase_ : List[Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCamelCase_ : List[Any] = [3, 3, 9, 3] if depths is None else depths UpperCamelCase_ : List[str] = hidden_act UpperCamelCase_ : Dict = initializer_range UpperCamelCase_ : Optional[Any] = layer_norm_eps UpperCamelCase_ : str = drop_path_rate UpperCamelCase_ : Dict = image_size UpperCamelCase_ : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase_, UpperCamelCase_ : int = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names )
175
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : str = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: __lowercase : Any = 1024 __lowercase : List[str] = 4096 __lowercase : List[str] = 24 __lowercase : Union[str, Any] = 16 __lowercase : Dict = [5, 11, 17, 23] __lowercase : Optional[int] = [256, 512, 1024, 1024] __lowercase : Union[str, Any] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __lowercase : Optional[Any] = 768 __lowercase : Tuple = [1, 1, 1, 0.5] __lowercase : Dict = [256, 512, 768, 768] __lowercase : str = 150 __lowercase : Any = 16 __lowercase : Tuple = (1, 384, 384) __lowercase : List[Any] = False __lowercase : Optional[Any] = """project""" if "ade" in checkpoint_url: __lowercase : List[str] = True __lowercase : int = 768 __lowercase : Tuple = [1, 1, 1, 0.5] __lowercase : Optional[Any] = 150 __lowercase : Optional[Any] = 16 __lowercase : int = """huggingface/label-files""" __lowercase : Any = """ade20k-id2label.json""" __lowercase : Dict = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __lowercase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowercase : List[Any] = idalabel __lowercase : Any = {v: k for k, v in idalabel.items()} __lowercase : List[Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowercase : List[str] = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: __lowercase : int = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: __lowercase : Optional[int] = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: __lowercase : Optional[int] = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: __lowercase : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: __lowercase : str = name.replace("""proj""" , """projection""" ) if "blocks" in name: __lowercase : List[str] = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: __lowercase : Any = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowercase : Optional[int] = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: __lowercase : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: __lowercase : str = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: __lowercase : int = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: __lowercase : Dict = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: __lowercase : Tuple = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: __lowercase : int = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: __lowercase : Dict = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: __lowercase : Dict = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: __lowercase : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowercase : str = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: __lowercase : Tuple = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: __lowercase : Tuple = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: __lowercase : int = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: __lowercase : List[str] = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: __lowercase : str = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowercase : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: __lowercase : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: __lowercase : List[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: __lowercase : Tuple = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowercase : int = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: __lowercase : int = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: __lowercase : Optional[int] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: __lowercase : Any = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: __lowercase : Optional[Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: __lowercase : Optional[int] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: __lowercase : Optional[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: __lowercase : Optional[int] = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: __lowercase : str = name.replace("""bn""" , """batch_norm""" ) if "head" in name: __lowercase : List[Any] = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: __lowercase : str = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: __lowercase : Optional[Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: __lowercase : Tuple = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: __lowercase : Dict = name.replace("""..""" , """.""" ) if "stem.conv" in name: __lowercase : List[str] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __lowercase : int = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: __lowercase : Optional[Any] = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: __lowercase : Dict = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: __lowercase : Dict = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: __lowercase : List[Any] = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: __lowercase : List[Any] = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase : str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) __lowercase : str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase : Optional[Any] = in_proj_weight[: config.hidden_size, :] __lowercase : Any = in_proj_bias[: config.hidden_size] __lowercase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : List[str] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ): __lowercase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : str = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ): __lowercase , __lowercase : Any = get_dpt_config(_UpperCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __lowercase : Dict = torch.load(_UpperCamelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): __lowercase : List[str] = state_dict.pop(_UpperCamelCase ) __lowercase : Optional[Any] = val # read in qkv matrices read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) # load HuggingFace model __lowercase : Optional[int] = DPTForSemanticSegmentation(_UpperCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Check outputs on an image __lowercase : List[Any] = 480 if """ade""" in checkpoint_url else 384 __lowercase : List[str] = DPTImageProcessor(size=_UpperCamelCase ) __lowercase : str = prepare_img() __lowercase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""pt""" ) # forward pass __lowercase : Optional[Any] = model(**_UpperCamelCase ).logits if """ade""" in checkpoint_url else model(**_UpperCamelCase ).predicted_depth if show_prediction: __lowercase : int = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=_UpperCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) lowerCamelCase : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: a__: str = TapasConfig.from_json_file(UpperCamelCase__ ) # set absolute/relative position embeddings parameter a__: Tuple = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a__: Optional[Any] = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams a__: Optional[int] = 4 a__: Any = True # hparam_utils.py hparams a__: Optional[int] = 0.664_694 a__: List[str] = 0.207_951 a__: List[str] = 0.121_194 a__: int = True a__: Dict = True a__: List[str] = False a__: Union[str, Any] = 0.0_352_513 a__: Union[str, Any] = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a__: Union[str, Any] = 4 a__: Optional[Any] = False # hparam_utils.py hparams a__: int = 36.4_519 a__: str = 0.903_421 a__: Optional[Any] = 222.088 a__: Dict = True a__: Union[str, Any] = True a__: Union[str, Any] = True a__: List[str] = 0.763_141 a__: str = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "TABFACT": a__: Tuple = TapasForSequenceClassification(config=UpperCamelCase__ ) elif task == "MLM": a__: int = TapasForMaskedLM(config=UpperCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": a__: Tuple = TapasModel(config=UpperCamelCase__ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(UpperCamelCase__ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) a__: int = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(UpperCamelCase__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
290
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any=1024 ) -> Dict: """simple docstring""" __lowerCamelCase , __lowerCamelCase = [], [] __lowerCamelCase = list(zip(UpperCamelCase__ , UpperCamelCase__ ) ) __lowerCamelCase , __lowerCamelCase = sorted_examples[0] def is_too_big(UpperCamelCase__ : List[str] ): return tok(UpperCamelCase__ , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __lowerCamelCase = new_src + ' ' + src __lowerCamelCase = new_tgt + ' ' + tgt if is_too_big(UpperCamelCase__ ) or is_too_big(UpperCamelCase__ ): # cant fit, finalize example finished_src.append(UpperCamelCase__ ) finished_tgt.append(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = src, tgt else: # can fit, keep adding __lowerCamelCase , __lowerCamelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase__ ) finished_tgt.append(UpperCamelCase__ ) return finished_src, finished_tgt def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Path , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" __lowerCamelCase = Path(UpperCamelCase__ ) save_path.mkdir(exist_ok=UpperCamelCase__ ) for split in ["train"]: __lowerCamelCase , __lowerCamelCase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" __lowerCamelCase = [x.rstrip() for x in Path(UpperCamelCase__ ).open().readlines()] __lowerCamelCase = [x.rstrip() for x in Path(UpperCamelCase__ ).open().readlines()] __lowerCamelCase , __lowerCamelCase = pack_examples(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) print(F"""packed {split} split from {len(UpperCamelCase__ )} examples -> {len(UpperCamelCase__ )}.""" ) Path(save_path / F"""{split}.source""" ).open('w' ).write('\n'.join(UpperCamelCase__ ) ) Path(save_path / F"""{split}.target""" ).open('w' ).write('\n'.join(UpperCamelCase__ ) ) for split in ["val", "test"]: __lowerCamelCase , __lowerCamelCase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(UpperCamelCase__ , save_path / F"""{split}.source""" ) shutil.copyfile(UpperCamelCase__ , save_path / F"""{split}.target""" ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=UpperCamelCase__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=UpperCamelCase__ , default=128 ) parser.add_argument('--data_dir' , type=UpperCamelCase__ ) parser.add_argument('--save_path' , type=UpperCamelCase__ ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
90
0
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _lowercase : List[Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def snake_case ( self : Any, lowerCamelCase : int )-> Optional[Any]: if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Union[str, Any] =[label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Any, lowerCamelCase : Optional[Any] )-> Optional[int]: if len(lowerCamelCase ) == 0 or len(lowerCamelCase ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(lowerCamelCase ) ) if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Tuple =[sequences] lowerCamelCase__ : Any =[] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(lowerCAmelCase_ ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : List[str], lowerCamelCase : Optional[Any]=ZeroShotClassificationArgumentHandler(), *lowerCamelCase : Tuple, **lowerCamelCase : List[str] )-> int: lowerCamelCase__ : Optional[Any] =args_parser super().__init__(*lowerCamelCase, **lowerCamelCase ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def snake_case ( self : List[Any] )-> Union[str, Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def snake_case ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : Any=True, lowerCamelCase : List[str]=True, lowerCamelCase : int=TruncationStrategy.ONLY_FIRST, **lowerCamelCase : List[Any] )-> List[str]: lowerCamelCase__ : Tuple =self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) lowerCamelCase__ : Any =self.tokenizer.eos_token try: lowerCamelCase__ : Tuple =self.tokenizer( lowerCamelCase, add_special_tokens=lowerCamelCase, return_tensors=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, ) except Exception as e: if "too short" in str(lowerCamelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowerCamelCase__ : List[Any] =self.tokenizer( lowerCamelCase, add_special_tokens=lowerCamelCase, return_tensors=lowerCamelCase, padding=lowerCamelCase, truncation=TruncationStrategy.DO_NOT_TRUNCATE, ) else: raise e return inputs def snake_case ( self : int, **lowerCamelCase : Tuple )-> Any: if kwargs.get('''multi_class''', lowerCamelCase ) is not None: lowerCamelCase__ : Optional[int] =kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) lowerCamelCase__ : Any ={} if "candidate_labels" in kwargs: lowerCamelCase__ : Dict =self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: lowerCamelCase__ : Optional[Any] =kwargs['''hypothesis_template'''] lowerCamelCase__ : str ={} if "multi_label" in kwargs: lowerCamelCase__ : Optional[Any] =kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self : List[str], lowerCamelCase : Union[str, List[str]], *lowerCamelCase : Union[str, Any], **lowerCamelCase : int, )-> Union[str, Any]: if len(lowerCamelCase ) == 0: pass elif len(lowerCamelCase ) == 1 and "candidate_labels" not in kwargs: lowerCamelCase__ : int =args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(lowerCamelCase, **lowerCamelCase ) def snake_case ( self : Any, lowerCamelCase : List[str], lowerCamelCase : Any=None, lowerCamelCase : Optional[Any]="This example is {}." )-> Tuple: lowerCamelCase__ , lowerCamelCase__ : List[str] =self._args_parser(lowerCamelCase, lowerCamelCase, lowerCamelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase, lowerCamelCase ) ): lowerCamelCase__ : Optional[Any] =self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase ) - 1, **model_input, } def snake_case ( self : Optional[int], lowerCamelCase : Optional[int] )-> Union[str, Any]: lowerCamelCase__ : Dict =inputs['''candidate_label'''] lowerCamelCase__ : Union[str, Any] =inputs['''sequence'''] lowerCamelCase__ : Any ={k: inputs[k] for k in self.tokenizer.model_input_names} lowerCamelCase__ : Optional[Any] =self.model(**lowerCamelCase ) lowerCamelCase__ : Union[str, Any] ={ '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def snake_case ( self : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Any=False )-> Union[str, Any]: lowerCamelCase__ : Optional[Any] =[outputs['''candidate_label'''] for outputs in model_outputs] lowerCamelCase__ : Tuple =[outputs['''sequence'''] for outputs in model_outputs] lowerCamelCase__ : Union[str, Any] =np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) lowerCamelCase__ : Dict =logits.shape[0] lowerCamelCase__ : str =len(lowerCamelCase ) lowerCamelCase__ : List[str] =N // n lowerCamelCase__ : Any =logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowerCamelCase__ : Tuple =self.entailment_id lowerCamelCase__ : Optional[int] =-1 if entailment_id == 0 else 0 lowerCamelCase__ : Union[str, Any] =reshaped_outputs[..., [contradiction_id, entailment_id]] lowerCamelCase__ : List[str] =np.exp(lowerCamelCase ) / np.exp(lowerCamelCase ).sum(-1, keepdims=lowerCamelCase ) lowerCamelCase__ : Tuple =scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowerCamelCase__ : int =reshaped_outputs[..., self.entailment_id] lowerCamelCase__ : List[Any] =np.exp(lowerCamelCase ) / np.exp(lowerCamelCase ).sum(-1, keepdims=lowerCamelCase ) lowerCamelCase__ : List[Any] =list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
