code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ = logging.getLogger() def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = {} _lowerCamelCase : List[Any] = os.path.join(lowercase__ , 'all_results.json' ) if os.path.exists(lowercase__ ): with open(lowercase__ , 'r' ) as f: _lowerCamelCase : List[Any] = json.load(lowercase__ ) else: raise ValueError(f'''can\'t find {path}''' ) return results lowercase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): import xla_spawn _lowerCamelCase : List[Any] = self.get_auto_remove_tmp_dir() _lowerCamelCase : List[Any] = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase , 'argv' , lowercase ): _lowerCamelCase : Dict = time() xla_spawn.main() _lowerCamelCase : Any = time() _lowerCamelCase : Optional[int] = get_results(lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def A_ ( self ): import xla_spawn _lowerCamelCase : Tuple = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowercase , 'argv' , lowercase ): xla_spawn.main()
96
0
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Optional[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Dict = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : int = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Any: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Union[str, Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Optional[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Any: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : List[str] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Any: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : List[str] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Union[str, Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Dict = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> str: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Dict = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> str: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : int = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> str: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : str = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Tuple = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Any = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : List[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : List[str] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Optional[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : int = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : List[str] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Union[str, Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Union[str, Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : int = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> int: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : List[str] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Dict = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Dict = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : str = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Optional[Any] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(self, ['sentencepiece'] ) class lowerCAmelCase_ ( metaclass=_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = ["sentencepiece"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: requires_backends(self, ['sentencepiece'] )
356
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Dict: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase : Optional[int] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ )
103
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Dict = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
107
import argparse import collections import json import os import re import string import sys import numpy as np snake_case : Dict = re.compile(R"\b(a|an|the)\b", re.UNICODE) snake_case : Optional[int] = None def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Any = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=_snake_case , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=_snake_case , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCAmelCase_ ( _snake_case : Optional[Any] ) -> Tuple: '''simple docstring''' __magic_name__ : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __magic_name__ : str = bool(qa["answers"]["text"] ) return qid_to_has_ans def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' def remove_articles(_snake_case : List[str] ): return ARTICLES_REGEX.sub(" " , _snake_case ) def white_space_fix(_snake_case : Optional[int] ): return " ".join(text.split() ) def remove_punc(_snake_case : Optional[int] ): __magic_name__ : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_snake_case : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_snake_case ) ) ) ) def lowerCAmelCase_ ( _snake_case : Any ) -> Optional[Any]: '''simple docstring''' if not s: return [] return normalize_answer(_snake_case ).split() def lowerCAmelCase_ ( _snake_case : str , _snake_case : Dict ) -> Tuple: '''simple docstring''' return int(normalize_answer(_snake_case ) == normalize_answer(_snake_case ) ) def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : int ) -> str: '''simple docstring''' __magic_name__ : Any = get_tokens(_snake_case ) __magic_name__ : Optional[int] = get_tokens(_snake_case ) __magic_name__ : Tuple = collections.Counter(_snake_case ) & collections.Counter(_snake_case ) __magic_name__ : Tuple = sum(common.values() ) if len(_snake_case ) == 0 or len(_snake_case ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __magic_name__ : Dict = 1.0 * num_same / len(_snake_case ) __magic_name__ : Optional[Any] = 1.0 * num_same / len(_snake_case ) __magic_name__ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ ( _snake_case : Optional[Any] , _snake_case : List[Any] ) -> List[Any]: '''simple docstring''' __magic_name__ : Union[str, Any] = {} __magic_name__ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __magic_name__ : Union[str, Any] = qa["id"] __magic_name__ : Any = [t for t in qa["answers"]["text"] if normalize_answer(_snake_case )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __magic_name__ : Tuple = [""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue __magic_name__ : Any = preds[qid] # Take max over all gold answers __magic_name__ : List[Any] = max(compute_exact(_snake_case , _snake_case ) for a in gold_answers ) __magic_name__ : int = max(compute_fa(_snake_case , _snake_case ) for a in gold_answers ) return exact_scores, fa_scores def lowerCAmelCase_ ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : str = {} for qid, s in scores.items(): __magic_name__ : Dict = na_probs[qid] > na_prob_thresh if pred_na: __magic_name__ : str = float(not qid_to_has_ans[qid] ) else: __magic_name__ : Optional[int] = s return new_scores def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Tuple=None ) -> Tuple: '''simple docstring''' if not qid_list: __magic_name__ : Any = len(_snake_case ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: __magic_name__ : Tuple = len(_snake_case ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : str , _snake_case : str ) -> Dict: '''simple docstring''' for k in new_eval: __magic_name__ : int = new_eval[k] def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : Union[str, Any] ) -> str: '''simple docstring''' plt.step(_snake_case , _snake_case , color="b" , alpha=0.2 , where="post" ) plt.fill_between(_snake_case , _snake_case , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_snake_case ) plt.savefig(_snake_case ) plt.clf() def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : Any , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]=None , _snake_case : int=None ) -> str: '''simple docstring''' __magic_name__ : Union[str, Any] = sorted(_snake_case , key=lambda _snake_case : na_probs[k] ) __magic_name__ : Optional[int] = 0.0 __magic_name__ : str = 1.0 __magic_name__ : str = 0.0 __magic_name__ : List[str] = [1.0] __magic_name__ : str = [0.0] __magic_name__ : Optional[Any] = 0.0 for i, qid in enumerate(_snake_case ): if qid_to_has_ans[qid]: true_pos += scores[qid] __magic_name__ : List[str] = true_pos / float(i + 1 ) __magic_name__ : Any = true_pos / float(_snake_case ) if i == len(_snake_case ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_snake_case ) recalls.append(_snake_case ) if out_image: plot_pr_curve(_snake_case , _snake_case , _snake_case , _snake_case ) return {"ap": 100.0 * avg_prec} def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' if out_image_dir and not os.path.exists(_snake_case ): os.makedirs(_snake_case ) __magic_name__ : Any = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __magic_name__ : str = make_precision_recall_eval( _snake_case , _snake_case , _snake_case , _snake_case , out_image=os.path.join(_snake_case , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) __magic_name__ : Union[str, Any] = make_precision_recall_eval( _snake_case , _snake_case , _snake_case , _snake_case , out_image=os.path.join(_snake_case , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) __magic_name__ : str = {k: float(_snake_case ) for k, v in qid_to_has_ans.items()} __magic_name__ : str = make_precision_recall_eval( _snake_case , _snake_case , _snake_case , _snake_case , out_image=os.path.join(_snake_case , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(_snake_case , _snake_case , "pr_exact" ) merge_eval(_snake_case , _snake_case , "pr_f1" ) merge_eval(_snake_case , _snake_case , "pr_oracle" ) def lowerCAmelCase_ ( _snake_case : int , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[Any] ) -> Dict: '''simple docstring''' if not qid_list: return __magic_name__ : Dict = [na_probs[k] for k in qid_list] __magic_name__ : str = np.ones_like(_snake_case ) / float(len(_snake_case ) ) plt.hist(_snake_case , weights=_snake_case , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_snake_case , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Dict ) -> List[Any]: '''simple docstring''' __magic_name__ : Union[str, Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __magic_name__ : List[str] = num_no_ans __magic_name__ : Dict = cur_score __magic_name__ : Dict = 0.0 __magic_name__ : Any = sorted(_snake_case , key=lambda _snake_case : na_probs[k] ) for i, qid in enumerate(_snake_case ): if qid not in scores: continue if qid_to_has_ans[qid]: __magic_name__ : Union[str, Any] = scores[qid] else: if preds[qid]: __magic_name__ : List[Any] = -1 else: __magic_name__ : Optional[int] = 0 cur_score += diff if cur_score > best_score: __magic_name__ : Optional[int] = cur_score __magic_name__ : List[Any] = na_probs[qid] return 100.0 * best_score / len(_snake_case ), best_thresh def lowerCAmelCase_ ( _snake_case : int , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' __magic_name__ , __magic_name__ : List[str] = find_best_thresh(_snake_case , _snake_case , _snake_case , _snake_case ) __magic_name__ , __magic_name__ : int = find_best_thresh(_snake_case , _snake_case , _snake_case , _snake_case ) __magic_name__ : Optional[int] = best_exact __magic_name__ : List[Any] = exact_thresh __magic_name__ : Dict = best_fa __magic_name__ : Any = fa_thresh def lowerCAmelCase_ ( ) -> int: '''simple docstring''' with open(OPTS.data_file ) as f: __magic_name__ : Optional[Any] = json.load(_snake_case ) __magic_name__ : List[Any] = dataset_json["data"] with open(OPTS.pred_file ) as f: __magic_name__ : Optional[Any] = json.load(_snake_case ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __magic_name__ : Any = json.load(_snake_case ) else: __magic_name__ : Any = {k: 0.0 for k in preds} __magic_name__ : str = make_qid_to_has_ans(_snake_case ) # maps qid to True/False __magic_name__ : Tuple = [k for k, v in qid_to_has_ans.items() if v] __magic_name__ : Optional[Any] = [k for k, v in qid_to_has_ans.items() if not v] __magic_name__ , __magic_name__ : Union[str, Any] = get_raw_scores(_snake_case , _snake_case ) __magic_name__ : Optional[Any] = apply_no_ans_threshold(_snake_case , _snake_case , _snake_case , OPTS.na_prob_thresh ) __magic_name__ : Optional[Any] = apply_no_ans_threshold(_snake_case , _snake_case , _snake_case , OPTS.na_prob_thresh ) __magic_name__ : List[Any] = make_eval_dict(_snake_case , _snake_case ) if has_ans_qids: __magic_name__ : int = make_eval_dict(_snake_case , _snake_case , qid_list=_snake_case ) merge_eval(_snake_case , _snake_case , "HasAns" ) if no_ans_qids: __magic_name__ : List[Any] = make_eval_dict(_snake_case , _snake_case , qid_list=_snake_case ) merge_eval(_snake_case , _snake_case , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , OPTS.out_image_dir ) histogram_na_prob(_snake_case , _snake_case , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(_snake_case , _snake_case , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(_snake_case , _snake_case ) else: print(json.dumps(_snake_case , indent=2 ) ) if __name__ == "__main__": snake_case : int = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
281
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowercase_ = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") lowercase_ = F'https://www.google.com/search?q={query}&num=100' lowercase_ = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: lowercase_ = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: lowercase_ = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
357
import os from collections.abc import Iterator def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "." ): for dir_path, dir_names, filenames in os.walk(SCREAMING_SNAKE_CASE_ ): lowercase__ = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(SCREAMING_SNAKE_CASE_ )[1] in (".py", ".ipynb"): yield os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).lstrip("./" ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return f'''{i * " "}*''' if i else "\n##" def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(SCREAMING_SNAKE_CASE_ ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(SCREAMING_SNAKE_CASE_ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "." ): lowercase__ = "" for filepath in sorted(good_file_paths(SCREAMING_SNAKE_CASE_ ) ): lowercase__ , lowercase__ = os.path.split(SCREAMING_SNAKE_CASE_ ) if filepath != old_path: lowercase__ = print_path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase__ = f'''{filepath}/{filename}'''.replace(" " , "%20" ) lowercase__ = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f'''{md_prefix(SCREAMING_SNAKE_CASE_ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(""".""")
224
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "dandelin/vilt-b32-finetuned-vqa" __SCREAMING_SNAKE_CASE = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __SCREAMING_SNAKE_CASE = "image_qa" __SCREAMING_SNAKE_CASE = AutoProcessor __SCREAMING_SNAKE_CASE = AutoModelForVisualQuestionAnswering __SCREAMING_SNAKE_CASE = ["image", "text"] __SCREAMING_SNAKE_CASE = ["text"] def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> int: requires_backends(self , ["vision"]) super().__init__(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Tuple: return self.pre_processor(__lowerCamelCase , __lowerCamelCase , return_tensors="pt") def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]: with torch.no_grad(): return self.model(**__lowerCamelCase).logits def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]: _A : str = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
11
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _A : int = (boundary[1] - boundary[0]) / steps _A : Any = boundary[0] _A : List[Any] = boundary[1] _A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : str = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): _A : Optional[int] = a + h while x < (b - h): yield x _A : Dict = x + h def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here _A : Any = (x - 0) * (x - 0) return y def _UpperCAmelCase (): _A : Optional[Any] = 0.0 # Lower bound of integration _A : Optional[int] = 1.0 # Upper bound of integration _A : List[Any] = 10.0 # define number of steps or resolution _A : Any = [a, b] # define boundary of integration _A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f"y = {y}" ) if __name__ == "__main__": main()
11
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple=7 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : Union[str, Any]=400 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Any=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Any=[0.5, 0.5, 0.5] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=1 / 255 , lowerCamelCase_ : Union[str, Any]=True , ): """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_pad def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=False ): """simple docstring""" if not batched: UpperCamelCase = image_inputs[0] if isinstance(lowerCamelCase_ , Image.Image ): UpperCamelCase , UpperCamelCase = image.size else: UpperCamelCase , UpperCamelCase = image.shape[1], image.shape[2] if w < h: UpperCamelCase = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase = self.size["""shortest_edge"""] elif w > h: UpperCamelCase = self.size["""shortest_edge"""] UpperCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase = self.size["""shortest_edge"""] UpperCamelCase = self.size["""shortest_edge"""] else: UpperCamelCase = [] for image in image_inputs: UpperCamelCase , UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase = max(lowerCamelCase_ , key=lambda lowerCamelCase_ : item[0] )[0] UpperCamelCase = max(lowerCamelCase_ , key=lambda lowerCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = ConditionalDetrImageProcessingTester(self ) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase_ ) UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"""image_id""": 3_9769, """annotations""": target} # encode them UpperCamelCase = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) UpperCamelCase = image_processing(images=lowerCamelCase_ , annotations=lowerCamelCase_ , return_tensors="""pt""" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase_ , atol=1E-4 ) ) # verify area UpperCamelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase_ ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase_ , atol=1E-3 ) ) # verify image_id UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase_ ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase_ ) ) # verify class_labels UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase_ ) ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase_ ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase_ ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} UpperCamelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase = image_processing(images=lowerCamelCase_ , annotations=lowerCamelCase_ , masks_path=lowerCamelCase_ , return_tensors="""pt""" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase_ , atol=1E-4 ) ) # verify area UpperCamelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase_ ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase_ , atol=1E-3 ) ) # verify image_id UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase_ ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase_ ) ) # verify class_labels UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase_ ) ) # verify masks UpperCamelCase = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCamelCase_ ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase_ ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase_ ) )
165
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # TODO: upload to AWS _SCREAMING_SNAKE_CASE = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """retribert""" def __init__( self : Optional[Any] , lowerCamelCase_ : Any=3_0522 , lowerCamelCase_ : List[Any]=768 , lowerCamelCase_ : List[str]=8 , lowerCamelCase_ : Optional[int]=12 , lowerCamelCase_ : str=3072 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=512 , lowerCamelCase_ : str=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=1E-12 , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=128 , lowerCamelCase_ : Optional[Any]=0 , **lowerCamelCase_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = share_encoders UpperCamelCase = projection_dim
165
1
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase ) snake_case_ = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCAmelCase ) snake_case_ = checkpoints.load_tax_checkpoint(UpperCAmelCase ) snake_case_ = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": snake_case_ = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): snake_case_ = f'layers_{str(UpperCAmelCase )}' # Self-Attention snake_case_ = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] snake_case_ = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] snake_case_ = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] snake_case_ = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization snake_case_ = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: snake_case_ = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] snake_case_ = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: snake_case_ = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] snake_case_ = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization snake_case_ = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning snake_case_ = flax_model.params['encoder']['block'][str(UpperCAmelCase )]['layer'] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_global_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = tax_mlp_layer_norm snake_case_ = flax_model_encoder_layer_block # Only for layer 0: snake_case_ = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T snake_case_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T snake_case_ = tax_encoder_global_rel_embedding # Assigning snake_case_ = tax_model['target']['encoder']['encoder_norm']['scale'] snake_case_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ = f'layers_{str(UpperCAmelCase )}' # Self-Attention snake_case_ = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] snake_case_ = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] snake_case_ = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] snake_case_ = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization snake_case_ = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention snake_case_ = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] snake_case_ = tax_enc_dec_attention_module['key']['kernel'] snake_case_ = tax_enc_dec_attention_module['out']['kernel'] snake_case_ = tax_enc_dec_attention_module['query']['kernel'] snake_case_ = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization snake_case_ = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: snake_case_ = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] snake_case_ = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: snake_case_ = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] snake_case_ = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization snake_case_ = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning snake_case_ = flax_model.params['decoder']['block'][str(UpperCAmelCase )]['layer'] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_pre_attention_layer_norm snake_case_ = tax_enc_dec_attention_key snake_case_ = tax_enc_dec_attention_out snake_case_ = tax_enc_dec_attention_query snake_case_ = tax_enc_dec_attention_value snake_case_ = tax_cross_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = txa_mlp_layer_norm snake_case_ = flax_model_decoder_layer_block # Decoder Normalization snake_case_ = tax_model['target']['decoder']['decoder_norm']['scale'] snake_case_ = txa_decoder_norm # Only for layer 0: snake_case_ = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T snake_case_ = tax_decoder_rel_embedding # Token Embeddings snake_case_ = tax_model['target']['token_embedder']['embedding'] snake_case_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(UpperCAmelCase ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) __UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
69
"""simple docstring""" from math import factorial def UpperCAmelCase ( UpperCAmelCase = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(UpperCAmelCase ) / (factorial(UpperCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
69
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __magic_name__ : def __init__( self : int ,_UpperCAmelCase : Collection[float] | None = None ): if components is None: _a : Tuple = [] _a : Optional[int] = list(_UpperCAmelCase ) def __len__( self : int ): return len(self.__components ) def __str__( self : Tuple ): return "(" + ",".join(map(_UpperCAmelCase ,self.__components ) ) + ")" def __add__( self : Optional[Any] ,_UpperCAmelCase : Vector ): _a : str = len(self ) if size == len(_UpperCAmelCase ): _a : Optional[Any] = [self.__components[i] + other.component(_UpperCAmelCase ) for i in range(_UpperCAmelCase )] return Vector(_UpperCAmelCase ) else: raise Exception('must have the same size' ) def __sub__( self : Optional[Any] ,_UpperCAmelCase : Vector ): _a : str = len(self ) if size == len(_UpperCAmelCase ): _a : str = [self.__components[i] - other.component(_UpperCAmelCase ) for i in range(_UpperCAmelCase )] return Vector(_UpperCAmelCase ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : List[str] ,_UpperCAmelCase : float ): ... @overload def __mul__( self : Optional[Any] ,_UpperCAmelCase : Vector ): ... def __mul__( self : Optional[int] ,_UpperCAmelCase : float | Vector ): if isinstance(_UpperCAmelCase ,(float, int) ): _a : Optional[Any] = [c * other for c in self.__components] return Vector(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and len(self ) == len(_UpperCAmelCase ): _a : List[Any] = len(self ) _a : Union[str, Any] = [self.__components[i] * other.component(_UpperCAmelCase ) for i in range(_UpperCAmelCase )] return sum(_UpperCAmelCase ) else: # error case raise Exception('invalid operand!' ) def __lowercase ( self : int ): return Vector(self.__components ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : int ): if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def __lowercase ( self : List[str] ,_UpperCAmelCase : int ,_UpperCAmelCase : float ): assert -len(self.__components ) <= pos < len(self.__components ) _a : Dict = value def __lowercase ( self : Optional[Any] ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) _a : Tuple = [c**2 for c in self.__components] return math.sqrt(sum(_UpperCAmelCase ) ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : Vector ,_UpperCAmelCase : bool = False ): _a : Dict = self * other _a : Optional[int] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Vector: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) return Vector([0] * dimension ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Vector: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (isinstance(lowerCAmelCase_ , lowerCAmelCase_ )) _a : List[str] = [0] * dimension _a : Optional[Any] = 1 return Vector(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Vector: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (isinstance(lowerCAmelCase_ , (int, float) )) ) return x * scalar + y def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Vector: random.seed(lowerCAmelCase_ ) _a : int = [random.randint(lowerCAmelCase_ , lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) class __magic_name__ : def __init__( self : Tuple ,_UpperCAmelCase : list[list[float]] ,_UpperCAmelCase : int ,_UpperCAmelCase : int ): _a : str = matrix _a : int = w _a : Any = h def __str__( self : Optional[Any] ): _a : Optional[Any] = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Dict ,_UpperCAmelCase : Matrix ): if self.__width == other.width() and self.__height == other.height(): _a : Any = [] for i in range(self.__height ): _a : Optional[Any] = [ self.__matrix[i][j] + other.component(_UpperCAmelCase ,_UpperCAmelCase ) for j in range(self.__width ) ] matrix.append(_UpperCAmelCase ) return Matrix(_UpperCAmelCase ,self.__width ,self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Any ,_UpperCAmelCase : Matrix ): if self.__width == other.width() and self.__height == other.height(): _a : Tuple = [] for i in range(self.__height ): _a : int = [ self.__matrix[i][j] - other.component(_UpperCAmelCase ,_UpperCAmelCase ) for j in range(self.__width ) ] matrix.append(_UpperCAmelCase ) return Matrix(_UpperCAmelCase ,self.__width ,self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : Union[str, Any] ,_UpperCAmelCase : float ): ... @overload def __mul__( self : str ,_UpperCAmelCase : Vector ): ... def __mul__( self : Dict ,_UpperCAmelCase : float | Vector ): if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): # matrix-vector if len(_UpperCAmelCase ) == self.__width: _a : str = zero_vector(self.__height ) for i in range(self.__height ): _a : Any = [ self.__matrix[i][j] * other.component(_UpperCAmelCase ) for j in range(self.__width ) ] ans.change_component(_UpperCAmelCase ,sum(_UpperCAmelCase ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(_UpperCAmelCase ,(int, float) ): # matrix-scalar _a : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_UpperCAmelCase ,self.__width ,self.__height ) return None def __lowercase ( self : Optional[Any] ): return self.__height def __lowercase ( self : Any ): return self.__width def __lowercase ( self : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def __lowercase ( self : str ,_UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : float ): if 0 <= x < self.__height and 0 <= y < self.__width: _a : Union[str, Any] = value else: raise Exception('change_component: indices out of bounds' ) def __lowercase ( self : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) _a : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_UpperCAmelCase ) ): _a : Tuple = minor[i][:y] + minor[i][y + 1 :] return Matrix(_UpperCAmelCase ,self.__width - 1 ,self.__height - 1 ).determinant() def __lowercase ( self : Optional[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_UpperCAmelCase ,_UpperCAmelCase ) else: raise Exception('Indices out of bounds' ) def __lowercase ( self : Dict ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _a : List[str] = [ self.__matrix[0][y] * self.cofactor(0 ,_UpperCAmelCase ) for y in range(self.__width ) ] return sum(_UpperCAmelCase ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Matrix: _a : list[list[float]] = [[0] * n for _ in range(lowerCAmelCase_ )] return Matrix(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Matrix: random.seed(lowerCAmelCase_ ) _a : list[list[float]] = [ [random.randint(lowerCAmelCase_ , lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ )] for _ in range(lowerCAmelCase_ ) ] return Matrix(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
107
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ) -> Any: _a : Dict = 'backbone.' if is_semantic else '' _a : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", 'beit.embeddings.cls_token'), (f"""{prefix}patch_embed.proj.weight""", 'beit.embeddings.patch_embeddings.projection.weight'), (f"""{prefix}patch_embed.proj.bias""", 'beit.embeddings.patch_embeddings.projection.bias'), (f"""{prefix}pos_embed""", 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ) -> int: for i in range(config.num_hidden_layers ): _a : Union[str, Any] = 'backbone.' if is_semantic else '' # queries, keys and values _a : Any = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) _a : str = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) _a : str = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) _a : int = in_proj_weight[ : config.hidden_size, : ] _a : str = q_bias _a : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a : List[str] = in_proj_weight[ -config.hidden_size :, : ] _a : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained _a : int = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) _a : Tuple = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) _a : Tuple = gamma_a _a : Optional[Any] = gamma_a def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : List[Any] = dct.pop(lowerCAmelCase_ ) _a : List[Any] = val def __lowerCamelCase ( ) -> Dict: _a : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a : Dict = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Union[str, Any]: _a : Optional[Any] = False if 'rvlcdip' in checkpoint_url else True _a : List[Any] = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: _a : Optional[Any] = 1024 _a : Tuple = 4096 _a : Any = 24 _a : Optional[int] = 16 # labels if "rvlcdip" in checkpoint_url: _a : Any = 16 _a : Tuple = 'huggingface/label-files' _a : List[Any] = 'rvlcdip-id2label.json' _a : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _a : int = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _a : int = idalabel _a : int = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys _a : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location='cpu' )['model'] _a : Dict = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model _a : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image _a : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) _a : Dict = prepare_img() _a : str = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ) _a : Optional[Any] = encoding['pixel_values'] _a : Optional[Any] = model(lowerCAmelCase_ ) _a : Optional[Any] = outputs.logits # verify logits _a : int = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: _a : Tuple = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: _a : int = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) __lowerCAmelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
107
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A__ : Union[str, Any] = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default="""NER""" ,metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field(default=A__ ,metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase__ = field( default=A__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) lowercase__ = field( default=A__ ,metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} ,) lowercase__ = field( default=128 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowercase__ = field( default=A__ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def a ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ = import_module('''tasks''' ) try: lowercase__ = getattr(lowerCamelCase_ , model_args.task_type ) lowercase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ = token_classification_task.get_labels(data_args.labels ) lowercase__ = dict(enumerate(lowerCamelCase_ ) ) lowercase__ = len(lowerCamelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid={label: i for i, label in enumerate(lowerCamelCase_ )} , cache_dir=model_args.cache_dir , ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ = ( TokenClassificationDataset( token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ = ( TokenClassificationDataset( token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCamelCase_ , lowerCamelCase_ ) -> Tuple[List[int], List[int]]: lowercase__ = np.argmax(lowerCamelCase_ , axis=2 ) lowercase__ , lowercase__ = preds.shape lowercase__ = [[] for _ in range(lowerCamelCase_ )] lowercase__ = [[] for _ in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCamelCase_ ) -> Dict: lowercase__ , lowercase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCamelCase_ , lowerCamelCase_ ), "precision": precision_score(lowerCamelCase_ , lowerCamelCase_ ), "recall": recall_score(lowerCamelCase_ , lowerCamelCase_ ), "f1": fa_score(lowerCamelCase_ , lowerCamelCase_ ), } # Data collator lowercase__ = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate() lowercase__ = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , lowerCamelCase_ , lowerCamelCase_ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowerCamelCase_ ) # Predict if training_args.do_predict: lowercase__ = TokenClassificationDataset( token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ = trainer.predict(lowerCamelCase_ ) lowercase__ , lowercase__ = align_predictions(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , lowerCamelCase_ , lowerCamelCase_ ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return results def a ( lowerCamelCase_ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
207
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A__ : Tuple = logging.get_logger(__name__) A__ : int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : int=None, lowerCamelCase : int=None, *lowerCamelCase : List[Any], **lowerCamelCase : Any ): '''simple docstring''' super().__init__(*lowerCamelCase, **lowerCamelCase ) if config is None: assert isinstance(self.model, lowerCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) lowercase__ = self.model.config else: lowercase__ = config lowercase__ = data_args lowercase__ = self.config.tgt_vocab_size if isinstance(self.config, lowerCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ''' padding..''' ) if self.args.label_smoothing == 0: lowercase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase__ = label_smoothed_nll_loss def lowercase__ ( self : List[Any], lowerCamelCase : int ): '''simple docstring''' if self.optimizer is None: lowercase__ = ['''bias''', '''LayerNorm.weight'''] lowercase__ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase__ = Adafactor lowercase__ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase__ = AdamW lowercase__ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase__ = self.args.learning_rate if self.sharded_ddp: lowercase__ = OSS( params=lowerCamelCase, optim=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = optimizer_cls(lowerCamelCase, **lowerCamelCase ) if self.lr_scheduler is None: lowercase__ = self._get_lr_scheduler(lowerCamelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowercase__ ( self : List[str], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase__ = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: lowercase__ = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=lowerCamelCase ) return scheduler def lowercase__ ( self : List[Any] ): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models lowercase__ , lowercase__ = model(**lowerCamelCase, labels=lowerCamelCase, use_cache=lowerCamelCase )[:2] else: # compute label smoothed loss lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = torch.nn.functional.log_softmax(lowerCamelCase, dim=-1 ) lowercase__ , lowercase__ = self.loss_fn(lowerCamelCase, lowerCamelCase, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = inputs.pop('''labels''' ) lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return loss def lowercase__ ( self : str, lowerCamelCase : nn.Module, lowerCamelCase : Dict[str, Union[torch.Tensor, Any]], lowerCamelCase : bool, lowerCamelCase : Optional[List[str]] = None, ): '''simple docstring''' lowercase__ = self._prepare_inputs(lowerCamelCase ) lowercase__ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase__ = self.model.generate( inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], **lowerCamelCase, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) lowercase__ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Any ): '''simple docstring''' # If PAD token is not defined at least EOS token has to be defined lowercase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F""" padded to `max_length`={max_length}""" ) lowercase__ = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) lowercase__ = tensor return padded_tensor
207
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : def __init__( self : str , A : Union[str, Any] , A : Union[str, Any]=1_3 , A : Union[str, Any]=3_2 , A : Optional[Any]=3 , A : Optional[Any]=4 , A : List[Any]=[1_0, 2_0, 3_0, 4_0] , A : Dict=[2, 2, 3, 2] , A : Union[str, Any]=True , A : str=True , A : List[str]=3_7 , A : Optional[int]="gelu" , A : int=1_0 , A : List[Any]=0.02 , A : int=["stage2", "stage3", "stage4"] , A : Optional[Any]=[2, 3, 4] , A : int=None , ): '''simple docstring''' a : int = parent a : str = batch_size a : int = image_size a : Union[str, Any] = num_channels a : Union[str, Any] = num_stages a : Dict = hidden_sizes a : Any = depths a : str = is_training a : Optional[int] = use_labels a : List[str] = intermediate_size a : int = hidden_act a : str = num_labels a : Optional[int] = initializer_range a : List[str] = out_features a : Dict = out_indices a : Tuple = scope def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : Any = None if self.use_labels: a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) a : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : Optional[int] , A : Dict , A : List[Any] , A : Tuple ): '''simple docstring''' a : str = ConvNextModel(config=A ) model.to(A ) model.eval() a : int = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase__ ( self : str , A : Union[str, Any] , A : Dict , A : Tuple ): '''simple docstring''' a : Union[str, Any] = ConvNextForImageClassification(A ) model.to(A ) model.eval() a : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Optional[int] , A : Optional[int] , A : int , A : Dict ): '''simple docstring''' a : Optional[int] = ConvNextBackbone(config=A ) model.to(A ) model.eval() a : str = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None a : Union[str, Any] = None a : Optional[int] = ConvNextBackbone(config=A ) model.to(A ) model.eval() a : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' a : List[Any] = self.prepare_config_and_inputs() a, a, a : List[str] = config_and_inputs a : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __magic_name__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __magic_name__ = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Optional[Any] = ConvNextModelTester(self ) a : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' pass def lowerCamelCase__ ( self : Any ): '''simple docstring''' a, a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[Any] = model_class(A ) a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(A : Union[str, Any] , A : List[Any] , A : Union[str, Any] ): a : int = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : List[Any] = model(**self._prepare_for_class(A , A ) ) a : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a : Tuple = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[str] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : str = True check_hidden_states_output(A , A , A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = ConvNextModel.from_pretrained(A ) self.assertIsNotNone(A ) def snake_case (): '''simple docstring''' a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' a : Union[str, Any] = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(A ) a : Optional[int] = self.default_image_processor a : Optional[Any] = prepare_img() a : str = image_processor(images=A , return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): a : Any = model(**A ) # verify the logits a : Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A ) a : Optional[Any] = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @require_torch class snake_case ( unittest.TestCase , UpperCAmelCase ): __magic_name__ = (ConvNextBackbone,) if is_torch_available() else () __magic_name__ = ConvNextConfig __magic_name__ = False def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Union[str, Any] = ConvNextModelTester(self )
186
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(A , 'num_encoder_blocks' ) ) class snake_case : def __init__( self : List[Any] , A : Dict , A : List[Any]=1_3 , A : str=6_4 , A : Union[str, Any]=3 , A : Union[str, Any]=4 , A : Union[str, Any]=[2, 2, 2, 2] , A : List[str]=[8, 4, 2, 1] , A : Optional[Any]=[1_6, 3_2, 6_4, 1_2_8] , A : Optional[Any]=[1, 4, 8, 1_6] , A : Tuple=[1, 2, 4, 8] , A : Optional[Any]=True , A : Any=True , A : Optional[Any]="gelu" , A : Optional[int]=0.1 , A : List[Any]=0.1 , A : List[str]=0.02 , A : List[Any]=3 , A : str=None , ): '''simple docstring''' a : Optional[Any] = parent a : Optional[Any] = batch_size a : Optional[Any] = image_size a : Optional[int] = num_channels a : List[str] = num_encoder_blocks a : Optional[Any] = sr_ratios a : Any = depths a : Any = hidden_sizes a : Union[str, Any] = downsampling_rates a : Any = num_attention_heads a : int = is_training a : Dict = use_labels a : str = hidden_act a : Optional[int] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Optional[Any] = initializer_range a : Dict = num_labels a : Union[str, Any] = scope def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : int = None if self.use_labels: a : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a : str = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , A : str , A : List[Any] , A : List[Any] ): '''simple docstring''' a : Optional[Any] = SegformerModel(config=A ) model.to(A ) model.eval() a : Union[str, Any] = model(A ) a : Optional[int] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCamelCase__ ( self : Optional[int] , A : Union[str, Any] , A : str , A : Optional[Any] ): '''simple docstring''' a : List[Any] = self.num_labels a : Optional[int] = SegformerForSemanticSegmentation(A ) model.to(A ) model.eval() a : str = model(A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) a : int = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase__ ( self : Dict , A : Dict , A : Any , A : Optional[Any] ): '''simple docstring''' a : Optional[int] = 1 a : List[Any] = SegformerForSemanticSegmentation(config=A ) model.to(A ) model.eval() a : Any = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(A ) a : Dict = model(A , labels=A ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : str = self.prepare_config_and_inputs() a, a, a : str = config_and_inputs a : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __magic_name__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __magic_name__ = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Union[str, Any] = SegformerModelTester(self ) a : Tuple = SegformerConfigTester(self , config_class=A ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*A ) def lowerCamelCase__ ( self : int ): '''simple docstring''' a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*A ) @unittest.skip('SegFormer does not use inputs_embeds' ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a, a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Dict = model_class(A ) a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : List[str] = [*signature.parameters.keys()] a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a, a : Any = self.model_tester.prepare_config_and_inputs_for_common() a : Any = True for model_class in self.all_model_classes: a : Optional[Any] = True a : Tuple = False a : int = True a : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(A , A ) ) a : Union[str, Any] = outputs.attentions a : Tuple = sum(self.model_tester.depths ) self.assertEqual(len(A ) , A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a : Tuple = True a : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : str = model(**self._prepare_for_class(A , A ) ) a : Optional[int] = outputs.attentions self.assertEqual(len(A ) , A ) # verify the first attentions (first block, first layer) a : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 a : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a : Tuple = (self.model_tester.image_size // 3_2) ** 2 a : Tuple = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a : str = len(A ) # Check attention is always last and order is fine a : str = True a : Tuple = True a : List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 1 , len(A ) ) a : str = outputs.attentions self.assertEqual(len(A ) , A ) # verify the first attentions (first block, first layer) a : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 a : Optional[int] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCamelCase__ ( self : int ): '''simple docstring''' def check_hidden_states_output(A : Optional[Any] , A : List[str] , A : Union[str, Any] ): a : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : Optional[Any] = model(**self._prepare_for_class(A , A ) ) a : Tuple = outputs.hidden_states a : Optional[Any] = self.model_tester.num_encoder_blocks self.assertEqual(len(A ) , A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a, a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[str] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : str = True check_hidden_states_output(A , A , A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(A ): continue a : List[Any] = model_class(A ) model.to(A ) model.train() a : Tuple = self._prepare_for_class(A , A , return_labels=A ) a : Any = model(**A ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = SegformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def snake_case (): '''simple docstring''' a : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : int = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) a : Dict = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A ) a : str = prepare_img() a : List[str] = image_processor(images=A , return_tensors='pt' ) a : List[str] = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): a : Optional[int] = model(A ) a : Any = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , A ) a : str = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Optional[Any] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) a : Optional[Any] = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(A ) a : List[Any] = prepare_img() a : Optional[Any] = image_processor(images=A , return_tensors='pt' ) a : int = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): a : Optional[Any] = model(A ) a : Tuple = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , A ) a : Optional[Any] = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-1 ) ) @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' a : str = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) a : Optional[int] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A ) a : int = prepare_img() a : Any = image_processor(images=A , return_tensors='pt' ) a : List[Any] = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): a : str = model(A ) a : str = outputs.logits.detach().cpu() a : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(5_0_0, 3_0_0)] ) a : Dict = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , A ) a : int = image_processor.post_process_semantic_segmentation(outputs=A ) a : Any = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape , A )