272
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[str] = logging.get_logger(__name__) def snake_case__ ( __lowerCamelCase : Union[tf.Tensor, np.ndarray] ): """simple docstring""" if isinstance(__lowerCamelCase , np.ndarray ): return list(tensor.shape ) lowerCamelCase__ : List[Any] =tf.shape(__lowerCamelCase ) if tensor.shape == tf.TensorShape(__lowerCamelCase ): return dynamic lowerCamelCase__ : List[str] =tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCamelCase )] def snake_case__ ( __lowerCamelCase : tf.Tensor , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[str] = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=__lowerCamelCase , name=__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=1e-5 , __lowerCamelCase : str=-1 ): """simple docstring""" # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized lowerCamelCase__ , lowerCamelCase__ : Optional[int] =tf.nn.moments(__lowerCamelCase , axes=[axis] , keepdims=__lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCamelCase__ : Optional[Any] =[1] * inputs.shape.rank lowerCamelCase__ : Union[str, Any] =shape_list(__lowerCamelCase )[axis] lowerCamelCase__ : Optional[Any] =tf.reshape(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any =tf.reshape(__lowerCamelCase , __lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. lowerCamelCase__ : List[str] =tf.nn.batch_normalization( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , offset=__lowerCamelCase , scale=__lowerCamelCase , variance_epsilon=__lowerCamelCase , ) return outputs def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : int=-1 ): """simple docstring""" # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCamelCase__ : Optional[int] =tf.shape(__lowerCamelCase ) lowerCamelCase__ : Optional[int] =tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowerCamelCase__ : List[Any] =tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( __lowerCamelCase : tf.Tensor ): """simple docstring""" if not isinstance(__lowerCamelCase , tf.Tensor ): lowerCamelCase__ : List[Any] =tf.convert_to_tensor(__lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCamelCase__ : int =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCamelCase__ : int =encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCamelCase__ : str =( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def snake_case__ ( __lowerCamelCase : tf.Tensor , __lowerCamelCase : int , __lowerCamelCase : str = "input_ids" ): """simple docstring""" tf.debugging.assert_less( __lowerCamelCase , tf.cast(__lowerCamelCase , dtype=tensor.dtype ) , message=( f'''The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCamelCase )}) must be smaller than the embedding ''' f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): """simple docstring""" lowerCamelCase__ : Any =64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCamelCase__ : Tuple =[x for x in data if len(__lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' f'''bytes: {bad_attributes}''' ) lowerCamelCase__ : Optional[Any] =np.asarray(__lowerCamelCase ) lowerCamelCase__ : str =1 lowerCamelCase__ : List[Any] =np.array_split(__lowerCamelCase , __lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowerCamelCase__ : Union[str, Any] =np.array_split(__lowerCamelCase , __lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCamelCase ): lowerCamelCase__ : List[str] =chunk_data else: lowerCamelCase__ : Dict =data def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): """simple docstring""" if name in group.attrs: lowerCamelCase__ : Optional[int] =[n.decode('''utf8''' ) if hasattr(__lowerCamelCase , '''decode''' ) else n for n in group.attrs[name]] else: lowerCamelCase__ : str =[] lowerCamelCase__ : str =0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(__lowerCamelCase , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def snake_case__ ( __lowerCamelCase : Dict ): """simple docstring""" def _expand_single_ad_tensor(__lowerCamelCase : List[Any] ): if isinstance(__lowerCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __lowerCamelCase )
272
1
def lowercase_ (A : List[str] ): snake_case__ : int = len(A ) for i in range(length - 1 ): snake_case__ : Tuple = i for k in range(i + 1 , A ): if collection[k] < collection[least]: snake_case__ : Optional[int] = k if least != i: snake_case__ , snake_case__ : Union[str, Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": a_ :str = input("Enter numbers separated by a comma:\n").strip() a_ :str = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
277
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ :int = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
1
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __A ( snake_case_ ): """simple docstring""" __lowerCAmelCase = "time_series_transformer" __lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , __A = None , __A = None , __A = "student_t" , __A = "nll" , __A = 1 , __A = [1, 2, 3, 4, 5, 6, 7] , __A = "mean" , __A = 0 , __A = 0 , __A = 0 , __A = 0 , __A = None , __A = None , __A = 32 , __A = 32 , __A = 2 , __A = 2 , __A = 2 , __A = 2 , __A = True , __A = "gelu" , __A = 64 , __A = 0.1 , __A = 0.1 , __A = 0.1 , __A = 0.1 , __A = 0.1 , __A = 100 , __A = 0.02 , __A=True , **__A , ) -> Optional[int]: # time series specific configuration a =prediction_length a =context_length or prediction_length a =distribution_output a =loss a =input_size a =num_time_features a =lags_sequence a =scaling a =num_dynamic_real_features a =num_static_real_features a =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__A ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) a =cardinality else: a =[0] if embedding_dimension and num_static_categorical_features > 0: if len(__A ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) a =embedding_dimension else: a =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] a =num_parallel_samples # Transformer architecture configuration a =input_size * len(__A ) + self._number_of_features a =d_model a =encoder_attention_heads a =decoder_attention_heads a =encoder_ffn_dim a =decoder_ffn_dim a =encoder_layers a =decoder_layers a =dropout a =attention_dropout a =activation_dropout a =encoder_layerdrop a =decoder_layerdrop a =activation_function a =init_std a =use_cache super().__init__(is_encoder_decoder=__A , **__A ) @property def SCREAMING_SNAKE_CASE ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
353
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase_ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def _A ( lowercase , lowercase , lowercase ): """simple docstring""" a =state_dict.pop(lowercase ) a =val def _A ( lowercase ): """simple docstring""" a =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: a =key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) a =value else: a =value return new_state_dict def _A ( lowercase ): """simple docstring""" a ='''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a =state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a =state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a =in_proj_weight[:2_56, :] a =in_proj_bias[:2_56] a =in_proj_weight[2_56:5_12, :] a =in_proj_bias[2_56:5_12] a =in_proj_weight[-2_56:, :] a =in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a =state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a =state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a =in_proj_weight[:2_56, :] a =in_proj_bias[:2_56] a =in_proj_weight[2_56:5_12, :] a =in_proj_bias[2_56:5_12] a =in_proj_weight[-2_56:, :] a =in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention a =state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a =state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a =in_proj_weight_cross_attn[:2_56, :] a =in_proj_bias_cross_attn[:2_56] a =in_proj_weight_cross_attn[2_56:5_12, :] a =in_proj_bias_cross_attn[2_56:5_12] a =in_proj_weight_cross_attn[-2_56:, :] a =in_proj_bias_cross_attn[-2_56:] def _A ( lowercase , lowercase ): """simple docstring""" a , a =image.size a =max(lowercase , lowercase ) a =8_00 if '''detection''' in checkpoint_url else 10_00 a =target_max_size / current_max_size a =image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _A ( lowercase ): """simple docstring""" a =F.to_tensor(lowercase ) a =F.normalize(lowercase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _A ( lowercase , lowercase , lowercase ): """simple docstring""" logger.info('''Converting model...''' ) # load original state dict a =torch.hub.load_state_dict_from_url(lowercase , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) a =rename_backbone_keys(lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a ='''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): a =state_dict.pop(lowercase ) a =val # create HuggingFace model and load state dict a =TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: a =15 a =2 a ={0: '''table''', 1: '''table rotated'''} a =idalabel a ={v: k for k, v in idalabel.items()} else: a =1_25 a =6 a ={ 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } a =idalabel a ={v: k for k, v in idalabel.items()} a =DetrImageProcessor( format='''coco_detection''' , max_size=8_00 if '''detection''' in checkpoint_url else 10_00 ) a =TableTransformerForObjectDetection(lowercase ) model.load_state_dict(lowercase ) model.eval() # verify our conversion a ='''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' a =hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowercase ) a =Image.open(lowercase ).convert('''RGB''' ) a =normalize(resize(lowercase , lowercase ) ).unsqueeze(0 ) a =model(lowercase ) if "detection" in checkpoint_url: a =(1, 15, 3) a =torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) a =torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: a =(1, 1_25, 7) a =torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) a =torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowercase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) image_processor.save_pretrained(lowercase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) a =( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowercase ) image_processor.push_to_hub(lowercase ) if __name__ == "__main__": lowerCamelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
215
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Optional[int] = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : str = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : int = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : Optional[Any] = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : str = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : Union[str, Any] = DatasetInfo() _a : Union[str, Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : Union[str, Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : Optional[Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Any = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
294
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = '''informer''' __UpperCamelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "student_t" , lowerCAmelCase_ : str = "nll" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : List[int] = None , lowerCAmelCase_ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : str = "prob" , lowerCAmelCase_ : int = 5 , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : str , ): """simple docstring""" # time series specific configuration _A: Optional[Any] = prediction_length _A: Optional[Any] = context_length or prediction_length _A: Dict = distribution_output _A: List[str] = loss _A: int = input_size _A: List[str] = num_time_features _A: Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _A: str = scaling _A: Optional[Any] = num_dynamic_real_features _A: List[Any] = num_static_real_features _A: Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _A: str = cardinality else: _A: Union[str, Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _A: List[str] = embedding_dimension else: _A: Union[str, Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _A: int = num_parallel_samples # Transformer architecture configuration _A: Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _A: Union[str, Any] = d_model _A: Optional[Any] = encoder_attention_heads _A: Optional[Any] = decoder_attention_heads _A: Optional[Any] = encoder_ffn_dim _A: Union[str, Any] = decoder_ffn_dim _A: Any = encoder_layers _A: str = decoder_layers _A: List[str] = dropout _A: Any = attention_dropout _A: Optional[int] = activation_dropout _A: List[Any] = encoder_layerdrop _A: str = decoder_layerdrop _A: int = activation_function _A: Tuple = init_std _A: Union[str, Any] = use_cache # Informer _A: Union[str, Any] = attention_type _A: str = sampling_factor _A: List[str] = distil super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : List[str] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
121