186
1
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase : def __init__( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : int=2 , UpperCamelCase : int=3 , UpperCamelCase : Any=4 , UpperCamelCase : Any=2 , UpperCamelCase : List[str]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : str=True , UpperCamelCase : int=True , UpperCamelCase : List[str]=True , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Any=36 , UpperCamelCase : Tuple=3 , UpperCamelCase : List[str]=4 , UpperCamelCase : List[str]=37 , UpperCamelCase : int="gelu" , UpperCamelCase : Dict=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Union[str, Any]=5_12 , UpperCamelCase : Tuple=16 , UpperCamelCase : List[str]=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Union[str, Any]=6 , UpperCamelCase : Any=6 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : List[str]=4 , UpperCamelCase : List[str]=None , UpperCamelCase : Dict=10_00 , ) -> int: """simple docstring""" lowerCAmelCase__ : int = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : int = patch_size lowerCAmelCase__ : List[str] = text_seq_length lowerCAmelCase__ : List[str] = is_training lowerCAmelCase__ : Optional[int] = use_input_mask lowerCAmelCase__ : Optional[Any] = use_token_type_ids lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : List[Any] = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : Any = type_vocab_size lowerCAmelCase__ : str = type_sequence_label_size lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : Optional[int] = coordinate_size lowerCAmelCase__ : Dict = shape_size lowerCAmelCase__ : Any = num_labels lowerCAmelCase__ : Union[str, Any] = num_choices lowerCAmelCase__ : Optional[Any] = scope lowerCAmelCase__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase__ : int = text_seq_length lowerCAmelCase__ : Dict = (image_size // patch_size) ** 2 + 1 lowerCAmelCase__ : str = self.text_seq_length + self.image_seq_length def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase__ : List[str] = bbox[i, j, 3] lowerCAmelCase__ : Dict = bbox[i, j, 1] lowerCAmelCase__ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase__ : Any = bbox[i, j, 2] lowerCAmelCase__ : Any = bbox[i, j, 0] lowerCAmelCase__ : List[Any] = t lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : int = None if self.use_input_mask: lowerCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase__ : str = None if self.use_token_type_ids: lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Union[str, Any] = None if self.use_labels: lowerCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Tuple = LayoutLMvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # text + image lowerCAmelCase__ : List[Any] = model(lowerCamelCase_ , pixel_values=lowerCamelCase_ ) lowerCAmelCase__ : str = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) lowerCAmelCase__ : Optional[int] = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase__ : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase__ : Union[str, Any] = model(pixel_values=lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : int , UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = self.num_labels lowerCAmelCase__ : str = LayoutLMvaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ : str = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.num_labels lowerCAmelCase__ : Any = LayoutLMvaForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ : List[str] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Dict , UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = LayoutLMvaForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ : Any = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : Union[str, Any] = config_and_inputs lowerCAmelCase__ : int = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _lowerCamelCase ( A__ , A__ , unittest.TestCase ): _lowerCamelCase :List[str] = False _lowerCamelCase :Union[str, Any] = False _lowerCamelCase :str = False _lowerCamelCase :List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _lowerCamelCase :Optional[Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" return True def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = LayoutLMvaModelTester(self ) lowerCAmelCase__ : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def _lowerCAmelCase ( self : Dict , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ) -> int: """simple docstring""" lowerCAmelCase__ : List[Any] = copy.deepcopy(lowerCamelCase_ ) if model_class in get_values(lowerCamelCase_ ): lowerCAmelCase__ : Optional[int] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCamelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCAmelCase__ : Dict = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in get_values(lowerCamelCase_ ): lowerCAmelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: lowerCAmelCase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: lowerCAmelCase__ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) return inputs_dict def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : Tuple = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : str = LayoutLMvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class _lowerCamelCase ( unittest.TestCase ): @cached_property def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase_ ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(lowerCamelCase_ ) lowerCAmelCase__ : Optional[int] = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : str = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).pixel_values.to(lowerCamelCase_ ) lowerCAmelCase__ : Optional[int] = torch.tensor([[1, 2]] ) lowerCAmelCase__ : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase__ : Dict = model( input_ids=input_ids.to(lowerCamelCase_ ) , bbox=bbox.to(lowerCamelCase_ ) , pixel_values=pixel_values.to(lowerCamelCase_ ) , ) # verify the logits lowerCAmelCase__ : Union[str, Any] = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase_ ) lowerCAmelCase__ : Dict = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) )
242
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : str , snake_case_ : str , snake_case_ : Path , snake_case_ : str = None , snake_case_ : str = None , snake_case_ : str = None , ) ->List[Any]: if config_name_or_path is None: lowerCamelCase__ : Dict ='facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: lowerCamelCase__ : Optional[int] =generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase__ : Optional[int] =question_encoder_name_or_path lowerCamelCase__ : Optional[Any] =RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. lowerCamelCase__ : Union[str, Any] =RagConfig.from_pretrained(snake_case_ ) lowerCamelCase__ : Optional[Any] =AutoConfig.from_pretrained(snake_case_ ) lowerCamelCase__ : Optional[Any] =AutoConfig.from_pretrained(snake_case_ ) lowerCamelCase__ : Optional[int] =gen_config lowerCamelCase__ : str =question_encoder_config lowerCamelCase__ : str =model_class.from_pretrained_question_encoder_generator( snake_case_ , snake_case_ , config=snake_case_ ) rag_model.save_pretrained(snake_case_ ) # Sanity check. model_class.from_pretrained(snake_case_ ) # Save tokenizers. lowerCamelCase__ : str =AutoTokenizer.from_pretrained(snake_case_ ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) lowerCamelCase__ : Optional[int] =AutoTokenizer.from_pretrained(snake_case_ ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
126
0
"""simple docstring""" # using dfs for finding eulerian path traversal def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case=None ) -> List[Any]: __lowerCAmelCase : Tuple = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __lowerCAmelCase , __lowerCAmelCase : List[str] = True, True __lowerCAmelCase : int = dfs(__snake_case ,__snake_case ,__snake_case ,__snake_case ) return path def _lowercase ( __snake_case ,__snake_case ) -> Tuple: __lowerCAmelCase : Dict = 0 __lowerCAmelCase : List[Any] = -1 for i in range(__snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __lowerCAmelCase : List[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _lowercase ( __snake_case ,__snake_case ) -> int: __lowerCAmelCase : List[str] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __lowerCAmelCase , __lowerCAmelCase : List[Any] = check_circuit_or_path(__snake_case ,__snake_case ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return __lowerCAmelCase : Dict = 1 if check == 2: __lowerCAmelCase : Union[str, Any] = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) __lowerCAmelCase : List[Any] = dfs(__snake_case ,__snake_case ,__snake_case ) print(__snake_case ) def _lowercase ( ) -> Dict: __lowerCAmelCase : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __lowerCAmelCase : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __lowerCAmelCase : Optional[int] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __lowerCAmelCase : Optional[int] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __lowerCAmelCase : List[str] = { 1: [], 2: [] # all degree is zero } __lowerCAmelCase : Dict = 10 check_euler(__snake_case ,__snake_case ) check_euler(__snake_case ,__snake_case ) check_euler(__snake_case ,__snake_case ) check_euler(__snake_case ,__snake_case ) check_euler(__snake_case ,__snake_case ) if __name__ == "__main__": main()
58
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __snake_case : Tuple = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _lowercase ( __snake_case ,__snake_case ,__snake_case=None ) -> str: if rng is None: __lowerCAmelCase : str = random.Random() __lowerCAmelCase : List[Any] = 1 for dim in shape: total_dims *= dim __lowerCAmelCase : int = [] for _ in range(__snake_case ): values.append(rng.randint(0 ,vocab_size - 1 ) ) __lowerCAmelCase : Dict = np.array(__snake_case ,dtype=jnp.intaa ).reshape(__snake_case ) return output def _lowercase ( __snake_case ,__snake_case=None ) -> Optional[Any]: __lowerCAmelCase : List[str] = ids_tensor(__snake_case ,vocab_size=2 ,rng=__snake_case ) # make sure that at least one token is attended to for each batch __lowerCAmelCase : str = 1 return attn_mask @require_flax class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = () def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Dict = inputs["input_ids"].shape[-1] // 2 __lowerCAmelCase : Union[str, Any] = inputs["input_ids"][:max_batch_size, :sequence_length] __lowerCAmelCase : str = jnp.ones_like(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __lowerCAmelCase : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __lowerCAmelCase : int = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = self._get_input_ids_and_config() __lowerCAmelCase : Dict = False __lowerCAmelCase : Dict = max_length __lowerCAmelCase : Any = 0 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : int = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = pt_model_class(_SCREAMING_SNAKE_CASE).eval() __lowerCAmelCase : Optional[int] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , flax_model.params) __lowerCAmelCase : int = flax_model.generate(_SCREAMING_SNAKE_CASE).sequences __lowerCAmelCase : Any = pt_model.generate(torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __lowerCAmelCase : Any = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : List[str] = False __lowerCAmelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = jit(model.generate) __lowerCAmelCase : List[str] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : Dict = True __lowerCAmelCase : List[str] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = jit(model.generate) __lowerCAmelCase : Optional[Any] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = self._get_input_ids_and_config() __lowerCAmelCase : Tuple = False __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Any = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = jit(model.generate) __lowerCAmelCase : Dict = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: str) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Any = max_length __lowerCAmelCase : Dict = 2 __lowerCAmelCase : int = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._get_input_ids_and_config() __lowerCAmelCase : str = True __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Tuple = 0.8 __lowerCAmelCase : Any = 10 __lowerCAmelCase : Any = 0.3 __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : int = 8 __lowerCAmelCase : Optional[int] = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = jit(model.generate) __lowerCAmelCase : str = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = self._get_input_ids_and_config() __lowerCAmelCase : int = max_length __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : List[str] = 8 __lowerCAmelCase : str = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = jit(model.generate) __lowerCAmelCase : str = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._get_input_ids_and_config() __lowerCAmelCase : Union[str, Any] = max_length __lowerCAmelCase : Dict = 2 __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : int = 8 __lowerCAmelCase : str = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = model.generate(_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = jit(model.generate) __lowerCAmelCase : Union[str, Any] = jit_generate(_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: str) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : Tuple = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : int = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = jit(model.generate) __lowerCAmelCase : Dict = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = jit(model.generate) __lowerCAmelCase : Any = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0) __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Dict = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertEqual(generation_outputs.shape[-1] , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = jit(model.generate) __lowerCAmelCase : int = jit_generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") __lowerCAmelCase : Optional[int] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") __lowerCAmelCase : Optional[Any] = "Hello world" __lowerCAmelCase : str = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "do_samples"): model.generate(_SCREAMING_SNAKE_CASE , do_samples=_SCREAMING_SNAKE_CASE) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "foo"): __lowerCAmelCase : int = {"foo": "bar"} model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
58
1
'''simple docstring''' import re def a_ ( __snake_case : str ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''' , __snake_case ) ) != len(__snake_case ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
75
def _a ( lowerCamelCase: dict ) -> bool: '''simple docstring''' __A = set() # To detect a back edge, keep track of vertices currently in the recursion stack __A = set() return any( node not in visited and depth_first_search(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) for node in graph ) def _a ( lowerCamelCase: dict , lowerCamelCase: int , lowerCamelCase: set , lowerCamelCase: set ) -> bool: '''simple docstring''' visited.add(lowerCamelCase ) rec_stk.add(lowerCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
117
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Dict = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: _lowerCAmelCase : Tuple = json.load(f) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : str , A : Union[str, Any] ): return FSMTTokenizer.from_pretrained(A ) def snake_case_ ( self : Union[str, Any] , A : Union[str, Any] ): _UpperCAmelCase : List[Any] = FSMTForConditionalGeneration.from_pretrained(A ).to(A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def snake_case_ ( self : Any , A : Dict , A : List[str] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _UpperCAmelCase : Any = f'facebook/wmt19-{pair}' _UpperCAmelCase : Dict = self.get_tokenizer(A ) _UpperCAmelCase : Optional[int] = self.get_model(A ) _UpperCAmelCase : int = bleu_data[pair]["src"] _UpperCAmelCase : Optional[int] = bleu_data[pair]["tgt"] _UpperCAmelCase : List[str] = tokenizer(A , return_tensors="pt" , truncation=A , padding="longest" ).to(A ) _UpperCAmelCase : List[str] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _UpperCAmelCase : Any = tokenizer.batch_decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A ) _UpperCAmelCase : Any = calculate_bleu(A , A ) print(A ) self.assertGreaterEqual(scores["bleu"] , A )
202
1
"""simple docstring""" def lowercase ( __snake_case : Dict ): lowercase_ : str = [0] * len(_A ) lowercase_ : Optional[Any] = [] lowercase_ : Union[str, Any] = [] lowercase_ : List[Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: lowercase_ : Tuple = queue.pop(0 ) cnt += 1 topo.append(_A ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_A ) if cnt != len(_A ): print('''Cycle exists''' ) else: print(_A ) # Adjacency List of Graph __A : Union[str, Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
33
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def lowercase_ ( self : int ): a : Dict = 32 a : str = embedder_hidden_size # image encoding components a : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) a : Dict = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) a : Dict = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) a : Optional[int] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) a : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) a : List[Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL() a : str = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def lowercase_ ( self : Tuple , __snake_case : List[str] , __snake_case : Union[str, Any]=0 , __snake_case : Tuple=True ): if str(__snake_case ).startswith('mps' ): a : Tuple = torch.manual_seed(__snake_case ) else: a : List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: a : Optional[Any] = input_image * 0.5 + 0.5 a : Optional[Any] = input_image.clamp(0 , 1 ) a : Dict = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a : int = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase_ ( self : Optional[Any] ): a : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Union[str, Any] = self.get_dummy_components() a : Any = StableUnCLIPImgaImgPipeline(**__snake_case ) a : Tuple = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) a : Union[str, Any] = self.get_dummy_inputs(__snake_case ) inputs.update({'image_embeds': None} ) a : str = sd_pipe(**__snake_case ).images a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a : Optional[int] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ): a : int = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def lowercase_ ( self : int ): a : Optional[int] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) a : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) a : Optional[int] = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Optional[int] ): a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) a : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a : str = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Any ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) a : Optional[Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = pipe( __snake_case , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) a : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ): """simple docstring""" super().__init__() UpperCAmelCase__ = module UpperCAmelCase__ = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) UpperCAmelCase__ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase_ : Optional[int] = 2.1_09_65_95_52_69_25_74 lowerCAmelCase_ : int = """Hello my name is""" lowerCAmelCase_ : Any = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase_ : int = 10 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained(self.model_name ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().setUp() # Models and tokenizer UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , """quantization_config""" ) ) UpperCAmelCase__ = config.to_dict() UpperCAmelCase__ = config.to_diff_dict() UpperCAmelCase__ = config.to_json_string() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" from bitsandbytes.nn import Paramsabit UpperCAmelCase__ = self.model_fpaa.get_memory_footprint() UpperCAmelCase__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCAmelCase__ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) UpperCAmelCase__ = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = BitsAndBytesConfig() UpperCAmelCase__ = True UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map="""auto""" ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) UpperCAmelCase__ = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) UpperCAmelCase__ = self.model_fpaa.to(torch.floataa ) UpperCAmelCase__ = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error UpperCAmelCase__ = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error UpperCAmelCase__ = self.model_fpaa.half() # Check this does not throw an error UpperCAmelCase__ = self.model_fpaa.float() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = """t5-small""" UpperCAmelCase__ = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense UpperCAmelCase__ = AutoTokenizer.from_pretrained(cls.model_name ) UpperCAmelCase__ = """Translate in German: Hello, my dog is cute""" def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" from transformers import TaForConditionalGeneration UpperCAmelCase__ = TaForConditionalGeneration._keep_in_fpaa_modules UpperCAmelCase__ = None # test with `t5-small` UpperCAmelCase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCAmelCase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` UpperCAmelCase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCAmelCase__ = model.generate(**_UpperCAmelCase ) UpperCAmelCase__ = modules def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCAmelCase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCAmelCase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` UpperCAmelCase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCAmelCase__ = model.generate(**_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() # model_name UpperCAmelCase__ = """bigscience/bloom-560m""" UpperCAmelCase__ = """t5-small""" # Different types of model UpperCAmelCase__ = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # Sequence classification model UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # CausalLM model UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # Seq2seq model UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" super().setUp() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCAmelCase__ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch UpperCAmelCase__ = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = """facebook/opt-350m""" super().setUp() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCAmelCase__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCAmelCase__ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): UpperCAmelCase__ = LoRALayer(module.q_proj , rank=16 ) UpperCAmelCase__ = LoRALayer(module.k_proj , rank=16 ) UpperCAmelCase__ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch UpperCAmelCase__ = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCAmelCase__ = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Any = """gpt2-xl""" lowerCAmelCase_ : Optional[Any] = 3.31_91_85_48_54_15_21_87
356
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCamelCase = datasets.logging.get_logger(__name__) UpperCamelCase = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' UpperCamelCase = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' UpperCamelCase = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : Dict=False , _lowerCamelCase : List[Any]=False , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[int]="dummy_doc"): lowercase__ : Dict = {doc: key_lines} lowercase__ : Optional[int] = {doc: sys_lines} lowercase__ : Tuple = {} lowercase__ : Union[str, Any] = 0 lowercase__ : str = 0 lowercase__ : Tuple = 0 lowercase__ : Optional[int] = 0 lowercase__ : str = 0 lowercase__ : str = 0 lowercase__ , lowercase__ : Union[str, Any] = reader.get_doc_mentions(_lowerCamelCase , key_doc_lines[doc] , _lowerCamelCase) key_singletons_num += singletons_num if NP_only or min_span: lowercase__ : int = reader.set_annotated_parse_trees(_lowerCamelCase , key_doc_lines[doc] , _lowerCamelCase , _lowerCamelCase) lowercase__ , lowercase__ : Union[str, Any] = reader.get_doc_mentions(_lowerCamelCase , sys_doc_lines[doc] , _lowerCamelCase) sys_singletons_num += singletons_num if NP_only or min_span: lowercase__ : Optional[int] = reader.set_annotated_parse_trees(_lowerCamelCase , key_doc_lines[doc] , _lowerCamelCase , _lowerCamelCase) if remove_nested: lowercase__ , lowercase__ : List[str] = reader.remove_nested_coref_mentions(_lowerCamelCase , _lowerCamelCase) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowercase__ , lowercase__ : List[Any] = reader.remove_nested_coref_mentions(_lowerCamelCase , _lowerCamelCase) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowercase__ : List[str] = reader.get_mention_assignments(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = reader.get_mention_assignments(_lowerCamelCase , _lowerCamelCase) lowercase__ : str = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " f'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''') logger.info( "Number of resulting singleton clusters in the key " f'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''') if not keep_singletons: logger.info( f'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' "files, respectively") return doc_coref_infos def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Tuple = get_coref_infos(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) lowercase__ : List[Any] = {} lowercase__ : List[str] = 0 lowercase__ : List[Any] = 0 for name, metric in metrics: lowercase__ , lowercase__ , lowercase__ : Dict = evaluator.evaluate_documents(_lowerCamelCase , _lowerCamelCase , beta=1) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'''{name}/recall''': recall, f'''{name}/precision''': precision, f'''{name}/f1''': fa}) logger.info( name.ljust(10) , f'''Recall: {recall * 100:.2f}''' , f''' Precision: {precision * 100:.2f}''' , f''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: lowercase__ : str = (conll / 3) * 100 logger.info(f'''CoNLL score: {conll:.2f}''') output_scores.update({"conll_score": conll}) return output_scores def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : List[str] = False for line in key_lines: if not line.startswith("#"): if len(line.split()) > 6: lowercase__ : Union[str, Any] = line.split()[5] if not parse_col == "-": lowercase__ : str = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def __UpperCamelCase ( self : Tuple , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=False , lowercase_ : Tuple=False , lowercase_ : Any=False ) -> Dict: lowercase__ : int = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: lowercase__ : Optional[int] = util.check_gold_parse_annotation(lowercase_ ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowercase__ : Any = evaluate( key_lines=lowercase_ , sys_lines=lowercase_ , metrics=lowercase_ , NP_only=lowercase_ , remove_nested=lowercase_ , keep_singletons=lowercase_ , min_span=lowercase_ , ) return score
87
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCamelCase = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCamelCase = '''UperNetConfig''' class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0 , lowerCAmelCase__ = False , lowerCAmelCase__ = 1 , ) -> None: super().__init__() SCREAMING_SNAKE_CASE = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , padding=lowerCAmelCase__ , bias=lowerCAmelCase__ , dilation=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = nn.BatchNormad(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = nn.ReLU() def __A ( self , lowerCAmelCase__ ) -> torch.Tensor: SCREAMING_SNAKE_CASE = self.conv(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.batch_norm(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.activation(lowerCAmelCase__ ) return output class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: super().__init__() SCREAMING_SNAKE_CASE = [ nn.AdaptiveAvgPoolad(lowerCAmelCase__ ), UperNetConvModule(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> torch.Tensor: SCREAMING_SNAKE_CASE = input for layer in self.layers: SCREAMING_SNAKE_CASE = layer(lowerCAmelCase__ ) return hidden_state class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: super().__init__() SCREAMING_SNAKE_CASE = pool_scales SCREAMING_SNAKE_CASE = align_corners SCREAMING_SNAKE_CASE = in_channels SCREAMING_SNAKE_CASE = channels SCREAMING_SNAKE_CASE = [] for i, pool_scale in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = UperNetPyramidPoolingBlock(pool_scale=lowerCAmelCase__ , in_channels=lowerCAmelCase__ , channels=lowerCAmelCase__ ) self.blocks.append(lowerCAmelCase__ ) self.add_module(str(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> List[torch.Tensor]: SCREAMING_SNAKE_CASE = [] for ppm in self.blocks: SCREAMING_SNAKE_CASE = ppm(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = nn.functional.interpolate( lowerCAmelCase__ , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(lowerCAmelCase__ ) return ppm_outs class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = config.pool_scales # e.g. (1, 2, 3, 6) SCREAMING_SNAKE_CASE = in_channels SCREAMING_SNAKE_CASE = config.hidden_size SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module SCREAMING_SNAKE_CASE = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) SCREAMING_SNAKE_CASE = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module SCREAMING_SNAKE_CASE = nn.ModuleList() SCREAMING_SNAKE_CASE = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer SCREAMING_SNAKE_CASE = UperNetConvModule(lowerCAmelCase__ , self.channels , kernel_size=1 ) SCREAMING_SNAKE_CASE = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(lowerCAmelCase__ ) self.fpn_convs.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __A ( self ) -> int: self.apply(self._init_weights ) def __A ( self , lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __A ( self , lowerCAmelCase__ ) -> Optional[int]: SCREAMING_SNAKE_CASE = inputs[-1] SCREAMING_SNAKE_CASE = [x] psp_outs.extend(self.psp_modules(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = torch.cat(lowerCAmelCase__ , dim=1 ) SCREAMING_SNAKE_CASE = self.bottleneck(lowerCAmelCase__ ) return output def __A ( self , lowerCAmelCase__ ) -> torch.Tensor: # build laterals SCREAMING_SNAKE_CASE = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(lowerCAmelCase__ ) ) # build top-down path SCREAMING_SNAKE_CASE = len(lowerCAmelCase__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE = laterals[i - 1].shape[2:] SCREAMING_SNAKE_CASE = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=lowerCAmelCase__ , mode='bilinear' , align_corners=self.align_corners ) # build outputs SCREAMING_SNAKE_CASE = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) SCREAMING_SNAKE_CASE = torch.cat(lowerCAmelCase__ , dim=1 ) SCREAMING_SNAKE_CASE = self.fpn_bottleneck(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.classifier(lowerCAmelCase__ ) return output class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 1 ) -> None: super().__init__() SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = config.auxiliary_in_channels SCREAMING_SNAKE_CASE = config.auxiliary_channels SCREAMING_SNAKE_CASE = config.auxiliary_num_convs SCREAMING_SNAKE_CASE = config.auxiliary_concat_input SCREAMING_SNAKE_CASE = in_index SCREAMING_SNAKE_CASE = (kernel_size // 2) * dilation SCREAMING_SNAKE_CASE = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=lowerCAmelCase__ , padding=lowerCAmelCase__ , dilation=lowerCAmelCase__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=lowerCAmelCase__ , padding=lowerCAmelCase__ , dilation=lowerCAmelCase__ ) ) if self.num_convs == 0: SCREAMING_SNAKE_CASE = nn.Identity() else: SCREAMING_SNAKE_CASE = nn.Sequential(*lowerCAmelCase__ ) if self.concat_input: SCREAMING_SNAKE_CASE = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=lowerCAmelCase__ , padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __A ( self ) -> Dict: self.apply(self._init_weights ) def __A ( self , lowerCAmelCase__ ) -> Dict: if isinstance(lowerCAmelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __A ( self , lowerCAmelCase__ ) -> torch.Tensor: # just take the relevant feature maps SCREAMING_SNAKE_CASE = encoder_hidden_states[self.in_index] SCREAMING_SNAKE_CASE = self.convs(lowerCAmelCase__ ) if self.concat_input: SCREAMING_SNAKE_CASE = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) SCREAMING_SNAKE_CASE = self.classifier(lowerCAmelCase__ ) return output class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = UperNetConfig SCREAMING_SNAKE_CASE_ : Optional[Any] = """pixel_values""" SCREAMING_SNAKE_CASE_ : Optional[int] = True def __A ( self , lowerCAmelCase__ ) -> List[str]: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __A ( self ) -> int: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = value __UpperCamelCase = R''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , lowerCamelCase_ , ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> Optional[int]: super().__init__(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) SCREAMING_SNAKE_CASE = UperNetHead(lowerCAmelCase__ , in_channels=self.backbone.channels ) SCREAMING_SNAKE_CASE = UperNetFCNHead(lowerCAmelCase__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def __A ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[tuple, SemanticSegmenterOutput]: SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = output_attentions if output_attentions is not None else self.config.output_attentions SCREAMING_SNAKE_CASE = self.backbone.forward_with_filtered_kwargs( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = outputs.feature_maps SCREAMING_SNAKE_CASE = self.decode_head(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = nn.functional.interpolate(lowerCAmelCase__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = None if self.auxiliary_head is not None: SCREAMING_SNAKE_CASE = self.auxiliary_head(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = nn.functional.interpolate( lowerCAmelCase__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss SCREAMING_SNAKE_CASE = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) SCREAMING_SNAKE_CASE = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: SCREAMING_SNAKE_CASE = (logits,) + outputs[1:] else: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
113
0
'''simple docstring''' from bisect import bisect from itertools import accumulate def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda _lowerCAmelCase : x[0] / x[1] , reverse=_lowerCAmelCase ) __lowercase , __lowercase =[i[0] for i in r], [i[1] for i in r] __lowercase =list(accumulate(_lowerCAmelCase ) ) __lowercase =bisect(_lowerCAmelCase , _lowerCAmelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' import functools def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =len(_lowerCAmelCase ) __lowercase =len(_lowerCAmelCase ) @functools.cache def min_distance(_lowerCAmelCase , _lowerCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __lowercase =int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _lowerCAmelCase ) , 1 + min_distance(_lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase = 1000 ) -> int: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1, 1 SCREAMING_SNAKE_CASE__ : List[str] = [] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ : int = prev_numerator + 2 * prev_denominator SCREAMING_SNAKE_CASE__ : Any = prev_numerator + prev_denominator if len(str(__lowerCAmelCase ) ) > len(str(__lowerCAmelCase ) ): result.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = numerator SCREAMING_SNAKE_CASE__ : Union[str, Any] = denominator return len(__lowerCAmelCase ) if __name__ == "__main__": print(f'{solution() = }')
132
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets a :str = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" a :List[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" a :int = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __a (datasets.Metric): '''simple docstring''' def _a ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def _a ( self , _a , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.0 for i, j in zip(_a , _a ): n_correct += 1.0 if math_equivalence.is_equiv(_a , _a ) else 0.0 SCREAMING_SNAKE_CASE__ : List[str] = n_correct / len(_a ) return { "accuracy": accuracy, }
132
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): '''simple docstring''' def __init__( self : int , lowercase : List[Any]=-1 ): '''simple docstring''' _snake_case = label_idx def A ( self : List[Any] , lowercase : str , lowercase : Union[Split, str] ): '''simple docstring''' if isinstance(_a , _a ): _snake_case = mode.value _snake_case = os.path.join(_a , f'''{mode}.txt''' ) _snake_case = 1 _snake_case = [] with open(_a , encoding='utf-8' ) as f: _snake_case = [] _snake_case = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_a , labels=_a ) ) guid_index += 1 _snake_case = [] _snake_case = [] else: _snake_case = line.split(' ' ) words.append(splits[0] ) if len(_a ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_a , labels=_a ) ) return examples def A ( self : Optional[Any] , lowercase : TextIO , lowercase : TextIO , lowercase : List ): '''simple docstring''' _snake_case = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(_a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(_a ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def A ( self : Any , lowercase : str ): '''simple docstring''' if path: with open(_a , 'r' ) as f: _snake_case = f.read().splitlines() if "O" not in labels: _snake_case = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class SCREAMING_SNAKE_CASE__ ( lowercase__ ): '''simple docstring''' def __init__( self : str ): '''simple docstring''' super().__init__(label_idx=-2 ) def A ( self : str , lowercase : str ): '''simple docstring''' if path: with open(_a , 'r' ) as f: _snake_case = f.read().splitlines() if "O" not in labels: _snake_case = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class SCREAMING_SNAKE_CASE__ ( lowercase__ ): '''simple docstring''' def A ( self : Any , lowercase : List[Any] , lowercase : Union[Split, str] ): '''simple docstring''' if isinstance(_a , _a ): _snake_case = mode.value _snake_case = os.path.join(_a , f'''{mode}.txt''' ) _snake_case = 1 _snake_case = [] with open(_a , encoding='utf-8' ) as f: for sentence in parse_incr(_a ): _snake_case = [] _snake_case = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(_a ) == len(_a ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_a , labels=_a ) ) guid_index += 1 return examples def A ( self : Tuple , lowercase : TextIO , lowercase : TextIO , lowercase : List ): '''simple docstring''' _snake_case = 0 for sentence in parse_incr(_a ): _snake_case = preds_list[example_id] _snake_case = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(_a ) example_id += 1 def A ( self : Optional[Any] , lowercase : str ): '''simple docstring''' if path: with open(_a , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
355
import baseaa def a_ ( __lowercase : str ) -> bytes: return baseaa.aaaencode(string.encode('utf-8' ) ) def a_ ( __lowercase : bytes ) -> str: return baseaa.aaadecode(__lowercase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
130
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig SCREAMING_SNAKE_CASE_ : int = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ : Optional[Any] = '''ResNetConfig''' # Base docstring SCREAMING_SNAKE_CASE_ : Any = '''microsoft/resnet-50''' SCREAMING_SNAKE_CASE_ : Dict = [1, 2_0_4_8, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''microsoft/resnet-50''' SCREAMING_SNAKE_CASE_ : Optional[Any] = '''tiger cat''' SCREAMING_SNAKE_CASE_ : List[str] = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class a ( nn.Module ): """simple docstring""" def __init__( self: Any , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int = 3 , UpperCamelCase: int = 1 , UpperCamelCase: str = "relu" ): """simple docstring""" super().__init__() A__ = nn.Convad( _lowerCAmelCase , _lowerCAmelCase , kernel_size=_lowerCAmelCase , stride=_lowerCAmelCase , padding=kernel_size // 2 , bias=_lowerCAmelCase ) A__ = nn.BatchNormad(_lowerCAmelCase ) A__ = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase ( self: Dict , UpperCamelCase: Tensor ): """simple docstring""" A__ = self.convolution(_lowerCAmelCase ) A__ = self.normalization(_lowerCAmelCase ) A__ = self.activation(_lowerCAmelCase ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self: List[str] , UpperCamelCase: ResNetConfig ): """simple docstring""" super().__init__() A__ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) A__ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) A__ = config.num_channels def UpperCamelCase ( self: List[str] , UpperCamelCase: Tensor ): """simple docstring""" A__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) A__ = self.embedder(_lowerCAmelCase ) A__ = self.pooler(_lowerCAmelCase ) return embedding class a ( nn.Module ): """simple docstring""" def __init__( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int = 2 ): """simple docstring""" super().__init__() A__ = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , kernel_size=1 , stride=_lowerCAmelCase , bias=_lowerCAmelCase ) A__ = nn.BatchNormad(_lowerCAmelCase ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Tensor ): """simple docstring""" A__ = self.convolution(_lowerCAmelCase ) A__ = self.normalization(_lowerCAmelCase ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int = 1 , UpperCamelCase: str = "relu" ): """simple docstring""" super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = ( ResNetShortCut(_lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(_lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase ) , ResNetConvLayer(_lowerCAmelCase , _lowerCAmelCase , activation=_lowerCAmelCase ) , ) A__ = ACTaFN[activation] def UpperCamelCase ( self: List[str] , UpperCamelCase: int ): """simple docstring""" A__ = hidden_state A__ = self.layer(_lowerCAmelCase ) A__ = self.shortcut(_lowerCAmelCase ) hidden_state += residual A__ = self.activation(_lowerCAmelCase ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self: Optional[int] , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int = 1 , UpperCamelCase: str = "relu" , UpperCamelCase: int = 4 ): """simple docstring""" super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = out_channels // reduction A__ = ( ResNetShortCut(_lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(_lowerCAmelCase , _lowerCAmelCase , kernel_size=1 ) , ResNetConvLayer(_lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase ) , ResNetConvLayer(_lowerCAmelCase , _lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase ) , ) A__ = ACTaFN[activation] def UpperCamelCase ( self: int , UpperCamelCase: Optional[Any] ): """simple docstring""" A__ = hidden_state A__ = self.layer(_lowerCAmelCase ) A__ = self.shortcut(_lowerCAmelCase ) hidden_state += residual A__ = self.activation(_lowerCAmelCase ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self: List[str] , UpperCamelCase: ResNetConfig , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int = 2 , UpperCamelCase: int = 2 , ): """simple docstring""" super().__init__() A__ = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer A__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase , activation=config.hidden_act ) , *[layer(_lowerCAmelCase , _lowerCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def UpperCamelCase ( self: int , UpperCamelCase: Tensor ): """simple docstring""" A__ = input for layer in self.layers: A__ = layer(_lowerCAmelCase ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self: List[str] , UpperCamelCase: ResNetConfig ): """simple docstring""" super().__init__() A__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) A__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowerCAmelCase , config.depths[1:] ): self.stages.append(ResNetStage(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , depth=_lowerCAmelCase ) ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Tensor , UpperCamelCase: bool = False , UpperCamelCase: bool = True ): """simple docstring""" A__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A__ = hidden_states + (hidden_state,) A__ = stage_module(_lowerCAmelCase ) if output_hidden_states: A__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase , ) class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = ResNetConfig UpperCAmelCase = "resnet" UpperCAmelCase = "pixel_values" UpperCAmelCase = True def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[Any] ): """simple docstring""" if isinstance(_lowerCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(_lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: List[str] , UpperCamelCase: str=False ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A__ = value SCREAMING_SNAKE_CASE_ : Any = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' SCREAMING_SNAKE_CASE_ : Optional[Any] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top.", _lowerCamelCase, ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Tuple , UpperCamelCase: Optional[Any] ): """simple docstring""" super().__init__(_lowerCAmelCase ) A__ = config A__ = ResNetEmbeddings(_lowerCAmelCase ) A__ = ResNetEncoder(_lowerCAmelCase ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: str , UpperCamelCase: Tensor , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None ): """simple docstring""" A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.embedder(_lowerCAmelCase ) A__ = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase ) A__ = encoder_outputs[0] A__ = self.pooler(_lowerCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ", _lowerCamelCase, ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: List[str] , UpperCamelCase: str ): """simple docstring""" super().__init__(_lowerCAmelCase ) A__ = config.num_labels A__ = ResNetModel(_lowerCAmelCase ) # classification head A__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Optional[torch.FloatTensor] = None , UpperCamelCase: Optional[torch.LongTensor] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None , ): """simple docstring""" A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.resnet(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(_lowerCAmelCase ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = """single_label_classification""" else: A__ = """multi_label_classification""" if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: A__ = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: A__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ", _lowerCamelCase, ) class a ( _lowerCamelCase, _lowerCamelCase ): """simple docstring""" def __init__( self: int , UpperCamelCase: Any ): """simple docstring""" super().__init__(_lowerCAmelCase ) super()._init_backbone(_lowerCAmelCase ) A__ = [config.embedding_size] + config.hidden_sizes A__ = ResNetEmbeddings(_lowerCAmelCase ) A__ = ResNetEncoder(_lowerCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @replace_return_docstrings(output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Tensor , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None ): """simple docstring""" A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = self.embedder(_lowerCAmelCase ) A__ = self.encoder(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase ) A__ = outputs.hidden_states A__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: A__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_lowerCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_lowerCAmelCase , )
335
from math import pi def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :int )->float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
159
0
from __future__ import annotations def __lowerCAmelCase ( lowercase : list[int] ) -> bool: """simple docstring""" return len(set(lowercase ) ) == len(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
356