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Optional[Any] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class __snake_case (_a ): lowerCAmelCase__ = "mvp" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , _UpperCAmelCase : Optional[Any]=5_0267 , _UpperCAmelCase : List[Any]=1024 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Optional[int]=4096 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Tuple=4096 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Dict=1024 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=2 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=100 , _UpperCAmelCase : int=800 , **_UpperCAmelCase : Optional[Any] , ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : int = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Dict = encoder_layers _lowerCAmelCase : int = encoder_attention_heads _lowerCAmelCase : str = decoder_ffn_dim _lowerCAmelCase : Tuple = decoder_layers _lowerCAmelCase : str = decoder_attention_heads _lowerCAmelCase : Optional[int] = dropout _lowerCAmelCase : int = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Tuple = activation_function _lowerCAmelCase : Dict = init_std _lowerCAmelCase : Tuple = encoder_layerdrop _lowerCAmelCase : Any = decoder_layerdrop _lowerCAmelCase : Union[str, Any] = classifier_dropout _lowerCAmelCase : str = use_cache _lowerCAmelCase : Union[str, Any] = encoder_layers _lowerCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Any = use_prompt _lowerCAmelCase : Optional[int] = prompt_length _lowerCAmelCase : Optional[int] = prompt_mid_dim super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , _UpperCAmelCase ): _lowerCAmelCase : Optional[Any] = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " """The config can simply be saved and uploaded again to be fixed.""" )
159
0
'''simple docstring''' from manim import * class lowercase__ ( lowercase ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Any = Rectangle(height=0.5 ,width=0.5 ) _UpperCamelCase : Tuple = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 ) _UpperCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )] _UpperCamelCase : Dict = [mem.copy() for i in range(6 )] _UpperCamelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : List[Any] = VGroup(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : Tuple = Text('CPU' ,font_size=24 ) _UpperCamelCase : Optional[Any] = Group(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0.5 ,aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCamelCase : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : Any = Text('GPU' ,font_size=24 ) _UpperCamelCase : Dict = Group(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0.5 ,aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ ,lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCamelCase : int = [mem.copy() for i in range(6 )] _UpperCamelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 ) _UpperCamelCase : Optional[Any] = Text('Model' ,font_size=24 ) _UpperCamelCase : int = Group(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0.5 ,aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ ,run_time=1 ) ,Create(lowerCamelCase__ ,run_time=1 ) ,Create(lowerCamelCase__ ,run_time=1 ) ,) _UpperCamelCase : List[Any] = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' ,font_size=24 ,) _UpperCamelCase : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCamelCase : Tuple = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ ,run_time=2.5 ) ,Write(lowerCamelCase__ ) ,Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCamelCase : int = [] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCamelCase : Any = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ ,opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCamelCase : List[Any] = 0.4_6 / 4 _UpperCamelCase : Optional[Any] = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=lowerCamelCase__ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=lowerCamelCase__ ,buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ ,run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
83
from __future__ import annotations import time import numpy as np UpperCAmelCase__ = [8, 5, 9, 7] UpperCAmelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCAmelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase_ : '''simple docstring''' def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None: """simple docstring""" a = claim_vector a = allocated_resources_table a = maximum_claim_table def __lowerCAmelCase ( self : Any ) ->list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCAmelCase ( self : Optional[int] ) ->list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]: """simple docstring""" return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None: """simple docstring""" a = self.__need() a = self.__allocated_resources_table a = self.__available_resources() a = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: a = False for each_need in need_list: a = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: a = False break if execution: a = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: a = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack a = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
0
0
'''simple docstring''' from math import factorial def __lowerCamelCase ( _lowercase = 2_0 ) -> int: UpperCAmelCase : List[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase : Any = n // 2 return int(factorial(_lowercase ) / (factorial(_lowercase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: a : str = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( __A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """FlavaImageProcessor""" __a = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase_ , ) __UpperCAmelCase : Any = kwargs.pop("""feature_extractor""" ) __UpperCAmelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) __UpperCAmelCase : List[str] = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[ImageInput] = None , UpperCamelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[bool, str, PaddingStrategy] = False , UpperCamelCase : Union[bool, str, TruncationStrategy] = False , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 0 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : Dict = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if images is not None: __UpperCAmelCase : Dict = self.image_processor( lowerCAmelCase_ , return_image_mask=lowerCAmelCase_ , return_codebook_pixels=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowerCamelCase__ ( self : str , *UpperCamelCase : Dict , **UpperCamelCase : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase__ ( self : str , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase_ , ) return self.image_processor_class @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase_ , ) return self.image_processor
115
"""simple docstring""" from __future__ import annotations class UpperCamelCase_ : def __init__( self : Any , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : Any = data UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None def snake_case ( A__ ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def snake_case ( A__ ): return 1 + max(depth_of_tree(tree.left ) ,depth_of_tree(tree.right ) ) if tree else 0 def snake_case ( A__ ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def snake_case ( ): # Main function for testing. UpperCAmelCase_ : List[str] = Node(1 ) UpperCAmelCase_ : Any = Node(2 ) UpperCAmelCase_ : Optional[Any] = Node(3 ) UpperCAmelCase_ : Union[str, Any] = Node(4 ) UpperCAmelCase_ : int = Node(5 ) UpperCAmelCase_ : Optional[int] = Node(6 ) UpperCAmelCase_ : Any = Node(7 ) UpperCAmelCase_ : List[str] = Node(8 ) UpperCAmelCase_ : List[Any] = Node(9 ) print(is_full_binary_tree(A__ ) ) print(depth_of_tree(A__ ) ) print("Tree is: " ) display(A__ ) if __name__ == "__main__": main()
268
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class snake_case__ : A__ = XGLMConfig A__ = {} A__ = '''gelu''' def __init__( self : Union[str, Any] , __a : Optional[int] , __a : Union[str, Any]=14 , __a : Optional[Any]=7 , __a : List[str]=True , __a : List[str]=True , __a : Tuple=True , __a : Union[str, Any]=99 , __a : Optional[int]=32 , __a : Tuple=2 , __a : Optional[Any]=4 , __a : List[str]=37 , __a : int="gelu" , __a : str=0.1 , __a : Any=0.1 , __a : List[str]=512 , __a : Optional[Any]=0.0_2 , ) -> Optional[Any]: '''simple docstring''' __snake_case : List[str] = parent __snake_case : int = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Tuple = use_input_mask __snake_case : Union[str, Any] = use_labels __snake_case : List[str] = vocab_size __snake_case : List[str] = d_model __snake_case : Any = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Tuple = ffn_dim __snake_case : Any = activation_function __snake_case : Union[str, Any] = activation_dropout __snake_case : Union[str, Any] = attention_dropout __snake_case : List[Any] = max_position_embeddings __snake_case : Tuple = initializer_range __snake_case : Tuple = None __snake_case : List[str] = 0 __snake_case : Tuple = 2 __snake_case : Any = 1 def A_ ( self : int ) -> List[str]: '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def A_ ( self : Dict ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __snake_case : List[Any] = None if self.use_input_mask: __snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : str = self.get_config() __snake_case : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def A_ ( self : Dict ) -> int: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase_ , ) def A_ ( self : Any ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Any = config_and_inputs __snake_case : Optional[int] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class snake_case__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () A__ = (TFXGLMForCausalLM,) if is_tf_available() else () A__ = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) A__ = False A__ = False A__ = False def A_ ( self : List[Any] ) -> Tuple: '''simple docstring''' __snake_case : str = TFXGLMModelTester(self ) __snake_case : str = ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @slow def A_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = TFXGLMModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class snake_case__ ( unittest.TestCase ): @slow def A_ ( self : Any , __a : Optional[Any]=True ) -> str: '''simple docstring''' __snake_case : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __snake_case : Dict = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __snake_case : Tuple = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __snake_case : str = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase_ ) @slow def A_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __snake_case : Any = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __snake_case : Union[str, Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __snake_case : List[str] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __snake_case : Union[str, Any] = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ , seed=[7, 0] ) __snake_case : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase_ ) __snake_case : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def A_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __snake_case : Optional[int] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __snake_case : List[Any] = 'left' # use different length sentences to test batching __snake_case : List[str] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __snake_case : int = tokenizer(lowerCamelCase_ , return_tensors='tf' , padding=lowerCamelCase_ ) __snake_case : Tuple = inputs['input_ids'] __snake_case : Any = model.generate(input_ids=lowerCamelCase_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __snake_case : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __snake_case : Optional[Any] = model.generate(input_ids=lowerCamelCase_ , max_new_tokens=12 ) __snake_case : Dict = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __snake_case : int = model.generate(input_ids=lowerCamelCase_ , max_new_tokens=12 ) __snake_case : int = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) __snake_case : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase_ ) __snake_case : int = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase_ ) __snake_case : int = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [non_padded_sentence, padded_sentence] )
354
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : List[Any] ) -> int: '''simple docstring''' __snake_case : Optional[int] = SMALL_MODEL_IDENTIFIER __snake_case : str = 'pt' __snake_case : Union[str, Any] = 'tf' def A_ ( self : Dict , __a : Tuple ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def A_ ( self : Any , __a : Optional[Any] ) -> Dict: '''simple docstring''' __snake_case : Union[str, Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : Tuple = 'mock_framework' # Framework provided - return whatever the user provides __snake_case : int = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : List[Any] = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : Tuple = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Tuple = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : Union[str, Any] = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): __snake_case : Optional[int] = FeaturesManager.determine_framework(__a ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ): __snake_case : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __snake_case : Tuple = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_torch_available' , __a ): __snake_case : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch __snake_case : Optional[Any] = MagicMock(return_value=__a ) __snake_case : Tuple = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): __snake_case : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error __snake_case : str = MagicMock(return_value=__a ) __snake_case : List[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): with self.assertRaises(__a ): __snake_case : Tuple = FeaturesManager.determine_framework(self.test_model )
0
0
import math def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [] snake_case = 2 snake_case = int(math.sqrt(UpperCamelCase_ ) ) # Size of every segment snake_case = [True] * (end + 1) snake_case = [] while start <= end: if temp[start] is True: in_prime.append(UpperCamelCase_ ) for i in range(start * start ,end + 1 ,UpperCamelCase_ ): snake_case = False start += 1 prime += in_prime snake_case = end + 1 snake_case = min(2 * end ,UpperCamelCase_ ) while low <= n: snake_case = [True] * (high - low + 1) for each in in_prime: snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(UpperCamelCase_ ,high + 1 ,UpperCamelCase_ ): snake_case = False for j in range(len(UpperCamelCase_ ) ): if temp[j] is True: prime.append(j + low ) snake_case = high + 1 snake_case = min(high + end ,UpperCamelCase_ ) return prime print(sieve(10**6))
127