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __lowerCAmelCase ( lowercase : int ) -> Tuple: """simple docstring""" snake_case : Any = fname.split(os.path.sep )[-1] return re.search(R"^(.*)_\d+\.jpg$" , lowercase ).groups()[0] class _lowerCAmelCase ( snake_case_ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = file_names snake_case : Optional[Any] = image_transform snake_case : Optional[int] = label_to_id def __len__( self ) -> Tuple: '''simple docstring''' return len(self.file_names ) def __getitem__( self , UpperCamelCase__ ) -> int: '''simple docstring''' snake_case : str = self.file_names[idx] snake_case : Any = PIL.Image.open(UpperCamelCase__ ) snake_case : Optional[int] = raw_image.convert("RGB" ) if self.image_transform is not None: snake_case : Optional[Any] = self.image_transform(UpperCamelCase__ ) snake_case : Optional[Any] = extract_label(UpperCamelCase__ ) if self.label_to_id is not None: snake_case : Optional[Any] = self.label_to_id[label] return {"image": image, "label": label} def __lowerCAmelCase ( lowercase : Any , lowercase : List[Any] ) -> List[str]: """simple docstring""" if args.with_tracking: snake_case : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: snake_case : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : str = config["lr"] snake_case : Union[str, Any] = int(config["num_epochs"] ) snake_case : str = int(config["seed"] ) snake_case : str = int(config["batch_size"] ) snake_case : Any = config["image_size"] if not isinstance(lowercase , (list, tuple) ): snake_case : str = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": snake_case : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): snake_case : Any = int(args.checkpointing_steps ) else: raise ValueError( F'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: snake_case : List[str] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: snake_case : Union[str, Any] = os.path.split(lowercase )[-1].split("." )[0] accelerator.init_trackers(lowercase , lowercase ) # Grab all the image filenames snake_case : int = [os.path.join(args.data_dir , lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences snake_case : Union[str, Any] = [extract_label(lowercase ) for fname in file_names] snake_case : Any = list(set(lowercase ) ) id_to_label.sort() snake_case : int = {lbl: i for i, lbl in enumerate(lowercase )} # Set the seed before splitting the data. np.random.seed(lowercase ) torch.manual_seed(lowercase ) torch.cuda.manual_seed_all(lowercase ) # Split our filenames between train and validation snake_case : Optional[Any] = np.random.permutation(len(lowercase ) ) snake_case : int = int(0.8 * len(lowercase ) ) snake_case : int = random_perm[:cut] snake_case : int = random_perm[cut:] # For training we use a simple RandomResizedCrop snake_case : List[Any] = Compose([RandomResizedCrop(lowercase , scale=(0.5, 1.0) ), ToTensor()] ) snake_case : List[str] = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase , label_to_id=lowercase ) # For evaluation, we use a deterministic Resize snake_case : Optional[Any] = Compose([Resize(lowercase ), ToTensor()] ) snake_case : Optional[Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase , label_to_id=lowercase ) # Instantiate dataloaders. snake_case : Optional[Any] = DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) snake_case : Tuple = DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : Optional[int] = create_model("resnet50d" , pretrained=lowercase , num_classes=len(lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case : Any = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): snake_case : Dict = False for param in model.get_classifier().parameters(): snake_case : List[Any] = True # We normalize the batches of images to be a bit faster. snake_case : Dict = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) snake_case : Union[str, Any] = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer snake_case : int = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler snake_case : Dict = OneCycleLR(optimizer=lowercase , max_lr=lowercase , epochs=lowercase , steps_per_epoch=len(lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case ,snake_case ,snake_case ,snake_case ,snake_case : List[str] = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # We need to keep track of how many total steps we have iterated over snake_case : List[Any] = 0 # We also need to keep track of the starting epoch so files are named properly snake_case : Optional[int] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) snake_case : List[str] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint snake_case : List[Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) snake_case : int = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` snake_case : Union[str, Any] = os.path.splitext(lowercase )[0] if "epoch" in training_difference: snake_case : Any = int(training_difference.replace("epoch_" , "" ) ) + 1 snake_case : int = None else: snake_case : Any = int(training_difference.replace("step_" , "" ) ) snake_case : Optional[int] = resume_step // len(lowercase ) resume_step -= starting_epoch * len(lowercase ) # Now we train the model for epoch in range(lowercase , lowercase ): model.train() if args.with_tracking: snake_case : Union[str, Any] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step snake_case : List[str] = accelerator.skip_first_batches(lowercase , lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader snake_case : Any = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case : List[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case : Optional[int] = (batch["image"] - mean) / std snake_case : str = model(lowercase ) snake_case : Dict = torch.nn.functional.cross_entropy(lowercase , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase , lowercase ): snake_case : Any = F'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: snake_case : List[str] = os.path.join(args.output_dir , lowercase ) accelerator.save_state(lowercase ) model.eval() snake_case : List[str] = 0 snake_case : List[str] = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case : int = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case : Tuple = (batch["image"] - mean) / std with torch.no_grad(): snake_case : Optional[int] = model(lowercase ) snake_case : List[Any] = outputs.argmax(dim=-1 ) snake_case ,snake_case : int = accelerator.gather_for_metrics((predictions, batch["label"]) ) snake_case : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() snake_case : List[Any] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}: {100 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(lowercase ), "epoch": epoch, } , step=lowercase , ) if checkpointing_steps == "epoch": snake_case : Optional[Any] = F'epoch_{epoch}' if args.output_dir is not None: snake_case : Union[str, Any] = os.path.join(args.output_dir , lowercase ) accelerator.save_state(lowercase ) if args.with_tracking: accelerator.end_training() def __lowerCAmelCase ( ) -> str: """simple docstring""" snake_case : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=lowercase , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=lowercase , default=lowercase , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=lowercase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=lowercase , default=lowercase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowercase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) snake_case : Optional[Any] = parser.parse_args() snake_case : List[str] = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
112
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) SCREAMING_SNAKE_CASE__ : int = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() ,__UpperCamelCase ) ) ,x.transpose() ) ,__UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = (1, 2, 1) SCREAMING_SNAKE_CASE__ : List[str] = (1, 1, 0, 7) SCREAMING_SNAKE_CASE__ : List[Any] = SARIMAX( __UpperCamelCase ,exog=__UpperCamelCase ,order=__UpperCamelCase ,seasonal_order=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ : Any = model.fit(disp=__UpperCamelCase ,maxiter=600 ,method="""nm""" ) SCREAMING_SNAKE_CASE__ : List[Any] = model_fit.predict(1 ,len(__UpperCamelCase ) ,exog=[test_match] ) return result[0] def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : int = SVR(kernel="""rbf""" ,C=1 ,gamma=0.1 ,epsilon=0.1 ) regressor.fit(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = regressor.predict(__UpperCamelCase ) return y_pred[0] def lowercase_ ( _snake_case ): train_user.sort() SCREAMING_SNAKE_CASE__ : Any = np.percentile(__UpperCamelCase ,25 ) SCREAMING_SNAKE_CASE__ : str = np.percentile(__UpperCamelCase ,75 ) SCREAMING_SNAKE_CASE__ : List[Any] = qa - qa SCREAMING_SNAKE_CASE__ : Optional[Any] = qa - (iqr * 0.1) return low_lim def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : int = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE__ : Optional[int] = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCAmelCase__ : str = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] UpperCAmelCase__ : int = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) UpperCAmelCase__ : Tuple = Normalizer().fit_transform(data_input_df.values) # split data UpperCAmelCase__ : Optional[Any] = normalize_df[:, 2].tolist() UpperCAmelCase__ : Union[str, Any] = normalize_df[:, 0].tolist() UpperCAmelCase__ : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCAmelCase__ : Any = normalize_df[:, [1, 2]].tolist() UpperCAmelCase__ : int = x[: len(x) - 1] UpperCAmelCase__ : Union[str, Any] = x[len(x) - 1 :] # for linear regression & sarimax UpperCAmelCase__ : Optional[int] = total_date[: len(total_date) - 1] UpperCAmelCase__ : Any = total_user[: len(total_user) - 1] UpperCAmelCase__ : Optional[Any] = total_match[: len(total_match) - 1] UpperCAmelCase__ : Dict = total_date[len(total_date) - 1 :] UpperCAmelCase__ : str = total_user[len(total_user) - 1 :] UpperCAmelCase__ : Optional[int] = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCAmelCase__ : Optional[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCAmelCase__ : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
25
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase_ = imread(R'digital_image_processing/image_data/lena_small.jpg') lowercase_ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase ( ): """simple docstring""" __A = cn.convert_to_negative(__UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase ( ): """simple docstring""" with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(__UpperCamelCase , 1_1_0 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def lowerCAmelCase ( ): """simple docstring""" __A = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase ( ): """simple docstring""" __A = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __A = canny.canny(__UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase ( ): """simple docstring""" assert gg.gaussian_filter(__UpperCamelCase , 5 , sigma=0.9 ).all() def lowerCAmelCase ( ): """simple docstring""" __A = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __A = conv.img_convolve(__UpperCamelCase , __UpperCamelCase ).astype(__UpperCamelCase ) assert res.any() def lowerCAmelCase ( ): """simple docstring""" assert med.median_filter(__UpperCamelCase , 3 ).any() def lowerCAmelCase ( ): """simple docstring""" __A , __A = sob.sobel_filter(__UpperCamelCase ) assert grad.any() and theta.any() def lowerCAmelCase ( ): """simple docstring""" __A = sp.make_sepia(__UpperCamelCase , 2_0 ) assert sepia.all() def lowerCAmelCase ( __UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" __A = bs.Burkes(imread(__UpperCamelCase , 1 ) , 1_2_0 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase ( __UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" __A = rs.NearestNeighbour(imread(__UpperCamelCase , 1 ) , 4_0_0 , 2_0_0 ) nn.process() assert nn.output.any() def lowerCAmelCase ( ): """simple docstring""" __A = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. __A = imread(__UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None __A = 0 __A = 0 __A = image[x_coordinate][y_coordinate] __A = lbp.get_neighbors_pixel( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __A = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __A = lbp.local_binary_value(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) assert lbp_image.any()
266
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = "donut-swin" __snake_case = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _UpperCAmelCase=2_24 , _UpperCAmelCase=4 , _UpperCAmelCase=3 , _UpperCAmelCase=96 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[3, 6, 12, 24] , _UpperCAmelCase=7 , _UpperCAmelCase=4.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = depths snake_case_ = len(_UpperCAmelCase ) snake_case_ = num_heads snake_case_ = window_size snake_case_ = mlp_ratio snake_case_ = qkv_bias snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = drop_path_rate snake_case_ = hidden_act snake_case_ = use_absolute_embeddings snake_case_ = layer_norm_eps snake_case_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) )
267
def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: snake_case_ = f'''Input value of [number={number}] must be > 0''' raise ValueError(SCREAMING_SNAKE_CASE ) snake_case_ = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
267
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType snake_case_ = logging.get_logger(__name__) snake_case_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Union[str, Any] = """layoutlmv3""" def __init__( self , a=5_0265 , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=2 , a=0.02 , a=1e-5 , a=1 , a=0 , a=2 , a=1024 , a=128 , a=128 , a=True , a=32 , a=128 , a=64 , a=256 , a=True , a=True , a=True , a=224 , a=3 , a=16 , a=None , **a , ): super().__init__( vocab_size=a , hidden_size=a , num_hidden_layers=a , num_attention_heads=a , intermediate_size=a , hidden_act=a , hidden_dropout_prob=a , attention_probs_dropout_prob=a , max_position_embeddings=a , type_vocab_size=a , initializer_range=a , layer_norm_eps=a , pad_token_id=a , bos_token_id=a , eos_token_id=a , **a , ) lowercase__ : Tuple = max_ad_position_embeddings lowercase__ : Optional[int] = coordinate_size lowercase__ : Optional[int] = shape_size lowercase__ : Dict = has_relative_attention_bias lowercase__ : str = rel_pos_bins lowercase__ : List[str] = max_rel_pos lowercase__ : List[str] = has_spatial_attention_bias lowercase__ : str = rel_ad_pos_bins lowercase__ : Union[str, Any] = max_rel_ad_pos lowercase__ : Optional[Any] = text_embed lowercase__ : List[Any] = visual_embed lowercase__ : Any = input_size lowercase__ : List[str] = num_channels lowercase__ : Union[str, Any] = patch_size lowercase__ : Union[str, Any] = classifier_dropout class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Optional[Any] = version.parse("""1.12""" ) @property def snake_case_ ( self): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ]) @property def snake_case_ ( self): return 1e-5 @property def snake_case_ ( self): return 12 def snake_case_ ( self , a , a = -1 , a = -1 , a = False , a = None , a = 3 , a = 40 , a = 40 , ): setattr(processor.image_processor , 'apply_ocr' , a) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ : str = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ : Dict = processor.tokenizer.num_special_tokens_to_add(a) lowercase__ : Any = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a) # Generate dummy inputs according to compute batch and sequence lowercase__ : str = [[' '.join([processor.tokenizer.unk_token]) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase__ : Optional[int] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase__ : List[Any] = self._generate_dummy_images(a , a , a , a) lowercase__ : Tuple = dict( processor( a , text=a , boxes=a , return_tensors=a , )) return inputs
214
from __future__ import annotations def snake_case__ ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ , lowercase__ : List[str] = set(SCREAMING_SNAKE_CASE_ ), [start] while stack: lowercase__ : Union[str, Any] = stack.pop() explored.add(SCREAMING_SNAKE_CASE_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE_ ) return explored snake_case_ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
214
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = RobertaPreLayerNormConfig.from_pretrained( snake_case_,architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict _A : int = torch.load(hf_hub_download(repo_id=snake_case_,filename="""pytorch_model.bin""" ) ) _A : Dict = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): _A : List[str] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue _A : int = tensor_value _A : int = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case_,config=snake_case_,state_dict=snake_case_ ) model.save_pretrained(snake_case_ ) # convert tokenizer _A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) tokenizer.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
0
import math def __lowercase ( lowerCamelCase : int ): assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCamelCase_ : int = range(3 , int(math.sqrt(lowerCamelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Optional[int]=1 , **lowerCamelCase : List[str] ): UpperCamelCase_ : str = factor * value UpperCamelCase_ : List[Any] = value while not is_prime(lowerCamelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase ) return value
175
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP a_ = False try: a_ = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class _lowercase : def __init__( self : Dict , snake_case : str = None , snake_case : list = [] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Any = 0 UpperCamelCase_ : Optional[Any] = choices UpperCamelCase_ : Any = prompt if sys.platform == "win32": UpperCamelCase_ : Optional[Any] = '*' else: UpperCamelCase_ : str = '➔ ' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : List[str] , snake_case : str = "" ) -> List[Any]: """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , snake_case ) else: forceWrite(self.choices[index] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : int ) -> List[Any]: """simple docstring""" if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(snake_case ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Direction , snake_case : int = 1 ) -> List[str]: """simple docstring""" UpperCamelCase_ : Any = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(snake_case ) move_cursor(snake_case , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: """simple docstring""" move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(snake_case )] for number in range(1_0 )] ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: """simple docstring""" UpperCamelCase_ : List[Any] = int(chr(self.current_selection ) ) UpperCamelCase_ : Optional[int] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , snake_case ) else: return else: return def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : int = 0 ) -> Union[str, Any]: """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) UpperCamelCase_ : Optional[int] = default_choice for i in range(len(self.choices ) ): self.print_choice(snake_case ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: UpperCamelCase_ : Tuple = int(builtins.input() ) except ValueError: UpperCamelCase_ : Tuple = default_choice else: UpperCamelCase_ : Optional[Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(snake_case , '\n' ) return choice
175
1
'''simple docstring''' class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : str = "" , lowerCAmelCase__ : bool = False ) -> None: """simple docstring""" _UpperCAmelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase : Union[str, Any] = is_leaf _UpperCAmelCase : Any = prefix def _lowerCAmelCase ( self : int , lowerCAmelCase__ : str ) -> tuple[str, str, str]: """simple docstring""" _UpperCAmelCase : Optional[int] = 0 for q, w in zip(self.prefix , lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : list[str] ) -> None: """simple docstring""" for word in words: self.insert(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str ) -> None: """simple docstring""" if self.prefix == word: _UpperCAmelCase : Optional[int] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase : Dict = RadixNode(prefix=lowerCAmelCase__ , is_leaf=lowerCAmelCase__ ) else: _UpperCAmelCase : Dict = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase : Optional[Any] = remaining_prefix _UpperCAmelCase : Optional[Any] = self.nodes[matching_string[0]] _UpperCAmelCase : Optional[Any] = RadixNode(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = aux_node if remaining_word == "": _UpperCAmelCase : Optional[Any] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str ) -> bool: """simple docstring""" _UpperCAmelCase : int = self.nodes.get(word[0] , lowerCAmelCase__ ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> bool: """simple docstring""" _UpperCAmelCase : Optional[int] = self.nodes.get(word[0] , lowerCAmelCase__ ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase : Optional[int] = list(self.nodes.values() )[0] _UpperCAmelCase : Union[str, Any] = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase : Any = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase : int = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase : str = list(incoming_node.nodes.values() )[0] _UpperCAmelCase : str = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase : Optional[int] = merging_node.nodes return True def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int = 0 ) -> None: """simple docstring""" if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = "banana bananas bandana band apple all beast".split() _UpperCAmelCase : Union[str, Any] = RadixNode() root.insert_many(a_ ) assert all(root.find(a_ ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def __UpperCAmelCase ( ): assert test_trie() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = RadixNode() _UpperCAmelCase : Union[str, Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(a_ ) print("Words:", a_ ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
17
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase_ : int = '''bart''' UpperCAmelCase_ : int = True @st.cache(allow_output_mutation=__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: """simple docstring""" if LOAD_DENSE_INDEX: UpperCamelCase :Optional[Any] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) UpperCamelCase :Union[str, Any] = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) UpperCamelCase :Optional[int] = qar_model.eval() else: UpperCamelCase , UpperCamelCase :Optional[int] = (None, None) if MODEL_TYPE == "bart": UpperCamelCase :Any = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) UpperCamelCase :Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) UpperCamelCase :Optional[int] = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) UpperCamelCase :Optional[Any] = sas_model.eval() else: UpperCamelCase , UpperCamelCase :Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: UpperCamelCase :Tuple = faiss.StandardGpuResources() UpperCamelCase :Dict = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] UpperCamelCase :str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) UpperCamelCase :Optional[Any] = faiss.IndexFlatIP(128 ) UpperCamelCase :Optional[int] = faiss.index_cpu_to_gpu(__magic_name__ , 1 , __magic_name__ ) wikiaab_gpu_index_flat.add(__magic_name__ ) # TODO fix for larger GPU else: UpperCamelCase , UpperCamelCase :Optional[Any] = (None, None) UpperCamelCase :List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> str: """simple docstring""" UpperCamelCase :Dict = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) UpperCamelCase :List[Any] = elia["""train_eli5"""] UpperCamelCase :Optional[Any] = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) UpperCamelCase :Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__magic_name__ ) return (elia_train, eli5_train_q_index) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = load_indexes() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = load_models() UpperCAmelCase_ , UpperCAmelCase_ : str = load_train_data() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : Any=10 ) -> Any: """simple docstring""" UpperCamelCase :List[str] = embed_questions_for_retrieval([question] , __magic_name__ , __magic_name__ ) UpperCamelCase , UpperCamelCase :int = eli5_train_q_index.search(__magic_name__ , __magic_name__ ) UpperCamelCase :Any = [elia_train[int(__magic_name__ )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : List[str]="wiki40b" , __magic_name__ : str="dense" , __magic_name__ : Tuple=10 ) -> List[str]: """simple docstring""" if source == "none": UpperCamelCase , UpperCamelCase :Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": UpperCamelCase , UpperCamelCase :List[Any] = query_qa_dense_index( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: UpperCamelCase , UpperCamelCase :List[Any] = query_es_index( __magic_name__ , __magic_name__ , index_name="""english_wiki40b_snippets_100w""" , n_results=__magic_name__ , ) UpperCamelCase :str = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] UpperCamelCase :Tuple = """question: {} context: {}""".format(__magic_name__ , __magic_name__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __magic_name__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __magic_name__ : None), } ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=64 , __magic_name__ : int=256 , __magic_name__ : Dict=False , __magic_name__ : str=2 , __magic_name__ : str=0.95 , __magic_name__ : Dict=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): UpperCamelCase :Optional[Any] = qa_sas_generate( __magic_name__ , __magic_name__ , __magic_name__ , num_answers=1 , num_beams=__magic_name__ , min_len=__magic_name__ , max_len=__magic_name__ , do_sample=__magic_name__ , temp=__magic_name__ , top_p=__magic_name__ , top_k=__magic_name__ , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar UpperCAmelCase_ : List[Any] = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' UpperCAmelCase_ : Union[str, Any] = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase_ : List[str] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase_ : Dict = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] UpperCAmelCase_ : Tuple = st.sidebar.checkbox('''Demo options''') if demo_options: UpperCAmelCase_ : str = st.sidebar.selectbox( '''''', action_list, index=3, ) UpperCAmelCase_ : str = action_list.index(action_st) UpperCAmelCase_ : int = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) UpperCAmelCase_ : str = show_type == '''Show full text of passages''' else: UpperCAmelCase_ : str = 3 UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Optional[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: UpperCAmelCase_ : Any = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) UpperCAmelCase_ : int = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) UpperCAmelCase_ : List[Any] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: UpperCAmelCase_ : Optional[Any] = '''wiki40b''' UpperCAmelCase_ : Any = '''dense''' UpperCAmelCase_ : int = '''beam''' UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Optional[Any] = 64 UpperCAmelCase_ : str = 2_56 UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : str = st.sidebar.checkbox('''Generation options''') if generate_options: UpperCAmelCase_ : Optional[Any] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) UpperCAmelCase_ : Optional[Any] = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) UpperCAmelCase_ : int = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) UpperCAmelCase_ : Optional[Any] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase_ : Optional[Any] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase_ : int = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase_ : Tuple = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase_ : Optional[int] = None # start main text UpperCAmelCase_ : Optional[int] = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] UpperCAmelCase_ : List[Any] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase_ : Union[str, Any] = st.text_input('''Enter your question here:''', '''''') else: UpperCAmelCase_ : Optional[Any] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase_ , UpperCAmelCase_ : Dict = make_support(question, source=wiki_source, method='''dense''', n_results=10) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) UpperCAmelCase_ : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase_ : Any = support_list[:10] UpperCAmelCase_ : Optional[Any] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase_ , UpperCAmelCase_ : str = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): UpperCAmelCase_ : Any = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) UpperCAmelCase_ : List[Any] = res[1].strip() if sec_titles == "": UpperCAmelCase_ : Union[str, Any] = '''[{}]({})'''.format(res[0], wiki_url) else: UpperCAmelCase_ : str = sec_titles.split(''' & ''') UpperCAmelCase_ : str = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase_ : Any = find_nearest_training(question) UpperCAmelCase_ : Optional[int] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) UpperCAmelCase_ : Dict = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) UpperCAmelCase_ : int = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
38
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = text.split(_a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )] def lowerCamelCase_ ( _a : dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_a ): titles.append(title if title is not None else """""" ) texts.append(_a ) return {"title": titles, "text": texts} def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ): '''simple docstring''' UpperCAmelCase_ : List[str] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase_ : Optional[int] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a ) UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase_ : Any = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase_ : List[str] = dataset.map( partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , ) # And finally save your dataset UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_a ) # And save the index UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _snake_case : '''simple docstring''' A__ : str = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) A__ : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) A__ : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) A__ : Optional[str] = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _snake_case : '''simple docstring''' A__ : Optional[int] = field( default=__snake_case , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A__ : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _snake_case : '''simple docstring''' A__ : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A__ : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
345
0
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = math.inf , SCREAMING_SNAKE_CASE = -math.inf , SCREAMING_SNAKE_CASE = math.inf , SCREAMING_SNAKE_CASE = -math.inf , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = 0.01 , SCREAMING_SNAKE_CASE = 1 , ): '''simple docstring''' __UpperCamelCase :Optional[int] = False __UpperCamelCase :Tuple = search_prob __UpperCamelCase :int = start_temperate __UpperCamelCase :Any = [] __UpperCamelCase :Union[str, Any] = 0 __UpperCamelCase :Tuple = None while not search_end: __UpperCamelCase :Any = current_state.score() if best_state is None or current_score > best_state.score(): __UpperCamelCase :str = current_state scores.append(SCREAMING_SNAKE_CASE ) iterations += 1 __UpperCamelCase :Dict = None __UpperCamelCase :Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __UpperCamelCase :Optional[int] = random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor __UpperCamelCase :Optional[Any] = neighbors.pop(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __UpperCamelCase :Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __UpperCamelCase :Dict = picked_neighbor else: __UpperCamelCase :Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __UpperCamelCase :Dict = picked_neighbor __UpperCamelCase :Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __UpperCamelCase :Tuple = True else: __UpperCamelCase :int = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __lowercase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowercase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) __lowercase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowercase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return (3 * x**2) - (6 * y) __lowercase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowercase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' ) __lowercase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowercase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' )
358
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = 0 def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''') self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Dict = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Union[str, Any] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :str = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Union[str, Any] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Optional[Any] = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(__lowercase).to_dict() config_dict.pop('''image_processor_type''') __UpperCamelCase :List[str] = CLIPImageProcessor(**__lowercase) # save in new folder model_config.save_pretrained(__lowercase) config.save_pretrained(__lowercase) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) # make sure private variable is not incorrectly saved __UpperCamelCase :Union[str, Any] = json.loads(config.to_json_string()) self.assertTrue('''_processor_class''' not in dict_as_saved) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with self.assertRaisesRegex( __lowercase , '''clip-base is not a local folder and is not a valid model identifier'''): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''clip-base''') def UpperCamelCase__ ( self) -> List[Any]: with self.assertRaisesRegex( __lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCamelCase :str = AutoImageProcessor.from_pretrained(__lowercase , revision='''aaaaaa''') def UpperCamelCase__ ( self) -> List[str]: with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''') def UpperCamelCase__ ( self) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase): __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase): __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''') def UpperCamelCase__ ( self) -> Optional[Any]: try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoImageProcessor.register(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :List[str] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :int = CustomImageProcessor.from_pretrained(__lowercase) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :int = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self) -> List[Any]: class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = True try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # If remote code is not set, the default is to use local __UpperCamelCase :str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(not hasattr(__lowercase , '''is_local''')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
105
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :Any = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) __A : str = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __A : List[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = {} with open(_SCREAMING_SNAKE_CASE , '''r''' ) as file: for line_number, line in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = line.strip() if line: _UpperCAmelCase = line.split() _UpperCAmelCase = line_number _UpperCAmelCase = words[0] _UpperCAmelCase = value return result def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' for attribute in key.split('''.''' ): _UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] _UpperCAmelCase = '''param''' if weight_type is not None and weight_type != "param": _UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape elif weight_type is not None and weight_type == "param": _UpperCAmelCase = hf_pointer for attribute in hf_param_name.split('''.''' ): _UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shape_pointer.shape # let's reduce dimension _UpperCAmelCase = value[0] else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): _UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] _UpperCAmelCase = '''param''' if weight_type is not None and weight_type != "param": _UpperCAmelCase = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _UpperCAmelCase = '''.'''.join([key, hf_param_name] ) else: _UpperCAmelCase = key _UpperCAmelCase = value if '''lm_head''' in full_key else value[0] __A : Any = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' _UpperCAmelCase = False for key, mapped_key in MAPPING.items(): _UpperCAmelCase = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(_SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] _UpperCAmelCase = mapped_key.replace('''*''' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: _UpperCAmelCase = '''weight_g''' elif "weight_v" in name: _UpperCAmelCase = '''weight_v''' elif "bias" in name: _UpperCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase = '''weight''' else: _UpperCAmelCase = None if hf_dict is not None: rename_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return is_used return is_used def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCAmelCase = True else: _UpperCAmelCase = load_wavaveca_layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] _UpperCAmelCase = name.split('''.''' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[str]=False ): '''simple docstring''' if config_path is not None: _UpperCAmelCase = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = WavaVecaConfig() if is_seq_class: _UpperCAmelCase = read_txt_into_dict(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = idalabel _UpperCAmelCase = WavaVecaForSequenceClassification(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) elif is_finetuned: if dict_path: _UpperCAmelCase = Dictionary.load(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase = target_dict.pad_index _UpperCAmelCase = target_dict.bos_index _UpperCAmelCase = target_dict.eos_index _UpperCAmelCase = len(target_dict.symbols ) _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase = 0 _UpperCAmelCase = 1 with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = WavaVecaCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = True if config.feat_extract_norm == '''layer''' else False _UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = WavaVecaForCTC(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = WavaVecaForPreTraining(_SCREAMING_SNAKE_CASE ) if is_finetuned or is_seq_class: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _UpperCAmelCase = argparse.Namespace(task='''audio_pretraining''' ) _UpperCAmelCase = fairseq.tasks.setup_task(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , not is_finetuned ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __A : List[Any] = parser.parse_args() __A : Optional[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def UpperCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) _UpperCAmelCase : List[str] = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(_UpperCAmelCase ) DownloadCommand.register_subcommand(_UpperCAmelCase ) EnvironmentCommand.register_subcommand(_UpperCAmelCase ) RunCommand.register_subcommand(_UpperCAmelCase ) ServeCommand.register_subcommand(_UpperCAmelCase ) UserCommands.register_subcommand(_UpperCAmelCase ) AddNewModelCommand.register_subcommand(_UpperCAmelCase ) AddNewModelLikeCommand.register_subcommand(_UpperCAmelCase ) LfsCommands.register_subcommand(_UpperCAmelCase ) PTtoTFCommand.register_subcommand(_UpperCAmelCase ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(_UpperCAmelCase , "func" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : List[Any] = args.func(_UpperCAmelCase ) service.run() if __name__ == "__main__": main()
31
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __lowerCAmelCase : str = False __lowerCAmelCase : List[str] = True __lowerCAmelCase : Union[str, Any] = False if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : str = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __lowerCAmelCase : Optional[int] = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __lowerCAmelCase : str = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __lowerCAmelCase : Any = reader.read() __lowerCAmelCase : int = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __lowerCAmelCase : Any = UNetaDModel(**config) else: __lowerCAmelCase : List[str] = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __lowerCAmelCase : str = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __lowerCAmelCase : Union[str, Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __lowerCAmelCase : Dict = config[key] del config[key] __lowerCAmelCase : int = [k.replace("UNetRes", "") for k in config["down_block_types"]] __lowerCAmelCase : Optional[Any] = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __lowerCAmelCase : Any = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __lowerCAmelCase : Tuple = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __lowerCAmelCase : Dict = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __lowerCAmelCase : Union[str, Any] = param_value __lowerCAmelCase : str = True if not has_changed: __lowerCAmelCase : Union[str, Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
156
0
from math import factorial def snake_case (UpperCAmelCase__ = 2_0 ) -> int: UpperCamelCase_: List[str] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCamelCase_: int = n // 2 return int(factorial(UpperCAmelCase__ ) / (factorial(UpperCAmelCase__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: A_ : Optional[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
292
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Dict = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''xglm''' a : List[Any] =['''past_key_values'''] a : Union[str, Any] ={ '''num_attention_heads''': '''attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowerCamelCase=2_5_6_0_0_8 , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=2_4 , _lowerCamelCase=1_6 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: List[str] = d_model UpperCamelCase_: List[Any] = ffn_dim UpperCamelCase_: List[Any] = num_layers UpperCamelCase_: List[Any] = attention_heads UpperCamelCase_: Tuple = activation_function UpperCamelCase_: Tuple = dropout UpperCamelCase_: Tuple = attention_dropout UpperCamelCase_: Optional[Any] = activation_dropout UpperCamelCase_: List[str] = layerdrop UpperCamelCase_: Any = init_std UpperCamelCase_: Any = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_: Union[str, Any] = use_cache super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
292
1
"""simple docstring""" from __future__ import annotations import requests __A : Optional[Any] = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def lowercase ( __snake_case : str , __snake_case : int = 1 , __snake_case : str = "new" , __snake_case : list | None = None ): lowercase_ : Tuple = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): lowercase_ : Union[str, Any] = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(__snake_case ) lowercase_ : Optional[Any] = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_2_9: raise requests.HTTPError lowercase_ : Optional[int] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} lowercase_ : str = {} for id_ in range(__snake_case ): lowercase_ : Dict = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
33
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int: super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) _A : Optional[int] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def a__ ( self ) -> Optional[Any]: _A : Tuple = None _A : int = None _A : Tuple = None _A : Union[str, Any] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits _A : int = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class lowercase : def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _A : Dict = dataset _A : int = name _A : Union[str, Any] = con _A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _A : str = num_proc _A : Optional[Any] = to_sql_kwargs def a__ ( self ) -> int: _A : Any = self.to_sql_kwargs.pop("""sql""" , _a ) _A : List[str] = self.to_sql_kwargs.pop("""con""" , _a ) _A : int = self.to_sql_kwargs.pop("""index""" , _a ) _A : List[str] = self._write(index=_a , **self.to_sql_kwargs ) return written def a__ ( self , _a ) -> Optional[int]: _A , _A , _A : List[str] = args _A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs _A : str = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) _A : Tuple = batch.to_pandas() _A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def a__ ( self , _a , **_a ) -> int: _A : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _A , _A : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
26
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class a ( lowerCamelCase__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = 8 # DPR tok lowerCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__A , exist_ok=__A ) lowerCAmelCase = os.path.join(__A , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCAmelCase = dict(zip(__A , range(len(__A ) ) ) ) lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCAmelCase = {'''unk_token''': '''<unk>'''} lowerCAmelCase = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__A , exist_ok=__A ) lowerCAmelCase = os.path.join(__A , BART_VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join(__A , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__A ) ) def UpperCamelCase__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = os.path.join(self.tmpdirname , 'rag_tokenizer' ) lowerCAmelCase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCAmelCase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__A ) rag_tokenizer.save_pretrained(__A ) lowerCAmelCase = RagTokenizer.from_pretrained(__A , config=__A ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __A ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __A ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) lowerCAmelCase = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] lowerCAmelCase = tokenizer(__A ) self.assertIsNotNone(__A ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) lowerCAmelCase = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] lowerCAmelCase = tokenizer(__A ) self.assertIsNotNone(__A )
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCAmelCase (__A): """simple docstring""" _a , _a = analyze_text(__A) _a = list(''' ''' + ascii_lowercase) # what is our total sum of probabilities. _a = sum(single_char_strings.values()) # one length string _a = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _a = single_char_strings[ch] _a = my_str / all_sum my_fir_sum += prob * math.loga(__A) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum):.1f}''') # two len string _a = sum(two_char_strings.values()) _a = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _a = cha + cha if sequence in two_char_strings: _a = two_char_strings[sequence] _a = int(__A) / all_sum my_sec_sum += prob * math.loga(__A) # print second entropy print(F'''{round(-1 * my_sec_sum):.1f}''') # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum)):.1f}''') def lowerCAmelCase (__A): """simple docstring""" _a = Counter() # type: ignore _a = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__A) - 1): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCAmelCase (): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
211
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } lowercase_ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } lowercase_ = { "facebook/m2m100_418M": 1_024, } # fmt: off lowercase_ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = ['input_ids', 'attention_mask'] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__(self , A , A , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<pad>" , A="<unk>" , A="m2m100" , A = None , A=8 , **A , ) -> None: """simple docstring""" _a = {} if sp_model_kwargs is None else sp_model_kwargs _a = language_codes _a = FAIRSEQ_LANGUAGE_CODES[language_codes] _a = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} _a = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A ) for lang_code in fairseq_language_code if self.get_lang_token(A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A , tgt_lang=A , bos_token=A , eos_token=A , sep_token=A , unk_token=A , pad_token=A , language_codes=A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A , **A , ) _a = vocab_file _a = load_json(A ) _a = {v: k for k, v in self.encoder.items()} _a = spm_file _a = load_spm(A , self.sp_model_kwargs ) _a = len(self.encoder ) _a = { self.get_lang_token(A ): self.encoder_size + i for i, lang_code in enumerate(A ) } _a = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A )} _a = {v: k for k, v in self.lang_token_to_id.items()} _a = src_lang if src_lang is not None else '''en''' _a = tgt_lang _a = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _a = num_madeup_words @property def a__ (self ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def a__ (self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a__ (self , A ) -> None: """simple docstring""" _a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ (self , A ) -> List[str]: """simple docstring""" return self.sp_model.encode(A , out_type=A ) def a__ (self , A ) -> Union[str, Any]: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A , self.encoder[self.unk_token] ) def a__ (self , A ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A , self.unk_token ) def a__ (self , A ) -> Dict: """simple docstring""" _a = [] _a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token _a = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def a__ (self , A , A = None , A = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) _a = [1] * len(self.prefix_tokens ) _a = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A )) + suffix_ones return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones def a__ (self , A , A = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ (self ) -> Dict: """simple docstring""" _a = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Dict: """simple docstring""" _a = self.__dict__.copy() _a = None return state def __setstate__(self , A ) -> None: """simple docstring""" _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = load_spm(self.spm_file , self.sp_model_kwargs ) def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" _a = Path(A ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) _a = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _a = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , A ) if os.path.abspath(self.spm_file ) != os.path.abspath(A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A ) elif not os.path.isfile(self.spm_file ): with open(A , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(A ) return (str(A ), str(A )) def a__ (self , A , A = "en" , A = None , A = "ro" , **A , ) -> BatchEncoding: """simple docstring""" _a = src_lang _a = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A , A , **A ) def a__ (self , A , A , A , **A ) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _a = src_lang _a = self(A , add_special_tokens=A , **A ) _a = self.get_lang_id(A ) _a = tgt_lang_id return inputs def a__ (self ) -> Optional[Any]: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def a__ (self ) -> Tuple: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ (self , A ) -> None: """simple docstring""" _a = self.get_lang_token(A ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def a__ (self , A ) -> None: """simple docstring""" _a = self.get_lang_token(A ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def a__ (self , A ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def a__ (self , A ) -> int: """simple docstring""" _a = self.get_lang_token(A ) return self.lang_token_to_id[lang_token] def lowerCAmelCase (__A , __A): """simple docstring""" _a = sentencepiece.SentencePieceProcessor(**__A) spm.Load(str(__A)) return spm def lowerCAmelCase (__A): """simple docstring""" with open(__A , '''r''') as f: return json.load(__A) def lowerCAmelCase (__A , __A): """simple docstring""" with open(__A , '''w''') as f: json.dump(__A , __A , indent=2)
211
1
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = ProphetNetTokenizer __UpperCAmelCase : List[Any] = False def __lowercase ( self : Tuple ): '''simple docstring''' super().setUp() _a : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Dict ,_a : Union[str, Any] ): '''simple docstring''' _a : Any = 'UNwant\u00E9d,running' _a : Any = 'unwanted, running' return input_text, output_text def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Any = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_a ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,[9, 6, 7, 12, 10, 11] ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def __lowercase ( self : str ): '''simple docstring''' _a : int = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : str ): '''simple docstring''' _a : List[Any] = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : int ): '''simple docstring''' _a : Tuple = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Dict = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[Any] = BasicTokenizer(do_lower_case=_a ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _a : List[str] = {} for i, token in enumerate(_a ): _a : List[str] = i _a : Any = WordpieceTokenizer(vocab=_a ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) @require_torch def __lowercase ( self : Dict ): '''simple docstring''' _a : Union[str, Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _a : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : str = [1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102] _a : Union[str, Any] = tokenizer(_a ,padding=_a ,return_tensors='pt' ) self.assertIsInstance(_a ,_a ) _a : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_a ,_a ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) def __lowercase ( self : int ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __lowercase ( self : List[str] ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __lowercase ( self : str ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _a : Tuple = tokenizer.encode('sequence builders' ,add_special_tokens=_a ) _a : Union[str, Any] = tokenizer.encode('multi-sequence build' ,add_special_tokens=_a ) _a : int = tokenizer.build_inputs_with_special_tokens(_a ) _a : str = tokenizer.build_inputs_with_special_tokens(_a ,_a ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
351
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=36 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1000 , )-> int: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =patch_size lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =coordinate_size lowerCamelCase_ =shape_size lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =scope lowerCamelCase_ =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase_ =text_seq_length lowerCamelCase_ =(image_size // patch_size) ** 2 + 1 lowerCamelCase_ =self.text_seq_length + self.image_seq_length def _snake_case ( self )-> Dict: lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowerCamelCase_ =bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase_ =bbox[i, j, 3] lowerCamelCase_ =bbox[i, j, 1] lowerCamelCase_ =tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase_ =bbox[i, j, 2] lowerCamelCase_ =bbox[i, j, 0] lowerCamelCase_ =tmp_coordinate lowerCamelCase_ =tf.constant(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCamelCase_ =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =TFLayoutLMvaModel(config=_SCREAMING_SNAKE_CASE ) # text + image lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase_ =model({"""pixel_values""": pixel_values} , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: lowerCamelCase_ =self.num_labels lowerCamelCase_ =TFLayoutLMvaForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[Any]: lowerCamelCase_ =self.num_labels lowerCamelCase_ =TFLayoutLMvaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Any: lowerCamelCase_ =2 lowerCamelCase_ =TFLayoutLMvaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.prepare_config_and_inputs() ((lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_)) =config_and_inputs lowerCamelCase_ ={ """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Union[str, Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _UpperCamelCase:str = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) _UpperCamelCase:List[Any] = False _UpperCamelCase:List[str] = False _UpperCamelCase:List[str] = False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]: return True def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> dict: lowerCamelCase_ =copy.deepcopy(_SCREAMING_SNAKE_CASE ) if model_class in get_values(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ ={ k: tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_SCREAMING_SNAKE_CASE , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowerCamelCase_ =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _snake_case ( self )-> Dict: lowerCamelCase_ =TFLayoutLMvaModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )-> Any: self.config_tester.run_common_tests() def _snake_case ( self )-> Tuple: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(_SCREAMING_SNAKE_CASE ) if getattr(_SCREAMING_SNAKE_CASE , """hf_compute_loss""" , _SCREAMING_SNAKE_CASE ): # The number of elements in the loss should be the same as the number of elements in the label lowerCamelCase_ =self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_SCREAMING_SNAKE_CASE )[0] ] lowerCamelCase_ =added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowerCamelCase_ =self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =prepared_for_class.pop("""input_ids""" ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowerCamelCase_ =self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: lowerCamelCase_ =prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowerCamelCase_ =-100 lowerCamelCase_ =tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowerCamelCase_ =self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowerCamelCase_ =self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) # Get keys that were added with the _prepare_for_class function lowerCamelCase_ =prepared_for_class.keys() - inputs_dict.keys() lowerCamelCase_ =inspect.signature(model.call ).parameters lowerCamelCase_ =list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowerCamelCase_ ={0: """input_ids"""} for label_key in label_keys: lowerCamelCase_ =signature_names.index(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =label_key lowerCamelCase_ =sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowerCamelCase_ =[] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowerCamelCase_ =prepared_for_class[value] lowerCamelCase_ =tuple(_SCREAMING_SNAKE_CASE ) # Send to model lowerCamelCase_ =model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _snake_case ( self )-> Tuple: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[int]: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ =type self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Any: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> int: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[str]: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> Optional[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =TFLayoutLMvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( ) ->str: """simple docstring""" lowerCamelCase_ =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def _snake_case ( self )-> List[Any]: return LayoutLMvaImageProcessor(apply_ocr=_SCREAMING_SNAKE_CASE ) if is_vision_available() else None @slow def _snake_case ( self )-> List[Any]: lowerCamelCase_ =TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""tf""" ).pixel_values lowerCamelCase_ =tf.constant([[1, 2]] ) lowerCamelCase_ =tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowerCamelCase_ =model(input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) # verify the logits lowerCamelCase_ =(1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
154
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase ( _A : Optional[Any] , _A : List[str]=7 ) ->str: """simple docstring""" lowerCamelCase_ =None if token is not None: lowerCamelCase_ ={"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} # The id of a workflow (not of a workflow run) lowerCamelCase_ ="""636036""" lowerCamelCase_ =f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' lowerCamelCase_ =requests.get(_A , headers=_A ).json() return result["workflow_runs"] def __UpperCamelCase ( _A : Optional[int] ) ->int: """simple docstring""" lowerCamelCase_ =get_daily_ci_runs(_A ) lowerCamelCase_ =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCamelCase_ =workflow_run["""id"""] break return workflow_run_id def __UpperCamelCase ( _A : Any , _A : int , _A : Tuple ) ->Tuple: """simple docstring""" lowerCamelCase_ =get_last_daily_ci_runs(_A ) if workflow_run_id is not None: lowerCamelCase_ =get_artifacts_links(worflow_run_id=_A , token=_A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCamelCase_ =artifacts_links[artifact_name] download_artifact( artifact_name=_A , artifact_url=_A , output_dir=_A , token=_A ) def __UpperCamelCase ( _A : int , _A : Any , _A : Optional[int] ) ->List[Any]: """simple docstring""" get_last_daily_ci_artifacts(_A , _A , _A ) lowerCamelCase_ ={} for artifact_name in artifact_names: lowerCamelCase_ =os.path.join(_A , f'{artifact_name}.zip' ) if os.path.isfile(_A ): lowerCamelCase_ ={} with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file with z.open(_A ) as f: lowerCamelCase_ =f.read().decode("""UTF-8""" ) return results
154
1
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase_ ( __lowercase : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( __lowercase : int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = str(__lowercase ) _UpperCAmelCase = [n] for i in range(1 , len(__lowercase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCAmelCase_ ( __lowercase : int ) -> bool: '''simple docstring''' if len(str(__lowercase ) ) > 3: if not is_prime(int(str(__lowercase )[-3:] ) ) or not is_prime(int(str(__lowercase )[:3] ) ): return False return True def UpperCAmelCase_ ( __lowercase : int = 11 ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 13 while len(__lowercase ) != count: if validate(__lowercase ): _UpperCAmelCase = list_truncated_nums(__lowercase ) if all(is_prime(__lowercase ) for i in list_nums ): list_truncated_primes.append(__lowercase ) num += 2 return list_truncated_primes def UpperCAmelCase_ ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"{sum(compute_truncated_primes(11)) = }")
359
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : int ) -> Tuple: '''simple docstring''' _UpperCAmelCase = [False] * len(__lowercase ) _UpperCAmelCase = [] queue.append(__lowercase ) _UpperCAmelCase = True while queue: _UpperCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowercase ) _UpperCAmelCase = True _UpperCAmelCase = u return visited[t] def UpperCAmelCase_ ( __lowercase : int , __lowercase : List[Any] , __lowercase : List[str] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [-1] * (len(__lowercase )) _UpperCAmelCase = 0 while bfs(__lowercase , __lowercase , __lowercase , __lowercase ): _UpperCAmelCase = float("Inf" ) _UpperCAmelCase = sink while s != source: # Find the minimum value in select path _UpperCAmelCase = min(__lowercase , graph[parent[s]][s] ) _UpperCAmelCase = parent[s] max_flow += path_flow _UpperCAmelCase = sink while v != source: _UpperCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCAmelCase = parent[v] return max_flow __SCREAMING_SNAKE_CASE :Union[str, Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
156
0
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __a(SCREAMING_SNAKE_CASE_ : str = "laptop" ): '''simple docstring''' _lowerCAmelCase = F'''https://www.amazon.in/laptop/s?k={product}''' _lowerCAmelCase = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase = BeautifulSoup(requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase = item.ha.text _lowerCAmelCase = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase = "Not available" try: _lowerCAmelCase = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase = "" try: _lowerCAmelCase = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase = float("nan" ) except AttributeError: pass _lowerCAmelCase = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase = " " _lowerCAmelCase = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _SCREAMING_SNAKE_CASE = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
158
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = IFImgaImgSuperResolutionPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' return self._get_superresolution_dummy_components() def lowercase__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[Any]=0 ) -> Optional[Any]: '''simple docstring''' if str(_UpperCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase__ ( self : int ) -> str: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' self._test_save_load_local() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
241
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) return new_checkpoint def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , ): # Only support V1 UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(lowerCAmelCase__ ) UpperCAmelCase_ = 512 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(lowerCAmelCase__ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(lowerCAmelCase__ ) else: UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = AutoencoderKL(**lowerCAmelCase__ ) vae.load_state_dict(lowerCAmelCase__ ) vae.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") lowerCamelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
241
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase_ ( _UpperCamelCase ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> np.ndarray: """simple docstring""" snake_case_ : Union[str, Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_UpperCamelCase , _UpperCamelCase ) # Predict target for test data snake_case_ : Optional[Any] = xgb.predict(_UpperCamelCase ) snake_case_ : List[str] = predictions.reshape(len(_UpperCamelCase ) , 1 ) return predictions def lowerCamelCase_ ( ) -> None: """simple docstring""" snake_case_ : Any = fetch_california_housing() snake_case_ , snake_case_ : Tuple = data_handling(_UpperCamelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = train_test_split( _UpperCamelCase , _UpperCamelCase , test_size=0.25 , random_state=1 ) snake_case_ : List[Any] = xgboost(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(_UpperCamelCase , _UpperCamelCase )}''' ) print(f'''Mean Square Error : {mean_squared_error(_UpperCamelCase , _UpperCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
279
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase_ = CLIPImageProcessor() lowerCAmelCase_ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') lowerCAmelCase_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
279
1
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : str ,lowercase__ : Tuple ): __lowercase = question_encoder __lowercase = generator __lowercase = self.question_encoder def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[str] ): if os.path.isfile(lowercase__ ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(lowercase__ ,exist_ok=lowercase__ ) __lowercase = os.path.join(lowercase__ ,'''question_encoder_tokenizer''' ) __lowercase = os.path.join(lowercase__ ,'''generator_tokenizer''' ) self.question_encoder.save_pretrained(lowercase__ ) self.generator.save_pretrained(lowercase__ ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict ,lowercase__ : List[str] ,**lowercase__ : Optional[Any] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __lowercase = kwargs.pop('''config''' ,lowercase__ ) if config is None: __lowercase = RagConfig.from_pretrained(lowercase__ ) __lowercase = AutoTokenizer.from_pretrained( lowercase__ ,config=config.question_encoder ,subfolder='''question_encoder_tokenizer''' ) __lowercase = AutoTokenizer.from_pretrained( lowercase__ ,config=config.generator ,subfolder='''generator_tokenizer''' ) return cls(question_encoder=lowercase__ ,generator=lowercase__ ) def __call__( self : List[Any] ,*lowercase__ : Optional[int] ,**lowercase__ : str ): return self.current_tokenizer(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,*lowercase__ : List[Any] ,**lowercase__ : int ): return self.generator.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,*lowercase__ : Optional[int] ,**lowercase__ : str ): return self.generator.decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.question_encoder def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.generator def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : Optional[List[str]] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[int] = None ,lowercase__ : str = "longest" ,lowercase__ : str = None ,lowercase__ : bool = True ,**lowercase__ : int ,): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' ,lowercase__ ,) if max_length is None: __lowercase = self.current_tokenizer.model_max_length __lowercase = self( lowercase__ ,add_special_tokens=lowercase__ ,return_tensors=lowercase__ ,max_length=lowercase__ ,padding=lowercase__ ,truncation=lowercase__ ,**lowercase__ ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowercase = self.current_tokenizer.model_max_length __lowercase = self( text_target=lowercase__ ,add_special_tokens=lowercase__ ,return_tensors=lowercase__ ,padding=lowercase__ ,max_length=lowercase__ ,truncation=lowercase__ ,**lowercase__ ,) __lowercase = labels['''input_ids'''] return model_inputs
52
'''simple docstring''' import math def _A ( A__ = 100 ): """simple docstring""" __lowercase = sum(i * i for i in range(1 , n + 1 ) ) __lowercase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
52
1
from pathlib import Path import numpy as np from PIL import Image def _A ( SCREAMING_SNAKE_CASE__ : np.ndarray ): UpperCamelCase , UpperCamelCase , UpperCamelCase :List[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _A ( SCREAMING_SNAKE_CASE__ : np.ndarray ): return (gray > 127) & (gray <= 255) def _A ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ): UpperCamelCase :str = np.zeros_like(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCamelCase :Any = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCamelCase :Union[str, Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCamelCase :str = int(summation > 0 ) return output if __name__ == "__main__": # read original image __snake_case = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" __snake_case = np.array(Image.open(lena_path)) # kernel to be applied __snake_case = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __snake_case = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __snake_case = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
259
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> Dict: UpperCamelCase :Any = parent UpperCamelCase :Dict = 13 UpperCamelCase :List[Any] = 7 UpperCamelCase :List[Any] = True UpperCamelCase :Dict = True UpperCamelCase :Union[str, Any] = True UpperCamelCase :List[str] = True UpperCamelCase :Dict = 99 UpperCamelCase :Any = 32 UpperCamelCase :Tuple = 2 UpperCamelCase :Union[str, Any] = 4 UpperCamelCase :List[str] = 37 UpperCamelCase :Dict = '''gelu''' UpperCamelCase :Dict = 0.1 UpperCamelCase :Tuple = 0.1 UpperCamelCase :Dict = 512 UpperCamelCase :str = 16 UpperCamelCase :Optional[Any] = 2 UpperCamelCase :Dict = 0.02 UpperCamelCase :Optional[int] = 3 UpperCamelCase :int = 4 UpperCamelCase :Dict = None def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :Optional[int] = None if self.use_input_mask: UpperCamelCase :Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase :Dict = None if self.use_token_type_ids: UpperCamelCase :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase :Union[str, Any] = None UpperCamelCase :Optional[int] = None UpperCamelCase :Any = None if self.use_labels: UpperCamelCase :Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase :Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=SCREAMING_SNAKE_CASE_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Optional[Any] = TFRoFormerModel(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase :int = [input_ids, input_mask] UpperCamelCase :List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :List[Any] = True UpperCamelCase :Union[str, Any] = TFRoFormerForCausalLM(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :Any = model(SCREAMING_SNAKE_CASE_ )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase :str = TFRoFormerForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :List[Any] = self.num_labels UpperCamelCase :int = TFRoFormerForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :List[Any] = self.num_choices UpperCamelCase :Any = TFRoFormerForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :int = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :Any = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :List[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase :Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase :Union[str, Any] = self.num_labels UpperCamelCase :Dict = TFRoFormerForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase :Union[str, Any] = TFRoFormerForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :Union[str, Any] = config_and_inputs UpperCamelCase :Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str =( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ : Tuple =( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : Tuple =False UpperCamelCase_ : Optional[Any] =False def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Any = TFRoFormerModelTester(self ) UpperCamelCase :Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Dict = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Tuple = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCamelCase :Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase :str = model(SCREAMING_SNAKE_CASE_ )[0] # TODO Replace vocab size UpperCamelCase :Tuple = 5_0000 UpperCamelCase :Optional[Any] = [1, 6, vocab_size] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCamelCase :int = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] =1E-4 def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :str = tf.constant([[4, 10]] ) UpperCamelCase :List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCamelCase :str = emba(input_ids.shape ) UpperCamelCase :List[str] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=self.tolerance ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Dict = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCamelCase :Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCamelCase :Any = emba.weight[:3, :5] tf.debugging.assert_near(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] =1E-4 def UpperCAmelCase ( self ) -> List[str]: # 2,12,16,64 UpperCamelCase :List[Any] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase :List[Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase :List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCamelCase :int = embed_positions([2, 16, 768] )[None, None, :, :] UpperCamelCase , UpperCamelCase :List[str] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCamelCase :Optional[int] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , SCREAMING_SNAKE_CASE_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , SCREAMING_SNAKE_CASE_ , atol=self.tolerance )
259
1
'''simple docstring''' import os from collections.abc import Iterator def lowercase__ ( __UpperCamelCase = "." )-> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__SCREAMING_SNAKE_CASE ): UpperCamelCase = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).lstrip("""./""" ) def lowercase__ ( __UpperCamelCase )-> Tuple: return F"{i * ' '}*" if i else "\n##" def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: UpperCamelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(__SCREAMING_SNAKE_CASE )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def lowercase__ ( __UpperCamelCase = "." )-> None: UpperCamelCase = "" for filepath in sorted(good_file_paths(__SCREAMING_SNAKE_CASE ) ): UpperCamelCase = os.path.split(__SCREAMING_SNAKE_CASE ) if filepath != old_path: UpperCamelCase = print_path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCamelCase = F"{filepath}/{filename}".replace(""" """ , """%20""" ) UpperCamelCase = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F"{md_prefix(__SCREAMING_SNAKE_CASE )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md('.')
370
'''simple docstring''' from PIL import Image def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Image: def brightness(__UpperCamelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE__ = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
183
0
import string def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): snake_case = '''''' for symbol in message: if symbol in string.ascii_uppercase: snake_case = string.ascii_uppercase.find(A__ ) snake_case = num - key if num < 0: snake_case = num + len(string.ascii_uppercase ) snake_case = translated + string.ascii_uppercase[num] else: snake_case = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def UpperCAmelCase__ (): """simple docstring""" snake_case = input('''Encrypted message: ''' ) snake_case = message.upper() decrypt(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
127
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowercase_ = logging.getLogger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None ) -> List[str]: '''simple docstring''' _lowercase =self.layer[current_layer](lowerCAmelCase , lowerCAmelCase , head_mask[current_layer] ) _lowercase =layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =BertEncoderWithPabee(lowerCAmelCase ) self.init_weights() _lowercase =0 _lowercase =0 _lowercase =0 _lowercase =0 def A__ ( self , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =threshold def A__ ( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' _lowercase =patience def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =0 _lowercase =0 def A__ ( self ) -> int: '''simple docstring''' _lowercase =self.inference_layers_num / self.inference_instances_num _lowercase =( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase ) @add_start_docstrings_to_model_forward(lowerCAmelCase ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=False , ) -> str: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase =input_ids.size() elif inputs_embeds is not None: _lowercase =inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) if token_type_ids is None: _lowercase =torch.zeros(lowerCAmelCase , dtype=torch.long , device=lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase =self.get_extended_attention_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _lowercase , _lowercase , _lowercase =encoder_hidden_states.size() _lowercase =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _lowercase =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) _lowercase =self.invert_attention_mask(lowerCAmelCase ) else: _lowercase =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase =self.get_head_mask(lowerCAmelCase , self.config.num_hidden_layers ) _lowercase =self.embeddings( input_ids=lowerCAmelCase , position_ids=lowerCAmelCase , token_type_ids=lowerCAmelCase , inputs_embeds=lowerCAmelCase ) _lowercase =embedding_output if self.training: _lowercase =[] for i in range(self.config.num_hidden_layers ): _lowercase =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) _lowercase =self.pooler(lowerCAmelCase ) _lowercase =output_layers[i](output_dropout(lowerCAmelCase ) ) res.append(lowerCAmelCase ) elif self.patience == 0: # Use all layers for inference _lowercase =self.encoder( lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) _lowercase =self.pooler(encoder_outputs[0] ) _lowercase =[output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase )] else: _lowercase =0 _lowercase =None _lowercase =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _lowercase =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) _lowercase =self.pooler(lowerCAmelCase ) _lowercase =output_layers[i](lowerCAmelCase ) if regression: _lowercase =logits.detach() if patient_result is not None: _lowercase =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _lowercase =0 else: _lowercase =logits.detach().argmax(dim=1 ) if patient_result is not None: _lowercase =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase ) ): patient_counter += 1 else: _lowercase =0 _lowercase =logits if patient_counter == self.patience: break _lowercase =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =config.num_labels _lowercase =BertModelWithPabee(lowerCAmelCase ) _lowercase =nn.Dropout(config.hidden_dropout_prob ) _lowercase =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.bert( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , position_ids=lowerCAmelCase , head_mask=lowerCAmelCase , inputs_embeds=lowerCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _lowercase =(logits[-1],) if labels is not None: _lowercase =None _lowercase =0 for ix, logits_item in enumerate(lowerCAmelCase ): if self.num_labels == 1: # We are doing regression _lowercase =MSELoss() _lowercase =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _lowercase =CrossEntropyLoss() _lowercase =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _lowercase =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _lowercase =(total_loss / total_weights,) + outputs return outputs
205
0
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class snake_case_: @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.get_dummy_input() @property def lowerCamelCase__ ( self : int ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=False , UpperCamelCase_ : str=False , UpperCamelCase_ : Union[str, Any]=False , ): lowerCAmelCase : List[Any] = 4 lowerCAmelCase : List[Any] = 3_2 lowerCAmelCase : Optional[int] = (3_2, 3_2) lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = torch.device(UpperCamelCase_ ) lowerCAmelCase : Any = (batch_size, num_channels) + sizes lowerCAmelCase : Optional[int] = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = {'''hidden_states''': hidden_states} if include_temb: lowerCAmelCase : List[str] = 1_2_8 lowerCAmelCase : Union[str, Any] = randn_tensor((batch_size, temb_channels) , generator=UpperCamelCase_ , device=UpperCamelCase_ ) if include_res_hidden_states_tuple: lowerCAmelCase : List[str] = torch.manual_seed(1 ) lowerCAmelCase : List[Any] = (randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ ),) if include_encoder_hidden_states: lowerCAmelCase : str = floats_tensor((batch_size, 3_2, 3_2) ).to(UpperCamelCase_ ) if include_skip_sample: lowerCAmelCase : Any = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCamelCase_ , device=UpperCamelCase_ ) return dummy_input def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[str] = { '''in_channels''': 3_2, '''out_channels''': 3_2, '''temb_channels''': 1_2_8, } if self.block_type == "up": lowerCAmelCase : List[str] = 3_2 if self.block_type == "mid": init_dict.pop('''out_channels''' ) lowerCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase : Optional[Any] = self.block_class(**UpperCamelCase_ ) unet_block.to(UpperCamelCase_ ) unet_block.eval() with torch.no_grad(): lowerCAmelCase : List[Any] = unet_block(**UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : Optional[int] = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCAmelCase : Optional[Any] = output[0, -1, -3:, -3:] lowerCAmelCase : Optional[int] = torch.tensor(UpperCamelCase_ ).to(UpperCamelCase_ ) assert torch_all_close(output_slice.flatten() , UpperCamelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def lowerCamelCase__ ( self : str ): lowerCAmelCase, lowerCAmelCase : str = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase : Tuple = self.block_class(**UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() lowerCAmelCase : Union[str, Any] = model(**UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : Dict = output[0] lowerCAmelCase : List[Any] = torch.device(UpperCamelCase_ ) lowerCAmelCase : int = randn_tensor(output.shape , device=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.nn.functional.mse_loss(UpperCamelCase_ , UpperCamelCase_ ) loss.backward()
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class lowercase__ ( lowercase ): lowercase__ = """van""" def __init__( self : List[Any] ,lowerCamelCase__ : List[str]=224 ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : Optional[Any]=[7, 3, 3, 3] ,lowerCamelCase__ : Optional[Any]=[4, 2, 2, 2] ,lowerCamelCase__ : Tuple=[64, 128, 320, 512] ,lowerCamelCase__ : Any=[3, 3, 12, 3] ,lowerCamelCase__ : List[Any]=[8, 8, 4, 4] ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : Any=0.0_2 ,lowerCamelCase__ : Dict=1E-6 ,lowerCamelCase__ : Optional[Any]=1E-2 ,lowerCamelCase__ : str=0.0 ,lowerCamelCase__ : Optional[Any]=0.0 ,**lowerCamelCase__ : List[str] ,): '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = image_size _UpperCamelCase : List[str] = num_channels _UpperCamelCase : Union[str, Any] = patch_sizes _UpperCamelCase : Any = strides _UpperCamelCase : Any = hidden_sizes _UpperCamelCase : Tuple = depths _UpperCamelCase : Tuple = mlp_ratios _UpperCamelCase : Dict = hidden_act _UpperCamelCase : Dict = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : List[str] = layer_scale_init_value _UpperCamelCase : List[Any] = drop_path_rate _UpperCamelCase : Optional[Any] = dropout_rate
83
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
83
1
from ...configuration_utils import PretrainedConfig snake_case_ = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ (_UpperCamelCase ): __lowerCamelCase : int = 'tapas' def __init__( self , a=3_0522 , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=1024 , a=[3, 256, 256, 2, 256, 256, 10] , a=0.02 , a=1e-12 , a=0 , a=10.0 , a=0 , a=1.0 , a=None , a=1.0 , a=False , a=None , a=1.0 , a=1.0 , a=False , a=False , a="ratio" , a=None , a=None , a=64 , a=32 , a=False , a=True , a=False , a=False , a=True , a=False , a=None , a=None , **a , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : List[str] = vocab_size lowercase__ : int = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : Dict = intermediate_size lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : Tuple = type_vocab_sizes lowercase__ : List[Any] = initializer_range lowercase__ : Optional[Any] = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Tuple = positive_label_weight lowercase__ : Optional[int] = num_aggregation_labels lowercase__ : Tuple = aggregation_loss_weight lowercase__ : Union[str, Any] = use_answer_as_supervision lowercase__ : Union[str, Any] = answer_loss_importance lowercase__ : Any = use_normalized_answer_loss lowercase__ : Any = huber_loss_delta lowercase__ : str = temperature lowercase__ : Dict = aggregation_temperature lowercase__ : List[str] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Optional[int] = cell_selection_preference lowercase__ : Optional[Any] = answer_loss_cutoff lowercase__ : str = max_num_rows lowercase__ : List[Any] = max_num_columns lowercase__ : str = average_logits_per_cell lowercase__ : Union[str, Any] = select_one_column lowercase__ : Tuple = allow_empty_column_selection lowercase__ : Dict = init_cell_selection_weights_to_zero lowercase__ : Any = reset_position_index_per_cell lowercase__ : Optional[Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : int = aggregation_labels lowercase__ : Any = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): lowercase__ : str = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
369
def snake_case__ ( SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case__ ( SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
216
0
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : List[str] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "efficientnet" def __init__( self : Optional[Any] ,lowercase_ : int = 3 ,lowercase_ : int = 6_0_0 ,lowercase_ : float = 2.0 ,lowercase_ : float = 3.1 ,lowercase_ : int = 8 ,lowercase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] ,lowercase_ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] ,lowercase_ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] ,lowercase_ : List[int] = [] ,lowercase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] ,lowercase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] ,lowercase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] ,lowercase_ : float = 0.25 ,lowercase_ : str = "swish" ,lowercase_ : int = 2_5_6_0 ,lowercase_ : str = "mean" ,lowercase_ : float = 0.02 ,lowercase_ : float = 0.001 ,lowercase_ : float = 0.99 ,lowercase_ : float = 0.5 ,lowercase_ : float = 0.2 ,**lowercase_ : Optional[Any] ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : List[Any] = image_size lowerCAmelCase__ : int = width_coefficient lowerCAmelCase__ : int = depth_coefficient lowerCAmelCase__ : Dict = depth_divisor lowerCAmelCase__ : Optional[int] = kernel_sizes lowerCAmelCase__ : Union[str, Any] = in_channels lowerCAmelCase__ : Any = out_channels lowerCAmelCase__ : Tuple = depthwise_padding lowerCAmelCase__ : str = strides lowerCAmelCase__ : Optional[Any] = num_block_repeats lowerCAmelCase__ : Union[str, Any] = expand_ratios lowerCAmelCase__ : Any = squeeze_expansion_ratio lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : List[Any] = hidden_dim lowerCAmelCase__ : Any = pooling_type lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = batch_norm_eps lowerCAmelCase__ : str = batch_norm_momentum lowerCAmelCase__ : Union[str, Any] = dropout_rate lowerCAmelCase__ : Optional[Any] = drop_connect_rate lowerCAmelCase__ : Dict = sum(lowercase_ ) * 4 class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = version.parse("1.11" ) @property def __lowerCAmelCase ( self : List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self : Union[str, Any] ): return 1E-5
106
"""simple docstring""" import random def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = [], [], [] for element in data: if element < pivot: less.append(A_ ) elif element > pivot: greater.append(A_ ) else: equal.append(A_ ) return less, equal, greater def __SCREAMING_SNAKE_CASE ( A_ , A_ ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(A_ ) or index < 0: return None lowerCAmelCase__ : str = items[random.randint(0 , len(A_ ) - 1 )] lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = _partition(A_ , A_ ) lowerCAmelCase__ : str = len(A_ ) lowerCAmelCase__ : Optional[Any] = len(A_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(A_ , A_ ) # must be in larger else: return quick_select(A_ , index - (m + count) )
106
1
import os import pytest from attr import dataclass UpperCamelCase__ : int = """us-east-1""" # defaults region @dataclass class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' SCREAMING_SNAKE_CASE_ = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } SCREAMING_SNAKE_CASE_ = {**hyperparameters, 'max_steps': 10_00} @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return F"""{self.framework}-transfromers-test""" @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return F"""./tests/sagemaker/scripts/{self.framework}""" @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = SageMakerTestEnvironment(framework=request.cls.framework )
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
from __future__ import annotations from typing import Any class UpperCamelCase__ : def __init__(self : Union[str, Any] , snake_case_ : int ): __a : Dict = num_of_nodes __a : list[list[int]] = [] __a : dict[int, int] = {} def lowerCAmelCase (self : Optional[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowerCAmelCase (self : Any , snake_case_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCAmelCase (self : str , snake_case_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __a : Optional[int] = self.find_component(snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : list[int] , snake_case_ : int , snake_case_ : int ): if component_size[u_node] <= component_size[v_node]: __a : List[str] = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case_ ) elif component_size[u_node] >= component_size[v_node]: __a : Optional[int] = self.find_component(snake_case_ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case_ ) def lowerCAmelCase (self : Optional[Any] ): __a : str = [] __a : int = 0 __a : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __a : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __a , __a , __a : Optional[Any] = edge __a : List[str] = self.m_component[u] __a : List[Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __a : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case_ , snake_case_ ): __a , __a , __a : str = edge __a : Any = self.m_component[u] __a : Any = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case_ , snake_case_ , snake_case_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __a : Optional[int] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def __UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
216
def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): __a : str = len(lowerCAmelCase__ ) __a : Optional[int] = [] for i in range(len(lowerCAmelCase__ ) - pat_len + 1 ): __a : str = True for j in range(lowerCAmelCase__ ): if s[i + j] != pattern[j]: __a : Tuple = False break if match_found: position.append(lowerCAmelCase__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
216
1
"""simple docstring""" import datasets from .evaluate import evaluate lowerCAmelCase : int = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ lowerCAmelCase : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ lowerCAmelCase : List[str] = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowerCamelCase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowerCamelCase = evaluate(dataset=lowercase_ , predictions=lowercase_ ) return score
364
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( snake_case__ ) -> List[str]: lowerCamelCase = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def a__ ( snake_case__ ) -> int: lowerCamelCase , lowerCamelCase = emb.weight.shape lowerCamelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) lowerCamelCase = emb.weight.data return lin_layer def a__ ( snake_case__ ) -> Tuple: lowerCamelCase = torch.load(snake_case__ , map_location="""cpu""" ) lowerCamelCase = Namespace(**checkpoint["""cfg"""]["""model"""] ) lowerCamelCase = checkpoint["""model"""] remove_ignore_keys_(snake_case__ ) lowerCamelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCamelCase = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} lowerCamelCase = XGLMConfig( vocab_size=snake_case__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCamelCase = XGLMForCausalLM(snake_case__ ) lowerCamelCase = model.load_state_dict(snake_case__ , strict=snake_case__ ) print(snake_case__ ) lowerCamelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase : Union[str, Any] = parser.parse_args() lowerCAmelCase : Tuple = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
168
0
'''simple docstring''' import requests from bsa import BeautifulSoup def snake_case_ ( _lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: UpperCAmelCase : str = BeautifulSoup(requests.get(_lowerCAmelCase ).text , '''html.parser''' ) UpperCAmelCase : Dict = soup.findAll('''h1''' ) UpperCAmelCase : Dict = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCAmelCase , _lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
23
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants __A =3_00 # TEMPERATURE (unit = K) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
163
0
'''simple docstring''' import socket def __lowerCamelCase ( ) -> Optional[int]: _a : Dict = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _a : List[str] = socket.gethostname() _a : List[Any] = 12312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _a : Optional[int] = sock.recv(1024 ) if not data: break out_file.write(lowerCAmelCase_ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
107
'''simple docstring''' __lowerCAmelCase = range(2, 20 + 1) __lowerCAmelCase = [10**k for k in range(ks[-1] + 1)] __lowerCAmelCase = {} def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _a : Optional[int] = sum(a_i[j] for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) ) _a : List[str] = sum(a_i[j] * base[j] for j in range(min(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) ) _a , _a : Any = 0, 0 _a : Any = n - i _a : List[Any] = memo.get(lowerCAmelCase_ ) if sub_memo is not None: _a : Tuple = sub_memo.get(lowerCAmelCase_ ) if jumps is not None and len(lowerCAmelCase_ ) > 0: # find and make the largest jump without going over _a : Any = -1 for _k in range(len(lowerCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _a : Any = _k break if max_jump >= 0: _a , _a , _a : Tuple = jumps[max_jump] # since the difference between jumps is cached, add c _a : Union[str, Any] = diff + c for j in range(min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) ): _a , _a : Dict = divmod(lowerCAmelCase_ , 10 ) if new_c > 0: add(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: _a : Tuple = [] else: _a : Any = {c: []} _a : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _a , _a : Dict = next_term(lowerCAmelCase_ , k - 1 , i + dn , lowerCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _a , _a : Any = compute(lowerCAmelCase_ , lowerCAmelCase_ , i + dn , lowerCAmelCase_ ) diff += _diff dn += terms_jumped _a : Tuple = sub_memo[c] # keep jumps sorted by # of terms skipped _a : Any = 0 while j < len(lowerCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCAmelCase_ , (diff, dn, k) ) return (diff, dn) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: if i >= n: return 0, i if k > len(lowerCAmelCase_ ): a_i.extend([0 for _ in range(k - len(lowerCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _a : Any = i _a , _a , _a : Optional[int] = 0, 0, 0 for j in range(len(lowerCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _a : Any = ds_c + ds_b diff += addend _a : int = 0 for j in range(lowerCAmelCase_ ): _a : Optional[Any] = a_i[j] + addend _a , _a : Tuple = divmod(lowerCAmelCase_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return diff, i - start_i def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): _a : Optional[Any] = digits[j] + addend if s >= 10: _a , _a : List[str] = divmod(lowerCAmelCase_ , 10 ) _a : List[str] = addend // 10 + quotient else: _a : Optional[Any] = s _a : Optional[Any] = addend // 10 if addend == 0: break while addend > 0: _a , _a : List[str] = divmod(lowerCAmelCase_ , 10 ) digits.append(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ = 10**15 ) -> int: _a : Dict = [1] _a : int = 1 _a : Tuple = 0 while True: _a , _a : str = next_term(lowerCAmelCase_ , 20 , i + dn , lowerCAmelCase_ ) dn += terms_jumped if dn == n - i: break _a : Union[str, Any] = 0 for j in range(len(lowerCAmelCase_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
107