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ): super().__init__(*__snake_case , **__snake_case ) snake_case = eval_examples snake_case = post_process_function snake_case = quant_trainer_args snake_case = 1_2_8 # default number of calibration samples def a_ ( self , __snake_case=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) snake_case = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case = self._remove_unused_columns(__snake_case , description='''Calibration''' ) return DataLoader( __snake_case , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__snake_case , ) def a_ ( self , __snake_case=None ): snake_case = self.train_dataset if calib_dataset is None else calib_dataset snake_case = self.get_calib_dataloader(__snake_case ) snake_case = self.model quant_trainer.configure_model(__snake_case , self.quant_trainer_args , calib=__snake_case ) model.eval() quant_trainer.enable_calibration(__snake_case ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(__snake_case ): # Prediction step snake_case , snake_case , snake_case = self.prediction_step(__snake_case , __snake_case , prediction_loss_only=__snake_case ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__snake_case , self.quant_trainer_args ) snake_case = model def a_ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case = "eval" ): snake_case = self.eval_dataset if eval_dataset is None else eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) self.log(__snake_case ) else: snake_case = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , __snake_case ) return metrics def a_ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case = "test" ): snake_case = self.get_test_dataloader(__snake_case ) # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions , '''predict''' ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__snake_case ) def a_ ( self , __snake_case="./" ): snake_case = self.eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = next(iter(__snake_case ) ) # saving device - to make it consistent snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple snake_case = tuple(v.to(__snake_case ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer snake_case = True snake_case = self.model.to(__snake_case ) model.eval() model.float() snake_case = model.module if hasattr(__snake_case , '''module''' ) else model quant_trainer.configure_model(__snake_case , self.quant_trainer_args ) snake_case = os.path.join(__snake_case , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) snake_case = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( __snake_case , __snake_case , __snake_case , export_params=__snake_case , opset_version=1_3 , do_constant_folding=__snake_case , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=__snake_case , ) logger.info('''onnx export finished''' )
127
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = inspect.getfile(accelerate.test_utils ) lowerCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCAmelCase : Tuple = test_metrics @require_cpu def lowercase__ ( self ): """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self ): """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self ): """simple docstring""" self.test_metrics.main() @require_multi_gpu def lowercase__ ( self ): """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) lowerCAmelCase : List[Any] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
365
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : List[str] =None a : List[Any] =BloomTokenizerFast a : Optional[int] =BloomTokenizerFast a : Optional[Any] =True a : Dict =False a : Optional[Any] ="tokenizer_file" a : Optional[int] ={"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Tuple = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.get_rust_tokenizer() lowerCAmelCase : List[Any] = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowerCAmelCase : str = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] lowerCAmelCase : Optional[int] = tokenizer.batch_encode_plus(snake_case__ )["input_ids"] self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowerCAmelCase : str = "This is a simple input" lowerCAmelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase : Any = ("This is a simple input", "This is a pair") lowerCAmelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(snake_case__ , max_length=snake_case__ ) tokenizer_r.encode_plus(snake_case__ , max_length=snake_case__ ) tokenizer_r.batch_encode_plus(snake_case__ , max_length=snake_case__ ) tokenizer_r.encode(snake_case__ , max_length=snake_case__ ) tokenizer_r.batch_encode_plus(snake_case__ , max_length=snake_case__ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowerCAmelCase : Tuple = None # Hotfixing padding = None self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Simple input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Simple input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" , ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Pair input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.get_rust_tokenizer() lowerCAmelCase : int = load_dataset("xnli" , "all_languages" , split="test" , streaming=snake_case__ ) lowerCAmelCase : Tuple = next(iter(snake_case__ ) )["premise"] # pick up one data lowerCAmelCase : Optional[Any] = list(sample_data.values() ) lowerCAmelCase : int = list(map(tokenizer.encode , snake_case__ ) ) lowerCAmelCase : List[Any] = [tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) for x in output_tokens] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
133
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ : int = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> List[str]: SCREAMING_SNAKE_CASE = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } SCREAMING_SNAKE_CASE = F'{src_lang}-{tgt_lang}' SCREAMING_SNAKE_CASE = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , 'README.md' ) print(F'Generating {path}' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # make sure we are under the root of the project __UpperCamelCase = Path(__file__).resolve().parent.parent.parent __UpperCamelCase = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __UpperCamelCase,__UpperCamelCase,__UpperCamelCase = model_name.split('''-''') __UpperCamelCase = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
113
0
import copy import random from transformers import CLIPTokenizer class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,*__lowerCamelCase,**__lowerCamelCase ): super().__init__(*__lowerCamelCase,**__lowerCamelCase ) A__ = {} def UpperCamelCase ( self,__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ): A__ = super().add_tokens(__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {placeholder_token}. Please pass a different" ''' `placeholder_token` that is not already in the tokenizer.''' ) def UpperCamelCase ( self,__lowerCamelCase,*__lowerCamelCase,__lowerCamelCase=1,**__lowerCamelCase ): A__ = [] if num_vec_per_token == 1: self.try_adding_tokens(__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ) output.append(__lowerCamelCase ) else: A__ = [] for i in range(__lowerCamelCase ): A__ = placeholder_token + f"_{i}" self.try_adding_tokens(__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ) output.append(__lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"The tokenizer already has placeholder token {token} that can get confused with" f" {placeholder_token}keep placeholder tokens independent" ) A__ = output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=False,__lowerCamelCase=1.0 ): if isinstance(__lowerCamelCase,__lowerCamelCase ): A__ = [] for i in range(len(__lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i],vector_shuffle=__lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A__ = self.token_map[placeholder_token] A__ = tokens[: 1 + int(len(__lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: A__ = copy.copy(__lowerCamelCase ) random.shuffle(__lowerCamelCase ) A__ = text.replace(__lowerCamelCase,''' '''.join(__lowerCamelCase ) ) return text def __call__( self,__lowerCamelCase,*__lowerCamelCase,__lowerCamelCase=False,__lowerCamelCase=1.0,**__lowerCamelCase ): return super().__call__( self.replace_placeholder_tokens_in_text( __lowerCamelCase,vector_shuffle=__lowerCamelCase,prop_tokens_to_load=__lowerCamelCase ),*__lowerCamelCase,**__lowerCamelCase,) def UpperCamelCase ( self,__lowerCamelCase,*__lowerCamelCase,__lowerCamelCase=False,__lowerCamelCase=1.0,**__lowerCamelCase ): return super().encode( self.replace_placeholder_tokens_in_text( __lowerCamelCase,vector_shuffle=__lowerCamelCase,prop_tokens_to_load=__lowerCamelCase ),*__lowerCamelCase,**__lowerCamelCase,)
39
def UpperCamelCase__( )->Dict: A__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A__ = 6 A__ = 1 A__ = 19_01 A__ = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 A__ = day - days_per_month[month - 2] if month > 12: year += 1 A__ = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
39
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _lowercase = logging.getLogger(__name__) torch.set_grad_enabled(False) _lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _snake_case ( snake_case__ : str , snake_case__ : Dict=100 , snake_case__ : int=" " ): A = text.split(snake_case__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(snake_case__ ) , snake_case__ )] def _snake_case ( snake_case__ : dict ): A , A = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(snake_case__ ): titles.append(title if title is not None else '' ) texts.append(snake_case__ ) return {"title": titles, "text": texts} def _snake_case ( snake_case__ : dict , snake_case__ : DPRContextEncoder , snake_case__ : DPRContextEncoderTokenizerFast ): A = ctx_tokenizer( documents['title'] , documents['text'] , truncation=snake_case__ , padding='longest' , return_tensors='pt' )['input_ids'] A = ctx_encoder(input_ids.to(device=snake_case__ ) , return_dict=snake_case__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _snake_case ( snake_case__ : "RagExampleArguments" , snake_case__ : "ProcessingArguments" , snake_case__ : "IndexHnswArguments" , ): ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way A = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words A = dataset.map(snake_case__ , batched=snake_case__ , num_proc=processing_args.num_proc ) # And compute the embeddings A = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=snake_case__ ) A = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) A = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space A = dataset.map( partial(snake_case__ , ctx_encoder=snake_case__ , ctx_tokenizer=snake_case__ ) , batched=snake_case__ , batch_size=processing_args.batch_size , features=snake_case__ , ) # And finally save your dataset A = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(snake_case__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search A = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=snake_case__ ) # And save the index A = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(snake_case__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = field( default=str(Path(_lowercase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) _lowerCamelCase: str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) _lowerCamelCase: str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) _lowerCamelCase: Optional[str] = field( default=str(Path(_lowercase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: Optional[int] = field( default=_lowercase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) _lowerCamelCase: int = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: int = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) _lowerCamelCase: int = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _lowercase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _lowercase , _lowercase , _lowercase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _lowercase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
74
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCamelCase : @staticmethod def _lowerCAmelCase ( *UpperCamelCase : List[str] , **UpperCamelCase : str ) -> List[Any]: """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): _lowerCamelCase :List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _lowerCAmelCase ( self : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) lowerCAmelCase__ : List[str] = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}], [{"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}], ] , ) @require_torch def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) lowerCAmelCase__ : Union[str, Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCAmelCase__ : Optional[Any] = """How many cats are there?""" lowerCAmelCase__ : Optional[int] = vqa_pipeline(image=_snake_case , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( _snake_case , [{"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}, {"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}] ) lowerCAmelCase__ : List[Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( _snake_case , [{"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}, {"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}] ) @slow @require_torch def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" lowerCAmelCase__ : str = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) lowerCAmelCase__ : Union[str, Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCAmelCase__ : Optional[int] = """How many cats are there?""" lowerCAmelCase__ : Any = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) lowerCAmelCase__ : Union[str, Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) lowerCAmelCase__ : Optional[Any] = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass
357