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if isinstance(lowerCamelCase__ , torch.Tensor ): return image elif isinstance(lowerCamelCase__ , PIL.Image.Image ): lowerCamelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] lowerCamelCase_ = np.concatenate(lowerCamelCase__ , axis=0 ) lowerCamelCase_ = np.array(lowerCamelCase__ ).astype(np.floataa ) / 2_55.0 lowerCamelCase_ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ = 2.0 * image - 1.0 lowerCamelCase_ = torch.from_numpy(lowerCamelCase__ ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(lowerCamelCase__ , dim=0 ) return image def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0.99_95 ): if not isinstance(lowerCamelCase__ , np.ndarray ): lowerCamelCase_ = True lowerCamelCase_ = va.device lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = np.sum(va * va / (np.linalg.norm(lowerCamelCase__ ) * np.linalg.norm(lowerCamelCase__ )) ) if np.abs(lowerCamelCase__ ) > DOT_THRESHOLD: lowerCamelCase_ = (1 - t) * va + t * va else: lowerCamelCase_ = np.arccos(lowerCamelCase__ ) lowerCamelCase_ = np.sin(lowerCamelCase__ ) lowerCamelCase_ = theta_a * t lowerCamelCase_ = np.sin(lowerCamelCase__ ) lowerCamelCase_ = np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase_ = sin_theta_t / sin_theta_a lowerCamelCase_ = sa * va + sa * va if inputs_are_torch: lowerCamelCase_ = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) return va def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = F.normalize(lowerCamelCase__ , dim=-1 ) lowerCamelCase_ = F.normalize(lowerCamelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for param in model.parameters(): lowerCamelCase_ = value class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , ) -> Union[str, Any]: super().__init__() self.register_modules( vae=lowercase , text_encoder=lowercase , clip_model=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , feature_extractor=lowercase , coca_model=lowercase , coca_tokenizer=lowercase , coca_transform=lowercase , ) lowerCamelCase_ = ( feature_extractor.size if isinstance(feature_extractor.size , lowercase ) else feature_extractor.size["shortest_edge"] ) lowerCamelCase_ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowercase ) set_requires_grad(self.clip_model , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase = "auto" ) -> Union[str, Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: self.enable_attention_slicing(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> int: set_requires_grad(self.vae , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: set_requires_grad(self.vae , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: set_requires_grad(self.unet , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: set_requires_grad(self.unet , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> List[Any]: # get the original timestep using init_timestep lowerCamelCase_ = min(int(num_inference_steps * strength ) , lowercase ) lowerCamelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> Any: if not isinstance(lowercase , torch.Tensor ): raise ValueError(f'`image` has to be of type `torch.Tensor` but is {type(lowercase )}' ) lowerCamelCase_ = image.to(device=lowercase , dtype=lowercase ) if isinstance(lowercase , lowercase ): lowerCamelCase_ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase ) ] lowerCamelCase_ = torch.cat(lowercase , dim=0 ) else: lowerCamelCase_ = self.vae.encode(lowercase ).latent_dist.sample(lowercase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 0.1_8_2_1_5 * init_latents lowerCamelCase_ = init_latents.repeat_interleave(lowercase , dim=0 ) lowerCamelCase_ = randn_tensor(init_latents.shape , generator=lowercase , device=lowercase , dtype=lowercase ) # get latents lowerCamelCase_ = self.scheduler.add_noise(lowercase , lowercase , lowercase ) lowerCamelCase_ = init_latents return latents def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tuple: lowerCamelCase_ = self.coca_transform(lowercase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase_ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowerCamelCase_ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> str: lowerCamelCase_ = self.feature_extractor.preprocess(lowercase ) lowerCamelCase_ = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase_ = self.clip_model.get_image_features(lowercase ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase ) lowerCamelCase_ = image_embeddings_clip.repeat_interleave(lowercase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Optional[Any]: lowerCamelCase_ = latents.detach().requires_grad_() lowerCamelCase_ = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual lowerCamelCase_ = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase_ = self.scheduler.alphas_cumprod[timestep] lowerCamelCase_ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase_ = torch.sqrt(lowercase ) lowerCamelCase_ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowercase ): lowerCamelCase_ = self.scheduler.sigmas[index] lowerCamelCase_ = latents - sigma * noise_pred else: raise ValueError(f'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.1_8_2_1_5 * sample lowerCamelCase_ = self.vae.decode(lowercase ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = transforms.Resize(self.feature_extractor_size )(lowercase ) lowerCamelCase_ = self.normalize(lowercase ).to(latents.dtype ) lowerCamelCase_ = self.clip_model.get_image_features(lowercase ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase ) lowerCamelCase_ = spherical_dist_loss(lowercase , lowercase ).mean() * clip_guidance_scale lowerCamelCase_ = -torch.autograd.grad(lowercase , lowercase )[0] if isinstance(self.scheduler , lowercase ): lowerCamelCase_ = latents.detach() + grads * (sigma**2) lowerCamelCase_ = noise_pred_original else: lowerCamelCase_ = noise_pred_original - torch.sqrt(lowercase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , lowercase , lowercase , lowercase = None , lowercase = None , lowercase = 512 , lowercase = 512 , lowercase = 0.6 , lowercase = 50 , lowercase = 7.5 , lowercase = 1 , lowercase = 0.0 , lowercase = 100 , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = 0.8 , lowercase = 0.1 , lowercase = 0.1 , ) -> int: if isinstance(lowercase , lowercase ) and len(lowercase ) != batch_size: raise ValueError(f'You have passed {batch_size} batch_size, but only {len(lowercase )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(lowercase , torch.Generator ) and batch_size > 1: lowerCamelCase_ = [generator] + [None] * (batch_size - 1) lowerCamelCase_ = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] lowerCamelCase_ = [x[0] for x in coca_is_none if x[1]] lowerCamelCase_ = ", ".join(lowercase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowercase ): raise ValueError( f'Content prompt is None and CoCa [{coca_is_none_str}] is None.' f'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) lowerCamelCase_ = self.get_image_description(lowercase ) if style_prompt is None: if len(lowercase ): raise ValueError( f'Style prompt is None and CoCa [{coca_is_none_str}] is None.' f' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) lowerCamelCase_ = self.get_image_description(lowercase ) # get prompt text embeddings for content and style lowerCamelCase_ = self.tokenizer( lowercase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=lowercase , return_tensors="pt" , ) lowerCamelCase_ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = self.tokenizer( lowercase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=lowercase , return_tensors="pt" , ) lowerCamelCase_ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = slerp(lowercase , lowercase , lowercase ) # duplicate text embeddings for each generation per prompt lowerCamelCase_ = text_embeddings.repeat_interleave(lowercase , dim=0 ) # set timesteps lowerCamelCase_ = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase_ = {} if accepts_offset: lowerCamelCase_ = 1 self.scheduler.set_timesteps(lowercase , **lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase_ , lowerCamelCase_ = self.get_timesteps(lowercase , lowercase , self.device ) lowerCamelCase_ = timesteps[:1].repeat(lowercase ) # Preprocess image lowerCamelCase_ = preprocess(lowercase , lowercase , lowercase ) lowerCamelCase_ = self.prepare_latents( lowercase , lowercase , lowercase , text_embeddings.dtype , self.device , lowercase ) lowerCamelCase_ = preprocess(lowercase , lowercase , lowercase ) lowerCamelCase_ = self.prepare_latents( lowercase , lowercase , lowercase , text_embeddings.dtype , self.device , lowercase ) lowerCamelCase_ = slerp(lowercase , lowercase , lowercase ) if clip_guidance_scale > 0: lowerCamelCase_ = self.get_clip_image_embeddings(lowercase , lowercase ) lowerCamelCase_ = self.get_clip_image_embeddings(lowercase , lowercase ) lowerCamelCase_ = slerp( lowercase , lowercase , lowercase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = content_text_input.input_ids.shape[-1] lowerCamelCase_ = self.tokenizer([""] , padding="max_length" , max_length=lowercase , return_tensors="pt" ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase_ = uncond_embeddings.repeat_interleave(lowercase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase_ = torch.randn(lowercase , generator=lowercase , device="cpu" , dtype=lowercase ).to( self.device ) else: lowerCamelCase_ = torch.randn(lowercase , generator=lowercase , device=self.device , dtype=lowercase ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowerCamelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta # check if the scheduler accepts generator lowerCamelCase_ = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase_ = generator with self.progress_bar(total=lowercase ): for i, t in enumerate(lowercase ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual lowerCamelCase_ = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase_ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase_ , lowerCamelCase_ = self.cond_fn( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.1_8_2_1_5 * latents lowerCamelCase_ = self.vae.decode(lowercase ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(lowercase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowercase , nsfw_content_detected=lowercase )
19
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowercase_ = logging.getLogger(__name__) lowercase_ = """Hello world! cécé herlolip""" lowercase_ = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ) ->List[Any]: _SCREAMING_SNAKE_CASE = BertAbsConfig( temp_dir=""".""" , finetune_bert=__lowerCamelCase , large=__lowerCamelCase , share_emb=__lowerCamelCase , use_bert_emb=__lowerCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , lambda __lowerCamelCase , __lowerCamelCase : storage ) _SCREAMING_SNAKE_CASE = AbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) , __lowerCamelCase ) original.eval() _SCREAMING_SNAKE_CASE = BertAbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) _SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs _SCREAMING_SNAKE_CASE = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) _SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) _SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _SCREAMING_SNAKE_CASE = encoder_input_ids _SCREAMING_SNAKE_CASE = decoder_input_ids _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _SCREAMING_SNAKE_CASE = original(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] _SCREAMING_SNAKE_CASE = original.generator(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = new_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] _SCREAMING_SNAKE_CASE = new_model.generator(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) lowercase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
58
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCamelCase__) , """Tatoeba directory does not exist.""") class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCamelCase ) @slow def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' ,dry_run=__lowerCamelCase ) assert mmeta["long_pair"] == "heb-eng"
94
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Any =logging.get_logger(__name__) __snake_case : Tuple ={ 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""vit_msn""" def __init__(self ,__lowerCamelCase=7_68 ,__lowerCamelCase=12 ,__lowerCamelCase=12 ,__lowerCamelCase=30_72 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-06 ,__lowerCamelCase=2_24 ,__lowerCamelCase=16 ,__lowerCamelCase=3 ,__lowerCamelCase=True ,**__lowerCamelCase ,) -> Any: """simple docstring""" super().__init__(**__lowerCamelCase ) lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Optional[int] = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : str = patch_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : int = qkv_bias
94
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class snake_case_ ( __A ): @add_start_docstrings(lowercase_ ) def __call__( self : Optional[Any] , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : List[str] ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class snake_case_ ( __A ): def __init__( self : Dict , lowercase_ : int , lowercase_ : Optional[int] = None ) -> List[str]: lowercase__ : str = max_length lowercase__ : Optional[int] = max_position_embeddings @add_start_docstrings(lowercase_ ) def __call__( self : Tuple , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Union[str, Any] ) -> bool: lowercase__ : str = input_ids.shape[-1] lowercase__ : Any = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class snake_case_ ( __A ): def __init__( self : Tuple , lowercase_ : int , lowercase_ : int ) -> List[str]: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , lowercase_ , ) lowercase__ : Optional[int] = start_length lowercase__ : str = max_new_tokens lowercase__ : Tuple = start_length + max_new_tokens @add_start_docstrings(lowercase_ ) def __call__( self : List[Any] , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Dict ) -> bool: return input_ids.shape[-1] >= self.max_length class snake_case_ ( __A ): def __init__( self : Tuple , lowercase_ : float , lowercase_ : Optional[float] = None ) -> Dict: lowercase__ : List[str] = max_time lowercase__ : Tuple = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase_ ) def __call__( self : int , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Union[str, Any] ) -> bool: return time.time() - self.initial_timestamp > self.max_time class snake_case_ ( __A ): @add_start_docstrings(lowercase_ ) def __call__( self : str , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : List[str] ) -> bool: return any(criteria(lowercase_ , lowercase_ ) for criteria in self ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: for stopping_criterium in self: if isinstance(lowercase_ , lowercase_ ): return stopping_criterium.max_length elif isinstance(lowercase_ , lowercase_ ): return stopping_criterium.max_length return None def lowercase_ ( _lowerCamelCase : StoppingCriteriaList , _lowerCamelCase : int): lowercase__ : Optional[int] = stopping_criteria.max_length lowercase__ : str = deepcopy(_lowerCamelCase) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _lowerCamelCase) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCamelCase)) return new_stopping_criteria
87
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int): assert isinstance(_lowerCamelCase , _lowerCamelCase) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True]) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[int] = tmp_path / "cache" lowercase__ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Union[str, Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : Dict): lowercase__ : List[Any] = tmp_path / "cache" lowercase__ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : List[Any] = features.copy() if features else default_expected_features lowercase__ : List[Any] = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : Any = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : List[str]): lowercase__ : Optional[Any] = tmp_path / "cache" lowercase__ : Tuple = {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowercase__ : List[Any] = features.copy() if features else default_expected_features lowercase__ : int = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : Any = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() assert isinstance(_lowerCamelCase , _lowerCamelCase) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowercase__ : Any = {"col_2": "int64", "col_3": "float64", "col_1": "string"} lowercase__ : str = features.copy() lowercase__ : str = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : Optional[int] = tmp_path / "cache" lowercase__ : Any = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() assert isinstance(_lowerCamelCase , _lowerCamelCase) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train"), "train", "test"]) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str]): lowercase__ : Union[str, Any] = tmp_path / "cache" lowercase__ : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Union[str, Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list]) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : int): if issubclass(_lowerCamelCase , _lowerCamelCase): lowercase__ : Tuple = jsonl_path elif issubclass(_lowerCamelCase , _lowerCamelCase): lowercase__ : str = [jsonl_path] lowercase__ : str = tmp_path / "cache" lowercase__ : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Tuple = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]=("train",)): assert isinstance(_lowerCamelCase , _lowerCamelCase) for split in splits: lowercase__ : Optional[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True]) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : str): lowercase__ : List[str] = tmp_path / "cache" lowercase__ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Optional[Any] = JsonDatasetReader({"train": jsonl_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : List[str]): lowercase__ : str = tmp_path / "cache" lowercase__ : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Tuple = features.copy() if features else default_expected_features lowercase__ : Union[str, Any] = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : Tuple = JsonDatasetReader({"train": jsonl_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize("split" , [None, NamedSplit("train"), "train", "test"]) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): if split: lowercase__ : Tuple = {split: jsonl_path} else: lowercase__ : Tuple = "train" lowercase__ : int = {"train": jsonl_path, "test": jsonl_path} lowercase__ : Dict = tmp_path / "cache" lowercase__ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Union[str, Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return json.load(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int]): return [json.loads(_lowerCamelCase) for line in buffer] class snake_case_ : @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Dict ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ ).write() buffer.seek(0 ) lowercase__ : Optional[int] = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __UpperCamelCase ( self : str , lowercase_ : int , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Tuple ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ ).write() buffer.seek(0 ) lowercase__ : str = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __UpperCamelCase ( self : List[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Dict ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) lowercase__ : str = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Dict ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) lowercase__ : Optional[Any] = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 def __UpperCamelCase ( self : Dict , lowercase_ : List[str] ) -> str: with pytest.raises(lowercase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : List[Any] ) -> Any: lowercase__ : Dict = tmp_path_factory.mktemp("data" ) / F'''test.json.{extension}''' lowercase__ : Optional[int] = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(lowercase_ , lowercase_ , compression=lowercase_ ).write() with fsspec.open(lowercase_ , "rb" , compression="infer" ) as f: lowercase__ : List[Any] = f.read() with fsspec.open(lowercase_ , "rb" , compression="infer" ) as f: lowercase__ : str = f.read() assert exported_content == original_content
87
1
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def snake_case__ ( __lowerCamelCase : Dict ): """simple docstring""" lowerCamelCase__ : Union[str, Any] ={} lowerCamelCase__ : List[Any] =job['''started_at'''] lowerCamelCase__ : Tuple =job['''completed_at'''] lowerCamelCase__ : Dict =date_parser.parse(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =date_parser.parse(__lowerCamelCase ) lowerCamelCase__ : Optional[int] =round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowerCamelCase__ : Any =start lowerCamelCase__ : Optional[int] =end lowerCamelCase__ : List[str] =duration_in_min return job_info def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : List[Any]=None ): """simple docstring""" lowerCamelCase__ : List[str] =None if token is not None: lowerCamelCase__ : List[str] ={'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} lowerCamelCase__ : Optional[Any] =f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowerCamelCase__ : int =requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() lowerCamelCase__ : List[Any] ={} try: job_time.update({job['''name''']: extract_time_from_single_job(__lowerCamelCase ) for job in result['''jobs''']} ) lowerCamelCase__ : Union[str, Any] =math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__lowerCamelCase ): lowerCamelCase__ : Tuple =requests.get(url + f'''&page={i + 2}''' , headers=__lowerCamelCase ).json() job_time.update({job['''name''']: extract_time_from_single_job(__lowerCamelCase ) for job in result['''jobs''']} ) return job_time except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") _lowercase : int = parser.parse_args() _lowercase : Optional[Any] = get_job_time(args.workflow_run_id) _lowercase : Dict = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'{k}: {v["duration"]}')
272
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _lowercase : Any = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
272
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowercase : Tuple = True except (ImportError, AttributeError): lowercase : int = object def _SCREAMING_SNAKE_CASE ( *_lowerCamelCase : int , **_lowerCamelCase : List[Any]) -> str: '''simple docstring''' pass lowercase : Any = False lowercase : List[str] = logging.get_logger('transformers-cli/serving') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Namespace) -> Any: '''simple docstring''' __UpperCamelCase : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_lowerCamelCase , args.host , args.port , args.workers) class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 42 class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 42 _A = 42 class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 42 class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 42 class lowerCamelCase__ ( __lowercase): '''simple docstring''' @staticmethod def _lowerCamelCase ( a :ArgumentParser ) -> int: __UpperCamelCase : Tuple = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task" , type=a , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=a , default="localhost" , help="Interface the server will listen on." ) serve_parser.add_argument("--port" , type=a , default=8_8_8_8 , help="Port the serving will listen to." ) serve_parser.add_argument("--workers" , type=a , default=1 , help="Number of http workers" ) serve_parser.add_argument("--model" , type=a , help="Model's name or path to stored model." ) serve_parser.add_argument("--config" , type=a , help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer" , type=a , help="Tokenizer name to use." ) serve_parser.add_argument( "--device" , type=a , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=a ) def __init__( self :Optional[int] , a :Pipeline , a :str , a :int , a :int ) -> Optional[int]: __UpperCamelCase : Tuple = pipeline __UpperCamelCase : int = host __UpperCamelCase : List[Any] = port __UpperCamelCase : str = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(f'Serving model over {host}:{port}' ) __UpperCamelCase : Optional[Any] = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=a , response_class=a , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=a , response_class=a , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=a , response_class=a , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=a , response_class=a , methods=["POST"] , ), ] , timeout=6_0_0 , ) def _lowerCamelCase ( self :List[Any] ) -> Optional[int]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def _lowerCamelCase ( self :str ) -> List[Any]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _lowerCamelCase ( self :int , a :str = Body(a , embed=a ) , a :bool = Body(a , embed=a ) ) -> List[Any]: try: __UpperCamelCase : Optional[int] = self._pipeline.tokenizer.tokenize(a ) if return_ids: __UpperCamelCase : Optional[Any] = self._pipeline.tokenizer.convert_tokens_to_ids(a ) return ServeTokenizeResult(tokens=a , tokens_ids=a ) else: return ServeTokenizeResult(tokens=a ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={"model": "", "error": str(a )} ) def _lowerCamelCase ( self :Optional[Any] , a :List[int] = Body(a , embed=a ) , a :bool = Body(a , embed=a ) , a :bool = Body(a , embed=a ) , ) -> str: try: __UpperCamelCase : Tuple = self._pipeline.tokenizer.decode(a , a , a ) return ServeDeTokenizeResult(model="" , text=a ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={"model": "", "error": str(a )} ) async def _lowerCamelCase ( self :Optional[int] , a :List[str]=Body(a , embed=a ) ) -> Optional[int]: # Check we don't have empty string if len(a ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __UpperCamelCase : Any = self._pipeline(a ) return ServeForwardResult(output=a ) except Exception as e: raise HTTPException(5_0_0 , {"error": str(a )} )
232
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : List[str] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
232
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( snake_case__ , unittest.TestCase): """simple docstring""" a__ : Dict = KandinskyImgaImgPipeline a__ : Union[str, Any] = ["prompt", "image_embeds", "negative_image_embeds", "image"] a__ : List[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] a__ : Any = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a__ : List[str] = False @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: return 32 @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: return 32 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: return 100 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_= XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: torch.manual_seed(0 ) UpperCAmelCase_= MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) UpperCAmelCase_= MultilingualCLIP(__UpperCAmelCase ) UpperCAmelCase_= text_encoder.eval() return text_encoder @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_= { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase_= UNetaDConditionModel(**__UpperCAmelCase ) return model @property def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase_= VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: UpperCAmelCase_= self.dummy_text_encoder UpperCAmelCase_= self.dummy_tokenizer UpperCAmelCase_= self.dummy_unet UpperCAmelCase_= self.dummy_movq UpperCAmelCase_= { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } UpperCAmelCase_= DDIMScheduler(**__UpperCAmelCase ) UpperCAmelCase_= { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any]=0 ) -> Union[str, Any]: UpperCAmelCase_= floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) UpperCAmelCase_= floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCAmelCase ) # create init_image UpperCAmelCase_= floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_= Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) if str(__UpperCAmelCase ).startswith("""mps""" ): UpperCAmelCase_= torch.manual_seed(__UpperCAmelCase ) else: UpperCAmelCase_= torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) UpperCAmelCase_= { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_= """cpu""" UpperCAmelCase_= self.get_dummy_components() UpperCAmelCase_= self.pipeline_class(**__UpperCAmelCase ) UpperCAmelCase_= pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) UpperCAmelCase_= output.images UpperCAmelCase_= pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_= np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase_= load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) UpperCAmelCase_= load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCAmelCase_= """A red cartoon frog, 4k""" UpperCAmelCase_= KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) UpperCAmelCase_= KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) UpperCAmelCase_= pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase_, UpperCAmelCase_= pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase_= pipeline( __UpperCAmelCase , image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) UpperCAmelCase_= output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
360
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A = 16 __A = 32 def __a ( lowerCAmelCase_ : Accelerator ,lowerCAmelCase_ : int = 16 ,lowerCAmelCase_ : str = "bert-base-cased" ) -> Tuple: '''simple docstring''' UpperCAmelCase_= AutoTokenizer.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_= load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowerCAmelCase_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_= tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowerCAmelCase_ ,max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_= datasets.map( lowerCAmelCase_ ,batched=lowerCAmelCase_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_= tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowerCAmelCase_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ ,padding="""max_length""" ,max_length=1_28 ,return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase_ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. UpperCAmelCase_= DataLoader( tokenized_datasets["""train"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) UpperCAmelCase_= DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_= Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_= config["""lr"""] UpperCAmelCase_= int(config["""num_epochs"""] ) UpperCAmelCase_= int(config["""seed"""] ) UpperCAmelCase_= int(config["""batch_size"""] ) UpperCAmelCase_= args.model_name_or_path set_seed(lowerCAmelCase_ ) UpperCAmelCase_, UpperCAmelCase_= get_dataloaders(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_= AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ ,return_dict=lowerCAmelCase_ ) # Instantiate optimizer UpperCAmelCase_= ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_= optimizer_cls(params=model.parameters() ,lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_= accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCAmelCase_= 1 UpperCAmelCase_= (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_= get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ ,num_warmup_steps=0 ,num_training_steps=lowerCAmelCase_ ,) else: UpperCAmelCase_= DummyScheduler(lowerCAmelCase_ ,total_num_steps=lowerCAmelCase_ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_= 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_= 0 # Now we train the model UpperCAmelCase_= evaluate.load("""glue""" ,"""mrpc""" ) UpperCAmelCase_= 0 UpperCAmelCase_= {} for epoch in range(lowerCAmelCase_ ,lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): UpperCAmelCase_= model(**lowerCAmelCase_ ) UpperCAmelCase_= outputs.loss UpperCAmelCase_= loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase_= 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_= model(**lowerCAmelCase_ ) UpperCAmelCase_= outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_, UpperCAmelCase_= accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase_ ) - 1: UpperCAmelCase_= predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_= references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase_ ,references=lowerCAmelCase_ ,) UpperCAmelCase_= metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,lowerCAmelCase_ ) UpperCAmelCase_= eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCAmelCase_= eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""all_results.json""" ) ,"""w""" ) as f: json.dump(lowerCAmelCase_ ,lowerCAmelCase_ ) def __a ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=lowerCAmelCase_ ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=lowerCAmelCase_ ,) parser.add_argument( """--output_dir""" ,type=lowerCAmelCase_ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--performance_lower_bound""" ,type=lowerCAmelCase_ ,default=lowerCAmelCase_ ,help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" ,) parser.add_argument( """--num_epochs""" ,type=lowerCAmelCase_ ,default=3 ,help="""Number of train epochs.""" ,) UpperCAmelCase_= parser.parse_args() UpperCAmelCase_= {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ ,lowerCAmelCase_ ) if __name__ == "__main__": main()
277
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __lowerCamelCase = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=None ): if rng is None: snake_case : Optional[Any] = random.Random() snake_case : Union[str, Any] = 1 for dim in shape: total_dims *= dim snake_case : str = [] for _ in range(__lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) snake_case : List[Any] = np.array(__lowerCamelCase , dtype=jnp.intaa ).reshape(__lowerCamelCase ) return output def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any]=None ): snake_case : Any = ids_tensor(__lowerCamelCase , vocab_size=2 , rng=__lowerCamelCase ) # make sure that at least one token is attended to for each batch snake_case : List[str] = 1 return attn_mask @require_flax class UpperCAmelCase : A__ : Dict = None A__ : Optional[int] = () def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' snake_case , snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 snake_case : str = 2 snake_case : int = inputs["input_ids"].shape[-1] // 2 snake_case : Union[str, Any] = inputs["input_ids"][:max_batch_size, :sequence_length] snake_case : Tuple = jnp.ones_like(snake_case__ ) snake_case : str = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens snake_case : Any = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` snake_case : Union[str, Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : Tuple = self._get_input_ids_and_config() snake_case : Union[str, Any] = False snake_case : Union[str, Any] = max_length snake_case : List[Any] = 0 for model_class in self.all_generative_model_classes: snake_case : List[Any] = model_class(snake_case__ ) snake_case : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case : List[str] = getattr(snake_case__ , snake_case__ ) snake_case : Optional[int] = pt_model_class(snake_case__ ).eval() snake_case : Tuple = load_flax_weights_in_pytorch_model(snake_case__ , flax_model.params ) snake_case : str = flax_model.generate(snake_case__ ).sequences snake_case : str = pt_model.generate(torch.tensor(snake_case__ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: snake_case : Tuple = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : str = self._get_input_ids_and_config() snake_case : Union[str, Any] = False snake_case : List[str] = max_length for model_class in self.all_generative_model_classes: snake_case : int = model_class(snake_case__ ) snake_case : Dict = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) snake_case : str = jit(model.generate ) snake_case : Optional[int] = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : List[Any] = self._get_input_ids_and_config() snake_case : Optional[Any] = True snake_case : int = max_length for model_class in self.all_generative_model_classes: snake_case : List[Any] = model_class(snake_case__ ) snake_case : List[str] = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) snake_case : Optional[int] = jit(model.generate ) snake_case : int = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> str: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : int = self._get_input_ids_and_config() snake_case : List[str] = False snake_case : Optional[Any] = max_length snake_case : List[Any] = 2 for model_class in self.all_generative_model_classes: snake_case : int = model_class(snake_case__ ) snake_case : Any = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) snake_case : int = jit(model.generate ) snake_case : Dict = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : List[Any] = self._get_input_ids_and_config() snake_case : str = False snake_case : Optional[int] = max_length snake_case : Union[str, Any] = 2 snake_case : Optional[int] = 2 for model_class in self.all_generative_model_classes: snake_case : str = model_class(snake_case__ ) snake_case : Dict = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : Any = self._get_input_ids_and_config() snake_case : int = True snake_case : Dict = max_length snake_case : Optional[int] = 0.8 snake_case : Dict = 10 snake_case : Optional[int] = 0.3 snake_case : Tuple = 1 snake_case : Optional[Any] = 8 snake_case : List[Any] = 9 for model_class in self.all_generative_model_classes: snake_case : Optional[int] = model_class(snake_case__ ) snake_case : Union[str, Any] = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) snake_case : Optional[int] = jit(model.generate ) snake_case : Any = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : List[str] = self._get_input_ids_and_config() snake_case : int = max_length snake_case : int = 1 snake_case : Optional[int] = 8 snake_case : Any = 9 for model_class in self.all_generative_model_classes: snake_case : Optional[int] = model_class(snake_case__ ) snake_case : int = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) snake_case : List[Any] = jit(model.generate ) snake_case : Union[str, Any] = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> str: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : List[Any] = self._get_input_ids_and_config() snake_case : List[Any] = max_length snake_case : Dict = 2 snake_case : Any = 1 snake_case : str = 8 snake_case : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: snake_case : Union[str, Any] = model_class(snake_case__ ) snake_case : Union[str, Any] = model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) snake_case : Optional[int] = jit(model.generate ) snake_case : Optional[Any] = jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : Tuple = self._get_input_ids_and_config() # pad attention mask on the left snake_case : List[Any] = attention_mask.at[(0, 0)].set(0 ) snake_case : Tuple = False snake_case : Tuple = max_length for model_class in self.all_generative_model_classes: snake_case : Optional[int] = model_class(snake_case__ ) snake_case : str = model.generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) snake_case : List[str] = jit(model.generate ) snake_case : Dict = jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : Any = self._get_input_ids_and_config() # pad attention mask on the left snake_case : List[str] = attention_mask.at[(0, 0)].set(0 ) snake_case : Optional[int] = True snake_case : Any = max_length for model_class in self.all_generative_model_classes: snake_case : str = model_class(snake_case__ ) snake_case : Optional[Any] = model.generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) snake_case : Optional[Any] = jit(model.generate ) snake_case : List[str] = jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left snake_case : Optional[int] = attention_mask.at[(0, 0)].set(0 ) snake_case : Optional[Any] = 2 snake_case : Optional[Any] = max_length for model_class in self.all_generative_model_classes: snake_case : Union[str, Any] = model_class(snake_case__ ) snake_case : Optional[Any] = model.generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) snake_case : List[Any] = jit(model.generate ) snake_case : str = jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) snake_case : List[str] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) snake_case : Any = "Hello world" snake_case : str = tokenizer(snake_case__ , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(snake_case__ , "do_samples" ): model.generate(snake_case__ , do_samples=snake_case__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(snake_case__ , "foo" ): snake_case : Optional[Any] = {"foo": "bar"} model.generate(snake_case__ , **snake_case__ )
59
def __UpperCamelCase ( _A ): if not numbers: return 0 if not isinstance(_A , (list, tuple) ) or not all( isinstance(_A , _A ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCAmelCase_ = lowerCAmelCase_ = lowerCAmelCase_ = numbers[0] for i in range(1 , len(_A ) ): # update the maximum and minimum subarray products lowerCAmelCase_ = numbers[i] if number < 0: lowerCAmelCase_ , lowerCAmelCase_ = min_till_now, max_till_now lowerCAmelCase_ = max(_A , max_till_now * number ) lowerCAmelCase_ = min(_A , min_till_now * number ) # update the maximum product found till now lowerCAmelCase_ = max(_A , _A ) return max_prod
278
0
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = array[indexa], array[indexa] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" if length > 1: _SCREAMING_SNAKE_CASE = int(length / 2 ) for i in range(snake_case__ ,low + middle ): comp_and_swap(snake_case__ ,snake_case__ ,i + middle ,snake_case__ ) bitonic_merge(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) bitonic_merge(snake_case__ ,low + middle ,snake_case__ ,snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Any: """simple docstring""" if length > 1: _SCREAMING_SNAKE_CASE = int(length / 2 ) bitonic_sort(snake_case__ ,snake_case__ ,snake_case__ ,1 ) bitonic_sort(snake_case__ ,low + middle ,snake_case__ ,0 ) bitonic_merge(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
358
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __lowerCamelCase ( snake_case__ ,snake_case__="shi-labs/oneformer_demo" ) -> Union[str, Any]: """simple docstring""" with open(hf_hub_download(snake_case__ ,snake_case__ ,repo_type="""dataset""" ) ,"""r""" ) as f: _SCREAMING_SNAKE_CASE = json.load(snake_case__ ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for key, info in class_info.items(): _SCREAMING_SNAKE_CASE = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(snake_case__ ) ) _SCREAMING_SNAKE_CASE = thing_ids _SCREAMING_SNAKE_CASE = class_names return metadata class __UpperCAmelCase (unittest.TestCase ): def __init__( self: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any]=7 , UpperCAmelCase_: Union[str, Any]=3 , UpperCAmelCase_: Optional[int]=30 , UpperCAmelCase_: List[str]=400 , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_: int=[0.5, 0.5, 0.5] , UpperCAmelCase_: List[str]=10 , UpperCAmelCase_: Optional[int]=False , UpperCAmelCase_: Optional[int]=255 , UpperCAmelCase_: Tuple="shi-labs/oneformer_demo" , UpperCAmelCase_: Union[str, Any]="ade20k_panoptic.json" , UpperCAmelCase_: Union[str, Any]=10 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = class_info_file _SCREAMING_SNAKE_CASE = prepare_metadata(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = num_text _SCREAMING_SNAKE_CASE = repo_path # for the post_process_functions _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = do_reduce_labels _SCREAMING_SNAKE_CASE = ignore_index def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase ( self: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: List[str]=False ): '''simple docstring''' if not batched: _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[0] )[0] _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[1] )[1] return expected_height, expected_width def UpperCamelCase ( self: Any ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __snake_case : int = image_processing_class def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = OneFormerImageProcessorTester(self ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """ignore_index""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """class_info_file""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """num_text""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """repo_path""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """metadata""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_reduce_labels""" ) ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple=False , UpperCAmelCase_: Any=False , UpperCAmelCase_: str="np" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _SCREAMING_SNAKE_CASE = self.image_processing_tester.num_labels _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ ) if with_segmentation_maps: _SCREAMING_SNAKE_CASE = num_labels if is_instance_map: _SCREAMING_SNAKE_CASE = list(range(UpperCAmelCase_ ) ) * 2 _SCREAMING_SNAKE_CASE = dict(enumerate(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _SCREAMING_SNAKE_CASE = [Image.fromarray(UpperCAmelCase_ ) for annotation in annotations] _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , UpperCAmelCase_ , return_tensors="""pt""" , instance_id_to_semantic_id=UpperCAmelCase_ , pad_and_return_pixel_mask=UpperCAmelCase_ , ) return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Any ): '''simple docstring''' def common(UpperCAmelCase_: List[str]=False , UpperCAmelCase_: Optional[int]=None ): _SCREAMING_SNAKE_CASE = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCAmelCase_ , is_instance_map=UpperCAmelCase_ , segmentation_type=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = inputs["""mask_labels"""] _SCREAMING_SNAKE_CASE = inputs["""class_labels"""] _SCREAMING_SNAKE_CASE = inputs["""pixel_values"""] _SCREAMING_SNAKE_CASE = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCAmelCase_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCAmelCase_ ) common(is_instance_map=UpperCAmelCase_ , segmentation_type="""pil""" ) common(is_instance_map=UpperCAmelCase_ , segmentation_type="""pil""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.zeros((20, 50) ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = binary_mask_to_rle(UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() _SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _SCREAMING_SNAKE_CASE = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase_ , target_sizes=UpperCAmelCase_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() _SCREAMING_SNAKE_CASE = image_processor.post_process_instance_segmentation(UpperCAmelCase_ , threshold=0 ) self.assertTrue(len(UpperCAmelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCAmelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() _SCREAMING_SNAKE_CASE = image_processor.post_process_panoptic_segmentation(UpperCAmelCase_ , threshold=0 ) self.assertTrue(len(UpperCAmelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCAmelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
125
0
def __lowercase ( _A ) -> Dict: SCREAMING_SNAKE_CASE : Optional[int] = 0 while len(lowerCAmelCase__ ) > 1: SCREAMING_SNAKE_CASE : str = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): SCREAMING_SNAKE_CASE : Optional[int] = files.index(min(lowerCAmelCase__ ) ) temp += files[min_index] files.pop(lowerCAmelCase__ ) files.append(lowerCAmelCase__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
245