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1E-12 ) -> Dict: lowerCAmelCase__ : Optional[int] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__UpperCAmelCase , axis=1 ) , a_min=__UpperCAmelCase ) ).T lowerCAmelCase__ : Any = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__UpperCAmelCase , axis=1 ) , a_min=__UpperCAmelCase ) ).T return jnp.matmul(__UpperCAmelCase , norm_emb_a.T ) class _lowerCamelCase ( nn.Module ): _lowerCamelCase :CLIPConfig _lowerCamelCase :jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config ) lowerCAmelCase__ : Dict = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase , dtype=self.dtype ) lowerCAmelCase__ : Optional[int] = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowerCAmelCase__ : Optional[int] = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowerCAmelCase__ : List[Any] = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) lowerCAmelCase__ : List[Any] = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__( self : str , UpperCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.vision_model(UpperCamelCase )[1] lowerCAmelCase__ : List[Any] = self.visual_projection(UpperCamelCase ) lowerCAmelCase__ : str = jax_cosine_distance(UpperCamelCase , self.special_care_embeds ) lowerCAmelCase__ : Optional[int] = jax_cosine_distance(UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCAmelCase__ : Any = 0.0 lowerCAmelCase__ : List[Any] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCAmelCase__ : Any = jnp.round(UpperCamelCase , 3 ) lowerCAmelCase__ : List[str] = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase ) # Use a lower threshold if an image has any special care concept lowerCAmelCase__ : Tuple = is_special_care * 0.01 lowerCAmelCase__ : List[Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCAmelCase__ : Dict = jnp.round(UpperCamelCase , 3 ) lowerCAmelCase__ : List[str] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[Any] = CLIPConfig _lowerCamelCase :Dict = "clip_input" _lowerCamelCase :int = FlaxStableDiffusionSafetyCheckerModule def __init__( self : int , UpperCamelCase : CLIPConfig , UpperCamelCase : Optional[Tuple] = None , UpperCamelCase : int = 0 , UpperCamelCase : jnp.dtype = jnp.floataa , UpperCamelCase : bool = True , **UpperCamelCase : int , ) -> str: """simple docstring""" if input_shape is None: lowerCAmelCase__ : str = (1, 2_24, 2_24, 3) lowerCAmelCase__ : Union[str, Any] = self.module_class(config=UpperCamelCase , dtype=UpperCamelCase , **UpperCamelCase ) super().__init__(UpperCamelCase , UpperCamelCase , input_shape=UpperCamelCase , seed=UpperCamelCase , dtype=UpperCamelCase , _do_init=_do_init ) def _lowerCAmelCase ( self : Dict , UpperCamelCase : jax.random.KeyArray , UpperCamelCase : Tuple , UpperCamelCase : FrozenDict = None ) -> FrozenDict: """simple docstring""" # init input tensor lowerCAmelCase__ : Union[str, Any] = jax.random.normal(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = jax.random.split(UpperCamelCase ) lowerCAmelCase__ : List[Any] = {"""params""": params_rng, """dropout""": dropout_rng} lowerCAmelCase__ : str = self.module.init(UpperCamelCase , UpperCamelCase )["""params"""] return random_params def __call__( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : dict = None , ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = jnp.transpose(UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
212
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Dict = tmp_path / '''file.csv''' UpperCAmelCase__ : Optional[int] = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(lowerCAmelCase__ , '''w''' ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def a__ ( lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : List[Any] = tmp_path / '''malformed_file.csv''' UpperCAmelCase__ : Any = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(lowerCAmelCase__ , '''w''' ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Dict = tmp_path / '''csv_with_image.csv''' UpperCAmelCase__ : int = textwrap.dedent( F"""\ image {image_file} """ ) with open(lowerCAmelCase__ , '''w''' ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def a__ ( lowerCAmelCase__ ) -> Tuple: UpperCAmelCase__ : List[Any] = tmp_path / '''csv_with_label.csv''' UpperCAmelCase__ : List[str] = textwrap.dedent( '''\ label good bad good ''' ) with open(lowerCAmelCase__ , '''w''' ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : Tuple = tmp_path / '''csv_with_int_list.csv''' UpperCAmelCase__ : List[Any] = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(lowerCAmelCase__ , '''w''' ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: UpperCAmelCase__ : Dict = Csv() UpperCAmelCase__ : Dict = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCAmelCase__ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(lowerCAmelCase__ ) in record.message for record in caplog.records ) @require_pil def a__ ( lowerCAmelCase__ ) -> Dict: with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f: UpperCAmelCase__ : int = f.read().splitlines()[1] UpperCAmelCase__ : List[str] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) UpperCAmelCase__ : str = csv._generate_tables([[csv_file_with_image]] ) UpperCAmelCase__ : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() UpperCAmelCase__ : List[Any] = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def a__ ( lowerCAmelCase__ ) -> Any: with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f: UpperCAmelCase__ : int = f.read().splitlines()[1:] UpperCAmelCase__ : Tuple = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) UpperCAmelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) UpperCAmelCase__ : str = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() UpperCAmelCase__ : int = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(lowerCAmelCase__ ) for label in labels] def a__ ( lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : List[Any] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowerCAmelCase__ : [int(lowerCAmelCase__ ) for i in x.split()]} ) UpperCAmelCase__ : Tuple = csv._generate_tables([[csv_file_with_int_list]] ) UpperCAmelCase__ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) UpperCAmelCase__ : str = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
181
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase__ = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : str = R'''\w+[.]\d+''' UpperCAmelCase__ : List[Any] = re.findall(lowerCAmelCase__ , lowerCAmelCase__ ) for pat in pats: UpperCAmelCase__ : Union[str, Any] = key.replace(lowerCAmelCase__ , '''_'''.join(pat.split('''.''' ) ) ) return key def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase__ : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase__ : str = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase__ : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ : int = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=42 ) -> Tuple: # Step 1: Convert pytorch tensor to numpy UpperCAmelCase__ : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase__ : Tuple = flax_model.init_weights(PRNGKey(lowerCAmelCase__ ) ) UpperCAmelCase__ : Optional[Any] = flatten_dict(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : Optional[int] = rename_key(lowerCAmelCase__ ) UpperCAmelCase__ : str = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = rename_key_and_reshape_tensor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase__ : List[str] = jnp.asarray(lowerCAmelCase__ ) return unflatten_dict(lowerCAmelCase__ )
181
1
def lowerCAmelCase_ ( snake_case_ ): _A : str = [0] * len(snake_case_ ) _A : Optional[int] = [] _A : List[Any] = [] _A : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case_ ) ): if indegree[i] == 0: queue.append(snake_case_ ) while queue: _A : Union[str, Any] = queue.pop(0 ) cnt += 1 topo.append(snake_case_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(snake_case_ ) if cnt != len(snake_case_ ): print("""Cycle exists""" ) else: print(snake_case_ ) # Adjacency List of Graph _snake_case = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
371
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
343
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: int = (CMStochasticIterativeScheduler,) __UpperCamelCase: Optional[int] = 1_0 def _A ( self : int , **A : int ): _UpperCAmelCase : Any = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**A ) return config def _A ( self : Optional[Any] ): _UpperCAmelCase : Dict = 10 _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : str = self.scheduler_classes[0](**A ) scheduler.set_timesteps(A ) _UpperCAmelCase : Tuple = scheduler.timesteps[0] _UpperCAmelCase : Tuple = scheduler.timesteps[1] _UpperCAmelCase : List[Any] = self.dummy_sample _UpperCAmelCase : Optional[int] = 0.1 * sample _UpperCAmelCase : List[Any] = scheduler.step(A , A , A ).prev_sample _UpperCAmelCase : List[str] = scheduler.step(A , A , A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _A ( self : Any ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _A ( self : Dict ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=A ) def _A ( self : str ): _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**A ) _UpperCAmelCase : Tuple = 1 scheduler.set_timesteps(A ) _UpperCAmelCase : Any = scheduler.timesteps _UpperCAmelCase : List[str] = torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(A ): # 1. scale model input _UpperCAmelCase : str = scheduler.scale_model_input(A , A ) # 2. predict noise residual _UpperCAmelCase : List[Any] = model(A , A ) # 3. predict previous sample x_t-1 _UpperCAmelCase : Any = scheduler.step(A , A , A , generator=A ).prev_sample _UpperCAmelCase : List[Any] = pred_prev_sample _UpperCAmelCase : int = torch.sum(torch.abs(A ) ) _UpperCAmelCase : str = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 192.7_614 ) < 1E-2 assert abs(result_mean.item() - 0.2_510 ) < 1E-3 def _A ( self : str ): _UpperCAmelCase : str = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config() _UpperCAmelCase : Any = scheduler_class(**A ) _UpperCAmelCase : List[str] = [106, 0] scheduler.set_timesteps(timesteps=A ) _UpperCAmelCase : Tuple = scheduler.timesteps _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _UpperCAmelCase : str = scheduler.scale_model_input(A , A ) # 2. predict noise residual _UpperCAmelCase : Optional[Any] = model(A , A ) # 3. predict previous sample x_t-1 _UpperCAmelCase : List[str] = scheduler.step(A , A , A , generator=A ).prev_sample _UpperCAmelCase : int = pred_prev_sample _UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(A ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 347.6_357 ) < 1E-2 assert abs(result_mean.item() - 0.4_527 ) < 1E-3 def _A ( self : Union[str, Any] ): _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**A ) _UpperCAmelCase : str = [39, 30, 12, 15, 0] with self.assertRaises(A , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=A ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : str = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Any = scheduler_class(**A ) _UpperCAmelCase : Dict = [39, 30, 12, 1, 0] _UpperCAmelCase : Dict = len(A ) with self.assertRaises(A , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=A , timesteps=A ) def _A ( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**A ) _UpperCAmelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( A , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=A )
31
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> float: """simple docstring""" def get_matched_characters(_UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Dict = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCAmelCase : int = int(max(0 , i - limit ) ) _UpperCAmelCase : Any = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) _UpperCAmelCase : List[Any] = F"""{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}""" return "".join(_UpperCAmelCase ) # matching characters _UpperCAmelCase : Union[str, Any] = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = len(_UpperCAmelCase ) # transposition _UpperCAmelCase : Optional[Any] = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: _UpperCAmelCase : Dict = 0.0 else: _UpperCAmelCase : Optional[int] = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCAmelCase : str = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
31
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = PegasusConfig __lowerCAmelCase = {} __lowerCAmelCase = '''gelu''' def __init__(self : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=13 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : List[Any]=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : str=2 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Dict=37 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Union[str, Any]=40 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : int=0 , ): A = parent A = batch_size A = seq_length A = is_training A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = eos_token_id A = pad_token_id A = bos_token_id def A (self : List[str] ): A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A = tf.concat([input_ids, eos_tensor] , axis=1 ) A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A = prepare_pegasus_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def A (self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ): A = TFPegasusModel(config=_lowerCAmelCase ).get_decoder() A = inputs_dict["""input_ids"""] A = input_ids[:1, :] A = inputs_dict["""attention_mask"""][:1, :] A = inputs_dict["""head_mask"""] A = 1 # first forward pass A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) A , A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) , config.vocab_size ) A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A = tf.concat([input_ids, next_tokens] , axis=-1 ) A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A = output_from_no_past[:, -3:, random_slice_idx] A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-3 ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) ->Tuple: """simple docstring""" if attention_mask is None: A = tf.cast(tf.math.not_equal(UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __UpperCAmelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __lowerCAmelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __lowerCAmelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False def A (self : Tuple ): A = TFPegasusModelTester(self ) A = ConfigTester(self , config_class=_lowerCAmelCase ) def A (self : Any ): self.config_tester.run_common_tests() def A (self : Dict ): A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __lowerCAmelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __lowerCAmelCase = '''google/pegasus-xsum''' @cached_property def A (self : Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A (self : List[Any] ): A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A (self : Any , **_lowerCAmelCase : Tuple ): A = self.translate_src_text(**_lowerCAmelCase ) assert self.expected_text == generated_words def A (self : Dict , **_lowerCAmelCase : Tuple ): A = self.tokenizer(self.src_text , **_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""tf""" ) A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCAmelCase , ) A = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase ) return generated_words @slow def A (self : str ): self._assert_generated_batch_equal_expected()
337
'''simple docstring''' _lowerCamelCase : List[Any] = 'Input must be a string of 8 numbers plus letter' _lowerCamelCase : str = 'TRWAGMYFPDXBNJZSQVHLCKE' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Expected string as input, found {type(UpperCAmelCase ).__name__}""" raise TypeError(UpperCAmelCase ) A = spanish_id.replace("""-""" , """""" ).upper() if len(UpperCAmelCase ) != 9: raise ValueError(UpperCAmelCase ) try: A = int(spanish_id_clean[0:8] ) A = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
337
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def A ( a_ ,a_=0.999 ,a_="cosine" ,) -> List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(a_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __UpperCamelCase : List[Any] =[] for i in range(a_ ): __UpperCamelCase : List[str] =i / num_diffusion_timesteps __UpperCamelCase : Optional[int] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a_ ) / alpha_bar_fn(a_ ) ,a_ ) ) return torch.tensor(a_ ,dtype=torch.floataa ) class __A ( a , a ): """simple docstring""" UpperCamelCase__ : Optional[Any] =[e.name for e in KarrasDiffusionSchedulers] UpperCamelCase__ : Optional[int] =2 @register_to_config def __init__( self , lowerCamelCase__ = 1000 , lowerCamelCase__ = 0.00_085 , lowerCamelCase__ = 0.012 , lowerCamelCase__ = "linear" , lowerCamelCase__ = None , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 1.0 , lowerCamelCase__ = "linspace" , lowerCamelCase__ = 0 , ): """simple docstring""" if trained_betas is not None: __UpperCamelCase : Optional[int] =torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCamelCase : str =torch.linspace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase : Optional[Any] =( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase : Optional[int] =betas_for_alpha_bar(lowerCamelCase__ , alpha_transform_type='cosine' ) elif beta_schedule == "exp": __UpperCamelCase : str =betas_for_alpha_bar(lowerCamelCase__ , alpha_transform_type='exp' ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __UpperCamelCase : Union[str, Any] =1.0 - self.betas __UpperCamelCase : str =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =use_karras_sigmas def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" if schedule_timesteps is None: __UpperCamelCase : Union[str, Any] =self.timesteps __UpperCamelCase : Tuple =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCamelCase : Tuple =1 if len(lowerCamelCase__ ) > 1 else 0 else: __UpperCamelCase : Union[str, Any] =timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep __UpperCamelCase : List[str] =self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[str] =self.index_for_timestep(lowerCamelCase__ ) __UpperCamelCase : List[str] =self.sigmas[step_index] __UpperCamelCase : Optional[Any] =sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ): """simple docstring""" __UpperCamelCase : List[str] =num_inference_steps __UpperCamelCase : Union[str, Any] =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCamelCase : Dict =np.linspace(0 , num_train_timesteps - 1 , lowerCamelCase__ , dtype=lowerCamelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCamelCase : List[str] =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase : List[str] =(np.arange(0 , lowerCamelCase__ ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCamelCase : Optional[Any] =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase : Any =(np.arange(lowerCamelCase__ , 0 , -step_ratio )).round().copy().astype(lowerCamelCase__ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __UpperCamelCase : List[Any] =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCamelCase : int =np.log(lowerCamelCase__ ) __UpperCamelCase : str =np.interp(lowerCamelCase__ , np.arange(0 , len(lowerCamelCase__ ) ) , lowerCamelCase__ ) if self.config.use_karras_sigmas: __UpperCamelCase : Optional[Any] =self._convert_to_karras(in_sigmas=lowerCamelCase__ , num_inference_steps=self.num_inference_steps ) __UpperCamelCase : List[Any] =np.array([self._sigma_to_t(lowerCamelCase__ , lowerCamelCase__ ) for sigma in sigmas] ) __UpperCamelCase : List[Any] =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCamelCase : List[str] =torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCamelCase : List[Any] =torch.from_numpy(lowerCamelCase__ ) __UpperCamelCase : str =torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCamelCase__ ).startswith('mps' ): # mps does not support float64 __UpperCamelCase : Optional[int] =timesteps.to(lowerCamelCase__ , dtype=torch.floataa ) else: __UpperCamelCase : List[Any] =timesteps.to(device=lowerCamelCase__ ) # empty dt and derivative __UpperCamelCase : Dict =None __UpperCamelCase : Optional[Any] =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCamelCase : List[str] =defaultdict(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =np.log(lowerCamelCase__ ) # get distribution __UpperCamelCase : Any =log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __UpperCamelCase : Any =np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __UpperCamelCase : Optional[int] =low_idx + 1 __UpperCamelCase : Optional[int] =log_sigmas[low_idx] __UpperCamelCase : Optional[int] =log_sigmas[high_idx] # interpolate sigmas __UpperCamelCase : Any =(low - log_sigma) / (low - high) __UpperCamelCase : int =np.clip(lowerCamelCase__ , 0 , 1 ) # transform interpolation to time range __UpperCamelCase : Tuple =(1 - w) * low_idx + w * high_idx __UpperCamelCase : Optional[int] =t.reshape(sigma.shape ) return t def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : float =in_sigmas[-1].item() __UpperCamelCase : float =in_sigmas[0].item() __UpperCamelCase : Dict =7.0 # 7.0 is the value used in the paper __UpperCamelCase : str =np.linspace(0 , 1 , lowerCamelCase__ ) __UpperCamelCase : int =sigma_min ** (1 / rho) __UpperCamelCase : Tuple =sigma_max ** (1 / rho) __UpperCamelCase : Dict =(max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self ): """simple docstring""" return self.dt is None def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ): """simple docstring""" __UpperCamelCase : List[str] =self.index_for_timestep(lowerCamelCase__ ) # advance index counter by 1 __UpperCamelCase : Optional[int] =timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCamelCase : List[str] =self.sigmas[step_index] __UpperCamelCase : Tuple =self.sigmas[step_index + 1] else: # 2nd order / Heun's method __UpperCamelCase : Union[str, Any] =self.sigmas[step_index - 1] __UpperCamelCase : int =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCamelCase : Any =0 __UpperCamelCase : Union[str, Any] =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCamelCase : Optional[int] =sigma_hat if self.state_in_first_order else sigma_next __UpperCamelCase : Tuple =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCamelCase : Dict =sigma_hat if self.state_in_first_order else sigma_next __UpperCamelCase : Union[str, Any] =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __UpperCamelCase : Dict =model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: __UpperCamelCase : Any =pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCamelCase : int =(sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCamelCase : List[str] =sigma_next - sigma_hat # store for 2nd order step __UpperCamelCase : Optional[Any] =derivative __UpperCamelCase : Optional[Any] =dt __UpperCamelCase : Optional[int] =sample else: # 2. 2nd order / Heun's method __UpperCamelCase : Any =(sample - pred_original_sample) / sigma_next __UpperCamelCase : List[str] =(self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __UpperCamelCase : Optional[Any] =self.dt __UpperCamelCase : Union[str, Any] =self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __UpperCamelCase : Optional[Any] =None __UpperCamelCase : Union[str, Any] =None __UpperCamelCase : str =None __UpperCamelCase : str =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase__ ): # mps does not support float64 __UpperCamelCase : Tuple =self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCamelCase : Tuple =timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCamelCase : Optional[Any] =self.timesteps.to(original_samples.device ) __UpperCamelCase : Tuple =timesteps.to(original_samples.device ) __UpperCamelCase : List[str] =[self.index_for_timestep(lowerCamelCase__ , lowerCamelCase__ ) for t in timesteps] __UpperCamelCase : Optional[int] =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCamelCase : List[str] =sigma.unsqueeze(-1 ) __UpperCamelCase : Tuple =original_samples + noise * sigma return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
71
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" a = SMALL_MODEL_IDENTIFIER a = '''pt''' a = '''tf''' def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]: """simple docstring""" a = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]: """simple docstring""" a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase ) model_tf.save_pretrained(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = '''mock_framework''' # Framework provided - return whatever the user provides a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__UpperCAmelCase ): a = FeaturesManager.determine_framework(__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch a = MagicMock(return_value=__UpperCAmelCase ) a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error a = MagicMock(return_value=__UpperCAmelCase ) a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): with self.assertRaises(__UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model )
0
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ (UpperCamelCase__ : int ): _UpperCAmelCase : Any = 2 _UpperCAmelCase : List[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCamelCase__ ) if n > 1: factors.append(UpperCamelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=a ): '''simple docstring''' a__ =['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *A , **A ) -> int: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
68
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: snake_case_ : str = None snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Dict = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} snake_case_ : List[str] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } snake_case_ : Union[str, Any] = { "google/rembert": 256, } snake_case_ : Optional[int] = "▁" class __snake_case ( a ): UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = RemBertTokenizer def __init__( self : Tuple , _snake_case : Any=None , _snake_case : Dict=None , _snake_case : int=True , _snake_case : List[Any]=True , _snake_case : Tuple=False , _snake_case : Optional[int]="[CLS]" , _snake_case : str="[SEP]" , _snake_case : Union[str, Any]="<unk>" , _snake_case : int="[SEP]" , _snake_case : Optional[Any]="<pad>" , _snake_case : List[Any]="[CLS]" , _snake_case : Dict="[MASK]" , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , **_snake_case , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def lowerCamelCase ( self : List[str] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case)) + [1] + ([0] * len(_snake_case)) + [1] return [1] + ([0] * len(_snake_case)) + [1] def lowerCamelCase ( self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCamelCase ( self : str , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not os.path.isdir(_snake_case): logger.error('''Vocabulary path ({}) should be a directory'''.format(_snake_case)) return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case): copyfile(self.vocab_file , _snake_case) return (out_vocab_file,)
51
def A (__A : list , __A : int , __A : int = 0 , __A : int = 0 ) -> int: """simple docstring""" UpperCAmelCase_ = right or len(__A ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__A , __A , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
51
1
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = None , lowercase = None , lowercase = True , lowercase = None , lowercase = False , lowercase = None , lowercase = True , lowercase = "arrow" , **lowercase , ) -> List[str]: super().__init__( split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , **lowercase , ) __UpperCamelCase = load_from_cache_file __UpperCamelCase = file_format __UpperCamelCase = Spark( df=lowercase , features=lowercase , cache_dir=lowercase , working_dir=lowercase , **lowercase , ) def __lowerCamelCase ( self ) -> Any: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __UpperCamelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
243
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Union[str, Any]: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> List[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Optional[int]: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Tuple: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> Dict: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
243
1
def lowerCamelCase_ ( _a : int ): '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) UpperCAmelCase_ : Union[str, Any] = [True] * (num + 1) UpperCAmelCase_ : Optional[int] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _a ): UpperCAmelCase_ : Dict = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
345
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCAmelCase__ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCAmelCase__ = typing.Union[np.floataa, int, float] # noqa: UP007 def _a ( a :Vector , a :Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(a ) - np.asarray(a )) ** 2 ) ) def _a ( a :Vector , a :Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(a , a ) ) ** (1 / 2) if __name__ == "__main__": def _a ( ) -> None: from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
26
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
1
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __SCREAMING_SNAKE_CASE :Tuple = parse(importlib.metadata.version('''torch''')) def UpperCAmelCase_ ( __lowercase : Union[str, Version] , __lowercase : str , __lowercase : str ) -> Union[str, Any]: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) _UpperCAmelCase = STR_OPERATION_TO_FUNC[operation] if isinstance(__lowercase , __lowercase ): _UpperCAmelCase = parse(importlib.metadata.version(__lowercase ) ) return operation(__lowercase , parse(__lowercase ) ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> Tuple: '''simple docstring''' return compare_versions(__lowercase , __lowercase , __lowercase )
22