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a : Optional[Any] = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') a : List[str] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a : Any = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a : str = sorted(arg_to_scheduler.keys()) a : Any = '{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="base", SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Union[str, Any]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = 0 UpperCAmelCase_: Any = Path(self.hparams.output_dir ) UpperCAmelCase_: Dict = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase_: str = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({"""num_labels""": num_labels} if num_labels is not None else {}), cache_dir=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) else: UpperCAmelCase_: PretrainedConfig = config UpperCAmelCase_: Union[str, Any] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): assert hasattr(self.config, SCREAMING_SNAKE_CASE_ ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config, SCREAMING_SNAKE_CASE_, getattr(self.hparams, SCREAMING_SNAKE_CASE_ ) ) if tokenizer is None: UpperCAmelCase_: List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=SCREAMING_SNAKE_CASE_, ) else: UpperCAmelCase_: PreTrainedTokenizer = tokenizer UpperCAmelCase_: List[Any] = MODEL_MODES[mode] if model is None: UpperCAmelCase_: Any = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ), config=self.config, cache_dir=SCREAMING_SNAKE_CASE_, ) else: UpperCAmelCase_: Optional[Any] = model def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Any = self.model_type.from_pretrained(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> int: UpperCAmelCase_: Dict = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase_: Optional[Any] = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) UpperCAmelCase_: Dict = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = self.model UpperCAmelCase_: str = ["""bias""", """LayerNorm.weight"""] UpperCAmelCase_: str = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase_: List[str] = Adafactor( SCREAMING_SNAKE_CASE_, lr=self.hparams.learning_rate, scale_parameter=SCREAMING_SNAKE_CASE_, relative_step=SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: Union[str, Any] = AdamW( SCREAMING_SNAKE_CASE_, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) UpperCAmelCase_: Optional[int] = optimizer UpperCAmelCase_: int = self.get_lr_scheduler() return [optimizer], [scheduler] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: return self.validation_step(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Dict: return self.validation_end(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> int: UpperCAmelCase_: Tuple = max(1, self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase_: int = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if stage == "test": UpperCAmelCase_: int = len(self.test_dataloader().dataset ) else: UpperCAmelCase_: Dict = self.get_dataloader("""train""", self.hparams.train_batch_size, shuffle=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = len(self.train_dataloader().dataset ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False ) -> str: raise NotImplementedError("""You must implement this for your task""" ) def __snake_case (self ) -> List[str]: return self.train_loader def __snake_case (self ) -> int: return self.get_dataloader("""dev""", self.hparams.eval_batch_size, shuffle=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Any: return self.get_dataloader("""test""", self.hparams.eval_batch_size, shuffle=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Dict: return os.path.join( self.hparams.data_dir, """cached_{}_{}_{}""".format( SCREAMING_SNAKE_CASE_, list(filter(SCREAMING_SNAKE_CASE_, self.hparams.model_name_or_path.split("""/""" ) ) ).pop(), str(self.hparams.max_seq_length ), ), ) @pl.utilities.rank_zero_only def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCAmelCase_: List[str] = self.output_dir.joinpath("""best_tfmr""" ) UpperCAmelCase_: List[Any] = self.step_count self.model.save_pretrained(SCREAMING_SNAKE_CASE_ ) self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) @staticmethod def __snake_case (SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: parser.add_argument( """--model_name_or_path""", default=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_, required=SCREAMING_SNAKE_CASE_, help="""Path to pretrained model or model identifier from huggingface.co/models""", ) parser.add_argument( """--config_name""", default="""""", type=SCREAMING_SNAKE_CASE_, help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""", default=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--cache_dir""", default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / """test_run""" / """cache""" ), type=SCREAMING_SNAKE_CASE_, help="""Where do you want to store the pre-trained models downloaded from huggingface.co""", ) parser.add_argument( """--encoder_layerdrop""", type=SCREAMING_SNAKE_CASE_, help="""Encoder layer dropout probability (Optional). Goes into model.config""", ) parser.add_argument( """--decoder_layerdrop""", type=SCREAMING_SNAKE_CASE_, help="""Decoder layer dropout probability (Optional). Goes into model.config""", ) parser.add_argument( """--dropout""", type=SCREAMING_SNAKE_CASE_, help="""Dropout probability (Optional). Goes into model.config""", ) parser.add_argument( """--attention_dropout""", type=SCREAMING_SNAKE_CASE_, help="""Attention dropout probability (Optional). Goes into model.config""", ) parser.add_argument("""--learning_rate""", default=5E-5, type=SCREAMING_SNAKE_CASE_, help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""", default="""linear""", choices=SCREAMING_SNAKE_CASE_, metavar=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_, help="""Learning rate scheduler""", ) parser.add_argument("""--weight_decay""", default=0.0, type=SCREAMING_SNAKE_CASE_, help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""", default=1E-8, type=SCREAMING_SNAKE_CASE_, help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""", default=0, type=SCREAMING_SNAKE_CASE_, help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""", default=4, type=SCREAMING_SNAKE_CASE_, help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""", dest="""max_epochs""", default=3, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("""--train_batch_size""", default=32, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("""--eval_batch_size""", default=32, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("""--adafactor""", action="""store_true""" ) class _a ( pl.Callback ): def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(SCREAMING_SNAKE_CASE_ ) class _a ( pl.Callback ): def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: Optional[Any] = trainer.lr_schedulers[0]["""scheduler"""] UpperCAmelCase_: Optional[int] = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: rank_zero_info("""***** Validation results *****""" ) UpperCAmelCase_: int = trainer.callback_metrics # Log results for key in sorted(SCREAMING_SNAKE_CASE_ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(SCREAMING_SNAKE_CASE_, str(metrics[key] ) ) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: rank_zero_info("""***** Test results *****""" ) UpperCAmelCase_: Any = trainer.callback_metrics # Log and save results to file UpperCAmelCase_: List[Any] = os.path.join(pl_module.hparams.output_dir, """test_results.txt""" ) with open(SCREAMING_SNAKE_CASE_, """w""" ) as writer: for key in sorted(SCREAMING_SNAKE_CASE_ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(SCREAMING_SNAKE_CASE_, str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(SCREAMING_SNAKE_CASE_, str(metrics[key] ) ) ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: Optional[int] ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(lowerCAmelCase__ ).parent / """test_run""" / """model_checkpoints""" ) , type=lowerCAmelCase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=lowerCAmelCase__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=lowerCAmelCase__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=lowerCAmelCase__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=4_2 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(lowerCAmelCase__ ).parent / """test_run""" / """dummy-train-data""" ) , type=lowerCAmelCase__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def lowerCAmelCase_ (lowerCAmelCase__: BaseTransformer , lowerCAmelCase__: argparse.Namespace , lowerCAmelCase__: Union[str, Any]=None , lowerCAmelCase__: Optional[Any]=True , lowerCAmelCase__: Dict=[] , lowerCAmelCase__: Tuple=None , lowerCAmelCase__: List[str]=None , **lowerCAmelCase__: List[Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model UpperCAmelCase_: Dict = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase_: Dict = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase__ ) if logging_callback is None: UpperCAmelCase_: Any = LoggingCallback() UpperCAmelCase_: Optional[int] = {} if args.fpaa: UpperCAmelCase_: List[str] = 1_6 if args.gpus > 1: UpperCAmelCase_: str = """auto""" UpperCAmelCase_: Union[str, Any] = """ddp""" UpperCAmelCase_: Tuple = args.accumulate_grad_batches UpperCAmelCase_: Optional[int] = None UpperCAmelCase_: List[Any] = """auto""" UpperCAmelCase_: Any = pl.Trainer.from_argparse_args( lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , ) if args.do_train: trainer.fit(lowerCAmelCase__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
147
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _lowercase ( __a ): """simple docstring""" lowercase__ = 42 lowercase__ = None def lowerCAmelCase (__UpperCamelCase : Optional[Any] , __UpperCamelCase : str=0.9_9_9 , __UpperCamelCase : Tuple="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : int ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : Optional[int] ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __UpperCamelCase =[] for i in range(__UpperCamelCase ): __UpperCamelCase =i / num_diffusion_timesteps __UpperCamelCase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) , __UpperCamelCase ) ) return torch.tensor(__UpperCamelCase , dtype=torch.floataa ) class _lowercase ( __a , __a ): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , UpperCamelCase__ : int = 1000 , UpperCamelCase__ : str = "fixed_small_log" , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[float] = 1.0 , UpperCamelCase__ : str = "epsilon" , UpperCamelCase__ : str = "squaredcos_cap_v2" , ) -> List[str]: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) __UpperCamelCase =betas_for_alpha_bar(UpperCamelCase__ ) __UpperCamelCase =1.0 - self.betas __UpperCamelCase =torch.cumprod(self.alphas , dim=0 ) __UpperCamelCase =torch.tensor(1.0 ) # standard deviation of the initial noise distribution __UpperCamelCase =1.0 # setable values __UpperCamelCase =None __UpperCamelCase =torch.from_numpy(np.arange(0 , UpperCamelCase__ )[::-1].copy() ) __UpperCamelCase =variance_type def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, torch.device] = None ) -> List[str]: '''simple docstring''' __UpperCamelCase =num_inference_steps __UpperCamelCase =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __UpperCamelCase =(np.arange(0 , UpperCamelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __UpperCamelCase =torch.from_numpy(UpperCamelCase__ ).to(UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Tuple=None ) -> List[str]: '''simple docstring''' if prev_timestep is None: __UpperCamelCase =t - 1 __UpperCamelCase =self.alphas_cumprod[t] __UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase =1 - alpha_prod_t __UpperCamelCase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase =self.betas[t] else: __UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCamelCase =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __UpperCamelCase =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __UpperCamelCase =torch.log(torch.clamp(UpperCamelCase__ , min=1E-20 ) ) __UpperCamelCase =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __UpperCamelCase =variance.log() __UpperCamelCase =beta.log() __UpperCamelCase =(predicted_variance + 1) / 2 __UpperCamelCase =frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' __UpperCamelCase =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __UpperCamelCase , __UpperCamelCase =torch.split(UpperCamelCase__ , sample.shape[1] , dim=1 ) else: __UpperCamelCase =None # 1. compute alphas, betas if prev_timestep is None: __UpperCamelCase =t - 1 __UpperCamelCase =self.alphas_cumprod[t] __UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase =1 - alpha_prod_t __UpperCamelCase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase =self.betas[t] __UpperCamelCase =self.alphas[t] else: __UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev __UpperCamelCase =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCamelCase =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCamelCase =model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCamelCase =torch.clamp( UpperCamelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __UpperCamelCase =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __UpperCamelCase =0 if t > 0: __UpperCamelCase =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase__ , device=model_output.device ) __UpperCamelCase =self._get_variance( UpperCamelCase__ , predicted_variance=UpperCamelCase__ , prev_timestep=UpperCamelCase__ , ) if self.variance_type == "fixed_small_log": __UpperCamelCase =variance elif self.variance_type == "learned_range": __UpperCamelCase =(0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ''' for the UnCLIPScheduler.''' ) __UpperCamelCase =variance * variance_noise __UpperCamelCase =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : torch.IntTensor , ) -> torch.FloatTensor: '''simple docstring''' __UpperCamelCase =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __UpperCamelCase =timesteps.to(original_samples.device ) __UpperCamelCase =alphas_cumprod[timesteps] ** 0.5 __UpperCamelCase =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase =sqrt_alpha_prod.unsqueeze(-1 ) __UpperCamelCase =(1 - alphas_cumprod[timesteps]) ** 0.5 __UpperCamelCase =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __UpperCamelCase =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''albert''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=30000 , UpperCamelCase__ : int=128 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Union[str, Any]=64 , UpperCamelCase__ : Any=16384 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Optional[int]="gelu_new" , UpperCamelCase__ : int=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=1E-12 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=3 , **UpperCamelCase__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =vocab_size __UpperCamelCase =embedding_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_hidden_groups __UpperCamelCase =num_attention_heads __UpperCamelCase =inner_group_num __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =classifier_dropout_prob __UpperCamelCase =position_embedding_type class _lowercase ( __a ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
85
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors SCREAMING_SNAKE_CASE__ : Dict = logging.getLogger(__name__) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[int] = """sequence-classification""" def __init__( self , UpperCamelCase__ ) -> List[Any]: if type(UpperCamelCase__ ) == dict: lowerCamelCase : int = Namespace(**UpperCamelCase__ ) lowerCamelCase : str = glue_output_modes[hparams.task] lowerCamelCase : int = glue_tasks_num_labels[hparams.task] super().__init__(UpperCamelCase__ , UpperCamelCase__ , self.mode ) def _lowercase ( self , **UpperCamelCase__ ) -> Tuple: return self.model(**UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: lowerCamelCase : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCamelCase : List[str] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None lowerCamelCase : Optional[int] = self(**UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = outputs[0] lowerCamelCase : str = self.trainer.lr_schedulers[0]["scheduler"] lowerCamelCase : Optional[int] = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _lowercase ( self ) -> str: lowerCamelCase : Any = self.hparams lowerCamelCase : Union[str, Any] = processors[args.task]() lowerCamelCase : Optional[int] = processor.get_labels() for mode in ["train", "dev"]: lowerCamelCase : Optional[Any] = self._feature_file(UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , UpperCamelCase__ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowerCamelCase : List[str] = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) lowerCamelCase : Dict = convert_examples_to_features( UpperCamelCase__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , UpperCamelCase__ ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> DataLoader: lowerCamelCase : str = "dev" if mode == "test" else mode lowerCamelCase : int = self._feature_file(UpperCamelCase__ ) logger.info("Loading features from cached file %s" , UpperCamelCase__ ) lowerCamelCase : str = torch.load(UpperCamelCase__ ) lowerCamelCase : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCamelCase : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowerCamelCase : List[str] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowerCamelCase : Any = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowerCamelCase : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , batch_size=UpperCamelCase__ , shuffle=UpperCamelCase__ , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : Dict = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCamelCase : Tuple = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None lowerCamelCase : Dict = self(**UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : Any = outputs[:2] lowerCamelCase : Union[str, Any] = logits.detach().cpu().numpy() lowerCamelCase : Optional[Any] = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowercase ( self , UpperCamelCase__ ) -> tuple: lowerCamelCase : Union[str, Any] = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() lowerCamelCase : Optional[int] = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowerCamelCase : Union[str, Any] = np.argmax(UpperCamelCase__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowerCamelCase : str = np.squeeze(UpperCamelCase__ ) lowerCamelCase : List[Any] = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowerCamelCase : List[str] = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase : Dict = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , UpperCamelCase__ , UpperCamelCase__ )} lowerCamelCase : List[str] = dict(results.items() ) lowerCamelCase : Optional[int] = results return ret, preds_list, out_label_list def _lowercase ( self , UpperCamelCase__ ) -> dict: lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = self._eval_end(UpperCamelCase__ ) lowerCamelCase : str = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowercase ( self , UpperCamelCase__ ) -> dict: lowerCamelCase , lowerCamelCase , lowerCamelCase : str = self._eval_end(UpperCamelCase__ ) lowerCamelCase : str = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowercase ( UpperCamelCase__ , UpperCamelCase__ ) -> int: BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( "--max_seq_length" , default=128 , type=UpperCamelCase__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=UpperCamelCase__ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def A ( ) -> int: lowerCamelCase : int = argparse.ArgumentParser() add_generic_args(_SCREAMING_SNAKE_CASE ,os.getcwd() ) lowerCamelCase : str = GLUETransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE ,os.getcwd() ) lowerCamelCase : str = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowerCamelCase : int = os.path.join( "./results" ,f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' ,) os.makedirs(args.output_dir ) lowerCamelCase : int = GLUETransformer(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = generic_train(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowerCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir ,"checkpoint-epoch=*.ckpt" ) ,recursive=_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : Tuple = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
48
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE__ : int = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE__ : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Tuple = 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : List[str] = 3 SCREAMING_SNAKE_CASE__ : Optional[int] = 4 class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = VOCAB_FILES_NAMES lowerCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : List[str] = """left""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<sep>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<cls>" , UpperCamelCase__="<mask>" , UpperCamelCase__=["<eop>", "<eod>"] , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token lowerCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) lowerCamelCase : Any = 3 lowerCamelCase : Optional[Any] = do_lower_case lowerCamelCase : List[Any] = remove_space lowerCamelCase : str = keep_accents lowerCamelCase : List[Any] = vocab_file lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def _lowercase ( self ) -> Optional[Any]: return len(self.sp_model ) def _lowercase ( self ) -> Optional[int]: lowerCamelCase : int = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: lowerCamelCase : Optional[int] = self.__dict__.copy() lowerCamelCase : Union[str, Any] = None return state def __setstate__( self , UpperCamelCase__ ) -> int: lowerCamelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase : Any = {} lowerCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , UpperCamelCase__ ) -> Any: if self.remove_space: lowerCamelCase : Dict = " ".join(inputs.strip().split() ) else: lowerCamelCase : Union[str, Any] = inputs lowerCamelCase : Optional[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCamelCase : Optional[int] = unicodedata.normalize("NFKD" , UpperCamelCase__ ) lowerCamelCase : List[Any] = "".join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] ) if self.do_lower_case: lowerCamelCase : List[str] = outputs.lower() return outputs def _lowercase ( self , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Optional[Any] = self.preprocess_text(UpperCamelCase__ ) lowerCamelCase : Dict = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) lowerCamelCase : Dict = [] for piece in pieces: if len(UpperCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase : Union[str, Any] = cur_pieces[1:] else: lowerCamelCase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase__ ) else: new_pieces.append(UpperCamelCase__ ) return new_pieces def _lowercase ( self , UpperCamelCase__ ) -> int: return self.sp_model.PieceToId(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Tuple: return self.sp_model.IdToPiece(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Union[str, Any] = "".join(UpperCamelCase__ ).replace(UpperCamelCase__ , " " ).strip() return out_string def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = True , **UpperCamelCase__ , ) -> str: lowerCamelCase : Optional[int] = kwargs.pop("use_source_tokenizer" , UpperCamelCase__ ) lowerCamelCase : Optional[int] = self.convert_ids_to_tokens(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase : Any = [] lowerCamelCase : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) ) lowerCamelCase : int = [] sub_texts.append(UpperCamelCase__ ) else: current_sub_text.append(UpperCamelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase : Union[str, Any] = "".join(UpperCamelCase__ ) lowerCamelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase : int = self.clean_up_tokenization(UpperCamelCase__ ) return clean_text else: return text def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : str = [self.sep_token_id] lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] return ([0] * len(UpperCamelCase__ )) + [1, 1] def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase : Union[str, Any] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github __snake_case : Union[str, Any] = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _lowercase ( ) -> List[str]: __lowerCAmelCase : Dict = Github(os.environ["GITHUB_TOKEN"] ) __lowerCAmelCase : List[Any] = g.get_repo("huggingface/diffusers" ) __lowerCAmelCase : str = repo.get_issues(state="open" ) for issue in open_issues: __lowerCAmelCase : Dict = sorted(issue.get_comments() ,key=lambda __snake_case : i.created_at ,reverse=__snake_case ) __lowerCAmelCase : Dict = comments[0] if len(__snake_case ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
58
"""simple docstring""" from math import pi def _lowercase ( __snake_case ,__snake_case ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
58
1
'''simple docstring''' def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0 , UpperCAmelCase = 0 )-> int: """simple docstring""" __A = right or len(UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase , UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
161
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def snake_case ( UpperCAmelCase )-> Dict: """simple docstring""" __A = torch.exp(UpperCAmelCase ) __A = torch.sum(UpperCAmelCase , dim=1 ) # sum of exp(x_i) __A = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(UpperCAmelCase ) - B / A class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :int ) -> Union[str, Any]: '''simple docstring''' super().__init__() __A = config.output_attentions __A = config.output_hidden_states __A = nn.ModuleList([BertLayer(_A ) for _ in range(config.num_hidden_layers )] ) __A = nn.ModuleList([BertHighway(_A ) for _ in range(config.num_hidden_layers )] ) __A = [-1 for _ in range(config.num_hidden_layers )] def lowercase_ ( self :Any , _A :List[Any] ) -> Tuple: '''simple docstring''' if (type(_A ) is float) or (type(_A ) is int): for i in range(len(self.early_exit_entropy ) ): __A = x else: __A = x def lowercase_ ( self :Optional[Any] , _A :List[str] ) -> Dict: '''simple docstring''' __A = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowercase_ ( self :List[Any] , _A :Tuple , _A :Tuple=None , _A :int=None , _A :List[Any]=None , _A :str=None , ) -> Tuple: '''simple docstring''' __A = () __A = () __A = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = layer_module( _A , _A , head_mask[i] , _A , _A ) __A = layer_outputs[0] if self.output_attentions: __A = all_attentions + (layer_outputs[1],) __A = (hidden_states,) if self.output_hidden_states: __A = current_outputs + (all_hidden_states,) if self.output_attentions: __A = current_outputs + (all_attentions,) __A = self.highway[i](_A ) # logits, pooled_output if not self.training: __A = highway_exit[0] __A = entropy(_A ) __A = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __A = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __A = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_A , i + 1 ) else: __A = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = (hidden_states,) if self.output_hidden_states: __A = outputs + (all_hidden_states,) if self.output_attentions: __A = outputs + (all_attentions,) __A = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Tuple , _A :List[str] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config __A = BertEmbeddings(_A ) __A = DeeBertEncoder(_A ) __A = BertPooler(_A ) self.init_weights() def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def lowercase_ ( self :Optional[Any] ) -> Dict: '''simple docstring''' return self.embeddings.word_embeddings def lowercase_ ( self :Tuple , _A :Tuple ) -> Union[str, Any]: '''simple docstring''' __A = value def lowercase_ ( self :int , _A :int ) -> Tuple: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_A ) @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :int=None , _A :List[Any]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Any=None , _A :List[str]=None , _A :Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __A = input_ids.size() elif inputs_embeds is not None: __A = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __A = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __A = torch.ones(_A , device=_A ) if encoder_attention_mask is None: __A = torch.ones(_A , device=_A ) if token_type_ids is None: __A = torch.zeros(_A , dtype=torch.long , device=_A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __A = self.get_extended_attention_mask(_A , _A , _A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __A = encoder_attention_mask[:, None, None, :] __A = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __A = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __A = self.get_head_mask(_A , self.config.num_hidden_layers ) __A = self.embeddings( input_ids=_A , position_ids=_A , token_type_ids=_A , inputs_embeds=_A ) __A = self.encoder( _A , attention_mask=_A , head_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __A = encoder_outputs[0] __A = self.pooler(_A ) __A = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Optional[Any] , _A :str , _A :List[str] ) -> Optional[int]: '''simple docstring''' __A = message __A = exit_layer # start from 1! class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :Dict ) -> Tuple: '''simple docstring''' super().__init__() __A = BertPooler(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , config.num_labels ) def lowercase_ ( self :List[Any] , _A :Optional[Any] ) -> int: '''simple docstring''' __A = encoder_outputs[0] __A = self.pooler(_A ) # "return" pooler_output # BertModel __A = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __A = bmodel_output[1] __A = self.dropout(_A ) __A = self.classifier(_A ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :str , _A :Optional[Any] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config.num_labels __A = config.num_hidden_layers __A = DeeBertModel(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :str=None , _A :Optional[int]=None , _A :Any=None , _A :str=None , _A :int=None , _A :Tuple=None , _A :Any=None , _A :List[str]=-1 , _A :Optional[Any]=False , ) -> List[str]: '''simple docstring''' __A = self.num_layers try: __A = self.bert( _A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __A = outputs[1] __A = self.dropout(_A ) __A = self.classifier(_A ) __A = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __A = e.message __A = e.exit_layer __A = outputs[0] if not self.training: __A = entropy(_A ) __A = [] __A = [] if labels is not None: if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __A = [] for highway_exit in outputs[-1]: __A = highway_exit[0] if not self.training: highway_logits_all.append(_A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_A ) if train_highway: __A = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __A = (loss,) + outputs if not self.training: __A = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __A = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
161
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class a__ ( __SCREAMING_SNAKE_CASE ): @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' __a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' __a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache __a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCamelCase__ ) BertModel.from_pretrained(UpperCamelCase__ ) BertTokenizer.from_pretrained(UpperCamelCase__ ) pipeline(task='fill-mask' , model=UpperCamelCase__ ) # baseline - just load from_pretrained with normal network __a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed __a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __a = '''1''' __a = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' __a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' __a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache __a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCamelCase__ ) BertModel.from_pretrained(UpperCamelCase__ ) BertTokenizer.from_pretrained(UpperCamelCase__ ) pipeline(task='fill-mask' , model=UpperCamelCase__ ) # baseline - just load from_pretrained with normal network __a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed __a = self.get_env() __a = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' __a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' __a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network __a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed __a = self.get_env() __a = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network __a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __a = '''1''' __a = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = ''' from transformers import pipeline ''' __a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' __a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' __a = self.get_env() __a = '''1''' __a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] __a = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = ''' from transformers import AutoModel ''' __a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network __a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed __a = self.get_env() __a = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __a = '''1''' __a = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
367
def lowerCAmelCase( __lowerCamelCase ): if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) __a = '' while len(__lowerCamelCase ) % 3 != 0: __a = '0' + bin_string __a = [ bin_string[index : index + 3] for index in range(len(__lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __a = 0 for index, val in enumerate(__lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(__lowerCamelCase ) ) oct_string += str(__lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
197
0
'''simple docstring''' from itertools import product def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> list[int]: '''simple docstring''' _UpperCAmelCase : List[str] = sides_number _UpperCAmelCase : int = max_face_number * dice_number _UpperCAmelCase : List[Any] = [0] * (max_total + 1) _UpperCAmelCase : int = 1 _UpperCAmelCase : Union[str, Any] = range(lowerCAmelCase_ , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase_ , repeat=lowerCAmelCase_ ): _UpperCAmelCase : List[str] = sum(lowerCAmelCase_ ) totals_frequencies[total] += 1 return totals_frequencies def snake_case_ ( )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = total_frequency_distribution( sides_number=4 , dice_number=9 ) _UpperCAmelCase : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : List[str] = 9 _UpperCAmelCase : str = 4 * 9 _UpperCAmelCase : Optional[int] = 6 for peter_total in range(lowerCAmelCase_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase : Optional[int] = (4**9) * (6**6) _UpperCAmelCase : Optional[int] = peter_wins_count / total_games_number _UpperCAmelCase : Optional[int] = round(lowerCAmelCase_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
215
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self ) -> List[str]: _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[int] = {} def _snake_case ( self ,a_ ) -> Optional[Any]: if vertex not in self.adjacency: _UpperCAmelCase : int = {} self.num_vertices += 1 def _snake_case ( self ,a_ ,a_ ,a_ ) -> int: self.add_vertex(a_ ) self.add_vertex(a_ ) if head == tail: return _UpperCAmelCase : List[Any] = weight _UpperCAmelCase : Dict = weight def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = self.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = edge edges.remove((tail, head, weight) ) for i in range(len(a_ ) ): _UpperCAmelCase : str = list(edges[i] ) edges.sort(key=lambda a_ : e[2] ) for i in range(len(a_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _UpperCAmelCase : Optional[Any] = edges[i][2] + 1 for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = edge _UpperCAmelCase : str = weight _UpperCAmelCase : List[str] = weight def __str__( self ) -> Any: _UpperCAmelCase : List[Any] = """""" for tail in self.adjacency: for head in self.adjacency[tail]: _UpperCAmelCase : List[str] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _snake_case ( self ) -> Optional[int]: return self.adjacency.keys() @staticmethod def _snake_case ( a_=None ,a_=None ) -> Tuple: _UpperCAmelCase : List[Any] = Graph() if vertices is None: _UpperCAmelCase : List[str] = [] if edges is None: _UpperCAmelCase : Optional[Any] = [] for vertex in vertices: g.add_vertex(a_ ) for edge in edges: g.add_edge(*a_ ) return g class lowercase : """simple docstring""" def __init__( self ) -> int: _UpperCAmelCase : List[str] = {} _UpperCAmelCase : int = {} def __len__( self ) -> Tuple: return len(self.parent ) def _snake_case ( self ,a_ ) -> str: if item in self.parent: return self.find(a_ ) _UpperCAmelCase : Optional[Any] = item _UpperCAmelCase : List[Any] = 0 return item def _snake_case ( self ,a_ ) -> List[str]: if item not in self.parent: return self.make_set(a_ ) if item != self.parent[item]: _UpperCAmelCase : List[Any] = self.find(self.parent[item] ) return self.parent[item] def _snake_case ( self ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Any = self.find(a_ ) _UpperCAmelCase : List[str] = self.find(a_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _UpperCAmelCase : List[str] = roota return roota return None @staticmethod def _snake_case ( a_ ) -> List[Any]: _UpperCAmelCase : int = graph.num_vertices _UpperCAmelCase : int = Graph.UnionFind() _UpperCAmelCase : Optional[int] = [] while num_components > 1: _UpperCAmelCase : int = {} for vertex in graph.get_vertices(): _UpperCAmelCase : Union[str, Any] = -1 _UpperCAmelCase : Tuple = graph.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = edge edges.remove((tail, head, weight) ) for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = edge _UpperCAmelCase : Any = union_find.find(a_ ) _UpperCAmelCase : Any = union_find.find(a_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : Tuple = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = cheap_edge[vertex] if union_find.find(a_ ) != union_find.find(a_ ): union_find.union(a_ ,a_ ) mst_edges.append(cheap_edge[vertex] ) _UpperCAmelCase : Tuple = num_components - 1 _UpperCAmelCase : Optional[int] = Graph.build(edges=a_ ) return mst
215
1
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __A : str = logging.getLogger(__name__) __A : List[Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __A : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCAmelCase )} , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase : bool = field( default=_UpperCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase : bool = field( default=_UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def a_ ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class lowerCamelCase : lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) lowercase : bool = field( default=_UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowercase : Optional[int] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) lowercase : Optional[int] = field( default=_UpperCAmelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowercase : float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) lowercase : bool = field( default=_UpperCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def a_ ( self ): if self.train_file is not None: UpperCamelCase : List[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: UpperCamelCase : str = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A_ ( snake_case_ : List[str] ,snake_case_ : Tuple ): '''simple docstring''' with open(snake_case_ ,"""r""" ,encoding="""utf-8""" ) as f: UpperCamelCase : Optional[int] = [json.loads(snake_case_ ) for line in f.read().splitlines() if (len(snake_case_ ) > 0 and not line.isspace())] assert len(snake_case_ ) == len(snake_case_ ) UpperCamelCase : Tuple = {c: dataset[c] for c in dataset.column_names} UpperCamelCase : int = refs return Dataset.from_dict(snake_case_ ) def A_ ( ): '''simple docstring''' UpperCamelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase : Dict = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCamelCase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" ,snake_case_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCamelCase : List[str] = load_dataset(data_args.dataset_name ,data_args.dataset_config_name ) if "validation" not in datasets.keys(): UpperCamelCase : List[str] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f'train[:{data_args.validation_split_percentage}%]' ,) UpperCamelCase : List[str] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f'train[{data_args.validation_split_percentage}%:]' ,) else: UpperCamelCase : List[str] = {} if data_args.train_file is not None: UpperCamelCase : Any = data_args.train_file if data_args.validation_file is not None: UpperCamelCase : Dict = data_args.validation_file UpperCamelCase : Any = data_args.train_file.split(""".""" )[-1] if extension == "txt": UpperCamelCase : int = """text""" UpperCamelCase : List[Any] = load_dataset(snake_case_ ,data_files=snake_case_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : Dict = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase : Tuple = AutoConfig.from_pretrained(model_args.config_name ,**snake_case_ ) elif model_args.model_name_or_path: UpperCamelCase : Any = AutoConfig.from_pretrained(model_args.model_name_or_path ,**snake_case_ ) else: UpperCamelCase : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) UpperCamelCase : Dict = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: UpperCamelCase : int = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,**snake_case_ ) elif model_args.model_name_or_path: UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,**snake_case_ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: UpperCamelCase : Dict = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) else: logger.info("""Training new model from scratch""" ) UpperCamelCase : Dict = AutoModelForMaskedLM.from_config(snake_case_ ) model.resize_token_embeddings(len(snake_case_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: UpperCamelCase : Tuple = datasets["""train"""].column_names else: UpperCamelCase : Any = datasets["""validation"""].column_names UpperCamelCase : str = """text""" if """text""" in column_names else column_names[0] UpperCamelCase : Optional[Any] = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(snake_case_ : Optional[int] ): # Remove empty lines UpperCamelCase : Optional[Any] = [line for line in examples["""text"""] if len(snake_case_ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] ,padding=snake_case_ ,truncation=snake_case_ ,max_length=data_args.max_seq_length ) UpperCamelCase : List[str] = datasets.map( snake_case_ ,batched=snake_case_ ,num_proc=data_args.preprocessing_num_workers ,remove_columns=[text_column_name] ,load_from_cache_file=not data_args.overwrite_cache ,) # Add the chinese references if provided if data_args.train_ref_file is not None: UpperCamelCase : List[Any] = add_chinese_references(tokenized_datasets["""train"""] ,data_args.train_ref_file ) if data_args.validation_ref_file is not None: UpperCamelCase : Any = add_chinese_references( tokenized_datasets["""validation"""] ,data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer UpperCamelCase : List[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: UpperCamelCase : List[str] = False # Data collator # This one will take care of randomly masking the tokens. UpperCamelCase : Dict = DataCollatorForWholeWordMask(tokenizer=snake_case_ ,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCamelCase : Any = Trainer( model=snake_case_ ,args=snake_case_ ,train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None ,eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None ,tokenizer=snake_case_ ,data_collator=snake_case_ ,) # Training if training_args.do_train: if last_checkpoint is not None: UpperCamelCase : List[Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): UpperCamelCase : Optional[Any] = model_args.model_name_or_path else: UpperCamelCase : int = None UpperCamelCase : Any = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase : List[str] = os.path.join(training_args.output_dir ,"""train_results.txt""" ) if trainer.is_world_process_zero(): with open(snake_case_ ,"""w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,"""trainer_state.json""" ) ) # Evaluation UpperCamelCase : str = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase : List[str] = trainer.evaluate() UpperCamelCase : List[str] = math.exp(eval_output["""eval_loss"""] ) UpperCamelCase : Any = perplexity UpperCamelCase : Optional[int] = os.path.join(training_args.output_dir ,"""eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(snake_case_ ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) return results def A_ ( snake_case_ : Dict ): '''simple docstring''' main() if __name__ == "__main__": main()
367
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __A : Optional[Any] = logging.get_logger(__name__) def A_ ( snake_case_ : np.ndarray ,snake_case_ : Union[int, Iterable[int]] ,snake_case_ : bool ,snake_case_ : int ): '''simple docstring''' def constraint_to_multiple_of(snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : List[str]=0 ,snake_case_ : Optional[Any]=None ): UpperCamelCase : List[str] = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase : Optional[Any] = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase : Dict = math.ceil(val / multiple ) * multiple return x UpperCamelCase : Any = (output_size, output_size) if isinstance(snake_case_ ,snake_case_ ) else output_size UpperCamelCase , UpperCamelCase : int = get_image_size(snake_case_ ) UpperCamelCase , UpperCamelCase : Union[str, Any] = output_size # determine new height and width UpperCamelCase : List[str] = output_height / input_height UpperCamelCase : List[str] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase : int = scale_width else: # fit height UpperCamelCase : Optional[Any] = scale_height UpperCamelCase : int = constraint_to_multiple_of(scale_height * input_height ,multiple=snake_case_ ) UpperCamelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width ,multiple=snake_case_ ) return (new_height, new_width) class lowerCamelCase ( _UpperCAmelCase ): lowercase : str = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384} UpperCamelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = do_resize UpperCamelCase : Union[str, Any] = size UpperCamelCase : Union[str, Any] = keep_aspect_ratio UpperCamelCase : Any = ensure_multiple_of UpperCamelCase : List[Any] = resample UpperCamelCase : str = do_rescale UpperCamelCase : Optional[Any] = rescale_factor UpperCamelCase : List[str] = do_normalize UpperCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) UpperCamelCase : Dict = get_resize_output_image_size( SCREAMING_SNAKE_CASE_ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=SCREAMING_SNAKE_CASE_ , multiple=SCREAMING_SNAKE_CASE_ , ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCamelCase : List[Any] = size if size is not None else self.size UpperCamelCase : Dict = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase : Tuple = resample if resample is not None else self.resample UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std UpperCamelCase : str = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCamelCase : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase : int = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase : List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = target_sizes.numpy() UpperCamelCase : Dict = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : List[Any] = logits.argmax(dim=1 ) UpperCamelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
27
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): @property def lowerCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def lowerCamelCase__ ( self : List[str] ): torch.manual_seed(0 ) __lowerCamelCase : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def lowerCamelCase__ ( self : List[Any] ): torch.manual_seed(0 ) __lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCAmelCase ) def lowerCamelCase__ ( self : str ): __lowerCamelCase : Union[str, Any] = self.dummy_uncond_unet __lowerCamelCase : Any = DDIMScheduler() __lowerCamelCase : int = self.dummy_vq_model __lowerCamelCase : Dict = LDMPipeline(unet=UpperCAmelCase , vqvae=UpperCAmelCase , scheduler=UpperCAmelCase ) ldm.to(UpperCAmelCase ) ldm.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : List[Any] = torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = ldm(generator=UpperCAmelCase , num_inference_steps=2 , output_type="numpy" ).images __lowerCamelCase : Tuple = torch.manual_seed(0 ) __lowerCamelCase : List[str] = ldm(generator=UpperCAmelCase , num_inference_steps=2 , output_type="numpy" , return_dict=UpperCAmelCase )[0] __lowerCamelCase : Tuple = image[0, -3:, -3:, -1] __lowerCamelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Tuple = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) __lowerCamelCase : Optional[int] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): __lowerCamelCase : List[str] = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(UpperCAmelCase ) ldm.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Tuple = torch.manual_seed(0 ) __lowerCamelCase : str = ldm(generator=UpperCAmelCase , num_inference_steps=5 , output_type="numpy" ).images __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __lowerCamelCase : Any = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) __lowerCamelCase : Optional[int] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
135
"""simple docstring""" def lowercase_ ( _lowerCamelCase: Dict ) -> List[str]: '''simple docstring''' __lowerCamelCase : Tuple = 1 __lowerCamelCase : int = 2 while i * i <= n: __lowerCamelCase : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowercase_ ( ) -> str: '''simple docstring''' __lowerCamelCase : List[str] = 1 __lowerCamelCase : Dict = 1 while True: i += 1 t_num += i if count_divisors(_lowerCamelCase ) > 500: break return t_num if __name__ == "__main__": print(solution())
135
1
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCamelCase__( __A ): lowerCAmelCase__ : int = DistilBertTokenizer lowerCAmelCase__ : int = DistilBertTokenizerFast lowerCAmelCase__ : List[Any] = True @slow def snake_case__ ( self ) -> Optional[Any]: A__ = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) A__ = tokenizer.encode('sequence builders' ,add_special_tokens=__UpperCAmelCase ) A__ = tokenizer.encode('multi-sequence build' ,add_special_tokens=__UpperCAmelCase ) A__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) A__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ,__UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
352
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Optional[int]: A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def snake_case__ ( self ) -> int: A__ = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() A__ = [sys.executable] + distributed_args execute_subprocess_async(__UpperCAmelCase ,env=os.environ.copy() )
154
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE ) as metadata_file: lowerCAmelCase : Tuple = json.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE , **metadata["model_config"] ) # Load in the weights from the checkpoint_path lowerCAmelCase : Optional[int] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["module"] # Load the entity vocab file lowerCAmelCase : List[str] = load_original_entity_vocab(SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] lowerCAmelCase : Dict = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCAmelCase : List[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks lowerCAmelCase : Union[str, Any] = AddedToken("<ent>" , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = AddedToken("<ent2>" , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) , "r" ) as f: lowerCAmelCase : int = json.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(["#"] )[0] lowerCAmelCase : Optional[int] = state_dict["embeddings.word_embeddings.weight"] lowerCAmelCase : str = word_emb[ent_init_index].unsqueeze(0 ) lowerCAmelCase : int = word_emb[enta_init_index].unsqueeze(0 ) lowerCAmelCase : Optional[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCAmelCase : Optional[Any] = state_dict[bias_name] lowerCAmelCase : List[str] = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCAmelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCAmelCase : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCAmelCase : int = f"""encoder.layer.{layer_index}.attention.self.""" lowerCAmelCase : List[str] = state_dict[prefix + matrix_name] lowerCAmelCase : Optional[int] = state_dict[prefix + matrix_name] lowerCAmelCase : Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCAmelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] lowerCAmelCase : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) lowerCAmelCase : Optional[int] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCAmelCase : Optional[Any] = state_dict["entity_predictions.bias"] lowerCAmelCase : Any = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) lowerCAmelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCAmelCase : Dict = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) lowerCAmelCase : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): lowerCAmelCase : str = state_dict[key] else: lowerCAmelCase : int = state_dict[key] lowerCAmelCase , lowerCAmelCase : Optional[int] = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) if set(SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCAmelCase : str = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , task="entity_classification" ) lowerCAmelCase : str = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." lowerCAmelCase : Dict = (0, 9) lowerCAmelCase : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="pt" ) lowerCAmelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase : Tuple = torch.Size((1, 3_3, 7_6_8) ) lowerCAmelCase : Dict = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase : Tuple = torch.Size((1, 1, 7_6_8) ) lowerCAmelCase : Optional[int] = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction lowerCAmelCase : Tuple = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = "Tokyo is the capital of <mask>." lowerCAmelCase : Optional[int] = (2_4, 3_0) lowerCAmelCase : Any = tokenizer(SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="pt" ) lowerCAmelCase : Any = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = encoding["input_ids"][0].tolist() lowerCAmelCase : str = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) lowerCAmelCase : Tuple = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = outputs.entity_logits[0][0].argmax().item() lowerCAmelCase : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(SCREAMING_SNAKE_CASE ) ) model.save_pretrained(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ["[MASK]", "[PAD]", "[UNK]"] lowerCAmelCase : Tuple = [json.loads(SCREAMING_SNAKE_CASE ) for line in open(SCREAMING_SNAKE_CASE )] lowerCAmelCase : Any = {} for entry in data: lowerCAmelCase : Tuple = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCAmelCase : Tuple = entity_id break lowerCAmelCase : Tuple = f"""{language}:{entity_name}""" lowerCAmelCase : Tuple = entity_id return new_mapping if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) lowerCAmelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