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """Hello world! cécé herlolip""" def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[Any] = FairseqRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout A_ : Dict = roberta.model.encoder.sentence_encoder A_ : Optional[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: A_ : Optional[int] = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , SCREAMING_SNAKE_CASE ) A_ : List[str] = XLMRobertaXLForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings A_ : str = roberta_sent_encoder.embed_tokens.weight A_ : int = roberta_sent_encoder.embed_positions.weight A_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. A_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight A_ : int = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A_ : BertLayer = model.roberta.encoder.layer[i] A_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] A_ : RobertaAttention = layer.attention A_ : Dict = roberta_layer.self_attn_layer_norm.weight A_ : str = roberta_layer.self_attn_layer_norm.bias # self attention A_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) A_ : str = roberta_layer.self_attn.q_proj.weight A_ : List[str] = roberta_layer.self_attn.q_proj.bias A_ : int = roberta_layer.self_attn.k_proj.weight A_ : List[Any] = roberta_layer.self_attn.k_proj.bias A_ : Dict = roberta_layer.self_attn.v_proj.weight A_ : int = roberta_layer.self_attn.v_proj.bias # self-attention output A_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape A_ : Any = roberta_layer.self_attn.out_proj.weight A_ : Optional[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm A_ : Any = roberta_layer.final_layer_norm.weight A_ : int = roberta_layer.final_layer_norm.bias # intermediate A_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape A_ : int = roberta_layer.fca.weight A_ : List[str] = roberta_layer.fca.bias # output A_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape A_ : Optional[int] = roberta_layer.fca.weight A_ : List[Any] = roberta_layer.fca.bias # end of layer if classification_head: A_ : str = roberta.model.classification_heads['''mnli'''].dense.weight A_ : int = roberta.model.classification_heads['''mnli'''].dense.bias A_ : str = roberta.model.classification_heads['''mnli'''].out_proj.weight A_ : Dict = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head A_ : int = roberta.model.encoder.lm_head.dense.weight A_ : List[str] = roberta.model.encoder.lm_head.dense.bias A_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight A_ : int = roberta.model.encoder.lm_head.layer_norm.bias A_ : Optional[int] = roberta.model.encoder.lm_head.weight A_ : Dict = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. A_ : torch.Tensor = roberta.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 A_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE )[0] if classification_head: A_ : str = roberta.model.classification_heads['''mnli'''](roberta.extract_features(SCREAMING_SNAKE_CASE ) ) else: A_ : int = roberta.model(SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) A_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 A_ : Tuple = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) UpperCamelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
186
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'dandelin/vilt-b32-finetuned-vqa' __UpperCAmelCase : int = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) __UpperCAmelCase : Any = 'image_qa' __UpperCAmelCase : Union[str, Any] = AutoProcessor __UpperCAmelCase : str = AutoModelForVisualQuestionAnswering __UpperCAmelCase : List[str] = ['image', 'text'] __UpperCAmelCase : List[str] = ['text'] def __init__( self , *_a , **_a ): requires_backends(self , ['''vision'''] ) super().__init__(*_a , **_a ) def __UpperCAmelCase ( self , _a , _a ): return self.pre_processor(_a , _a , return_tensors='''pt''' ) def __UpperCAmelCase ( self , _a ): with torch.no_grad(): return self.model(**_a ).logits def __UpperCAmelCase ( self , _a ): __a = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
11
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCamelCase : int =logging.get_logger(__name__) class __a ( A__ ): def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
189
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __a ( A__ , A__ ): @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE : int = 1_28 , SCREAMING_SNAKE_CASE : int = 2_56 , SCREAMING_SNAKE_CASE : float = 2_0_0_0.0 , SCREAMING_SNAKE_CASE : int = 7_68 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 64 , SCREAMING_SNAKE_CASE : int = 20_48 , SCREAMING_SNAKE_CASE : float = 0.1 , ): '''simple docstring''' super().__init__() UpperCamelCase__ : Optional[Any] = nn.Sequential( nn.Linear(SCREAMING_SNAKE_CASE , d_model * 4 , bias=SCREAMING_SNAKE_CASE ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=SCREAMING_SNAKE_CASE ) , nn.SiLU() , ) UpperCamelCase__ : Optional[int] = nn.Embedding(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = nn.Dropout(p=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE ): # FiLM conditional T5 decoder UpperCamelCase__ : Optional[int] = DecoderLayer(d_model=SCREAMING_SNAKE_CASE , d_kv=SCREAMING_SNAKE_CASE , num_heads=SCREAMING_SNAKE_CASE , d_ff=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE ) self.decoders.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = TaLayerNorm(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = nn.Dropout(p=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCamelCase__ : List[str] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCamelCase__ : Any = self.conditioning_emb(SCREAMING_SNAKE_CASE ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCamelCase__ : Optional[int] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCamelCase__ : Optional[int] = torch.broadcast_to( torch.arange(SCREAMING_SNAKE_CASE , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCamelCase__ : Dict = self.position_encoding(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = self.continuous_inputs_projection(SCREAMING_SNAKE_CASE ) inputs += position_encodings UpperCamelCase__ : Optional[Any] = self.dropout(SCREAMING_SNAKE_CASE ) # decoder: No padding present. UpperCamelCase__ : Dict = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCamelCase__ : Optional[int] = [(x, self.encoder_decoder_mask(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCamelCase__ : int = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCamelCase__ : List[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCamelCase__ : int = lyr( SCREAMING_SNAKE_CASE , conditioning_emb=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )[0] UpperCamelCase__ : Tuple = self.decoder_norm(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = self.post_dropout(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.spec_out(SCREAMING_SNAKE_CASE ) return spec_out class __a ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=1e-6 ): '''simple docstring''' super().__init__() UpperCamelCase__ : List[str] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=SCREAMING_SNAKE_CASE , d_kv=SCREAMING_SNAKE_CASE , num_heads=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=SCREAMING_SNAKE_CASE , d_kv=SCREAMING_SNAKE_CASE , num_heads=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE , layer_norm_epsilon=SCREAMING_SNAKE_CASE , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=SCREAMING_SNAKE_CASE , d_ff=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE , layer_norm_epsilon=SCREAMING_SNAKE_CASE ) ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): '''simple docstring''' UpperCamelCase__ : List[Any] = self.layer[0]( SCREAMING_SNAKE_CASE , conditioning_emb=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , ) if encoder_hidden_states is not None: UpperCamelCase__ : int = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) UpperCamelCase__ : Tuple = self.layer[1]( SCREAMING_SNAKE_CASE , key_value_states=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , ) # Apply Film Conditional Feed Forward layer UpperCamelCase__ : Any = self.layer[-1](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return (hidden_states,) class __a ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' super().__init__() UpperCamelCase__ : Union[str, Any] = TaLayerNorm(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = Attention(query_dim=SCREAMING_SNAKE_CASE , heads=SCREAMING_SNAKE_CASE , dim_head=SCREAMING_SNAKE_CASE , out_bias=SCREAMING_SNAKE_CASE , scale_qk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = nn.Dropout(SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : List[Any]=None , ): '''simple docstring''' UpperCamelCase__ : str = self.layer_norm(SCREAMING_SNAKE_CASE ) if conditioning_emb is not None: UpperCamelCase__ : List[Any] = self.FiLMLayer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Self-attention block UpperCamelCase__ : Optional[Any] = self.attention(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = hidden_states + self.dropout(SCREAMING_SNAKE_CASE ) return hidden_states class __a ( nn.Module ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' super().__init__() UpperCamelCase__ : str = Attention(query_dim=SCREAMING_SNAKE_CASE , heads=SCREAMING_SNAKE_CASE , dim_head=SCREAMING_SNAKE_CASE , out_bias=SCREAMING_SNAKE_CASE , scale_qk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = TaLayerNorm(SCREAMING_SNAKE_CASE , eps=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = nn.Dropout(SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ): '''simple docstring''' UpperCamelCase__ : str = self.layer_norm(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = self.attention( SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , attention_mask=attention_mask.squeeze(1 ) , ) UpperCamelCase__ : Optional[Any] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE ) return layer_output class __a ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' super().__init__() UpperCamelCase__ : Any = TaDenseGatedActDense(d_model=SCREAMING_SNAKE_CASE , d_ff=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = TaLayerNorm(SCREAMING_SNAKE_CASE , eps=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = nn.Dropout(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' UpperCamelCase__ : List[str] = self.layer_norm(SCREAMING_SNAKE_CASE ) if conditioning_emb is not None: UpperCamelCase__ : Optional[int] = self.film(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = self.DenseReluDense(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE ) return hidden_states class __a ( nn.Module ): def __init__( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' super().__init__() UpperCamelCase__ : Tuple = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = nn.Dropout(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = NewGELUActivation() def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.act(self.wi_a(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Dict = self.wi_a(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = hidden_gelu * hidden_linear UpperCamelCase__ : int = self.dropout(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.wo(SCREAMING_SNAKE_CASE ) return hidden_states class __a ( nn.Module ): def __init__( self : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str=1e-6 ): '''simple docstring''' super().__init__() UpperCamelCase__ : List[str] = nn.Parameter(torch.ones(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Any = eps def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' UpperCamelCase__ : int = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCamelCase__ : Any = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __a ( nn.Module ): def __lowercase ( self : int , SCREAMING_SNAKE_CASE : torch.Tensor ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(SCREAMING_SNAKE_CASE , 3.0 )) )) class __a ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' super().__init__() UpperCamelCase__ : int = nn.Linear(SCREAMING_SNAKE_CASE , out_features * 2 , bias=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' UpperCamelCase__ : str = self.scale_bias(SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : List[str] = torch.chunk(SCREAMING_SNAKE_CASE , 2 , -1 ) UpperCamelCase__ : Dict = x * (1 + scale) + shift return x
189
1
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def a_ ( _lowercase , _lowercase , _lowercase ): _UpperCamelCase : List[Any] = AlbertConfig.from_json_file(A__ ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCamelCase : Tuple = AlbertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(A__ , A__ , A__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": UpperCamelCase_ =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase_ =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
358
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( _lowerCAmelCase ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BlipImageProcessor''' UpperCamelCase = '''AutoTokenizer''' def __init__( self : List[str], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase : Any = False super().__init__(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : Tuple = self.image_processor def __call__( self : str, lowerCAmelCase__ : ImageInput = None, lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False, lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : int = 0, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : Optional[bool] = None, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Optional[Union[str, TensorType]] = None, **lowerCAmelCase__ : Optional[Any], ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase : int = self.tokenizer _UpperCamelCase : List[str] = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) return text_encoding # add pixel_values _UpperCamelCase : List[str] = self.image_processor(lowerCAmelCase__, return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCamelCase : Any = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) else: _UpperCamelCase : List[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case ( self : List[Any], *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__, **lowerCAmelCase__ ) def snake_case ( self : List[Any], *lowerCAmelCase__ : Dict, **lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__, **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase : List[str] = self.tokenizer.model_input_names _UpperCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
128
0