108
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): UpperCamelCase_ , UpperCamelCase_ = coefficient_matrix.shape UpperCamelCase_ , UpperCamelCase_ = constant_matrix.shape if rowsa != colsa: UpperCamelCase_ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase) if colsa != 1: UpperCamelCase_ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase) if rowsa != rowsa: UpperCamelCase_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase) if len(_lowerCAmelCase) != rowsa: UpperCamelCase_ = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(_lowerCAmelCase)} and {rowsa}""" ) raise ValueError(_lowerCAmelCase) if iterations <= 0: raise ValueError("Iterations must be at least 1") UpperCamelCase_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1) UpperCamelCase_ , UpperCamelCase_ = table.shape strictly_diagonally_dominant(_lowerCAmelCase) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase): UpperCamelCase_ = [] for row in range(_lowerCAmelCase): UpperCamelCase_ = 0 for col in range(_lowerCAmelCase): if col == row: UpperCamelCase_ = table[row][col] elif col == cols - 1: UpperCamelCase_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase_ = (temp + val) / denom new_val.append(_lowerCAmelCase) UpperCamelCase_ = new_val return [float(_lowerCAmelCase) for i in new_val] def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = table.shape UpperCamelCase_ = True for i in range(0 , _lowerCAmelCase): UpperCamelCase_ = 0 for j in range(0 , cols - 1): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant") return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
128
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __a , unittest.TestCase ): snake_case : str = KandinskyVaaPriorPipeline snake_case : Union[str, Any] = ["""prompt"""] snake_case : Optional[int] = ["""prompt""", """negative_prompt"""] snake_case : int = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] snake_case : Tuple = False @property def snake_case_ (self ): return 3_2 @property def snake_case_ (self ): return 3_2 @property def snake_case_ (self ): return self.time_input_dim @property def snake_case_ (self ): return self.time_input_dim * 4 @property def snake_case_ (self ): return 1_0_0 @property def snake_case_ (self ): _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(lowerCAmelCase__ ) @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : List[str] = { """num_attention_heads""": 2, """attention_head_dim""": 1_2, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } _UpperCAmelCase : List[str] = PriorTransformer(**lowerCAmelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _UpperCAmelCase : Tuple = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) _UpperCAmelCase : str = CLIPVisionModelWithProjection(lowerCAmelCase__ ) return model @property def snake_case_ (self ): _UpperCAmelCase : List[Any] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_2_4 , ) return image_processor def snake_case_ (self ): _UpperCAmelCase : Dict = self.dummy_prior _UpperCAmelCase : int = self.dummy_image_encoder _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = self.dummy_tokenizer _UpperCAmelCase : List[Any] = self.dummy_image_processor _UpperCAmelCase : Dict = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1_0_0_0 , clip_sample=lowerCAmelCase__ , clip_sample_range=1_0.0 , ) _UpperCAmelCase : Any = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=0 ): if str(lowerCAmelCase__ ).startswith("""mps""" ): _UpperCAmelCase : List[str] = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : int = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ (self ): _UpperCAmelCase : str = """cpu""" _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = self.pipeline_class(**lowerCAmelCase__ ) _UpperCAmelCase : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) _UpperCAmelCase : List[Any] = output.image_embeds _UpperCAmelCase : List[str] = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : List[str] = image[0, -1_0:] _UpperCAmelCase : Union[str, Any] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) _UpperCAmelCase : str = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ (self ): _UpperCAmelCase : Dict = torch_device == """cpu""" _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : int = False self._test_inference_batch_single_identical( test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , test_mean_pixel_difference=lowerCAmelCase__ , ) @skip_mps def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = torch_device == """cpu""" _UpperCAmelCase : List[str] = False self._test_attention_slicing_forward_pass( test_max_difference=lowerCAmelCase__ , test_mean_pixel_difference=lowerCAmelCase__ , )
359
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): if config_name_or_path is None: _UpperCAmelCase : List[Any] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: _UpperCAmelCase : str = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _UpperCAmelCase : Optional[int] = question_encoder_name_or_path _UpperCAmelCase : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. _UpperCAmelCase : List[Any] = RagConfig.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = AutoConfig.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Dict = gen_config _UpperCAmelCase : int = question_encoder_config _UpperCAmelCase : Optional[Any] = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase_ , lowerCAmelCase_ , config=lowerCAmelCase_ ) rag_model.save_pretrained(lowerCAmelCase_ ) # Sanity check. model_class.from_pretrained(lowerCAmelCase_ ) # Save tokenizers. _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) lowerCAmelCase_ : List[Any] = parser.parse_args() lowerCAmelCase_ : Tuple = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
170
0
'''simple docstring''' import string import numpy def __UpperCamelCase ( lowercase__ : int, lowercase__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a, lowercase__ ) class lowerCAmelCase : lowerCAmelCase_ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCAmelCase_ = numpy.vectorize(lambda A : x % 3_6 ) lowerCAmelCase_ = numpy.vectorize(A ) def __init__( self : int , __lowercase : numpy.ndarray ): """simple docstring""" __lowercase =self.modulus(__lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowercase =encrypt_key.shape[0] def snake_case ( self : Any , __lowercase : str ): """simple docstring""" return self.key_string.index(__lowercase ) def snake_case ( self : Any , __lowercase : int ): """simple docstring""" return self.key_string[round(__lowercase )] def snake_case ( self : str ): """simple docstring""" __lowercase =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowercase =det % len(self.key_string ) __lowercase =len(self.key_string ) if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1: __lowercase =( f'''determinant modular {req_l} of encryption key({det}) ''' f'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(__lowercase ) def snake_case ( self : Tuple , __lowercase : str ): """simple docstring""" __lowercase =[char for char in text.upper() if char in self.key_string] __lowercase =chars[-1] while len(__lowercase ) % self.break_key != 0: chars.append(__lowercase ) return "".join(__lowercase ) def snake_case ( self : List[Any] , __lowercase : str ): """simple docstring""" __lowercase =self.process_text(text.upper() ) __lowercase ='' for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __lowercase =text[i : i + self.break_key] __lowercase =[self.replace_letters(__lowercase ) for char in batch] __lowercase =numpy.array([vec] ).T __lowercase =self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[ 0 ] __lowercase =''.join( self.replace_digits(__lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def snake_case ( self : Any ): """simple docstring""" __lowercase =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowercase =det % len(self.key_string ) __lowercase =None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowercase =i break __lowercase =( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowercase ) ) def snake_case ( self : List[Any] , __lowercase : str ): """simple docstring""" __lowercase =self.make_decrypt_key() __lowercase =self.process_text(text.upper() ) __lowercase ='' for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __lowercase =text[i : i + self.break_key] __lowercase =[self.replace_letters(__lowercase ) for char in batch] __lowercase =numpy.array([vec] ).T __lowercase =self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0] __lowercase =''.join( self.replace_digits(__lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __UpperCamelCase ( ): '''simple docstring''' __lowercase =int(input('Enter the order of the encryption key: ' ) ) __lowercase =[] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowercase__ ): __lowercase =[int(lowercase__ ) for x in input().split()] hill_matrix.append(lowercase__ ) __lowercase =HillCipher(numpy.array(lowercase__ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __lowercase =input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __lowercase =input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowercase__ ) ) elif option == "2": __lowercase =input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
141
'''simple docstring''' def __UpperCamelCase ( lowercase__ : str, lowercase__ : bool = False ): '''simple docstring''' if not isinstance(lowercase__, lowercase__ ): __lowercase =F'''Expected string as input, found {type(lowercase__ )}''' raise ValueError(lowercase__ ) if not isinstance(lowercase__, lowercase__ ): __lowercase =F'''Expected boolean as use_pascal parameter, found {type(lowercase__ )}''' raise ValueError(lowercase__ ) __lowercase =input_str.split('_' ) __lowercase =0 if use_pascal else 1 __lowercase =words[start_index:] __lowercase =[word[0].upper() + word[1:] for word in words_to_capitalize] __lowercase ='' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
141
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : List[Any] = BlenderbotSmallConfig _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : Tuple = "gelu" def __init__( self : List[str] , A : List[str] , A : Optional[Any]=1_3 , A : Any=7 , A : Optional[Any]=True , A : List[Any]=False , A : Tuple=9_9 , A : List[str]=3_2 , A : Tuple=2 , A : Tuple=4 , A : int=3_7 , A : Dict=0.1 , A : Optional[Any]=0.1 , A : str=2_0 , A : Optional[int]=2 , A : int=1 , A : Tuple=0 , ) ->str: lowerCamelCase__ : Dict = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : Dict = seq_length lowerCamelCase__ : int = is_training lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : List[Any] = eos_token_id lowerCamelCase__ : Any = pad_token_id lowerCamelCase__ : Dict = bos_token_id def __lowerCamelCase ( self : Optional[Any] ) ->Union[str, Any]: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__ : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ : Any = prepare_blenderbot_small_inputs_dict(A , A , A ) return config, inputs_dict def __lowerCamelCase ( self : Tuple , A : Union[str, Any] , A : List[Any] ) ->str: lowerCamelCase__ : int = TFBlenderbotSmallModel(config=A ).get_decoder() lowerCamelCase__ : Dict = inputs_dict['''input_ids'''] lowerCamelCase__ : int = input_ids[:1, :] lowerCamelCase__ : Union[str, Any] = inputs_dict['''attention_mask'''][:1, :] lowerCamelCase__ : List[Any] = inputs_dict['''head_mask'''] lowerCamelCase__ : Optional[int] = 1 # first forward pass lowerCamelCase__ : Tuple = model(A , attention_mask=A , head_mask=A , use_cache=A ) lowerCamelCase__ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase__ : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase__ : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase__ : List[Any] = model(A , attention_mask=A )[0] lowerCamelCase__ : Optional[Any] = model(A , attention_mask=A , past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase__ : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase__ : str = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A , A , rtol=1e-3 ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) -> int: """simple docstring""" if attention_mask is None: lowerCamelCase__ : List[str] = tf.cast(tf.math.not_equal(UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Tuple = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _UpperCAmelCase : List[str] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : int = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = False _UpperCAmelCase : int = False def __lowerCamelCase ( self : Optional[int] ) ->Optional[int]: lowerCamelCase__ : Any = TFBlenderbotSmallModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self , config_class=A ) def __lowerCamelCase ( self : int ) ->Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self : List[str] ) ->Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_tokenizers @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): _UpperCAmelCase : Dict = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] _UpperCAmelCase : str = "facebook/blenderbot_small-90M" @cached_property def __lowerCamelCase ( self : int ) ->Optional[int]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def __lowerCamelCase ( self : str ) ->Union[str, Any]: lowerCamelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCamelCase ( self : str ) ->Optional[Any]: lowerCamelCase__ : Any = self.tokenizer(self.src_text , return_tensors='''tf''' ) lowerCamelCase__ : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A , ) lowerCamelCase__ : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
363
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _A : List[Any] = 'base_with_context' def _a ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) lowerCamelCase__ : List[str] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Any = weights[f"layers_{lyr_num}"] lowerCamelCase__ : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : int = ly_weight['''attention'''] lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Tuple = weights[f"layers_{lyr_num}"] lowerCamelCase__ : str = ly_weight['''attention'''] lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) lowerCamelCase__ : Tuple = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase__ : List[Any] = weights[f"layers_{lyr_num}"] lowerCamelCase__ : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = ly_weight['''self_attention'''] lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : Dict = ly_weight['''MultiHeadDotProductAttention_0'''] lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase__ : Optional[int] = jnp.tree_util.tree_map(onp.array , UpperCAmelCase ) lowerCamelCase__ : List[str] = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] lowerCamelCase__ : List[Any] = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) lowerCamelCase__ : Optional[Any] = inference.parse_training_gin_file(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = inference.InferenceModel(args.checkpoint_path , UpperCAmelCase ) lowerCamelCase__ : int = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) lowerCamelCase__ : str = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCamelCase__ : int = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCamelCase__ : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCamelCase__ : Optional[int] = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , UpperCAmelCase ) lowerCamelCase__ : int = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , UpperCAmelCase ) lowerCamelCase__ : List[str] = load_decoder(ta_checkpoint['''target''']['''decoder'''] , UpperCAmelCase ) lowerCamelCase__ : List[str] = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) lowerCamelCase__ : List[Any] = SpectrogramDiffusionPipeline( notes_encoder=UpperCAmelCase , continuous_encoder=UpperCAmelCase , decoder=UpperCAmelCase , scheduler=UpperCAmelCase , melgan=UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _A : int = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) _A : Tuple = parser.parse_args() main(args)
265
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a__ : Optional[int] =logging.get_logger(__name__) a__ : List[str] ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a__ : Optional[Any] ={ '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } a__ : List[str] ={'''facebook/blenderbot-3B''': 128} class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[int] =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple =["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : Any =BlenderbotTokenizer def __init__( self : Union[str, Any] , __A : Tuple=None , __A : Optional[Any]=None , __A : List[Any]=None , __A : int="replace" , __A : str="<s>" , __A : int="</s>" , __A : Union[str, Any]="</s>" , __A : Any="<s>" , __A : Optional[Any]="<unk>" , __A : Optional[Any]="<pad>" , __A : str="<mask>" , __A : List[Any]=False , __A : Tuple=True , **__A : List[str] , ): super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __A ) != add_prefix_space: __UpperCamelCase = getattr(__A , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__A ) __UpperCamelCase = add_prefix_space __UpperCamelCase = 'post_processor' __UpperCamelCase = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: __UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase = tuple(state['sep'] ) if "cls" in state: __UpperCamelCase = tuple(state['cls'] ) __UpperCamelCase = False if state.get('add_prefix_space' , __A ) != add_prefix_space: __UpperCamelCase = add_prefix_space __UpperCamelCase = True if state.get('trim_offsets' , __A ) != trim_offsets: __UpperCamelCase = trim_offsets __UpperCamelCase = True if changes_to_apply: __UpperCamelCase = getattr(__A , state.pop('type' ) ) __UpperCamelCase = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self : Optional[Any] ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self : Any , __A : Tuple ): __UpperCamelCase = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value __UpperCamelCase = value def _lowerCamelCase ( self : Optional[Any] , *__A : Optional[int] , **__A : Tuple ): __UpperCamelCase = kwargs.get('is_split_into_words' , __A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _lowerCamelCase ( self : Tuple , *__A : Dict , **__A : List[str] ): __UpperCamelCase = kwargs.get('is_split_into_words' , __A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _lowerCamelCase ( self : Union[str, Any] , __A : str , __A : Optional[str] = None ): __UpperCamelCase = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _lowerCamelCase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : Optional[int] , __A : List[int] , __A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : str , __A : "Conversation" ): __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__A ) __UpperCamelCase = ' '.join(__A ) __UpperCamelCase = self.encode(__A ) if len(__A ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
53
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[Any] =logging.get_logger(__name__) a__ : List[Any] ={ '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="altclip_text_model" def __init__( self : str , __A : List[Any]=2_5_0_0_0_2 , __A : Any=1_0_2_4 , __A : int=2_4 , __A : Dict=1_6 , __A : Optional[Any]=4_0_9_6 , __A : Union[str, Any]="gelu" , __A : Dict=0.1 , __A : Dict=0.1 , __A : List[str]=5_1_4 , __A : Optional[int]=1 , __A : int=0.02 , __A : Optional[Any]=0.02 , __A : Optional[Any]=1e-05 , __A : Dict=1 , __A : List[Any]=0 , __A : int=2 , __A : Tuple="absolute" , __A : Optional[Any]=True , __A : Optional[int]=7_6_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = initializer_factor __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = project_dim class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="altclip_vision_model" def __init__( self : List[Any] , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=3_0_7_2 , __A : Optional[Any]=5_1_2 , __A : Tuple=1_2 , __A : Union[str, Any]=1_2 , __A : Optional[int]=3 , __A : Dict=2_2_4 , __A : Tuple=3_2 , __A : str="quick_gelu" , __A : Dict=1e-5 , __A : Optional[int]=0.0 , __A : List[Any]=0.02 , __A : int=1.0 , **__A : Optional[int] , ): super().__init__(**__A ) __UpperCamelCase = hidden_size __UpperCamelCase = intermediate_size __UpperCamelCase = projection_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = num_channels __UpperCamelCase = patch_size __UpperCamelCase = image_size __UpperCamelCase = initializer_range __UpperCamelCase = initializer_factor __UpperCamelCase = attention_dropout __UpperCamelCase = layer_norm_eps __UpperCamelCase = hidden_act @classmethod def _lowerCamelCase ( cls : Optional[Any] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) __UpperCamelCase , __UpperCamelCase = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": __UpperCamelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] ="altclip" SCREAMING_SNAKE_CASE_ : Optional[int] =True def __init__( self : Any , __A : List[str]=None , __A : List[Any]=None , __A : List[str]=7_6_8 , __A : List[str]=2.6592 , **__A : Dict ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). __UpperCamelCase = kwargs.pop('text_config_dict' , __A ) __UpperCamelCase = kwargs.pop('vision_config_dict' , __A ) super().__init__(**__A ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __UpperCamelCase = {} # This is the complete result when using `text_config_dict`. __UpperCamelCase = AltCLIPTextConfig(**__A ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __UpperCamelCase = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: __UpperCamelCase = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(__A ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __UpperCamelCase = {} # This is the complete result when using `vision_config_dict`. __UpperCamelCase = AltCLIPVisionConfig(**__A ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __UpperCamelCase = { str(__A ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __UpperCamelCase = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: __UpperCamelCase = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(__A ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __UpperCamelCase = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) __UpperCamelCase = AltCLIPTextConfig(**__A ) __UpperCamelCase = AltCLIPVisionConfig(**__A ) __UpperCamelCase = projection_dim __UpperCamelCase = logit_scale_init_value __UpperCamelCase = 1.0 @classmethod def _lowerCamelCase ( cls : Union[str, Any] , __A : AltCLIPTextConfig , __A : AltCLIPVisionConfig , **__A : Optional[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.text_config.to_dict() __UpperCamelCase = self.vision_config.to_dict() __UpperCamelCase = self.__class__.model_type return output
53
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowercase : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') _lowercase : Dict = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) _lowercase : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a__ : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) a__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) a__ : Optional[str] = field(default=_lowerCAmelCase , metadata={"help": "A folder containing the training data."} ) a__ : Optional[str] = field(default=_lowerCAmelCase , metadata={"help": "A folder containing the validation data."} ) a__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) a__ : int = field(default=32 , metadata={"help": "The size of the square patches to use for masking."} ) a__ : float = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) a__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def a ( self : List[str] ): __UpperCAmelCase = {} if self.train_dir is not None: __UpperCAmelCase = self.train_dir if self.validation_dir is not None: __UpperCAmelCase = self.validation_dir __UpperCAmelCase = data_files if data_files else None @dataclass class _UpperCAmelCase : a__ : str = field( default=_lowerCAmelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) a__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_lowerCAmelCase )} , ) a__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a__ : Optional[str] = field( default=_lowerCAmelCase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) a__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) a__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a__ : str = field(default=_lowerCAmelCase , metadata={"help": "Name or path of preprocessor config."} ) a__ : bool = field( default=_lowerCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) a__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) a__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) a__ : Optional[int] = field( default=_lowerCAmelCase , metadata={"help": "Stride to use for the encoder."} , ) class _UpperCAmelCase : def __init__( self : Optional[Any] , _lowercase : Union[str, Any]=1_92 , _lowercase : Optional[int]=32 , _lowercase : List[Any]=4 , _lowercase : str=0.6 ): __UpperCAmelCase = input_size __UpperCAmelCase = mask_patch_size __UpperCAmelCase = model_patch_size __UpperCAmelCase = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) __UpperCAmelCase = self.input_size // self.mask_patch_size __UpperCAmelCase = self.mask_patch_size // self.model_patch_size __UpperCAmelCase = self.rand_size**2 __UpperCAmelCase = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Optional[int] ): __UpperCAmelCase = np.random.permutation(self.token_count )[: self.mask_count] __UpperCAmelCase = np.zeros(self.token_count , dtype=_lowercase ) __UpperCAmelCase = 1 __UpperCAmelCase = mask.reshape((self.rand_size, self.rand_size) ) __UpperCAmelCase = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def lowercase__ ( snake_case_ :Dict ): __UpperCAmelCase = torch.stack([example['''pixel_values'''] for example in examples] ) __UpperCAmelCase = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def lowercase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , snake_case_ , snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. __UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __UpperCAmelCase = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0: __UpperCAmelCase = ds['''train'''].train_test_split(data_args.train_val_split ) __UpperCAmelCase = split['''train'''] __UpperCAmelCase = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: __UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name_or_path , **snake_case_ ) elif model_args.model_name_or_path: __UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: __UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(snake_case_ , '''decoder_type''' ): __UpperCAmelCase = '''simmim''' # adapt config __UpperCAmelCase = model_args.image_size if model_args.image_size is not None else config.image_size __UpperCAmelCase = model_args.patch_size if model_args.patch_size is not None else config.patch_size __UpperCAmelCase = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: __UpperCAmelCase = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case_ ) elif model_args.model_name_or_path: __UpperCAmelCase = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: __UpperCAmelCase = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } __UpperCAmelCase = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: __UpperCAmelCase = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __UpperCAmelCase = AutoModelForMaskedImageModeling.from_config(snake_case_ ) if training_args.do_train: __UpperCAmelCase = ds['''train'''].column_names else: __UpperCAmelCase = ds['''validation'''].column_names if data_args.image_column_name is not None: __UpperCAmelCase = data_args.image_column_name elif "image" in column_names: __UpperCAmelCase = '''image''' elif "img" in column_names: __UpperCAmelCase = '''img''' else: __UpperCAmelCase = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py __UpperCAmelCase = Compose( [ Lambda(lambda snake_case_ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator __UpperCAmelCase = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(snake_case_ :Tuple ): __UpperCAmelCase = [transforms(snake_case_ ) for image in examples[image_column_name]] __UpperCAmelCase = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __UpperCAmelCase = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __UpperCAmelCase = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case_ ) # Initialize our trainer __UpperCAmelCase = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: __UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase = last_checkpoint __UpperCAmelCase = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCAmelCase = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case_ ) trainer.save_metrics('''eval''' , snake_case_ ) # Write model card and (optionally) push to hub __UpperCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) if __name__ == "__main__": main()
86
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
86
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __snake_case , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = CanineTokenizer _snake_case : Optional[Any] = False def snake_case__ ( self : int ) -> str: '''simple docstring''' super().setUp() _UpperCamelCase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' return CanineTokenizer.from_pretrained('''google/canine-s''' ) def snake_case__ ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) _UpperCamelCase = 1024 return tokenizer @require_torch def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.canine_tokenizer _UpperCamelCase = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off _UpperCamelCase = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on _UpperCamelCase = tokenizer(A_ , padding=A_ , return_tensors='''pt''' ) self.assertIsInstance(A_ , A_ ) _UpperCamelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(A_ , A_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def snake_case__ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase = self.canine_tokenizer _UpperCamelCase = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] _UpperCamelCase = tokenizer(A_ , padding=A_ , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , A_ ) self.assertIn('''attention_mask''' , A_ ) self.assertIn('''token_type_ids''' , A_ ) @require_torch def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.canine_tokenizer _UpperCamelCase = [ "What's the weater?", "It's about 25 degrees.", ] _UpperCamelCase = tokenizer( text_target=A_ , max_length=32 , padding='''max_length''' , truncation=A_ , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = " He is very happy, UNwant\u00E9d,running" _UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) tokenizer.save_pretrained(A_ ) _UpperCamelCase = tokenizer.__class__.from_pretrained(A_ ) _UpperCamelCase = after_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) shutil.rmtree(A_ ) _UpperCamelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = " He is very happy, UNwant\u00E9d,running" _UpperCamelCase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _UpperCamelCase = chr(0Xe0_07 ) additional_special_tokens.append(A_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) _UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) tokenizer.save_pretrained(A_ ) _UpperCamelCase = tokenizer.__class__.from_pretrained(A_ ) _UpperCamelCase = after_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) self.assertIn(A_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _UpperCamelCase = tokenizer.__class__.from_pretrained(A_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(A_ ) def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _UpperCamelCase = self.get_clean_sequence(A_ ) # a special token for Canine can be defined as follows: _UpperCamelCase = 0Xe0_05 _UpperCamelCase = chr(A_ ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) _UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertEqual(len(A_ ) , 1 ) _UpperCamelCase = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=A_ ) _UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) _UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) _UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , input_encoded + special_token_id ) _UpperCamelCase = tokenizer.decode(A_ , skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _UpperCamelCase = chr(0Xe0_05 ) _UpperCamelCase = chr(0Xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=A_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) _UpperCamelCase = tokenizer.tokenize(A_ ) _UpperCamelCase = tokenizer.tokenize(A_ ) self.assertEqual(len(A_ ) , 1 ) self.assertEqual(len(A_ ) , 1 ) self.assertEqual(token_a[0] , A_ ) self.assertEqual(token_a[0] , A_ ) @require_tokenizers def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: _UpperCamelCase = 0Xe0_06 _UpperCamelCase = chr(A_ ) _UpperCamelCase = AddedToken(A_ , lstrip=A_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(A_ ) tokenizer.from_pretrained(A_ ) def snake_case__ ( self : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A_ ) with open(os.path.join(A_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: _UpperCamelCase = json.load(A_ ) with open(os.path.join(A_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: _UpperCamelCase = json.load(A_ ) # a special token for Canine can be defined as follows: _UpperCamelCase = 0Xe0_06 _UpperCamelCase = chr(A_ ) _UpperCamelCase = [new_token_a] _UpperCamelCase = [new_token_a] with open(os.path.join(A_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A_ , A_ ) with open(os.path.join(A_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A_ , A_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _UpperCamelCase = tokenizer_class.from_pretrained(A_ , extra_ids=0 ) self.assertIn(A_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _UpperCamelCase = 0Xe0_07 _UpperCamelCase = chr(A_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _UpperCamelCase = [AddedToken(A_ , lstrip=A_ )] _UpperCamelCase = tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , extra_ids=0 ) self.assertIn(A_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _UpperCamelCase = "hello world" if self.space_between_special_tokens: _UpperCamelCase = "[CLS] hello world [SEP]" else: _UpperCamelCase = input _UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) _UpperCamelCase = tokenizer.decode(A_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(A_ , [output, output.lower()] ) def snake_case__ ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _UpperCamelCase = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] _UpperCamelCase = "a" _UpperCamelCase = ord(A_ ) for attr in attributes_list: setattr(A_ , attr + '''_id''' , A_ ) self.assertEqual(getattr(A_ , A_ ) , A_ ) self.assertEqual(getattr(A_ , attr + '''_id''' ) , A_ ) setattr(A_ , attr + '''_id''' , A_ ) self.assertEqual(getattr(A_ , A_ ) , A_ ) self.assertEqual(getattr(A_ , attr + '''_id''' ) , A_ ) setattr(A_ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(A_ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(A_ , '''additional_special_tokens_ids''' ) , [] ) _UpperCamelCase = 0Xe0_06 _UpperCamelCase = chr(A_ ) setattr(A_ , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(A_ , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(A_ , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' pass def snake_case__ ( self : str ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass def snake_case__ ( self : Any ) -> str: '''simple docstring''' pass def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' pass def snake_case__ ( self : List[str] ) -> List[Any]: '''simple docstring''' pass
324
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Optional[Any] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") __lowerCamelCase : List[str] = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A_ ( _lowerCAmelCase ) -> List[str]: UpperCamelCase : Optional[Any] = None # source code of `config_class` UpperCamelCase : Tuple = inspect.getsource(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = _re_checkpoint.findall(_lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): UpperCamelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase : Any = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCamelCase : List[Any] = ckpt_name break return checkpoint def A_ ( ) -> List[str]: UpperCamelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase : Union[str, Any] = get_checkpoint_from_config_class(_lowerCAmelCase ) UpperCamelCase : Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Any = "\n".join(sorted(_lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
52
0
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] =LayoutLMTokenizer lowerCamelCase : Optional[int] =LayoutLMTokenizerFast lowerCamelCase : Tuple =True lowerCamelCase : Tuple =True def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().setUp() __lowerCAmelCase : Union[str, Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **lowerCAmelCase : Tuple ) -> int: """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = """UNwant\u00E9d,running""" __lowerCAmelCase : Optional[Any] = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : int ) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase : Optional[int] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: """simple docstring""" pass
139
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple =AutoencoderKL lowerCamelCase : Tuple ="sample" lowerCamelCase : Dict =1e-2 @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = 4 __lowerCAmelCase : Dict = 3 __lowerCAmelCase : Optional[Any] = (32, 32) __lowerCAmelCase : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: """simple docstring""" return (3, 32, 32) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" return (3, 32, 32) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } __lowerCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : str = self.prepare_init_args_and_inputs_for_common() __lowerCAmelCase : Dict = self.model_class(**lowerCAmelCase ) model.to(lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training __lowerCAmelCase : str = model(**lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __lowerCAmelCase : Any = torch.randn_like(lowerCAmelCase ) __lowerCAmelCase : str = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __lowerCAmelCase : List[str] = self.model_class(**lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __lowerCAmelCase : Any = model_a(**lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __lowerCAmelCase : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __lowerCAmelCase : int = dict(model.named_parameters() ) __lowerCAmelCase : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[Any] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCAmelCase ) __lowerCAmelCase : int = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) __lowerCAmelCase : Optional[Any] = model.to(lowerCAmelCase ) model.eval() if torch_device == "mps": __lowerCAmelCase : List[Any] = torch.manual_seed(0 ) else: __lowerCAmelCase : Any = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) __lowerCAmelCase : Optional[int] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __lowerCAmelCase : Optional[int] = image.to(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , sample_posterior=lowerCAmelCase , generator=lowerCAmelCase ).sample __lowerCAmelCase : Dict = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __lowerCAmelCase : List[str] = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": __lowerCAmelCase : Union[str, Any] = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __lowerCAmelCase : Tuple = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1e-2 ) ) @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str ) -> int: """simple docstring""" return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase ) for s in shape] )}.npy''' def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Union[str, Any]=0 , lowerCAmelCase : Any=(4, 3, 5_12, 5_12) , lowerCAmelCase : Any=False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = torch.floataa if fpaa else torch.floataa __lowerCAmelCase : Optional[int] = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase ) ) ).to(lowerCAmelCase ).to(lowerCAmelCase ) return image def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any]="CompVis/stable-diffusion-v1-4" , lowerCAmelCase : int=False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = """fp16""" if fpaa else None __lowerCAmelCase : List[str] = torch.floataa if fpaa else torch.floataa __lowerCAmelCase : Dict = AutoencoderKL.from_pretrained( lowerCAmelCase , subfolder="""vae""" , torch_dtype=lowerCAmelCase , revision=lowerCAmelCase , ) model.to(lowerCAmelCase ).eval() return model def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Tuple=0 ) -> Tuple: """simple docstring""" if torch_device == "mps": return torch.manual_seed(lowerCAmelCase ) return torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.get_sd_vae_model() __lowerCAmelCase : Optional[int] = self.get_sd_image(lowerCAmelCase ) __lowerCAmelCase : List[str] = self.get_generator(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model(lowerCAmelCase , generator=lowerCAmelCase , sample_posterior=lowerCAmelCase ).sample assert sample.shape == image.shape __lowerCAmelCase : Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCAmelCase : List[str] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_sd_vae_model(fpaa=lowerCAmelCase ) __lowerCAmelCase : Tuple = self.get_sd_image(lowerCAmelCase , fpaa=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = self.get_generator(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Dict = model(lowerCAmelCase , generator=lowerCAmelCase , sample_posterior=lowerCAmelCase ).sample assert sample.shape == image.shape __lowerCAmelCase : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCAmelCase : Optional[int] = torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Any ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_sd_vae_model() __lowerCAmelCase : Optional[int] = self.get_sd_image(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : List[Any] = model(lowerCAmelCase ).sample assert sample.shape == image.shape __lowerCAmelCase : Union[str, Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCAmelCase : str = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.get_sd_vae_model() __lowerCAmelCase : Optional[Any] = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __lowerCAmelCase : Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().cpu() __lowerCAmelCase : Tuple = torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.get_sd_vae_model(fpaa=lowerCAmelCase ) __lowerCAmelCase : str = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Dict = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __lowerCAmelCase : Any = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCAmelCase : Union[str, Any] = torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_sd_vae_model(fpaa=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model.decode(lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCAmelCase : int = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[int] = self.get_sd_vae_model() __lowerCAmelCase : Optional[Any] = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model.decode(lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCAmelCase : Tuple = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : int , lowerCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.get_sd_vae_model() __lowerCAmelCase : List[str] = self.get_sd_image(lowerCAmelCase ) __lowerCAmelCase : Any = self.get_generator(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Optional[int] = model.encode(lowerCAmelCase ).latent_dist __lowerCAmelCase : Union[str, Any] = dist.sample(generator=lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __lowerCAmelCase : Any = sample[0, -1, -3:, -3:].flatten().cpu() __lowerCAmelCase : int = torch.tensor(lowerCAmelCase ) __lowerCAmelCase : str = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=lowerCAmelCase )
139
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _a ( _lowercase): _a : Union[str, Any] = (UniPCMultistepScheduler,) _a : Any = (('''num_inference_steps''', 25),) def UpperCAmelCase__( self : Dict , **_SCREAMING_SNAKE_CASE : Any )-> str: lowerCAmelCase__ : List[Any] = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**_SCREAMING_SNAKE_CASE ) return config def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Dict=0 , **_SCREAMING_SNAKE_CASE : int )-> List[Any]: lowerCAmelCase__ : Union[str, Any] = dict(self.forward_default_kwargs ) lowerCAmelCase__ : List[str] = kwargs.pop('''num_inference_steps''' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = self.dummy_sample lowerCAmelCase__ : Optional[int] = 0.1 * sample lowerCAmelCase__ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : Tuple = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals lowerCAmelCase__ : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals lowerCAmelCase__ : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = sample, sample for t in range(_SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase__ : str = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase__ : Any = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Dict=0 , **_SCREAMING_SNAKE_CASE : List[str] )-> Dict: lowerCAmelCase__ : Any = dict(self.forward_default_kwargs ) lowerCAmelCase__ : str = kwargs.pop('''num_inference_steps''' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = self.dummy_sample lowerCAmelCase__ : Optional[Any] = 0.1 * sample lowerCAmelCase__ : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : Dict = self.get_scheduler_config() lowerCAmelCase__ : List[str] = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase__ : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase__ : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase__ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase__ : List[Any] = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str=None , **_SCREAMING_SNAKE_CASE : Dict )-> int: if scheduler is None: lowerCAmelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Dict = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = 10 lowerCAmelCase__ : List[Any] = self.dummy_model() lowerCAmelCase__ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample return sample def UpperCAmelCase__( self : List[str] )-> Dict: lowerCAmelCase__ : Optional[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase__ : str = kwargs.pop('''num_inference_steps''' , _SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : Optional[Any] = self.get_scheduler_config() lowerCAmelCase__ : List[str] = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = self.dummy_sample lowerCAmelCase__ : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(_SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(_SCREAMING_SNAKE_CASE , '''set_timesteps''' ): lowerCAmelCase__ : int = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase__ : Any = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase__ : str = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase__ : str = scheduler.timesteps[5] lowerCAmelCase__ : str = scheduler.timesteps[6] lowerCAmelCase__ : Any = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase__ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__( self : Any )-> int: # make sure that iterating over schedulers with same config names gives same results # for defaults lowerCAmelCase__ : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase__ : List[Any] = self.full_loop(scheduler=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 lowerCAmelCase__ : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase__ : str = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase__ : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase__ : List[str] = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase__ : str = self.full_loop(scheduler=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCAmelCase__( self : List[Any] )-> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict )-> Optional[int]: self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__( self : str )-> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Dict: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Tuple = self.full_loop( solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , ) assert not torch.isnan(_SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def UpperCAmelCase__( self : Optional[int] )-> Tuple: self.check_over_configs(lower_order_final=_SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] )-> Tuple: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE , time_step=0 ) def UpperCAmelCase__( self : int )-> Any: lowerCAmelCase__ : str = self.full_loop() lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCAmelCase__( self : Union[str, Any] )-> Optional[int]: lowerCAmelCase__ : int = self.full_loop(prediction_type='''v_prediction''' ) lowerCAmelCase__ : Any = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def UpperCAmelCase__( self : List[str] )-> Optional[int]: lowerCAmelCase__ : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config(thresholding=_SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) lowerCAmelCase__ : Dict = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = 10 lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__( self : Any , **_SCREAMING_SNAKE_CASE : Union[str, Any] )-> List[Any]: for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : str = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