from math import sqrt def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" SCREAMING_SNAKE_CASE_: Optional[int] = True # 0 and 1 are none primes. if number <= 1: SCREAMING_SNAKE_CASE_: List[Any] = False for divisor in range(2 , int(round(sqrt(_UpperCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: SCREAMING_SNAKE_CASE_: Union[str, Any] = False break # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'status' must been from type bool" return status def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N SCREAMING_SNAKE_CASE_: List[str] = list(range(2 , n + 1 ) ) SCREAMING_SNAKE_CASE_: Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCAmelCase ) ): for j in range(i + 1 , len(_UpperCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): SCREAMING_SNAKE_CASE_: List[Any] = 0 # filters actual prime numbers. SCREAMING_SNAKE_CASE_: str = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" SCREAMING_SNAKE_CASE_: List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_UpperCAmelCase ): ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and number >= 0, "'number' must been an int and >= 0" SCREAMING_SNAKE_CASE_: Dict = [] # this list will be returns of the function. # potential prime number factors. SCREAMING_SNAKE_CASE_: Union[str, Any] = 2 SCREAMING_SNAKE_CASE_: List[str] = number if number == 0 or number == 1: ans.append(_UpperCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCAmelCase ): while quotient != 1: if is_prime(_UpperCAmelCase ) and (quotient % factor == 0): ans.append(_UpperCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE_: int = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE_: List[Any] = prime_factorization(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = max(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE_: Dict = prime_factorization(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = min(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _UpperCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _UpperCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def A_ ( _UpperCAmelCase ): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (number > 2) and is_even(_UpperCAmelCase ) ), "'number' must been an int, even and > 2" SCREAMING_SNAKE_CASE_: Dict = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' SCREAMING_SNAKE_CASE_: Optional[int] = get_prime_numbers(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = len(_UpperCAmelCase ) # run variable for while-loops. SCREAMING_SNAKE_CASE_: Any = 0 SCREAMING_SNAKE_CASE_: List[str] = None # exit variable. for break up the loops SCREAMING_SNAKE_CASE_: int = True while i < len_pn and loop: SCREAMING_SNAKE_CASE_: str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: SCREAMING_SNAKE_CASE_: Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (len(_UpperCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A_ ( _UpperCAmelCase , _UpperCAmelCase ): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE_: Dict = 0 while numbera != 0: SCREAMING_SNAKE_CASE_: Union[str, Any] = numbera % numbera SCREAMING_SNAKE_CASE_: List[str] = numbera SCREAMING_SNAKE_CASE_: Tuple = rest # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A_ ( _UpperCAmelCase , _UpperCAmelCase ): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE_: str = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' SCREAMING_SNAKE_CASE_: Optional[int] = prime_factorization(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = prime_factorization(_UpperCAmelCase ) elif numbera == 1 or numbera == 1: SCREAMING_SNAKE_CASE_: int = [] SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: str = max(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = 0 SCREAMING_SNAKE_CASE_: str = 0 SCREAMING_SNAKE_CASE_: Any = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: SCREAMING_SNAKE_CASE_: Any = prime_fac_a.count(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = prime_fac_a.count(_UpperCAmelCase ) for _ in range(max(_UpperCAmelCase , _UpperCAmelCase ) ): ans *= n else: SCREAMING_SNAKE_CASE_: int = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: SCREAMING_SNAKE_CASE_: Union[str, Any] = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'number' must been a positive int" SCREAMING_SNAKE_CASE_: List[str] = 0 SCREAMING_SNAKE_CASE_: Any = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCAmelCase ): ans += 1 # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and is_prime( _UpperCAmelCase ), "'ans' must been a prime number and from type int" return ans def A_ ( _UpperCAmelCase , _UpperCAmelCase ): assert ( is_prime(_UpperCAmelCase ) and is_prime(_UpperCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" SCREAMING_SNAKE_CASE_: List[str] = p_number_a + 1 # jump to the next number SCREAMING_SNAKE_CASE_: int = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 while number < p_number_a: ans.append(_UpperCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ans[0] != p_number_a and ans[len(_UpperCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 1), "'n' must been int and >= 1" SCREAMING_SNAKE_CASE_: Optional[int] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_UpperCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" SCREAMING_SNAKE_CASE_: Optional[Any] = get_divisors(_UpperCAmelCase ) # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A_ ( _UpperCAmelCase , _UpperCAmelCase ): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. SCREAMING_SNAKE_CASE_: Union[str, Any] = gcd(abs(_UpperCAmelCase ) , abs(_UpperCAmelCase ) ) # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" SCREAMING_SNAKE_CASE_: Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Any = 1 # this will be return for _ in range(n - 1 ): SCREAMING_SNAKE_CASE_: Optional[int] = ans ans += fiba SCREAMING_SNAKE_CASE_: Union[str, Any] = tmp return ans
13
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __lowerCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , ): """simple docstring""" A__ = bnb_quantization_config.load_in_abit A__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) A__ = [] # custom device map if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(device_map.keys() ) > 1: A__ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A__ = get_keys_to_not_convert(UpperCamelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(UpperCamelCase__ ) A__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A__ = [] A__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(UpperCamelCase__ ) # compatibility with peft A__ = load_in_abit A__ = load_in_abit A__ = get_parameter_device(UpperCamelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) A__ = replace_with_bnb_layers(UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) # convert param to the right dtype A__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A__ = name.replace('.weight' , '' ).replace('.bias' , '' ) A__ = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(UpperCamelCase__ ): param.to(UpperCamelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): A__ = replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) A__ = get_quantized_model_device_map( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , max_memory=UpperCamelCase__ , no_split_module_classes=UpperCamelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A__ = True A__ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=UpperCamelCase__ , offload_state_dict=UpperCamelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(UpperCamelCase__ , device_map=UpperCamelCase__ , offload_dir=UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): A__ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) A__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A__ = {} A__ = special_dtypes A__ = no_split_module_classes A__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A__ = get_balanced_memory( UpperCamelCase__ , low_zero=(device_map == 'balanced_low_0') , max_memory=UpperCamelCase__ , **UpperCamelCase__ , ) A__ = max_memory A__ = infer_auto_device_map(UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # check if don't have any quantized module on the cpu A__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): """simple docstring""" if modules_to_not_convert is None: A__ = [] A__ , A__ = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , ): """simple docstring""" A__ = False for name, module in model.named_children(): if current_key_name is None: A__ = [] current_key_name.append(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A__ = '.'.join(UpperCamelCase__ ) A__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=UpperCamelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: A__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) A__ = module.weight.data if module.bias is not None: A__ = module.bias.data bnb_module.requires_grad_(UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = True if len(list(module.children() ) ) > 0: A__ , A__ = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" with init_empty_weights(): A__ = deepcopy(UpperCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A__ = find_tied_parameters(UpperCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A__ = sum(UpperCamelCase__ , [] ) A__ = len(UpperCamelCase__ ) > 0 # Check if it is a base model A__ = False if hasattr(UpperCamelCase__ , 'base_model_prefix' ): A__ = not hasattr(UpperCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ = list(model.named_children() ) A__ = [list_modules[-1][0]] # add last module together with tied weights A__ = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) A__ = list(set(UpperCamelCase__ ) ) + list(UpperCamelCase__ ) # remove ".weight" from the keys A__ = ['.weight', '.bias'] A__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ = name.replace(UpperCamelCase__ , '' ) filtered_module_names.append(UpperCamelCase__ ) return filtered_module_names def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" for m in model.modules(): if isinstance(UpperCamelCase__ , bnb.nn.Linearabit ): return True return False def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return next(parameter.parameters() ).device def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , 0 , dtype=UpperCamelCase__ , value=UpperCamelCase__ ) A__ = param_name A__ = model if "." in tensor_name: A__ = tensor_name.split('.' ) for split in splits[:-1]: A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) A__ = new_module A__ = splits[-1] # offload weights A__ = False offload_weight(module._parameters[tensor_name] , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , UpperCamelCase__ , index=UpperCamelCase__ , ) else: offload_weight(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) offload_weight(UpperCamelCase__ , param_name.replace('weight' , 'SCB' ) , UpperCamelCase__ , index=UpperCamelCase__ ) set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , 'meta' , dtype=UpperCamelCase__ , value=torch.empty(*param.size() ) )
221
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=__snake_case ): A__ : Any = ['onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: requires_backends(cls , ['onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: requires_backends(cls , ['onnx'] )
197
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class a__ ( __snake_case ): def __init__( self , **UpperCAmelCase ) -> List[str]: super().__init__(**UpperCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type(UpperCAmelCase ) def __call__( self , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Tuple: if "text_queries" in kwargs: __a = kwargs.pop('text_queries' ) if isinstance(UpperCAmelCase , (str, Image.Image) ): __a = {'image': image, 'candidate_labels': candidate_labels} else: __a = image __a = super().__call__(UpperCAmelCase , **UpperCAmelCase ) return results def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> List[str]: __a = {} if "threshold" in kwargs: __a = kwargs['threshold'] if "top_k" in kwargs: __a = kwargs['top_k'] return {}, {}, postprocess_params def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Union[str, Any]: __a = load_image(inputs['image'] ) __a = inputs['candidate_labels'] if isinstance(UpperCAmelCase , UpperCAmelCase ): __a = candidate_labels.split(',' ) __a = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCAmelCase ): __a = self.tokenizer(UpperCAmelCase , return_tensors=self.framework ) __a = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> str: __a = model_inputs.pop('target_size' ) __a = model_inputs.pop('candidate_label' ) __a = model_inputs.pop('is_last' ) __a = self.model(**UpperCAmelCase ) __a = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=0.1 , UpperCAmelCase=None ) -> Tuple: __a = [] for model_output in model_outputs: __a = model_output['candidate_label'] __a = BaseModelOutput(UpperCAmelCase ) __a = self.image_processor.post_process_object_detection( outputs=UpperCAmelCase , threshold=UpperCAmelCase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): __a = outputs['scores'][index].item() __a = self._get_bounding_box(outputs['boxes'][index][0] ) __a = {'score': score, 'label': label, 'box': box} results.append(UpperCAmelCase ) __a = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x["score"] , reverse=UpperCAmelCase ) if top_k: __a = results[:top_k] return results def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) __a , __a , __a , __a = box.int().tolist() __a = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
197
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Tuple = '▁' __lowerCAmelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = BertGenerationTokenizer SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : str = True def __UpperCAmelCase ( self : int ) -> List[Any]: super().setUp() a = BertGenerationTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: a = "<s>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(__lowerCamelCase ) , 10_02 ) def __UpperCAmelCase ( self : str ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __UpperCAmelCase ( self : List[str] ) -> int: a = BertGenerationTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [2_85, 46, 10, 1_70, 3_82] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __UpperCAmelCase ( self : Dict ) -> int: return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def __UpperCAmelCase ( self : List[Any] ) -> int: a = "Hello World!" a = [1_85_36, 22_60, 1_01] self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Any: a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) a = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @require_torch @slow def __UpperCAmelCase ( self : Dict ) -> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = " ".join(__lowerCamelCase ) a = self.big_tokenizer.encode_plus(__lowerCamelCase , return_tensors="pt" , return_token_type_ids=__lowerCamelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__lowerCamelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowerCamelCase ) model(**__lowerCamelCase ) @slow def __UpperCAmelCase ( self : Dict ) -> Any: # fmt: off a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
107
"""simple docstring""" from __future__ import annotations __A = 1.6_021e-19 # units = C def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) ->tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
293
0
"""simple docstring""" def __lowercase ( snake_case_ : str ,snake_case_ : str ) ->str: '''simple docstring''' __A : int = len(snake_case_ ) __A : int = len(snake_case_ ) __A : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __A : list = [] for char_count in range(snake_case_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case_ ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
291
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
1