131
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase = { '''facebook/blenderbot_small-90M''': 512, } class _a ( _lowercase): _a : Dict = VOCAB_FILES_NAMES _a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _a : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Dict = BlenderbotSmallTokenizer def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Tuple="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Any="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Union[str, Any]="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : List[Any]=True , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=_SCREAMING_SNAKE_CASE , merges=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE , ) , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : List[str] = add_prefix_space def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any=None )-> Optional[int]: lowerCAmelCase__ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
131
1
'''simple docstring''' def _lowercase ( __A ): '''simple docstring''' if n_term == "": return [] __UpperCamelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(f"1/{temp + 1}" if series else """1""" ) return series if __name__ == "__main__": a__ : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
364
'''simple docstring''' def _lowercase ( __A = 10 ,__A = 22 ): '''simple docstring''' __UpperCamelCase = range(1 ,__A ) __UpperCamelCase = range(1 ,__A ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
243
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Any = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : str ,A : Optional[Any]=5_02_67 ,A : int=10_24 ,A : List[Any]=12 ,A : Any=40_96 ,A : Dict=16 ,A : Any=12 ,A : Optional[int]=40_96 ,A : Optional[int]=16 ,A : List[Any]=0.0 ,A : List[Any]=0.0 ,A : Optional[Any]="gelu" ,A : int=10_24 ,A : int=0.1 ,A : Tuple=0.0 ,A : Optional[Any]=0.0 ,A : Optional[Any]=0.02 ,A : str=0.0 ,A : Any=False ,A : Optional[Any]=True ,A : str=1 ,A : Optional[Any]=0 ,A : Optional[Any]=2 ,A : List[Any]=True ,A : int=2 ,A : str=2 ,A : List[Any]=False ,A : str=1_00 ,A : Any=8_00 ,**A : str ,): __A = vocab_size __A = max_position_embeddings __A = d_model __A = encoder_ffn_dim __A = encoder_layers __A = encoder_attention_heads __A = decoder_ffn_dim __A = decoder_layers __A = decoder_attention_heads __A = dropout __A = attention_dropout __A = activation_dropout __A = activation_function __A = init_std __A = encoder_layerdrop __A = decoder_layerdrop __A = classifier_dropout __A = use_cache __A = encoder_layers __A = scale_embedding # scale factor will be sqrt(d_model) if True __A = use_prompt __A = prompt_length __A = prompt_mid_dim super().__init__( pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,is_encoder_decoder=A ,decoder_start_token_id=A ,forced_eos_token_id=A ,**A ,) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" ,A ): __A = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed." )
15
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE :Tuple = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } SCREAMING_SNAKE_CASE :List[Any] = { 'camembert-base': 512, } SCREAMING_SNAKE_CASE :List[str] = '▁' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,): # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) __A = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __A = len(self.fairseq_tokens_to_ids ) __A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self : Dict ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self : int ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self : Dict ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Union[str, Any] ,A : Any ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
15
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( _lowerCAmelCase ): A = '''ClapFeatureExtractor''' A = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: super().__init__(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __call__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: int = kwargs.pop("""sampling_rate""", SCREAMING_SNAKE_CASE_ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: UpperCAmelCase_: Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) if audios is not None: UpperCAmelCase_: Union[str, Any] = self.feature_extractor( SCREAMING_SNAKE_CASE_, sampling_rate=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) if text is not None and audios is not None: UpperCAmelCase_: Optional[int] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ), tensor_type=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Any: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) @property def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Optional[int] = self.tokenizer.model_input_names UpperCAmelCase_: Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
82
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer a : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a : str = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } a : Dict = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } a : Optional[Any] = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ElectraTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="[UNK]", SCREAMING_SNAKE_CASE_="[SEP]", SCREAMING_SNAKE_CASE_="[PAD]", SCREAMING_SNAKE_CASE_="[CLS]", SCREAMING_SNAKE_CASE_="[MASK]", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, tokenize_chinese_chars=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""", SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): UpperCAmelCase_: Optional[int] = getattr(SCREAMING_SNAKE_CASE_, normalizer_state.pop("""type""" ) ) UpperCAmelCase_: Union[str, Any] = do_lower_case UpperCAmelCase_: Dict = strip_accents UpperCAmelCase_: List[Any] = tokenize_chinese_chars UpperCAmelCase_: int = normalizer_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = do_lower_case def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: UpperCAmelCase_: Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: Optional[int] = [self.sep_token_id] UpperCAmelCase_: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Tuple = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
82
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __UpperCAmelCase = logging.get_logger(__name__) @dataclass class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=6.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=None , _UpperCamelCase="fp4" , _UpperCamelCase=False , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = load_in_abit UpperCAmelCase_ : Any = load_in_abit UpperCAmelCase_ : List[Any] = llm_inta_threshold UpperCAmelCase_ : Tuple = llm_inta_skip_modules UpperCAmelCase_ : Tuple = llm_inta_enable_fpaa_cpu_offload UpperCAmelCase_ : Optional[Any] = llm_inta_has_fpaa_weight UpperCAmelCase_ : Union[str, Any] = bnb_abit_quant_type UpperCAmelCase_ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: UpperCAmelCase_ : int = torch.floataa elif isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : str = getattr(_UpperCamelCase , _UpperCamelCase ) elif isinstance(_UpperCamelCase , torch.dtype ): UpperCAmelCase_ : Optional[Any] = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def __UpperCAmelCase ( self ) -> int: if not isinstance(self.llm_inta_threshold , _UpperCamelCase ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _UpperCamelCase ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _UpperCamelCase ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , _UpperCamelCase ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , _UpperCamelCase ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , _UpperCamelCase ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def __UpperCAmelCase ( self ) -> str: return self.load_in_abit or self.load_in_abit def __UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> Tuple: UpperCAmelCase_ : str = cls(**_UpperCamelCase ) UpperCAmelCase_ : Dict = [] for key, value in kwargs.items(): if hasattr(_UpperCamelCase , _UpperCamelCase ): setattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) to_remove.append(_UpperCamelCase ) for key in to_remove: kwargs.pop(_UpperCamelCase , _UpperCamelCase ) if return_unused_kwargs: return config, kwargs else: return config def __UpperCAmelCase ( self , _UpperCamelCase ) -> int: with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as writer: UpperCAmelCase_ : Union[str, Any] = self.to_dict() UpperCAmelCase_ : Optional[Any] = json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + '\n' writer.write(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict[str, Any]: UpperCAmelCase_ : Optional[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Optional[Any]: return f"{self.__class__.__name__} {self.to_json_string()}" def __UpperCAmelCase ( self , _UpperCamelCase = True ) -> str: if use_diff is True: UpperCAmelCase_ : Tuple = self.to_diff_dict() else: UpperCAmelCase_ : Dict = self.to_dict() return json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + "\n" def __UpperCAmelCase ( self ) -> Dict[str, Any]: UpperCAmelCase_ : str = self.to_dict() # get the default config dict UpperCAmelCase_ : Optional[Any] = BitsAndBytesConfig().to_dict() UpperCAmelCase_ : Optional[int] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: UpperCAmelCase_ : List[str] = value return serializable_config_dict
29
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Any = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "conditional_detr" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __A=True , __A=None , __A=3 , __A=300 , __A=6 , __A=2048 , __A=8 , __A=6 , __A=2048 , __A=8 , __A=0.0 , __A=0.0 , __A=True , __A="relu" , __A=256 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.02 , __A=1.0 , __A=False , __A="sine" , __A="resnet50" , __A=True , __A=False , __A=2 , __A=5 , __A=2 , __A=1 , __A=1 , __A=2 , __A=5 , __A=2 , __A=0.25 , **__A , ) -> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) a =CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__A , __A ): a =backbone_config.get('''model_type''' ) a =CONFIG_MAPPING[backbone_model_type] a =config_class.from_dict(__A ) a =use_timm_backbone a =backbone_config a =num_channels a =num_queries a =d_model a =encoder_ffn_dim a =encoder_layers a =encoder_attention_heads a =decoder_ffn_dim a =decoder_layers a =decoder_attention_heads a =dropout a =attention_dropout a =activation_dropout a =activation_function a =init_std a =init_xavier_std a =encoder_layerdrop a =decoder_layerdrop a =encoder_layers a =auxiliary_loss a =position_embedding_type a =backbone a =use_pretrained_backbone a =dilation # Hungarian matcher a =class_cost a =bbox_cost a =giou_cost # Loss coefficients a =mask_loss_coefficient a =dice_loss_coefficient a =cls_loss_coefficient a =bbox_loss_coefficient a =giou_loss_coefficient a =focal_alpha super().__init__(is_encoder_decoder=__A , **__A ) @property def SCREAMING_SNAKE_CASE ( self ) -> int: return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self ) -> int: return self.d_model def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: a =self.backbone_config.to_dict() a =self.__class__.model_type return output class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE ( self ) -> int: return 12
81
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : Optional[int] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __a : Any = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) __a : Tuple = '''The dog is cute and lives in the garden house''' __a : Any = jnp.array([tokenizer.encode(_UpperCAmelCase )] ) __a : Tuple = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim __a : Optional[int] = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) __a : Optional[Any] = model(_UpperCAmelCase )['''last_hidden_state'''] self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1e-3 ) )
188
"""simple docstring""" import os import string import sys A = 1 << 8 A = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } A = KEYMAP['''up'''] A = KEYMAP['''left'''] if sys.platform == "win32": A = [] A = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): A = ord(str(i)) def __A ( ) -> Dict: if os.name == "nt": import msvcrt __a : Optional[Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(a_) == 0: # Read the keystroke __a : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __a : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __a : Union[str, Any] = chr(WIN_KEYMAP[cha]) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''])) WIN_CH_BUFFER.append(a_) if ord(a_) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26)) __a : str = chr(KEYMAP['''esc''']) except KeyError: __a : str = cha[1] else: __a : Optional[Any] = ch.decode(a_) else: __a : Union[str, Any] = WIN_CH_BUFFER.pop(0) elif os.name == "posix": import termios import tty __a : Any = sys.stdin.fileno() __a : List[str] = termios.tcgetattr(a_) try: tty.setraw(a_) __a : int = sys.stdin.read(1) finally: termios.tcsetattr(a_ , termios.TCSADRAIN , a_) return ch def __A ( ) -> str: __a : Any = get_raw_chars() if ord(a_) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(a_) == KEYMAP["esc"]: __a : str = get_raw_chars() if ord(a_) == KEYMAP["mod_int"]: __a : List[str] = get_raw_chars() if ord(a_) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(a_) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(a_) + ARROW_KEY_FLAG) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
188
1
'''simple docstring''' lowercase__ : Dict = [ (10_00, 'M'), (9_00, 'CM'), (5_00, 'D'), (4_00, 'CD'), (1_00, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def a__ ( lowercase : str ) -> int: """simple docstring""" _UpperCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} _UpperCamelCase = 0 _UpperCamelCase = 0 while place < len(lowercase ): if (place + 1 < len(lowercase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a__ ( lowercase : int ) -> str: """simple docstring""" _UpperCamelCase = [] for arabic, roman in ROMAN: ((_UpperCamelCase) , (_UpperCamelCase)) = divmod(lowercase, lowercase ) result.append(roman * factor ) if number == 0: break return "".join(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
324
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase__ : str = None lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } lowercase__ : Optional[int] = { 'google/rembert': 2_56, } lowercase__ : str = '▁' class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = RemBertTokenizer def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
324
1
def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: int ): """simple docstring""" return x if y == 0 else greatest_common_divisor(lowerCAmelCase__ , x % y ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: int ): """simple docstring""" return (x * y) // greatest_common_divisor(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: int = 2_0 ): """simple docstring""" UpperCAmelCase_: List[str] = 1 for i in range(1 , n + 1 ): UpperCAmelCase_: int = lcm(lowerCAmelCase__ , lowerCAmelCase__ ) return g if __name__ == "__main__": print(F'''{solution() = }''')
82
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a : Tuple = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _a ( unittest.TestCase ): A = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Dict = ZeroShotClassificationPipeline( model=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_, candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Dict = classifier("""Who are you voting for in 2020?""", candidate_labels="""politics""" ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # No kwarg UpperCAmelCase_: Optional[int] = classifier("""Who are you voting for in 2020?""", ["""politics"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) UpperCAmelCase_: Optional[int] = classifier("""Who are you voting for in 2020?""", candidate_labels=["""politics"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) UpperCAmelCase_: List[Any] = classifier("""Who are you voting for in 2020?""", candidate_labels="""politics, public health""" ) self.assertEqual( SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ), 1.0 ) UpperCAmelCase_: Tuple = classifier("""Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health"""] ) self.assertEqual( SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ), 1.0 ) UpperCAmelCase_: str = classifier( """Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template="""This text is about {}""" ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCAmelCase_: Union[str, Any] = classifier(["""I am happy"""], ["""positive""", """negative"""] ) self.assertEqual( SCREAMING_SNAKE_CASE_, [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(1 ) ], ) UpperCAmelCase_: Dict = classifier(["""I am happy""", """I am sad"""], ["""positive""", """negative"""] ) self.assertEqual( SCREAMING_SNAKE_CASE_, [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(2 ) ], ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("""""", candidate_labels="""politics""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier(SCREAMING_SNAKE_CASE_, candidate_labels="""politics""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("""Who are you voting for in 2020?""", candidate_labels="""""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("""Who are you voting for in 2020?""", candidate_labels=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( """Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template="""Not formatting template""", ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( """Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template=SCREAMING_SNAKE_CASE_, ) self.run_entailment_id(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: int = zero_shot_classifier.model.config UpperCAmelCase_: Optional[int] = config.labelaid UpperCAmelCase_: str = zero_shot_classifier.entailment_id UpperCAmelCase_: Union[str, Any] = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1 ) UpperCAmelCase_: int = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) UpperCAmelCase_: Dict = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) UpperCAmelCase_: Tuple = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2 ) UpperCAmelCase_: Any = original_labelaid self.assertEqual(SCREAMING_SNAKE_CASE_, zero_shot_classifier.entailment_id ) @require_torch def __snake_case (self ) -> str: UpperCAmelCase_: Any = pipeline( """zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""pt""", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100, candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = pipeline( """zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""pt""", ) UpperCAmelCase_: Tuple = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @require_tf def __snake_case (self ) -> int: UpperCAmelCase_: List[Any] = pipeline( """zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""tf""", ) UpperCAmelCase_: Optional[Any] = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @slow @require_torch def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[Any] = pipeline("""zero-shot-classification""", model="""roberta-large-mnli""", framework="""pt""" ) UpperCAmelCase_: Optional[int] = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) UpperCAmelCase_: Optional[Any] = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""", candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""], multi_label=SCREAMING_SNAKE_CASE_, ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, ) @slow @require_tf def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[str] = pipeline("""zero-shot-classification""", model="""roberta-large-mnli""", framework="""tf""" ) UpperCAmelCase_: Optional[Any] = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) UpperCAmelCase_: Any = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""", candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""], multi_label=SCREAMING_SNAKE_CASE_, ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, )
82
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) UpperCamelCase__ = logging.getLogger() def _a ( SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCAmelCase = {} __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , "all_results.json" ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , "r" ) as f: __lowerCAmelCase = json.load(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F"""can't find {path}""" ) return results UpperCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class a__ ( snake_case__ ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" import xla_spawn __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_A , "argv" , _A ): __lowerCAmelCase = time() xla_spawn.main() __lowerCAmelCase = time() __lowerCAmelCase = get_results(_A ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" import xla_spawn __lowerCAmelCase = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(_A , "argv" , _A ): xla_spawn.main()
92
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a__ ( snake_case__ , unittest.TestCase ): _a : Dict = KandinskyImgaImgPipeline _a : List[Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] _a : str = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] _a : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _a : int = False @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 3_2 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 3_2 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.time_input_dim @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.time_input_dim * 4 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1_0_0 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) __lowerCAmelCase = MultilingualCLIP(_A ) __lowerCAmelCase = text_encoder.eval() return text_encoder @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowerCAmelCase = UNetaDConditionModel(**_A ) return model @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } __lowerCAmelCase = DDIMScheduler(**_A ) __lowerCAmelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __SCREAMING_SNAKE_CASE( self , _A , _A=0 ): """simple docstring""" __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(_A ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) if str(_A ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(_A ) else: __lowerCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) __lowerCAmelCase = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "cpu" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**_A ) __lowerCAmelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(_A ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __lowerCAmelCase = "A red cartoon frog, 4k" __lowerCAmelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_A ) __lowerCAmelCase = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __lowerCAmelCase = pipeline( _A , image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_A , _A )
92
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a : Dict = 2 class UpperCamelCase_ : def __init__( self , *, # begin keyword-only arguments A="<s>" , A="<pad>" , A="</s>" , A="<unk>" , A=None , ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = bos, unk, pad, eos UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Dict = {} UpperCAmelCase : List[Any] = self.add_symbol(A ) UpperCAmelCase : List[str] = self.add_symbol(A ) UpperCAmelCase : int = self.add_symbol(A ) UpperCAmelCase : List[Any] = self.add_symbol(A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A ) UpperCAmelCase : List[str] = len(self.symbols ) def __eq__( self , A ) -> Tuple: return self.indices == other.indices def __getitem__( self , A ) -> Optional[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> Optional[int]: return len(self.symbols ) def __contains__( self , A ) -> List[Any]: return sym in self.indices @classmethod def _lowercase( cls , A ) -> Optional[Any]: UpperCAmelCase : List[Any] = cls() d.add_from_file(A ) return d def _lowercase( self , A , A=1 , A=False ) -> List[str]: if word in self.indices and not overwrite: UpperCAmelCase : List[Any] = self.indices[word] UpperCAmelCase : int = self.count[idx] + n return idx else: UpperCAmelCase : Optional[int] = len(self.symbols ) UpperCAmelCase : List[str] = idx self.symbols.append(A ) self.count.append(A ) return idx def _lowercase( self , A ) -> Dict: return 0 def _lowercase( self , A ) -> Optional[Any]: if isinstance(A , A ): try: with open(A , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(A ) ) return UpperCAmelCase : str = f.readlines() UpperCAmelCase : Optional[Any] = self._load_meta(A ) for line in lines[indices_start_line:]: try: UpperCAmelCase , UpperCAmelCase : str = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": UpperCAmelCase : Any = True UpperCAmelCase , UpperCAmelCase : str = line.rsplit(""" """ , 1 ) else: UpperCAmelCase : Dict = False UpperCAmelCase : List[Any] = int(A ) UpperCAmelCase : Any = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(A ) ) self.add_symbol(A , n=A , overwrite=A ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase : Optional[Any] = dict((re.sub(R"""@@$""" , """""" , _lowercase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , _lowercase ), v) for k, v in d.items() ) UpperCAmelCase : int = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] UpperCAmelCase : Optional[Any] = d[k] # restore return da def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: # prep if not os.path.exists(_lowercase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase : Optional[int] = os.path.join(_lowercase , """checkpoint.pt""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) UpperCAmelCase : Optional[int] = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : List[Any] = chkpt["""cfg"""]["""model"""] # dicts UpperCAmelCase : List[Any] = os.path.join(_lowercase , """dict.txt""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) UpperCAmelCase : Any = Dictionary.load(_lowercase ) UpperCAmelCase : Dict = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase : Optional[int] = len(_lowercase ) UpperCAmelCase : Dict = os.path.join(_lowercase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # merges_file (bpecodes) UpperCAmelCase : Tuple = os.path.join(_lowercase , """bpecodes""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) UpperCAmelCase : List[Any] = os.path.join(_lowercase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(_lowercase , _lowercase ) # model config UpperCAmelCase : List[str] = os.path.join(_lowercase , """config.json""" ) UpperCAmelCase : Optional[Any] = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # tokenizer config UpperCAmelCase : Tuple = os.path.join(_lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_0_2_4, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # model UpperCAmelCase : Any = chkpt["""model"""] # remove unneeded keys UpperCAmelCase : Optional[int] = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(_lowercase , _lowercase ) UpperCAmelCase : int = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase ) else: UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase ) UpperCAmelCase : List[Any] = BioGptConfig.from_pretrained(_lowercase ) UpperCAmelCase : Any = BioGptForCausalLM(_lowercase ) # check that it loads ok model_new.load_state_dict(_lowercase ) # save UpperCAmelCase : Union[str, Any] = os.path.join(_lowercase , _lowercase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowercase , _lowercase ) print("""Conversion is done!""" ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : Optional[int] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __A ='''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def lowerCamelCase_ ( lowerCamelCase__ = "mumbai" ): lowerCamelCase_ = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): lowerCamelCase_ = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() lowerCamelCase_ = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
19
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase :List[str] = logging.get_logger(__name__) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Dict = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: A_ : Optional[int] = 1_92 A_ : List[str] = 7_68 A_ : int = 12 A_ : List[str] = 3 A_ : Tuple = [8_00, 13_33] A_ : Optional[int] = False elif yolos_name == "yolos_s_dWr": A_ : List[str] = 3_30 A_ : List[str] = 14 A_ : Optional[int] = 6 A_ : Dict = 13_20 elif "yolos_s" in yolos_name: A_ : Any = 3_84 A_ : Dict = 15_36 A_ : Union[str, Any] = 12 A_ : int = 6 elif "yolos_b" in yolos_name: A_ : Union[str, Any] = [8_00, 13_44] A_ : Dict = 91 A_ : int = """huggingface/label-files""" A_ : Dict = """coco-detection-id2label.json""" A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A_ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} A_ : Dict = idalabel A_ : List[Any] = {v: k for k, v in idalabel.items()} return config def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : Optional[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A_ : Union[str, Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A_ : Any = in_proj_weight[: config.hidden_size, :] A_ : List[Any] = in_proj_bias[: config.hidden_size] A_ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : List[Any] = in_proj_weight[-config.hidden_size :, :] A_ : Any = in_proj_bias[-config.hidden_size :] def a ( lowerCamelCase__ ): '''simple docstring''' if "backbone" in name: A_ : List[str] = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: A_ : Tuple = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: A_ : Optional[Any] = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: A_ : int = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: A_ : Optional[int] = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: A_ : int = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: A_ : Tuple = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: A_ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: A_ : int = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: A_ : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: A_ : int = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: A_ : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: A_ : str = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: A_ : Tuple = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: A_ : Union[str, Any] = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: A_ : Tuple = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A_ : Optional[Any] = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: A_ : Dict = key.split(""".""" ) A_ : Optional[Any] = int(key_split[2] ) A_ : str = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: A_ : Tuple = val[:dim, :] A_ : Optional[Any] = val[ dim : dim * 2, : ] A_ : Dict = val[-dim:, :] else: A_ : int = val[:dim] A_ : List[Any] = val[dim : dim * 2] A_ : Any = val[-dim:] else: A_ : Dict = val return orig_state_dict def a ( ): '''simple docstring''' A_ : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Dict = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): '''simple docstring''' A_ : Any = get_yolos_config(lowerCamelCase__ ) # load original state_dict A_ : Any = torch.load(lowerCamelCase__ , map_location="""cpu""" )["""model"""] # load 🤗 model A_ : Dict = YolosForObjectDetection(lowerCamelCase__ ) model.eval() A_ : Any = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor A_ : str = 8_00 if yolos_name != """yolos_ti""" else 5_12 A_ : Optional[Any] = YolosImageProcessor(format="""coco_detection""" , size=lowerCamelCase__ ) A_ : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) A_ : Any = model(**lowerCamelCase__ ) A_ : str = outputs.logits, outputs.pred_boxes A_ : Tuple = None, None if yolos_name == "yolos_ti": A_ : Dict = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) A_ : Dict = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": A_ : Optional[Any] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) A_ : int = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": A_ : List[str] = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) A_ : Union[str, Any] = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": A_ : Tuple = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) A_ : str = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": A_ : Dict = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) A_ : Union[str, Any] = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(f'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: A_ : Optional[int] = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) A_ : int = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="""hustvl""" ) model.push_to_hub(lowerCamelCase__ , organization="""hustvl""" ) if __name__ == "__main__": lowerCamelCase :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase :List[str] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
364
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCamelCase :str = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Tuple = ['pixel_values'] def __init__(self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = True , **lowercase , ): super().__init__(**lowercase ) A_ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} A_ : Union[str, Any] = get_size_dict(lowercase , default_to_square=lowercase ) A_ : Optional[Any] = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} A_ : Tuple = get_size_dict(lowercase , param_name="""crop_size""" ) A_ : List[Any] = do_resize A_ : List[str] = size A_ : Dict = resample A_ : int = do_rescale A_ : str = rescale_factor A_ : Tuple = do_center_crop A_ : Tuple = crop_size A_ : List[str] = do_flip_channel_order def _a (self , lowercase , lowercase , lowercase = PIL.Image.BILINEAR , lowercase = None , **lowercase , ): A_ : Any = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Any = get_resize_output_image_size(lowercase , size=size["""shortest_edge"""] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def _a (self , lowercase , lowercase , lowercase = None , **lowercase , ): A_ : Tuple = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowercase , size=(size["""height"""], size["""width"""]) , data_format=lowercase , **lowercase ) def _a (self , lowercase , lowercase , lowercase = None , **lowercase , ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def _a (self , lowercase , lowercase = None ): return flip_channel_order(lowercase , data_format=lowercase ) def _a (self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): A_ : str = do_resize if do_resize is not None else self.do_resize A_ : Optional[int] = resample if resample is not None else self.resample A_ : str = do_rescale if do_rescale is not None else self.do_rescale A_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Dict = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) A_ : Union[str, Any] = size if size is not None else self.size A_ : Dict = get_size_dict(lowercase , default_to_square=lowercase ) A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : Union[str, Any] = get_size_dict(lowercase , param_name="""crop_size""" ) A_ : Union[str, Any] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. A_ : Optional[Any] = [to_numpy_array(lowercase ) for image in images] if do_resize: A_ : List[Any] = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: A_ : str = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: A_ : Dict = [self.rescale(image=lowercase , scale=lowercase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: A_ : List[str] = [self.flip_channel_order(image=lowercase ) for image in images] A_ : List[str] = [to_channel_dimension_format(lowercase , lowercase ) for image in images] A_ : str = {"""pixel_values""": images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def _a (self , lowercase , lowercase = None ): A_ : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowercase ): A_ : Dict = target_sizes.numpy() A_ : Union[str, Any] = [] for idx in range(len(lowercase ) ): A_ : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowercase ) A_ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: A_ : str = logits.argmax(dim=1 ) A_ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
135
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
import os import numpy import onnx def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : int = a.name lowercase : Any = b.name lowercase : Optional[Any] = """""" lowercase : Dict = """""" lowercase : int = a == b lowercase : int = name_a lowercase : List[str] = name_b return res def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Any = list(model.graph.initializer ) lowercase : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase : Union[str, Any] = inits[i].name lowercase : Dict = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.basename(SCREAMING_SNAKE_CASE__ ) lowercase : str = onnx.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowercase : List[str] = list(model.graph.initializer ) lowercase : Tuple = set() lowercase : int = {} lowercase : Optional[Any] = [] lowercase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE__ ) dup_set.add(SCREAMING_SNAKE_CASE__ ) lowercase : int = inits[j].data_type lowercase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , SCREAMING_SNAKE_CASE__ ) total_reduced_size += mem_size lowercase : Tuple = inits[i].name lowercase : int = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE__ ) else: lowercase : List[str] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_024 / 1_024 / 1_024 , """GB""" ) lowercase : str = sorted(SCREAMING_SNAKE_CASE__ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = """optimized_""" + model_file_name lowercase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) onnx.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return new_model
20
1
from __future__ import annotations def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )-> tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
267
def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: snake_case_ = f'''Input value of [number={number}] must be > 0''' raise ValueError(SCREAMING_SNAKE_CASE ) snake_case_ = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
267
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : int = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "mobilenet_v2" def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.02 , _a=0.001 , _a=255 , **_a , ): """simple docstring""" super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) lowerCamelCase = num_channels lowerCamelCase = image_size lowerCamelCase = depth_multiplier lowerCamelCase = depth_divisible_by lowerCamelCase = min_depth lowerCamelCase = expand_ratio lowerCamelCase = output_stride lowerCamelCase = first_layer_is_expansion lowerCamelCase = finegrained_output lowerCamelCase = hidden_act lowerCamelCase = tf_padding lowerCamelCase = classifier_dropout_prob lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = semantic_loss_ignore_index class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = version.parse("1.11" ) @property def _lowerCAmelCase ( self ): """simple docstring""" return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _lowerCAmelCase ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _lowerCAmelCase ( self ): """simple docstring""" return 1e-4
291
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ) -> Union[str, Any]: lowerCamelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=snake_case__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=snake_case__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=snake_case__ ) return parser.parse_args() def a__ ( ) -> List[str]: lowerCamelCase = parse_args() # Import training_script as a module. lowerCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase = script_fpath.stem lowerCamelCase = importlib.import_module(snake_case__ ) # Patch sys.argv lowerCamelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
291
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __A : Any = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[Any] = 'albert' def __init__( self :int ,_UpperCamelCase :Tuple=3_0_0_0_0 ,_UpperCamelCase :Optional[int]=1_2_8 ,_UpperCamelCase :Dict=4_0_9_6 ,_UpperCamelCase :Tuple=1_2 ,_UpperCamelCase :List[str]=1 ,_UpperCamelCase :Dict=6_4 ,_UpperCamelCase :List[str]=1_6_3_8_4 ,_UpperCamelCase :Any=1 ,_UpperCamelCase :List[str]="gelu_new" ,_UpperCamelCase :int=0 ,_UpperCamelCase :Dict=0 ,_UpperCamelCase :Dict=5_1_2 ,_UpperCamelCase :Dict=2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Dict=1E-1_2 ,_UpperCamelCase :List[str]=0.1 ,_UpperCamelCase :str="absolute" ,_UpperCamelCase :Optional[int]=0 ,_UpperCamelCase :List[str]=2 ,_UpperCamelCase :str=3 ,**_UpperCamelCase :Dict ,): super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Union[str, Any] = vocab_size snake_case_ : Optional[Any] = embedding_size snake_case_ : int = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Optional[int] = num_hidden_groups snake_case_ : Dict = num_attention_heads snake_case_ : Any = inner_group_num snake_case_ : Union[str, Any] = hidden_act snake_case_ : Any = intermediate_size snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Any = initializer_range snake_case_ : Dict = layer_norm_eps snake_case_ : Optional[int] = classifier_dropout_prob snake_case_ : Optional[int] = position_embedding_type class __UpperCamelCase ( lowercase__ ): @property def a__ ( self :List[Any] ): if self.task == "multiple-choice": snake_case_ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
369
'''simple docstring''' import collections import os import re from pathlib import Path __A : Dict = 'src/transformers' # Matches is_xxx_available() __A : Dict = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __A : int = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __A : List[Any] = re.compile(r'^\s*try:') # Catches a line with else: __A : Any = re.compile(r'^\s*else:') def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase_ ) is None: return None snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )] backends.sort() return "_and_".join(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() snake_case_ : List[Any] = 0 while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : Union[str, Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case_ : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase_ ): snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0] snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ ) if single_line_import_search is not None: snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case_ : List[Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None: snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_between_brackets.search(lowerCamelCase_ ) is not None: snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_quote_object.search(lowerCamelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : List[Any] = [] while ( line_index < len(lowerCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case_ : Union[str, Any] = lines[line_index] snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Dict = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case_ : Dict = lines[line_index] snake_case_ : Any = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' def find_duplicates(lowerCamelCase_ :Union[str, Any] ): return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : Optional[int] = [] for key in import_dict_objects.keys(): snake_case_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) snake_case_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" ) snake_case_ : Dict = parse_init(lowerCamelCase_ ) if objects is not None: snake_case_ : Any = analyze_results(*lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: raise ValueError("""\n\n""".join(lowerCamelCase_ ) ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] for path, directories, files in os.walk(lowerCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCamelCase_ ) for fname in files: if fname == "__init__.py": continue snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCamelCase_ ) return submodules __A : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCAmelCase ( ): '''simple docstring''' # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ ) snake_case_ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f: snake_case_ : str = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) ) snake_case_ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase_ ) > 0: snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
8
0
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") SCREAMING_SNAKE_CASE__ = parser.parse_args() if args.model_type == "roberta": SCREAMING_SNAKE_CASE__ = RobertaForMaskedLM.from_pretrained(args.model_name) SCREAMING_SNAKE_CASE__ = "roberta" elif args.model_type == "gpt2": SCREAMING_SNAKE_CASE__ = GPTaLMHeadModel.from_pretrained(args.model_name) SCREAMING_SNAKE_CASE__ = "transformer" SCREAMING_SNAKE_CASE__ = model.state_dict() SCREAMING_SNAKE_CASE__ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: SCREAMING_SNAKE_CASE__ = state_dict[f'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: SCREAMING_SNAKE_CASE__ = f'{prefix}.embeddings.{w}.weight' SCREAMING_SNAKE_CASE__ = state_dict[param_name] for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE__ = f'{prefix}.embeddings.LayerNorm.{w}' SCREAMING_SNAKE_CASE__ = state_dict[param_name] # Transformer Blocks # SCREAMING_SNAKE_CASE__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE__ = state_dict[ f'{prefix}.h.{teacher_idx}.{layer}.{w}' ] SCREAMING_SNAKE_CASE__ = state_dict[f'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE__ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: SCREAMING_SNAKE_CASE__ = state_dict[f'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE__ = state_dict[f'lm_head.dense.{w}'] SCREAMING_SNAKE_CASE__ = state_dict[f'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE__ = state_dict[f'{prefix}.ln_f.{w}'] SCREAMING_SNAKE_CASE__ = state_dict["lm_head.weight"] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
46
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , lowercase=2 , lowercase=99 , lowercase=0 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=12 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase="last" , lowercase=None , lowercase=None , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_lengths lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = gelu_activation lowerCAmelCase = sinusoidal_embeddings lowerCAmelCase = causal lowerCAmelCase = asm lowerCAmelCase = n_langs lowerCAmelCase = vocab_size lowerCAmelCase = n_special lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = summary_type lowerCAmelCase = use_proj lowerCAmelCase = scope def _snake_case ( self ) -> int: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_input_lengths: lowerCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self ) -> List[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any: lowerCAmelCase = FlaubertModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , lengths=lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = FlaubertWithLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> str: lowerCAmelCase = FlaubertForQuestionAnsweringSimple(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Dict: lowerCAmelCase = FlaubertForQuestionAnswering(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , p_mask=lowercase , ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = FlaubertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = self.num_labels lowerCAmelCase = FlaubertForTokenClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = self.num_choices lowerCAmelCase = FlaubertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , lowercase , lowercase , lowercase=False ) -> Optional[Any]: lowerCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _snake_case ( self ) -> List[str]: lowerCAmelCase = FlaubertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , emb_dim=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase ) @slow def _snake_case ( self ) -> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = FlaubertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @slow @require_torch_gpu def _snake_case ( self ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase = True lowerCAmelCase = model_class(config=lowercase ) lowerCAmelCase = self._prepare_for_class(lowercase , lowercase ) lowerCAmelCase = torch.jit.trace( lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase , os.path.join(lowercase , """traced_model.pt""" ) ) lowerCAmelCase = torch.jit.load(os.path.join(lowercase , """traced_model.pt""" ) , map_location=lowercase ) loaded(inputs_dict["""input_ids"""].to(lowercase ) , inputs_dict["""attention_mask"""].to(lowercase ) ) @require_torch class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) )
46
1
"""simple docstring""" def lowercase__(A , A ) ->Optional[Any]: """simple docstring""" assert x is not None assert y is not None lowercase__ : int= len(A ) lowercase__ : Optional[int]= len(A ) # declaring the array for storing the dp values lowercase__ : Dict= [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowercase__ : Any= 1 if x[i - 1] == y[j - 1] else 0 lowercase__ : Dict= max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowercase__ : Optional[int]= "" lowercase__, lowercase__ : List[str]= m, n while i > 0 and j > 0: lowercase__ : Optional[Any]= 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowercase__ : List[Any]= x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": a : str = """AGGTAB""" a : Optional[int] = """GXTXAYB""" a : Optional[int] = 4 a : Optional[int] = """GTAB""" a , a : Tuple = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
150
"""simple docstring""" from __future__ import annotations def lowercase__(A ) ->int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(A ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(A ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
150
1